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Abstract. We extend the theoretical framework used to study search processes
with stochastic resetting to the case of partially absorbing targets. Instead of
an absorption event occurring when the search particle reaches the boundary of
a target, the particle can diffuse freely in and out of the target region and is
absorbed at a rate κ when inside the target. In the context of cell biology, the
target could represent a chemically reactive substrate within a cell or a region
where a particle can be offloaded onto a nearby compartment. We apply this
framework to a partially absorbing interval and to spherically symmetric targets
in Rd. In each case, we determine how the mean first passage time (MFPT) for
absorption depends on κ, the resetting rate r, and the target geometry. For the
given examples, we find that the MFPT is a monotonically decreasing function of
κ, whereas it is a unimodal function of r with a unique minimum at an optimal
resetting rate ropt. The variation of ropt with κ depends on the spatial dimension
d, decreasing in sensitivity as d increases. For finite κ, ropt is a non-trivial function
of the target size and distance between the target and the reset point. We also
show how our results converge to those obtained previously for problems with
totally absorbing targets and similar geometries when the absorption rate becomes
infinite. Finally, we generalize the theory to take into account an extended
chemical reaction scheme within a target.
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1. Introduction

In studies of random search processes, targets are either located on the boundary of
the search domain or in the interior. In the latter case, one is typically interested in
solving the first passage time (FPT) problem to reach the target boundary, which is
usually taken to be totally absorbing. One could also consider a partially absorbing
boundary, whereby there is a non-zero probability that the particle is reflected rather
than absorbed by the target. However, there are a growing number of examples in
cell biology where the whole interior target domain U acts as a partial absorber rather
than the target boundary ∂U [5], as illustrated in Fig. 1. Now the particle can freely
enter and exit U , and is absorbed at a rate κ when inside U . One example is the
motor-driven intracellular transport of vesicles to en passant synaptic targets in the
axons and dendrites of neurons [6]. The particle (searcher) represents a molecular
motor complex moving along a microtubule, which is modeled as a 1D random search
process. The transport is often bidirectional, with the particle randomly switching
between anterograde and retrograde motion according to a velocity-jump process. In
the fast switching limit, the stochastic dynamics can be approximated by diffusive-like
search [21]. In this application, absorption corresponds to the transfer of the vesicular
cargo to a synaptic target, say. Another example of a partially absorbing target is a
local chemical substrate within a cell. This follows from the observation that random
search processes are also used to model diffusion-limited reactions, in which chemical
species A has to diffuse within range of chemical species B, say, in order to react
[26]. The transport process can be formulated as a searcher A looking for a target
B, and the effective reaction rate related to the mean FPT (MFPT). In the case of
a diffusion-limited reaction, as soon as the particle hits the boundary of the reaction
domain or target it reacts instantaneously. However, it is also possible that the target
represents a spatially extended chemical substrate U rather than a single molecule B,
such that particle A reacts at some rate κ when within U . The target domain U is
then partially absorbing.

Passive diffusive search often results in unrealistically slow reaction rates. One
mechanism for significantly reducing the search time is random intermittent transport,
in which a reactant alternates between periods of passive diffusion and active ballistic
motion [18, 2, 3]; the active phase could be mediated by molecular motors transiently
binding diffusing reactant molecules within the cellular environment. In many cases
one finds that the mean search time can be minimized by varying the rates of switching
between the different transport states. A simplified version of a random intermittent
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Figure 1. A partially absorbing target in (a) 1D and (b) 2D
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search process is diffusion with stochastic resetting or restart [10, 11, 12]. The position
of a Brownian particle (reactant) is reset to a fixed location at a random sequence
of times that is generated by a Poisson process, say, and the mean first passage
time (MFPT) to find a target is minimized at an optimal resetting rate (assuming
it exists). Although resetting was originally formulated in terms of Brownian motion,
it has subsequently been applied to wide range of stochastic search processes, see the
recent review [15] and references therein.

In this paper we develop the basic theory of diffusive search processes with
stochastic resetting and partially absorbing targets. We first consider a single partially
absorbing target (section 2). We calculate the MFPT and determine how it depends on
the absorption rate κ, the resetting rate r, and the target geometry. We then apply the
theory to a partially absorbing interval (section 3) and a spherically symmetric target
in Rd (section 4). In each case we find that the MFPT is a monotonically decreasing
function of κ, whereas it is a unimodal function of r with a unique minimum at
an optimal resetting rate ropt. The variation of ropt with κ depends on the spatial
dimension d, decreasing in sensitivity as d increases. For finite κ, ropt is a non-trivial
function of the target size and distance between the target and the reset point. We
also show how our results converge to those obtained previously for problems with
totally absorbing targets and similar geometries when the absorption rate becomes
infinite. We then generalize the theory to the case of multiple partially absorbing
targets (section 5) and to extended chemical reactions schemes (section 6).

2. Diffusive search for a single partially absorbing target in Rd

Consider a partially absorbing target U1 ⊂ Rd. Let p(x, t|x0) be the probability
density that at time t a particle is at X(t) = x, having started at position x0. We will
set p = q for all x ∈ Rd\U1 and p = p1 for all x ∈ U1 such that

∂q(x, t|x0)

∂t
= D∇2q(x, t|x0), x ∈ Rd\U1, (2.1a)

∂p1(x, t|x0)

∂t
= D∇2p1(x, t|x0)− κp1(x, t|x0), x ∈ U1, (2.1b)

together with the continuity conditions

q(x, t|x0) = p1(x, t|x0), ∇q(x, t|x0) · n = ∇p1(x, t|x0) · n, x ∈ ∂U1, (2.1c)

and the initial conditions q(x, t|x0) = δ(x−x0) and p1(x, 0|x0) = 0. Here κ is the rate
at which the particle is absorbed by the target and n is the unit normal to the surface
of the target. Since we take the particle to start outside the domain U1, it follows that
in the limit κ→∞ the particle is immediately absorbed as soon as it hits the target
boundary. Hence, we recover a totally absorbing target with q evolving according to
equation (2.1a) and

q(x, t|x0) = 0, x ∈ ∂U . (2.2)

Note that our definition of a partially absorbing target for finite κ is different from
the definition of a target with a partially absorbing boundary condition

∇q · n + αq = 0, x ∈ ∂U1 (2.3)

for some α ≥ 0. In the latter case, partial absorption means that there is a non-zero
probability that the particle is reflected at the boundary.
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The probability flux for absorption at time t is

J(x0, t) = κ

ˆ
Uk
p1(x, t|x0)dx. (2.4)

Hence, the probability that the particle is eventually absorbed by the target is

π(x0) =

ˆ ∞
0

J(x0, t
′)dt′ = J̃(x0, 0), (2.5)

where J̃(x0, s) denotes the Laplace transform of J(x0, t). Next we introduce the
survival probability that the particle hasn’t been absorbed by the target in the time
interval [0, t], having started at x0:

Q(x0, t) =

ˆ
Rd

p(x, t|x0)dx =

ˆ
Rd\U1

q(x, t|x0)dx +

ˆ
U1
p1(x, t|x0)dx. (2.6)

Differentiating both sides of this equation with respect to t and using equations (2.1a)
and (2.1b) implies that

∂Q(x0, t)

∂t
= D

ˆ
Rd\U1

∇ · ∇q(x, t|x0)dx

+

ˆ
U1

[D∇ · ∇p1(x, t|x0)− κp1(x, t|x0)] dx

= −D
ˆ
∂U1
∇q · ndσ +D

ˆ
∂U1
∇p1 · ndσ − κ

ˆ
U1
p1(x, t|x0)dx

= −κ
ˆ
U1
p1(x, t|x0)dx, (2.7)

where we have used the current conservation condition in equation (2.1c). Laplace
transforming equation (2.7) and imposing the initial condition Q(x0, 0) = 1 gives

sQ̃(x0, s)− 1 = −J̃(x0, s). (2.8)

It immediately follows from equation (2.5) that

π(x0) = 1− lim
s→0

sQ̃(x0, s) = 1−Q∞(x0). (2.9)

Here Q∞(x0) = limt→∞Q(x0, t) so that 1−Q∞(x0) is the probability that the particle
is eventually absorbed by the target. It is well-known that Brownian motion in 1D
and 2D is recurrent so that π(x0) = 1, whereas it is transient in 3D, π1(x0) < 1. In
all cases the MFPT is infinite when the search domain is unbounded.

Now suppose that prior to being absorbed by one of the targets, the particle can
instantaneously reset to a fixed location xr at a random sequence of times generated
by an exponential probability density ψ(τ) = re−rτ , where r is the resetting rate. The
probability that no resetting has occurred up to time τ is then Ψ(τ) = 1−

´ τ
0
ψ(s)ds =

e−rτ . In the following we identify xr with the initial position by setting x0 = xr. (One
could also incorporate resetting delays – finite return times and refractory periods -
and non-exponential resetting statistics [19, 14, 20, 4, 23, 7, 15]. However, we focus
on the simplest case here.) Equations (2.1a) and (2.1b) become

∂qr(x, t|x0)

∂t
= D∇2qr(x, t|x0)− rqr(x, t|x0) + rδ(x− x0), x ∈ Rd\U1, (2.10a)

∂pr,1(x, t|x0)

∂t
= D∇2pr,1(x, t|x0)− (κ+ r)pr,1(x, t|x0), x ∈ U1, (2.10b)
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Let Qr(x0, t) be the corresponding survival probability in the presence of resetting:

Qr(x0, t) =

ˆ
Rd

pr(x, t|x0)dx =

ˆ
Rd\U1

qr(x, t|x0)dx +

ˆ
U1
pr,1(x, t|x0)dx. (2.11)

One now observes that Qr can be related to the survival probability without resetting,
Q, using a last renewal equation [10, 11, 15]; this holds irrespective of whether the
target is partially or totally absorbing:

Qr(x0, t) = e−rtQ(x0, t) + r

ˆ t

0

Q(x0, τ)Qr(x0, t− τ)e−rτdτ. (2.12)

The first term on the right-hand side represents trajectories with no resetting. The
integrand in the second term is the contribution from trajectories that last reset at
time τ ∈ (0, t), and consists of the product of the survival probability starting from x0

with resetting up to time t− τ and the survival probability starting from x0 without
any resetting for the time interval τ . Since we have a convolution, it is natural to
introduce the Laplace transform

Q̃r(x0, s) =

ˆ ∞
0

Qr(x0, t)e
−stdt.

Laplace transforming the last renewal equation and rearranging shows that

Q̃r(x0, s) =
Q̃(x0, r + s)

1− rQ̃(x0, r + s)
. (2.13)

A well-known property of diffusive search in unbounded domains with stochastic
resetting is that the probability of finding the target is now unity, πr(x0) = 1, and the
MFPT is rendered finite, Tr(x0) < ∞. The MFPT can be expressed in terms of Qr
according to

Tr(x0) = −
ˆ ∞

0

t
dQr(x0, t)

dt
dτ =

ˆ ∞
0

Qr(x0, t)dt, (2.14)

This follows from the fact that the FPT density fr(x0, t) is related to the survival
probability according to

fr(x0, t) = −dQr(x0, t)

dt
. (2.15)

Combining equations (2.13) and (2.14) shows that the MFPT to reach the target is
then given by

Tr(x0) = Q̃r(x0, 0) =
Q̃(x0, r)

1− rQ̃(xr, r)
=

1− J̃(x0, r)

rJ̃(x0, r)
. (2.16)

Equation (2.16) implies that the MFPT with resetting is determined by the Laplace

transform of the flux, J̃(x0, r), which depends on the absorption rate κ. In order to
determine the flux we thus have to solve the Laplace transformed version of equations
(2.1a)–(2.1c), which take the form

D∇2q̃(x, s|x0)− sq̃(x, s|x0) = −δ(x− x0), x ∈ Rd\U1, (2.17a)

D∇2p̃1(x, s|x0)− (κ+ s)p̃1(x, s|x0) = 0, x ∈ U1, (2.17b)

together with the continuity conditions

q̃(x, s|x0) = p̃1(x, s|x0), ∇q̃(x, s|x0) · n = ∇p̃1(x, s|x0) · n x ∈ ∂U1. (2.17c)
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Finally, note that although we focus on the MFPT in this paper, we could also calculate
higher order statistics by noting that the Laplace transform of the FPT density is the
moment generator of the FPT T :

T (n)
r = E[T n] =

(
− d

ds

)n
E[e−sT ]

∣∣∣∣
s=0

=

(
− d

ds

)n
f̃r(x0, s)

∣∣∣∣
s=0

. (2.18)

Laplace transforming equation (2.15) shows that

f̃r(x0, s) = 1− sQ̃r(x0, s) =
1− (r + s)Q̃(x0, r + s)

1− rQ̃(x0, r + s)
. (2.19)

3. Partially absorbing interval in R

As our first, example, suppose that there is a single target U1 = [−R,R] in R, see Fig.
1(a). Equations (2.17a)-(2.17c) become

∂q−(x, t|x0)

∂t
= D

∂2q−(x, t|x0)

∂x2
, x < −R, (3.1a)

∂p1(x, t|x0)

∂t
= D

∂2p1(x, t|x0)

∂x2
− κp1(x, t|x0), −R < x < R, (3.1b)

∂q+(x, t|x0)

∂t
= D

∂2q+(x, t|x0)

∂x2
, x > R, (3.1c)

together with the matching conditions

q−(−R, t|x0) = p1(−R, t|x0),
∂q−
∂x

(−R, t|x0) =
∂p1

∂x
(−R, t|x0), (3.2a)

q+(R, t|x0) = p1(R, t|x0),
∂q+

∂x
(R, t|x0) =

∂p1

∂x
(R, t|x0). (3.2b)

Take the initial conditions q+(x, 0|x0) = δ(x − x0) and p(x, 0|x0) = 0 = q−(x, 0|x0).
In other words, x0 > R. The corresponding equations in Laplace space are of the form

D
∂2q̃−(x, s|x0)

∂x2
− sq̃−(x, t|x0) = 0, x < −R, (3.3a)

D
∂2p̃1(x, s|x0)

∂x2
− (s+ κ)p̃1(x, s|x0) = 0, −R < x < R, (3.3b)

D
∂2q̃+(x, s|x0)

∂x2
− sq̃+(x, t|x0) = −δ(x− x0), x > R, (3.3c)

together with the same matching conditions as before.
The general bounded solutions of equations (3.3a) and (3.3b) are

q̃−(x, s|x0) = A(s)eα(s)x, p̃1(x, s|x0) = C(s)eβ(s)x + E(s)e−β(s)x, (3.4)

where

α(s) =
√
s/D, β(s) =

√
(s+ κ)/D. (3.5)

Note that the coefficients A,C,E also depend on the initial position x0. For equation
(3.3c), we can write the solution in the form

q̃+(x, s|x0) = q̃+,h(x, s) +G(x, s;x0), (3.6)

where q̃+,h is the solution to the homogeneous problem that satisfies the appropriate
non-homogeneous boundary conditions and G is the 1-D Green’s function that satisfies
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equation (3.3c) and the homogeneous boundary conditions at x = R and x =∞. The
Green’s function can be written as

G(x, s;x0) = − e
2α(s)R

2α(s)D
[Θ(x0 − x)φ1(x, s)φ2(x0, s) + Θ(x− x0)φ1(x0, s)φ2(x, s)] ,(3.7)

where Θ is the Heaviside function and

φ1(x, s) = e−α(s)x − eα(s)(x−2R) and φ2(x, s) = e−α(s)x. (3.8)

The homogeneous solution is given by

q̃+,h(x, s|x0) = F (s)e−α(s)(x−R), (3.9)

where F (s) = p̃(R, s|x0). Applying the matching conditions and solving for A(s),
C(s), E(s), and F (s) yields

A(s) =
β(s)

2DΦ
e−α(s)(x0−2R), (3.10a)

C(s) =
(α(s) + β(s))

4DΦ(s)
e−α(s)(x0−R)eβ(s)R, (3.10b)

E(s) =
(β(s)− α(s))

4DΦ(s)
e−α(s)(x0−R)e−β(s)R, (3.10c)

F (s) =
e−α(s)(x0−R)

2DΦ(s)
[α(s) sinh (2β(s)R) + β(s) cosh (2β(s)R)](3.10d)

with

Φ(s) = [α(s) sinh (β(s)R) + β(s) cosh (β(s)R)]

× [α(s) cosh (β(s)R) + β(s) sinh (β(s)R)] . (3.11)

By equation (2.5), we can write the hitting probability as

π(x0) = κ

ˆ R

−R
p̃1(x, 0|x0)dx = κ

ˆ R

−R

(
C(0)eβ(0)x + E(0)e−β(0)x

)
dx

=
2κ

β(0)
(C(0) + E(0)) sinh (β(0)R). (3.12)

Since

C(0) + E(0) =
1

2Dβ(0) sinh (β(0)R)
.

we see that π0(x0) = 1, which is expected since one-dimensional diffusion is recurrent.
Now allow the particle to reset to the starting position x0 before being absorbed

at a random time chosen according to the exponential probability density ψ(t) = re−rt

where r is the resetting rate. For this system πr(x0) = 1 and the MFPT is given by
equation (2.16):

Tr(x0) =
1− J̃(x0, r)

rJ̃(x0, r)
. (3.13)

with

J̃(x0, r) = κ

ˆ
U0
p̃1(x, r|x0)dx = κ

ˆ R

−R

(
C(r)eβ(r)x + F (r)e−β(r)x

)
dx

= κ

(
e2β(r)R − 1

)
e−α(r)(x0−R)[

(α(r) + β(r))e2β(r)R + α(r)− β(r)
]
β(r)D

. (3.14)
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Figure 2. Single target in R. (a) Plot of MFPT Tr(x0) vs the resetting rate r
for various κ. (b) Plot of MFPT Tr(x0) vs the absorption rate κ for various r.
Other parameter values are R = 1, x0 = 5, and D = 1. Filled circles denote ropt.

First note that in the limit κ→ 0,

Tr(x0) ≈ 1

κ

e
√
r/Dx0

sinh(
√
r/DR)

(3.15)

Clearly Tr(x0) → ∞ as κ → 0 since there is then no absorbing target. On the other
hand, β(r)→

√
κ/D as κ→∞ so that Tr(x0)→ T∞r (x0) with

T∞r (x0) =
1

r

[
e
√
r/D(x0−R) − 1

]
. (3.16)

This is the well-known expression for the MFPT with resetting for a particle searching
on the interval (R,∞) with an absorbing point target at x = R [10, 11]. For 0 < κ <∞
Tr has the exact solution

Tr(x0) =
Dβ (α+ β)

2
e(x0−R)α+4βR −Dβ (β − α)

2
e−α(x0−R)

((α+ β) e2βR + β − α)κr (e2βR − 1)

−
(
−2e2βRα+ (α+ β) e4βR − β + α

)
κ

((α+ β) e2βR + β − α)κr (e2βR − 1)
. (3.17)

In Fig. 2 we plot the MFPT Tr(x0) as a function of (a) the resetting rate for
various κ and (b) the absorption rate κ for different values of the r. It can be seen
that Tr(x0)→∞ as r → 0 since the MFPT for pure 1D diffusion is infinite. Moreover,
Tr(x0) → ∞ when r → ∞ since the particle resets so often it never has a chance to
reach the target domain. Consistent with many other examples of stochastic resetting
in which Tr(x0) =∞ when r = 0, we find that Tr(x0) is a unimodal function of r with
a unique minimum at an optimal rate ropt such that

dTr(x0)

dr

∣∣∣∣
r=ropt

= 0 (3.18)

One major observation is that ropt is a monotonically increasing function of the
absorption rate κ. Using equation (3.16) one finds that for κ =∞ (total absorption)
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Figure 3. Plot of optimal resetting-rate ropt as a function of target distance
∆ = x0 − R for the small and large κ limits. Dashed curves show the ratio
r0opt/r

∞
opt for R = 0.1, 1, which both asymptote to the value 1/γ2. Note that

r∞opt is independent of R. The filled rectangle indicates the range of ropt for the
parameter values used in Fig. 2.

[15]

(x0 −R)
√
r∞opt/D = γ ≈ 1.5936, (3.19)

where γ is the solution to the transcendental equation γ/2 = 1 − e−γ . Thus the
optimal resetting rate occurs when the ratio of the distance to the target, ∆ = x0−R,
to the typical distance diffused between successive resets is γ. A very different result
holds for small κ; equation (3.15) yields the transcendental equation

tanh(
√
r0
opt/DR) =

R

x0
=

R

∆ +R
, (3.20)

which means that r0
opt also depends on the target size R as well as the target distance

∆. Note, in particular, that for small target sizes, R� ∆,

r0
opt ∼

D

∆2
. (3.21)

These two limiting cases are illustrated in Fig. 3 where we plot r0
opt and r∞opt against

the target distance ∆.

4. Spherical target in Rd

As our second example, consider a spherical partially absorbing target U1 = {x ∈ Rd :
‖x‖ ≤ R} for d = 2, 3. The case d = 2 is shown in Fig. 1(b). Following [24], we take
the initial position of the search particle to be randomly chosen from the surface of
the sphere of radius ρ0. That is,

p(x, 0|x0) =
1

Ωdρ
d−1
0

δ(ρ− ρ0), (4.1)
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where ρ = ‖x‖ and Ωd is the surface area of a unit sphere in Rd. (Equation (4.1) does
not reduce the generality of the resulting solution, since the rotational invariance of the
problem implies that the MFPT and related quantities are independent of the angular
coordinates of the starting point.) For a spherically symmetric function, equations
(2.1a) and (2.1b) in Laplace space become

∂2p̃1

∂ρ2
+
d− 1

ρ

∂p̃1

∂ρ
− β2p̃1(ρ, s|ρ0) = 0, ρ ∈ (0, R), (4.2a)

∂2q̃

∂ρ2
+
d− 1

ρ

∂q̃

∂ρ
− α2q̃(ρ, s|ρ0) = − 1

4πDρ0
δ(ρ− ρ0), ρ ∈ (R,∞) (4.2b)

with the matching conditions

p̃1(R, s|ρ0) = q̃(R, s|ρ0) and
∂q̃

∂ρ

∣∣∣∣
ρ=R

=
∂p̃1

∂ρ

∣∣∣∣
ρ=R

. (4.3)

where α and β are defined as they were before. As detailed in [24], equations of the
form (4.2a) and (4.2b) can be solved in terms of modified Bessel functions:

p̃1(ρ, s|ρ0) = AρνIν(βρ) +BρνKν(βρ), ρ ∈ (0, R), (4.4)

where A,B ∈ C and ν = 1− d/2. The solution for equation (4.2b) takes the form

q̃(ρ, s|ρ0) = q̃h(ρ, s|ρ0) +G(ρ, s; ρ0), ρ ∈ (R,∞), (4.5)

where q̃h is the solution to the homogeneous equation satisfying q̃h(∞, s) = 0 and
q̃h(R, s) = p̃1(R, s|ρ0) and G is the Green’s function satisfying homogeneous boundary
conditions at ρ = R and ρ =∞. The Green’ function is given by

G(ρ, s; ρ0) =
α2(ρρ0)νKν(αρ>)

sΩdKν(αR)
[Iν(αρ<)Kν(αR)− Iν(αR)Kν(αρ<)] , (4.6)

where ρ< = min (ρ, ρ0) and ρ> = max (ρ, ρ0) and the homogeneous solution is

q̃h(ρ, s|ρ0) = CρνKν(αρ). (4.7)

4.1. Diffusion in R2

For the d = 2 case, we set B = 0 so that p̃1 remains finite as ρ → 0. Applying the
matching conditions and solving for A and C yields

A(s) =
α(s)2K0(α(s)ρ0)

2πRsΩ(s)
, C(s) =

α(s)2I0(β(s)R)K0(α(s)ρ0)

2πRsK0(α(s)R)Ω(s)
, (4.8)

where

Ω(s) = α(s)I0(β(s)R)K1(α(s)R) + β(s)I1(β(s)R)K0(α(s)R). (4.9)

Therefore, the hitting probability without resetting is given by

π(ρ0) = κ

ˆ
U0
p̃(ρ, 0|ρ0)d2x =

β(0)

RI1(β(0)R)

ˆ R

0

ρI0(β(0)ρ)dρ = 1 (4.10)

and the Laplace transform of the survival probability is

Q̃(ρ0, s) =
1

s

[
1− κ

ˆ
U0
p̃(ρ, s|ρ0)d2x

]
=

1

s

[
1− 2πRκA(s)

β(s)
I1(β(s)R)

]
. (4.11)

The MFPT with resetting can be written as

Tr(ρ0) =
Q̃(ρ0, r)

1− rQ̃(ρ0, r)
=
β(r)− 2πRκA(r)I1(β(r)R)

2πRκA(r)rI1(β(r)R)
. (4.12)
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In Fig. 4 we show plots for the 2D sphere that are analogous to those of Fig. 2
for the finite interval. Again, in the limit κ→∞, our results reduce to the expected
MFPT for diffusion to a spherical target that is totally absorbing [12]:

T∞(ρ0) = lim
κ→∞

Tr(ρ0) =
K0(α(r)R)−K0(α(r)ρ0)

rK0(α(r)ρ0)
, (4.13)

where we used the fact that I0(x)K1(x) + I1(x)K0(x) = 1/x. On the other hand, in
the small κ limit, we find

Tr(ρ0) ≈ 1

κ

1

α(r)RI1 (α(r)R)K0 (α(r)ρ0)
. (4.14)
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Figure 5. Plot of optimal resetting-rate ropt in R2 as a function of target distance
d = ρ0 − R for the small and large κ limits. Pair of horizontal curves show the
ratio r0opt/r

∞
opt for R = 0.1 (dashed) and R = 0.01 (solid).
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It follows that the optimal resetting rate satisfies the equation

ρ0

R
K1

(
ρ0

√
r0
opt/D

)
I1

(
R
√
r0
opt/D

)
= K0

(
ρ0

√
r0
opt/D

)
I0

(
R
√
r0
opt/D

)
. (4.15)

Similarly, from equation (4.13), the optimal resetting rate when κ→∞ is given by

r∞optRK0

(
ρ0

√
r∞opt/D

)
K1

(
R
√
r∞opt/D

)
+2
√
r∞opt/DK0

(
ρ0

√
r∞opt/D

)
K0

(
R
√
r∞opt/D

)
= r∞optρ0K1

(
ρ0

√
r∞opt/D

)
K0

(
R
√
r∞opt/D

)
+ 2
√
r∞optDK0

(
ρ0

√
r∞opt/D

)2

, (4.16)

which can be solved numerically. Using the following asymptotic approximations

K0,1(z) ∼
( π

2z

)1/2

e−z, z →∞ (4.17a)

I0(z) ∼ 1 +
z2

4
, z → 0, (4.17b)

I1(z) ∼ z

2
, z → 0, (4.17c)

we obtain for a small target size and R� ρ0,

r0
opt ∼

4D

(∆ +R)2
. (4.18)

where ∆ = ρ0 − R. In Fig. 5 we plot ropt as a function of target distance ∆ for
both the small and large κ limits. Comparison with Fig. 3 for a 1D target shows
some major differences. First, ropt is much less sensitive to the absorption rate κ and
the target size R. Second, the optimal resetting rate is larger in the small κ limit
than in the large κ limit, which is opposite to the result in 1D. (Note, however, that
we recover the 1D behavior for sufficiently small distances ∆ (not shown).) Finally,
the r0

opt approximation is larger by a factor of 4 compared to 1D. This is possibly
explained by the increased degrees of freedom for the movement of the search particle
in R2.

4.2. Diffusion in R3

When d = 3, ν = −1/2. Therefore, we have

Iν(z) = I−1/2(z) =

√
2

πz
cosh (z), (4.19a)

Kν(z) = K−1/2(z) =

√
2

πz
e−z, (4.19b)

I−ν(z) = I1/2(z) =

√
2

πz
sinh (z). (4.19c)

Using the fact that

K−1/2(z) =
π

2

[
I−1/2(z)− I1/2(z)

]
,

we can write the finite solution in the target region as

p̃1(ρ, s; ρ0) =
A

ρ
sinh(βρ),



Search processes with partially absorbing targets 13

and the solution outside the target region as

q̃(ρ, s; ρ0) =
C

ρ
e−αρ +

αe−α(ρ>−ρ<)

8πsρρ0

[
1− e−2α(ρ<−R)

]
. (4.20)

Applying the match conditions and solving for A and C yields

A(s) =
α(s)2e−α(s)(ρ0−R)

4πρ0s [α(s) sinh(β(s)R) + β(s) cosh(β(s)R)]
, (4.21a)

B(s) =
α(s)2e−α(s)(ρ0−2R) sinh(β(s)R)

4πρ0s [α(s) sinh(β(s)R) + β(s) cosh(β(s)R)]
. (4.21b)

Therefore, the hitting probability without resetting is given by

π1(ρ0) = 4πκ

ˆ R

0

p̃(ρ, 0; ρ0)ρ2dρ =
R

ρ0
−

√
D

κρ2
0

tanh

(√
κ

D
R

)
. (4.22)

We see that unlike the problems in R and R2, the survival probability at t = ∞
is nonzero due to the fact that 3-D random walks are transient. As expected, the
hitting probability increases with κ and R but decreases as the starting distance
between the search particle and target region increases. In the limit κ → ∞, we
find π1(ρ0) → R/ρ0, implying that the probability of absorption is dependent only
on the geometry of the problem in this limit. The Laplace transform of the survival
probability without resetting is given by

Q̃(ρ, s; ρ0) =
1

s
+

4πκA(s)

sβ(s)2
[sinh(β(s)R)− βR cosh(β(s)R)] . (4.23)

Therefore, the MFPT with resetting is

Tr(ρ0) =
Q̃(ρ0, r)

1− rQ̃(ρ0, r)

=
β(r)2 + 4πκA(r) [sinh(β(r)R)− β(r)R cosh(β(r)R)]

4πκrA(r) [β(r)R cosh(β(r)R)− sinh(β(r)R)]
. (4.24)

The dependence of Tr(x0) on κ and r is very similar to the 2D case, as shown in Fig.
6.

For large κ, we have [12]

T∞r (ρ0) = lim
κ→∞

T (ρ0) =
1

r

[ρ0

R
e
√
r/D(ρ0−R) − 1

]
, (4.25)

while for small κ we can write

T 0
r (ρ0) ≈ ρ0α(r)eα(r)ρ0

κ [α(r)R cosh(α(r)R)− sinh(α(r)R)]
. (4.26)

The optimal resetting rate in the infinite κ limit can be obtained numerically by
differentiating equation (4.25) with respect to r. For small κ, the optimal resetting
rate is determined by the equation

R
(
ρ0

√
Dr0

opt +D(r0
opt)

1/2
)

cosh

√r0
opt

D
R


=
(
R2
√
Dr0

opt +Dρ0(r0
opt)

1/2 +D3/2
)

sinh

√r0
opt

D
R

 . (4.27)
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Using the approximations

cosh(z) ∼ 1 +
z2

2
, z → 0, (4.28a)

sinh(z) ∼ z +
z3

6
, z → 0, (4.28b)√

1− z2 ∼ 1− z2

2
− z4

8
, z → 0, (4.28c)
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we find

r0
opt ∼

4D

(∆ +R)2
. (4.29)

Hence, in the small κ limit, the optimal resetting rate for a spherical target in R3

depends on the starting distance and target size in the same way as a spherical target
in R2. Fig. 7 shows the behavior of the optimal resetting rate as a function of the
starting distance, which shows that there is an even weaker dependence on κ compared
to 2D, with a slight increase of ropt for larger κ.

5. Pair of absorbing targets in R2

5.1. Splitting probabilities and MFPTs for multiple targets with resetting

So far we have focused on a single target. However, it is possible to extend the analysis
to multiple targets along the lines of [8, 7]. Let Uk ⊂ Rd denote the k-th partially

absorbing target, k = 1, . . . , N , and set Ua =
⋃N
k=1 Uk. Equations (2.1a)–(2.1c)

become

∂q(x, t|x0)

∂t
= D∇2q(x, t|x0), x ∈ Rd\Ua, (5.1a)

∂pk(x, t|x0)

∂t
= D∇2pk(x, t|x0)− κkpk(x, t|x0), x ∈ Uk, (5.1b)

together with the continuity conditions

q(x, t|x0) = pk(x, t|x0), ∇q(x, t|x0) · n = ∇pk(x, t|x0) · n x ∈ ∂Uk. (5.1c)

The probability flux into the k-th target at time t is

Jk(x0, t) = κk

ˆ
Uk
pk(x, t|x0)dx, k = 1, . . . , N. (5.2)

where κk is the corresponding absorption rate.. Hence, the splitting probability that
the particle is eventually captured by the k-th target is

πk(x0) =

ˆ ∞
0

Jk(x0, t
′)dt′ = J̃k(x0, s), (5.3)

where J̃k(x0, s) denotes the Laplace transform of Jk(x0, t). The survival probability
that the particle hasn’t been absorbed by a target in the time interval [0, t], having
started at x0 is now given by

Q(x0, t) =

ˆ
Rd

p(x, t|x0)dx =

ˆ
Rd\Ua

q(x, t|x0)dx +

N∑
k=1

ˆ
Uk
pk(x, t|x0)dx. (5.4)

Following along similar lines to the single target case, we find that

sQ̃(x0, s)− 1 = −
N∑
k=1

J̃k(x0, s). (5.5)

and
N∑
k=1

πk(x0) = 1−Q∞(x0). (5.6)
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It will also convenient to introduce the probability that the particle is captured by the
k-th target after time t:

Πk(x0, t) =

ˆ ∞
t

Jk(x0, t
′)dt′. (5.7)

In Laplace space

sΠ̃k(x0, s)− πk = −J̃k(x0, s). (5.8)

Now suppose that we include stochastic resetting to an initial position x0 /∈ Ua.
Let the discrete random variable K(t) ∈ {0, 1, . . . , N} indicate whether the particle
has been absorbed by the k-th target (K(t) = k 6= 0) or has not been absorbed by any
target (K(t) = 0) in the time interval [0, t]. The FPT that the particle is absorbed by
the k-th target is then

Tr,k = inf{t > 0; X(t) ∈ Uk, K(t) = k}, (5.9)

with Tr,k =∞ if the particle is absorbed by another target. The following results then
hold [7]. First, the splitting probability that the search process with resetting finds
the k-th target is

πr,k(x0) =
πk(x0)− rΠ̃k(x0, r)

1− rQ̃(x0, r)
=

J̃k(x0, r)∑N
j=1 J̃j(x0, r)

. (5.10)

Similarly, the Laplace transformed conditional FPT density for the kth target is

πr,k(x0)f̃r,k(x0, s) =
πk(x0)− (r + s)Π̃k(x0, r + s)

1− rQ̃(x0, r + s)
. (5.11)

The Laplace transform of the FPT density is the moment generator of the conditional
FPT Tk:

πr,kT
(n)
r,k = E[T nk 1Ωk

] =

(
− d

ds

)n
E[e−sTk1Ωk

]

∣∣∣∣
s=0

. (5.12)

For example, the conditional MFPT Tr,k = T
(1)
r,k is

πr,k(x0)Tr,k(x0) =
Π̃k(x0, r) + rΠ̃′k(x0, r)

1− rQ̃(x0, r)
+

[
πk(x0)− rΠ̃k(x0, r)

1− rQ̃(x0, r)

][
−rQ̃′(x0, r)

1− rQ̃(x0, r)

]
,

where ′ denotes differentiation with respect to r. Using equation (5.10) and the fact
that

Q̃(x0, r) =
Q∞(x0)

r
+

N∑
k=1

Π̃k(x0, s),

we obtain the following expression for the conditional MFPTs :

πr,k(x0)Tr,k(x0) =
Π̃k(x0, r) + rΠ̃′k(x0, r)

1− rQ̃(x0, r)
+ πr,k(x0)

[
Q∞(x0)/r − r

∑
k Π̃′k(x0, r)

1− rQ̃(x0, r)

]
.

Finally, summing over k yields the unconditional MFPT

Tr(x0) :=

N∑
k=1

πr,k(x0)Tr,k(x0) =
Q̃(x0, r)

1− rQ̃(x0, r)
=

1−
∑N
k=1 J̃k(x0, r)

r
∑N
j=1 J̃j(x0, r)

. (5.13)
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5.2. Partially absorbing disc and annulus

Let us now consider two concentric spheres centered at the origin with radii R1 and
R2, respectively, such that R1 < R2. The spheres define two partially absorbing
target regions: U1 = {x ∈ R2 : ‖x‖ < R1} and U2 = {x ∈ R2 : R1 < ‖x‖ < R2} with
absorption rates κ1 and κ2 respectively, see Fig. 8. Note that in the limit κ2 →∞ the
system reduces to a single totally absorbing target of radius R2, whereas in the limit
κ1 →∞ with κ2 = 0 we have a totally absorbing target of radius R1. In addition, the
MFPT is greatest in the limiting case where κ1 → 0 and κ2 is finite but the MFPT is
smallest in the paradigm where the annulus to become totally absorbing. The Laplace
transform of the probability density for a diffusing particle in this region satisfies

∂2p̃1

∂ρ2
+

1

ρ

∂p̃1

∂ρ
− β1(s)2p̃1(ρ, s|ρ0) = 0, ρ ∈ (0, R1), (5.14a)

∂2p̃2

∂ρ2
+

1

ρ

∂p̃2

∂ρ
− β2(s)2p̃2(ρ, s|ρ0) = 0, ρ ∈ (R1, R2), (5.14b)

∂2q̃

∂ρ2
+

1

ρ

∂q̃

∂ρ
− α(s)2q̃(ρ, s|ρ0) = − 1

4πDρ0
δ(ρ− ρ0), ρ ∈ (R2,∞), (5.14c)

and matching conditions at the boundaries ρ = R1 and ρ = R2 where β1(s) =√
(s+ κ1)/D and β2(s) =

√
(s+ κ2)/D. The general solution is of the form

p̃1(ρ, s|ρ0) = A(s)ρνIν(β1(s)ρ) +B(s)ρνKν(β1(s)ρ), ρ ∈ (0, R1), (5.15a)

p̃2(ρ, s|ρ0) = C(s)ρνIν(β2(s)ρ) + E(s)ρνKν(β2(s)ρ), ρ ∈ (R1, R2), (5.15b)

q̃(ρ, s|ρ0) = F (s)ρνKν(α(s)ρ) +G(s)ρνIν(α(s)ρ), ρ ∈ (R2,∞). (5.15c)

Next, we set B = 0 = G so that the probability densities are bounded at ρ = 0 and
ρ =∞, respectively. Imposing continuity of the Laplace transforms of the probability
density and flux at ρ = R1 and ρ = R2 gives a four-by-four matrix equation with a
unique solution for the coefficients A, C, E, and F . (The expressions are complicated
so we do not give them explicitly.) We find that

J̃1(ρ0, s) = 2κ1π

ˆ R1

0

p̃1(ρ, s|ρ0)ρdρ =
2πκ1R1A(s)

β(s)
I1(β1(s)R1), (5.16)

κ
1

x
0

κ
2

R2

R1

Figure 8. Pair of radially symmetric targets: a disc of radius R1 and an annular
region R1 ≤ ρ ≤ R2.
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rate κ2 for different κ1. Other parameter values are ρ0 = 3, R2 =

√
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and r = 1

and

J̃2(ρ0, s) = 2κ2π

ˆ R2

R1

p̃2(ρ, s|ρ0)ρdρ =
2πκ2

β2(s)

[
C(s) (R2I1(β2(s)R2)−R1I1(β2(s)R1)

− E(s) (R2K1(β2(s)R2)−R1K1(β2(s)R1)

]
. (5.17)

The splitting probabilities without resetting are given by

πj(ρ0) = J̃j(ρ0, 0), j = 1, 2. (5.18)

The corresponding splitting probabilities with resetting are given by equation (5.10)
and the unconditioned MFPT with resetting is given by equation (2.16). Note that

T∞(ρ0) = lim
κ2→∞

Tr(ρ0) =
K0(α(r)R2)−K0(α(r)ρ0)

K0(α(r)ρ0)
. (5.19)

That is, if we allow the annulus to become totally absorbing, we recover the result for
a single totally absorbing target of radius R2 in R2. (Recall, that the initial position
of the particle is taken to be outside the outer sphere.)

In Fig. 9 we plot the splitting probabilities of the annular and spherical targets
as a function of various combinations of absorptions rates κ1,2 and inner radius R1.
Note that there is a crossover phenomenon, whereby the inner target becomes more
likely to absorb the particle than the annulus when R1 and κ1 are sufficiently large.
In addition, if κ1 = κ2 = κ, say, then the crossover radius R1 increases with κ. On the
other hand, the annular region can have a higher splitting probability even when the
inner target becomes totally absorbing (κ1 =∞). In Fig. 10(a) we plot the splitting
probabilities as a function of the resetting rate r. Choosing a parameter regime in
which πr,1 > πr,2 without resetting (r → 0), we find that there exists a crossover
point r∗ such that πr∗,1 = πr∗,2 with r∗ a non-monotonic function of κ2 for fixed κ1.
Finally, in Fig. 10(b), we plot Tr as a function r for different combinations of κ1 and
κ2. Qualitatively, we see that Tr depends on r in a similar fashion to the previous
geometries.
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√
2, and D = 1. (b)
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6. Extended kinetic scheme

So far we have assumed that a particle with a target is directly absorbed at a rate κ.
A natural extension of the basic model is to consider a more general chemical kinetic
scheme for absorption. In particular, suppose that on entering a target, the particle
binds to the target and has to undergo a sequence of reversible reactions before being
absorbed. Let S0 denote the free particle and Sm, m = 1, . . . ,M , one of the bound
states. Consider the reaction scheme

S0

γ0


α1

S1

γ1


α2

S2 · · ·
γM−1



αM

SM
γM→ ∅. (6.1)

Let Cm(t) denote the probability that the particle is in state m within the target, and
set

J(x0, t) = γ0

ˆ
U1
p1(x, t|x0)dx. (6.2)

(For the sake of illustration, we focus on a single target.) Equation (2.1b) is then
replaced by the system of equations

∂p1

∂t
= D∇2p1 − γ0p1 +

α1

|U1|
C1, x ∈ U1, (6.3a)

dC1

dt
= J − (α1 + γ1)C1 + α2C2, (6.3b)

dCm
dt

= γm−1Cm−1 − (αm + γm)Cm + αm+1Cm+1 (6.3c)

for m = 2, . . . ,M − 1, and

dCM
dt

= γM−1CM−1 − (αM + γM )CM . (6.3d)

One major simplifying assumption of the model is that spatial correlations
between the site at which the particle binds to the target (at a rate γ0) and the
site at which the particle is released back into the diffusing state (at a rate C1) are
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ignored. In particular, the release of the particle from the bound state occurs at a
randomly chosen point within the extended target. However, if the bound state is
immobile, then the particle would be released from the same point. In that case, the
C1 term in equation (6.3a) is based on some form of spatial averaging. An alternative
possibility is that the bound state within the extended target is itself mobile. In that
case one would need to include spatial terms in equations (6.3b)–(6.3d).

Given the above extended kinetic scheme, we have to modify the definition of the
survival probability in equation (2.6) according to

Q(x0, t) =

ˆ
Rd\U1

q(x, t|x0)dx +

ˆ
U1
p1(x, t|x0)dx +

M∑
m=1

Cm(t). (6.4)

Differentiating both sides of this equation with respect to t and using equations (2.1a)
and (6.3a) implies that

∂Q(x0, t)

∂t
= −

ˆ
∂U1
∇q · ndσ +

ˆ
∂U1
∇p1 · ndσ

− γ0

ˆ
U1
p1(x, t|x0)dx + α1C1(t) +

M∑
m=1

dCm,
dt

. (6.5)

Imposing equation (2.1c) and summing equations (6.3b)–(6.3d) then gives

∂Q(x0, t)

∂t
= −γMCM (t). (6.6)

Laplace transforming equation (6.6) and imposing the initial condition Q(x0, 0) = 1
gives

sQ̃(x0, s)− 1 = −γM C̃M (s). (6.7)

Laplace transforming equations (6.3a)–(6.3d), assuming that the particle is
initially outside any of the targets, we have

0 = D∇2p̃1 − (γ0 + s)p̃1 +
α1

|U1|
C̃1, x ∈ U1, (6.8a)

sC̃m = J̃δm,1 +

M∑
m′=1

Γmm′C̃m′ (6.8b)

for m = 1, . . . ,M , where Γmm′ is an element of the tridiagonal matrix

Γ =


−α1 − γ1 α2 0 0 . . . 0

γ1 −α2 − γ2 α3 0 . . . 0
0 γ2 −α3 − γ3 α4 . . . 0
...

...
...

...
...

...
0 0 . . . 0 γM−1 −αM − κ

 . (6.9)

It follows that

C̃m = (sI− Γ)−1
m1J̃ . (6.10)

Finally, substituting (6.10) with m = 1 into equation (6.8a) gives

0 = D∇2p̃1 − (γ0 + s)p̃1 +
α1

|U1|
(sI− Γ)−1

11 J̃ , x ∈ U1. (6.11)
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6.1. Spherical target in Rd and M = 1

In the case of a spherical target in Rd, d = 2, 3, and a single-step reaction, equation
(4.2a) becomes

D

[
∂2p̃1

∂ρ2
+
d− 1

ρ

∂p̃1

∂ρ

]
− (γ0 + s)p̃1(ρ, s|ρ0) +

γ0α1

s+ α1 + γ1
〈p̃1〉 = 0, (6.12)

for ρ ∈ (0, R), where

〈p̃1〉 =
1

|U1|

ˆ
U1
p̃1(x, s|x0)dx =

d

Rd

ˆ R

0

p̃1(ρ, s|ρ0)ρd−1dρ. (6.13)

In addition, equation (6.10) simplifies to

C̃1 =
J̃

s+ α1 + γ1
. (6.14)

Introducing the change of variables

P = p̃1 − c1(s)〈p̃1〉, c1(s) =
γ0

γ0 + s

α1

s+ α1 + γ1
, (6.15)

we see that

1

ρd−1

d

dρ
ρd−1 dP

dρ
− γ0 + s

D
P = 0, (6.16)

which has a solution of the form (4.4):

P = AρνIν(β0ρ) +BρνKν(β0ρ), ρ ∈ (0, R), β0 =

√
s+ γ0

D
, (6.17)

The solution outside the target is still given by equation (4.5),

q̃(ρ, s|ρ0) = CρνKν(αρ) +G(ρ, s; ρ0), ρ ∈ (R,∞), (6.18)

and the matching conditions become (after dropping the explicit dependence on ρ0)

P (R, s) + c1(s)〈p̃1〉 = q̃(R, s) and
∂q̃

∂ρ

∣∣∣∣
ρ=R

=
∂P

∂ρ

∣∣∣∣
ρ=R

. (6.19)

It remains to determine the unknown term 〈p̃1〉. Substituting equations (6.15) and
(6.17) into (6.13) and setting P = P (ρ, s) yields the self-consistency condition

(1− c1(s))〈p̃1〉 =
d

Rd

ˆ R

0

P (ρ, s)ρd−1dρ. (6.20)

Multiplying both sides of equation (6.16) by ρd−1 and integrating with respect to ρ
implies

Rd−1P ′(R, s) =
γ0 + s

D

ˆ R

0

P (ρ, s)ρd−1dρ (6.21)

and, hence,

(1− c1(s))〈p̃1〉 =
d

R

D

γ0 + s
P ′(R, s). (6.22)

The matching conditions are now

P (R, s) +
c1(s)

1− c1(s)

d

R

D

γ0 + s
P ′(R, s) = q̃(R, s) and

∂q̃

∂ρ

∣∣∣∣
ρ=R

=
∂P

∂ρ

∣∣∣∣
ρ=R

. (6.23)
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Requiring that the solutions are finite, these matching conditions determine the
unknown coefficients in P (ρ, s). One can then solve for the Laplacve transformed
survival probaility using (6.7):

sQ̃(x0, s)− 1 = −γ1C̃1(s) = − γ1J̃(x0, s)

s+ α1 + γ1

= − γ1

s+ α1 + γ1

γ0

γ0 + s

2d−1πDRd−1P ′(R, s)

1− c1(s)
. (6.24)

Setting s = r and substituting into equation (2.16) gives

Tr(x0) =
Q̃(x0, r)

1− rQ̃(x0, r)
=
r + α1 + γ1 − γ1J̃(x0, r)

rγ1J̃(x0, r)
. (6.25)

Note that in the limit γ1 → ∞ such that c1 → 0, the particle is absorbed as soon as
it binds to the substrate, and we recover equation (4.12) with κ1 = γ0. For the sake
of illustration, consider the case d = 2. We then have P = A(s)K0 (β0ρ) and (6.23)
gives

A(s) =
α(s)2β(s)[c1(s)− 1]K0(α(s)ρ0)

2πs [β(s)2R[c1(s)− 1]I1(β(s)R)K0(α(s)R)− 2α(s)D(s)K1(α(s)R)]
, (6.26)

B(s) =
(α(s)2/R)D(s)K0(α(s)ρ0)

πsK0(α(s)R) [β(s)2R[c1(s)− 1]I1(β(s)R)K0(α(s)R)− 2α(s)D(s)K1(α(s)R)]

(6.27)

where

D(s) = c1(s)I1(β(s)R)− β(s)R

2
[c1(s)− 1]I0(β(s)R).

The Laplace transform of the survival probability can be written as

Q̃(ρ0, s) =
2πRDβ(s)γ0γ1A(s)I1(β(s)R) + (s+ α1 + γ1)(s+ γ0)(c1(s)− 1)

s(s+ γ0)(c1(s)− 1)(s+ α1 + γ1)
(6.28)
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Figure 11. Spherical target in R2 with enzyme kinetic extension. (a) MFPT
Tr(ρ0) vs resetting rate for various γ1 and α1 = 1. Bottom curve is for γ1 →∞.
(b) Corresponding plots for fixed γ1 = 1 and various α1. Other parameter values
are γ0 = 1, ρ0 = 2, R = 1 and D = 1. Filled circles indicate ropt.
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with the MFPT given by (2.16). In Fig. 11 we plot the MFPT Tr(x0) as a function of
the resetting rate for various γ1 and α1. Note, in particular, that ropt is more sensitive
to variations in the absorption rate γ1 in the extended kinetic scheme compared to
the direct absorption case.

7. Discussion

In this paper, we developed a theoretical framework to study search processes with
stochastic resetting and target regions that are partially absorbing. That is, the search
particle is absorbed at a rate κ upon entering the target region. We considered various
target geometries in Rd, and determined how target splitting probabilities (in the case
of more than one target) and the MFPT to absorption depended on the absorption
rate κ, the resetting rate r and the target geometry. We also explored the parameter-
dependence of the optimal resetting rate ropt that minimizes the MFPT. One of our
main findings is that for 1D diffusive search, ropt is a monotonically increasing function
of κ. That is, as the target becomes a weaker absorber, the optimal search strategy
occurs at a slower resetting rate. In addition, ropt becomes more sensitive to the size
of the target. One way to interpret these results is to note that for partially absorbing
targets, there are two distinct phases of the search process: the first phase is to reach
the boundary of the target and the second phase is to be absorbed within the interior
of the target. The former phase dominates for large κ so that ropt is similar to the
optimal resetting rate of a totally absorbing target. In particular, it only depends
on the distance of the boundary from x0 and is independent of the target size (in
1D). On the other hand, for small κ, the particle has to spend sufficient time within
the interior of the target to be absorbed. This means that the resetting rate cannot
be too large and absorption will depend on the target size, which results in a size-
dependent reduction in ropt. The relative contributions of the two search phases in
higher dimensions is less clear because the boundary of the target is spatially extended,
resulting in a more complicated dependence on the geometry of the target. In the case
of 2D and 3D spherical targets we found only a weak dependence of ropt on κ; a much
stronger dependence was observed in the case of the extended kinetic scheme. In future
work we hope to explore in more detail how to analytically separate the contributions
to the MFPT from the two search phases.

There are many possible extensions of the analysis of partially absorbing targets
developed in this paper. First, we could generalize the analysis of diffusive search to
the case of bounded domains. In the case of a finite interval with a totally absorbing
boundary, it has been shown that an optimal resetting rate only exists for a range of
distances of the resetting point from the boundary [9, 22]. Second, as in the case of
totally absorbing targets, we could consider other stochastic search processes such as
active search by run-and-tumble particles [13], directed intermittent search [6], and
Levy flights [17]. As mentioned in section 2, the resetting protocol could also include
delays such as finite return times and refractory periods [19, 14, 20, 4, 23, 7, 15]. Third,
as illustrated in section 6, another major aspect of partially absorbing targets is the
nature of the absorption process within each target. One interesting generalization
would be to incorporate a non-Markovian reaction scheme analogous to a study of
anomalous diffusion within spiny dendrites [16]. The latter example considers particles
diffusing along a one-dimensional dendritic cable that is studded with partially
absorbing spines. If the exchange of a particle between a spine and the parent
dendrite is non-Markovian then the transport becomes subdiffusive. Finally, rather
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than assuming that the boundary of a target is fully permeable to a diffusing particle,
we could consider a semi-permeable membrane.
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