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Abstract. In this paper, we investigate the effects of stochastic resetting on
diffusion in Rd\U , where U is a bounded obstacle with a partially absorbing
surface ∂U . We begin by considering a Robin boundary condition with a
constant reactivity κ0, and show how previous results are recovered in the limits
κ0 → 0,∞. We then generalize the Robin boundary condition to a more general
probabilistic model of diffusion-mediated surface reactions using an encounter-
based approach. The latter considers the joint probability density or generalized
propagator P (x, `, t|x0) for the pair (Xt, `t) in the case of a perfectly reflecting
surface, where Xt and `t denote the particle position and local time, respectively.
The local time determines the amount of time that a Brownian particle spends
in a neighborhood of the boundary. The effects of surface reactions are then
incorporated via an appropriate stopping condition for the boundary local time.
We construct the boundary value problem (BVP) satisfied by the propagator
in the presence of position resetting, and use this to derive implicit equations
for the marginal density of particle position and the survival probability. We
highlight the fact that these equations are difficult to solve in the case of non-
constant reactivities, since resetting is not governed by a renewal process. We then
consider a simpler problem in which both the position and local time are reset. In
this case, the survival probability with resetting can be expressed in terms of the
survival probability without resetting, which considerably simplifies the analysis.
We illustrate the theory using the example of a spherically symmetric surface.
In particular, we show that the effects of a partially absorbing surface on the
mean first passage time (MFPT) for total absorption differs significantly if local
time resetting is included. That is, the MFPT for a totally absorbing surface
is increased by a multiplicative factor when the local time is reset, whereas the
MFPT is increased additively when only particle position is reset.
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1. Introduction

In recent years there has been a rapid growth of interest in stochastic processes with
resetting. A canonical example is a Brownian particle whose position is reset randomly
in time at a constant rate r (Poissonian resetting) to some fixed point x0, which
is usually identified with its initial position [7, 8, 9]. Consider, in particular, the
scenario shown in Fig. 1 where there is some obstacle or target U located around
the origin in Rd. The behavior of the particle will depend on the rate of resetting
r, the boundary condition on the surface ∂U (which is assumed to be smooth), and
the dimension d. First suppose that there is no resetting (r = 0). In the case of
a totally reflecting boundary U , the probability density p(x, t|x0) → 0 as t → ∞
pointwise, but the survival probability Q(x0, t) ≡

´
Rd\U p(x, t|x0)dx = 1 for all t.

On the other hand, if the boundary U is totally absorbing, then in the limit t → ∞
we have p(x, t|x0) → 0 for all d ≥ 1, whereas Q(x0, t) → 0 for d ≤ 2 (recurrence)
and Q(x0, t)→ Q∞ > 0 for d > 2 (transience). Irrespective of the dimensionality, the
corresponding mean first passage time(MFPT) T (x0) =

´∞
0
Q(x0, t)dt is infinite. Now

suppose that resetting occurs at a fixed rate r > 0. If the surface is totally reflecting,
then the probability density converges to a nonequilibrium stationary state (NESS)
[7, 8, 9, 23]. On the other hand, if the surface is totally absorbing then the MFPT
T (x0) is finite and typically has an optimal value as a function of the resetting rate r
[7, 8, 9]. These results carry over to more general stochastic processes with resetting,
including non-diffusive processes such as Levy flights [20] and active run and tumble
particles [10, 2], diffusion in switching environments [3, 4, 27] or potential landscapes
[29], resetting followed by a refractory period [11, 26], and resetting with finite return
times [30, 31, 25, 1, 32, 5]. (For further generalizations and applications see the review
[12] and references therein.)

In this paper, we extend the problem shown in Fig. 1 to the case of a partially
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U 
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Figure 1. Schematic illustration of a particle diffusing in the domain Rd\U ,
where U is an obstacle or target with a fixed boundary condition on the surface
∂U . The particle resets to its initial position x0 at a constant rate r > 0. If the
surface is totally reflecting, then the probability density converges to an NESS,
whereas if the surface is totally absorbing then the particle is eventually absorbed
with probability one and the MFPT T (x0) is a unimodal function of the resetting
rate.
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absorbing surface ∂U . We begin by considering the simplest case of a Robin boundary
condition with a constant reactivity κ0 (section 2). We proceed by solving the forward
diffusion equation in Laplace space, which allows us to relate the survival probability
and MFPT to the corresponding quantities without resetting. We explore the behavior
of the MFPT as a function of the parameters κ0 and r, and show how previous results
are recovered in the limits κ0 → 0 and κ0 → ∞. For the sake of illustration, we
consider the examples of diffusion on the half-line and its higher-dimensional analog,
namely, a spherically symmetric obstacle. Note that stochastic resetting for 1D
diffusion with a partially absorbing target at the origin has previously been analyzed
in Ref. [36]. However, there are a few differences. First, the latter study allows the
particle to pass through the target to the negative half-line if it is not absorbed at the
origin. Second, the authors calculate the survival probability by solving the backward
master equation rather than the forward one. Third, rather than imposing a Robin
boundary condition at the origin, a sink term is included in the master equations.

In section 3, we generalize the Robin boundary condition to a more general
probabilistic model of diffusion-mediated surface reactions, following the encounter-
based approach developed by Grebenkov [16, 17, 18]. The latter exploits the fact
that diffusion in a domain with a totally reflecting surface can be implemented
probabilistically in terms of so-called reflected Brownian motion, which involves the
introduction of a Brownian functional known as the boundary local time [21, 24, 22].
The local time characterizes the amount of time that a Brownian particle spends
in the neighborhood of a point on the boundary. In the encounter-based approach,
one considers the joint probability density or propagator P (x, `, t|x0) for the pair
(Xt, `t) in the case of a perfectly reflecting surface, where Xt and `t denote the
particle position and local time, respectively. The effects of surface reactions are
then incorporated via an appropriate stopping condition for the boundary local time.
The propagator satisfies a corresponding boundary value problem (BVP), which can
be derived using integral representations [17] or path integrals [6]. Here we show how
to incorporate stochastic resetting into the propagator BVP and use this to derive
corresponding implicit equations for the marginal density of particle position and the
survival probability. However, these equations are difficult to solve due to the fact that
resetting is no longer governed by a renewal process. Therefore, we consider a simpler
problem in which both the position and local time are reset, in which case the survival
probability with resetting can be expressed in terms of the survival probability without
resetting, which considerably simplifies the analysis. We illustrate the theory using
the example of a spherically symmetric surface. In particular, we show that the effects
of a partially absorbing surface on the MFPT for total absorption differs significantly
if local time resetting is included. That is, the MFPT for a totally absorbing surface
is increased by a multiplicative factor when both the position and local time are reset,
whereas the MFPT is increased additively when only particle position is reset. In
the former case, we determine the optimal resetting rate that minimizes the MFPT,
and show that the relative increase in the MFPT compared to the case of a totally
absorbing surface can itself exhibit non-monotonic variation with r.
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2. Diffusion with stochastic resetting and a partially reflecting boundary

2.1. Diffusion on the half-line

Consider a particle diffusing along the half-line x ∈ [0,∞) with a partially reflecting
boundary at x = 0, which is implemented using a Robin boundary condition with
constant reactivity κ0 [19]. The probability density pr(x, t|x0) evolves according to
the equation

∂pr
∂t

= D
∂2pr
∂x2

− rpr + rQr(x0, t)δ(x− x0), x > 0, (2.1a)

D
∂pr
∂x

= κ0pr, x = 0, pr(x, 0|x0) = δ(x− x0). (2.1b)

We have introduced the marginal distribution

Qr(x0, t) =

ˆ ∞
0

pr(x, t|x0)dx, (2.2)

which is the survival probability that the particle hasn’t been absorbed at x = 0 in
the time interval [0, t], having started at x0. The r subscript indicates that solutions
in the presence of resetting at a rate r. Note that in the limit κ0 → 0, the boundary at
x = 0 becomes totally reflecting so that Qr = 1 and we recover the standard forward
equation for 1D diffusion with resetting [7, 8]. On the other hand, if κ0 → ∞ then
the boundary is totally absorbing. Equations (2.1a) and (2.1b) differ from the master
equation considered in Ref. [36], which incorporates a partially reflecting target at the
origin using a sink term that allows a non-absorbed particle to cross to the negative
half-line.

Laplace transforming equations (2.1a) and (2.1b) gives

D
∂2p̃r(x, s|x0)

∂x2
− (r + s)pr(x, s|x0) = −[1 + rQ̃r(x0, s)]δ(x− x0), x > 0, (2.3a)

D
∂p̃r(x, s|x0)

∂x
= κ0p̃r(x, s|x0), x = 0. (2.3b)

The general bounded solution of equation (2.3a) is of the form

p̃r(x, s|x0) = Ar(s)e
−αx + [1 + rQ̃r(x0, s)]G(x, α|x0), (2.4)

where α =
√

[r + s]/D. The first term on the right-hand side of equation (2.4) is
the solution to the homogeneous version of equation (2.1a) and G is the modified
Helmholtz Green’s function in the case of a totally absorbing boundary condition at
x = 0:

D
∂2G

∂x2
− (r + s)G = −δ(x− x0), 0 < x <∞, (2.5a)

G(0, α|x0) = 0. (2.5b)

The latter is given by

G(x, α|x0) =
1

2Dα

[
e−α|x−x0| − e−α|x+x0|

]
. (2.6)

The unknown coefficient Ar(s) is determined by imposing the Robin boundary
condition (2.3b):

Ar(s) =
1 + rQ̃r(x0, s)

κ0 + αD
e−αx0 . (2.7)
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Hence, the full solution of the Laplace transformed probability density with resetting
is

p̃r(x, s|x0) = [1 + rQ̃r(x0, s)]p̃0(x, r + s|x0), 0 < x <∞, (2.8)

where p̃0 is the corresponding solution without resetting,

p̃0(x, s|x0) =
e−
√
s/D(x+x0)

κ0 +
√
sD

+G(x,
√
s/D|x0). (2.9)

Finally, Laplace transforming equation (2.2) and using (2.8) shows that

Q̃r(x0, s) =

ˆ ∞
0

p̃r(x, s|x0)dx = [1 + rQ̃r(x0, s)]

ˆ ∞
0

p̃0(x, r + s|x0)dx

= [1 + rQ̃r(x0, s)]Q̃0(x0, r + s), (2.10)

where Q̃0 is the Laplace transform of the survival probability without resetting:

Q̃0(x0, s) =
1− e−

√
s/Dx0

s
+

e−
√
s/Dx0

s+ κ0

√
s/D

. (2.11)

Rearranging equation (2.10) thus determines the survival probability with resetting
in terms of the corresponding probability without resetting:

Q̃r(x0, s) =
Q̃0(x0, r + s)

1− rQ̃0(x0, r + s)
. (2.12)

This particular relation is identical to one previously derived for totally absorbing
surfaces, and follows naturally from renewal theory [7, 12].

For κ0 > 0 we expect the steady-state survival probability to vanish, both without
and with resetting, since 1D diffusion is recurrent so that absorption eventually occurs.
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Figure 2. Particle diffusing on the half line x ∈ [0,∞) with a Robin boundary
condition at x = 0. The particle resets to its initial position x0 at a constant
rate r > 0. (a) Plot of the MFPT Tr(x0) given by equations (2.11) and (2.15)
as a function of the resetting rate r for various reactivities κ0. The dashed line
indicates the case of a totally absorbing boundary (κ0 → ∞). (b) Corresponding
plots as a function of κ0 for various r. Other parameter values are D = 1 and
x0 = 1. Green dots indicate the optimal resetting rates.
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Indeed,

Q∗r(x0) = lim
s→0

sQ̃r(x, s|x0) = lim
s→0

sQ̃0(x0, r)

1− rQ̃0(x0, r)
= 0. (2.13)

We have used the fact that Q̃0(x0, r) 6= 1/r when κ0 > 0. Since fr(x0, t) =
−∂tQr(x0, t) is the first passage time (FPT) density for absorption at x = 0, it follows
that the mean FPT (MFPT) is

Tr(x0) =

ˆ ∞
0

tfr(x0, t)dt = −
ˆ ∞

0

t∂tQr(x0, t)dt =

ˆ ∞
0

Qr(x0, t)dt = Q̃r(x0, 0),(2.14)

where we have used integration by parts. Hence, setting s = 0 in equation (2.12)
recovers another well-known relation, namely,

Tr(x0) =
Q̃0(x0, r)

1− rQ̃0(x0, r)
. (2.15)

On the other hand, if κ0 = 0 (totally reflecting boundary at x = 0), then Q̃r(x0, s) =
1/s for all x0 < ∞ and thus Q∗r(x0) = 1. In this special case, there exists a
nonequilibrium stationary state (NESS) given by

p∗r(x) = lim
s→0

sp̃r(x, s|x0) = lim
s→0

s[1 + rQ̃r(x0, s)]p̃0(x, r + s|x0)

= rp̃0(x, r|x0) =
1

2

√
r

D

[
e−
√
r/D|x−x0| + e−

√
r/D|x+x0|

]
, x > 0, (2.16)

which recovers the well-known result of Refs. [7, 8]. Finally, consider the limit κ0 →∞
(totally absorbing boundary at x = 0). In this case,

Q̃0(x0, s) =
1− e−

√
s/Dx0

s
(2.17)

so that

Tr(x0) =
1

r

[
e
√
r/Dx0 − 1

]
. (2.18)

In Fig. 2(a) we show sample plots of the MFPT Tr as a function of the resetting
rate r for various reactivities κ0. As expected, Tr is a unimodal function of r with an
optimal resetting rate ropt that is a weakly increasing function of κ0. Corresponding
plots of Tr as a function of κ0 are shown in Fig. 2(b). For fixed r, the MFPT is a
monotonically decreasing of κ0 with a horizontal asymptote given by the MFPT for a
totally absorbing target. On the other hand, Tr blows up as κ0 → 0, which indicates
the approach to a totally reflecting surface.

2.2. Diffusion in Rd with a partially reflecting spherical obstacle at the origin.

Consider a particle diffusing inM≡ Rd\U , where U is a sphere of radius ρ1 centered at
the origin. Suppose that the spherical surface ∂U is partially absorbing with constant
reactivity κ0. Following [34], the initial position of the particle is randomly chosen
from the surface of the sphere U0 of radius ρ0, ρ1 < ρ0 < ∞. This will allow us to
exploit spherical symmetry such that pr = pr(ρ, t|ρ0). Finally, we assume that the
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particle can reset to a random point on the initial spherical surface ∂U0 at a Poisson
rate r. Setting ρ = |x|, It follows that the density p evolves according to the equation

∂p

∂t
= D

∂2p

∂ρ2
+D

d− 1

ρ

∂p

∂ρ
− rp+ rΓdQr(ρ0, t)δ(ρ− ρ0), ρ1 < ρ, (2.19a)

D
∂pr
∂ρ

= κ0pr, ρ = ρ1, pr(ρ, 0|ρ0) = Γdδ(ρ− ρ0), Γd =
1

Ωdρ
d−1
0

, (2.19b)

where Ωd is the surface area of a unit sphere in Rd and Qr(x0, t) is the survival
probability that the particle hasn’t been absorbed by the surface ∂U in the time
interval [0, t], having started at ρ0:

Qr(ρ0, t) =

ˆ
Rd\U

pr(x, t|x0)dx = Ωd

ˆ ∞
ρ1

ρd−1pr(ρ, t|ρ0)dρ. (2.20)

Differentiating both sides of equation (2.20) with respect to t and using the diffusion
equation implies that

∂Qr(ρ0, t)

∂t
= DΩd

ˆ ∞
ρ1

d

dρ
ρd−1 dpr(ρ, t|ρ0)

dρ
dρ− rQr(ρ0, t) + rQr(ρ0, t) = −Jr(ρ0, t),

(2.21)

where Jr(ρ0, t) is the total probability flux into the surface ∂U at time t:

Jr(ρ0, t) = DΩdρ
d−1
1

∂pr(ρ, t|ρ0)

∂ρ

∣∣∣∣
ρ=ρ1

. (2.22)

Laplace transforming equation (2.19a) and (2.19b) gives

D
∂2p̃r(ρ, s|ρ0)

∂ρ2
+D

d− 1

ρ

∂p̃r(ρ, s|ρ0)

∂ρ
− (r + s)p̃r(ρ, s|ρ0)

= −[1 + rQ̃r(ρ0, s)]Γdδ(ρ− ρ0), ρ1 < ρ, (2.23a)

D
∂p̃r(ρ, s|ρ0)

∂ρ
= κ0p̃r(ρ, s|ρ0), ρ = ρ1. (2.23b)

Equations of the form (2.23a) can be solved in terms of modified Bessel functions [34].
The general solution is

p̃r(ρ, s|ρ0) = Ar(s)ρ
νKν(αρ) + [1 + rQ̃r(ρ0, s)]G(ρ, α|ρ0), ρ1 < ρ, (2.24)

where ν = 1 − d/2, α =
√

[r + s]/D, and Kν is a modified Bessel function of the
second kind. The first term on the right-hand side of equation (2.24) is the solution to
the homogeneous version of equation (2.23a) and G is the modified Helmholtz Green’s
function in the case of a totally absorbing surface ∂U :

D
∂2G

∂ρ2
+D

d− 1

ρ

∂G

∂ρ
− (r + s)G = −Γdδ(ρ− ρ0), ρ1 < ρ, (2.25a)

G(ρ1, α|ρ0) = 0. (2.25b)

The latter is given by [34]

G(ρ, s|ρ0) =
(ρρ0)ν

DΩd

[Iν(αρ<)Kν(αρ1)− Iν(αρ1)Kν(αρ<)]Kν(αρ>)

Kν(αρ1)
, (2.26)

where ρ< = min (ρ, ρ0), ρ> = max (ρ, ρ0), and Iν is a modified Bessel function of the
first kind. The unknown coefficient Ar(s) is determined from the boundary condition
(2.23b):

κ0Ar(s)Fα(ρ1) = DAr(s)F
′
α(ρ1) +D[1 + rQ̃r(ρ0, s)]

d

dρ
G(ρ, α|ρ0)

∣∣∣∣
ρ=ρ1

, (2.27)
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with

D
d

dρ
G(ρ, α|ρ0)

∣∣∣∣
ρ=ρ1

=
1

Ωdρ
d−1
1

Fα(ρ0)

Fα(ρ1)
. (2.28)

We have set

Fα(ρ) = ρνKν(αρ), F ′α(ρ) = νρν−1
1 Kν(αρ1) + αρν1K

′
ν(αρ1). (2.29)

Rearranging (2.27) shows that

Ar(s) =
D[1 + rQ̃r(ρ0, s)]

κ0Fα(ρ1)−DF ′α(ρ1)

d

dρ
G(ρ, α|ρ0)

∣∣∣∣
ρ=ρ1

. (2.30)

Hence, the full solution of the Laplace transformed probability density with resetting
is

p̃r(ρ, s|ρ0) = [1 + rQ̃r(ρ0, s)]p̃0(ρ, r + s|ρ0), ρ1 < ρ, (2.31)

where p̃0 is the corresponding solution without resetting,

p̃0(ρ, s|ρ0) = A0(s)ρνKν(
√
s/Dρ) +G(ρ,

√
s/D|ρ0), ρ1 < ρ. (2.32)

Multiplying both sides of equation (2.31) by Ωdρ
d−1, integrating with respect to

ρ and using equation (2.20) implies that

Q̃r(ρ0, s) = [1 + rQ̃r(ρ0, s)]Q̃0(ρ0, r + s), (2.33)

where Q̃0 is the corresponding survival probability without resetting. Rearranging
this equation yields the higher-dimensional analog of equation (2.12)

Q̃r(ρ0, s) =
Q̃0(ρ0, r + s)

1− rQ̃0(ρ0, r + s)
. (2.34)

Moreover, Laplace transforming equation (2.21) and noting that Qr(ρ0, 0) = 1 gives

sQ̃r(ρ0, s)− 1 = −J̃r(ρ0, s) = −[1 + rQ̃r(ρ0, s)]J̃0(ρ0, r + s), (2.35)

where J̃0 is the flux without resetting. We have used equation (2.31). Rearranging
equation (2.35) then gives

Q̃r(ρ0, s) =
1− J̃0(ρ0, r + s)

s+ rJ̃0(ρ0, r + s)
. (2.36)

Let Tr denote the first passage time

Tr = inf{t > 0, |X(t)| = ρ1}, (2.37)

where X(t) is the position of the particle at time t. Since

Qr(ρ0, t) = P[Tr > t, |X(0)| = ρ0], (2.38)

it follows that the probability density of the first passage time T is −∂Q/∂t, and the
MFPT is

Tr(ρ0) = −
ˆ ∞

0

t
∂Qr(ρ0, t)

∂t
dt =

ˆ ∞
0

Qr(ρ0, t)dt = Q̃r(ρ0, 0). (2.39)

We have used integration by parts. Finally, taking the limit s→ 0 in equation (2.34)
gives

Tr(ρ0) =
Q̃0(ρ0, r)

1− rQ̃0(ρ0, r)
. (2.40)
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We will explore the behavior of Tr as a function of r and γ = κ0/D in section 4, where
we consider more general surface reaction schemes. Here we consider the case of a
totally absorbing surface. In the limit κ0 →∞, we have

p̃0(ρ, s|ρ0) −→ G(ρ,
√
s/D|ρ0), (2.41a)

J̃0(ρ0, r + s) ≡ DΩdρ
d−1
1

∂p̃0(ρ, r + s|ρ0)

∂ρ

∣∣∣∣
ρ=ρ1

−→ ρν0Kν(αρ0)

ρν1Kν(αρ1)
. (2.41b)

Substituting into equation (2.36) gives

Q̃r(ρ, s) =
ρν1Kν(αρ1)− ρν0Kν(αρ0)

sρν1Kν(αρ1) + rρν0Kν(αρ0)
(2.42)

and, hence,

Tr(ρ0) =
1

r

[
ρν1Kν(αρ1)

ρν0Kν(αρ0)
− 1

]
. (2.43)

Equations (2.42) and (2.43) recover the results for a totally absorbing spherical surface
obtained in Ref. [9].

3. Diffusion-mediated surface reactions

3.1. Diffusion-mediated surface reactions without resetting

Recently, it has been shown how to reformulate the Robin boundary condition for a
diffusing particle without resetting using a probabilistic interpretation based on the
so-called boundary local time [16, 17, 18, 6]. The latter is a Brownian functional
that keeps track of the amount of time a particle spends in a local neighborhood of a
boundary. Let Xt ∈ Rd\U represent the position of a diffusing particle at time t with
an obstacle U centered at the origin. If the surface ∂U is totally reflecting then we
can define a boundary local time according to [15]

`t = lim
h→0

D

h

ˆ t

0

Θ(h− dist(Xτ , ∂U))dτ, (3.1)

where Θ is the Heaviside function. Note that `t has units of length due to the
additional factor of D. Let P0(x, `, t|x0) denote the joint probability density or
propagator for the pair (Xt, `t) and introduce the stopping time [16, 17, 18]

T0 = inf{t > 0 : `t > ̂̀}, (3.2)

with ̂̀ an exponentially distributed random variable that represents a stopping local
time. That is, P[̂̀ > `] = e−γ` with γ = ξ−1 = κ0/D. (Roughly speaking, the
stopping time T0 is a random variable that specifies the time of absorption, which
is determined by the instant at which the local time `t crosses a random threshold
ˆ̀.) The relationship between p0(x, t|x0) and P0(x, `, t|x0) can then be established by
noting that

p0(x, t|x0)dx = P0[Xt ∈ (x,x + dx), t < T0|X0 = x0].

Given that `t is a nondecreasing process, the condition t < T0 is equivalent to the
condition `t < ̂̀. This implies that [17]

p0(x, t|x0)dx = P[Xt ∈ (x,x + dx), `t < ̂̀|X0 = x0]

=

ˆ ∞
0

d` γe−γ`P[Xt ∈ (x,x + dx), `t < `|X0 = x0]

=

ˆ ∞
0

d` γe−γ`
ˆ `

0

d`′[P0(x, `′, t|x0)dx].
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Using the identityˆ ∞
0

d` f(`)

ˆ `

0

d`′ g(`′) =

ˆ ∞
0

d`′ g(`′)

ˆ ∞
`′

d` f(`) (3.3)

for arbitrary integrable functions f, g, it follows that

p0(x, t|x0) =

ˆ ∞
0

e−γ`P0(x, `, t|x0)d`. (3.4)

The probability density p0(x, t|x0) can be expressed in terms of the Laplace transform
of the propagator P0(x, `, t|x0) with respect to the local time `, since the Robin

boundary condition maps to an exponential law for the stopping local time ̂̀t. The
advantage of this formulation is that one can consider a more general probability
distribution Ψ(`) = P[ˆ̀> `] for the stopping local time ˆ̀ such that [16, 17, 18]

pΨ
0 (x, t|x0) =

ˆ ∞
0

Ψ(`)P0(x, `, t|x0)d`. (3.5)

Equation (3.5) accommodates a wider class of surface reactions. For example,
As highlighted in Ref. [17], one of the possible mechanisms for a non-exponential
stopping local time distribution is an encounter-dependent reactivity. This could
represent, for example, a progressive activation/deactivation or aging of the reactive
surface following each attempted reaction. In order to understand such a process, it
is useful to model diffusion as a discrete-time random walk on a hypercubic lattice
Zd with lattice spacing a. First consider a constant reaction rate κ0 and introduce
the so-called reaction length ξ = D/κ0. At a bulk site, a particle jumps to one
of the neighboring sites with probability 1/2d, whereas at a boundary site it either
reacts with probability Π = (1 + ξ/a)−1 ≈ aκ0/D or return to a neighboring bulk
site with probability 1 − Π. Assuming the random jumps are independent of the
reaction events, the random number of jumps N̂ before a reaction occurs is given
by a geometric distribution: P[N̂ = n] = Π(1 − Π)n, integer n ≥ 0. In particular,

E[N̂ ] = (1−Π)/Π = ξ/a. Introducing the rescaled random variable ̂̀= aN̂ , one finds
that [15]

P[̂̀≥ `] = P[N̂ ≥ `/a] = (1−Π)`/a = (1 + a/ξ)−`/a →
a→0

e−`/ξ.

That is, for sufficiently small lattice spacing a, a reaction occurs (the random walk
is terminated) when the random number of realized jumps from boundary sites,
multiplied by a, exceeds an exponentially distributed random variable (stopping local

time) ̂̀ with mean ξ. Assuming that a partially reflected random walk on a lattice
converges to a well-defined continuous process in the limit a→ 0 (see Refs. [33, 28]),
one can define partially reflected Brownian motion as reflected Brownian motion
stopped at the random time (3.2) [13, 14, 15] where the local time `t is the continuous

analog of the rescaled number of surface encounters, aN̂), and P[̂̀> `] = e−`/ξ. Now
suppose that at the nth encounter, the reaction probability is Πn ≈ aκn/D, with
some prescribed sequence of reactivities. Again, assuming that the reaction events are
independent,

P[N̂ = n] = (1−Π0)(1−Π1) . . . (1−Πn−1)Πn, n = 0, 1, 2. . . .

Taking the limit a→ 0, we find that κn → κ(`) and

Ψ(`) = exp

(
− 1

D

ˆ `

0

κ(`′)d`′

)
. (3.6)
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In the absence of resetting, the propagator P0(x, `, t|x0) satisfies the boundary
value problem (BVP) [17, 6]

∂P0(x, `, t|x0)

∂t
= D∇2P0(x, `, t|x0), x ∈ Rd\U , (3.7a)

−D∇P0(x, `, t|x0) · n = Dδ(`)P0(x, ` = 0, t|x0) +D
∂

∂`
P0(x, `, t|x0), x ∈ ∂U , (3.7b)

P0(x, ` = 0, t|x0) = −∇p0,∞(x, t|x0) · n, x ∈ ∂U , (3.7c)

together with the initial condition P0(x, `, 0|x0) = δ(x − x0)δ(`). Here p0,∞ is the
probability density in the case of a totally absorbing target:

∂p0,∞(x, t|x0)

∂t
= D∇2p0,∞(x, t|x0), x ∈ Rd\U , (3.8a)

p0,∞(x, t|x0) = 0, x ∈ ∂U , p0,∞(x, 0|x0) = δ(x− x0). (3.8b)

The equality (3.7c) can be derived by noting that a constant reactivity is equivalent
to a Robin boundary condition, see equation (3.4). In particular, the Robin boundary
condition can be rewritten as

∇p0(x, t|x0) · n = −γp0(x, t|x0) = −γ
ˆ ∞

0

e−γ`P0(x, `, t|x0)d`, x ∈ ∂U (3.9)

where γ = κ0/D. The result follows from taking the limit γ → ∞ on both sides
with p0 → p0,∞, and noting that limγ→∞ γe−γ` is the Dirac delta function on the
positive half-line. One way to interpret the boundary condition (3.7b) is that, for
` > 0, the rate at which the local time is increased at a point x ∈ ∂U is equal to the
corresponding flux density at that point, whereas the local time does not change in
the bulk of the domain. In addition, the flux when ` = 0 is identical to the one for a
totally absorbing surface.

3.2. Diffusion-mediated surface reactions with position resetting

Now suppose that the particle can reset to x0 ∈ Rd\U at a Poisson rate r when it is in
the bulk of the domain. (Resetting does not occur at the surface boundary.) Denote
the corresponding propagator by Pr(x, `, t|x0). Since resetting at a time τ does not
change the accumulation time `τ , resetting can be introduced into the BVP for the
propagator as follows:

∂Pr(x, `, t|x0)

∂t
= D∇2Pr(x, `, t|x0)− rPr(x, `, t|x0) (3.10a)

+ rQr(x0, `, t)δ(x− x0), x ∈ Rd\U ,

−D∇Pr(x, `, t|x0) · n = Dδ(`)Pr(x, ` = 0, t|x0) +D
∂

∂`
Pr(x, `, t|x0), x ∈ ∂U , (3.10b)

Pr(x, ` = 0, t|x0) = −∇pr,∞(x, t|x0) · n, x ∈ ∂U , (3.10c)

where Pr(x, `, 0|x0) = δ(x − x0)δ(`) and pr,∞ is now the probability density in the
case of a totally absorbing target with resetting:

∂pr,∞(x, t|x0)

∂t
= D∇2pr,∞(x, t|x0)− rpr,∞(x, t|x0) (3.11a)

+ rQr,∞(x0, t)δ(x− x0), x ∈ Rd\U ,
pr,∞(x, t|x0) = 0, x ∈ ∂U , pr,∞(x, 0|x0) = δ(x− x0). (3.11b)
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We have also introduced the marginal probabilities

Qr(x0, `, t) =

ˆ
Rd\U

Pr(x, `, t|x0)dx, Qr,∞(x0, t) =

ˆ
Rd\U

pr,∞(x, t|x0)dx. (3.12)

It is important to note that the local time is not reset, which means that we cannot
use renewal theory to express the propagator with resetting in terms of its counterpart
without resetting.

Given the solution to the BVP, the corresponding marginal density for particle
position can be obtained from the analog of equation (3.13),

pΨ
r (x, t|x0) =

ˆ ∞
0

Ψ(`)Pr(x, `, t|x0)d`. (3.13)

Multiplying equations (3.10a) and (3.10b) by Ψ(`) and integrating with respect to `
gives

∂pΨ
r (x, t|x0)

∂t
= D∇2pΨ

r (x, t|x0)− rpΨ
r (x, t|x0) + rQΨ

r (x0, t)δ(x− x0), x ∈ Rd\U ,

(3.14a)

−D∇pΨ
r (x, t|x0) · n = D

ˆ ∞
0

ψ(`)Pr(x, `, t|x0)d`, x ∈ ∂U , (3.14b)

with

ψ(`) = −dΨ(`)

d`
, ψ̃(q) = 1− qΨ̃(q) (3.15)

and

QΨ
r (x0, t) =

ˆ ∞
0

Ψ(`)Qr(x0, `, t)d` =

ˆ
Rd\U

pΨ
r (x, t|x0)dx. (3.16)

We have used integration by parts and the identity Ψ(0) = 1. It is clear that equations
(3.14a) and (3.14b) do not form a closed BVP for pΨ. The only exception is the
exponential case, since ψ(`) = γΨ(`). Integrating equation (3.14b) with respect to
points on the boundary, determines a relation between the total flux into the surface
and the propagator:

JΨ
r (x0, t) ≡ −D

ˆ
∂U
∇pΨ(x, t|x0) · n dσ = D

ˆ ∞
0

ψ(`)

[ˆ
∂U
P (x, `, t|x0)dσ

]
d`. (3.17)

Similarly, integrating equation (3.14a) with respect to x ∈ Rd\U yields a relation
between the surface flux and the survival probability,

∂QΨ
r (x0, t)

∂t
= −JΨ

r (x0, t). (3.18)

As in the analysis section 2, it will be more convenient to work in Laplace space.
Laplace transforming equations (3.10a)–(3.10c) gives

D∇2P̃r(x, `, s|x0)− (r + s)P̃r(x, `, s|x0) = −[δ(`) (3.19a)

+ rQ̃r(x0, `, s)]δ(x− x0), x ∈ Rd\U ,

−D∇P̃r(x, `, s|x0) · n = DP̃r(x, ` = 0, s|x0) δ(`) +D
∂

∂`
P̃r(x, `, s|x0), x ∈ ∂U ,(3.19b)

P̃r(x, ` = 0, s|x0) = −∇p̃r,∞(x, s|x0) · n, x ∈ ∂U . (3.19c)
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Furthermore, Laplace transforming equations (3.11a) and (3.11b) shows that p̃∞ can
be expressed as

p̃r,∞(x, s|x0) = [1 + rQ̃r,∞(x0, s)]G(x, α|x0), α =

√
r + s

D
, (3.20)

where G is a modified Helmholtz Green’s function:

D∇2G(x, α|x0)− (r + s)G(x, α|x0) = −δ(x− x0), x ∈ Rd\U ,
G(x, α|x0) = 0, x ∈ ∂U . (3.21)

(In fact, p̃0,∞(x, s|x0) = G(x,
√
s/D|x0).) Next, Laplace transforming equations

(3.14a) and (3.17) yields

D∇2p̃Ψ
r (x, s|x0)− (r + s)p̃Ψ

r (x, s|x0) = −[1 + rQ̃Ψ
r (x0, s)]δ(x− x0), x ∈ Rd\U ,

(3.22a)

−D∇p̃Ψ
r (x, s|x0) · n = D

ˆ ∞
0

ψ(`)P̃r(x, `, s|x0)d`, x ∈ ∂U . (3.22b)

The corresponding equations without resetting (r = 0) are

D∇2p̃Ψ
0 (x, s|x0)− sp̃Ψ

0 (x, s|x0) = −δ(x− x0), x ∈ Rd\U , (3.23a)

−D∇p̃Ψ
0 (x, s|x0) · n = D

ˆ ∞
0

ψ(`)P̃0(x, `, s|x0)d`, x ∈ ∂U . (3.23b)

Comparing equations (3.22a) and (3.23a) implies that

p̃Ψ
r (x, s|x0) = [1 + rQ̃Ψ

r (x0, s)]p̃
Ψ
0 (x, r + s|x0) + uΨ

r (x, s|x0), (3.24)

where uΨ
r satisfies the homogeneous version of equation (3.22a) together with a non-

trivial boundary condition on ∂U .
In the special case of a constant reactivity (Robin boundary condition), the term

uΨ
r is identically zero. In order to show this, note that the propagator P satisfies the

integral equation

Pr(x, `, t|x0) = e−rtP0(x, `, t|x0)

+ r

ˆ `

0

(ˆ t

0

e−rτP0(x, `− `′, τ |x0)Qr(x0, `
′, t− τ)dτ

)
d`′. (3.25)

The first term on the right-hand side represents all trajectories that do not reset in
the interval [0, t]. The double integral represents the complementary set of trajectories
that reset to x0 at least once. It is assumed that the last reset occurs at time t − τ
with the particle having spent an amount of time `′ in a neighborhood of the boundary
without being absorbed. This occurs with probability density Qr(x0, `

′, t − τ). Over
the time interval [t − τ, t] there are no more resettings and the local time increases
by an additional amount `− `′ with associated probability density P0(x, `− `′, τ |x0).
Laplace transforming the integral equation using the convolution theorem shows that

P̃r(x, `, s|x0) = P̃0(x, `, r + s|x0) + r

ˆ `

0

P̃0(x, `− `′, r + s|x0)Qr(x0, `
′, s)d`′. (3.26)

Let us perform a second Laplace transform with respect to the local time ` by setting

Pr(x, z, s|x0) =

ˆ ∞
0

e−z`P̃r(x, `, s|x0)d`, (3.27a)

Qr(x0, z, s) =

ˆ ∞
0

e−z`Q̃r(x0, `, s)d` =

ˆ
Rd\U

Pr(x, z, s|x0)dx. (3.27b)
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Multiplying both sides of equation (3.26) by e−z` and applying the convolution
theorem to the `-Laplace transform implies that

Pr(x, z, s|x0) = [1 + rQr(x0, z, s)]P0(x, z, r + s|x0). (3.28)

Integrating both sides of this equation with respect to x ∈ Ω\U gives

Qr(x0, z, s) = [1 + rQr(x0, z, s)]Q0(x0, z, r + s), (3.29)

which can be rearranged to show that

Qr(x0, z, s) =
Q0(x0, z, r + s)

1− rQ0(x0, z, r + s)
. (3.30)

We now make the following observations. If we make the identification z =
κ0, where κ0 is the constant reactivity for the Robin boundary condition, then
Qr(x0, κ0, s) = Q̃Ψ

r (x0, s) and

Q̃Ψ
r (x0, s) =

Q̃Ψ
0 (x0, r + s)

1− rQ̃Ψ
0 (x0, r + s)

, Ψ = e−κ0`/D. (3.31)

Comparison with equation (3.24) establishes that the homogeneous solution uΨ
r = 0.

On the other hand, for a non-exponential distribution Ψ(`), it is first necessary

to invert equation (3.30) to determine Q̃r(x0, `, s) and then use this to calculate

Q̃Ψ
r (x0, s). Clearly, equation (3.31) no longer holds and hence uΨ

r 6= 0. The inverse
Laplace transform is given by a Bromwich integral of the form

Q̃r(x0, `, s) =
1

2πi

ˆ c+i∞

c−i∞
ez`Qr(x0, z, r)dz

=
1

2πi

ˆ c+i∞

c−i∞
ez`

Q0(x0, z, r + s)

1− rQ0(x0, z, r + s)
dz. (3.32)

The real constant c is chosen so that the Bromwich contour lies to the right of all
poles in the complex z-plane. One can then close the contour to the right and express
Q̃r(x0, `, s) in terms of the sum of the residues arising from the poles of the function

1 − rQ̃0(x0, z, r + s) in the z-plane. The latter is itself obtained by solving the BVP
for the diffusion equation with a Robin boundary condition on ∂U and no resetting,
see section 2.

3.3. Diffusion-mediated surface reactions with position and local time resetting

One situation where equation (3.31) holds for a general distribution Ψ is if the local
time is also reset so that (Xt, `t) → (x0, 0) at a Poisson rate r prior to absorption.
This does not mean resetting the number of encounters between particle and boundary,
since such a quantity is accumulative. However, suppose that there is some internal
state of the particle that is modified whenever it is in a neighborhood of ∂U , and
that this modification is proportional to the local time. Moreover, assume that the
reactivity depends on the current internal state. Resetting the internal state to its
initial value whenever the particle resets to x0 is equivalent to resetting the reactivity
and thus the effective local time. Incorporating position and local time resetting into
the BVP given by equations (3.7a)–(3.7c), we have

∂Pr(x, `, t|x0)

∂t
= D∇2Pr(x, `, t|x0)− rPr(x, `, t|x0)

+ rδ(x− x0)δ(`), x ∈ Ω\U , (3.33a)
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−D∇Pr(x, `, t|x0) · n = DPr(x, ` = 0, t|x0) δ(`) +D
∂

∂`
Pr(x, `, t|x0) for x ∈ ∂U ,

(3.33b)

The unknown Pr(x, ` = 0, t|x0) for x ∈ ∂U is determined by noting that the stochastic
resetting process is memoryless, and hence the propagator satisfies a first renewal
equation of the form

Pr(x, `, t|x0) = e−rtP0(x, `, t|x0) + r

ˆ t

0

e−rτPr(x, `, t− τ |x0)dτ. (3.34)

The first term on the right-hand side represents all trajectories that do not undergo
any resettings, which occurs with probability e−rt. The second term represents the
complementary set of trajectories that reset at least once with the first reset occurring
at time τ . Laplace transforming the renewal equation and rearranging shows that

P̃r(x, `, s|x0) =
(

1 +
r

s

)
P̃0(x, `, r + s|x0). (3.35)

Since P̃0(x, ` = 0, s|x0) = −∇p∞(x, s|x0) · n for x ∈ U , it follows that

P̃0(x, ` = 0, s|x0) = −
(

1 +
r

s

)
∇p∞(x, s|x0) · n, x ∈ ∂U . (3.36)

In contrast to position resetting alone, one cannot simply take pΨ
r (x, t|x0) =´∞

0
Ψ(`)Pr(x, `, t|x0)d`, since `t is no longer a monotonically increasing function of

time t. Therefore, we proceed by partitioning the set of contributing paths according
to the number of resettings and for a given number of resettings decomposing the
path into time intervals over which `t is monotonically increasing. Let It denote the
number of resettings in the interval [0, t] and let T = inf{t > 0, `t > ̂̀}. Then

pΨ
r (x, t|x0)dx = e−rtP[Xt ∈ [x,x + dx]|X0 = x0, T > t, It = 0] (3.37)

+ re−rtP[Xt ∈ [x,x + dx]|X0 = x0, T > t, It = 1]

+ r2e−rtP[Xt ∈ [x,x + dx]|X0 = x0, T > t, It = 2] + . . .

That is,

pΨ
r (x, t|x0) = e−rtpΨ

0 (x, t|x0) + re−rt
ˆ t

0

pΨ
0 (x, τ |x0)QΨ

0 (x0, t− τ)dτ (3.38)

+ re−rt
ˆ t

0

ˆ t−τ

0

pΨ
0 (x, τ |x0)QΨ

0 (x0, t− τ)QΨ
0 (x0, t− τ − τ ′)dτ ′dτ + . . .

where QΨ
0 is the survival probability without resetting. Laplace transforming the

above equation and using the convolution theorem shows that

p̃Ψ
r (x, s|x0) = p̃Ψ

0 (x, r + s|x0) + rp̃Ψ
0 (x, r + s|x0)Q̃Ψ

0 (x0, r + s)

+ r2p̃0(x, r + s|x0)Q̃0(x0, r + s)2 + . . . (3.39)

Summing the geometric series thus yields the result

p̃Ψ
r (x, s|x0) =

p̃Ψ
0 (x, r + s|x0)

1− rQ̃Ψ
0 (x0, r + s)

. (3.40)

Finally, integrating both sides with respect to x ∈ Ω\U yields equation (3.31) for
general Ψ.
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4. MFPTs for a partially reactive spherical surface

Let us return to the example of a spherical surface in Rd, which was analyzed in section
2.2 in the case of Robin boundary conditions and an initial condition distributed
uniformly on the sphere of radius ρ0. We begin by considering the propagator BVP
for position resetting. Laplace transforming equations (3.10a)-(3.10c) and introducing
spherical polar coordinates gives

D
∂2P̃r
∂ρ2

+D
d− 1

ρ

∂P̃r
∂ρ
− (r + s)P̃r(ρ, `, s|ρ0)

= −[δ(`) + rQ̃r(ρ0, `, s)]Γdδ(ρ− ρ0), ρ1 < ρ, (4.1a)

∂

∂ρ
P̃r(ρ, `, s|ρ0) = P̃r(ρ, ` = 0, s|ρ0) δ(`) +

∂

∂`
P̃r(ρ, `, s|ρ0), ρ = ρ1, (4.1b)

P̃r(ρ1, ` = 0, s|ρ0) =
d

dρ
p̃r,∞(ρ, s|ρ0)

∣∣∣∣
ρ=ρ1

, (4.1c)

where

Q̃r(ρ0, `, s) = Ωd

ˆ ∞
ρ1

ρd−1P̃r(ρ, `, s|x0)dρ. (4.2)

The corresponding density p̃∞(ρ, s|ρ0) for a totally absorbing surface is given by
equations (2.31) and (2.41a):

p̃r,∞(ρ, s|ρ0) = [1 + rQ̃r,∞(ρ0, s)]G(ρ, α|ρ0), (4.3)

where G is the Green’s function defined by equations (2.25a) and (2.25b). The general
solution of equations (4.1a)–(4.1c) can be written in the form

P̃r(ρ, `, s|ρ0) = Cr(`, s)ρ
νKν(αρ) +

[
δ(`) + rQ̃r(ρ0, `, s)

]
G(ρ, α|ρ0), ρ1 ≤ ρ. (4.4)

The unknown coefficient Cr(`, s) is determined from the boundary condition (4.1b)
and (4.1c):

dCr(`, s)

d`
Fα(ρ1) = Cr(`, s)F

′
α(ρ1) (4.5)

+ r
[
Q̃r(ρ0, `, s)− δ(`)Q̃r,∞(ρ0, s)

] d

dρ
G(ρ, α|ρ0)

∣∣∣∣
ρ=ρ1

,

with Fα(ρ) given by equation (2.29). Equation (4.5) has the solution

Cr(`, s) = Cr(0, s)e
−Λ(α)` (4.6)

+ rχ(α)

ˆ `

0

e−Λ(α)(`−`′)
[
Q̃r(ρ0, `

′, s)− δ(`′)Q̃r,∞(ρ0, s)
]
d`′,

where

χ(α) =
1

Fα(ρ1)

d

dρ
G(ρ, α|ρ0)

∣∣∣∣
ρ=ρ1

, (4.7)

and

Λ(α) = −F
′
α(ρ1)

Fα(ρ1)
= − ν

ρ1
− αK ′ν(αρ1)

Kν(αρ1)
. (4.8)

In addition, setting ` = 0 and ρ = ρ1 in equation (4.4) and using (4.1c) implies that

Cr(0, s) = [1 + rQ̃r,∞(ρ0, s)]χ(α), (4.9)
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and, hence,

Cr(`, s) = χ(α)

{
e−Λ(α)` + r

ˆ `

0

e−Λ(α)(`−`′)Q̃r(ρ0, `
′, s)d`′

}
. (4.10)

Substituting for Cr(`, s) into equation (4.4) and integrating over the domain Ω\U
yields an integral equation for Q̃r(ρ0, `, s):

Q̃r(ρ0, `, s) = Fαχ(α)

{
e−Λ(α)` + r

ˆ `

0

e−Λ(α)(`−`′)Q̃r(ρ0, `
′, s)d`′

}
+
[
δ(`) + rQ̃r(ρ0, `, s)

]
Gα(ρ0), (4.11)

where

Fα(ρ1) = Ωd

ˆ ∞
ρ1

ρd−1Fα(ρ)dρ, (4.12)

and

Gα(ρ0) = Ωd

ˆ ∞
ρ1

ρd−1G(ρ, α|ρ0)dρ. (4.13)

It follows that

Q̃0(ρ0, `, r + s) = Fαχ(α)e−Λ(α)` + δ(`)Gα(ρ0). (4.14)

Given the partial differential equations satisfied by Fα and G, it can be shown that

(r + s)Fα(ρ1) = −Ωdρ
d−1
1 DF ′α(ρ1), (4.15)

and

(r + s)Gα(ρ0) = 1− j(ρ0, α), (4.16)

with

j(ρ0, α) ≡ DΩdρ
d−1
1

d

dρ
G(ρ, α|ρ0)

∣∣∣∣
ρ=ρ1

=
ρν0Kν(αρ0)

ρν1Kν(αρ1)
. (4.17)

After some algebra, we obtain the final result

Q̃0(ρ0, `, r + s) = j(ρ0, α)

(
Λ(α)e−Λ(α)`

r + s

)
+
δ(`)

s
. (4.18)

Laplace transforming (4.11) with respect to ` yields the analog of equation (3.30),
namely,

Qr(ρ0, z, s) =
Q0(ρ0, z, r + s)

1− rQ0(ρ0, z, r + s)
(4.19)

with

Q0(ρ0, z, r + s) =
j(ρ0, α)

r + s

Λ(α)

z + Λ(α)
+

1

r + s
(1− j(ρ0, α)). (4.20)

We can now proceed to determine Q̃r(ρ0, `, s) by inverting the z-transform on the right-
hand side of equation (4.19) using the Bromwich integral (3.32), and then calculating

the associated survival probability Q̃Ψ
r (ρ0, s). The corresponding MFPT is obtained

by setting s = 0, that is Tr(ρ0) = Q̃Ψ
r (ρ0, 0). The details of the calculation and various

generalizations will be developed elsewhere. Here we simply state the final result:

Tr(ρ0) =
ΨΛ(αr)

rj(ρ0, αr)
+

1

r

(
1

j(ρ0, αr)
− 1

)
, αr =

√
r/D, (4.21)
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with Ψ =
´∞

0
Ψ(`)d`. Note that Ψ → 0 in the limit of total absorption. Hence, the

second term on the right-hand side is the MFPT for a totally absorbing surface with
position resetting. We deduce that the effect of partial absorption is to increase the
MFPT additively.

Now consider the simpler case of position and local time resetting for which

Q̃Ψ
r (ρ0, s) =

Q̃Ψ
0 (ρ0, r + s)

1− rQ̃Ψ
0 (ρ0, r + s)

, (4.22)

with

Q̃Ψ
0 (ρ0, r + s) =

ˆ ∞
0

Ψ(`)
{
Fα(ρ1)χ(α)e−Λ(α)` + δ(`)Gα(ρ0)

}
= Gα + Fα(ρ1)χ(α)Ψ̃(Λ(α)). (4.23)

An alternative expression for Q̃Ψ
0 can be obtained by noting that for r = 0,

(r + s)Q̃Ψ
0 (ρ0, r + s)− 1 = −J̃Ψ

0 (ρ0, r + s), (4.24)

and the Laplace-transformed flux into the spherical target is

J̃Ψ
0 (ρ0, r + s) = j(ρ0, α)ψ̃(Λ(α)). (4.25)

Having obtained QΨ
r (ρ0, s), the MFPT (if it exists) can be obtained by setting s = 0 in

equation (4.22). Since the domain Rd\U is unbounded, the MFPT without resetting
is infinite. On the other hand, for r > 0 we have

Tr(ρ0) =
Q̃Ψ

0 (ρ0, r)

1− rQΨ
0 (ρ0, r)

=
1− J̃Ψ

0 (ρ0, r)

rJ̃Ψ
0 (ρ0, r)

=
1− j(ρ0, αr)ψ̃(Λ(αr))

rj(ρ0, αr)ψ̃(Λ(αr))
. (4.26)

Comparison of equations (4.26) with (4.21) shows that when local time resetting is
included, the partial absorption increases the MFPT multiplicatively rather than
additively, which is consistent with the fact that the MFPT is larger in the latter
case, Since ν = 1/2, 0,−1/2 for d = 1, 2, 3, respectively, and K±1/2(z) = e−z

√
π/2z,

it follows from equations (4.8) and (4.17) that

Λ(α) = α, j(ρ0, α) = e−α(ρ0−ρ1) for d = 1, (4.27a)

Λ(α) =
αK ′0(αρ1)

K0(αρ1)
, j(ρ0, α) =

K0(αρ0)

K0(αρ1)
for d = 2, (4.27b)

Λ(α) =
1

ρ1
+ α, j(ρ0, α) =

ρ1

ρ0
e−α(ρ0−ρ1) for d = 3. (4.27c)

It remains to specify the stopping local time distribution Ψ and its Laplace
transform. For the sake of illustration, we will consider the gamma distribution ψgam

and the Pareto-II (Lomax) distribution ψpar:

ψgam(`) =
γ(γ`)µ−1e−γ`

Γ(µ)
, ψpar(`) =

γµ

(1 + γ`)1+µ
, µ > 0, (4.28)

where γ = κ0/D, κ0 is some reference reactivity, and Γ(µ) is the gamma function,
Γ(µ) =

´∞
0

e−ttµ−1dt. (Plots of these and other stopping local time densities can be
found in [17].) Note that if µ = 1 then

ψgam(`) = γe−γ`, κ(`) = κ0, (4.29)

which recovers the exponential distribution (constant reactivity). The corresponding
Laplace transforms are

ψ̃gam(q) =

(
γ

γ + q

)µ
, ψ̃′gam(q) = −µ

(
γ

γ + q

)µ
1

γ + q
. (4.30)



Diffusion-mediated surface reactions and stochastic resetting 19

μ = 1.5

0

50

100

150

200

250

300

0

20

40

60

80

100

120

140

160

180

200
M

F
P

T
 T

M
F

P
T

 T

(a)

1812 202

reset rate r

0 148 164 106 1812 202

reset rate r

0 148 164 106

(b)

μ = 1.25

μ = 1.0

μ = 0.5

μ =0.25

μ = 1.5

μ = 1.0

μ = 0.5

μ =0.25

Figure 3. Plots of the MFPT Tr(ρ0) given by equation (4.26) as a function of
the resetting rate r for d = 3, and various values of the index µ. (a) Gamma
distribution. (b) Pareto-II model. We also set γ = κ0/D = 1, ρ1 = 0.2 and
ρ0 = 1.

and

ψ̃par(q) = µ

(
q

γ

)µ
eq/γΓ(−µ, q/γ), (4.31a)

ψ̃′par(q) = µ

(
q

γ

)µ
eq/γ

([
µ

q
+

1

γ

]
Γ(−µ, q/γ) + ∂qΓ(−µ, q/γ)

)
. (4.31b)

Here Γ(µ, z) is the upper incomplete gamma function,

Γ(µ, z) =

ˆ ∞
z

e−ttµ−1dt, µ > 0. (4.32)

It can be seen that ψ̃gam(0) = 1 and ψ̃′gam(0) = −µ/γ < −∞. On the other hand,
using the identity

Γ(1− µ, z) = −µΓ(−µ, z) + z−µe−z, (4.33)

it can be checked that ψ̃(0) = 1, whereas ψ̃′(0) is only finite if µ > 1. In the latter
case

−ψ̃′(0) = E[`] =
Γ(µ− 1)Γ(2)

γΓ(µ)
=

1

γ(µ− 1)
. (4.34)

The blow up of the moments when µ < 1 reflects the fact that the Pareto-II distribution
has a long tail.

Since the inclusion of local time resetting has a stronger effect on the MFPT,
we will focus on this case here. In Fig. 3 we show example plots of Tr(ρ0) as a
function of the resetting rate in the case of the gamma and Pareto-II distributions
for fixed ρ0 = 1 and γ = 1. As expected, the MFPT is a unimodal function of r
with a minimum at some optimal value ropt that depends on µ. Interestingly, in the
presence of resetting the MFPT is finite even when the first moment of the stopping
time density is infinite, as in the case of the Pareto-II density for µ < 1. As we have
shown elsewhere, in the absence of resetting, the MFPT blows up [6]. The dependence
on the spatial dimension is illustrated in Fig. 4(a) for the Pareto-II distribution, where
we plot the MFPT for two values of µ in the cases d = 1, 2, 3. It can be seen that the
the sensitivity of the MFPT curves to changes in µ increases significantly with the
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the resetting rate r for the Pareto-II model with µ = 1. (b) Shift in Tr(ρ0) in
response to a decrease in µ for d = 1, 2, 3. (b) dependence on the reaction rate
parameter γ for d = 3. Other parameters are the same as Fig. 3.
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Figure 5. Plots of the normalized MFPT ∆Tr(ρ0) given by equation (4.26) as
a function of the resetting rate r for the Pareto-II model with µ = 1 and various
initial radii ρ0. (a) d = 2. (b) d = 1. Other parameters are the same as Fig. 3.

dimension. (Analogous results hold for the gamma distribution.) The dependence on
the reaction rate is illustrated in Fig. 4(b). As expected, reducing γ shifts the MFPT
resetting curves upwards. In addition, the MFPT approaches zero as ρ0 → ρ1 in the
large-γ limit since the surface becomes totally absorbing. The MFPT of the latter is
obtained by setting ψ̃(q) = 1 for all q:

Tr,∞(ρ0) =
1− j(ρ0, αr)

rj(ρ0, αr)
. (4.35)

It follows that

∆Tr(ρ0) ≡ Tr(ρ0)

Tr,∞(ρ0)
=

1− j(ρ0, αr)ψ̃(Λ(αr))

[1− j(ρ0, αr)]ψ̃(Λ(αr))
. (4.36)

Note that ∆Tr(ρ0)→ 1 in the limit γ →∞. Example plots of the normalized MFPT
∆Tr(ρ0) as a function of r are shown in Fig. 5 for d = 1, 2. (Similar results hold for
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d = 3.) It can be seen that as ρ0 approaches ρ1, the MFPT resetting curve switches
from a monotonically increasing function of r to a unimodal function with a minimum
at some nonzero value of r.

5. Discussion

In this paper we have shown how combining stochastic resetting with generalized
diffusion-mediated surface reactions leads to a non-trivial boundary value problem for
the joint probability density or generalized propagator of the particle position and the
boundary local time. If only the position of the particle is reset, then resetting is not
governed by a renewal process, and one has to take a double transform with respect
to t and the local time in order to solve the propagator BVP. It is then necessary
to invert the Laplace transform with respect to the local time in order to determine
the corresponding survival probability. On the other hand, simultaneous position and
local time resetting is governed by a renewal process and one can express the survival
probability with resetting in terms of the survival probability without resetting. The
analysis of the MFPT for absorption is then relatively straightforward. We compared
the two types of resetting protocol by calculating the MFPT for absorption in the case
of a spherically symmetric surface.

One interesting topic for future work is to explore plausible physical mechanisms
for local time resetting, based on the hypothesis that the rate of absorption depends on
some internal state of the particle. As we have recently shown elsewhere [6], it is also
possible to develop a theory of diffusion-mediated reactions in the case of targets whose
interiors are partially absorbing. Now the particle can freely enter and exit U , and
is absorbed probabilistically when inside U . The main difference between absorption
by the target boundary and target interior is that the latter involves the occupation
time (accumulated time that the particle spends within U) rather than the local time.
Nevertheless, one can derive a BVP for the associated propagator and incorporate
partial absorption using a stopping occupation time distribution. Stochastic resetting
can then be incorporated into the BVP along analogous lines to this paper. (The
specific case of constant reactivity was developed in Ref. [35].)
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