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Abstract. In this paper we consider a multiparticle version of a recent
probabilistic framework for studying diffusion-mediated surface reactions. The
basic idea of the probabilistic approach is to consider the joint probability density
or generalized propagator for particle position and the so-called boundary local
time. The latter characterizes the amount of time that a Brownian particle
spends in the neighborhood of a totally reflecting boundary; the effects of surface
reactions are then incorporated via an appropriate stopping condition for the local
time. The propagator is determined by solving a Robin boundary value problem,
in which the constant rate of reactivity is identified as the Laplace variable z
conjugate to the local time, and then inverting the solution with respect to z.
Here we reinterpret the propagator as a particle concentration in which surface
absorption is counterbalanced by particle source terms. We investigate conditions
under which there exists a non-trivial steady state solution, and analyze the
relaxation to steady state by calculating the corresponding accumulation time.
In particular, we show that the first two moments of the stopping local time
density have to be finite.
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1. Introduction

The classical diffusion equation ∂u(x, t)/∂t = D∇2u(x, t) for particle concentration
u in a bounded domain Ω can be interpreted as a conservation law describing the
flux of many particles moving from regions of high concentration to regions of low
concentration at a rate that depends on the local concentration gradient (Fick’s law).
In the case of a partially absorbing boundary ∂Ω with constant reactivity κ0 and
unit outward normal n, the corresponding boundary condition is of the Robin form
D∇u(x, t) · n + κ0u(x, t) = 0 for all x ∈ ∂Ω. Dirichlet and Neumann boundary
conditions are obtained in the limits κ0 → ∞ and κ0 → 0, respectively. If κ0 > 0
then the concentration vanishes in the large-time limit. On the other hand, if the
boundary ∂Ω is partitioned according to Ω = ∂Ω1 ∪ Ω2 with a Robin condition on
∂Ω2 and a constant flux condition D∇u · n = J0 on Ω1, then there exists a non-
trivial steady-state concentration u∗(x) = limt→∞ u(x, t). Moreover, the relaxation to
steady-state can be determined by treating the fractional deviation from the steady-
state concentration as a cumulative distribution whose mean is identified with the
so-called local accumulation time. In contrast to a global measure of the relaxation
rate based on the principal nonzero eigenvalue of the Laplacian, the accumulation
time takes into account the fact that different spatial regions can relax at different
rates. Accumulation times were originally used to estimate the time to form a protein
concentration gradient during morphogenesis [1, 2, 11], but have subsequently been
applied to a wider range of diffusion processes, including intracellular protein gradient
formation [3], search processes with stochastic resetting [4], and gap junctions [5].

It is well known that one can also formulate diffusion at the single-particle level by
considering the probability density p(x, t|x0) for the random position Xt of the particle
at time t given the initial position X0 = x0. The evolution equation for the probability
density in a bounded domain Ω is identical to the macroscopic diffusion equation with
homogeneous boundary conditions and the additional constraint

´
Ω
p(x, t)dx ≤ 1

for all t > 0. Indeed, one way to recover the macroscopic version is to consider
a large population of N independently diffusing particles and to set u(x, t) =´

Ω
u(x0)p(x, t|x0)dx0 where u(x0) is the initial concentration. Individual trajectories

of a single particle are generated by a stochastic differential equation (SDE) that, in
the case of pure diffusion in Rd is given by a Wiener process. However, incorporating
boundary conditions into the underlying SDE is non-trivial. In the case of a totally
absorbing boundary (Dirichlet), one simply stops the Brownian motion on the first
encounter between particle and boundary; the random time at which this event occurs
is known as the first passage time (FPT). On the other hand, in the case of a totally
reflecting boundary it is necessary to modify the stochastic process itself by introducing
a Brownian functional known as the boundary local time [16, 18, 10, 17]. The latter
determines the amount of time that a Brownian particle spends in the neighborhood
of points on the boundary. Probabilistic versions of the Robin boundary condition
can also be constructed [20, 19, 22].

One of the interesting features of the single-particle perspective is that one can
consider microscopic models of absorption that go beyond the constant reactivity
models underlying the Robin boundary condition. One such probabilistic framework
has been introduced by Grebenkov [12, 13, 14, 15], which we have recently extended
to a wider class of diffusion problems [6, 7, 8, 9]. The main idea is to consider
the joint probability density or generalized propagator P (x, `, t) for the pair (Xt, `t)
in the case of a perfectly reflecting boundary ∂Ω, where Xt and `t denote the
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particle position and local time, respectively. Partial absorption is then introduced
by terminating the diffusion process at the stopping time T = inf{t > 0 : `t > ̂̀},
where ̂̀ is a randomly distributed local time threshold with probability distribution
Ψ(`) = P[̂̀> `]. The marginal probability density for particle position is then defined
according to p(x, t) =

´∞
0

Ψ(`)P (x, `, t)d`. A crucial observation is that the classical
Robin boundary condition for the diffusion equation corresponds to the exponential
distribution Ψ(`) = e−γ`, where γ = κ0/D. This implies that one can obtain the
generalized propagator P (x, `, t) by Laplace transforming with respect to `, solving
the resulting Robin boundary value problem (BVP) with the corresponding Laplace
variable z acting as a constant reactivity, and then calculating the inverse Laplace
transform.

The general theory of single-particle diffusion in domains with partially absorbing
surfaces motivates developing the analogous theory at the macroscopic level of
multiparticle diffusion, which is the subject of the current paper. We proceed by
reinterpreting the generalized propagator as a generalized concentration U(x, `, t) with
an associated marginal concentration u(x, t) =

´∞
0

Ψ(`)U(x, `, t)d`. This allows us to
include additional source terms that counteract the loss of particles due to absorption.
We then investigate conditions under which there exists a non-trivial steady state
solution, and analyze the relaxation to steady state by calculating the corresponding
accumulation time. The structure of the paper is as follows. In section 2 we briefly
review the single-particle theory for a general bounded domain Ω ⊂ Rd. We formulate
the multiparticle version in section 3, and solve the resulting Robin BVP in Laplace
space using the spectral decomposition of a Dirichlet-to-Neumann operator. This
allows us to invert the Laplace transform with respect to the local time and identify
necessary conditions for the existence of a steady-state solution and the associated
accumulation time. These conditions require that various moments of the stopping
local time density are finite. Finally, we illustrate the theory by considering diffusion
in a finite interval (section 4) and in a spherical shell (section 5), where the Robin
BVP can be solved explicitly without recourse to spectral theory.

2. Partially absorbing surfaces and the local time propagator

In this section we describe the encounter-based method for analyzing single-particle
diffusion in domains with partially absorbing surfaces. Our presentation is equivalent
to previous versions [14, 6], but is developed in a form that is easily generalizable to the
multiparticle case. In particular, we focus on the BVP for the local time propagator
and its double Laplace transform.

Consider a particle diffusing in the bounded domain Ω with a partially absorbing
boundary ∂Ω. Let Xt ∈ Ω represent the position of the particle at time t. For the
moment suppose that ∂Ω is totally reflecting. The boundary local time is defined
according to [16, 18, 17, 12]

`t = lim
δ→0

D

δ

ˆ t

0

H(δ − dist(Xτ , ∂Ω))dτ, (2.1)

where H is the Heaviside function. Note that although `t has units of length due to
the additional factor of D, it essentially specifies the amount of time that the particle
spends in an infinitesimal neighborhood of the surface ∂Ω. Let P (x, `, t|x0) denote the
joint probability density or propagator for the pair (Xt, `t). The propagator satisfies
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a BVP that can be derived using integral representations [14] or path-integrals [6]:

∂P (x, `, t|x0)

∂t
= D∇2P (x, `, t|x0), P (x, `, 0|x0) = δ(x− x0)δ(`), x ∈ Ω, (2.2a)

−D∇P (x, `, t|x0) · n = DP (x, ` = 0, t|x0) δ(`) +D
∂

∂`
P (x, `, t|x0) for x ∈ ∂Ω, (2.2b)

P (x, ` = 0, t|x0) = −∇p∞(x, t|x0) · n for x ∈ ∂Ω, (2.2c)

where p∞ is the probability density in the case of a totally absorbing boundary:

∂p∞(x, t|x0)

∂t
= D∇2p∞(x, t|x0), (2.3a)

p∞(x, 0|x0) = δ(x− x0), x ∈ Ω, p∞(x, t|x0) = 0, x ∈ ∂Ω. (2.3b)

An intuitive interpretation of the boundary condition (2b) is that the rate at which
the local time increases is proportional to the flux into the boundary when `t > 0.
However, this process only starts once the particle has reached the surface for the first
time, which is identical to the case of a totally absorbing surface.

The BVP (2) can be solved by introducing the double Laplace transform

P(x, z, s) ≡
ˆ ∞

0

e−z`
ˆ ∞

0

e−stP (x, `, t)dtd`, (2.4)

with [14, 15, 6]

D∇2P(x, z, s|x0)− sP(x, z, s|x0) = −δ(x− x0), x ∈ Ω, (2.5a)

−∇P(x, z, s|x0) · n = zP(x, z, s|x0) for x ∈ ∂Ω. (2.5b)

Suppose that z ≡ γ0 = κ0/D for some constant κ0 and define the marginal density
p̃(x, s|x0) = P(x, κ0/D, s|x0). The BVP (2) for p̃(x, s|x0) is then identical to the
s-Laplace transformed diffusion equation in the case of a Robin boundary condition
on ∂Ω with a constant rate of reactivity κ0. In order to further understand this result,
we follow along the lines of Ref. [13, 14, 15] by introducing the absorption stopping

time T = inf{t > 0 : `t > ̂̀} with ̂̀ an exponentially distributed random variable

that represents a stopping local time. That is, P[̂̀ > `] = e−γ0`. Given that `t is

a nondecreasing process, the condition t < T is equivalent to the condition `t < ̂̀.
Define the marginal density p(x, t|x0) as

p(x, t|x0)dx ≡ P[Xt ∈ (x,x + dx), `t < ̂̀|X0 = x0]

=

ˆ ∞
0

d` γ0e−γ0`P[Xt ∈ (x,x + dx), `t < `|X0 = x0]

=

ˆ ∞
0

d` γ0e−γ0`
ˆ `

0

d`′[P (x, `′, t|x0)dx].

Using the identityˆ ∞
0

d` f(`)

ˆ `

0

d`′ g(`′) =

ˆ ∞
0

d`′ g(`′)

ˆ ∞
`′

d` f(`)

for arbitrary integrable functions f, g, we have

p(x, t|x0) =

ˆ ∞
0

e−γ0`P (x, `, t|x0)d`. (2.6)

Laplace transforming with respect to t immediately establishes that p̃(x, s|x0) satisfies
the BVP (2) with z = γ0. Hence, the Robin boundary condition is equivalent to an

exponential law for the stopping local time ̂̀t.
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The advantage of formulating the Robin boundary condition in terms of the
generalized propagator is that one can consider a more general probability distribution
Ψ(`) = P[̂̀> `] for the stopping local time ̂̀ such that [13, 14, 15]

p(x, t|x0) =

ˆ ∞
0

Ψ(`)P (x, `, t|x0)d` for x ∈ Ω. (2.7)

This accommodates a much wider class of surface reactions where, for example, the
reactivity κ(`) depends on the local time ` (or the number of surface encounters):

Ψ(`) = exp

(
− 1

D

ˆ `

0

κ(`′)d`′

)
. (2.8)

Laplace transforming equation (2.7) with respect to t gives

p̃(x, s|x0) =

ˆ ∞
0

Ψ(`)L−1
` [P(x, z, s|x0)]d` for x ∈ Ω, (2.9)

where P(x, z, s|x0) is the solution of the Robin BVP given by equations (2). That
is, the marginal density p̃(x, s|x0) for a general distribution Ψ(`) can be obtained by
solving a classical Robin BVP with effective reactivity κ = zD and then inverting the
Laplace transform with respect to z.

One important quantity of interest that can be obtained directly from p̃(x, s|x0)
is the MFPT for absorption. In order to show this, consider the probability flux

J(x0, t) = −D
ˆ
∂Ω

∇p(x, t|x0) · n dx. (2.10)

Multiplying both sides of equation (2b) with respect to the stopping local time
distribution Ψ(`) and integrating by parts with respect to ` givesˆ ∞

0

Ψ(`)∇P (x, `, t|x0) · n d` = −
ˆ ∞

0

ψ(`)P (x, `, t|x0)d`, (2.11)

where ψ(`) = −Ψ′(`). Integrating both sides with respect to x ∈ ∂Ω and using
equation (2.7) then implies that

J(x0, t) = D

ˆ
∂Ω

[ˆ ∞
0

ψ(`)P (x, `, t|x0)d`

]
dx. (2.12)

Finally, Laplace transforming with respect to time t yields the result

J̃(x0, s) = D

ˆ
∂Ω

[ˆ ∞
0

ψ(`)L−1
` [P(x, z, s|x0)]d`

]
dx. (2.13)

Finally, note that the flux J(x0, t) can be identified with the first passage time (FPT)
density for absorption. In particular, the MFPT is

T (x0) ≡ E[T ] =

ˆ ∞
0

tJ(x0, t)dt = − ∂J̃(x0, s)

∂s

∣∣∣∣∣
s=0

. (2.14)

Similarly, higher-order moments of the FPT density can be expressed in terms of
higher-order derivatives of the Laplace transformed flux J̃(x0, s).
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3. Multiparticle interpretation and the accumulation time

We now consider a multiparticle version of diffusion-mediated surface absorption in
which the propagator P (x, `, t|x0) is reinterpreted as the concentration U(x, `, t|x0)
of a large population of independently diffusing particles that are initially localized
at X = x0 and ` = 0. One difference from the single particle BVP is that we can
now include source terms, either within the bulk domain or in part of the boundary,
resulting in a non-trivial steady-state

U∗(x, `) = lim
t→∞

U(x, `, t|x0) = lim
s→0

sŨ(x, `, s|x0). (3.1)

As a concrete example suppose that the boundary of the domain Ω is partitioned into
two separate boundaries, ∂Ω = ∂Ω1 ∪ ∂Ω2, where ∂Ω2 is partially absorbing whereas
a constant flux condition is imposed on ∂Ω1, see Fig. 1. The unit normals to the
surfaces ∂Ω1,2 are denoted by n1,2, and are directed outwards from the interior of Ω.
The multiparticle version of the BVP (2) is taken to be

∂U(x, `, t)

∂t
= D∇2U(x, `, t), U(x, `, 0) = 0, x ∈ Ω, (3.2a)

−D∇U(x, `, t) · n2 = DU(x, ` = 0, t) δ(`) +D
∂

∂`
U(x, `, t), x ∈ ∂Ω2, (3.2b)

D∇U(x, `, t) · n1 = J0δ(`), x ∈ ∂Ω1, (3.2c)

U(x, ` = 0, t) = −∇u∞(x, t) · n2 for x ∈ ∂Ω, (3.2d)

where u∞ is the concentration in the case of a totally absorbing boundary ∂Ω1.
In contrast to the single-particle case, we assume that the domain Ω does not
initially contain any particles. Performing a double Laplace transform then yields
the multiparticle version of the BVP (2):

D∇2U(x, z, s)− sU(x, z, s) = 0, x ∈ Ω, (3.3a)

−∇U(x, z, s) · n2 = zU(x, z, s) for x ∈ ∂Ω2, (3.3b)

D∇U(x, z, s) · n1 =
J0

s
for x ∈ ∂Ω1. (3.3c)

3.1. Dirichlet-to Neumann operator

It is well known from classical PDE theory that the solution of a general Robin BVP
can be computed in terms of the spectrum of a Dirichlet-to-Neumann operator. This
was applied to the single-particle propagator BVP in Ref. [14]. Here we consider the
analogous result for the BVP (3). The basic idea is to replace the Robin boundary
condition (3b) by the Dirichlet condition U(x, s) = f(x, s), x ∈ ∂Ω2 and to find the
function f for which U is also the solution to the original BVP. (For the moment we
drop the explicit dependence on z.) The solution of the simplified BVP can be written
in the form

U(x, s) = −D
ˆ
∂Ω2

f(x′, s)∇x′G(x′, s|x) · n2 dx
′ +

J0

s

ˆ
∂Ω1

G(x′, s|x)dx′. (3.4)

where G(x, s|x0) denotes the Green’s function for the modified Helmholtz equation,

D∇2G(x, s|x0)− sG(x, s|x0) = −δ(x− x0), x ∈ Ω, (3.5)

with boundary conditions G(x, s|x0) = 0 for all x ∈ ∂Ω2 and ∇G(x, s|x0) · n1 = 0 for
all x ∈ ∂Ω1. The unknown function f satisfies the equation

[Lsf ](x, s) + zf(x, s) = g(x, s), x ∈ ∂Ω2, (3.6)



Accumulation times for diffusion-mediated surface reactions 7

Ω 

∂Ω1 

∂Ω2 
n2

n1

Figure 1. Diffusion of a particle in a bounded domain Ω with ∂Ω = ∂Ω1 ∪ ∂Ω2.
There is a constant flux J0 through the boundary ∂Ω1, whereas ∂Ω2 is partially
absorbing. The probability of particle absorption depends on the amount of time
each particle spends in a neighborhood of ∂Ω2, which is specified by the local
accumulation time `t. Note that the unit normals n1,2 are directed towards the
exterior of Ω.

where Ls is the Dirichlet-to-Neumann operator on Ω2,

[Lsf ](x, s) = −D∂σ
ˆ
∂Ω2

f(x′, s)∂σ′G(x′, s|x)dx′, (3.7)

and

g(x, s) = −J0

s
∂σ

ˆ
∂Ω1

G(x′, s|x)dx′. (3.8)

In the above equations we have set ∂σ = n2 · ∇x and ∂σ′ = n′2 · ∇x′ .
When the surface ∂Ω2 is bounded, the Dirichlet-to-Neumann operator Ls has

a discrete spectrum, that is, there exists a countable set of eigenvalues µn(s) and
eigenfunctions vn(x, s) satisfying (for fixed s)

Lsvn(x, s) = µn(s)vn(x, s). (3.9)

It can be shown that the eigenvalues are non-negative and that the eigenfunctions
form a complete orthonormal basis in L2(∂Ω2). We can now solve equation (3.6) for
f by introducing the eigenfunction expansion

f(x, s) =

∞∑
m=0

fm(s)vm(x, s). (3.10)

Substituting into (3.7) and taking the inner product with the adjoint eigenfunction
v∗n(x, s) determines the coefficients fn in terms of the nth coefficient in the
corresponding expansion of g(x, s):

fn(s) =
gn(s)

µn(s) + z
, gn(s) =

ˆ
∂Ω2

v∗n(x, s)g(x, s)dx. (3.11)



Accumulation times for diffusion-mediated surface reactions 8

Substituting for f(x, s) in equation (3.4), we have

U(x, z.s) =
J0

sD

∞∑
n=0

1

µn(s) + z
∆∗n(s)Vn(x, s), (3.12)

with

Vn(x, s) = −D
ˆ
∂Ω2

vn(x′, s)∂σ′G(x′, s|x)dx′ (3.13)

and

∆∗n(s) = −D
ˆ
∂Ω2

v∗n(x, s)∂σ

[ˆ
∂Ω1

G(x′, s|x)dx′
]
dx. (3.14)

Finally, inverting with respect to z yields

Ũ(x, `, s) =
J0

sD

∞∑
n=0

∆∗n(s)Vn(x, s)e−µn(s)`. (3.15)

In the following we will assume that the infinite series (3.15) is uniformly convergent
so that we can reverse the order of various operations.

An analogous construction can be carried out at the single-particle level by
decomposing the generalized propagator as [14]

P(x, z, s|x0) = G(x, s|x0) + F(x, z, s|x0), (3.16)

with

D∇2F(x, z, s|x0)− sF(x, z, s|x0) = 0, x ∈ Ω, (3.17a)

∇F(x, z, s|x0) · n2 + zF(x, z, s|x0) = −∇G(x, s|x0) · n for x ∈ ∂Ω2, (3.17b)

D∇F(x, z, s|x0) · n1 = 0 for x ∈ ∂Ω1. (3.17c)

The calculation of F(x, z, s|x0) proceeds along similar lines to U(x, z, s) except that
now g(x, s) = −∂σG(x, s|x0) in equation (3.6) and J0 = 0. This yields the following
spectral decomposition of F(x, z, s|x0):

F(x, z, s|x0) =
1

D

∞∑
n=0

V∗n(x0, s)Vn(x, s)

µn(s) + z
, (3.18)

so that [14]

P̃ (x, `, s|x0) = G(x, s|x0)δ(`) +
1

D

∞∑
n=0

V∗n(x0, s)Vn(x, s)e−µn(s)`. (3.19)

3.2. Steady-state solution and the accumulation time

One major difference between the multiparticle solution (3.12) and the single particle
solution (3.19) is that the former converges to a non-trivial steady state when J0 > 0.
This makes sense intuitively, since the external flux of particles with zero local time
at ∂Ω1 compensates for the loss of particles with zero local time due to encounters
with the surface ∂Ω2. Mathematically speaking, the result follows by noting that
lims→0G(x′, s|x) 6= 0, whereas lims→0 sG(x′, s|x) = 0. Hence, multiplying equation
(3.15) by s and taking the small-s limit shows that

U∗(x, `) =
J0

D

∞∑
n=0

∆∗n(0)Vn(x, 0)e−µn(0)`. (3.20)
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Now suppose that we introduce the stopping local time distribution Ψ(`). The
multiparticle version of the marginal probability density p(x, t|x0) is

u(x, t) =

ˆ ∞
0

Ψ(`)U(x, `, t)d`. (3.21)

It immediately follows that there exists a steady-state concentration

u∗(x) = lim
t→∞

ˆ ∞
0

Ψ(`)U(x, `, t)d` =

ˆ ∞
0

Ψ(`)U∗(x, `)d`, (3.22)

provided that the integral with respect to ` is finite. Substituting for U∗ using equation
(3.20) and reversing the order of summation and integration, we have

u∗(x) =
J0

D

∞∑
n=0

∆∗n(0)Vn(x, 0)Ψ̃(µn(0)). (3.23)

Let us introduce an ordering of the eigenvalues of the Dirichlet-to-Neumann
operators according to µ0(s) < µ1(s) ≤ µ2(s) . . .. The principal eigenvalue is typically
non-degenerate. Setting x→ x′ and x0 → x in equation (3.5), integrating with respect
to x′ ∈ Ω and using the divergence theorem gives

D

ˆ
Ω2

∂σ′G(x′, s|x)dx′ − s
ˆ

Ω

G(x′, s|x)dx′ = −1. (3.24)

It follows that

D∂σ

ˆ
Ω2

∂σ′G(x′, s|x)dx′ − s∂σ
ˆ

Ω

G(x′, s|x)dx′ = 0. (3.25)

so taking the limit s→ 0, we have

− lim
s→0

D∂σ

ˆ
Ω2

∂σ′G(x′, s|x)dx′ = 0. (3.26)

In other words, there exists a zero eigenvalue µ0(0) = 0 with corresponding eigenvector
v0(0) = 1. We thus deduce that a necessary condition for the existence of a steady-

state solution is Ψ̃(0) <∞. Moreover, using integration by parts,

Ψ̃(0) =

ˆ ∞
0

Ψ(`)d` = [`Ψ(`)]∞0 −
ˆ ∞

0

`Ψ′(`)d` =

ˆ ∞
0

`ψ(`)d` = −ψ̃′(0).

Hence, u∗(x) only exists if ψ(`) has a finite first moment.
Given the solution u∗(x), we can quantify the rate of relaxation to steady state

in terms of an accumulation time. Let

Z(x, t) = 1− u(x, t)

u∗(x)
(3.27)

be the fractional deviation of the concentration from steady state. (We suppress the
explicit dependence on the initial position x0.) Assuming that there is no overshooting,
1−Z(x, t) can be interpreted as the fraction of the steady-state concentration that has
accumulated at x by time t. It follows that −∂tZ(x, t)dt is the fraction accumulated
in the interval [t, t+ dt]. The accumulation time Tacc(x) is then defined as

Tacc(x) =

ˆ ∞
0

t

(
−∂Z(x, t)

∂t

)
dt =

ˆ ∞
0

Z(x, t)dt. (3.28)
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Laplace transforming equation (3.27) with respect to t and using the identity u∗(x) =
lims→0 sũ(x, s), we have

sZ̃(x, s) = 1− sũ(x, s)

u∗(x)

and, hence‡

Tacc(x) = lim
s→0

Z̃(x, s) = lim
s→0

1

s

[
1− sũ(x, s)

u∗(x)

]
= − 1

u∗(x)

d

ds
sũ(x, s)

∣∣∣∣
s=0

. (3.29)

We conclude that the accumulation time Tacc(x) can be calculated in terms of the

Laplace transformed propagator Ũ(x, `, s|x0). In particular, we have

sũ(x, s) =
J0

D

∞∑
n=0

∆∗n(s)Vn(x, s)Ψ̃(µn(s)). (3.30)

Differentiating both sides with respect to s, reversing the order of summation and
differentiation, and taking the limit s → 0 implies that there will be terms involving
both Ψ̃(0) and Ψ̃′(0). Again using integration by parts, we haveˆ ∞

0

`Ψ(`)d` =
1

2
[`2Ψ(`)]∞0 −

1

2

ˆ ∞
0

`2Ψ′(`)d` =
1

2

ˆ ∞
0

`2ψ(`)d` =
1

2
ψ̃′′(0).

Hence, the accumulation time is only well-defined if the first and second moments of
ψ(`) are finite.

It is instructive to contrast the accumulation time with the more common method
for estimating the time to approach steady state for diffusion in a bounded domain
Ω, which is based on an eigenfunction expansion of the solution. For the sake of
illustration, consider the classical BVP

∂u

∂t
= D∇2u(x, t)− ku(x, t), x ∈ Ω, −D∇u · n = J0, x ∈ ∂Ω. (3.31)

We have included the degradation term −ku so that the solution does not blow-up.
The linear operator L = −D∇2+k with a homogeneous Neumann boundary condition
on ∂Ω has a complete orthonormal set of eigenfunctions φn, n ≥ 0, and a corresponding
set of eigenvalues 0 < λ0 < λ1 . . .:

Lφn(x) = λnφn(x), x ∈ Ω,

ˆ
Ω

φm(x)φn(x)dx = δn,m.

It follows that we can expand the deviation from steady state according to

u(x, t)− u∗(x) =
∑
n≥0

cnφn(x)e−λnt, (3.32)

The constant coefficients cn are determined by the initial condition. If the positive
eigenvalues are well separated, then the relaxation to steady state will be dominated
by the term c0φ0(x)e−λ0t, and we can identify 1/λ0 as an effective relaxation
time. However, characterizing the approach to steady state in terms of the smallest
non-zero eigenvalue has some potential limitations. First, it does not account for
possible differences in the relaxation rate at different spatial locations x. Second, all
information regarding the initial condition is lost. Third, it relies on the assumption
that the eigenvalues have sufficiently large spectral gaps, which may be difficult to

‡ Note that Tacc(x) 6=
´∞
0 Ψ(`)Tacc(x, `)d`, where Tacc(x, `) is the accumulation time Tacc(x, `)

associated with the relaxation of the generalized propagator.
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establish in higher dimensions. On the other hand, the accumulation time defined
according to equation (3.28) has the eigenfunction expansion

T (x) = − 1

u∗(x)

ˆ ∞
0

∑
n≥0

cnφn(x)e−λntdt = −
∞∑
n=0

cnφn(x)

λnu∗(x)
, (3.33)

which is non-singular since λn > 0 for all n ≥ 0. If we simply kept the leading order
term in the eigenvalue expansion, then T (x)→ T0(x) where

T0(x) = − c0φ0(x)

λ0u∗(x)
, (3.34)

Hence, approximating the solution using the leading-order term in an eigenfunction
expansion does yield a position-dependent relaxation rate if one uses T0(x) rather
than λ−1

0 as the relaxation time. However, it can still be a poor approximation in
regions where φ0(x) ≈ 0 or if there is a small spectral gap. Another advantage of the
accumulation time is that it is relatively straightforward to calculate.

The limitations of the spectral method are even more severe in the case of the
encounter-based model of absorption. For now the marginal concentration u(x, t) does
not satisfy a closed BVP so it is necessary to consider the BVP of the full concentration
U(x, `, t), which is given by equations (3.2a)–(3.2d). However, the latter BVP is
defined on Ω×R+ since ` ∈ [0,∞), which is unbounded. The spectral decomposition
in the time domain is thus more involved.

4. Diffusion in an interval

Expressing the solution of the general propagator BVP in terms of the spectrum of the
associated Dirichlet-to-Neumann operator allowed us to derive necessary conditions
for the existence of a steady-state solution and the corresponding accumulation time.
In this section we consider an example where the Robin BVP can be solved explicitly
without the need for any spectral theory. Consider diffusion in the finite interval
Ω = [0, L] with a partially absorbing boundary at x = L. We first calculate the MFPT
for absorption at the single particle level by taking a totally reflecting boundary at
x = 0. We then determine the steady-state solution and the accumulation time at
the multiparticle level in the case of a constant flux at x = 0. (Other combinations of
boundary conditions could be handled in an analogous fashion.)

4.1. Calculation of the MFPT for a single particle

Performing a double Laplace transform of the 1D version of equations (2) yields the
propagator BVP

D
∂2P(x, z, s|x0)

∂x2
− sP(x, z, s|x0) = −δ(x− x0), x, x0 ∈ (0, L), (4.1a)

∂xP(0, z, s|x0) = 0, ∂xP(L, z, s|x0) = −zP(L, z, s|x0). (4.1b)

The general solution is

P(x, z, s|x0) = A(z, s) cosh(
√
s/Dx) +G(x, s|x0), (4.2a)

where G is the 1D Green’s function that satisfies equation (4.1a) with a Neumann
boundary condition at x = 0 and a Dirichlet boundary condition at x = L:

G(x, s|x0) =
H(x0 − x)f(x, s)f̂(x0, s) +H(x− x0)f(x0, s)f̂(x, s)√

sD cosh(
√
s/DL)

, (4.3)
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where H(x) is the Heaviside function and

f(x, s) = cosh
√
s/Dx, and f̂(x, s) = sinh

√
s/D(L− x). (4.4)

Hence, G is the solution to the BVP for a totally absorbing boundary at x = L.
The unknown coefficient A(z, s) is determined from the Robin boundary condition at

x = L:S̃

A(z, s) = − ∂xG(L, s|x0)√
s/D sinh(

√
s/DL) + z cosh(

√
s/DL)

, (4.5)

with

∂xG(L, s|x0) = − 1

D

cosh(
√
s/Dx0)

cosh(
√
s/DL)

. (4.6)

It is now straightforward to obtain the corresponding inverse Laplace transform of
P(x, z, s|x0). First, rewrite equation (4.5) as

A(z, s) =
A0(s)

z + Λ(s)
, (4.7)

with

Λ(s) =
√
s/D tanh

√
s/DL, A0(s) = − ∂xG(L, s|x0)

cosh(
√
s/DL)

. (4.8)

It then follows from the general solution (4.1) that

P̃ (x, `, s|x0) = G(x, s|x0)δ(`) +A0(s)e−Λ(s)` cosh(
√
s/Dx). (4.9)

Let Ψ(`) be a stopping local time distribution and set

p̃(x, s|x0) =

ˆ ∞
0

Ψ(`)P̃ (x, `, s|x0)d` = G(x, s|x0) +A0(s)Ψ̃(Λ(s)) cosh(
√
s/Dx).(4.10)

The corresponding flux through the partially absorbing boundary at x = L is

J̃(x0, s) = D

ˆ ∞
0

ψ(`)P̃ (L, `, s|x0)d` = DA0(s)ψ̃(Λ(s)) cosh(
√
s/DL)

= −Dψ̃(Λ(s))∂xG(L, s|x0) ≡ ψ̃(Λ(s))J̃∞(x0, s). (4.11)

Note that J̃∞(x0, s) = −D∂xG(L, s|x0) is the flux in the case of a totally absorbing

boundary at x = L, which corresponds to the case ψ̃(z) = δ(z). We now use equation
(4.11) to determine the MFPT for absorption. Differentiating equation (4.11) with
respect to s and using the 1D version of equation (2.14), we obtain the result

T (x0) = − ∂

∂s
J̃(x0, s)

∣∣∣∣
s=0

= T∞(x0)− ψ̃′(0)Λ′(0)J̃∞(x0, 0)

= T∞(x0)− L

D
ψ̃′(0), (4.12)

where

T∞(x0) = − ∂

∂s
J̃∞(x0, s)

∣∣∣∣
s=0

=
L2 − x2

0

2D
(4.13)

S̃ The solution for A(z, s) could also be obtained by solving an equation of the form (3.6), since the
Dirichlet-to-Neumann operator is simply a scalar:

[Lsf ](L, s) = −Df(L, s) ∂x∂x′G(x′, s|x)
∣∣
x=x′=L

= f(L, s)

√
s

D
tanh(

√
s/DL).
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is the MFPT in the case of a totally absorbing boundary. It immediately follows that
if a surface reaction involves a stopping local time distribution with ψ̃′(0) = −∞, then
the MFPT T (x0) blows up, indicating that the target is not sufficiently absorbing. In
other words, for finite T (x0) the stopping local time density ψ(`) must have a finite
first moment.

Following previous models of diffusion-mediated absorption [14, 6], we will
consider two particular choices for ψ(`), namely, the gamma distribution ψgam and
the Pareto-II or Lomax distribution ψpar, respectively. The gamma distribution and
its associated reactivity function κ(`) are given by

ψgam(`) =
γ(γ`)µ−1e−γ`

Γ(µ)
, κ(`) = γ

(γ`)µ−1e−γ`

Γ(µ, γ`)
, µ > 0, (4.14)

where Γ(µ) is the gamma function and Γ(µ, z) is the upper incomplete gamma function:

Γ(µ) =

ˆ ∞
0

e−ttµ−1dt, Γ(µ, z) =

ˆ ∞
z

e−ttµ−1dt, µ > 0. (4.15)

Note that γ determines the effective absorption rate. In particular, the boundary
x = L is non-absorbing in the limit γ → 0 whereas it is totally absorbing in the
limit γ → ∞. If µ = 1 then ψgam reduces to the exponential distribution with
constant reactivity γ, that is, ψgam(`)|µ=1 = γe−γ`. The parameter µ characterizes
the deviation of ψgam(`) from the exponential case. If µ < 1 (µ > 1) then ψgam(`)
decreases more rapidly (slowly) as a function of the local time `. The Pareto-II
(Lomax) distribution and its reactivity function take the form

ψpar(`) =
γµ

(1 + γ`)1+µ
, κ(`) =

γµ

1 + γ`
, µ > 0, (4.16)

Note that ψgam(`) has finite moments for all µ > 0, whereas ψpar(`) only has finite
moments when µ > 1. The blow up of the moments when µ < 1 reflects the fact that
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Figure 2. Single-particle diffusion in an interval with a partially absorbing
boundary at x = L and a totally reflecting boundary at x = 0. Plot of
MFPT T (x0) as a function of the distribution parameter γ for Paretto-II (light
curves) and gamma (dark curves). All curves converge to the MFPT for a
totally absorbing boundary, T∞(x0), in the limit γ → ∞. Other parameters
are L = D = 1 and x0 = 0.5.
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the Pareto-II distribution then has a long tail. The corresponding Laplace transforms
are

ψ̃gam(z) =

(
γ

γ + z

)µ
, ψ̃′gam(z) = −µ

(
γ

γ + z

)µ
1

γ + z
. (4.17)

and

ψ̃par(z) = µ

(
z

γ

)µ
ez/γΓ(−µ, z/γ), (4.18a)

ψ̃′par(z) = µ

(
z

γ

)µ
ez/γ

([
µ

z
+

1

γ

]
Γ(−µ, z/γ) + ∂zΓ(−µ, z/γ)

)
. (4.18b)

Example plots of the MFPT T (x0) for these two distributions are shown in Fig. 2.
Note that in the case of the Pareto-II distribution, the MFPT is only defined when
µ > 1. It can be seen that all the curves converge asymptotically to the limiting value
T∞(x0) as γ →∞. Moreover, in the case of the gamma distribution, the MFPT is an
increasing function of µ, whereas the converse holds for Pareto-II.

4.2. Calculation of the accumulation time for multiple particles

Consider the following 1D version of the multiparticle BVP (3):

D
∂2U(x, z, s)

∂x2
− sU(x, z, s) = 0, x ∈ (0, L), (4.19a)

D∂xU(0, z, s) = −J0

s
, ∂xU(L, z, s) = −zU(L, z, s). (4.19b)

The general solution is

U(x, z, s) = A(z, s) cosh(
√
s/Dx)− 1√

sD

J0

s
sinh(

√
s/Dx). (4.20)

The unknown coefficient A(z, s) is again determined by the Robin boundary condition
at x = L:

A(z, s) =
J0

s

z sinh(
√
s/DL)/

√
Ds+D−1 cosh(

√
s/DL)√

s/D sinh(
√
s/DL) + z cosh(

√
s/DL)

, (4.21)

where G is the 1D Green’s function (4.3). Multiplying the solution (4.20) by s and
taking the limit s→ 0 yields the non-trivial steady-state concentration

U∗(x, z) =
J0[L− x]

D
+
J0

zD
. (4.22)

Inverting with respect to z then implies

U∗(x, `) =
J0[L− x]

D
δ(`) +

J0

D
. (4.23)

It follows that the steady-state concentration u∗(x) for a given stopping time
distribution Ψ(`) is

u∗(x) =

ˆ ∞
0

Ψ(`)U∗(x, `)d` =
J0[L− x]

D
+
J0

D
Ψ̃(0). (4.24)

Such a solution will only exist if Ψ̃(0) <∞. Using integration by parts, we see that

Ψ̃(0) =

ˆ ∞
0

Ψ(`)d` = [`Ψ(`)]∞0 −
ˆ ∞

0

`Ψ′(`)d` =

ˆ ∞
0

`ψ(`)d`.
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Hence, u∗(x) exists if and only if ψ(`) has a finite first moment. This is consistent
with our previous result for the MFPT, namely, if ψ(`) has a large tail then absorption
is too weak to counterbalance the influx at x = 0.

When u∗(x) exists we can quantify the rate of relaxation in terms of the
accumulation time. The 1D version of equation (3.29) is

Tacc(x) = − 1

u∗(x)

d

ds
sũ(x, s)

∣∣∣∣
s=0

. (4.25)

In order to determine Tacc(x) we first have to calculate the derivative of sU(x, z, s)
and then take the limit s → 0. The simplest way to proceed is to Taylor expand the
solution (4.20) with respect to s. In particular,

sA(z, s) = J0

{
z√
Ds

(√
s/DL+ (

√
s/DL)3/6

)
+

1

D

(
1 + (

√
s/DL)2/2

)}
+ . . .

×
{√

s/D
(√

s/DL+ (
√
s/DL)3/6 + . . .

)
+ z

(
1 + (

√
s/DL)2/2 + . . .

)}−1

= J0

{
(1 + zL)/D + sL2(zL/3 + 1)/2D2

}
{z + sL(1 + zL/2)/D}−1

+ . . .

=
s

zD
+
J0

zD
(1 + zL)− s J0

D2

{
L3

3
+
L2

z
+
L

z2

}
+O(s2).

Hence

− d

ds
sA(z, s) cosh(

√
s/Dx)

∣∣∣∣
s=0

=
J0

D2

{
L3

3
− x2L

2
+

2L2 − x2

2z
+
L

z2

}
. (4.26)

Moreover,

d

ds

J0√
sD

sinh(
√
s/Dx)

∣∣∣∣
s=0

=
J0

D2

x3

6
. (4.27)

Combining the last two equations thus gives

− d

ds
sU(x, z, s)

∣∣∣∣
s=0

=
J0

D2

{
L3

3
+
x3

6
− x2L

2
+

2L2 − x2

2z
+
L

z2

}
. (4.28)

Inverting with respect to z implies that

− d

ds
sŨ(x, `, s)

∣∣∣∣
s=0

=
J0

D2

{[
L3

3
+
x3

6
− x2L

2

]
δ(`) +

2L2 − x2

2
+ `L

}
. (4.29)

Finally, multiplying both sides by Ψ(`)/u∗(x) and integrating with respect to `
leads to the following explicit expression for the accumulation time:

Tacc(x) =
1

D[L− x+ Ψ̃(0)]
(4.30)

×
{
L3

3
+
x3

6
− x2L

2
+

2L2 − x2

2

ˆ ∞
0

Ψ(`)d`+ L

ˆ ∞
0

`Ψ(`)d`

}
.

Note that in the case of a totally absorbing boundary ∂Ω1 this reduces to

T∞acc(x) =
1

D[L− x]

{
L3

3
+
x3

6
− x2L

2

}
=

2(L+ x)L− x2

6D
. (4.31)

Again using integration by parts, we have
´∞

0
Ψ(`)d` = −ψ̃′(0) andˆ ∞

0

`Ψ(`)d` =
1

2
[`2Ψ(`)]∞0 −

1

2

ˆ ∞
0

`2Ψ′(`)d` =
1

2

ˆ ∞
0

`2ψ(`)d` =
1

2
ψ̃′′(0).
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Figure 3. Accumulation time Tacc(x) for diffusion in a finite interval [0, L], with
a constant flux at x = 0 and a partially absorbing boundary at x = L. The
stopping local time density is taken to be the gamma distribution (4.14) with
parameters µ, γ. (a) Plot of the accumulation time as a function of position x
for γ = 1 and various µ. (b) Corresponding plots for various γ with µ = 0.1
(light curves) and µ = 1.5 (dark curves). The thick line corresponds to a totally
absorbing boundary at x = L (γ →∞). We have also set D = 1 and L = 1.

Equation (4.30) then implies that the accumulation time is only well-defined if the first
and second moments of ψ(`) are finite, consistent with the general result obtained in
section 3. For the sake of illustration, let ψ(`) be the gamma distribution (4.14) so
that

ψ̃′(0) = −µ
γ
, ψ̃′′(0) =

µ(µ+ 1)

γ2
.

In Fig. 3 we show example plots of Tacc(x) as a function of x for various values of the
parameters µ, γ. In Fig. 3(a) it can be seen that the accumulation time is increased
(decreased) for µ > 1 (µ < 1) when compared to the exponential case (µ = 1).
Moreover, Tacc(x) is a non-monotonic function of x when µ > 1. Fig. 3(b) shows that
the accumulation time converges to the case T∞acc in the limit γ →∞.

5. Diffusion in a d-dimensional spherical shell

As our second example, we consider the multiparticle steady-state solution for a
spherical shell Ω = {x ∈ Rd |R1 < |x| < R2} with ∂Ωj = {x ∈ Rd | |x| = Rj},
j = 1, 2. Introducing spherical polar coordinates in the BVP (3) gives

D
∂2U
∂ρ2

+D
d− 1

ρ

∂U
∂ρ
− sU(ρ, z, s) = 0, R1 < ρ < R2, (5.1a)

∂

∂ρ
U(ρ, z, s)

∣∣∣∣
ρ=R1

= −J0

s
,

∂

∂ρ
U(ρ, z, s)

∣∣∣∣
ρ=R2

= −zU(R2, z, s). (5.1b)

Equations of the form (5) can be solved in terms of modified Bessel functions [21].
The general solution is

U(ρ, z, s) = B(z, s)ρνIν(αρ) + C(z, s)ρνKν(αρ), ρ ∈ (R1, R2), (5.2)
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with ν = 1−d/2 and α =
√
s/D. In addition, Iν and Kν are modified Bessel functions

of the first and second kind, respectively. The unknown coefficients B(z, s) and C(z, s)
are determined from the boundary conditions (5b). Setting

FI(ρ, s) = ρνIν(αρ), FK(ρ, s) = ρνKν(αρ), (5.3)

we have

B(z, s)F ′I(R2, s) +C(z, s)F ′K(R2, s) = −z[B(z, s)FI(R2, s) +C(z, s)FK(R2, s)], (5.4a)

and

B(z, s)F ′I(R1, s) + C(z, s)F ′K(R1, s) = −J0

s
(5.4b)

Here ′ denotes differentiation with respect to ρ. Equation (5.4a) shows that

B(z, s) = −F
′
K(R2, s) + zFK(R2, s)

F ′I(R2, s) + zFI(R2, s)
C(z, s) ≡ −Λ(z, s)C(z, s). (5.5)

Substituting into equation (5.4b) and rearranging yields

C(z, s) = − (F ′K(R1, s)− F ′I(R1, s)Λ(z, s))
−1 J0

s
(5.6)

Combining our various results yields the following solution for the Laplace transformed
generalized concentration:

U(ρ, z, s) = − FK(ρ, s)− FI(ρ, s)Λ(z, s)

F ′K(R1, s)− F ′I(R1, s)Λ(z, s)

J0

s

= − FK(ρ, s)[F ′I(R2, s) + zFI(R2, s)]− FI(ρ, s)[F ′K(R2, s) + zFK(R2, s)]

F ′K(R1, s)[F ′I(R2, s) + zFI(R2, s)]− F ′I(R1, s)F ′K(R2, s) + zFK(R2, s)]

J0

s

= − Θ1(ρ, s) + zΘ2(ρ, s)

Θ′1(R1, s) + zΘ′2(R1, s)

J0

s
, (5.7)

where

Θ1(ρ, s) = FK(ρ, s)F ′I(R2, s)− FI(ρ, s)F ′K(R2, s), (5.8a)

Θ2(ρ, s) = FK(ρ, s)FI(R2, s)− FI(ρ, s)FK(R2, s). (5.8b)

In order to obtain the inverse Laplace transform with respect to z, we rewrite the
propagator as

U(ρ, z, s) = −
[

Θ1(ρ, s)

Θ′2(R1, s)

1

z + Θ(s)
+

Θ2(ρ, s)

Θ′2(R1, s)

{
1− Θ(s)

z + Θ(s)

}]
J0

s
, (5.9)

where

Θ(s) =
Θ′1(R1, s)

Θ′2(R1, s)
. (5.10)

The inverse Laplace transform is then simply

Ũ(ρ, `, s) = −
[

Θ2(ρ, s)

Θ′2(R1, s)
δ(`) +

(
Θ1(ρ, s)

Θ′2(R1, s)
−Θ(s)

Θ2(ρ, s)

Θ′2(R1, s)

)
e−Θ(s)`

]
J0

s
, (5.11)

Given a stopping local time distribution Ψ(`), the corresponding marginal
concentration is

ũ(ρ, s) = −
[

Θ2(ρ, s)

Θ′2(R1, s)
+

(
Θ1(ρ, s)

Θ′2(R1, s)
−Θ(s)

Θ2(ρ, s)

Θ′2(R1, s)

)
Ψ̃(Θ(s))

]
J0

s
. (5.12)
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Figure 4. Log-linear plot of steady-state concentration u∗(ρ) as a function of
the radius ρ for a 3D spherical shell with inner radius R1 = 1 and outer radius
R2 = 2. We assume that the stopping time density is a gamma distribution with
parameters γ, µ. (a) γ = 1; (b) γ = 10. We have also set D = 1 and J0 = 1.

Finally, multiplying both sides by s and taking the limit s→ 0 with Θ(s)→ 0 yields
the steady-state concentration

u∗(ρ) = −
[

lim
s→0

Θ2(ρ, s)

Θ′2(R1, s)
+ lim
s→0

Θ1(ρ, s)

Θ′2(R1, s)
Ψ̃(0)

]
J0 (5.13)

Again we require that the density ψ(`) has a finite first moment. As expected, the
steady state is a monotonically decreasing function of ρ. In Fig. 4 we plot log u∗(ρ) as

a function of ρ for the gamma distribution, where Ψ̃(0) = µ/γ. We also take d = 3. It
can be seen that for γ = 1 the steady-state decays less steeply as µ increases. On the
other hand, the dependence on µ vanishes in the limit γ →∞, since the second term
in the square brackets becomes zero. Similar results hold for a 2D shell. Note that the
solution (5.12) could also be used to calculate the accumulation time, although the
algebra is considerably more involved than the 1D case. Nevertheless, the qualitative
behavior is similar.

6. Discussion

In this paper we considered the relationship between single-particle (microscopic)
and multiparticle (macroscopic) interpretations of diffusion within the context of
partially absorbing boundaries. Using an encounter-based model of single-particle
diffusion, we constructed a BVP for the concentration of a population of particles
in an extended phase space consisting of both particle position and boundary local
time. Absorption was then incorporated by introducing a random stopping condition
for the local time. In addition, the loss of particles through surface absorption was
counterbalanced by external fluxes, resulting in a nontrivial steady-state. Solving
the BVP in Laplace space allowed us to derive general expressions for the steady-state
concentration and the associated accumulation time, which were based on the spectral
decomposition of an associated Dirichlet-to-Neumann operator. This was then used
to derive necessary conditions for the existence of a steady-state solution and a finite
accumulation time. We illustrated the theory by considering diffusion in a finite
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interval and in a d-dimensional spherical shell. At the single-particle level, we have
recently analyzed a narrow capture problem for diffusion in a singularly perturbed
domain containing several small spherical targets or traps [7]. The boundary of each
trap was taken to be partially absorbing. Using a mixture of matched asymptotic
analysis and Green’s function methods, we solved the resulting BVP and calculated
the splitting probabilities and conditional MFPTs. It would be interesting to develop a
multiparticle version of the narrow escape problem, in order to investigate the existence
of steady-state solutions and the associated accumulation times.
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