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Abstract. In this paper we develop the theory of drift-diffusion on a semi-
infinite Cayley tree with stochastic resetting. In the case of a homogeneous
tree with a closed terminal node and no resetting, it is known that the system
undergoes a classical localization-delocalization (LD) transition at a critical mean
velocity vc = −(D/L) ln(z − 1) where D is the diffusivity, L is the branch length
and z is the coordination number of the tree. If v < vc then the steady state
concentration at the terminal node is non-zero (drift-dominated localized state),
whereas it is zero when v > vc (diffusion-dominated delocalized state). Here
we show how the LD transition provides a basic framework for understanding
analogous phase transitions in optimal resetting rates. First, we establish the
existence of an optimal resetting rate r∗∗(z) that maximizes the steady-state
solution at a closed terminal node with respect to r. In addition, we show that
there is a phase transition at a critical velocity v∗∗c (z) such that r∗∗ > 0 for
v > v∗∗c and r∗∗ = 0 for v < v∗∗c . We then identify a critical velocity v∗c (z) for a
phase transition in a second optimal resetting rate r∗ that minimizes the MFPT to
be absorbed by an open terminal node. Previous results for the semi-infinite line
are recovered on setting z = 2. The critical velocity of the LD transition provides
an upper bound for the other critical velocities such that v∗c (z) < v∗∗c (z) < vc(z)
for all finite z. Only vc(z) has a simple universal dependence on the coordination
number z. We end by considering the combined effects of quenched disorder and
stochastic resetting.
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1. Introduction

Drift-diffusion processes on trees have a wide range of applications in biological physics,
ranging from the active transport of vesicles in the dendritic branches of a neuron
[26] to the distribution of oxygen through a branched network of bronchiole tubes
during respiration [11, 19]. There are also a variety of physical processes for which
the underlying topology is tree–like in nature. Typical examples are diffusion limited
aggregation, viscous fingering and invasion percolation [8, 3]. Tree-like topologies are
also of interest from a mathematical perspective, since they are simpler to analyze
compared to a study of the same process defined on a regular lattice. This permits
investigations of generic features of interest that can also, in certain cases, be directly
relevant to the regular lattice problem in some appropriate limit. For example, it is
well known that Cayley trees and Bethe lattices provide insights into the behavior of
various processes on both infinite–dimensional lattices and finite–dimensional lattices
in the mean field limit [34, 1].

Recently, we analyzed a first passage time (FPT) problem for drift-diffusion on
a homogeneous semi-infinite Cayley tree with an absorbing target at the primary or
terminal node of the tree [7]. (At the level of a single particle, the drift-diffusion
equation is equivalent to a Fokker-Planck (FP) equation.) We assumed that the drift
velocity v, diffusivity D, and branch length L were the same in each branch so that we
could exploit the recursive nature of the semi-infinite tree. We calculated the Laplace
transform of the flux through the target using an iterative method developed in Ref.
[26], which was used to determine the hitting probability and mean FPT (MFPT). In
particular, we showed that for a given coordination number z, there is a second-order
phase transition from recurrent (drift-dominated) to transient (diffusion-dominated)
transport at a critical velocity v = vc(z) = −(D/L) ln(z − 1). That is, the hitting
probability π = 1 and the MFPT T < ∞ when v < vc, whereas π < 1 and T = ∞
when v > vc. In terms of the Péclet number Pe = vL/D, the phase transition occurs
at the critical point Pe = − ln(z − 1). This transition point is identical to a classical
localization-delocalization (LD) threshold for the steady-state solution on a tree with
a closed rather than an open terminal node [4, 5]. An initial concentration localized
at the terminal node tends to diffuse away from the origin, but is counteracted by an
inward velocity field on the tree. If, in steady state, the concentration remaining at
the origin has not decayed to zero, the system is localized, otherwise it is delocalized.
Moreover, the LD transition occurs at v = vc [4, 5].

In this paper we further develop the theory of drift-diffusion on a Cayley tree
by considering the effects of stochastic resetting [14, 15]. Prior to absorption at
the terminal node, a particle may instantaneously reset to the initial position x0

at a random sequence of times generated by an exponential probability density
ψ(τ) = re−rτ , where r is the resetting rate. (One could also incorporate resetting
delays – finite return times and refractory periods - and non-exponential resetting
statistics [24, 16, 25, 2, 30, 6, 17]. However, we focus on the simplest case here.)
Even for pure 1D diffusion (zero drift) stochastic resetting is known to generate a
stationary density localized around x0 [14, 15]. That is, if r > 0 then the probability
density converges to a nonequilibrium stationary state (NESS) that is characterized
by non-zero stationary fluxes. This suggests that the inclusion of a drift term should
effect the critical resetting rate at which localization occurs. Such a result was
recently established in a study of drift-diffusion with stochastic resetting on the semi-
infinite line [31], which is equivalent to a homogeneous Cayley tree with coordination
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number z = 2. In particular, the authors identified a second-order phase transition
involving the optimal resetting rate r∗ at which the MFPT is minimized. They showed
analytically that there was a sharp transition between a diffusion-dominated regime
and a drift-dominated regime at a critical velocity v∗c such that r∗ > 0 for v > v∗c and
r∗ = 0 for v < v∗c . Since the branch length L plays no role when z = 2, at least in
the homogeneous case, the phase transition can be characterized in terms of another
Péclet number Pe′ = vx0/D, where x0 is the distance of the target from the origin.
The critical velocity v∗c occurs when Pe′ = −2. Comparison with the LD transition
for z = 2, Pe = 0, it follows that v∗c < vc = 0.‡ The phase transition was further
analyzed in [27] as part of a more general study regarding phase transitions in optimal
resetting rates.

The main goal of the current paper is to show how the LD transition for drift-
diffusion on a Cayley tree provides a basic framework for understanding analogous
phase transitions in optimal resetting rates, including the optimal resetting rate r∗

considered in [31, 27] for z = 2. We show that vc(z) is an upper bound for the
critical velocities associated with these other phase transitions, and that only vc(z)
has a simple universal dependence on the coordination number z. The structure of the
paper is as follows. In Sect. 2 we introduce the basic model and construct the general
solution in Laplace space. The steady-state solution with stochastic resetting and a
closed terminal node is considered in Sect. 3. In particular, we use the results of Sect.
2 to determine how the steady state solution at the closed terminal node depends on
the resetting rate r and explore the the emergence of a sharp LD transition in the
limit r → 0+. We also establish the existence of an optimal resetting rate r∗∗ that
maximizes the steady-state solution at the terminal node. Moreover, there is a phase
transition at a critical velocity v∗∗c (z) such that r∗∗ > 0 for v > v∗∗c and r∗∗ = 0 for
v < v∗∗c . If z = 2, the the critical velocity occurs when Pe′ = −1. In Sect. 4 we
develop the corresponding analysis of the hitting probability and MFPT at an open
terminal node, recovering the results of [31, 27] when z = 2. Although we focus on
the case of a homogeneous tree in this paper, possible extensions to quenched disorder
are discussed in Sect. 5.

2. Drift-diffusion equation on a Cayley tree

Following [7], we begin by considering a drift-diffusion equation on a homogeneous,
semi-infinite Cayley tree Γ with coordination number z and either an absorbing (open)
or reflecting (closed) boundary at the terminal (primary) node of the tree. The
example of z = 3 is shown in Fig. 1(a). In order to write down the drift-diffusion
equation on each branch, it is useful to introduce a convenient labeling scheme for
the nodes and branches. Let α0 denote the first branch node opposite the terminal
node. For every other branching node α ∈ Γ there exists a unique direct path from
α0 to α (one that does not traverse any line segment more than once). We can label
each node α 6= α0 uniquely by the index k of the final segment of the direct path
from α0 to α so that the branch node corresponding to a given segment label k can be
written α(k). We denote the other node of segment k by α′(k). Taking the primary
branch to be k = 0, it follows that α(0) = α0 and α′(0) is the terminal node. We
also introduce a direction on each segment of the tree such that every direct path

‡ In Ref. [31] the target is taken to be at x = L and the reset point is at the boundary x = 0.
Therefore, the results of [31] are obtained by reversing the sign of v.
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from α′(0) always moves in the positive direction. Consider a single branching node
α ∈ Γ and label the set of segments radiating from it by Iα. Let Īα denote the set
of z − 1 line segments k ∈ Iα that radiate from α in a positive direction, see Fig.
1(b). Using these various definitions we can introduce the idea of a generation. Take
α0 to be the zeroth generation. The first generation then consists of the set of nodes
Σ1 = {α(k), k ∈ Īα0

}, the second generation is Σ2 = {α(l), l ∈ Īα, α ∈ Σ1} etc.
In the case of a homogeneous Cayley tree, each branch has the same length L,

diffusion coefficient D and velocity v. Let x, 0 ≤ x ≤ L, be the position coordinate
along the i-th line segment with 0 ≤ i < ∞. Using the given labeling of nodes, it
follows that x(α′(i)) = 0 and x(α(i)) = L. Let pi(x, t) denote the probability density
of a single particle to be at position x on the i-th segment at time t. The density
evolves according to the Fokker-Planck equation

∂pi
∂t

= D
∂2pi
∂x2

− v ∂pi
∂x

, 0 < x < L. (2.1)

As a further simplification, we assume that the initial position of the particle is on the
primary branch,

pi(x, 0|x0) = δ(x− x0)δi,0, 0 < x0 < L. (2.2)

This initial condition means that all branches of a given generation are equivalent.
Such a symmetry would also hold for the more general initial condition

pi(x, 0|x0) = 2−nδ(x− x0)
∑

j,α(j)∈Σn

δi,j , 0 < x0 < L, (2.3)

which places the initial condition on any of the 2n branches feeding into the nodes of
the n-th generation with equal probability

Let J [pi] denote the corresponding probability current or flux, which is taken to
be positive in the direction flowing away from the primary node at the soma:

J [p] ≡ −D∂p

∂x
+ vp. (2.4)

branch k

I
α(k)

_

(b)

Gen 2

Gen 1
Gen 2

branch nodes

(a)

Gen 0

α(k)α'(k)

terminal node

Figure 1. (a) Semi-infinite Cayley tree with coordination number z = 3 and
either an absorbing (open) or reflecting (closed) boundary at the primary node.
(b) A branch node α(k) is shown in relation to the neighboring branch node α′(k)
closest to the primary or terminal node. The branch segments extending out from
α(k) in the positive direction together comprise the set Īα(k).



Drift-diffusion on a Cayley tree 5

At all branch nodes α ∈ Σn of the n-th generation we impose the continuity conditions

pi(x(α), t|x0) = Φn(x0, t), for all i ∈ Iα, α ∈ Σn, (2.5)

where the Φn(x0, t) are unknown functions, which will ultimately be determined by
imposing current conservation at each branch node:∑

i∈Iα

J [pi(x(α), t|x0)] = 0. (2.6)

Note that for the upstream segment j /∈ Iα, x(α) = L and the corresponding flux
J [pj(L, t|x0)] flows into the branch node, whereas for the remaining z−1 downstream
segments k ∈ Iα we have x(α) = 0 and the flux J [pk(0, t|x0)] flows out of the branch
node. Finally, we impose either an absorbing or reflecting boundary condition on the
primary branch at x = 0:

p0(0, t|x0) = 0 or J [p0](0, t|x0) = 0. (2.7)

In the latter case, we have the conservation condition∑
i∈Γ

∫ L

0

pi(x, t|x0)dx = 1. (2.8)

2.1. Steady-state solution (closed terminal node)

First, suppose that the terminal node is closed. In steady- state the current vanishes
on each segment, J [pi] ≡ 0, so that the solution for any i such that α(i) ∈ Σn is of
the form

pi(x) = Anevx/D. (2.9)

Note that

An = lim
s→0

sΦn−1(s, x0), (2.10)

assuming the limit exists. The continuity conditions (2.5) imply that the amplitudes
An satisfy the iterative equation

An+1 = AnevL/D for all n ≥ 0, (2.11)

with A0 the steady-state solution at the origin. Thus the amplitude An at the n-th
generation may be expressed in terms of the steady–state concentration at the origin
according to the relation

An = envL/DA0. (2.12)

Imposing the normalization condition∑
i∈Γ

∫ L

0

pi(x)dx = 1, (2.13)

then yields the following equation for A0,

A−1
0 =

D

v

[
evL/D − 1

] ∞∑
n=0

(z − 1)nenLv/D. (2.14)

This expresses A−1
0 in terms of an infinite geometric series. If this series is convergent

then A0 has a finite value and the steady–state is localized. On the other hand, if the
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series diverges then A0 = 0 and the steady–state is delocalized. The critical point of
the LD transition is determined by the condition

(z − 1)eLvD = 1, (2.15)

which yields the critical velocity

vc = −D
L

ln(z − 1) < 0. (2.16)

Hence vc = 0 for z = 2 (a semi-infinite line), vc ≈ −0.69D/L for z = 3 and
vc ≈ −1.1D/L for z = 4. If v < vc then

A−1
0 =

D

|v|
1− e−|v|L/D

1− (z − 1)e−L|v|/D
. (2.17)

In addition, the asymptotic decay of the delocalized state exhibits conventional
exponential behavior whereas at the critical point v = vc there is anomalous behavior
in the form of a critical slowing down [5]. Note that the point of criticality is
determined by the dimensionless quantity

Pe ≡ Lv

D
, (2.18)

which is a Péclet number for the drift-diffusion process. The critical Péclet number is
then

Pe = − ln(z − 1). (2.19)

2.2. Solution in Laplace space

We now find the solution of equation (2.1) in Laplace space for both the closed
and open terminal node. Both types of solution will be needed when incorporating
stochastic resetting into the model. We recently used an iterative method introduced
in Ref. [26] to solve the open boundary problem. Here we extend the analysis to
include the closed boundary value problem. First, Laplace transforming equations
(2.1), yields the following system of equations for any i such that α(i) ∈ Σn:[

D
∂2

∂x2
− v ∂

∂x
− s
]
p̃i(x, s) = −δi,0δ(x− x0), (2.20)

together with the implicit boundary conditions

p̃i(0, s) = Φ̃n−1(s), p̃i(L, s) = Φ̃n(s). (2.21)

(For notational convenience, we drop the explicit dependence on the initial position
x0 and the velocity v unless stated otherwise. We use s as the Laplace variable in the
absence of resetting, and the resetting rate r as the Laplace variable when resetting
is included, see Sect. 3-5.) If the terminal node is open then Φ̃−1(x0, s) = 0 and

J̃0(s) > 0, whereas if the terminal node is closed then Φ̃−1(s) > 0 and J̃0(s) = 0. The
solution in each branch is given by the corresponding finite interval Green’s function GL
with homogeneous boundary conditions, together with terms satisfying the boundary
conditions. That is,

p̃i(x, s) = δi,0GL(x, x0; s) + Φ̃n−1(s)F̂ (x, s) + Φ̃n(s)F (x, s) (2.22)

for α(i) ∈ Σn. The Green’s function GL satisfies[
D
∂2

∂x2
− v ∂

∂x
− s
]
GL(x, x0; s) = −δ(x− x0), (2.23)
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with GL(0, x0; s) = 0 = GL(L, x0; s). The Green’s function takes the form

GL(x, x0; s) =


ψ(x, s)ψ(x0 − L, s)

DWL(s)
, 0 ≤ x ≤ x0

ψ(x− L, s)ψ(x0, s)
DWL(s)

, x0 ≤ x ≤ L
, (2.24a)

where

ψ(x, s) = eµ+(s)x − eµ−(s)x, (2.24b)

µ±(s) =
v

2D
± η(s), η(s) =

√
v2 + 4Ds

2D
, (2.24c)

and W is the Wronskian

WL(s) = ψ′(x0, s)ψ(x0 − L, s)− ψ(x0, s)ψ
′(x0 − L, s). (2.24d)

The functions F (x, s) and F̂ (x, s) satisfy the homogeneous version of equation (2.20)

with boundary conditions F (0, s) = 0, F (L, s) = 1 and F̂ (0, s) = 1, F̂ (L, s) = 0:

F (x, s) =
ψ(x, s)

ψ(L, s)
, F̂ (x, s) =

ψ(x− L, s)
ψ(−L, s)

. (2.25)

The unknown functions Φ̃n are now determined by imposing the current
conservation condition (2.6) at each branch node and using the identity J [Φ̃nF ] =

Φ̃nJ [F ], which follows from the observation that Φn is x–independent. At the zeroth
generation node α0, the current conservation equation is given by (suppressing the s
variable)

Φ̃0J [F ](L) + Φ̃−1J [F̂ ](L) = (z − 1)Φ̃1J [F ](0) + (z − 1)Φ̃0J [F̂ ](0) + X , (2.26)

where

X (s) ≡ −J [GL](L) =
ψ′(0, s)ψ(x0, s)

WL(s)
, (2.27)

and at all branching nodes α ∈ Σn, 1 ≤ n we have

Φ̃n−1J [F̂ ](L) + Φ̃nJ [F ](L) = (z − 1)Φ̃n+1J [F ](0) + (z − 1)Φ̃nJ [F̂ ](0). (2.28)

Note that X depends on the source location x0; this then generates an x0–dependence
of the functions Φ̃n.

The four contributions to the probability flux at any branch k 6= 0 are

g(s) ≡ J [F̂ ](L) =
Dη(s)evL/2D

sinh(η(s)L)
, (2.29a)

h(s) ≡ J [F ](L) = −Dη(s) coth(η(s)L) +
v

2
, (2.29b)

ḡ(s) ≡ J [F ](0) = −Dη(s)e−vL/2D

sinh(η(s)L)
, (2.29c)

h̄(s) ≡ J [F̂ ](0) = Dη(s) coth(η(s)L) +
v

2
. (2.29d)

Note that the above flux functions are related according to the identities

h(s) + h̄(s) = v, h(s) =
v − g(s) + ḡ(s)

2
, h̄(s) =

v + g(s)− ḡ(s)

2
. (2.30a)
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Using these definitions the current conservation equations simplify to

gΦ̃−1 −HΦ̃0 +GΦ̃1 = X (2.31)

on the primary branch, and

gΦ̃n−1 −HΦ̃n +GΦ̃n+1 = 0 (2.32)

for n ≥ 1, where

H = (z − 1)h̄− h, G = −ḡ(z − 1). (2.33)

The second-order difference equation (2.32) can be solved using the ansatz Φ̃n = λnΦ̃0,
n ≥ 0, which yields a quadratic equation for λ:

Gλ2 −Hλ+ g = 0. (2.34)

The two roots are

λ± =
1

2G

[
H ±

√
H2 − 4gG

]
. (2.35)

It can be checked that λ± are real and λ± ≤ 1. However, we also find that
λ+ ≥ (z−1)−1 for all s ≥ 0, which means that the total probability is not normalizable.
In order to establish the latter result, consider the normalization condition

N ≡
∑
i∈Γ

∫ L

0

p̃i(x, s)dx ≤
1

s
, (2.36)

with the equality holding for a closed terminal node. Plugging in the solution (2.22)
for p̃i(x, s) yields the infinite series

N =

∫ L

0

GL(x, x0; s)dx+ Φ̃−1(s)K̂(s) + Φ̃0(s)K(s)

+
∑
n≥1

(z − 1)n
[
Φ̃n−1(s)K̂(s) + Φ̃n(s)K(s)

]
, (2.37)

with

K(s) ≡
∫ L

0

F (x, s)dx = −1

s
[h(s) + g(s)], (2.38)

K̂(s) ≡
∫ L

0

F̂ (x, s)dx =
1

s
[h̄(s) + ḡ(s)]. (2.39)

Taking Φ̃n(s) = λnΦ̃0(s) leads to the infinite geometric series
∑
n≥0(z− 1)nλn, which

is clearly divergent if λ ≥ 1/(z − 1). Therefore, we set λ = λ− in the following

Substituting the solution for Φ̃1 into equation (2.31) then implies that

gΦ̃−1 = (H −Gλ)Φ̃0 + χ. (2.40)

Given Φ̃0 and Φ̃−1, the Laplace transform of the flux into the terminal node takes the
explicit form (after reincorporating the dependence on the initial position)

J̃(x0, s) = D
∂p̃0

∂x
(0, s|x0)− vp̃0(0, s|x0) (2.41)

= D
∂GL(x, x0; s)

∂x

∣∣∣∣
x=0

+D Φ̃0(x0, s)
∂F (x, s)

∂x

∣∣∣∣
x=0

+D Φ̃−1(x0, s)
∂F̂ (x, s)

∂x

∣∣∣∣∣
x=0

− vΦ̃−1(x0, s).
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In the case of an open terminal node, we have Φ̃−1 = 0 in equation (2.40) so that

Φ̃0 =
χ

Gλ−H
, (2.42)

and the flux through the node is

J̃(x0, s) = D
∂GL(x, x0; s)

∂x

∣∣∣∣
x=0

− Dχ(s)

H(s)− λ(s)G(s)
Φ̃0(x0, s)

∂F (x, s)

∂x

∣∣∣∣
x=0

. (2.43)

On the other hand, when the terminal node is closed, the unknown functions Φ̃−1, Φ̃0

are found by solving the pair of equations (2.40) and (2.41) with J̃(x0, s) = 0.

2.3. Semi-infinite line (z = 2)

If the coordination number is z = 2, then the tree reduces to a semi-infinite line, which
is much easier to analyze. In particular, for a closed terminal node the solution of
equation (2.20) is p̃i(x, s) = Ĝ(x+nL, s) for α(i) ∈ Σn, where Ĝ is the Greens function[

D
∂2

∂x2
− v ∂

∂x
− s
]
Ĝ(x, x0; s) = −δ(x− x0), (2.44)

with

D∂xĜ(0, x0; s)− vĜ(0, x0; s) = 0, Ĝ(x, x0; s)→ 0 as x→∞. (2.45)

The Green’s function Ĝ has the explicit form

Ĝ(x, x0; s) =


φ1(x, s)φ2(x0, s)

DŴ (s)
, 0 ≤ x ≤ x0

φ1(x0, s)φ2(x, s)

DŴ (s)
, x0 ≤ x

, (2.46a)

where

φ1(x, s) =
[
(µ−(s)− v/D)eµ+(s)x − (µ+(s)− v/D)eµ−(s)x

]
, (2.46b)

φ2(x, s) = eµ−(s)x, (2.46c)

and Ŵ is the Wronskian

Ŵ (s) = φ′1(x0, s)φ2(x0, s)− φ1(x0, s)φ
′
2(x0, s). (2.46d)

It follows that at the terminal node,

Φ̃−1(x0, s) = Ĝ(0, x0; s) =
e−µ+(s)x0

µ+(s)
. (2.47)

It is clear that the branch length L plays no role when z = 2, unless there is quenched
disorder, see Sect. 5.

When the terminal node is open we simply replace the function φ1 by ψ to obtain
the Green’s function

G(x, x0; s) =


ψ(x, s)φ2(x0, s)

DW (s)
, 0 ≤ x ≤ x0

ψ(x0, s)φ2(x, s)
DW (s)

, x0 ≤ x
, (2.48a)
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where

W (s) = ψ′(x0, s)φ2(x0, s)− ψ(x0, s)φ
′
2(x0, s). (2.48b)

The flux through the open terminal node is

J̃(x0, s) = D∂xĜ(0, x0; s) = e−µ+(s)x0 . (2.49)

It can be checked numerically that the simpler expressions (2.47) and (2.49) are
equivalent to the corresponding results obtained by taking z = 2 in the general solution
for a Cayley tree.

3. Steady-state solution with resetting (closed terminal node)

Now suppose that the particle can instantaneously reset to its initial position on the
primary branch according to a Poisson process with rate r. Denoting the probability
density with reset by Pi on the i-th branch, equations (2.1) are modified according to

∂Pi
∂t

= D
∂2Pi
∂x2

− v ∂Pi
∂x
− rPi(x, t) + rδ(x− x0)δi,0 (3.1)

for 0 < x < L and i ∈ Γ. This is supplemented by the reflecting boundary condition
J [P0](0, t|x0) = 0. In order to calculate the steady-state solution at the closed
terminal node, it is convenient to work with a renewal equation approach [17]. In the
absence of resetting (r = 0), equation (3.1) reduces to equation (2.1) whose solution is
given by (2.22) in Laplace space. When resetting is included, the probability density
Pi(x, t|x0) has two distinct types of contribution: paths where no resetting events
have occurred up to time t, and paths where the last resetting event occurred at time
τl = t − τ for some τ ∈ (0, t). The probability density of no resetting events up to
time t is e−rt. Similarly, the probability density that the last resetting event occurred
at time t − τ (with no subsequent resetting events) is re−rτ . Using the fact that in
the latter case X(t − τ) = x0 and one has pure drift-diffusion over the time interval
(t− τ, t), the full time-dependent solution to equation (3.1) satisfies the so-called last
renewal equation

Pi(x, t|x0) = e−rtpi(x, t|x0) + r

∫ t

0

pi(x, τ |xr)e−rτdτ. (3.2)

The steady-state solution with resetting, P ∗i (x, x0), is obtained by taking the limit
t→∞ in equation (3.2):

P ∗i (x, x0) = r

∫ ∞
0

pi(x, τ |x0)e−rτdτ = rp̃i(x, r|x0). (3.3)

That is, P ∗i (x, x0) is determined by the r-Laplace transform of the solution without
resetting, see equation (2.22). Consider, in particular, the effect of resetting on the
steady-state solution at the terminal node, which is given by

Φ∗(x0, r) ≡ rp̃0(0, r|x0) = rΦ̃−1(x0, r), (3.4)

with Φ̃−1(x0, r) obtained from equations (2.40) and (2.41) after setting s = r and

J̃(x0, s) = 0:

Φ̃−1(x0, r) =
Ca(x0, r)

Cb(x0, r)
, (3.5)
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terminal node as a function of the resetting rate for different velocities v and (a)
z = 2, (b) z = 3. Other parameters are x0 = 0.5, D = 1 and L = 1. Filled circles
indicate maxima.

where

Ca(x0, r) = −ψ
′(0, s)ψ(x0 − L, s)

W (s)
[H − λG]−Dψ

′(0, s)

ψ(L, s)

ψ′(0, s)ψ(x0, s)

W (s)
,

Cb(x0, r) = gD
ψ′(0, s)

ψ(L, s)
+

(
D
ψ′(−L, s)
ψ(−L, s)

− v
)

[H − λG].

When z = 2 we can use the much simpler expression (2.47),

Φ̃−1(x0, r) =
e−µ+(r)x0

µ+(r)
. (3.6)
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function of the velocity v for various values of the resetting rate r, with Φ−1(x0, r)
the r-Laplace transformed solution at the terminal node. (a) z = 3. (b) z = 4.
Other parameter values are D = L = 1 and x0 = 0.5. The solid black curve is
the steady-state solution A0 determined by equation (2.17). Note that A0 = 0
for v ≥ vc, where vc is the critical velocity (2.16).
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In Fig. 2, we plot Φ∗(x0, r) as a function of the resetting rate r for various
velocities and initial positions x0. Two particular results can be obtained from these
figures. First, for v > vc we have Φ∗(x0, r) → 0 as r → 0. This reflects the LD
transition in the absence of resetting discussed in Sect. 2.1. Second, for a range of
velocities there is a unique peak in Φ∗(x0, r) at a v-dependent resetting rate r∗∗(v) > 0.
The first result is explored further in Fig. 3, where we plot Φ∗(x0, r) as a function of
the velocity v for various resetting rates r. It can be seen that in the limit r → 0, the
solution converges to the steady-state amplitude A0 at the terminal node, equation
(2.17). That is, A0 = limr→0 rΦ̃−1(x0, r). In particular, A0 = 0 for v ≥ vc where
vc is the critical velocity (2.16). The sharp transition at r = 0 can be understood as
follows. Setting s = 0 in equations (2.29a)-(2.29d) with η(0) = v/2D yields

g(0) + ḡ(0) = v, h(0) = ḡ(0), h̄(0) = g(0). (3.7)

Equation (2.33) then implies that

H2(0)− 4g(0)G(0) = ((z − 1)h̄(0)− h(0))2 + 4g(0)ḡ(0)(z − 1)

= ((z − 1)g(0)− ḡ(0))2 + 4g(0)ḡ(0)(z − 1) = ((z − 1)g(0) + ḡ(0))2,

and thus

λ(0) = − (z − 1)g(0)− ḡ(0)− |(z − 1)g(0) + ḡ(0)|
2ḡ(0)(z − 1)

. (3.8)

If (z − 1)g(0) + ḡ(0) > 0, then

λ(0) =
1

z − 1
. (3.9)

On the other hand, if (z − 1)g(0) + ḡ(0) < 0, then

λ(0) = −g(0)

ḡ(0)
= evL/D. (3.10)
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terminates at the critical velocity vc (indicated by the filled circle). For v < vc(z),
λ(0) = evL/D as shown by the exponential curve. Other parameters are x0 = 0.5,
D = 1 and L = 1.
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The transition point is given by v = vc. The behavior of λ(0) as a function of v is
illustrated in Fig. 4. Now multiplying both sides of equation (2.40) by s and taking
the limit s→ 0 yields

A0 = (z − 1)A1 +O(s) for v > vc, (3.11a)

A0 = −g(0)

ḡ(0)
A1 +O(s) for v < vc. (3.11b)

Similarly, multiplying the right-hand side of equation (2.41) by s and taking the limit
s→ 0 gives the no-flux condition

0 = A1F
′(0, 0)D +A0[F̂ ′(0, 0)D − v] = −ḡ(0)A1 − h̄(0)A0.

For v > vc we have

A0[(z − 1)−1ḡ(0) + h̄(0)] = 0⇒ A0 = 0,

whereas for v < vc,

A0[g(0)− h̄(0)] = 0 ·A0 = 0.

In the latter case, one has to go to O(s) to recover equation (2.17) for A0.
Turning to the second result, we find that there exists a new critical velocity v∗∗c ,

v∗∗c < vc, that separates two different modes of behavior with respect to r. If v > v∗∗c
then the peak of Φ∗(x0, r) occurs at a non-zero resetting rate r∗∗(v) > 0 (mode A).
On the other hand, if v < v∗∗c then the peak of Φ∗(x0, r) occurs when there is no
resetting (mode B). In both cases, the particle tends to be localized around x0 for
sufficiently large r and this reduces Φ∗(x0, r). Increasing r from zero can initially
increase Φ∗(x0, r) provided that the drift towards the terminal node is not too strong.
The critical velocity v∗∗c is obtained from the condition

d
[
rΦ̃−1(x0, r)

]
dr

∣∣∣∣∣∣
r=r∗∗

= 0. (3.12)
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For simplicity, consider the semi-infinite line z = 2. Substituting equation (2.47) into
the above equation yields

dµ+

dr
[µ+x0 + 1] =

µ+

r
. (3.13)

Since

µ′+(r) =
1

2Dη(r)
=

1

2Dµ+(r)− v
,

we find that r satisfies the equation

(rx0 − v)
√
v2 + 4Dr = v2 + 2Dr − rvx0.

Squaring both sides and rearranging finally gives a cubic for r of the form

r2[rx2
0 − vx0 −D] = 0.

One solution is r = 0 and the other is

r∗∗ =
D + vx0

x2
0

, (3.14)

provided that the right-hand side is positive. Hence, the critical velocity v∗∗c for z = 2
is determined by the condition

Pe′ ≡ vx0

D
= −1, (3.15)

where Pe′ is a second Péclet number. That is, v∗∗c = −D/x0. If the initial position
x0 = 0.5 and D = 1, then v∗∗c = −2, which is consistent with Fig. 2(a). In Fig.
5 we plot r∗∗(v) as a function of v for z = 2, 3, 4. The straight line for z = 2 is
based on equation (3.14), whereas the curves for z = 3, 4 are obtained by numerically

solving equations (2.40) and (2.41) with J̃(x0, s) = 0. We find that the z = 3, 4 curves
asymptotically approach the z = 2 line as v → ∞. Similar results hold for higher
coordination numbers with v∗∗c (z) a decreasing function of z.

4. Hitting probability and MFPT with resetting (open terminal node)

Two quantities of interest in the case of an open terminal node are the hitting
probability that a particle starting at x0 on the primary branch of the tree is eventually
absorbed by the primary node, and the corresponding MFPT. First consider these
quantities in the absence of resetting. Let T0(x0) denote the FPT that the particle
is captured by the terminal node with T0(x0) =∞ indicating that it is not captured.
(The zero subscript indicates that there is no resetting.) Let Q0(x0, t) be the survival
probability that the particle remains free in the time interval [0, t), given that it started
at x0:

Q0(x0, t) = P[t < T0(x0) <∞] =

∫
Γ

p(x, t|x0)dx. (4.1)

Differentiating both sides with respect to t, using the FP equation (2.1) and imposing
current conservation shows that

∂Q0(x0, t)

∂t
= −J(x0, t), (4.2)

where J(x0, t) is the flux into the terminal node:

J(x0, t) = D
∂p0

∂x
(0, t|x0)− vp0(0, t|x0) = D

∂p0

∂x
(0, t|x0), (4.3)
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Figure 6. (a) Plot of hitting probability π0 without resetting as a function of
velocity v for different coordination numbers z. For each z, the upper curve is for
the initial position x0 = 0.5 and the lower curve is for x0 = 0.9. (b) Corresponding
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and L = 1. The filled circles indicate the critical velocity vc(z) for each value of
z.

after imposing the absorbing boundary condition. In Laplace space,

sQ̃0(x0, s)− 1 = −J̃(x0, s). (4.4)

The hitting probability is given by

π0(x0) = 1− lim
t→∞

Q0(x0, t) = 1− lim
s→0

sQ̃0(x0, s) = J̃(x0, 0). (4.5)

The corresponding MFPT (if it exists) is defined according to

T0(x0) ≡ E[T0(x0)] = −
∫ ∞

0

t
dQ0(x0, t)

dt
dτ =

∫ ∞
0

Q0(x0, t)dt = Q̃0(x0, 0). (4.6)

We have used the fact that the FPT density f0(x0, t) is related to the survival
probability according to f0 = −dQ0/dt. Example plots of π0(x0) as a function of
the velocity v are shown in Fig. 6(a). It can be seen that there is a critical phase
transition from recurrent (π0 = 1) to transient (π0 < 1) transport at the LD threshold
vc; for v > vc, the hitting probability is a decreasing function of both v and z, and
the corresponding MFPT is infinite. The last point is illustrated in Fig. 6(b). The
change in behavior of the hitting probability can be understood by setting s = 0 in
equations (2.40) and (2.43) with Φ̃−1 = 0 and v < vc. In particular,

Φ̃0(x0, 0) =
χ(0)

λ(0)G(0)−H(0)
=

F̂ ′(0, 0)

DF ′(0, 0)

ψ(x0, 0)

ψ′(0, 0)
(4.7)

and

J̃(x0, 0) = −F ′(0, 0)
ψ(x0 − L, 0)

ψ′(0, 0)
+ F̂ ′(0, 0)

ψ(x0, 0)

ψ′(0, 0)
= 1. (4.8)

Now consider the effects of stochastic resetting. Let Qr(x0, t) denote the survival
probability for resetting at a rate r:

Qr(x0, t) = P[t < Tr(x0) <∞] =

∫
Γ

P (x, t|x0)dx, (4.9)
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where Tr(x0) is the corresponding FPT. As in the analysis of the steady-state solution,
Qr can be related to the survival probability without resetting, Q0, using a last renewal
equation [14, 15]:

Qr(x0, t) = e−rtQ0(x0, t) + r

∫ t

0

Q0(x0, τ)Qr(x0, t− τ)e−rτdτ. (4.10)

The first term on the right-hand side represents trajectories with no resettings. The
integrand in the second term is the contribution from trajectories that last reset at
time τ ∈ (0, t), and consists of the product of the survival probability starting from x0

with resetting up to time t− τ and the survival probability starting from x0 without
any resetting over the time interval τ . Laplace transforming the last renewal equation,
using the convolution theorem and rearranging shows that

Q̃r(x0, s) =
Q̃0(x0, r + s)

1− rQ̃0(x0, r + s)
. (4.11)

It immediately follows that the hitting probability with resetting, πr(x0), is unity for
all r > 0 and v. The corresponding MFPT is given by

Tr(x0) ≡ E[Tr(x0)] = −
∫ ∞

0

t
dQr(x0, t)

dt
dτ =

∫ ∞
0

Qr(x0, t)dt = Q̃r(x0, 0). (4.12)

From equation (4.12), we have

Tr(x0) = Q̃r(x0, 0) =
Q̃0(x0, r)

1− rQ̃0(x0, r)
. (4.13)

Substituting for Q̃0(x0, r) using equation (4.4) then yields

Tr(x0) =
1− J̃(x0, r)

rJ̃(x0, r)
, (4.14)

where J̃(x0, r) is the Laplace transformed flux into the terminal node without resetting,
see equation (2.43).
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In Fig. 7 we plot the MFPT Tr(x0) as a function of r for fixed x0. Analogous
to the steady-state at a closed terminal node, we find that for a range of velocities v,
the MFPT Tr(x0) is a unimodal function of r with a unique minimum at an optimal
resetting rate r∗(v). Moreover, there exists a critical velocity v∗c such that r∗(v) = 0
for v < v∗c and r∗(v) > 0 for v > v∗c . This is a generalization of the phase transition
identified in [31, 27] for the semi-infinite line. Indeed, we recover the analytical results
of these papers for z = 2. (The only difference is that the previous authors consider a
target at x = x0 and take the origin to be the reset point.) Substituting the solution
(2.49) into (4.14) gives

Tr(x0) =
1− e−µ+(r)x0

re−µ+(r)x0
=

eµ+(r)x0 − 1

r
. (4.15)

Note that if v < 0 then

lim
r→0

Tr(x0) =
x0

v
<∞, (4.16)

whereas Tr(x0)→∞ as r → 0 when v > 0.
The optimal resetting rate is obtained from the condition

0 =
dTr
dr

= −eµ+(r)x0 − 1

r2
+
µ′+(r)x0eµ+(r)x0

r
. (4.17)

µ±(s) =
v

2D
± η(s), η(s) =

√
v2 + 4Ds

2D
, (4.18)

This yields a transcendental equation for µ+(r) and hence r of the form

rx2
0/D

1− e−µ+(r)x0
= 2x0µ+(r)− Pe′. (4.19)

Using a graphical construction it can be shown that there exists a positive solution for
r = r∗ provided that Pe′ > −2 [28, 31], that is, v > v∗c = −2D/x0 = 2v∗∗c . If x0 = 0.9
and D = 1, then v∗c ≈ 2.22. Again we find similar behavior for z > 2 as illustrated
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in Fig. 8. Note that v∗c (z) decreases as z increases and all the graphs asymptotically
approach each other as v →∞. In addition, we have the ordering

v∗c (z) < v∗∗c (z) < vc(z) (4.20)

for all coordination numbers z. One subtle point concerns how the LD transition
manifests itself in the presence of resetting, given that πr(x0) = 1 and Tr(x0) < ∞
for all r > 0 and v. In particular,

lim
r→0+

πr(x0) = 1 for all v. (4.21)

On the other hand, π0(x0) < 1 and thus T0(x0) =∞ for v > vc. In Fig. 9 we plot the
MFPT Tr(x0) as a function of v for a decreasing set of resetting rates r. As r → 0+,
one finds that there is a rapid increase in Tr as v crosses the critical velocity vc(z)
from below, beyond which Tr flattens out. This rapid increase is the remnant or ghost
of the LD transition without resetting. In summary, even though there is a phase
transition between a zero and nonzero optimal resetting rate r∗ at the critical velocity
v∗c (z), see Fig. 8, there is no LD phase transition for r > 0. In other words vc does
not exist in the presence of resetting.

5. Quenched disorder

So far we have focused on homogeneous Cayley trees. However, in a number of
applications one finds that the transport properties are randomly distributed across
the network, and the resulting quenched disorder can lead to anomalous behavior,
fractal scaling and critical phenomena [8, 3]. The effects of quenched disorder on
the steady-state solution at a closed terminal node (without resetting) and the LD
transition were considered in [4, 5]. In order to combine the effects of quenched disorder
and stochastic resetting, it is necessary to consider the full solution in Laplace space.
In this section we first summarize some of the results of our previous work, and then
show how the inclusion of stochastic resetting naturally leads to the theory of random
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matrix products. This is a topic of considerable interest within probability theory and
statistical mechanics [33, 20, 21, 13, 12, 9, 18].

5.1. Steady-state solution

Following Ref. [4], suppose that for each generation n, all branches i ∈ Γ such that
α(i) = n have the same drift velocity vn but the sequence {vn, n ≥ 0} is independently
and identically distributed (inter-generational quenched disorder). Let ρ(v) be the
associated probability density. The density evolves according to the inhomogeneous
FP equation

∂pi
∂t

= D
∂2pi
∂x2

− vn
∂pi
∂x

, 0 < x < L (5.1)

for all i such that α(i) ∈ Σn. The corresponding probability current or flux on the
branch is now

Jn[p] ≡ −D∂p

∂x
+ vnp. (5.2)

In the presence of inter-generational quenched disorder, equation (2.14) becomes

A−1
0 ≡ Y = f(v0) +

∞∑
n=1

f(vn)(z − 1)n
n−1∏
m=0

f̄(vm), (5.3)

where

f(v) =
D

v
(evL/D − 1), f̄(v) = evL/D. (5.4)

We assume that v is finite so f(v), f̄(v) are bounded, positive functions. The steady-
state density is thus expressed in terms of a random geometric series Y . Similar series
have arisen in a variety of studies of one-dimensional problems [3, 22, 32, 10]. It can
be proven that if

〈ln[(z − 1)f̄(v)]〉 < 0, (5.5)

then Y converges with probability one [21]. Hence, the steady-state is localized
provided that

〈v〉 < vc(z) = −D
L

ln(z − 1), (5.6)

that is, the average drift velocity is less than the critical velocity for localization
on a homogeneous tree. On the other hand, if 〈v〉 > vc(z) then Y is infinite and
the steady-state is delocalized. The critical point determines a phase boundary in the
infinite-dimensional space of probability densities ρ(v) that separates the localized and
delocalized phases. A characteristic feature of the phase transition is that as 〈v〉 → vc
in some prescribed fashion, the probability distribution F of Y in the localized phase
develops a long-tail for which all moments are infinite, even though the system is still
localized. This is a consequence of Jensen’s inequality

〈evL/D〉 ≥ e〈v〉L/D, (5.7)

which means that one can have 〈v〉 < vc even though 〈evL/D〉 = eLvc/D.
The geometric series (5.3) can be generated iteratively using the difference

equation

Y (N)
n = (z − 1)f̄(vn)Y

(N)
n+1 + f(vn), 0 ≤ n ≤ N − 1 (5.8)
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with Y
(N)
N fixed and each pair (f(vn), f̄(vn)) generated independently from ρ(v).

Introducing the probability density

P (N)
n (y)dy = P[y < Y (N)

n < y + dy], (5.9)

we have the integral equation

P (N)
n (y) =

∫ ∞
−∞

dvρ(v)

∫ ∞
−∞

dw δ(y − (z − 1)f̄(v)w − f(v))P
(N)
n+1(w)

=

∫ ∞
−∞

ρ(v)
ρ(v)

(z − 1)f̄(v)
P

(N)
n+1

(
y − f(v)

(z − 1)f̄(v)

)
dv. (5.10)

Taking the limit N → ∞ on both sides for fixed n with P
(N)
n (y) → Ψ(y) = F ′(y)

yields the following integral equation for Ψ(y):

Ψ(y) =

∫ ∞
−∞

ρ(v)
ρ(v)

(z − 1)f̄(v)
Ψ

(
y − f(v)

(z − 1)f̄(v)

)
dv. (5.11)

An alternative form of the integral equation is obtained by taking Laplace transforms
of the first line in equation (5.10),

M(s) =

∫ ∞
−∞

ρ(v)M((z − 1)f̄(v)s)e−sf(v)dv (5.12)

with M(s) =
∫∞

0
e−syΨ(y)dy.

It is not generally possible to solve these integral equations analytically. However,
one can determine the asymptotic behavior of Ψ when y is large. We illustrate this
for the Gaussian distribution

ρ(v) =
1√

2π∆2
exp

(
− (v − µ)2

2∆2

)
. (5.13)

(The theory for more general distributions is considered in [5].) Suppose that
〈v〉 < vc(z) but the first moment of Ψ is infinite so that 〈f̄(v)〉 > (z − 1)−1. It
can then be proven [22] that there exist positive constants a, b, σ with 0 < σ < 1 such
that Ψ(y) ∼ ay−σ−1 for large y, and hence M(s) ∼ 1 + bsσ for small s. The large–y
behavior of Ψ ensures that if σ > 0 then

F∗ ≡ lim
x→∞

∫ ∞
x

Ψ(y)dy = 0. (5.14)

That is, the series Y of equation (5.3) is convergent with probability one. Substitution
of the asymptotic form for Ψ (or M) into equation (5.11) (or (5.12)) leads to the
equation

1 = β(σ) ≡ (z − 1)σ〈f̄(v)σ〉 = (z − 1)σ exp
(
µσL/D + σ2∆2L2/2D2

)
. (5.15)

where the last line follows from plugging in the Gaussian distribution. Note that
β(0) = 1 and β(σ) is a convex function for real σ. For µ < 0, there exists a second
solution β(σ∗) = 1 with

σ∗ = (vc(z)− µ)
2D

L∆2
. (5.16)

As µ ≡ 〈v〉 → vc(z) from below we see that σ∗(µ) → 0 and Ψ(y) is no longer
normalizable, signaling an LD transition.
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5.2. Solution in Laplace space

In order to combine the effects of quenched disorder and stochastic resetting, it is
necessary to consider the full solution in Laplace space. Equation (2.20) becomes[

D
∂2

∂x2
− vn

∂

∂x
− s
]
p̃i(x, s) = −δi,0δ(x− x0), α(i) ∈ Σn. (5.17)

The corresponding solution (2.22) generalizes as

p̃i(x, s) = δi,0G0(x, x0; s) + Φ̃n−1(s)
ψn(x− L, s)
ψn(−L, s)

+ Φ̃n(s)
ψn(x, s)

ψn(L, s)
, α(i) ∈ Σn, (5.18)

with

ψn(x, s) = evnx/2D
[
eηn(s)x − e−ηn(s)x

]
, ηn(s) =

√
v2
n + 4Ds

2D
. (5.19)

The Green’s function G0 is given by equation (2.24a) with v = v0, where v0 is the
velocity on the primary branch. Proceeding along similar lines to the homogeneous
case, we impose current conservation at each branch node. We thus obtain modified
versions of equations (2.31) and (2.32) given by

gnΦ̃n−1 + hnΦ̃n − (z − 1)[h̄n+1Φ̃n + ḡn+1Φ̃n+1] = χ0δn,0 (5.20)

for n ≥ 0 and X0 ≡ −J [G0](L). The functions gn, hn, ḡn, h̄n are given by equations
(2.29a)–(2.29d) except that v → vn. For example, making the velocity dependence of
g explicit, we have gn(s) = g(s, vn), and similarly for the other variables.

Equation (5.20) is a second-order analog of the random difference equation (5.8).
It is convenient to rewrite it as a first-order matrix equation by defining a second
variable Ψ̃n+1 = Φ̃n+1 − Φ̃n such that

(z − 1)Λn+1(s)

(
Φ̃n+1

Ψ̃n+1

)
= Λn(s)

(
Φ̃n
Ψ̃n

)
− δn,0

(
χ0(s)

0

)
(5.21)

with

Λn(s) =

(
hn(s) + gn(s) −gn(s)

z − 1 0

)
,Λn(s) =

(
h̄n(s) + ḡn(s) −h̄n(s)

1 −1

)
. (5.22)

Iterating equation (5.21) gives

(z − 1)ΛN (s)

(
Φ̃N
Ψ̃N

)
=

[
N−1∏
m=1

Γm(s)

][
Λ0(s)

(
Φ̃0

Ψ̃0

)
−
(
χ0(s)

0

)]
, (5.23)

where

Γn(s) =
1

z − 1
Λn(s)Λn(s)−1

=
1

(z − 1)gn(s)

(
hn(s) gn(s)ḡn(s)− hn(s)h̄n(s)
z − 1 −(z − 1)h̄n(s)

)
. (5.24)

Before proceeding further, it is useful to check that the solution for a homogeneous
Cayley tree is recovered when vn = v for all n. Dropping the index n in equation
(5.24), we find that the eigenvalues of the matrix Γ(s) are λ±(s) with λ±(s) defined
in equation (2.35). The corresponding eigenvectors (up to scalar multiplication) are

c±(s) =

(
(z − 1)h̄(s)−Gλ±(s)

z − 1

)
. (5.25)
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Recall that normalizability of the solution requires that Φ̃N decays faster than
(z−1)−N , which means that the eigenvector on the right-hand side of equation (5.23)
should project onto the eigenvector of the smaller eigenvalue λ−(s). In other words,

Λ0(s)

(
Φ̃0(s)

Ψ̃0(s)

)
−
(
χ0(s)

0

)
∝ c−(s). (5.26)

Taking ratios of the components on both sides and rearranging leads to equation (2.40),
and the analytical results regarding phase transitions in a homogeneous Cayley tree
are recovered.

Incorporating the effects of quenched disorder requires determining the statistical
properties of the random matrix product

ΘN (s) =

N−1∏
m=1

Γm(s). (5.27)

The analysis is complicated by the fact that the entries of each independent matrix
Γn are statistically correlated through their dependence on vn, rather than being
independent identically distributed random variables. Moreover, Γn is non-symmetric
and not all components are positive. Hence, classical results concerning random matrix
products do not easily apply [33, 20, 21, 13, 12, 9, 18]. Motivated by the analysis of
the homogeneous case, we restrict ourselves to solving a simpler problem in which
ΘN (s) is replaced by the matrix product obtained by averaging with respect to the
independent random velocities:

〈ΘN (s)〉 =

N−1∏
m=1

〈Γm(s)〉 = Γ(s)N−1, (5.28)

where

Γ(s) =
1

(z − 1)

(
〈h(s)/g(s)〉 〈g(s)〉 − 〈h(s)h̄(s)/g(s)〉

(z − 1)〈1/ḡ(s)〉 −(z − 1)〈h̄(s)/ḡ(s)〉

)
. (5.29)
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Figure 10. Effective steady state rΦav(x0, r) at the terminal node for the
averaged system with stochastic resetting at a rate r. The branch velocities are
distributed according to the Gaussian (5.13) with standard deviation ∆ and mean
µ. (a) Plot of the steady state as a function of ∆ and various resetting rates for
µ = −1. (b) Corresponding plots for µ = −0.5. Horizontal dashed lines indicate
the steady-state solutions for a homogeneous tree with branch velocity v = µ.
Other parameters are z = 3, x0 = 0.5, D = 1 and L = 1.
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Here

〈g(s)〉 =

∫ ∞
−∞

ρ(vn)g(s, vn)dvn

etc. As a further simplification, suppose that v0 = 〈v〉. Let Φav(x0, s) denote
the steady-state solution at the terminal node. Following the arguments of the
homogeneous case, Φav(x0, s) takes the form (3.5) with λ now the smaller eigenvalue
of the averaged matrix Γ(s):

λ =
w(s)−

√
w(s)2 + 4ŵ(s)

2(z − 1)
(5.30)

with

w(s) =

〈
h(s)

ḡ(s)

〉
− (z − 1)

〈
h̄(s)

ḡ(s)

〉
> 0 (5.31)

and

ŵ(s) = (z − 1)

[{
〈g(s)〉 −

〈
h(s)h̄(s)

g(s)

〉}〈
1

g(s)

〉
+

〈
h(s)

g(s)

〉〈
h̄(s)

g(s)

〉]
. (5.32)

Although one cannot simply identify Φav(x0, s) with the first moment 〈Φ̃0(s)〉, since
the vector on the right-hand side of equation (5.23) is not statistically independent
of the matrix ΘN , it can be checked that the first moment localization condition
〈evL/D〉 = eLvc/D is recovered in the limit s → 0. This follows from the identities
(3.7), which imply

w(0) = (z − 1)〈evL/D〉+ 1, ŵ(0) = −(z − 1)〈evL/D〉 (5.33)

and

λ(0) =
(z − 1)〈evL/D〉+ 1− |(z − 1)〈evL/D〉 − 1|

2(z − 1)
. (5.34)

Hence, if (z − 1)〈evL/D〉 < 0 then λ−(0) = 〈evL/D〉, whereas λ−(0) = 1/(z − 1) when
(z − 1)〈evL/D〉 > 0.

The quantity rΦav(x0, r) determines the steady-state solution at the closed
terminal node for the averaged system. For the sake of illustration, suppose that
ρ(v) is given by the Gaussian (5.13). In Fig. ?? we plot rΦav(x0, r) as a function of
the standard deviation ∆ for fixed means µ and various resetting rates. It can be seen
that increasing the variance of the quenched disorder reduces the steady state.

6. Discussion

In summary, we identified two distinct examples of phase transitions in the optimal
resetting rate for drift-diffusion on a semi-infinite Cayley tree, one associated with
maxima of the steady-state at a closed terminal node and the other associated with
minima of the MFPT to reach an open terminal node. In both cases, the critical
velocities are bounded from above by the critical velocity of the LD transition without
resetting, see equation (4.20). The latter involves a phase transition between zero and
nonzero values of the steady-state at a closed terminal node or, equivalently, the
transition between being absorbed by an open terminal node with probability one or
with probability less than one. Only the critical velocity vc(z) for the LD transition
appears to have a simple universal dependence on z, namely, vc(z) = −D ln(z − 1)/L
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for z > 2 and vc(2) = 0. All three phase transitions arise from the same basic principle,
namely, that there is a crossover between a diffusion-dominated and a drift-dominated
regime. In the presence of stochastic resetting, this crossover point is shifted towards
more negative drift velocities since the reset point is away from the terminal node and
thus resetting contributes an effective positive velocity component to the transport
process. Finally note that all three phase transitions are second-order, since there is a
continuous change in the relevant “order parameter.” (Examples of first-order phase
transitions in optimal resetting rates are considered in [23, 27].)

For the sake of analytical tractability, we assumed that the reset point of the
particle was located on the primary branch so that all branches of a given generation
could be treated the same. Such a simplification would also hold if the particle
randomly reset to one of the nodes of the n-th generation with probability 2−n.
Although the analysis would be less straightforward under more general choices of
resetting protocol, the basic conclusions of the paper would not be altered. In
particular, the LD transition is a property of the underlying geometry as expressed
by the coordination number z. In the last part of the paper we considered the case of
quenched disorder in the branch velocities, and showed how the inclusion of stochastic
resetting naturally leads to a problem in the theory of random matrix products. In
future work it would be interesting to use this theory to go beyond the naive calculation
carried out for the averaged system. Finally, one could use the iterative method
presented in section 2.2 to analyze the effects of stochastic resetting on a bounded
tree, extending previous work on the finite interval [29]. The bounded system does
not exhibit an LD transition, but there could be interesting effects of the branching
structure on the first passage time statistics.
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