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Abstract. In this paper we consider diffusion in a domain Ω containing a
partially absorbing target M with position and occupation time resetting. The
occupation time At is a Brownian functional that determines the amount of time
that the particle spends in M over the time interval [0, t]. We assume that there
exists some internal state Ut of the particle at time t which is modified whenever
the particle is diffusing within M. The state Ut is taken to be a monotonically
increasing function of At, and absorption occurs as soon as Ut crosses some fixed
threshold. We first show how to analyze threshold absorption in terms of the joint
probability density or generalized propagator P (x, a, t|x0) for the pair (Xt, At)
in the case of a non-absorbing substrate M, where Xt is the particle position at
time t and x0 is the initial position. We then introduce a generalized stochastic
resetting protocol in which both the position Xt and the internal state Ut are
reset to their initial values, Xt → x0 and Ut → 0, at a Poisson rate r. The
latter is mathematically equivalent to resetting the occupation time, At → 0.
Since resetting is governed by a renewal process, the survival probability with
resetting can be expressed in terms of the survival probability without resetting,
which means that the statistics of absorption can be determined by calculating
the double Laplace transform of P (x, a, t|x0) with respect to t and a. In order
to develop the basic theory, we focus on one-dimensional (1D) diffusion with
M given by a finite or semi-infinite interval, and explore how the MFPT with
resetting depends on various model parameters. We also compare the threshold
mechanism with the classical case of a constant absorption rate.
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1. Introduction

One of the characteristic features of diffusion in Rd with stochastic resetting is that
the mean first passage time (MFPT) to reach the surface ∂M of some targetM⊂ Rd
is rendered finite [10, 11, 12]. Assuming that the position of the particle is reset to
its initial location x0 /∈ M at a constant rate r (Poissonian resetting), one typically
finds that the MFPT is a unimodal function of r with a minimum at an optimal value
ropt [10, 11, 12]. The existence of an optimal resetting rate is due to two factors.
First, for diffusion in an unbounded domain, the MFPT to reach ∂M is infinite in the
absence of resetting (r → 0). This holds irrespective of whether diffusion is recurrent
(d = 1, 2) or transient (d ≥ 3). Second, the MFPT is also infinite in the limit r →∞,
since resetting to x0 happens so often that the particle never has enough time to
reach ∂M. The situation changes for diffusion in a bounded domain Ω, since the
MFPT is finite in the limit r → 0. In this case, one observes a phase transition
from unimodal to monotonic behavior as the size of the domain |Ω| is reduced [33].
Analogous results are found for a wide range of stochastic processes with resetting,
including non-diffusive processes such as Levy flights [22] and active run and tumble
particles [13, 3], diffusion in switching environments [4, 5, 28] or potential landscapes
[29], resetting followed by a refractory period [14, 27], and resetting with finite return
times [30, 31, 26, 2, 32, 6]. (For further generalizations and applications see the review
[15] and references therein.)

Most studies of FPT problems with resetting assume that the target boundary is
totally absorbing. Recently we have considered the case of partially absorbing surfaces
[9], in which we adopted a probabilistic model of diffusion-mediated surface reactions
developed by Grebenkov [17, 18, 19, 20]. The latter exploits the fact that diffusion
in a domain with a totally reflecting surface can be implemented probabilistically in
terms of so-called reflected Brownian motion, which involves the introduction of a
Brownian functional known as the boundary local time [23, 25, 24]. The local time
characterizes the amount of time that a Brownian particle spends in the neighborhood
of a point on the boundary. In the encounter-based approach, one considers the joint
probability density or propagator P (x, `, t|x0) for the pair (Xt, `t) in the case of a
perfectly reflecting surface, where Xt and `t denote the particle position and local
time, respectively. The propagator satisfies a corresponding boundary value problem
(BVP), which can be derived using integral representations [19] or path integrals [7].
The effects of surface reactions are then incorporated by introducing the stopping
time T = inf{t > 0 : `t > ̂̀}, with ̂̀ a so-called stopping local time [19]. Given the

probability distribution Ψ(`) = P[̂̀> `], the marginal probability density for particle
position is defined according to p(x, t|x0) =

´∞
0

Ψ(`)P (x, `, t|x0)d`. It can be shown
that the classical Robin boundary condition for the diffusion equation corresponds
to the exponential distribution Ψ(`) = e−γ`, where γ = κ0/D. (Stochastic resetting
for 1D diffusion with a Robin boundary condition has also been analyzed in Ref.
[35].) One natural generalization of the exponential distribution is obtained by taking
the reactivity to depend on the local time ` (or the number of surface encounters),
that is, κ = κ(`). A non-trivial feature of partially absorbing surfaces with non-
constant reactivities is that one has to maintain a memory of the current boundary
local time under reset in order to correctly account for the statistics of absorption.
This means that the resetting protocol is not given by a renewal process [8]. In
order to recover a renewal process, we introduced a modified resetting rule in which
both the position of the particle and the local time were reset. We found that the
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effects of a partially absorbing surface on the mean first passage time (MFPT) for
total absorption increases significantly if local time resetting is included. That is, the
MFPT for a totally absorbing surface is increased by a multiplicative factor when
the local time is reset, whereas the MFPT is increased additively when only particle
position is reset.

In this paper we extend the theory of diffusion with local time resetting to the case
of occupation time resetting. The occupation time At is also a Brownian functional,
but it determines the amount of time a diffusing particle spends within the interior
of a target M rather than in a neighborhood of the boundary ∂M. As we have
shown elsewhere [7, 8], the generalized propagator P (x, a, t|x0) for the pair (Xt, At)
is the natural analog of the local time propagator in the case of a partially absorbing
substrate M. Here we assume that there exists some internal state Ut of the particle
at time t which is modified whenever the particle is diffusing within M. The state
Ut is taken to be a monotonically increasing function of the occupation time At, and
absorption occurs as soon as Ut crosses some fixed threshold. We then introduce a
generalized stochastic resetting protocol in which both the position Xt and the internal
state Ut are reset to their initial values, Xt → x0 and Ut → 0, at a Poisson rate r. The
latter is mathematically equivalent to resetting the occupation time, At → 0. Since
resetting is governed by a renewal process, the survival probability with resetting
can be expressed in terms of the survival probability without resetting, which means
that the statistics of absorption can be determined by calculating the double Laplace
transform of P (x, a, t|x0) with respect to t and a. (The resetting of an internal state
was briefly introduced within the context of local time resetting [9], but the details of
such a mechanism were not explored.)

In order to develop the basic theory, we focus on one-dimensional (1D) diffusion
and take M to be a finite or semi-infinite interval. In section 2, we solve the BVP
for the generalized propagator in the absence of resetting, and determine the flux due
to absorption within M. In section 3, we incorporate position and occupation time
resetting into the propagator BVP and describe the threshold absorption mechanism.
We also use renewal theory to express the survival probability with resetting in terms of
the survival probability without resetting. This then allows us to compute the MFPT
for absorption with resetting, Tr, in terms of the probability flux without resetting,
which was calculated in section 2. In section 4 we explore how Tr depends on model
parameters, including the resetting rate r, the absorption threshold, and the size of
the absorbing and non-absorbing regions. We also compare our threshold model with
the classical case of a constant absorption rate (the analog of the Robin boundary
condition), which was analyzed in some detail elsewhere [34]. One novel feature
of threshold absorption is that the MFPT can exhibit a unimodal (non-monotonic)
dependence on r even when the particle starts at the boundary of (or within) the
absorbing region.

2. Partially absorbing interval (no resetting)

Consider a particle diffusing in the interval Ω = [−L,L′] with a partially absorbing
subinterval M = [−L, 0] and reflecting boundary conditions at x = −L,L′, see Fig.
1. Following Refs. [7, 8], we model the absorption process in terms of a generalized
propagator, which is the joint probability density for particle position Xt and the so-
called occupation time At in the absence of absorption. (This is a natural extension
of the corresponding propagator for surface-based absorption, which involves the
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reflectingreflecting

x = -L x = L'

Figure 1. Diffusion in the interval Ω = [−L′, L] with a partially absorbing
subinterval M = [−L′, 0].

boundary local time [19, 20].) The occupation time is a Brownian functional [24]
defined according to

At =

ˆ t

0

IM(Xτ )dτ. (2.1)

Here IM(x) denotes the indicator function of the set M ⊂ Ω, that is, IM(x) = 1 if
x ∈ M and is zero otherwise. Hence, At specifies the amount of time the particle
spends within M over the time interval [0, t]. We also take X0 = x0 and A0 = 0.
Denoting the generalized propagator by P (x, a, t|x0) and Q(x, a, t|x0) for x ∈ [0, L′]
and x ∈ [−L, 0], respectively, we have the BVP [7]

∂P (x, a, t|x0)

∂t
= D

∂2P (x, a, t|x0)

∂x2
, 0 < x < L′, (2.2a)

∂Q(x, a, t|x0)

∂t
= D

∂2Q(x, a, t|x0)

∂x2
,

−
(
∂Q

∂a
(x, a, t|x0) + δ(a)Q(x, 0, t|x0)

)
, −L < x < 0, (2.2b)

∂P (x, a, t|x0)

∂x

∣∣∣∣
x=L′

= 0,
∂Q(x, a, t|x0)

∂x

∣∣∣∣
x=−L

= 0. (2.2c)

These are supplemented by matching conditions at the interface x = 0,

P (0, a, t|x0) = Q(0, a, t|x0),
∂P (x, a, t|x0)

∂x

∣∣∣∣
x=0

=
∂Q(x, a, t|x0)

∂x

∣∣∣∣
x=0

, (2.2d)

and the initial conditions P (x, a, 0|x0) = δ(x− x0)δ(a), Q(x, a, 0|x0) = 0. We assume
that the particle starts out in the non-absorbing region. (The analysis is easily
modified if x0 ∈ [−L, 0].) Next we introduce the stopping time condition

T = inf{t > 0 : At > Â}, (2.3)

where Â is a random variable with probability distribution Ψ(a). Heuristically
speaking, T is a random variable that specifies the time of absorption in [−L, 0), which

is the event that At first crosses a randomly generated threshold Â. The marginal
probability density for particle position Xt is then [7]

p(x, t|x0) =

ˆ ∞
0

Ψ(a)P (x, a, t|x0)da, 0 ≤ x ≤ L′, (2.4a)

q(x, t|x0) =

ˆ ∞
0

Ψ(a)Q(x, a, t|x0)da, −L ≤ x ≤ 0. (2.4b)

Given the marginal probability densities, we can define the survival probability
S(x0, t) that the particle hasn’t been absorbed up to time t, given that it started at
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x0:

S(x0, t) =

ˆ L′

0

p(x, t|x0)dx+

ˆ 0

−L
q(x, t|x0)dx

=

ˆ ∞
0

Ψ(a)

[ˆ L′

0

P (x, a, t|x0)dx+

ˆ 0

−L
Q(x, a, t|x0)dx

]
da. (2.5)

Differentiating both sides with respect to t, and using equations (2.2a)–(2.2c) implies
that

∂S(x0, t)

∂t
=

ˆ ∞
0

Ψ(a)

[ˆ L′

0

D
∂2P (x, a, t|x0)

∂x2
dx+

ˆ 0

−L
D
∂2P (x, a, t|x0)

∂x2
dx

]
da

−
ˆ ∞
0

Ψ(a)

ˆ 0

−L

[
∂Q

∂a
(x, a, t|x0) + δ(a)Q(x, 0, t|x0)

]
dx da. (2.6)

Applying the divergence theorem to the first two integrals on the right-hand side,
imposing the Neumann boundary condition on x = −L,L′ and flux continuity at
x = 0 shows that these two integrals cancel. Hence, using integration by parts we find
that

∂S(x0, t)

∂t
= −

ˆ ∞
0

ψ(a)

ˆ 0

−L
Q(x, a, t|x0)dx da = −J(x0, t), (2.7)

where ψ(a) = −Ψ′(a) and J(x0, t) is the probability flux due to absorption within
[−L, 0]. Finally, Laplace transforming equation (2.7) with respect to t and noting
that S(x0, 0) = 1 gives

sS̃(x0, s)− 1 = −J̃(x0, s) (2.8)

with f̃(t) ≡
´∞
0
f(t)e−stdt. The probability density of the stopping time T , equation

(3.1), is given by −∂S/∂t so that the MFPT (if it exists) is

T (x0) = −
ˆ ∞
0

t
∂S(x0, t)

∂t
dt =

ˆ ∞
0

S(x0, t)dt = S̃(x0, 0) = − ∂J̃(x0, s)

∂s

∣∣∣∣∣
s=0

. (2.9)

Similarly, higher order moments of the FPT density can be obtained in terms of higher
order derivatives of J̃(x0, s).

As we have shown elsewhere [8], the simplest method for solving the propagator
BVP is to take a double Laplace transform with respect to both t and a by setting

P(x, z, s|x0) =

ˆ ∞
0

e−za
[ˆ ∞

0

e−stP (x, a, t|x0)dt

]
da, (2.10a)

Q(x, z, s|x0) =

ˆ ∞
0

e−za
[ˆ ∞

0

e−stQ(x, a, t|x0)dt

]
da, (2.10b)

This yields the BVP

D
∂2P(x, z, s|x0)

∂x2
− sP(x, z, s|x0) = −δ(x− x0), 0 < x < L′, (2.11a)

D
∂2Q(x, z, s|x0)

∂x2
− (s+ z)Q(x, z, s|x0) = 0, −L < x < 0 (2.11b)

∂P(x, z, s|x0)

∂x

∣∣∣∣
x=L′

= 0,
∂Q(x, z, s|x0)

∂x

∣∣∣∣
x=−L

= 0, (2.11c)

P(0, z, s|x0) = Q(0, z, s|x0),
∂P(x, z, s|x0)

∂x

∣∣∣∣
x=0

=
∂Q(x, z, s|x0)

∂x

∣∣∣∣
x=0

. (2.11d)
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The corresponding solution is [8]

P(x, z, s|x0) =
1

Φ(z, s)D

coshα(s)(L′ − x) coshα(s)(L′ − x0)

cosh2 α(s)L′
+G1(x, s|x0), (2.12a)

Q(x, z, s|x0) =
1

Φ(z, s)D

coshα(s+ z)(L+ x)

coshα(s+ z)L

coshα(s)(L′ − x0)

coshα(s)L′
, (2.12b)

where α(s) =
√
s/D,

Φ(z, s) ≡ α(s) tanh[α(s)L′] + α(s+ z) tanh[α(s+ z)L]. (2.13)

and G1 is the 1D Green’s function that satisfies equation (2.11a) with a Dirichlet
boundary condition at x = 0 and a Neumann boundary condition at x = L′. In
particular,

G1(x, s|x0) =
H(x0 − x)g(x, s)ĝ(x0, s) +H(x− x0)g(x0, s)ĝ(x, s)√

sD cosh(
√
s/DL′)

, (2.14)

where H(x) is the Heaviside function and

g(x, s) = sinh
√
s/Dx, and ĝ(x, s) = cosh

√
s/D(L′ − x). (2.15)

Suppose that z = κ0 for some fixed rate κ0. Equations (2.11a)–(2.11d) are then
equivalent to a classical BVP for diffusion with a constant rate of absorption κ0 within
M. In other words, a constant rate of absorption is equivalent to an exponential
distribution Ψ(a) = e−κ0a. (This is analogous to the equivalence of the classical
Robin BVP and a partially absorbing surface with an exponential stopping local
time distribution [19].) Hence, we can identify P(x, κ0, t|x0) and Q(x, κ0, t|x0) as
the marginal probability densities when the absorption rate is constant, and

J̃(x0, s) =

ˆ 0

−L
Q(x, κ0, s|x0)dx. (2.16)

However, various absorption processes are better modeled in terms of a reactivity
that is a function of the amount of time a particle spends in contact with a substrate
[1, 16]. That is, the substrate may be progressively activated by repeated encounters
with a diffusing particle, or an initially highly reactive surface may become less active
due to multiple interactions with the particle (passivation). Both of these cases can
be modeled by considering an a-dependent reactivity κ = κ(a) with an associated
stopping occupation time distribution

Ψ(a) = exp

(
−
ˆ a

0

κ(a′)da′
)
. (2.17)

Now we have to invert with respect to z to obtain the flux:

J̃(x0, s) =

ˆ ∞
0

ψ(a)

[ˆ 0

−L
L−1a [Q(x, z, s|x0)]dx

]
da. (2.18)

(Since we will ultimately be interested in FPT moments, there is no need to invert
with respect to s.)
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3. Position and occupation time resetting

Following along analogous lines to our recent work on partially reactive boundaries
[9], we modify the propagator BVP (2.2a)–(2.2d) in order to incorporate the
effects of stochastic resetting. Suppose that, prior to absorption, the pair (Xt, At)
instantaneously resets to the state (x0, 0) at random times determined by a Poisson
process with rate r, after which diffusion is immediately resumed. The instantaneous
resetting of particle position has been studied in a wide variety of stochastic processes
[15], and is an idealized version of a random intermittent search process in which
the ballistic or active phase is instantaneous. The interpretation of occupation time
resetting (or local time resetting in the case of partially reactive boundaries) is less
obvious. As we highlighted at the end of section 2, one of the motivations for
considering generalized models of absorption is that the diffusing particle can alter
the reactivity of the absorbing substrate. This is illustrated in Fig. 2 for a partially
absorbing substrateM⊂ R2. However, another possible scenario is that the substrate
modifies an internal state of the particle, which in turn affects the probability of
absorption, see Fig. 3. (One could also imagine a combination of the scenarios shown
in Figs. 2 and 3.) More specifically, suppose that the particle has some internal state
Ut = U(At) with U(0) = 0 and U ′(a) > 0 for all a ≥ 0. That is, Ut is a monotonically
increasing function of the occupation time. Now introduce the stopping time condition

T = inf{t > 0 : Ut > Û}, (3.1)

(i)

initial state

(ii)

(iii)(iv)

M

Figure 2. Mechanism for non-constant reactivity within a bounded domain M,
in which each interval of particle-substrate interactions modifies the state of the
substrate (as indicated by the substrate shade). (i,iii) Particle diffuses outside
M so there is no increase in the occupation time nor change of state. (ii,iv)
Particle diffuses withinM such that the occupation time increases and there is a
corresponding change of state
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(i)
initial state

(ii)

(iii)(iv)

M

Figure 3. Same as Fig. 2 except that each interval of particle-substrate
interactions modifies the state of the particle rather than the substrate (as
indicated by the particle shade).

where Û is a random variable with probability density p(u). The random variable
T specifies the time of absorption within M, which corresponds to the event that
the internal state Ut first crosses the randomly generated threshold Û . The marginal
probability density for particle position Xt is then

p(x, t|x0)dx = P[Xt ∈ (x, x+ dx), t < T |X0 = x0].

If Ut is a nondecreasing process, then the condition t < T is equivalent to the condition
Ut < Û . This implies that

p(x, t|x0)dx = P[Xt ∈ (x, x+ dx), Ut < Û |X0 = x0]

=

ˆ ∞
0

du p(u)P[Xt ∈ (x, x+ dx), Ut < u|X0 = x0]

=

ˆ ∞
0

du p(u)P[Xt ∈ (x, x+ dx), At < U−1(u)|X0 = x0]

=

ˆ ∞
0

du p(u)

ˆ U−1(u)

0

da′P (x, a′, t|x0) dx

=

ˆ ∞
0

da
p(U(a))

U ′(a)

ˆ a

0

da′P (x, a′, t|x0) dx

Finally, using the identityˆ ∞
0

du f(u)

ˆ u

0

du′ g(u′) =

ˆ ∞
0

du′ g(u′)

ˆ ∞
u′

du f(u)

for arbitrary integrable functions f, g, we have

p(x, t|x0) =

ˆ ∞
0

Ψ(a)P (x, a, t|x0)da, (3.2)
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M

reset

x0

(i)

(ii)

(iii)

time t

x0

(b)

0
time t

At

(c)

Xt

ah
*

(a)

-L

L´

Figure 4. (a) Same as Fig. 3 except that now the particle can randomly reset
its position and internal state Ut at a rate r. (b) Schematic illustration of the
time course of position Xt ∈ [−L,L′] under the resetting rule Xt → x0. (c)
Corresponding time course of the occupation time At under the effective resetting
rule At → 0. The particle is finally absorbed when At crosses the threshold ah
(indicated by an asterix).

with

ψ(a) = −Ψ′(a) =
p(U(a))

U ′(a)
. (3.3)

One could take ψ(a) to be one of the distributions considered in previous studies [19, 7],
such as the gamma and Paretto-II distributions. An alternative choice, which we will
focus on in this paper, is to assume that absorption takes place as soon as the internal
state Ut crosses a threshold uh. That is, p(u) = δ(uh − u). Setting ah = U−1(uh), we
have ψ(a) = δ(U(ah)− u)/U ′(a) = δ(ah − a).

Given the scenario shown in Fig. 3, we can now introduce the aforementioned
resetting protocol: whenever the particle resets to x0, its internal state Ut is also
reset to its initial value, see Fig. 4(a). Mathematically speaking, this is equivalent
to resetting the occupation time, At → 0. If this is combined with the threshold
absorption mechanism, then a schematic time course of Xt and At for the 1D
configuration in Fig. 1 is of the form shown in Fig. 4(b,c). Let Pr(x, a, t|x0) and
Qr(x, a, t|x0) denote the propagator with resetting outside and insideM, respectively,
in the case of a non-absorbing target. The forward equations with resetting take the
form

∂Pr(x, a, t|x0)

∂t
= D

∂2Pr(x, a, t|x0)

∂x2
− rPr(x, a, t|x0) + rδ(x− x0)δ(a), 0 < x < L′.

(3.4a)

∂Qr(x, a, t|x0)

∂t
= D

∂2Qr(x, a, t|x0)

∂x2
− rQr(x, a, t|x0), (3.4b)

−
(
∂Qr
∂a

(x, a, t|x0) + δ(a)Qr(x, 0, t|x0)

)
, −L < x < 0,
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∂Pr(x, a, t|x0)

∂x

∣∣∣∣
x=L′

= 0,
∂Qr(x, a, t|x0)

∂x

∣∣∣∣
x=−L

= 0 (3.4c)

Pr(0, a, t|x0) = Qr(0, a, t|x0),
∂Pr(x, a, t|x0)

∂x

∣∣∣∣
x=0

=
∂Qr(x, a, t|x0)

∂x

∣∣∣∣
x=0

. (3.4d)

The additional terms −rPr(x, a, t|x0) and −rQr(x, a, t|x0) in equations (3.4a) and
(3.4b), respectively, represent the loss of probability at each point x ∈ [0, L′] and
x ∈ [−L, 0] due to resetting at a uniform rate r. This leads to a net flux into the reset
point x0 ∈ [0, L]. Performing the double Laplace transform along similar lines to the
BVP without resetting, we have

D
∂2Pr(x, z, s|x0)

∂x2
− (r + s)Pr(x, z, s|x0) = −

[
1 +

r

s

]
δ(x− x0), 0 < x < L′, (3.5a)

D
∂2Qr(x, z, s|x0)

∂x2
− (s+ r + z)Qr(x, z, s|x0) = 0, −L < x < 0 (3.5b)

∂Pr(x, z, s|x0)

∂x

∣∣∣∣
x=L′

= 0,
∂Qr(x, z, s|x0)

∂x

∣∣∣∣
x=−L

= 0, (3.5c)

Pr(0, z, s|x0) = Qr(0, z, s|x0),
∂Pr(x, z, s|x0)

∂x

∣∣∣∣
x=0

=
∂Qr(x, z, s|x0)

∂x

∣∣∣∣
x=0

(3.5d)

It immediately follows that the resetting protocol is given by a renewal process
with respect to the full state space (Xt, At). This implies that the propagator satisfies
a first renewal equation of the form

Qr(x, a, t|x0) = e−rtQ(x, a, t|x0) + r

ˆ t

0

e−rτQr(x, a, t− τ |x0)dτ, −L < x < 0, (3.6)

and similarly for Pr(x, a, t|x0) with x ∈ [0, L′]. (The propagators Q and P are the
solutions to the BVP without resetting, see equations (2.2a)–(2.2d).) The first term
on the right-hand side of equation (3.6) represents all trajectories that do not undergo
any resettings, which occurs with probability e−rt. The second term represents the
complementary set of trajectories that reset at least once with the first reset occurring
at time τ . Laplace transforming the renewal equation and rearranging shows that

Q̃r(x, a, s|x0) =
(

1 +
r

s

)
Q̃(x, a, r + s|x0), (3.7)

Multiplying both sides of equation (3.7) by s and taking the limit s → 0, then
establishes that there exists a non-equilibrium stationary state (NESS)

Q∗r(x, a|x0) = lim
t→∞

Qr(x, a, t|x0) = lim
s→0

sQ̃r(x, a, s|x0) = rQ̃(x, a, r|x0). (3.8)

Similarly, P ∗r (x, a|x0) = rP̃ (x, a, r|x0).
In contrast to the case of partial absorption without resetting, we cannot simply

take pr(x, t|x0) =
´∞
0

Ψ(a)Pr(x, a, t|x0)da and qr(x, t|x0) =
´∞
0

Ψ(a)Qr(x, a, t|x0)da
since At is no longer a monotonically increasing function of time t. (A similar issue
holds for partially absorbing surfaces and the boundary local time [9].) Therefore, we
first partition the set of contributing paths according to the number of resettings:

pr(x, t|x0)dx = e−rtP[Xt ∈ [x, x+ dx]|X0 = x0, T > t, It = 0] (3.9)

+ re−rtP[Xt ∈ [x, x+ dx]|X0 = x0, T > t, It = 1]

+ r2e−rtP[Xt ∈ [x, x+ dx]|X0 = x0, T > t, It = 2] + . . .
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Here T = inf{t > 0, At > Â}, see equation (3.1), and It denotes the number of
resettings in the interval [0, t]. Then, for a given number of resettings, we decompose
a path into time intervals over which At is monotonically increasing:

pr(x, t|x0) = e−rtp0(x, t|x0) + re−rt
ˆ t

0

p0(x, τ |x0)S(x0, t− τ)dτ (3.10)

+ re−rt
ˆ t

0

ˆ t−τ

0

p0(x, τ |x0)S(x0, t− τ)S(x0, t− τ − τ ′)dτ ′dτ + . . .

where S is the survival probability without resetting. Laplace transforming the above
equation and using the convolution theorem shows that

p̃r(x, s|x0) = p̃(x, r + s|x0) + rp̃(x, r + s|x0)S̃(x0, r + s)

+ r2p̃(x, r + s|x0)S̃(x0, r + s)2 + . . . (3.11)

Summing the geometric series and performing an analogous decomposition of
qr(x, t|x0) yields the results

p̃r(x, s|x0) =
p̃(x, r + s|x0)

1− rS̃(x0, r + s)
, 0 < x < L′ (3.12a)

q̃r(x, s|x0) =
q̃(x, r + s|x0)

1− rS̃(x0, r + s)
, −L < x < 0. (3.12b)

Finally, integrating with respect to x gives

S̃r(x0, s) ≡
ˆ L′

0

p̃r(x, s|x0)dx+

ˆ 0

−L
q̃r(x, s|x0)dx

=

ˆ L′

0

p̃(x, r + s|x0)

1− rS̃(x0, r + s)
dx+

ˆ 0

−L

q̃(x, r + s|x0)

1− rS̃(x0, r + s)
dx

=
S̃(x0, r + s)

1− rS̃(x0, r + s)
. (3.13)

4. Analysis of the MFPT

Taking the limit s → 0 in equation (3.13) and denoting the MFPT with resetting by
Tr(x0) shows that

Tr(x0) =
S̃(x0, r)

1− rS̃(x0, r)
=

1− J̃(x0, r)

rJ̃(x0, r)
, (4.1)

with S̃(x0, r) = [1 − J̃(x0, r)]/r and J̃(x0, r) given by equation (2.18) with s = r. In
particular, for the threshold density ψ(a) = δ(a− ah), we have

J̃(x0, r) =

ˆ 0

−L
L−1ah [Q(x, z, r|x0)]dx (4.2)

with the Laplace transformed propagator Q(x, z, r|x0) given by the solution (2.12b).
For the sake of illustration, we fix the initial position to be on the interface, that is,
x0 = 0 so that (after dropping the dependence on x0)

Q(x, z, r) =
1

α(r) tanh[α(r)L′] + α(r + z) tanh[α(r + z)L]

coshα(r + z)(L+ x)

D coshα(r + z)L
.

(4.3)
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Figure 5. MFPT Tr for an unbounded partially absorbing interval (L → ∞)
and a threshold distribution Ψ(a) = H(ath − a). (a) Plot of Tr as a function of
the reset rate for various values of ath and L′ = 10. (b) Corresponding plots for
various lengths L′ and ath = 1. We also set D = 1.

We will explore the dependence of Tr = Tr(0) on the resetting rate r, threshold ah
and the lengths L,L′ of the absorbing and non-absorbing intervals. The main step is
evaluating the inverse Laplace transform with respect to z along analogous lines to
Ref. [8]. We first consider the simpler case of an unbounded absorbing substrate.

4.1. Unbounded partially absorbing substrate (L→∞)

In the limit L → ∞ we have tanh(
√

(s+ z)/DL) → 1 and the z-dependence of the
solution (4.3) simplifies significantly:

Q(x, z, r) =
eα(r+z)x

α(r + z) + α(r) tanh[α(r)L′]

1

D
=

1√
D

e−
√

[r+z]/D|x|
√
r + z +

√
r tanh[

√
r/DL′]

. (4.4)

Integrating with respect to x gives

R(z, r) ≡
ˆ 0

−∞
Q̃(x, z, r)dx =

1

r + z +
√
r(r + z) tanh[

√
r/DL′]

. (4.5)

Using a standard table of Laplace transforms, we have the transform pair

f(t) = ek
2terfc(k

√
t), f̃(s) =

1√
s[
√
s+ k]

. (4.6)

Hence,

R̃(a, r) = exp
(
ra tanh2[

√
r/DL′]− ra

)
erfc

(√
ra tanh(

√
r/DL′)

)
. (4.7)

Combining with equations (4.1) and (4.2) then shows that the MFPT for a particle
starting at x0 = 0 is

Tr =
1− J̃(r)

rJ̃(r)
, J̃(r) = R̃(ah, r). (4.8)

Example plots of Tr against the reset rate r are shown in Fig. 5 for various choices
of the length L′ of the non-absorbing domain and the occupation time threshold ath.
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ath for various resetting rates and L′ = 10. Other parameters are as in Fig. 5.

For sufficiently large L′, the MFPT plot for a given threshold ath exhibits the standard
unimodal shape with a minimum MFPT at some optimal reset rate ropt. As expected,
the MFPT is an increasing function of ath since the probability of absorption is a
decreasing function of ath. (This is further illustrated in Fig. 6(b)). We find that ropt
is also a decreasing function of ath. However, for a given ath, reducing the length L′

leads to a phase transition from a unimodal MFPT curve to a monotonically increasing
curve. This is consistent with previous studies of 1D diffusion in a finite interval with
absorbing boundaries [33]. The underlying explanation is that, although diffusion in R
is recurrent rather than transient, the MFPT to reach a target point x̄ ∈ R is infinite
in the absence of resetting. This means that Tr → ∞ as r → 0. The existence of a
minimum follows from the observation that Tr →∞ in the limit r →∞, since resetting
happens so often that the target location x̄ is never reached (assuming x̄ 6= x0). For
finite L′, the MFPT T0 is already finite so that taking r > 0 does not necessarily
reduce the MFPT. This is illustrated in Fig. 6(a) where we plot the initial slope
∆T = dT/dr|r=0 of the MFPT curve as a a function of ath and various lengths L′. A
nonzero optimal resetting rate exists provided that ∆T < 0. It can be seen that for
sufficiently large L′, the curve ∆T versus ath is unimodal such that ∆T crosses zero
at a critical threshold, beyond which ropt = 0. This critical threshold increases with
L′. In Fig. 6(b) we plot Tr as a function of ath for various resetting rates. Note that
the Tr curves switch from concave down to concave up as r increases.

As a point of comparison, in Fig. 7 we show MFPT plots for the classical case of a
constant absorption rate κ0, which is equivalent to the exponential distribution Ψ(a) =

e−κ0a. The MFPT is still given by equation (4.1) except that J̃(r) = κ0R(κ0, r). We
find that if x0 = 0 then there is a major difference in the qualitative behavior compared
to the threshold case. That is, in Fig. 7(a) the MFPT curves are monotonic functions
of r for all lengths L′, switching from monotonically decreasing to monotonically
increasing functions as L′ is reduced. This is a consequence of the fact that there is
no threshold for absorption so that when L′ is large, it is beneficial to reset to x0 as
fast as possible. This no longer holds when x0 > 0, where we recover similar behavior
to Fig. 5(b), see Fig. 7(b). Finally, note that in the case of threshold absorption,
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Tr can also exhibit a unimodal dependence on r when the particle starts within the
absorbing region M, that is, x0 < 0.

4.2. Bounded partially absorbing substrate (L <∞)

The z-dependence of the solution (4.3) is more complicated when L is finite. For the
sake of illustration, let L′ →∞ so that (for x0 = 0)

Q(x, z, r) =
1

Φ∞(z, r)D

coshα(r + z)(L+ x)

coshα(r + z)L
, −L < x < 0, (4.9)

where

Φ∞(z, r) ≡ α(r) + α(r + z) tanh[α(r + z)L]. (4.10)

Integrating with respect to x yields

R(z, r) =
1

Φ∞(z, r)D

tanhα(r + z)L

α(r + z)
. (4.11)

Following along analogous lines to Ref. [8], we express the inverse Laplace transform
as

R̃(a, r) =
1

2πi

ˆ c+i∞

c−i∞
eza

1

Φ∞(z, r)D

tanhα(r + z)L

α(r + z)
dz, (4.12)

with c, c > 0, chosen so that the Bromwich contour is to the right of all singularities of
R(z, r). Hence, the Bromwich integral (4.12) can be evaluated by closing the contour
in the complex z-plane and using the Cauchy residue theorem. The resulting contour
encloses a countably infinite number of poles, which correspond to the zeros of the
function Φ∞(z, s). (Since α(r + z)±1 tanh[α(r + z)L] are even functions of α(r + z),
it follows that z = −r is not a branch point and R(z, s) is single-valued.)

Setting Φ∞(z, r) = 0 in equation (4.10) and rearranging leads to the
transcendental equation

tanh y = −
√

r

r0

1

y
, r0 =

D

L2
, y = L

√
[r + z]/D. (4.13)
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Clearly (4.13) does not have any real solutions. However, there exists a countably
infinite number of pure imaginary solutions y = iωn, n ≥ 1, with ωn real such that

tanωn =

√
r

r0

1

ωn
. (4.14)

The corresponding zeroes in the z-plane are real and lie to the left of z = −s since
ωn 6= 0:

zn = −r − r0ω2
n, n ≥ 1. (4.15)

Example plots of the function Φ(z, r)/α(r) and its zeros are shown in Fig. 8. Finally,
applying Cauchy’s residue theorem, we find that

R̃(a, r) =
∑
n≥1

L

D∂zΦ∞(zn, r)
e−(r+r0ω

2
n)a

tanωn
ωn

, (4.16)

We have used α(zn + s) = iωn/L. Moreover, since tanωn/ωn =
√
r/r0/ω

2
n and

∂zΦ∞(zn, r) =
L

2D

(
tanωn
ωn

+ sec2 ωn

)
=

L

2D

(
1 +

√
r

r0

[
1 +

√
r

r0

]
1

ω2
n

)
, (4.17)

it follows that

R̃(a, r) = 2
∑
n≥1

e−(r+r0ω
2
n)a√

r0
r ω

2
n +

[
1 +

√
r
r0

] , (4.18)

which can then be used to determine the MFPT according to equation (4.8).
For the sake of illustration, suppose that r � r0 so that the leading order root

ω1 ≈ 0. Substituting the approximation tanω1 ≈ ω1 into equation (4.14) implies
that ω1 ≈ (r/r0)1/4. The higher order roots are approximately equal to the nonzero
solutions of tanωn = 0, that is, wn ≈ nπ for n > 1. In this regime, equation (4.18)
reduces to the more explicit form

R̃(a, r) ≈ e−
√
r0ra + 2

∑
n≥2

e−r0n
2π2a√

r0
r n

2π2
, (4.19)
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In Fig. 9 we plot the corresponding MFPT Tr satisfying equation (4.1) under the
approximation (4.19). Since the non-absorbing domain is unbounded, we expect Tr
to exhibit unimodal behavior and to decrease as the size L of the absorbing interval
M increases. This is indeed found to be the case.

5. Conclusion

In this paper we considered a hypothetical mechanism for diffusion-mediated
absorption, see Figs. 3 and Fig. 4, based on the idea that interactions with a targetM
modify an internal state of a diffusing particle, such that once a critical state is reached,
the particle is absorbed. This provided the basis of a novel resetting protocol in which
both the position and occupation time of the particle are reset. To what extent such
an absorption mechanism can be implemented, either naturally or artificially, remains
to be seen. However, from a theoretical perspective, it widens the class of resetting
protocols to include Brownian functionals. Although we focused on the occupation
time At associated with the target interiorM, it is also possible to consider resetting of
the corresponding local time `t in cases where the target surface ∂M is reactive rather
than the interior [9]. As with other models of stochastic resetting [15], the resetting
processes considered here are an idealization of more realistic active processes in which
a particle returns to its initial position at some finite speed [30, 26, 2, 32], and there is
a refractory period before the particle starts diffusing again [14, 27]; the latter could
represent the time needed to reset the internal state of the particle. For simplicity, we
assumed that resetting is instantaneous and ignored the effects of refractory periods.
It would be interesting to explore the effects of delays in future work.

Finally, in this paper we developed the theory of occupation time resetting by
considering 1D diffusion, since the solution of the propagator BVP was relatively
straightforward. However, in the case of a bounded targetM, it was still necessary to
determine the inverse Laplace transform with respect to z by evaluating a Bromwich
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contour integral. As we have recently shown elsewhere [8], extending such an
analysis to higher-dimensional domains requires computing the Laplace transformed
propagator in terms of the spectral decomposition of a pair of Dirichlet-to-Neumann
operators. The latter reduce to scalars in the 1D case.
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