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Abstract.
In this paper, we analyze the mean first passage time (MFPT) for a single

Brownian particle to find a stochastically-gated target under the additional
condition that the position of the particle is reset to its initial position x0 at a rate
r. The gate switches between an open (absorbing) and closed (reflecting) state
according to a two-state Markov chain and can only be detected by the searcher
in the open state. One possible example of such a target is a protein switching
between different conformational states. As expected, the MFPT with or without
resetting is an increasing function of the fraction of time ρ0 that the gate is closed
or reflecting. However, the interplay between stochastic resetting and stochastic
gating has non-trivial effects with regards the optimization of the search process
under resetting. First, by considering the diffusive search for a gated target at
one end of an interval, we show that the ratio ∆(r) = T (r)/T (0), where T (r) is
the MFPT at a resetting rate r, exhibits a non-monotonic dependence on ρ0 even
though T (r) and T (0) increase monotonically with ρ0. In particular, the value of
∆(r) at the optimal resetting rate (when it exists) decreases with ρ0 up to some
critical value, after which it increases and eventually approaches unity. Second, in
the case of a spherical target in Rd, the dependence of the MFPT on the spatial
dimension d is significantly amplified in the presence of stochastic gating.
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1. Introduction

Random search strategies arise throughout nature as a means of efficiently searching
for one or more targets of unknown location. Examples include animal foraging
[3, 1, 39], proteins searching for particular sites on DNA [7, 22, 15, 23], biochemical
reaction kinetics [25, 5], and molecular transport within cells [9]. Suppose that there
is a single fixed target U0 ⊂ U in some prescribed domain U ⊆ Rd. The searcher is
typically represented as a particle whose position X(t) at time t evolves according to
some stochastic process

∂p(y, t|x)

∂t
= Lp(y, t|x), x,y ∈ U\U0, t > 0,

where p(y, t, |x) is the probability density for the particle to be at y at time t given
the initial position x and L is the infinitesimal generator of the stochastic process. In
the case of diffusive search, L = D∇2, where D is the diffusivity. Target detection is
usually implemented by imposing the absorbing boundary condition p(y, t|x) = 0 for
all y ∈ ∂U0, or sometimes a partially absorbing or Robin boundary condition. The
efficiency of the search process can then be investigated by solving a corresponding first
passage time (FPT) problem. In recent years there have been considerable interest
in so-called random intermittent search processes, whereby the particle randomly
switches between a slow search phase and a faster non–search phase [6], or the position
of the particle is reset to a fixed location at a random sequence of times, which is
typically (but not necessarily) generated by a Poisson process [21].

The above basic framework is also the starting point for the classical
Smoluchowski theory of diffusion-limited reactions, where the single particle or
searcher is replaced by a background sea of particles and the effective flux into the
target is identified with the reaction rate [36, 33]. Consider the particular problem
of a single stationary protein surrounded by ligands that can bind to the protein.
Furthermore, suppose that the target protein can switch between two conformational
states n = 0, 1, and is only reactive in the open state n = 1. That is, the target
is stochastically gated. For unbounded domains, this problem was first studied by
Szabo et al [38], who assumed that it is irrelevant whether it is the target protein
or the diffusing ligands that switch between conformational states. Although the
symmetry holds for a pair of reacting particles, it breaks down when a single protein
is surrounded by many ligands [40, 37, 24, 4]. In particular, one finds that the kinetics
is slower when the gating is due to the protein rather than the ligands, due to the
presence of multi-particle correlations in the former case. An analogous problem has
been explored within the context of bounded domains [10]. The first hitting time
density to find a switching target has also been studied in [28].

In this paper, we analyze the mean first passage time (MFPT) for a single searcher
to find a stochastically-gated target under the additional condition that the position
of the particle is reset to the initial position x0 at a rate r. (More generally, one could
reset to any fixed position.) In contrast to diffusion-limited reactions, the results are
independent of whether the searcher or the target is gated. Search processes with
stochastic resetting have been extensively studied in recent years, as highlighted in
the review [21]. A major reason for such interest is that in many cases the MFPT is
found to be a unimodal function of the resetting rate r with a unique minimum at
an optimal resetting rate ropt. Moreover, the optimal search process exhibits certain
universal characteristics [34, 35, 29, 2, 30]. One way to determine the MFPT is
to exploit the fact that following resetting, the particle has no memory of previous
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search phases. This means that one can use renewal theory to relate the survival
probability with resetting to the corresponding survival probability without resetting,
and calculate moments of the FPT density using Laplace transforms. One subtle point
is that in the presence of a stochastically-gated target (or searcher), it is necessary to
specify a reset rule for the conformational state of the gate. A similar issue arises in
the case of other switching processes [19, 11, 12].

At first sight, the inclusion of a gated target does not appear particularly
interesting from the physical rather than mathematical perspective, since one simply
expects the MFPT with or without resetting to increase as the fraction of time ρ0
that the gate is closed increases. However, as we show in this paper, the interplay
between stochastic resetting and stochastic gating has non-trivial effects with regards
the optimization of the search process under resetting. We first consider an example
where the MFPT without resetting, T0, is finite, namely, the diffusive search for a gated
target at one end of an interval. We find that the rescaled MFPT, ∆(r) = T (r)/T (0),
where T (r) is the MFPT as a function of r, exhibits a non-monotonic dependence
on ρ0, even though T (r) is a monotonically increasing function of ρ0 for fixed r. In
particular, the value of ∆(r) at the optimal resetting rate (when it exists) decreases
with ρ0 up to some critical value, after which it increases and eventually approaches
unity. One also finds cases where an optimal resetting rate ropt exists for a range
of nonzero values of ρ0 even though ropt does not exist in the absence of a gate. In
our second example we consider the search for a spherical target in Rd, which has
T (0) = ∞. Here we show that the MFPT increases monotonically with ρ0 such that
the dependence of the MFPT T (r) on the spatial dimension d is significantly amplified
in the presence of stochastic gating. The structure of the paper is as follows. In section
2 we briefly review how renewal theory can be used to express the Laplace transform of
the survival probability with resetting to the corresponding Laplace transform without
resetting. In section 3 the general FPT problem for finding a stochastically gated
target is formulated. In particular, is is shown how the survival probability without
resetting satisfies a boundary value problem (BVP), whose Laplace transform can
be used to derive corresponding BVPs for the moments of the FPT density. In
sections 4 and 5 we combine the theory presented in the previous two sections to
analyze two specific examples, namely a stochastically-gated target on the interval
and a stochastically-gated spherical target in Rd.

2. Search process with stochastic resetting

Consider a Brownian particle (searcher) subject to stochastic motion in a domain
U ⊆ Rd, and resetting to the initial position x0 at a rate r, see Fig. 1(a). Suppose
that there exists some target U0 ⊂ U whose boundary ∂U0 is absorbing and x0 /∈ U0.
The probability density p(y, t|x0) for the particle to be at position y at time t evolves
according to the modified diffusion equation

∂pr(y, t|x0)

∂t
= D∇2

ypr(y, t|x0)− rpr(y, t|x0) + rδ(y − x0), (2.1)

where D is the diffusion coefficient. This is supplemented by the reflecting boundary
condition ∂σpr(y, t|x0) = 0, ∀y ∈ ∂U , where ∂σ indicates the normal derivative with
respect to y, the absorbing boundary condition pr(y, t|x0) = 0 for all y ∈ ∂U0, and
the initial condition pr(y, 0|x0) = δ(y − x0). Introduce the survival probability that
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Figure 1: (a) Brownian particle searching for a target U0 in a domain U ⊆ Rd. Prior
to finding the target, the particle can reset to its initial location x0 at a rate r, after
which the search process restarts. (b) The target switches between an absorbing state
and a reflecting state according to a two-state Markov chain with transition rates α, β.

the particle has not been captured by the target up to time t, having started at x0:

Qr(x0, t) =

∫
U\U0

pr(y, t|x0)dy. (2.2)

Note that Qr(x0, 0) = 1 for x0 /∈ U0. We assume that for 0 < r < ∞ the particle is
eventually captured by the target with probability one so limt→∞Qr(x0, t) = 0. Let
T (x0, r) denote the first passage time to be absorbed by the target, having started at
x0:

T (x0, r) = inf{t > 0; X(t) ∈ ∂U0, X(0) = x0}.
The MFPT can be expressed in terms of the survival probability according to

T (x0, r) = E[T (x0, r)] = −
∫ ∞
0

t
dQr(x0, t)

dt
dτ =

∫ ∞
0

Qr(x0, t)dt. (2.3)

We have used the fact that the FPT density fr(x0, t) is related to the survival
probability according to

fr(x0, t) = −dQr(x0, t)

dt
. (2.4)

Qr can be related to the survival probability without resetting, Q, using a last
renewal equation [16, 17, 21]:

Qr(x0, t) = e−rtQ(x0, t) + r

∫ t

0

Q(x0, t
′)Qr(x0, t− t′)e−rt

′
dt′. (2.5)

The first term on the right-hand side represents trajectories with no resettings. The
integrand in the second term is the contribution from trajectories that last reset at
time t − t′, and consists of the product of the survival probability starting from x0

with resetting up to time t− t′ and the survival probability starting from x0 without
any resetting for the time interval of duration t′. Since we have a convolution, it is
natural to introduce the Laplace transform

Q̃r(x0, s) =

∫ ∞
0

Qr(x0, t)e
−stdt.
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Laplace transforming the last renewal equation and rearranging gives [16, 17]

Q̃r(x0, s) =
Q̃(x0, r + s)

1− rQ̃(x0, r + s)
. (2.6)

Substituting into Eq. (2.3) then shows that the MFPT to reach the target is

T (x0, r) = Q̃r(x0, 0) =
Q̃(x0, r)

1− rQ̃(x0, r)
. (2.7)

A major feature of search processes with stochastic resetting is that the MFPT is
often a unimodal function of the resetting rate with a minimum at an optimal value
ropt. One canonical example is diffusion in an unbounded domain U = Rd. It is well
known that in the absence of resetting (r = 0) the MFPT is infinite, irrespective of
whether diffusion is recurrent or transient. The MFPT is also infinite in the limit
r → ∞, since the particle resets so often that it never reaches the target. One thus
finds that the MFPT is minimized at an intermediate value of r. One way to investigate
whether or not the MFPT has at least one turning point is to calculate the sign of
the derivative dT (x0, r)/dr at r = 0 [35, 29, 2, 30]. If this derivative is negative then
resetting reduces the MFPT in the small-r regime. Equation (2.7) implies that

dT (x0, r)

dr

∣∣∣∣
r=0

=
dQ̃(x0, r)

dr

∣∣∣∣∣
r=0

+ Q̃(x0, 0)2 = T (x0, 0)2 − T (2)(x0, 0)

2
, (2.8)

where T (2)(x0, 0) = E[T (x0, 0)2] is the second moment of the FPT density without
resetting. Introducing the variance σ2(x0, 0) = T (2)(x0, 0)− T (x0, 0)2, it follows that
adding a small rate of resetting reduces the MFPT for a given x0 if and only if the
coefficient of variation (CV) satisfies

CV :=
σ(x0, 0)

T (x0, 0)
> 1. (2.9)

3. FPT problem for a stochastically-gated target

Now suppose that the target is stochastically gated. That is, the boundary ∂U0 of the
target switches between an absorbing state N(t) = 1 and a reflecting state N(t) = 0
according to a two-state Markov chain:

0
α


β

1, (3.1)

with fixed transition rates α, β, see Fig. 1(b). First consider the case without resetting.
Introduce the pair of probability densities

pn(y, t|x,m)dy = P[y < X(t) < y + dy, N(t) = n|X(0) = x, N(0) = m].

These satisfy the differential Chapman-Kolmogorov (CK) equation

∂p0
∂t

= D∇2p0 − αp0 + βp1, (3.2)

∂p1
∂t

= D∇2p1 + αp0 − βp1, y ∈ U\U0, (3.3)

where differentiation is with respect to y. The boundary conditions are

∂σp0(y, t|x,m) = 0, p1(y, t|x,m) = 0, ∀y ∈ ∂U0,
∂σpn(y, t|x,m) = 0, ∀y ∈ ∂U , n = 0, 1, (3.4)
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where ∂σ indicates the normal derivative with respect to y, and the initial conditions
are

pn(y, 0|x) = ρnδ(y − x), ρ0 =
β

α+ β
, ρ1 =

α

α+ β
. (3.5)

Here ρm is the stationary distribution of the Markov chain.
Let Tm(x) denote the FPT given the initial state (X(0), N(0)) = (x,m) and

introduce the survival probabilities

Sm(x, t) =

∫
U\U0

p(y, t|x,m)dy, (3.6)

where p = p0 + p1. It can be shown that Sm evolves according to the backward CK
equation

∂S0

∂t
= D∇2S0 − αS0 + αS1, (3.7)

∂S1

∂t
= D∇2S1 + βS0 − βS1, x ∈ U\U0, (3.8)

where differentiation is now with respect to the initial position x. The boundary
conditions are of the same form as the forward equation,

∂σS0(x, t) = 0, S1(x, t) = 0, ∀x ∈ ∂U0,
∂σSn(x, t) = 0, ∀x ∈ ∂U , n = 0, 1, (3.9)

and the initial conditions are Sm(x, 0) = 1. The corresponding FPT densities are
given by fm(x, t) = −∂Sm(x, t)/∂t and the n-th order moments are

E[(Tm(x))n] =

∫
0

tnfm(x, t)dt =

(
− d

ds

)n ∫ ∞
0

e−stfm(x, t)dt

∣∣∣∣
s=0

(3.10)

= −
(
− d

ds

)n ∫ ∞
0

e−st
∂Sm
∂t

dt

∣∣∣∣
s=0

=

(
− d

ds

)n
(1− sS̃m(x, s))

∣∣∣∣
s=0

,

where S̃m(x, s) is the Laplace transform of Sm(x, t) for m = 0, 1. In particular,

Tm(x) = E[Tm(x)] = S̃m(x, 0),

T (2)
m (x) = E[(Tm(x))2] = −2S̃′m(x, 0), (3.11)

where ′ indicates differentiation with respect to s.
The analysis of resetting in section 2 carries over to the case of a stochastically-

gated target, provided that the gate is also reset to the state m with probability ρm
whenever the particle returns to x0.‡ The renewal equation (2.5) then still holds for

x = x0 with Q̃(x, s) the Laplace transform of the weighted survival probability

Q(x, t) = ρ0S0(x, t) + ρ1S1(x, t). (3.12)

In order to determine Q̃, it is more convenient to work directly with the Laplace
transform of the backward equations (3.7) and (3.8). These take the form

−1 = D∇2S̃0 − (α+ s)S̃0 + αS̃1,

−1 = D∇2S̃1 + βS̃0 − (β + s)S̃1, x ∈ U\U0.

‡ In the case of a single particle, the search for a stochastically-gated target is equivalent to the search
for a non-gated target in which the searcher itself switches between two states; one that reflects off
the target and the other that allows absorption by the target. In this scenario it is the state of the
searcher that is reset.
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Figure 2: Particle searching for a stochastically-gated target at x = 0 on the interval
[0, L] with a reflecting boundary at x = L. After each resetting event, the particle
immediately returns to the point x0 and restarts the search phase. The gate is also
reset to the state m with probability ρm. In the two illustrated resetting events the
gate is switched to the open (absorbing) state.

The boundary conditions are the same as for Sm. Now setting R̃m = ρmS̃m, we have

−ρ0 = D∇2R̃0 − (α+ s)R̃0 + βR̃1, (3.13)

−ρ1 = D∇2R̃1 + αR̃0 − (β + s)R̃1, x ∈ U\U0. (3.14)

An advantage of working with the weighted survival probabilities R̃m is that we can
add the above pair of equations to obtain a boundary value problem (BVP) involving

Q̃ = R̃0 + R̃1:

D∇2Q̃− sQ̃ = −1, (3.15)

D∇2R̃0 − (α+ β + s)R̃0 = −ρ0 − βQ̃, x ∈ U\U0, (3.16)

together with the boundary conditions

∂σR̃0(x, s) = 0, Q̃(x, s) = Ψ(x, s), ∀x ∈ ∂U0,
∂σR̃0(x, s) = 0 = ∂σQ̃(x, s), ∀x ∈ ∂U . (3.17)

The method of solution involves solving the diffusion equation for Q̃ in terms of
the boundary term Ψ(x, s) = R̃0(x, s), x ∈ ∂U0, and then substituting into the

inhomogeneous equation for R̃0(x, s). This yields a self-consistency equation for

Ψ(x, s). Finally, note that the Laplace transforms R̃m(x, s) are the generators of
the weighted moments. That is,

Wm(x) := ρmTm(x) = R̃m(x, 0), Zm(x) := ρmT
(2)
m (x) = −2

dR̃m(x, s)

ds

∣∣∣∣∣
s=0

. (3.18)

4. Stochastically-gated target on an interval

We first apply the above theory to the case of diffusion on the interval [0, L] with
a stochastically-gated target at x = 0, see Fig. 2. We proceed by determining the
Laplace transformed survival probability without resetting, and then use equation
(2.7) to investigate the effects of resetting on the MFPT.
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4.1. Calculation of the Laplace transform Q̃ of the survival probability

In the absence of resetting the BVP given by equations (3.15) and (3.16) reduces to
the 1D form

D
d2Q̃

dx2
− sQ̃ = −1, (4.1)

D
d2R̃0

dx2
− (α+ β + s)R̃0 = −ρ0 − βQ̃, x ∈ (0, L), (4.2)

together with the boundary conditions

∂xR̃0(0, s) = 0, Q̃(0, s) = Ψ(s),

∂xQ̃(L, s) = 0 = ∂xR̃0(L, s). (4.3)

Equation (4.1) has the solution

Q̃(x, s) =
1

s
+

(
Ψ(s)− 1

s

)
cosh(

√
s/D[L− x])

cosh(
√
s/DL)

. (4.4)

Equation (4.2) can be solved in terms of the Neumann Greens function G(x, x′; s)
where

d2G

dx2
− (α+ β + s)

D
G = −δ(x− x′); dG

dx
(0, x′; s) = 0;

dG

dx
(L, x′; s) = 0. (4.5)

From the divergence theorem∫ L

0

G(x, x′; s)dx =
D

α+ β + s
. (4.6)

We find that

G(x, x′; s) =
1

γs sinh(γsL)

{
cosh(γsx) cosh(γs(L− x′)), x < x′

cosh(γs[L− x]) cosh(γsx
′), x > x′

, (4.7)

where γs =
√

(α+ β + s)/D. The corresponding solution for R̃0(x, s) is

R̃0(x, s) =
1

D

∫ L

0

G(x, x′; s)[ρ0 + βQ̃(x′, s)]dx′. (4.8)

Setting R̃0(0, s) = Ψ(s) and substituting for Q̃(x, s) yields

Ψ(s) =
1

(α+ β + s)

[
β

α+ β
+
β

s

]
(4.9)

+
β

D

(
Ψ(s)− 1

s

)∫ L

0

G(0, y; s)
cosh(

√
s/D[L− y])

cosh(
√
s/DL)

dy.

Substituting for G(0, y; s) and evaluating the integrals, we obtain the result

Ψ(s) =
1

(α+ β + s)

[
β

α+ β
+
β

s

]
+
β

D

(
Ψ(s)− 1

s

)
R(s)

2γs sinh(γs)
, (4.10)

with

R(s) =
1

cosh(
√
s)

[
sinh(γs +

√
s/D)

γs +
√
s/D

+
sinh(γs −

√
s/D)

γs −
√
s/D

]
. (4.11)

Finally, rearranging gives

Ψ(s) =

[
1

(α+ β + s)

(
β

α+ β
+
β

s

)
− βR(s)

2sDγs sinh(γs)

] [
1− βR(s)

2Dγs sinh(γs)

]−1
.(4.12)
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Given Q̃(x, s) we can now generate the MFPT T and higher moments, although
taking the limit s→ 0 requires an application of L’Hopitals rule. For example, in the
case of a permanently open or absorbing gate (β = 0), we recover the classical results

T = τ(x) := − x2

2D
+
xL

D
, T (2) = τ (2)(x) :=

1

12D2
(x4 − 4x3L+ 8xL3). (4.13)

4.2. Calculation of MFPT T

A useful check of the analysis is to derive the weighted MFPT W (x) by solving the
corresponding boundary value problem

D
d2W

dx2
= −1, (4.14)

D
d2W0

dx2
− (α+ β)W0 = −ρ0 − βW, x ∈ (0, L), (4.15)

together with the boundary conditions ∂xW0(0) = 0, W (0) = Φ and ∂xW0(L) =
∂xW (L) = 0. Equation (4.14) has the solution

W (x) = − x2

2D
+
xL

D
+ Φ = τ(x) + Φ, (4.16)

where τ(x) is the MFPT without stochastic gating. Equation (4.15) can be solved in
terms of the Neumann Greens function G0(x, x′) = G(x, x′; 0), which is obtained by
setting s = 0 in equation (4.7). The corresponding solution for W0(x) is

W0(x) =
1

D

∫ L

0

G0(x, x′)[ρ0 + βW (x′)]dx′. (4.17)

Setting W0(0) = Φ, substituting for W (x), and rearranging yields

Φ =
β

α(α+ β)
+
β(α+ β)

αD

∫ L

0

G0(0, y)

[
− y2

2D
+
yL

D

]
dy

=
β

α(α+ β)
+

β(α+ β)

αD2γ0 sinh(γ0L)

∫ L

0

cosh([L− y]γ0)

[
−y

2

2
+ yL

]
dy,

where γ0 =
√

(α+ β)/D. Set τ = L2/D and fix the units of length by taking L = 1.
Then

Φ =
β

α(α+ β)
+

β(α+ β)τ2

αγ0 sinh(γ0)

∫ 1

0

cosh([1− y]γ0)

[
−y

2

2
+ y

]
dy.

Evaluating the integrals by noting that∫ 1

0

e−γ0yyndy =

(
− d

dγ0

)n ∫ 1

0

e−γ0ydy =

(
− d

dγ0

)n(
1− e−γ0

γ0

)
,

we find that

Φ =
β

α(α+ β)
+

β(α+ β)τ2

αγ40 sinh(γ0)
[γ0 cosh(γ0)− sinh(γ0)] . (4.18)

It can be checked that the solution (4.16) is obtained by taking the limit lims→0 Q̃(x, s)

with Q̃ given by equation (4.4). As one would expect, the MFPT W (x) is an increasing
function of β for all x ∈ [0, 1] and fixed α, see Fig. 3. This is due to the fact that the
fraction of time the target is reflecting increases. However, as we show below, gating
has non-trivial affects on the optimization of the MFPT in the presence of resetting.



Stochastically-gated target 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

switching rate β
0

M
F

P
T

 W
x0 = 0

x0 = 0.1

x0 = 0.25

x0 =  0.5

x0 = 1

Figure 3: Plot of MFPT W (no resetting) as a function of the switching rate β for
various initial positions x0. The switching rate α = 1.

4.3. Results for MFPT with resetting

We now wish to explore the combined effects of stochastic resetting (r > 0) and
stochastic switching (β > 0). Substituting the solution (4.4) into equation (2.7)
determines the MFPT as a function of x0 and r (as well as the switching rates).
Setting T = T (x0, r), we have

T (x0, r) = Q̃r(x0, 0) = −
r−1 cosh(

√
r/DL) +

(
Ψ(r)− r−1

)
cosh(

√
r/D[L− x])

(rΨ(r)− 1) cosh(
√
r/D[L− x])

.(4.19)

It can be checked that

T (x0, 0) = lim
r→0

T (x0, r) = W (x0).

In the absence of gating (β = 0), one finds that the MFPT T (x0, r) is a unimodal
function of r for reset locations close to the target and a monotonically increasing
function of r at more distal locations, see also [14, 31, 32]; in the former case there
exists an optimal resetting rate that minimizes T (x0, r). This result can also be
understood by plotting Θ(x0) := τ (2)(x0) − 2τ(x0)2 as a function of x0, with τ, τ (2)

defined in equation (4.13). Applying the condition (2.9) implies that the sign of
Θ determines whether or not the corresponding MFPT with resetting is initially a
decreasing function of the resetting rate r. It can be seen from Fig. 4 that there exists
a critical location xc ≈ 0.55 such that Θ(x0) is negative in the case of proximal
positions x0 < xc but switches to positive values in the case of distal locations
x0 > xc. This suggests that when the gate is always open (absorbing), T (x0, r)
will be a monotonically increasing function of r for distal locations (eg. x0 = 1)
and a unimodal function of r for proximal locations (eg. x0 = 0.5). How does the
introduction of a stochastic gate affect the optimal search process when it exists?



Stochastically-gated target 11

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x0

0

Θ(x0)

nonmonotonic MFPT

monotonic MFPT

Figure 4: Plot of Θ(x0) := τ (2)(x0) − 2τ(x0)2 as a function of the reset location x0.
Here τ and τ (2) are the MFPT and second moment in the absence of resetting and a
stochastic gate (r = β = 0), see equation (4.13). The sign of Θ determines whether
or not the corresponding MFPT with resetting is initially a decreasing function of the
resetting rate r, see equation (2.9).

In order to address this issue, we now consider the case β > 0 with α fixed.
Introduce the normalized or rescaled MFPT

∆(x0, r, β) =
T (x0, r, β)

T (x0, 0, β)
, (4.20)

where the dependence on β has been made explicit. In Fig. 5 we show plots of
∆(x0, r, β) as a function of the resetting rate r for x0 = 0.5 and various switching
rates β. Note that for β = 0 the normalized MFPT is a unimodal function of r, as
expected from Fig. 4. The plots also yield an unexpected result, namely, that in the
presence of resetting, ∆ exhibits a non-monotonic dependence on the switching rate
β, even though T (x0, r, β) is a monotonically increasing function of β for all x0, r. In
particular, ∆(x0, r, β) at the optimal resetting rate decreases with β up to some critical
value βc, after which it increases again. For sufficiently large β, ∆ is a monotonically
increasing function of r. The non-monotonic dependence on β is also demonstrated
by the functional dependence of the optimal resetting rate ropt(β). Stochastic gating
also has a significant effect on distal locations x0 for which T (x0, r, 0) is a monotonic
function of r when β = 0. This is illustrated in Fig. 6, which demonstrates how T can
become unimodal at intermediate values of β. In Fig. 7 we show the corresponding
variation of ∆ with respect to β for different resetting rates r. The non-monotonic
β-dependence is clearly seen. The parameter region within which resetting leads to a
reduction in ∆ is diminished for more distal reset locations, as illustrated in Fig. 8 for
x0 = 1. Finally, note that these results also imply that the critical location xc where
T (x0, r, β) switches from unimodal to monotonic behavior also shifts with β.



Stochastically-gated target 12

0.7

0.8

0.9

1.1

β = 0.5

β = 0.1
β = 0.25

r

β = 8

β = 2

β = 4

2 4 6 8 10 12 14 16 18 200

1.0

Δ
(x
0
,r
,β
)

no gating (β = 0)

β = 15

Figure 5: Plot of ∆(x0, r, β) = T (x0, r, β)/T0(x0, 0, β) as a function of the resetting
rate r for x0 = 0.5 and various switching rates β. Other parameters are L = 1 = D
and α = 1. The filled green dots indicate the optimal resetting rate for a given β and
x0.

0.9

1

1.1

1.2

1.3

1.4

1.5

β = 0.5

β = 0.25

β = 0

r

β = 8
β = 2

β = 4

1 2 3 4 50

Δ
(x
0
,r
,β
)
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5. Stochastically-gated spherical target

As our second example, we consider a Brownian particle searching for a d-dimensional,
stochastically-gated, spherical target in an unbounded domain. The corresponding
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problem for an absorbing target was analyzed in [18]. In both cases one can exploit
spherical symmetry by taking the center of the target to be at the origin so that the
solution for the survival probability and moments of the FPT density only depend
on the radial distance x = |x| of the initial position/reset point and the radius a of
the sphere. The Neumann boundary conditions are replaced by the far-field condition
that solutions remain finite as |x| → ∞. In contrast to the previous 1D example, the
MFPT is infinite in the absence of resetting.

5.1. Calculation of Q̃

The BVP given by equations (3.15) and (3.16) become

D

[
d2Q̃

dx2
+
d− 1

x

dQ̃

dx

]
− sQ̃ = −1, (5.1)

D

[
d2R̃0

dx2
+
d− 1

x

dR̃0

dx

]
− (α+ β + s)R̃0 = −ρ0 − βQ̃, a < x <∞, (5.2)

together with the boundary conditions

∂xR̃0(a, s) = 0, Q̃(a, s) = Ψ(s) = R̃0(a, s). (5.3)

Following [18], the solution of equation (5.1) takes the form

Q̃(x, s) =
1

s
−A(s)xνKν(ηsx), (5.4)

where ν = 1 − d/2 and ηs =
√
s/D, and Kν is the modified Bessel function of the

second kind of order ν. The boundary condition Q̃(a, s) = Ψ(s) then relates A(s) to
Ψ(s) according to

Ψ(s) =
1

s
− aνKν(ηsa)A(s). (5.5)

In order to determine Ψ(s) and hence A(s), we have to solve equation (5.2) for

R̃0(x, s), which can be expanded as

R̃0(x, s) = C(s)xνKν(γsx) + a(s)Q̃(x, s) + b(s), γs =

√
s+ α+ β

D
(5.6)

Substituting back into equation (5.2) and using (5.1), we find that

−(α+ β)a(s)Q̃(x, s)− a(s)− (α+ β + s)b(s) = −ρ0 − βQ̃(x, s).

Hence, a(s) = ρ0 and b(s) = 0. Finally, the coefficient C(s) is obtained by imposing
the Neumann boundary condition on the surface r = a:

C(s)aνγs[K
′
ν(γsa) + νKν(γsa)/aγs]− ρ0aνηsA(s)[K ′ν(ηsa) + νKν(ηsa)/aηs] = 0.

Using the identity

K ′ν(x) = −ν
x
Kν(x)−Kν−1(x),

we have

C(s) =
ρ0ηsKν−1(ηsa)

γsKν−1(γsa)
A(s).

Combining these various results leads to the solution

R̃0(x, s) =
ρ0
s
− ρ0xν

[
Kν(ηsx)−

ηsK
′
ν−1(ηsa)

γsK ′ν−1(γsa)
Kν(γsx)

]
A(s). (5.7)
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Figure 9: Effect of spatial dimension d on MFPT for a spherical target. Plot of MFPT
T (x0, r, β) as a function of the resetting rate r for x0 = 5 and d = 1, 2, 3. The three
thick curves are for β = 4 and the three thin curves are for β = 0 (no stochastic
gating). Other parameters are a = 1 = D and α = 1.

Now setting x = a and using equation (5.5) yields an implicit equation for A(s):

1

s
− aνKν(ηsa)A(s) =

ρ0
s
− ρ0aν

[
Kν(ηsa)−

ηsK
′
ν−1(ηsa)

γsK ′ν−1(γsa)
Kν(γsa)

]
A(s), (5.8)

which on rearranging gives

A(s) =
ρ1
saν

[
ρ1Kν(ηsa) + ρ0

ηsK
′
ν−1(ηsa)

γsK ′ν−1(γsa)
Kν(γsa)

]−1
. (5.9)

5.2. Results for MFPT with resetting

Substituting equation (5.4) into (2.7) leads to the following expression for the MFPT
in the presence of resetting:

T (x0, r) =
r−1 −A(r)xν0Kν(

√
r/Dx0)

rA(r)xν0Kν(
√
r/Dx0)

, (5.10)

with A(r) given by equation (5.9). Note that in the limit β → 0 we have ρ1 → 1 and
ρ0 → 0, and we recover the result of [18]:

T (x0, r) =
aνKν(

√
r/Da)− xν0Kν(

√
r/Dx0)

rxν0Kν(
√
r/Dx0)

. (5.11)

Note that T is also a function of the switching rates via its dependence on A(r). In Fig.
9 we show plots of T (x0, r, β) as a function of r for d = 1, 2, 3 and various switching
rates β. As expected, for a each value of β and d, the MFPT is a unimodal function
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of r with a minimum at some optimal resetting rate. More significantly, T (x0, r, β) is
more sensitive to the spatial dimension for larger values of β.

6. Discussion

In this paper we have shown how the interplay between stochastic resetting and
the stochastic gating of a target can lead to non-trivial effects with regards the
optimization of the search process under resetting. First, in the case of diffusive
search on the interval for which the MFPT without resetting is finite, we showed that
resetting can be more effective in the presence of gating. That is, the reduction of the
rescaled MFPT T (x0, r, β)/T (x0, 0, β) at the optimal resetting rate is amplified over
an intermediate range of values of the switching rate β (or equivalently the fraction of
time ρ0 that the gate is closed). Moreover, one finds cases where an optimal resetting
rate ropt(β) exists for a range of β-values even though ropt(0) does not exist. A
second non-trivial consequence of gating occurs in cases where the MFPT without
resetting is infinite, such as the diffusive search for a spherical target in Rd. In this
case, resetting becomes more sensitive to the spatial dimension of the underlying
search process when stochastic gating is included. Given these observations, it would
be interesting to explore how robust these effects are with respect to the particular
choice of the generator L of the search process, and the inclusion of delays such as
refractory periods [20, 27] and finite return times [26, 8, 30, 13]. Another extension
would be to consider multiple targets and/or multiple searchers; in the latter case one
would need to take into account multi-particle correlations when the targets rather
than searchers are gated.
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