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Abstract

Implementing quantum error correction has been difficult in practice. Techniques from en-

gineering, computer science, coding theory, experimental and theoretical physics have been

blended together to tackle this problem. Traditionally, quantum error correcting codes mostly

focus on dealing with phenomenological Pauli errors primarily due to their theoretical conve-

nience. But this approach neglects physical types of noise, which are more realistically modelled

with physically motivated noise models.

This work focuses on a specific encoding in quantum computing called the Gottesman-Kitaev-

Preskill (GKP) codes. Firstly we study the basic properties and quantum estimation capabilities

of a closely related state that is symmetric in phase space called the grid sensor state, motivating

the GKP code as a good candidate for physical qubit level error correction in quantum optics.

The grid codes aim to correct for errors before they build up to become Pauli errors. Then, we

propose a quantum error correction protocol for continuous-variable finite-energy, approximate

GKP states undergoing small Gaussian random displacement errors, based on the scheme of

Glancy and Knill [Phys. Rev. A 73, 012325 (2006)]. We show that combining multiple

rounds of error-syndrome extraction with Bayesian estimation offers enhanced protection of

GKP-encoded qubits over comparible single-round approaches. Furthermore, we show that the

expected total displacement error incurred in multiple rounds of error followed by syndrome

extraction is bounded by 2
√
π. Finally, we show that by recompiling the syndrome-extraction

circuits, all the squeezing operations can be subsumed into auxiliary state preparation, reducing

them to beamsplitter transformations and quadrature measurements.
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Chapter 1

Introduction

1.1 Motivations

Understanding our physical reality has always been a difficult task. The invention of modern

computers greatly aided our quest to understand the physics of our world. However the sheer

number of variables and the lack of symmetries in real-world physical problems made it hard

even for computer programs to solve these problems. This was one of the motivations to

Richard P. Feynman’s famous keynote in 1981 [7], where he wanted to know, “Can (quantum)

physics be simulated by a universal computer?” using a locally interconnected machine with

scalable resources relative to the size of of the system. He suggested using quantum computers

to simulate quantum physics by designing approximate numerical algorithms that simulate

said physical problem, and then using a quantum computer “to compute these algorithms”.

He believed that this would give researchers an approximate view of what types of physical

theories should be studied theoretically. These ideas were influenced by concepts in cellular

automation, a popular alternative theory of computation in the 1980s first suggested to study

self-organised criticality in statistical mechanics [8].

In the decade before Feynman’s keynote, many others had discovered important concepts ex-

clusive to quantum computing, these include topics such as James Park’s non-cloning theorem

[9] in 1970, Alexander Holevo’s bound [10] in 1973 or Roman Stanislaw Ingarden’s foundations

1



2 Chapter 1. Introduction

of quantum information theory [11] in 1976 to name a few. These are all examples of mixing

ideas of the booming information theory at that time into physics.

In 1985, David Deutsch laid down the foundations of what a universal quantum computer is

through definitions of quantum Turing machines [12] and in 1995 Benjamin Schumacher coined

the term qubit [13], a quantum bit consisting of a set of orthogonal logical quantum states

of |0L⟩ and |1L⟩ [12]. A qubit can be a superposition |0L⟩ and |1L⟩ at the same time, |Q⟩ =

α |0L⟩+ β |1L⟩. This is different to classical probabilistic mixtures of logical zero and one bits.

The qubit’s superposition in a different basis may give rise to different probability distributions

after the application of the Born rule. This is a starkly different to just probabilistic mixtures

of logical zeros and ones.

It was not until 1992, when David Deutsch and Richard Jozsa found an oracle-based boolean

function problem, where quantum computers can efficiently solve in polynomial oracle evalua-

tions [14], while no deterministic classical algorithms can solve in polynomial number of oracle

queries. However one can devise an efficient stochastic algorithm to solve the Deutsch-Jozsa

problem with high probability [15]. Despite the exponential speed up of the Deutsch-Jozsa

algorithm, the problem does not provide any practical real world applications. Following this,

Daniel R. Simon proposed another oracle-based boolean function problem (commonly known

as Simon’s problem) [16]. The structure of Simon’s problem inspired the now famous period-

finding Shor’s algorithm [17]. Shor’s algorithm promises the ability to factor large numbers into

their prime factors exponentially faster than the best classical algorithm (the general number

sieve) [18]. This is the first quantum exponential speed up that can be applied to real-world

problems, as much of public-key cryptography security revolves around the perceived classical

hardness of factoring large integers on a classical computer [19].

Other quantum algorithms of interest have also been discovered. Grover search [20]. This

algorithm saturates the lower bound for quantum black-box structure-free searches, first proven

by [21]. Another example is the Harrow-Hassidim-Lloyd quantum algorithm for solving linear

equations, where the exponential speed-up depends strongly on the specific sparsity of the

matrix to be solved [22]. There exist other approaches to quantum algorithms, for instance:
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adiabatic quantum algorithms, quantum walk related algorithm and other analog and digital

quantum simulations [23].

Most of the earlier quantum algorithms loosely achieve their advantage through large scale

superpositions of states using clever quantum gates and measurement strategies. Numerical

quantum algorithms are devised such that many terms in the quantum superposition cancel

out. The state is sampled in polynomial complexity relative to the input size before feeding the

data into a classical computer pipeline for post-processing, so it achieves the desired answer.

Due to the success of Shor’s algorithm, a considerable amount of attention had been focused

on building scalable quantum computing hardware. This is another difficult problem in its own

right because of the prevalence of quantum noise [24] and the fragility of precisely prepared

quantum states. To name a few issues, there exists the difficulty of controlled operations,

readout measurements, and the ability to classically post-process measured results efficiently

[25, 26].

The presence of errors motivates a need for some form of quantum error correction (QEC) at

the logical qubit and hardware level. Asher Peres, first borrowed ideas from repetition classical

error correcting codes and incorporated them in a quantum computing setting [27]. Classical

bit flip errors from 0 ↔ 1, are drastically simpler compared to the errors a quantum bit can

experience. A logical qubit can experience bit flips (known as X̂ errors), phase flips (known

as Ẑ errors), and a combined bit and phase flip (known as Ŷ errors). Hence, quantum codes

for protection of qubits tends to be more involved and complicated in their structure compared

to their classical counterparts. In 1995, Shor proposed the first quantum error correcting code

(QECC) that requires 9 physical qubits to implement a single logical qubit, commonly known

as the Shor code [28]. Shortly after, Andrew Steane expanded upon similar concepts [29]. The

idea behind repetition codes relies on spreading the logical information of the qubit over many

physical qubits, hence any single corruption of a single physical qubit can be corrected. For

example, in Shor’s code, the logical states are entangled within qubits 1 to 3, 4 to 6 and 7 to

9, namely |µL⟩ ∝
(
|000⟩ + (−1)µ |111⟩

)⊗3
, µ ∈ {0, 1}. This is an example of an entangled

state. Resources unavailable in the classical realm such as entanglement, magic, superposition,
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non-classicality, often provide new methods of solving existing problems [30].

One of the most important and interesting aspects of quantum computing is the quantum

threshold theorem [31, 32, 33]. In light of faulty preparation, evolution and readout measure-

ments of quantum resource states, the threshold theorem states that with apt QECC, suitable

error channels, and effective error rates represented as a probability of failure, there is a thresh-

old probability of error that corresponds to if the errors are correctable. This ties in with the

idea that a fault tolerant quantum computer (FTQC) is needed for large scale quantum compu-

tation. Much effort was put into the experimental feasibility study and theoretical development

of QECC. One can fill up “a zoo” [34] with different error correcting codes, ranging from sta-

bilizers or surface codes [25] for logical level protection, to even exotic bosonic code [35], that

could be used as a physical layer of error correction for the qubit concatenated underneath a

logical QECC.

Every quantum computing hardware systems suffers from varying degrees of theoretical, ex-

perimental and engineering developmental bottlenecks. There are drawbacks and advantages

to each platform despite the different advantages the variety of different platforms brings. In

photonics, the qubit can be encoded as a state in bosonic modes [36], hence a lot of techniques

from quantum optics can be employed [37, 38, 39].

Encoding and manipulating quantum information in continuous variable (CV) systems [40,

41, 42] is a promising route to realising a useful quantum computing device. Large scale CV

cluster states can be generated on demand [43, 44]. Fault tolerant, measurement-based quantum

computation is possible using CV cluster states along with CV measurements and non-Gaussian

state injection [45, 46], though the levels of optical squeezing required for fault tolerance are

beyond the reach of current experiments [45, 47, 48, 49, 50]. Unfortunately, bosonic modes are

very prone to loss/amplitude damping errors that constantly drive the state of interest into the

ground state. Considerable effort had been allocated to deal with the issue of loss, ranging from

quDit codes [51], cat codes [52, 37], binomial codes [53], Gottesman-Kitaev-Preskill (GKP) grid

codes [35], and many more (see [54] for a detailed review of bosonic codes). Qualitatively, these

codes acquire their error resilience by roughly spreading the quantum information over phase



1.2. Thesis outline 5

space to counteract the loss of photons.

The aim of this thesis is to look at a very specific problem in bosonic QEC, namely at states

with grid like structure in phase space [35, 55], and investigate their error correcting capabilities

in optical quantum computing [56].

1.2 Thesis outline

This thesis is written in a way that assumes the reader to have a basic understanding of

quantum physics and quantum information. Firstly, some basic concepts of quantum computing

and bosonic quantum computing in chapter 2 are introduced before presenting the research

performed during the PhD in chapters 4 and 5. Here are the detailed outline of the materials

in each chapter:

In chapter 2, firstly, the mains ideas behind quantum computing such as qubits, gates, require-

ments of quantum computing and quantum transformations are introduced. Secondly, a simple

example of a bitflip error channel and a QECC to counteract this are illustrated. Finally, basic

definitions of bosonic quantum theory is laid out, which will be used throughout this thesis.

In chapter 4, properties of the grid sensor state are explored. This includes its Fourier transfor-

mation and displacement errors sensing capabilities. Furthermore, the grid sensor state’s Fock

state amplitudes are calculated explicitly. Additionally, resource theory will be employed to

explain the difficulty of generating such states. Finally, the advantages and details of generat-

ing entangled GKP Bell states from the grid sensor states will be discussed. Theses ideas and

conventions will act as a gentle introduction to chapter 5.

In chapter 5, an improved decoder for the GKP code is presented. Following the Glancy-Knill

syndrome1 extractions circuits, Bayesian optimisation techniques are employed with the aid of

a classical memory to decode the quantum errors. This enhances the fidelity of recovery in the

presence of the Gaussian random displacement channel. Furthermore, the error extraction and

1The word syndrome is inherited from coding theory, it provides ways to detect certain errors in a code [57].
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recovery optical circuit is recompiled such that all the squeezing is done offline on auxiliary

GKP qubits.

Finally, chapter 6 is the summary of the main theoretical result findings during the PhD and

provide an outlook for future works.



Chapter 2

Background and theory

In this chapter, the theoretical and mathematical framework used throughout the thesis will

be introduced. Firstly we will go through the basics of quantum computing, starting with

the qubit, universal gate sets all the way to the basics of quantum error correcting syndrome

extractions and decoding. Concepts of phase space representations and Gaussian quantum

information specific to optical quantum information will be introduced next, including the

dominant error channels such as amplitude damping. Leading this finally to the introduction

of the Gottesman-Kitaev-Preskill code and the grid sensor state. These concepts will be crucial

in the analysis and decoding of errors in the later chapters.

2.1 Quantum computation

One of the leading advantages of digital over analogy information processing/computing is the

ability to digitise and isolate two distinct 0 and 1 states, called bits, from a continuous system,

such as a current. Confusingly this is called “quantization” in classical information theory. The

digitisation of information allows the user to systematically devise error correcting repetition

codes to combat hardware failures when the bit is flipped from 0 to 1 and vice versa, or the

loss of the bit entirely [58, 57].

7
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2.1.1 The qubit

The fundamental unit of quantum information is the qubit, a quantum bit, that carries a bit

of quantum information. An ideal qubit consists of two orthogonal quantum states |0L⟩ , |1L⟩

that represents the logical 0 and 1 states respectively. A qubit |Q⟩ can be represented as a

superposition of the logical states/codewords |0L⟩ , |1L⟩,

|Q⟩ = α |0L⟩+ β |1L⟩ , (2.1)

where α, β ∈ C2 are known as the amplitudes, and their absolute squares sums up to 1 via the

normalisation of the qubit state: ⟨Q|Q⟩ = 1 = |α|2 + |β|2. A representation of a qubit can be

written as a vector in the {|0L⟩ , |1L⟩} basis.

|Q⟩ =

α
β

 , (2.2)

Qubits are vastly different from just a probabilistic mixtures of 0 and 1 bits. For simplicity and

ease of comparisons to |Q⟩, a classical probabilistic mixture of a bit can be represented using

the probability vector P⃗:

P⃗ =

|α|2

|β|2

 , (2.3)

where P(0) = |α|2 and P(1) = |β|2. Suppose we have α = 1√
2

= β this implies |Q⟩ =(
1/
√
2, 1/

√
2
)T

and P⃗ =
(
1/2, 1/2

)T
. The only probability distribution that can be generated

with the classical randomness is equal probability in 0 or 1. However in the qubit, if we re-write

|Q⟩ in the |+L⟩ = 1√
2
(|0L⟩+ |1L⟩) and |−L⟩ = 1√

2
(|0L⟩− |1L⟩) basis, we have |Q⟩ = |+L⟩, means

the probability of being in the ± state given |Q⟩ is exactly 1. So it’s certain that we have

|Q⟩ in |+L⟩, P(+| |Q⟩) = 1. The crux of the matter is that a quantum superposition can give

rise to different probability distributions based on different basis. This is drasticaly different

to it classical counterpart. There are many many difference one can dive into between what a

quantum or classical state is, or even the classical to quantum transitions [59].
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To store quantum information in multiple qubits, a tensor product between different systems

is used. A n-qubit system will in general be written as:

|Ψ⟩ =
∑

j∈{0,1}⊗n

αj |j⟩ , (2.4)

which has N = 2n basis terms. In order to simulate such a general n-qubit state on a classical

computer without any information or symmetries on the mathematical structure of the ampli-

tudes, O(2n) numbers needs to be stored. Hence, just the memory requirements is exponential

in terms of the input system size n. This is one of the reasons why the simulation of quantum

systems is hard.

2.1.2 DiVincenzo’s criteria

What are the physical requirements for implementing a n-qubit quantum computer? DiVin-

cenzo was the first to lay out the reqirements which could be broadly listed as these five key

criteria [60].

1. Definition: defining a scalable physical systems to serve as the building block of a qubit.

2. Initialisation: ability to generate qubits to a initial state such as |0000...000⟩.

3. Universal gate set: the ability to perform an universal set of quantum gates that could

bring the initial state to any possible state required in the quantum computation.

4. Error resilience: decoherence times (time-frame for errors to occur) ≫ gate operation

time or other schemes of error correction required.

5. Readout and post processing: the ability to measure the channels at the end of the

quantum circuit and perform efficient classical computation with data acquired to achieve

the desired answer.

In this thesis, we are most concerned with the Error resilience aspect. We aim to develop

quantum error correcting codes to combat this.
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2.1.3 General quantum maps

In general, quantum states under the presence of classical preparation uncertainty are repre-

sented by density matrices ρ̂ that are probabilistic mixtures of pure states |xj⟩:

ρ̂ =
∑
j

pj |xj⟩⟨xj| , (2.5)

where pj is a probability satisfying
∑
j

pj = 1 and it represents the uncertainty of being in

the state |xj⟩. Alternatively for probability density P(x) we can write ρ̂ as an integral for

continuous states:

ρ̂ =

∫
x

dx P(x) |x⟩⟨x| , (2.6)

where
∫
x
dx P(x) = 1 and

∫
x
dx |x⟩⟨x| = Î, the identity operator. Unitary transformations

(Û Û † = Î = Û †Û) of ρ̂ will be represented by Û ρ̂Û †. Unitary transformations are not the most

general quantum evolution. In the presence of errors and measurements the density matrix

would under go a completely positive (CP) and trace preserving (CPTP) map [25], given by

Λ(·):

Λ(ρ̂) =
∑
j

Ej ρ̂E
†
j , (2.7)

where Ej are known as Kraus operators satisfying
∑

j E
†
jEj = Î. Unitary evolution is just

a limiting case of a CPTP map with only one Kraus operator. Types of physical systems to

define a qubit, the steps for resource and initial state generation readout measurements are

physical platform dependent. However, there are well agreed upon universal gate sets and error

correcting scheme between different physical platforms. These will be discussed in the next two

sections.
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2.1.4 Quantum gates

Once a physical system is defined, a quantum computation maps the initial n-qubit state

|000...000⟩ to a final state
∑
x⃗

cx⃗ |x1x2x3...xn−2xn−1xn⟩ via a n-qubit unitary transformation, Û .

|000...000⟩ → Û |000...000⟩ =
∑
x⃗

cx⃗ |x1x2x3...xn−2xn−1xn⟩ (2.8)

A general n-qubit unitary Û will have O(4n) parameters, hence further demonstrating the

exponential resources needed to represent a quantum state. A single qubit unitary can always

be written in the preferred matrix basis of {Î , X̂, Ŷ , Ẑ}, where Î is the 2 by 2 identity matrix

and X̂, Ŷ , Ẑ are the X-, Y- and Z-Pauli matrices given by (in the |0L⟩ , |1L⟩ basis):

X̂ =

0 1

1 0

 , Ŷ =

0 −i

i 0

 , Ẑ =

1 0

0 −1

 . (2.9)

Note that the X̂ is the classical analogue of bit flipping, whereas Ẑ gives the |1L⟩ a −1 phase

and Ŷ = −iX̂Ẑ is a combination of X̂ and Ẑ up to a −i phase. Due to the Solovay-Kitaev

theorem [61], a n-qubit unitary can always be decomposed in to elementary 2-qubit and 1-qubit

unitaries known as gates and the combination of these smaller elementary gates is known as a

quantum circuit. An example of a quantum circuit shown in figure 2.1.

Figure 2.1: A 4 layers depth quantum circuit consisting of 2- and 1-qubits gates initialised
with the state |0⟩⊗5 and measurements in the Pauli-Z basis in systems 1 and 5 at the end of
the circuit.
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There are many choices of a set of elementary single and two qubit gates to achieve universal

quantum computing, but the most common gate set is the Clifford generator set with a non-

Clifford gate such as a T̂ gate [62]. The Clifford gates are often expressed by the generator set

{Ĥ, Ŝ, ĈX},

Ĥ =
1√
2

1 1

1 −1

 = H

Ŝ =

1 0

0 i

 = S

ĈX =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


=

(2.10)

The non-Clifford gate T is,

T̂ =

1 0

0 e−iπ/4

 = T . (2.11)

This is just one choice of a universal gate set. The most important reason why {Ĥ, Ŝ, ĈX}︸ ︷︷ ︸
Clifford set

∪ T̂

is an important universal gate set is due to the Gottesman-Knill theorem [63]. The Gottesman-

Knill theorem can be used to explain why certain quantum circuits can be classically simulated.

Essentially logical zeros input states: |0⟩⊗n along with Clifford gate can be simulated in O(n3)

space-time computational cost because only a linear number of Group operators needed to

be tracked to perform the Clifford circuit. Starting with a n-qubit initial state |000...000⟩, a

classical computer can efficiently simulate the quantum circuit if we only apply the Clifford gate

set in any combination to the initial state and measure in the |0⟩ , |1⟩ basis at the end. However
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as soon as we include T̂ gates, the problem becomes intractable for classical computers. This is

one of the first examples pointing to what circuits are hard to simulate. Even highly entangled

states can be efficiently simulated via a classical computer as long as they are generated via the

Clifford gate set acting on the initial state. The formal reasoning behind this revolves around

expressing qubit operators in the Heisenberg representation (stabilizer formalism) [63].

2.2 Continuous variables quantum computation

Continuous variables (CV) quantum computing is an alternative implementation of quantum

computing based on the manipulation of quantum fields and encoding the qubit in a bosonic

mode. This framework is well suited to quantum optics, where passive optical elements, homo-

dyne detection and photonic resource states are used to carry out the quantum computation.

Optical quantum computing promises the ability to generate on-demand large scale entangled

states (up to a million modes [64]), the two qubit gates are fast and have low errors, the ability

to do most of the quantum computation in room temperature (except the superconducting pho-

ton counting detectors) and push the generation of resource states offline [56]. Hence, optical

quantum computing systems are well suited to the new paradigm of measurement based quan-

tum computing (MBQC), where the quantum operations/gates are replaced by measurement

patterns of the preparation of a large scale highly entangled cluster state [65], where you use

up the easily generated large scale cluster state as a resource for the quantum computation.

However, the additional non-Gaussian resources states needed to perform universal fault toler-

ant quantum computation are often difficult to generate. Furthermore, fault tolerant quality

photonic Gottesman-Kitaev-Preskill resource states have not been generated experimentally

[66].

A short introduction to quantum optics will be presented here before discussing the notations

in CV quantum information.
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2.2.1 Bosonic mode definitions

Starting with a bosonic mode, it has an infinite dimensional Hilbert space Hboson. Observables

in this Hilbert space can have a continuous eigenspectrum1. These systems are also commonly

known as continuous variables (CV) quantum systems. There are two crucial independent and

complete basis in Hboson, they are the q- and p-quadrature basis represented by |x⟩q and |r⟩p

respectively, with x, r ∈ R. Natural units ℏ = 1 will be used throughout the text. Note that

|x⟩q , |r⟩p are eigenstates to the q- and p-quadrature operators respectively:

q̂ |x⟩q = x |x⟩q

p̂ |r⟩p = r |r⟩p
(2.12)

where the quadratures operators follow the canonical commutator relationship: [q̂, p̂] = îI,

where Î is the identity on the infinite dimensional Hilbert space support. The q-quadrature

wavefunction Ψ(x) of any pure state |Ψ⟩ ∈ Hboson is define as:

⟨x|Ψ⟩q = Ψ(x) , (2.13)

while the p-quadrature wavefunction Ψ̃(r) is related to Ψ(x) via the Fourier transform Fx→r:

Fx→r

{
Ψ(x)

}
=

∫
x∈R

dx
e−ixr√
2π

Ψ(x) (2.14)

The quadrature eigenstates follows the relation: ⟨r|x⟩p q =
e−irx√
2π

. Conveniently, q̂, p̂ is related

to the annihilation operator â through:

â =
q̂ + ip̂√

2
, (2.15)

where we can re-write q̂ = â+â†√
2

and p̂ = â−â†√
2i
. The annhilation operator is a eigen-operator

to the set of over-complete wavefunctions called the coherent states, {|α⟩}α∈C. The eigenvalue

1Not necessarily always continuous, for example you can still have discretely countable infinite number of
energy eigenvalues in the quantum harmonic oscillator.
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equation is â |α⟩ = α |α⟩. The coherent state has a q-quadrature wavefunction of the form:

α(x) =
1

π
1
4

e−
1
2
(x−

√
2α)2e−

1
2
(|α|2−α2) . (2.16)

The conjugate transpose of the annihilation operator â† is known as the creation operation and

they follow the commutation relation, [â, â†] = Î. The number operator n̂ is an eigen-operator

to the Fock states {|m⟩}∞m=0 with n̂ = â†â.

n̂ |m⟩ = m |m⟩

â |m⟩ =
√
m |m− 1⟩

â† |m⟩ =
√
m+ 1 |m+ 1⟩

(2.17)

These two quadrature bases can be transformed from one to another via the Fourier transform

operator F̂ :

F̂ = ei
π
4 ei

πn̂
2 . (2.18)

The (q, p) ∈ R2 define a two dimensional plane called phase space. An alternative description of

a quantum state is given by a Wigner function (quasi-probability distribution) [67] for a state

ρ̂:

W (q, p|ρ̂) = 1

π

∫
y∈R
dy ⟨q + y|q ρ̂ |q − y⟩q e

2ipy , (2.19)

additionally the density matrix function (which will be used frequently) is defined as:

ρ(x, y|ρ̂) = ⟨x|q ρ̂ |y⟩q , (2.20)

which is the matrix elements of the density matrix ρ̂ in the q-quadrature basis. Another set of

important operators are the displacement operators:

σ̂x(u) = e−iup̂

σ̂z(v) = eivq̂ ,

(2.21)
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these operators, (σ̂x(u), σ̂z(v)), shift the (q, p) axis of phase space by (u, v) respectively. To-

gether these two operators σ̂x(u) and σ̂z(v) defines the total displacement operator in phase

space:

d̂(u, v) = e−ivq̂e−iup̂ = σ̂z(v)σ̂x(u) . (2.22)

An important two mode entangling operator is the beamsplitter, defined as:

B̂ϕ = e−
ϕ
2
(â†b̂−âb̂†) , (2.23)

this operator rotates a two mode q-quadrature wavefunction ψ(x, y) by ϕ radians in the x-y

plane. Another important single mode operator is the squeezing operator

Ŝc = e
ln(c)
2

(â2−(â†)2) , (2.24)

it transforms a q-quadrature wavefunction by, ψ(x) → ψ(cx), effectively shrinking or stretch-

ing the wavefunction by c. Operations such as the displacement, squeezing operators and

beamsplitter in quantum optics are part of a larger class of bosonic operators called Gaussian

operations, which are defined as unitary operations that has at most quadratic multiples of â

and â† in its Hamiltonian [56, 44].

2.2.2 Dominant error models

The most dominant physical noise in a bosonic mode is the amplitude damping channel [68],

we have written the completely positive map N for the amplitude damping channel and one

choice of its Kraus operators in terms of the annihilation and creation operators [24]:

Nγ(ρ̂) =
∞∑
n=0

Enρ̂E
†
n ,

En =
( γ

1− γ

)n/2 ân√
n!
(1− γ)n̂/2 .

(2.25)

The action of this error channel can be interpreted as loss of photons in the Fock basis, with

0 ≤ γ ≤ 1 being a probability of loss. A Taylor expansion with γ ≪ 1 demontrates this point.
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Suppose (1 − γ)n̂/2 = Î − (γ/2)n̂ + O(γ2), dropping terms from order O(γ2), then the Kraus

operators are given by

En ≈ γn/2(1 + nγ/2)
ân√
n!

(
I − γ

2
n̂
)
. (2.26)

If we drop all terms from O(γ), then only 2 possible Kraus operators exist, they are E0 and

E1:

E0 ≈ Î ,

E1 ≈
√
γâ .

(2.27)

The operator E0 implies no loss while E1 enacts an annihilation operation on the state, effec-

tively causing single photon loss at rate γ. In a realistic setting, if it were possible to measure

the loss rate γ offline and pre-amplify the state prior to the loss channel, we can transform the

amplitude damping channel to the random Gaussian displacement channel given by Eσ0 [69].

This error channel has can be interpreted as a random displacement in phase space in both the

q- and p-quadrature direction with the magnitude of the displacement following a Gaussian

distribution:

Eσ0(ρ̂) =
1

2πσ2
0

∫∫
α∈C

dudv e
−u2+v2

2σ2
0 d̂(u, v) ρ̂ d̂(u, v)† , (2.28)

and the width γ = σ2
0 quantifies the extent of the error. The random Gaussian displacement

error channel describes amplitude damping that is preceded by an offsetting pre-amplification

[70], and it is therefore highly relevant to many experimental platforms.

2.3 Bayesian estimators [5]

We wish to establish an overview of Bayesian estimators, which will be used extensively in

chapter 5 to decode the syndrome. Suppose we have an error that follows a known error

distribution P(U) and its error realisation u ∼ U . In addition, we have a measurement result

xm that is correlated with u. The likelihood is the distribution of the measurement result given
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a known u. The likelihood is represented by P(xm|u). Following Bayes’ theorem, the posterior

can be calculated as follows:

P(u|xm)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P(xm|u)P(u)∫

u

du P(xm|u)P(u)︸ ︷︷ ︸
Normalisation factor

. (2.29)

The posterior is the distribution of the error given the measurement result. The mean of the

posterior distribution given by:

ũ(xm) =

∫
u

du uP(u|xm) , (2.30)

this can be used as an estimator to infer the error parameter u given the measurement result.

The estimator of u is written as ũ(xm), which is a function dependent on xm. Finally, the mean

square error of the estimator can be given by the standard deviation of the posterior:

σ(u|xm) =

√√√√∫
u

du u2P(u|xm)−

(∫
u

du uP(u|xm)

)2

. (2.31)

With the above information given the likelihood and error distribution, we can calculate the

posterior and use the 1st and 2nd order moments of the posterior to infer the error u with the

estimators and bound its error of estimation: ũ(xm)± σ(u|xm).
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The grid states

This chapter introduces well-known aspects of the grid states, starting with the wavefunction

definitions of the Gottesman-Kitaev-Preskill and grid sensor states, before a short description

of the generalisation of these states via the stabiliser formalism. The definitions of these states

will be used extensively throughout this thesis.

3.1 Definitions

3.1.1 The Gottesman-Kitaev-Preskill states

The approximate GKP codewords with width ∆⃗ = (∆, κ) are defined as,

ψ∆⃗
µ (x) =

√
2

π
1
4

∑
s∈Z

G 1
κ
[(2s+ µ)

√
π ]G∆[x− (2s+ µ)

√
π ] (3.1)

where GΣ(z) = exp
{
(− z2

2Σ2 )
}

and µ ∈ {0, 1} defines the logical basis states. Informally, for

the logical 0 (1) state we have a superposition of Gaussians of width ∆ centered at even

(odd) multiples of
√
π, with an overall Gaussian envelope of width 1/κ. Better approximations

to the ideal GKP state are achieved with smaller values of ∆ and κ, although these also

correspond to larger average energy and an apparent increase in experimental difficulty. The

19
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normalisation before the summation can be expressed as elliptic theta functions, but it can

often be approximated to be
√
2

π
1
4
in the case of high quality GKP states. A more mathematically

rigorous definition of the normalisation constants in terms of ∆ and how other definitions of

GKP states coincide with each other is given in [71].

Figure 3.1: GKP logical states ψ0 and ψ1 in the q-quadrature using ∆ = 0.1 here.

3.1.2 The grid sensor state

The finite-energy grid sensor state (also known as the qunaught state in the literature) [55] is a

bosonic state first introduced as a modified GKP state to tackle problems in quantum sensing.

The width between each Gaussian peaks for the grid sensor state is
√
2π compared to integers

multiples of
√
π in the GKP state. The grid sensor state, |S∆⟩, is parameterised by a width

parameter ∆, and has a q-quadrature wavefunction of the form:

S∆(x) = λ(∆)
∑
n∈Z

G 1
∆

(
n
√
2π
)
G∆

(
x− n

√
2π
)
. (3.2)

Where λ(∆) is a normalisation constant with a limiting value of lim∆→0 λ(∆) = (2/π)1/4 for

∆ ≤ 1/
√
2π. Also note that lim∆→0 S∆(x) = X(x) =

∑
n∈Z δ(x − n

√
2π), a Dirac comb of
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width
√
2π, which is the tempered distribution eigenfunction of the Fourier transform operator

with eigenvalue 1 [72]. Note that, |S∆⟩ has an average photon number of n̄ ≈ ∆2+∆−2
2

− 1
2
[73].

3.1.3 Generalisations of the GKP state

We wish to now lay down the theoretical definitions of the infinite energy grid states and gen-

eralisations of it. This is important because we can gain intuition as to where their periodicity

comes from. We wish to give a short definition of stabiliser states before proceeding with the

definitions of the GKP states via stabilisers.

Pure stabiliser states [74]

Pure stabiliser states are joint eigenstate to a set of operators s that forms the generators of

a group S. The group S is called the stabiliser group and VS is the spanning set of states

(stabiliser states) stabilised by s ∈ S. The formal definition is as follows:

s |A⟩ = |A⟩ ∀s ∈ S ⇔ S stabilises VS = {|A⟩} . (3.3)

Note that S must be Abelian because only commuting operators have simultaneous eigenstates.

We can write S in terms of its generators:

S = ⟨s1, s2, ..., sk⟩ , (3.4)

where the group S is written in the standard notation of its generators inside the ⟨...⟩ brackets.

Ideal square-lattice GKP states [75]

The ideal square-lattice GKP state(s) [75] are bosonic state defined by the stabiliser generators:

SGKP(α, β) = ⟨σ̂x(2α), σ̂z(2β)⟩ , (3.5)
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where σ̂x(u) = e−iup̂, σ̂z(v) = eivq̂ as defined in equation 2.21. The Abelian constraint of the

group SGKP(α, β) means that αβ = 2Dπ where n ∈ Z. The parameterD = dim(VSGKP
), denotes

the dimension of the spanning set of states stabilised by SGKP. An unbiased [76] square-lattice

GKP state means α = β. For the rest of the section we shall focus on the unbiased case and

will drop the second parameter in SGKP(α, α) = SGKP(α).

For example, when D = 1 ⇒ α =
√
2π, the group SGKP(

√
2π):

SGKP(
√
2π) =

〈
σ̂x(

√
2π), σ̂z(

√
2π)

〉
(3.6)

The corresponding set to SGKP(
√
2π), VSGKP(

√
2π), comprises of one state:

∑
j∈Z

∣∣∣j√2π
〉
q
, (3.7)

This is the state |S∆→0⟩ grid sensor state [73].

The set of states stabilised by SGKP when D = 2 are the conventional GKP states as defined

by the original authors [77], the set is spanned by:

VSGKP(2
√
π) = span

{∑
j∈Z

∣∣(2j)√π〉
q︸ ︷︷ ︸∣∣∣ψ(∆=0,κ=0)

0

〉
,

∣∣∣ψ(∆=0,κ=0)
1

〉︷ ︸︸ ︷∑
j∈Z

∣∣(2j + 1)
√
π
〉
q

}
, (3.8)

and

SGKP(2
√
π) =

〈
σ̂x(2

√
π), σ̂z(2

√
π)

〉
. (3.9)

These states are the infinite energy versions of the logical zero and one GKP states.

Notice the ideal square-lattice GKP states are generalisations of the grid states such as GKP

or grid sensor states. The stabilisers in SGKP(2
√
π) implies that any integer multiple of 2

√
π

shift in either the q- or p-quadrature direction leaves the infinite energy GKP state unchanged,

this defines the GKP state’s periodicity. Similarly, the infinite energy sensor state is invariant

under any integer multiple of
√
2π in either the q- or p-quadrature direction.



Chapter 4

Properties of the grid states

A leading approach to CV quantum computation, proposed by Gottesman, Kitaev and Preskill

(GKP) [35], is based on the idea of encoding a qubit within an (infinite dimensional) oscillator.

Ideal codeword wavefunctions within this paradigm correspond to infinite-energy Dirac combs,

and are commonly referred to as GKP states. In practice, this ideal wavefunction is replaced by

a finite-energy approximation, such as a comb of narrow Gaussian peaks modulated by a broad

Gaussian envelope. A close relative to the GKP state is the grid sensor state, proposed in [55]

as a quantum state used to infer small displacements in phase space for quantum metrology.

The GKP states and grid sensor state differ only by the spacing of neighbouring Gaussian peaks

in the q-quadrature wavefunction, with spacings of
√
π and

√
2π respectively.

Some promising results from [78] show that the grid sensor state can double the scan-rate of

detecting a small displacement in the electromagnetic field (related to squeezed vacuum states)

in searches for axion particles, a potential candidate for dark matter. They are also used as

resource in quantum teleportation schemes involving GKP states in a larger CV quantum com-

putation architecture [79]. Additionally, the state are used for adaptive phase estimation [55]

and improving distributed sensing [80]. The appeal of GKP-encoded qubits or grid sensors

states are their intrinsic robustness to physically motivated error channels, the existence of

natural schemes for error syndrome extraction and correction using the GKP-encoded qubits

[66] and the ability to simultaneously estimate displacement/error in phase space in two per-

23
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pendicular directions [81]. Firstly the GKP states and grid sensor states are defined, before

exploring the many different aspects of the grid sensor state in this chapter. The properties of

the grid sensor state motivates the logical GKP qubits as a promising candidate for bosonic

error correction.

This chapter explores several different aspects of the grid sensor state including its error re-

silience to Gaussian random displacement channel, Fourier transform properties, its Fock state

amplitudes, the resource cost of generation, the quantum parameter estimation capabilities and

finally on its transformation to the GKP Bell states briefly.
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Displacement sensing

In section 4.1, we wish to layout some motivations for the the displacement sensing problem in

CV quantum systems via functional minimisation. This will be a good introduction to section

4.2 and 4.3 where the sensing properties of quantum states are laid out through the quantum

Fisher information.

4.1 Motivations for the displacement sensing problem

Section 4.1 consists of my own work.

Quantum information in a bosonic mode [82] can be quickly destroyed by noise. This noise can

be largely represented as an unwanted shift in the q- and p-quadrature basis of the wavefunction.

For example, the vacuum state to the quantum harmonic oscillator is:

ϕ0(x) =
e−

x2

2

π
1
4

. (4.1)

A small shift in the q-quadrature can be represented in figure 4.1. The shift is the error and is

Figure 4.1: A vacuum state and its shifted counterpart (by 0.2).

undesirable. Sensor states are useful in detecting such shifts. To illustrate this point, consider
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measuring the wavefunction ϕ0(x) in the q-quadrature basis, which has results distributed

according to the probability density:

P(y) = |ϕ0(y)|2 , (4.2)

given the measurement result y, the wavefunction collapse into δ(x− y).

Figure 4.2: A vacuum state measured in the q-quadrature basis will collapse to a delta
wavefunction into ∆(x− y). In this example above, y = 1.

Given the input state |Ψ⟩, the protocol is as follows:

Ψ(x)
x→x−u−−−−→
error

Ψ(x− u)
q basis−−−−−−−−−−−−→

measurement result y
δ(x− y) , (4.3)

The state first acquires an unknown error u and then undergoes a q-quadrature measurement

with measurement result y, the probability of getting this measurement results is |Ψ(y−u)|2dx.

The measurement result y should be a functional in terms of Ψ and a function in terms of the

error u, y{[Ψ], (u)}. What wavefunction Ψ gives the best estimate of the error u on average

given the random measurement result y? The goal is to devise a decoding function ũ = f(y)

such that ũ is an estimation for u. Displacement errors are physically relevant as any general

quantum error on a bosonic mode can be decomposed into a statistical ensemble of displacement

errors [24].
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4.1.1 Toy problems

Understanding sensing in the q-quadrature

To motivate the general problems sensor states are used to solve, this section will introduce a

series of toy models. Starting with a toy model, fix the decoding function to be linear f(y) = y,

using the measurement result gives as an estimator for the shift u. The measurement result y

is sampled from the probability distribution |Ψ(y − u)|2. Then Ψ(x) = δ(x) gives the optimal

wavefunction for this decoding function. Starting with a trial function of (a squeezed vacuum

state here):

Ψ(x) =
1√
λ
ψ0(x/λ) =

e−
x2

2λ2

(λ2π)
1
4

. (4.4)

The delta function is the optimal (albeit unrealistic) wavefunction in this case. The conditional

probability density of measuring in the q-quadrature given the error u is P(x|u) = |Ψ(x−u)|2 =
e
− (x−u)2

λ2√
λ2π

. Sampling X ∼ P(X|u), the expectation value is ⟨X⟩P(X|u) = u. This implies the mean

of the samples gives you an unbiased estimator for u.

The mean square error is ⟨X2⟩P(X|u) − ⟨X⟩2P(X|u) = λ2/2. Minimising the mean square error

in this case, λ2/2 → 0, gives the optimal estimator. Note that the limit lim
λ→0

e−
x2

2λ2

(λ2π)
1
4

= δ(x),

hence the delta function is recovered. This shows the optimal wavefunction is δ(x) for the

decoding function f(y) = y. Localised states are most susceptible to shifts errors and thus

more informative when probed by a measurement. Unfortunately, a highly localised state in

the q-quadrature is delocalised in the p-quadrature. Hence there is a trade-off between the

performance in conjugate quadratures.

Ideally, this problem could be solved by functional minimisation with Lagrange multipliers and

introduce a normalisation constraint, so that the wavefunctions are square integrable. Also, the

delta function is an infinite energy state that is unphysical. Typically, in physical situations

when a finite energy constraint is required, squeezed states are introduced with infinite squeezing

corresponding to infinite energy.
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Understanding sensing in the q- and p-quadrature

The most relevant quantum errors to bosonic stabiliser codes are displacement errors [83].

Hence, error channels that can be decomposed as a weighted linear combination of shift over

both quadratures are error channels of interest. It is then required that error shifts in either

quadrature are sensed equally well. Suppose the function Ψ(x) is the variable function to be

functionally minimised. Note that, the Fourier transform of Ψ(x) to its conjugate is F [Ψ(x)] =

Ψ̃(p) = 1√
2π

∫∞
−∞Ψ(x)e−ixpdx, the set up is as follows:

Ψ(x)
x→x−u , p→p−v−−−−−−−−−−→

error
eixvΨ(x− u)

q or p basis−−−−−−−−−−−−→
measurement result y

, (4.5)

The q-quadrature representation after error is eixvΨ(x−u) and the measurement result is sam-

pled from Y ∼ |Ψ(Y −u)|2. On the other hand, the p-quadrature representation is e−ipuΨ̃(p−v)

after errors and the measurement result is sampled from Ω ∼ |e−ipuΨ̃(Ω − v)|2 = |Ψ̃(Ω − v)|2.

Now a symmetric constraint is introduced, F [Ψ(x)] = eiθΨ(x), which is motivated from the

fact that neither quadrature should be favoured. Then, it implies X ∼ |Ψ(X − u)|2 should

be sampled from for the q-quadrature and Ω ∼ |Ψ(Ω − v)|2 for the p-quadrature. The goal is

to have a minimum variance unbiased estimator. One such set of functions Ψ(x) that satisfies

this requirement are the Hermite-Gaussian functions which are the Fock state wavefunctions:

ϕn(x) = (2nn!
√
π)−

1
2 e−

x2

2 Hn(x) , n ∈ N = {0, 1, 2, 3, ...} [55]. A functional minimisation is

needed to find the state Ψ that minimises the mean square error. The following requirements

apply:

1. Unbiased in the q-quadrature:∫ ∞

x=−∞
dx x|Ψ(x− u)|2 = u for all u ∈ R ⇒

∫∞
x=−∞ dx x|Ψ(x)|2 = 0

2. Unbiased in p-quadrature:∫ ∞

p=−∞
dp p|Ψ̃(p− v)|2 = v for all v ∈ R. ⇒

∫∞
p=−∞ dp p|Ψ̃(p)|2 = 0

3. Minimum variance in both quadratures simultaneously:

minΨ

{∫ ∞

x=−∞
dx x2|Ψ(x− u)|2 +

∫ ∞

p=−∞
dp p2|Ψ̃(p− v)|2

}
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4. Normalisation constraint:∫ ∞

x=−∞
dx |Ψ(x)|2 = 1

A function Ψ that minimises the variance can be found via by setting the functional derivative

of D[Ψ] to be zero and solving for Ψ(x′). Considering functional D,

D = ⟨q̂2⟩Ψ(x−u) + ⟨p̂2⟩Ψ̃(p−v) =∫ ∞

x=−∞
dx x2|Ψ(x− u)|2 +

∫ ∞

p=−∞
dp p2

1√
2π

∫ ∞

−∞
Ψ(x1)e

−ix1(p−v)dx1
1√
2π

∫ ∞

−∞
Ψ∗(x2)e

ix2(p−v)dx2

(4.6)

Re-writing all the wavefunctions in p→ x.

⇒ D =

∫ ∞

x=−∞
dx x2

[
|Ψ(x−u)|2+ 1

2π

(∫ ∞

x1=−∞
Ψ(x1)e

−ix1(x−v)dx1

)(∫ ∞

x2=−∞
Ψ∗(x2)e

ix2(x−v)dx2

)]

Recall one definition of the functional derivative is,

δ

δQ

(∫
x∈R

dx f(x)Q(x)
)
=

∫
x∈R

dx f(x)
δQ(x)

δQ(x′)︸ ︷︷ ︸
δ(x−x′)

= f(x′).

Using the definition of the functional derivative, assuming Ψ ∈ R for simplicity, and with further

simplifications.

⇒ δD

δΨ
= 2(x′ + u)2Ψ(x′) +

∫
x

dx
{x2
2π

[(
e−ix

′(x−v)
)(∫

x2

Ψ(x2)e
ix2(x−v)dx2

)
+(∫

x1

Ψ(x1)e
−ix1(x−v)dx1

)(
eix

′(x−v)
)]}

.

For the normalisation constraint, we add a Lagrange multiplier ϵ, transforming the functional

minimisation to δ
δΨ(x′)

(
D − ϵ

∫∞
x=−∞ dx |Ψ(x)|2

)
= 0 solving for Ψ(x′) to obtain the optimal

Ψ(x′).

⇒ δ

δΨ

(
D − ϵ

∫ ∞

x=−∞
dx |Ψ(x)|2

)
=

δD

δΨ(x′)
− ϵ

∫ ∞

x=−∞
dx

δΨ2(x)

δΨ(x′)

=
δD

δΨ(x′)
− ϵ

∫ ∞

x=−∞
dx 2Ψ(x)δ(x− x′)

=
δD

δΨ(x′)
− ϵ2Ψ(x′)

(4.7)
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⇒ δ

δΨ(x′)

(
D − ϵ

∫ ∞

x=−∞
dx |Ψ(x)|2

)
=

2Ψ(x′)(−ϵ+ (x′ + u)2)

+

∫
x

dx
{x2
2π

[(
e−ix

′(x−v)
)(∫

x2

Ψ(x2)e
ix2(x−v)dx2

)
+
(∫

x1

Ψ(x1)e
−ix1(x−v)dx1

)(
eix

′(x−v)
)]}
(4.8)

Setting equation 4.8 to zero, and solving for Ψ(x′),

⇒ −2Ψ(x′)(−ϵ+ (x′ + u)2) =

∫
x

dx
{ x2√

2π

[(
e−ix

′(x−v)
)
Ψ̃(v − x) + Ψ̃(x− v)

(
eix

′(x−v)
)]}
(4.9)

Using two further simplifications, firstly Ψ is invariant up to a phase after a Fourier transform:

Ψ̃ = FΨ = eiθΨ. This is also a physical constraint because this further ensures that there is

no bias between the two quadratures. Secondly, Ψ is even, Ψ(x) = Ψ(−x), as there is should

be no difference between sensing in the positive and negative x direction.

⇒ −2Ψ(x′)(−ϵ+ (x′ + u)2) =eiθ
∫
x

dx
x2√
2π

(
e−ix

′(x−v)
)
Ψ(v − x)+

eiθ
∫
x

dx
x2√
2π

Ψ(x− v)
(
eix

′(x−v)
) (4.10)

Make a change of variable in both the integrals x = y + v:

⇒ −2Ψ(x′)(−ϵ+ (x′ + u)2) = eiθ
(∫

y

dy (y + v)2Ψ(y)
e−ix

′y

√
2π︸ ︷︷ ︸

Fy→x′

{
(y+v)2Ψ(y)

}
+

∫
y

dy (y + v)2Ψ(y)
eix

′y

√
2π

)

(4.11)

Make another change of variable in the integral to the right, y → −y:

⇒ −2Ψ(x′)(−ϵ+ (x′ + u)2) = eiθFy→x′

{
2(y2 + v2)Ψ(y)

}
(4.12)
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Re-naming x′ → z

⇒ Fy→z

{
(v2 + y2)︸ ︷︷ ︸
quadratic in y

Ψ(y)
}
= (−e−iθ) (−ϵ+ u2 + 2uz + z2)︸ ︷︷ ︸

quadratic in z

Ψ(z) (4.13)

The following identity can be used to simplify this,

Fy→z{y2Ψ(y)} = − ∂2

∂z2
Fy→z{Ψ(y)} = −eiθ ∂

2

∂z2
Ψ(z) (4.14)

⇒ ∂2

∂z2
Ψ(z) = (e−i2θ)

[
v2ei2θ − ϵ+ u2 + 2uz + z2

]
Ψ(z) (4.15)

Since Ψ is real and even this implies θ = 0, π

⇒ ∂2

∂z2
Ψ(z) =

[
(v2 + u2 − ϵ) + 2uz + z2

]
Ψ(z) (4.16)

This second-order ordinary linear differential equation is called the Weber’s differential equa-

tion. In the standard form it is given by:

⇒ ∂2

∂z2
Ψ(z) =

[
c+ bz + az2

]
Ψ(z) , (4.17)

where a, b, c are constants in z. There are two independent solutions to this ODE, y1 and y2:

y1(z|u, v, ϵ) = D−1+ϵ−v2

2

(√
2(z + u)

)
y2(z|u, v, ϵ) = D−1−ϵ+v2

2

(
i
√
2(z + u)

) (4.18)

the solutions Dg(x) are the parabolic cylinder function [84]. The solutions y2 diverges as z → ∞,

so it’s not a valid wavefunction, hence they will be discard as valid solutions. As a wavefunction,

y1 needs to be square integrable and so the Lagrange mutltiplier ϵ can be introduced to enforce

this constraint. In order for y1(z|u, v, ϵ) = D−1+ϵ−v2

2

(√
2(z+u)

)
to be square integrable, −1+ϵ−v2

2

needs to be a non-negative integer. Further restriction of Ψ being an even function means u→ 0

and −1+ϵ−v2
2

needs to be an even integer [84]. A choice of ϵ = v2 + 1 + 4m, m ∈ N.
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⇒ Ψ(x) ∝ D2m

(√
2x
)
, (4.19)

Using the identity Dn(x) = 2−n/2e−x
2/4Hn(x/

√
2), where n is a non-negative integer, finally

arriving at,

⇒ Ψ(x) ∝ e−x
2/2H2m(x) , (4.20)

where Hn(x) is the Hermite polynomial. This means |Ψ⟩ = |2m⟩, a Fock state with even photon

number. Under constricting conditions, the model above functionally searches for a quantum

state that minimises the phase space variance when inferring a shift in phase space with a linear

decoding function and simple measurement in the two quadrature basis. Additional constraints

such as Ψ is an even real function and it needs to be invariant up to a phase under the Fourier

transform have been added to ensure no bias between q- and p- quadratures. The model has

shown that a Fock state is a good starting point when choosing what states to use for this

particular quantum metrology problem. Unfortunately, the dominant errors in quantum optics

are often photon loss, which is a separate errors to phase space shifts. While in the toy model

Fock states are shown to be resourceful, in reality they are not a feasible choice due to their

lack of resistance to loss. We need to search for states with more error resistance to loss. This

is a good motivation to study the grid sensor state under realistic errors.

Furthermore, we will provide a short introduction to quantum parameter estimation theory

and formalise the quantum displacement sensing problem in both q- and p-quadrature simul-

taneously in section 4.2. And then applying those results to the grid sensor state in section

4.3.



4.2. Quantum parameter estimation 33

4.2 Quantum parameter estimation

This section (section 4.2) consists of a short introduction to quantum parameter estimation

theory from [85].

Quantum parameter estimation aims to estimate (usually real) parameters in a quantum sys-

tem by providing a probe/sensor state and then performing a POVM, using the measurement

statistics afterwards to infer these unknown parameters. One good figure of merit for the choice

of a particular probe state is the quantum Fisher information or the quantum Fisher informa-

tion matrix if multiple parameters needs to be estimated. The quantum Cramér Rao bound

or the Helstrom bound aims to lower bound the errors of the estimation. There also exists a

necessary and sufficient condition for the attainability of this lower bound. We shall discuss

these two different aspects after some preliminary definitions.

Suppose we have unknown parameters u⃗ and a probe state given by density matrix ρ̂. We shall

denote ρ̂u⃗ as the transformed probe state encoding these unknown parameters, this is a positive

map of ρ̂ and the Kraus operators are functions of u⃗. The quantum Fisher information matrix

is defined as:

Fk,l =
Tr(ρ̂u⃗{Lk, Ll})

2
(4.21)

where {·, ·} is the anti-commutator and Lk is a hermitian operator called the symmetric logrith-

mic derivative corresponding to the kth entry of u⃗ to be estimated (uk), it is defined by:

∂

∂uk
ρ̂u⃗ =

{ρ̂u⃗, Lk}
2

. (4.22)

Given a POVM Ey with measurement result y. The Helstrom/quantum Cramér Rao bound

gives the the minimum combined variances of the any possible estimator and measurement

results:

∑
j

Var(ũj(y)|Ey) ≥ Tr
(
F−1
)
≥
∑
n

1

Fn,n
, (4.23)

where ũj(y) is the estimator of the jth element of u⃗. In other words the trace of the inverse
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quantum Fisher information matrix gives the lowest possible mean square error of estimation of

parameters u⃗. This lowest bound may not be always attainable, at least in the multiparameter

estimation case, because the POVM might not exists. Luckily, [86] provided the necessary and

sufficient conditions for the attainability of this bound if the probe state is pure ρ̂ = |ψ⟩⟨ψ| and

the hidden parameters are induced by a unitary transformation i.e. |ψ(u⃗)⟩⟨ψ(u⃗)| = Û(u⃗) |ψ⟩.

The Helstrom bound is attainable if

∑
j

Var(ũj(y)|Ey) = Tr
(
F−1
)
⇔ ⟨ψ| [Hk,Hl] |ψ⟩ = 0 ∀ k, l , (4.24)

where Hk = −iÛ †(u⃗)
(

∂
∂uk

Û(u⃗)
)
.
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4.3 The Helstrom bound for the displacement problem

using the grid sensor state

Section 4.3 consists of my own work.

The GKP type grid sensor state was first suggested to be a an exotic quantum state used to

perform multi-parameter quantum estimation in [55]. We will describe how the grid sensor

state explicitly saturates the Helstrom bound exactly for the displacement estimation problem

in phase space and why this is a good motivation for the GKP state as a quantum error

correcting code.

The grid sensor state without any approximations in its normalisation constant is:

S∆(x) = λ(∆)
∑
n∈Z

e−
(n

√
2π)2∆2

2 e−
(x−n

√
2π)2

2∆2 , (4.25)

and its Fourier transform is:

Fy→x{S∆(y)} = S̃∆(x) = λ(∆)e−
x2∆2

2

∑
n∈Z

e−
(x−n

√
2π)2

2∆2 , (4.26)

The normalisation constant λ(∆) is the same in both S∆(x) or S̃∆(x), this is due to the

Parseval’s theorem in Fourier analysis [87]. We shall calculate this normalisation constant

explicitly now. This will be useful in our following calculations. Starting with the normalisation

of S̃∆(x):

1 =

∫
x

dx |S̃∆(x)|2 = λ2(∆)

∫
x

dx
∣∣∣∑
n∈Z

e−
x2∆2

2 e−
(x−n

√
2π)2

2∆2

∣∣∣2
= λ2(∆)

∑
n∈Z

∑
m∈Z

∫
x

dx e−x
2∆2

e−
(x−n

√
2π)2

2∆2 e−
(x−m

√
2π)2

2∆2 ,

(4.27)

the integral inside the double sums simplifies to:

∫
x

dx e−x
2∆2

e−
(x−n

√
2π)2

2∆2 e−
(x−m

√
2π)2

2∆2 =

√
π√

∆2 +∆−2
e−

π(m−n)2

2∆2 e
− π(m+n)2

2(∆2+∆−2) (4.28)
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Now we re-write the double sums
∑

n∈Z

∑
m∈Z → 1

2

∑
a∈Z

∑
b∈Z where a = m+n and b = m−n,

this implies:

1 =

∫
x

dx |S̃∆(x)|2 = λ2(∆)
1

2

∑
a∈Z

∑
b∈Z

√
π√

∆2 +∆−2
e−

πb2

2∆2 e
− πa2

2(∆2+∆−2)

1 = λ2(∆)
1

2

√
π√

∆2 +∆−2

∑
b∈Z

e−
πb2

2∆2

︸ ︷︷ ︸
θ3

(
0,e

− π
2∆2

)
∑
a∈Z

e
− πa2

2(∆2+∆−2)

︸ ︷︷ ︸
θ3

(
0,e

− π
2(∆2+∆−2)

)
(4.29)

⇒ λ2(∆) =

(
1

2

√
π

∆2 +∆−2
θ3

(
0, e−

π
2∆2

)
θ3

(
0, e

− π
2(∆2+∆−2)

))−1

. (4.30)

As illustrated in [55], if we have a quantum state |ψ⟩ and we have a displacement Û(u⃗) = eivq̂eiup̂

on the quantum state |ψ⟩ such that |ψ(u⃗)⟩ = eivq̂eiup̂ |ψ⟩. We wish to estimate the hidden

parameters u⃗ = (u, v)T via a POVM Ey, such that Trsystem

(
Ey |ψ(u⃗)⟩⟨ψ(u⃗)|

)
= P(y|u, v),

the conditional probability of the POVM measurement result y given the unknown shifts u, v.

Suppose we have unbiased estimators for u, v that depends of y given by ũ, ṽ. The Helstrom

bound, gives the minimum combined variances of the estimators for this 2 parameter estimation

problem.

Var(ũ(y)|Ey) + Var(ṽ(y)|Ey) ≥ Tr
(
F−1
)
≥
∑
n

1

Fn,n
, (4.31)

where Var(ũ(y)|Ey) =
∑

y P(y|u, v)(ũ(y) − u)2, the unbiased estimator condition is given by∑
y P(y|u, v)(ũ(y)−u) = 0 and F is the 2 by 2 quantum Fisher information matrix. The maxtrix

F is a function in terms of u, v and a functional in |ψ⟩. The equality on the right in equation

4.31 is satisfied if and only if F is diagonal. Using calculations from [55], the individual matrix
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elements of F for the displacement estimation problem is given by:

Fu,u
4

= ⟨ψ(u⃗)|
(
q̂ − ⟨ψ(u⃗)| q̂ |ψ(u⃗)⟩

)2
|ψ(u⃗)⟩

Fv,v
4

= ⟨ψ(u⃗)|
(
p̂− ⟨ψ(u⃗)| p̂ |ψ(u⃗)⟩

)2
|ψ(u⃗)⟩

Fu,v
4

= ⟨ψ(u⃗)| q̂ |ψ(u⃗)⟩ ⟨ψ(u⃗)| p̂ |ψ(u⃗)⟩ − 1

2
⟨ψ(u⃗)| {p̂, q̂} |ψ(u⃗)⟩ = Fv,u

4
.

(4.32)

Using transformation of the displacement operators on q̂, p̂, eiup̂q̂e−iup̂ = q̂+ u and e−ivq̂p̂eivq̂ =

p̂+ v and also
〈
S̃∆

∣∣∣ q̂ ∣∣∣S̃∆

〉
= 0

〈
S̃∆

∣∣∣ p̂ ∣∣∣S̃∆

〉
, when we substitute in ψ = S̃∆.

F/4 =


〈
S̃∆

∣∣∣ q̂2 ∣∣∣S̃∆

〉
Fu,v

4

Fu,v

4

〈
S̃∆

∣∣∣ p̂2 ∣∣∣S̃∆

〉
 (4.33)

The anti-commutator of p̂, q̂ is an hermitian operator so the expectation values must be real.

Re-writing {p̂, q̂} = p̂q̂+ q̂p̂− p̂q̂+ p̂q̂ = 2p̂q̂+[p̂, q̂] = 2p̂q̂+ îI. Using this and the transformation

of the displacement of the quadrature operators on Fu,v/4, we get:

Fu,v
4

=
〈
S̃∆

∣∣∣ q̂ + u
∣∣∣S̃∆

〉〈
S̃∆

∣∣∣ p̂+ v
∣∣∣S̃∆

〉
−
〈
S̃∆

∣∣∣ (p̂+ v)(q̂ + u) +
i

2
Î
∣∣∣S̃∆

〉
. (4.34)

Since
〈
S̃∆

∣∣∣ q̂ ∣∣∣S̃∆

〉
= 0 =

〈
S̃∆

∣∣∣ p̂ ∣∣∣S̃∆

〉
, this implies:

Fu,v
4

= − i

2
−
〈
S̃∆

∣∣∣ p̂q̂ ∣∣∣S̃∆

〉
. (4.35)

Now the aim is to compute
〈
S̃∆

∣∣∣ p̂q̂ ∣∣∣S̃∆

〉
, which we will abbreviate by ⟨p̂q̂⟩S̃∆

:
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⟨p̂q̂⟩S̃∆
=

∫
x

dx(−i∂xS̃∆(x))
∗xS̃∆(x)

= i

∫
x

dx(∂xS̃∆(x))xS̃∆(x)

= i

∫
x

dx λ(∆) ∂x

(∑
n∈Z

e−
x2∆2

2 e−
(x−n

√
2π)2

2∆2

)
x λ(∆)

∑
m∈Z

e−
x2∆2

2 e−
(x−m

√
2π)2

2∆2

= iλ2(∆)

∫
x

dx ∂x

(∑
n∈Z

e−
x2∆2

2 e−
(x−n

√
2π)2

2∆2

)
x
∑
m∈Z

e−
x2∆2

2 e−
(x−m

√
2π)2

2∆2

= iλ2(∆)
∑
n∈Z

∑
m∈Z

∫
x

dx e−
x2∆2

2 e−
(x−n

√
2π)2

2∆2

(n√2π

∆2
− x(∆2 +∆−2)

)
xe−

x2∆2

2 e−
(x−m

√
2π)2

2∆2︸ ︷︷ ︸
e
−

π

(
(m−n)2+ ∆4

1+∆4 (m+n)2

)
2∆2 ((m−n)(m+n)π+∆2+∆6)

√
π

(−2∆(1+∆)
3
2 )

= iλ2(∆)
∑
n∈Z

∑
m∈Z

e−
π

(
(m−n)2+ ∆4

1+∆4 (m+n)2
)

2∆2 ((m− n)(m+ n)π +∆2 +∆6)

√
π

(−2∆(1 + ∆)
3
2 )

(4.36)

Using the trick,
∑

n∈Z

∑
m∈Z → 1

2

∑
a∈Z

∑
b∈Z where a = m+ n and b = m− n, again implies:

⟨p̂q̂⟩S̃∆
= iλ2(∆)

1

2

∑
a∈Z

∑
b∈Z

e−
πb2

2∆2 e
− πa2

2(∆2+∆−2) (abπ +∆2 +∆6)

√
π

(−2∆(1 + ∆)
3
2 )

= iλ2(∆)
1

2

∑
a∈Z

∑
b∈Z

e−
πb2

2∆2 e
− πa2

2(∆2+∆−2) (abπ +∆2 +∆6)

√
π

(−2∆(1 + ∆)
3
2 )

= iλ2(∆)
1

2

√
π

(−2∆(1 + ∆)
3
2 )

[∑
a∈Z

∑
b∈Z

e−
πb2

2∆2 e
− πa2

2(∆2+∆−2) (abπ)︸ ︷︷ ︸
=0 as positive and negative terms cancel

+
∑
a∈Z

∑
b∈Z

e−
πb2

2∆2 e
− πa2

2(∆2+∆−2) (∆2 +∆6)

]

= iλ2(∆)
1

2

√
π∆2(1 + ∆4)

(−2∆(1 + ∆)
3
2 )

[∑
a∈Z

∑
b∈Z

e−
πb2

2∆2 e
− πa2

2(∆2+∆−2)

]
︸ ︷︷ ︸
θ3

(
0,e

− π
2∆2

)
θ3

(
0,e

− π
2(∆2+∆−2)

)
.

(4.37)

⇒ ⟨p̂q̂⟩S̃∆
= − i

2
λ2(∆)

√
π

2
√
∆−2 +∆2

θ3

(
0, e−

π
2∆2

)
θ3

(
0, e

− π
2(∆2+∆−2)

)
︸ ︷︷ ︸

1
λ2(∆)

= − i

2

⇒ Fu,v = 0 .

(4.38)

Plugging this back into F, gives us a diagonal F:
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F/4 =


〈
S̃∆

∣∣∣ q̂2 ∣∣∣S̃∆

〉
0

0
〈
S̃∆

∣∣∣ p̂2 ∣∣∣S̃∆

〉
 . (4.39)

This implies, the state ψ = S̃∆ gives a minimum trace of F−1 for the displacement problem.

Another way to see that Fu,v = 0 is by observing the anti-commutator of p̂, q̂ is a Hermitian

operator, so its expectation must be real. This implies Fu,v must be real 1. Notice that ⟨p̂q̂⟩S̃∆

is the imaginary unit i multiplied by an integral concerning real functions ∂xS∆(x), S∆(x), x,

hence ⟨p̂q̂⟩S̃∆
is purely imaginary. Since Fu,v/4︸ ︷︷ ︸

∈R

= −i/2 − i (real integral), which means Fu,v

must be zero. Choosing
∣∣∣S̃∆

〉
as the state for sensing ensures that the lowest possible Tr

(
F−1
)

is obtained. However, this does not guarantee anything regarding the attainability of whether

Var(ũ(y)|Ey) + Var(ṽ(y)|Ey) = minψ(
(
F−1
)
), as the variance of the estimators depends on the

actual estimator functions and also the POVM used. In general there may not be a POVM

that could attain the quantum Fisher information in the multi-parameter case [85].

4.3.1 Attainability of the Helstrom bound

We now wish to compute
〈
S̃∆

∣∣∣ [Hk,Hl]
∣∣∣S̃∆

〉
∀ k, l to gauge whether the Helstrom bound is

attainable. For the 2 parameter case, when k = l, the commutator is trivially zero. Only

the off diagonal
〈
S̃∆

∣∣∣ [Hu,Hv]
∣∣∣S̃∆

〉
needs to be computed. Using the symmetric logarithmic

derivative for the displacement problem from [55]:

Lu = −2i[p̂,
∣∣∣S̃∆(u⃗)

〉〈
S̃∆(u⃗)

∣∣∣]
Lv = 2i[q̂,

∣∣∣S̃∆(u⃗)
〉〈
S̃∆(u⃗)

∣∣∣] , (4.40)

this implies:

Hu = −iÛ †(u⃗)
1

2

(
Û(u⃗Lu + LuÛ(u⃗))

)
= − i

2

(
Lu + Û †(u⃗)LuÛ(u⃗)

)
(4.41)

1The matrix F is in general a semi-definite positive matrix [85].



40 Chapter 4. Properties of the grid states

⇒ Hu = −iÛ †(u⃗)
1

2

(
Û(u⃗Lu + LuÛ(u⃗))

)
= − i

2

(
La + Û †(u⃗)LaÛ(u⃗)

)
= − i

2

(
La + (−2i)

(
(p̂+ v)

∣∣∣S̃∆

〉〈
S̃∆

∣∣∣− ∣∣∣S̃∆

〉〈
S̃∆

∣∣∣ (p̂+ v)
))

= − i

2

(
La + (−2i)

(
(p̂+ v)

∣∣∣S̃∆

〉〈
S̃∆

∣∣∣− ∣∣∣S̃∆

〉〈
S̃∆

∣∣∣ (p̂+ v)
))

= −
[
p̂,
∣∣∣S̃∆(u⃗)

〉〈
S̃∆(u⃗)

∣∣∣+ ∣∣∣S̃∆

〉〈
S̃∆

∣∣∣ ]
by symmetry,

Hv =
[
q̂,
∣∣∣S̃∆(u⃗)

〉〈
S̃∆(u⃗)

∣∣∣+ ∣∣∣S̃∆

〉〈
S̃∆

∣∣∣ ] .

(4.42)

Now we shall calculate
〈
S̃∆

∣∣∣ [Hu,Hv]
∣∣∣S̃∆

〉
:

〈
S̃∆

∣∣∣ [Hu,Hv]
∣∣∣S̃∆

〉
= −

〈
S̃∆

∣∣∣ [[p̂, ∣∣∣S̃∆(u⃗)
〉〈
S̃∆(u⃗)

∣∣∣+ ∣∣∣S̃∆

〉〈
S̃∆

∣∣∣ ], [q̂, ∣∣∣S̃∆(u⃗)
〉〈
S̃∆(u⃗)

∣∣∣+ ∣∣∣S̃∆

〉〈
S̃∆

∣∣∣ ]] ∣∣∣S̃∆

〉
,

(4.43)

expanding and collecting terms of the commutator and using the fact that
〈
S̃∆

∣∣∣ q̂ ∣∣∣S̃∆

〉
= 0 =〈

S̃∆

∣∣∣ p̂ ∣∣∣S̃∆

〉
and

〈
S̃∆

∣∣∣ p̂q̂ ∣∣∣S̃∆

〉
= −i/2 calculated earlier in equation 4.38, we get:

〈
S̃∆

∣∣∣ [Hu,Hv]
∣∣∣S̃∆

〉
=+ u

〈
S̃∆

∣∣∣ Û(u⃗) ∣∣∣S̃∆

〉〈
S̃∆

∣∣∣ Û †(u⃗)p̂− p̂Û(u⃗)
∣∣∣S̃∆

〉
− v

〈
S̃∆

∣∣∣ Û(u⃗) ∣∣∣S̃∆

〉〈
S̃∆

∣∣∣ Û †(u⃗)q̂ − q̂Û(u⃗)
∣∣∣S̃∆

〉
−
〈
S̃∆

∣∣∣ Û(u⃗) ∣∣∣S̃∆

〉〈
S̃∆

∣∣∣ Û †(u⃗)q̂p̂− p̂q̂Û(u⃗)
∣∣∣S̃∆

〉
+
〈
S̃∆

∣∣∣ q̂Û(u⃗) ∣∣∣S̃∆

〉〈
S̃∆

∣∣∣ Û †(u⃗)p̂
∣∣∣S̃∆

〉
−
〈
S̃∆

∣∣∣ p̂Û(u⃗) ∣∣∣S̃∆

〉〈
S̃∆

∣∣∣ Û †(u⃗)q̂
∣∣∣S̃∆

〉
− i .

(4.44)

To look at how this expression behaves, we look at the high energy and small error limit,

we restrict u, v <
√
2π, one period of the grid sensor state and take ∆ → 0. This implies〈

S̃∆

∣∣∣ Û(u⃗) ∣∣∣S̃∆

〉
→ 0,

〈
S̃∆

∣∣∣ Û †(u⃗)q̂
∣∣∣S̃∆

〉
→ 0,

〈
S̃∆

∣∣∣ Û †(u⃗)p̂
∣∣∣S̃∆

〉
→ 0 as the overlap of these

integral are zero, the two delta comb function inside the integral will always multiply to zero.

This implies
〈
S̃∆

∣∣∣ [Hu,Hv]
∣∣∣S̃∆

〉
→ −i as ∆ → 0 and with u, v smaller than a period of the grid
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sensor state. Hence the Helstrom bound is not attainable with the grid sensor state even with

increasing energies and small errors. The grid sensor state gives a diagonal quantum Fisher

information matrix, i.e. the state is optimal for the lowest possible Tr(F−1) but this bound is

not attainable.
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Error resilience and Fourier transform properties of the

grid states

In sections 4.4, we wish to discuss the grid state’s intrinsic resilience to displacement error due

to their grid like structure, before discussing Fourier transform properties of the grid sensor

state in section 4.5.

4.4 Random Gaussian displacement channel on the grid

sensor state

Section 4.4 consists of my own work.

We wish to now explicitly calculate the intrinsic error resilience property of the sensor state by

applying the Gaussian random displacement channel onto a pure copy of |S∆⟩ and calculate

how this error channel reduces the fidelity of the errored state with a clean copy of |S∆⟩.

In chapter 2, a short introduction to the dominant sources of noise in optical quantum com-

puting is identified to be amplitude damping. We choose to pre-amplify this channel, to cast

the composite channel into a Gaussian random displacement for convenient mathematical anal-

ysis. We wish to compute how the grid sensor state (|S∆⟩) corrupt under the this channel,

Et(|S∆⟩⟨S∆|), to quantify the state’s error resilience. Starting with

Et(|S∆⟩⟨S∆|) =
∫
u,v

du dv
e−

u2+v2

2t2

2πt2
d̂(u+ iv) |S∆⟩⟨S∆| d̂(u+ iv)†

=

∫
u,v

du dv
e−

u2+v2

2t2

2πt2
e−iup̂eivq̂ |S∆⟩⟨S∆| eiup̂e−ivq̂

(4.45)

Let’s look at e−iup̂eivq̂ |S∆⟩:

e−iup̂eivq̂ |S∆⟩ =
∫
x

dx S∆(x− u)eivx |x⟩q (4.46)
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⇒ Et(|S∆⟩⟨S∆|) =
∫
u,v

du dv
e−

u2+v2

2t2

2πt2

∫
x,y

dx dy S∆(x− u)eiv(x−y)S∆(y − u) |x⟩⟨y|q

=

∫
x,y

dx dy

e−
t2(x−y)2

2︷ ︸︸ ︷(∫
v

dv
e−

v2

2t2 eiv(x−y)√
2πt2

)(∫
u

du
e−

u2

2t2

√
2πt2

S∆(x− u)S∆(y − u)

)
︸ ︷︷ ︸

ρ(x,y;|S∆⟩)

|x⟩⟨y|q

=

∫
x,y

dx dy

(
e−

t2(x−y)2

2

∫
u

du
e−

u2

2t2

√
2πt2

S∆(x− u)S∆(y − u)

)
|x⟩⟨y|q

(4.47)

We now look at ρ(x, y; Et(|S∆⟩⟨S∆|), the density matrix function of |S∆⟩⟨S∆| after the Gaussian

random displacement channel,

ρ(x, y; Et(|S∆⟩⟨S∆|) = e−
t2(x−y)2

2

∫
u

du
e−

u2

2t2

√
2πt2

√
2

π

∑
n,m∈Z2

e−
(n

√
2π)2∆2

2 e−
(x−u−n

√
2π)2

2∆2 e−
(m

√
2π)2∆2

2 e−
(y−u−m

√
2π)2

2∆2

=

√
2

π

∑
n,m∈Z2

e−
(n

√
2π)2∆2

2 e−
(m

√
2π)2∆2

2

(
e−

t2(x−y)2

2

∫
u

du
e−

u2

2t2

√
2πt2

e−
(x−u−n

√
2π)2

2∆2 e−
(y−u−m

√
2π)2

2∆2

)

=

√
2

π

∑
n,m∈Z2

e−
(n

√
2π)2∆2

2 e−
(m

√
2π)2∆2

2

(
e−

t2(x−y)2

2

∫
u

du
e−

u2

2t2

√
2πt2

e−
(x−u−n

√
2π)2

2∆2 e−
(y−u−m

√
2π)2

2∆2︸ ︷︷ ︸
e
− (x−n

√
2π)2+(y−m

√
2π)2

2∆2 e

t2(x+y−(m+n)
√
2π)

2∆2(2t2+∆2)2

/√
1+2
(

t
∆

)2
)
,

we can re-write,

ρ(x, y; Et(|S∆⟩⟨S∆|)) =
√

2

π

1√
1 + 2

(
t
∆

)2 ∑
n,m∈Z2

e−
1
2
r⃗ TAr⃗ ,

(4.48)

where r⃗ TAr⃗ is know as a quadratic form and A is called the matrix of the quadratic equation
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[88].. If we set r⃗ TAr⃗ = 0, we get a 2-dimensional conic section and r⃗ = (x, y, 1)T.

A =
1

2t2 +∆2
1 + 2t4 + t2∆2 + t2

∆2 −
(
2t4 + t2∆2 + t2

∆2

) (m−n)
√
2πt2−n

√
2π∆2

∆2

−
(
2t4 + t2∆2 + t2

∆2

)
1 + 2t4 + t2∆2 + t2

∆2

(n−m)
√
2πt2−m

√
2π∆2

∆2

(m−n)
√
2πt2−n

√
2π∆2

∆2

(n−m)
√
2πt2−m

√
2π∆2

∆2 2π
(
(m− n)2 t2

∆2 + (m2 + n2)∆2(2t2 +∆2 +∆−2)
)


(4.49)

The determinant of this matrix is:

det
(
A
)
=

2π
[
(m− n)2t2 + (m2 + n2)∆2(1 + 2t2 +∆2)

]
∆2(∆2 + 2t2)

, (4.50)

The determinant det
(
A
)
> 0 when m,n ̸= 0, This condition combined with A3,3 > 0 means

that this conic section is an ellipse [88]. Also, we can find the center location of this ellipse,

which is determined via Gaussian elimination on the upper 2 rows of the matrix A. We will

denote the co-ordinate of the center of the ellipse by (xc, yc)
T:

1

2t2 +∆2

1 + 2t4 + t2∆2 + t2

∆2 −
(
2t4 + t2∆2 + t2

∆2

)
−
(
2t4 + t2∆2 + t2

∆2

)
1 + 2t4 + t2∆2 + t2

∆2


xc
yc

 =

 (m−n)
√
2πt2−n

√
2π∆2

∆2(2t2+∆2)

(n−m)
√
2πt2−m

√
2π∆2

∆2(2t2+∆2)


(4.51)

Solving this system of equations gives the result:

xc
yc

 = −
√
2π

1 + 2t2∆2

n+ (n+m)t2∆2

m+ (n+m)t2∆2

 (4.52)

Furthermore, eigenvectors of the 2 by 2 sub-matrix are found by eliminating the final row and

column of A and these give the major and minor axis direction of this ellipses. If we diagonalise

this sub-matrix and solve for the eigenvectors g⃗1, g⃗2 with corresponding eigenvalues g1, g2, we
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get:

g1 =
1

2t2 +∆2
, g⃗1 =

1

1


g2 = 2t2 +∆−2 , g⃗2 =

−1

1


(4.53)

This implies ρ(x, y; Et(|S∆⟩⟨S∆|)) can be re-written as a double sum of e−
1
2
(ellipse), where the

ellipse’s major and minor axes are at 45 degrees with respect to the origin. This means the

individual Gaussian peaks are sheared in the (1, 1)T and (−1, 1)T directions.

Figure 4.3: Contour plot of one of the Gaussian peaks after of the density matrix function of
|S∆⟩ after the Gaussian random displacement channel. The squeezing parameter was arbitrarily
chosen to be ∆ = 0.3 here and t = 0.1.

To understand the small error limit, let’s make the approximation, it is useful to drop the O(t4)
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and O(t2∆2) terms and assume t≪ ∆ ≪ 1:

A ≈ ∆−2

1 + 2t2/∆2
1 + t2

∆2 − t2

∆2 (m− n)
√
2π t2

∆2 − n
√
2π

− t2

∆2 1 + t2

∆2 (n−m)
√
2π t2

∆2 −m
√
2π

(m− n)
√
2π t2

∆2 − n
√
2π (n−m)

√
2π t2

∆2 −m
√
2π 2π

(
(m− n)2 t2

∆2 + (m2 + n2)
)

(4.54)

If we expand (1 + 2t2/∆2)−1 ≈ 1 − 2 t2

∆2 + O(t4/∆4), we shall drop all the t2/∆2 terms inside

the matrix:

A ≈ ∆−2
(
1− 2

t2

∆2

)


1 0 −n
√
2π

0 1 −m
√
2π

−n
√
2π −m

√
2π 2π(m2 + n2)(1 + ∆4)

+O
( t4
∆4

)
(4.55)

Figure 4.4: The approximate fidelity between |S∆⟩ and O(|S∆⟩⟨S∆|), for t = 0.0001.

⇒ ρ(x, y; Et(|S∆⟩⟨S∆|)) ∝∼

(∑
n∈Z2

e
− (x−n

√
2π)2

2∆2

(
1+2 t2

∆2

)
e
− ∆2(n

√
2π)2

2

(
1+2 t2

∆2

))( ∑
m∈Z2

e
− (y−m

√
2π)2

2∆2

(
1+2 t2

∆2

)
e

∆2(m
√
2π)2

2

(
1+2 t2

∆2

))
,

(4.56)
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this means the density matrix function is approximately a pure state |S∆⟩ in the low error limit,

but with modified widths. From the first order effects in (t2/∆2), the grid sensor state’s indi-

vidual peaks will have a widening from ∆ → ∆
√

1 + 2 t2

∆2 , and the overall Gaussian envelope’s

width will get contracted from 1
∆
→

√
1+2 t2

∆2

∆
. It is possible to qualitatively understand how, in

the large error limit t → 1, the Gaussian random displacement channel will drive any state to

the vacuum state. We have computed numerically the fidelity between an error free grid sensor

state and a grid sensor state with error for small t in figure 4.4.
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4.5 Fourier transform eigenstate

Section 4.5 consists of my own work.

We wish to explicitly show that |S∆⟩ is an approximate eigenstate to the Fourier transform

operator F̂ .

The infinite energy limit of the grid sensor state has a q-quadrature wavefunction of X√
2π(x),

a Dirac comb of width
√
2π and it’s an exact eigenstate of the Fourier transform operator F̂ ,

so that the p-quadrautre wavefunction is identical to the q-quadrautre wavefunction. The state

|S∆⟩ is an approximate eigenstate to the Fourier transform operator F̂ = eiπ/4eiπn̂/2. One way

to see it is to look at an alternative form of |S∆⟩,

|S∆⟩ =
√
2π∆2

( 2
π

) 1
4
e−

∆2p̂2

2 e−
∆2q̂2

2 |X⟩ . (4.57)

We can see that F̂ = eiπ/4eiπn̂/2 almost commutes with e−
∆2p̂2

2 e−
∆2q̂2

2 , the operators to the

left of |X⟩ in equation 4.57. Some authors decide to define the approximate sensor states by

e−β(n̂+1/2) |X⟩, so that F̂ commutes with the e−β(
ˆn+1/2), hence making it an exact eigenstate of

the Fourier transform, see approximation 3 in [71]. With our defintion of the grid sensor states,

we want to quantify how does a finite energy (∆ ̸= 0) grid sensor state transform under the

Fourier transform.

We wish to quantitatively understand how much does the Fourier transformed version of the

sensor state, F̂ |S∆⟩, overlaps with itself. If this overlap is equivalent to 1 or close to 1 then

|S∆⟩ is close to being a Fourier transform eigenstate. Starting with the expectation value
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∣∣ ⟨S∆| F̂ |S∆⟩
∣∣2, which is the Fidelity between the states |S∆⟩ and

∣∣∣S̃∆

〉
,

∣∣ ⟨S∆| F̂ |S∆⟩
∣∣2 = ∣∣∣∣∣

∫
x

dx S̃∆(x)S∆

∣∣∣∣∣
2

= λ4

∣∣∣∣∣
∫
x

dx
(∑
n∈Z

e−
x2∆2

2 e−
(x−n

√
2π)2

2∆2

)(∑
m∈Z

e−
(m

√
2π)2∆2

2 e−
(x−m

√
2π)2

2∆2

)∣∣∣∣∣
2

= λ4

∣∣∣∣∣∑
n∈Z

∑
m∈Z

∫
x

dx e−
x2∆2

2 e−
(x−n

√
2π)2

2∆2 e−
(m

√
2π)2∆2

2 e−
(x−m

√
2π)2

2∆2

∣∣∣∣∣
2

(4.58)

separating the double sum into n = m terms and n ̸= m terms:

∣∣ ⟨S∆| F̂ |S∆⟩
∣∣2

= λ4

∣∣∣∣∣∑
n∈Z

∫
x

dx e−
x2∆2

2 e−
(x−n

√
2π)2

∆2 e−
(n

√
2π)2∆2

2

+
∑
n∈Z

∑
m∈Z

(1− δn,m)e
− (m

√
2π)2∆2

2

∫
x

dx e−
x2∆2

2 e−
(x−n

√
2π)2

2∆2 e−
(x−m

√
2π)2

2∆2

∣∣∣∣∣
2

,

(4.59)

The n ̸= m sum is very small because the overlap integral of Gaussians centered at differ-

ent locations is very small if ∆ ≪
√
2π, dropping this term and using the integral identity∫

x
dx e−

x2∆2

2 e−
(x−n

√
2π)2

∆2 e−
(n

√
2π)2∆2

2 =
√

2π∆2/(2 + ∆4)e
−n2π∆2(4+∆4)

2+∆4 ,

⇒
∣∣ ⟨S∆| F̂ |S∆⟩

∣∣2 ≥ λ4
2π∆2

(2 + ∆4)

∣∣∣∣∣∑
n∈Z

e
−n2π∆2(4+∆4)

2+∆4

︸ ︷︷ ︸
θ3

(
0,e

−π
∆2(4+∆4)

(2+∆4)

)
∣∣∣∣∣
2

,

(4.60)

Using θ3

(
0, e

−π∆2(4+∆4)

(2+∆4)

)
≈
√

2+∆4

∆2(4+∆4)
when ∆ ≪

√
2π and taking λ4 ≈ 2/π:

⇒
∣∣ ⟨S∆| F̂ |S∆⟩

∣∣2 ≈ (1 + ∆4

4

)−1

, (4.61)

The quantity
∣∣ ⟨S∆| F̂ |S∆⟩

∣∣2, is very close to one. Expanding this quantity as a Taylor series in

terms of small ∆,
(
1+ ∆4

4

)−1

≈ 1− ∆4

4
+O(∆8) . Finite energy grid sensor state wavefunction

are good approximate Fourier transform eigenfunction.
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Figure 4.5: The expectation of the F̂ with respect to the grid sensor state |S∆⟩.

Interestingly the grid sensor state could be written as a Gaussian e−x
2∆2/2 multiplied by

a Jacobi theta function ∆θ3(
√
π/2x, e−π∆

2
) up to normalisation constants, i.e. S̃∆(x) ∝

∆e−x
2∆2/2θ3(x

√
π/2, e−π∆

2
). The theta function is the Fourier transform of a Gaussian multi-

plied by a Dirac comb [89]:

Fx→y

{
θ3

(π
2
x, e−π∆

2
)}

=
√
2πe−∆2y2/2X√

2π(y) . (4.62)

Equation equation 4.62 can be derived as follows:

Fx→y

{
θ3

(π
2
x, e−π∆

2
)}

= Fx→y

{ 1

∆

∑
n∈Z

e−
(x−n

√
2π)2

2∆2

}
=

1

∆

∑
n∈Z

Fx→y

{
e−

(x−n
√

2π)2

2∆2

}
=

1

∆

∑
n∈Z

ein
√
2πy

︸ ︷︷ ︸√
2πX√

2π(y)

e−
∆2y2

2 ∆

=
√
2πe−

∆2y2

2 X√
2π(y) .

(4.63)

According to the convolution theorem [87],

Fx→y

{
f(x)

}
⋆ Fx→y

{
g(x)

}
=

∫
τ

dτ√
2π
f(y − τ)g(τ) = Fx→y

{
f(x)g(x)

}
, (4.64)
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We can now write the grid sensor state as a convolution of a Gaussian with a Dirac comb:

S∆(x) = Fx→y

{
S̃∆(x)

}
= λ(∆)Fx→y

{∑
n∈Z

e−
(x−n

√
2π)2

2∆2

}
⋆ Fx→y

{
e−

x2∆2

2

}
= λ(∆)

√
2π
(
e−

∆2y2

2 X√
2π(y)

)
⋆
(
e−

y2

2∆2

)
.

(4.65)

Another way to interpret the grid sensor state is to treat it as a convolution of a Gaussian

function and a Dirac comb with finite width 1/∆ in the individual peaks.
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Fock state amplitudes and its approximations

In section 4.6, we wish to layout a way to explicitly calculate the Fock state amplitude of a grid

sensor state. Then we proceed to show why the Fock state representation is not a favourable

basis to study these grid states. This is due to the need to retain high number of Fock basis to

minimise the fidelity loss after truncation of the Fock basis.

4.6 Fock state amplitides of |S∆⟩

Section 4.6 consists of my own work.

The Fock basis ({|n⟩}∞n=0)
2 is a preferred basis in optical quantum information. Many physical

operations such as loss error operators, photon counting measurements are relatively easy to

compute in this basis [90, 82, 91]. Hence we wish to compute the finite-energy grid sensor state

amplitudes in this basis.

We sketch out the method of re-expressing |S∆⟩ in the Fock basis as follows. Firstly we noticed

that the generating function of the shifted Gaussian can be expressed as a superposition of

Hermite-Gauss functions, which are the q-quadrature wavefunction of the Fock states. This

will allow us to express |S∆⟩ in the squeezed Fock basis. Then, use the summation formula

of the squeezed Fock states to rewrite |S∆⟩ back into the Fock basis. Finally, we will simplify

the expression and write it in an approximate form that makes the amplitudes more readily

calculated.

4.6.1 |S∆⟩ in the squeezed Fock basis

Using the generating function of the shifted Gaussians [92]:

e−
x2

2
+2xt−t2 =

∞∑
n=0

tn
√
2n√
n!

π
1
4ϕn(x) , (4.66)

2We use the term Fock state and number state interchangeably.
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where ϕn(x) is the Fock state wavefunction. With some algebra, one can derive:

π− 1
4 e−

(x−t)2

2 =
∞∑
n=0

tne−
t2

4

√
2nn!

ϕn(x) , (4.67)

where the left hand side is the q-quadrature wavefunction of d̂(t, 0) |0⟩ , t ∈ R, with d̂(t, 0)

being the displacement operator that transform the vacuum wavefuntion from ϕ0(x) → ϕ0(x−t).

Hence, we have derived the Fock basis amplitude of the displaced vacuum state as, t
ne−

t2

4√
2nn!

,

d̂(t, 0) |0⟩ =
∞∑
n=0

tne−
t2

4

√
2nn!

|n⟩ . (4.68)

Using equation 4.67, we can re-write the shifted Gaussian inside the sum of the grid sensor

state in terms of the squeezed Fock states:

S∆(x) = λ(∆)
∑
m∈Z

e−
(x−m

√
2π)2

2∆2 e−
(m

√
2π)2

2∆−2

= λ(∆)
∑
m∈Z

∞∑
n=0

π
1
4

√
∆e−

(m
√
2π)2

2∆−2
(m

√
2π/∆)ne−

(m
√
2π/∆)2

4

√
2nn!

ϕn(x/∆)√
∆

(4.69)

Since the grid sensor state wavefunction is an even function in the q-quadrature, this means

only the even integer n terms remain. As |S∆⟩ has an even wavefunction in the q-quadrature

basis, this means that only the even Fock state amplitudes are non-zero, hence we can use the

substitution n = 2k, k ∈ Z,

⇒ |S∆⟩ = λ(∆)
∞∑
k=0

π
1
4

√
∆πk

∆2k
√

(2k)!

[∑
m∈Z

m2ke−π
(
∆2+ 1

2∆2

)
m2

]
Ŝ†
∆ |2k⟩ . (4.70)

Let g(∆) = π
(
∆2 + 1

2∆2

)
, this implies:

|S∆⟩ = λ(∆)
∞∑
k=0

π
1
4

√
∆πk

∆2k
√
(2k)!

[∑
m∈Z

m2ke−g(∆)m2

]
Ŝ†
∆ |2k⟩ , (4.71)
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or alternatively,

|S∆⟩ = λ(∆)
∞∑
k=0

π
1
4

√
∆πk

∆2k
√

(2k)!
(−1)k

∂k

∂kg

(
θ3(0, e

−g)
)
Ŝ†
∆ |2k⟩ , (4.72)

where θ3(z, q) is the Jacobi Theta function of the third kind in the standard form [93].

4.6.2 Squeezed number state in the Fock basis

We now need to re-express our squeezed even number states in the Fock basis, this was first

worked out in [94, 95]. Our definition of the squeezing operator Ŝ†
∆ = e

ln(∆)
2

((â†)2−â2) transform

wavefunction from ψ(x) → ψ(x/∆). The squeezing operator is Ŝ†
r = e−

r
2
((â†)2−â2) in [96]. Hence

we plug r = −ln(∆) into equation 20 of [96] to obtain:

Ŝ†
∆ |2k⟩ =

∞∑
j=0

|2j⟩
√

(2k)!(2j)!(
cosh(−ln(∆))

)j+k+ 1
2

min(j,k)∑
l=0

(sinh(−ln(∆))

2

)k+j−2l (−1)j−l

(2l)!(k − l)!(j − l)!

(4.73)

Plugging equation 4.73 back into equation 4.71 to obtain:

⇒ |S∆⟩ = λ(∆)
∞∑
j=0

|2j⟩ π
1
4

√
∆

√
(2j)! tanhj(ln(∆))

2j
√

cosh(ln(∆)){
∞∑
k=0

πk

2k∆2k

∂kg
(
θ3(0, e

−g)
)(

cosh(ln(∆))
)k min(j,k)∑

l=0

(
sinh(ln(∆))

)k−2l 22l(−1)l

(2l)!(k − l)!(j − l)!

}
(4.74)

In order to generate the amplitudes, we need to evaluate 2 infinite (sum over k and the deriva-

tives of the θ3 function) and 1 finite sum (sum over l). We shall name the coefficients C2j, where

the grid sensor state can be re-expressed as |S∆⟩ =
∑∞

j=0C2j |2j⟩. With more simplifications,
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the amplitudes can be written as:

C2j =λ(∆)
π

1
4

√
∆
√

(2j)! tanhj(ln(∆))

(j!)2j
√

cosh(ln(∆)){
∞∑
k=0

(−π tanh(ln(∆))
2∆2

)k
k!

(
δk,0 + 2

∞∑
m=1

m2ke−m
2π
(
∆2+ 1

2∆2

))
F2 1

(
− j,−k, 1

2
,

−4∆2

(1−∆2)2

)}
,

(4.75)

where F2 1

(
{a, b}; {c}; z

)
is the 2-1 hypergeometric function in the standard form [93]. Let the

expression in the curly braces of equation 4.75 be:

H =
∞∑
k=0

(
− π(∆2−1)

2∆2(∆2+1)

)k
k!

(
δk,0 + 2

∞∑
m=1

m2ke−m
2π
(
∆2+ 1

2∆2

))
F2 1

(
− j,−k, 1

2
,

−4∆2

(1−∆2)2

)
.

(4.76)

Simplifying the kronecker delta and then rearrange the order of the m and k sum implies,

H = θ3

(
0, e−π

(
∆2+ 1

2∆2

))
+ 2

∞∑
m=1

e−m
2π
(
∆2+ 1

2∆2

) ∞∑
k=1

(
− πm2(∆2−1)

2∆2(∆2+1)

)k
k!

F2 1

(
− j,−k, 1

2
,

−4∆2

(1−∆2)2

)
.

(4.77)

Note that, one can derive3,

∞∑
k=1

xk

k!
F2 1

(
− j,−k, 1

2
, y
)
= −1 + ex

j∑
b=0

(
j

b

)
(xy)b(

1
2

)
b

= −1 + ex F1 1

(
− j,

1

2
,−xy

)
(4.78)

with (z)b being the Pochhammer symbol and F1 1 (a, b, z) is the Kummer confluent hyperge-

ometric function (a.k.a the 1-1 hypergeometric function) in their standard forms [93]. Let

x = −πm2(∆2−1)
2∆2(∆2+1)

and y = −4∆2

(1−∆2)2
⇒ xy = 2π

∆4−1
m2. Using the identity in equation 4.78:

⇒ H = 1 + 2
∞∑
m=1

e
−m2π

(
1+ ∆4

∆2+1

)
F1 1

(
− j,

1

2
,
2πm2

1−∆4

)
. (4.79)

3The reduction formula, equation 4.78, is not known in any literature.
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Plugging equation 4.79 back into equation 4.75. Hence, removing the k infinite sum,

⇒ C2j =λ(∆)
π

1
4

√
∆
√
(2j)! tanhj(ln(∆))

(j!)2j
√

cosh(ln(∆))

{
1 + 2

∞∑
m=1

e
−m2π

(
1+ ∆4

∆2+1

)
F1 1

(
− j,

1

2
,
2πm2

1−∆4

)}
.

(4.80)

Note that F1 1

(
− j, 1

2
, 2πm2

1−∆4

)
= j!

(1/2)j
L
− 1

2
j

(
2πm2

1−∆4

)
where Lαn(x) is the generalized Laguerre poly-

nomial in its standard form.

⇒ C2j =λ(∆)
π

1
4

√
∆
√

(2j)! tanhj(ln(∆))

(1/2)j2j
√

cosh(ln(∆))

{∑
m∈Z

e
−m2π

(
1+ ∆4

∆2+1

)
L
− 1

2
j

( 2πm2

1−∆4

)}
. (4.81)

Using (1/2)j = (2j − 1)!!/2j, where !! is the double factorial:

⇒ C2j =λ(∆)
π

1
4

√
∆
√

(2j)! tanhj(ln(∆))

(2j − 1)!!
√

cosh(ln(∆))

{∑
m∈Z

e
−m2π

(
1+ ∆4

∆2+1

)
L
− 1

2
j

( 2πm2

1−∆4

)}
. (4.82)

Using the approximate form of the normalisation constant λ = (2/π)1/4,

⇒ C2j = 2
3
4

√
∆2

∆2 + 1

(
∆2 − 1

∆2 + 1

)j √
(2j)!

(2j − 1)!!

{∑
m∈Z

e
−m2π

(
1+ ∆4

∆2+1

)
L
− 1

2
j

( 2πm2

1−∆4

)}
. (4.83)

Since L
− 1

2
n (x2) is related to the number wavefunctions via L

− 1
2

n (x2)e−x
2/2(22nn!)(22n(2n)!

√
π)−1/2 =

ϕ2n(x) . We can use the following expression to derive equation A.23 in [97]. Or similarly, we

can use ϕ2n(x) = (22n(2n)!
√
π)−1/222ne−x

2/2 F1 1 (−n, 1/2, x2) to get to A.23 in [97]. We have

laid out an entirely different method of obtaining the Fock state amplitudes of |S∆⟩ compared

to [97]. In our approach, we started from the generating function of a shifted Gaussian function,

where as [97] started from the Mehler’s Hermite Polynomial formula and used properties of the

generalised Jacobi Theta functions to achieve their results. As we can observe in figure 4.6, the

photon number amplitudes decreases in absolute amplitude as Fock state number increases.
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Figure 4.6: The photon number amplitude of |S∆⟩ with ∆ = 0.3 4.

4.6.3 Approximations of C2j

Let’s look at four different types of approximations. We apply only one approximation at a

time and keep the rest of it exact. In this case we can see if the amplitudes C2j can have a

better approximate form.

4.6.4 Truncating the m sum

Our goal is to truncate the m sum at a finite number, such that the majority of the contribution

to the sum is retained. The function F1 1

(
− j, 1

2
, 2πm2

1−∆4

)
is a polynomial of order j in 2πm2

1−∆4 .

This imples,

e
−m2π

(
1+ ∆4

∆2+1

)
poly

[( 2π

1−∆4

)j
m2j
]∣∣∣∣∣
m≤O(j)

≫ e
−m2π

(
1+ ∆4

∆2+1

)
poly

[( 2π

1−∆4

)j
m2j
]∣∣∣∣∣
m>O(j)

,

(4.84)

as the exponential dominates the polynomial on the right hand side. Hence we can truncate

the m sum at around O(j) to get a reasonable approximation to the amplitudes. In order to
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accommodate the j = 0 term, we can terminate the m sum at χmax = j + 1. This imples:

C2j ≈λ(∆)
1
4
π

1
4

√
∆
√

(2j)! tanhj(ln(∆))

(j!)2j
√

cosh(ln(∆))

{
1 + 2

j+1∑
m=1

e
−m2π

(
1+ ∆4

∆2+1

)
F1 1

(
− j,

1

2
,
2πm2

1−∆4

)}
(4.85)

This works really well numerically and can be computed quickly as we have only O(N2) terms

to compute if we terminate the j sum at N , (photon number cut off of 2N).

Let’s look at the truncation limit in more detail. Taking only the leading order dominant term

(highest power in j) in the polynomial.

m2je
−m2π

(
1+ ∆4

∆2+1

)( 2π

1−∆4

)j
(4.86)

Let’s look at the function (set m = x):

hj(x; ∆) = x2je
−x2π

(
1+ ∆4

∆2+1

)( 2π

1−∆4

)j
, x ≥ 0 (4.87)

hj(x; ∆) is a single peaked function with a maximum at x =
√

j
π

1+∆2

1+∆2+∆4 . The peak has a

width of roughly
√

1/2
π

1+∆2

1+∆2+∆4 . Hence, by summing the m sum up to χmax >
√

j
π

1+∆2

1+∆2+∆4 +√
1/2
π

1+∆2

1+∆2+∆4 , you’re expected to get the majority of the contribution to the infinite sum.

χmax >
(√

j + 1
)√ 1

π

1 + ∆2

1 + ∆2 +∆4
(4.88)

Suppose we take the worst ∆ = 1√
2π

possible, χmax >
(√

j + 1
)√ 1

π

1 + ∆2

1 + ∆2 +∆4︸ ︷︷ ︸
≈0.5581 if ∆= 1√

2π

. Hence we

can set χmax = 1 + ⌈
√
j⌉:

⇒ C2j ≈λ(∆)
π

1
4

√
∆
√
(2j)! tanhj(ln(∆))

(j!)2j
√

cosh(ln(∆))

{
1 + 2

1+⌈
√
j⌉∑

m=1

e
−m2π

(
1+ ∆4

∆2+1

)
F1 1

(
− j,

1

2
,
2πm2

1−∆4

)}
.

(4.89)

In order to compute the amplitudes at a photon number cutoff of 2N , we have to compute
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N∑
j=0

(1+
√
j) = N+HN(−1/2) terms (Hn(r) are the harmonic numbers). SinceN+HN(−1/2) <

N +N1.5, hence we need to compute O(N
3
2 ) terms.

4.6.5 Small ∆ ≪ 1 limit

Suppose we ignore all O(∆4) terms for ∆ ≪ 1, then the hyperbolic trigonometric functions

can be approximated by tanhj(ln(∆)) ≈ (−1)j(1 − 2j∆2 +O(∆4)) and
√

cosh(ln(∆)) ≈ (1 +

∆2/2 +O(∆4))/
√
2∆:

⇒ C2j ≈λ(∆)π
1
4

√
(2j)!

j!

(−1)j

2j−
1
2

∆
(
1−

(
2j +

1

2

)
∆2
){

1 + 2
∞∑
m=1

e−m
2π F1 1

(
− j,

1

2
, 2πm2

)}
(4.90)

4.6.6 Truncating the j sum at photon number cutoff 2N

We can see from numerics in figure 4.7, the infidelity is approximately 10−3 for states with

∆ = 0.2 if we truncate at Fock state |n = 100⟩. This illustrates the difficulty in simulating

finite energy GKP states in the Fock basis, because in order to keep an effective error of at

least 10−3, we need to keep a a 100 by 1 vector just to simulate a one mode grid sensor state.

Suppose we wish to have a maximum photon number cutoff at N , hence
∣∣∣S(N)

∆

〉
≈

N∑
n=0

C2n.

How close is the inner product
〈
S
(N)
∆

∣∣∣S(N)
∆

〉
to 1? The standard deviation of |S∆⟩’s photon

number distribution is approximately: σn̂ =
√

⟨S∆| n̂2 |S∆⟩ − ⟨S∆| n̂ |S∆⟩2 ≈ 1
2∆2 , and the

mean is ⟨S∆| n̂ |S∆⟩ ≈ (∆2 + ∆−2 − 1)/2. The mth standard deviation away from the mean

is: ⟨S∆| n̂ |S∆⟩ +mσ ≈ ∆2−1
2

+ m+1
2

1
∆2 ≈ m+1

2
1
∆2 − 1

2
. If we set the photon cutoff N to be at

least m standard deviation away from the mean, we are sure to capture most of the probability

distribution while cutting off higher photon numbers. Let’s set N ≈ m+1
2

1
∆2 . One choice to

truncate N would be to set N = O(m∆−2).

A photon number cut off at N = 100 is already exceptionally high. For example, if we have

merely 10 subsystems of GKP states we wish to simulate, then we need to store in memory a
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10010 = 1020 length vector and 10010 × 10010 matrices when applying unitary operators. Even

just storing the state vector is multiple orders of magnitude beyond the memory requirements

needed to store the full state-vector of Google’s quantum advantage experiment which requires

a 253 ≈ 1016 length vectors to be stored and manipulated [98].

Figure 4.7: The infidelity of the grid sensor state vs. maximum photon cut off number.
Different scatter plots indicates different values of ∆.
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Grid state generation properties

In section 4.7, basic resource theory for quantum systems is introduced, especially the resource

theory of non-Gaussianity in CV systems. This is then applied to the grid sensor state to explain

the difficulty in generating them in a photonic platform. Then, in section 4.8, a method to

generate the GKP Bell state is explored given that we have perfect copies of grid sensor state

available on demand.

4.7 Resource theories and measures of non-Gaussianity

Resource theories provides a solid mathematical formalism to study possible quantum state

transformations if we restrict the set of admissible state transformation. A resource theory

assigns a measure to a set of quantum states. Given a set of allowed operations called free

operations, and freely available, free states, we can now quantify how many free states is

required to create a particular resource state.

Non-Gaussian states are invaluable resource in the study of continuous variable quantum in-

formation. In particular, there exists no-go theorems in the conversion of states with different

levels of non-Gaussianity. If we set our free operations to be Gaussian operations, One can

study these state inter-conversion laws using resource theory. In order to quantify the feasibil-

ity of specific conversions, we need to look at monotones. Monotones are functional measures

that maps a set of quantum states to a non-negative real number [99].

4.7.1 Wigner negativity as a monotone

The volume of the negative sections of the Wigner function can be used to quantify how non-

Gaussian a state is. Wigner negativity can be used as a monotone to give bounds on the

inter-conversion between states. The Wigner logarithmic negativity (WLN) can be defined as:
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W [ρ̂] = log

(∫
q,p

dq dp
∣∣W (q, p|ρ̂)

∣∣) , (4.91)

where W > 0 and W is the wigner function. Furthermore, Wigner negativity had been known

to be a necessary but not sufficient resource for CV systems quantum computational speed-ups

[100, 101], looking at it from its hardness of classical simulation.

The results in [99] allowed feed-forward stochastic Gaussian process and measurements. In

addition, they admit WLN as a measure and have positive Wigner function states as free state

in their resource theory. Is the conversion of k copies of ρ̂A to m copies of ρ̂B possible with

probability p? Using equation 5 of [99] we can compute the minimum number of copies of ρ̂A

(on average) required to do so. Let the minimum copies of ρ̂A be n, then the expectation of n

follows this inequality:

E(n) =
k

p
≥ m

W [ρ̂B]

W [ρ̂A]
. (4.92)

If only one copy of ρ̂B is needed to be distilled, with unit probability then,

n ≥ W [ρ̂B]

W [ρ̂A]
. (4.93)

This implies if state ρ̂A has zero WLN (Gaussian states [99] have zero WLN), then it’s impossible

to use Gaussian operations and Gaussian measurements to distill out even a single copy of a

state with any Wigner negativity. In optical quantum computing, the number of single photon

|1⟩ states required to engineer a particular resource state is a realistic figure of merit. We

wish to quantify the number of single photons needed along with Gaussian operations and

measurements to form a particular finite energy GKP or sensor Grid state using the bound

from equation 4.93. The Wigner function of a Fock state |n⟩ is well known and is given by

[102]:

W (q, p| |n⟩⟨n|) = (−1)n

π
e−(q2+p2)Ln(2(p

2 + q2)) , (4.94)
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where Ln are the Laguerre polynomials of the nth order [103]. With single photon states, n = 1.

The WLN of a single photon can be computed explicitly using L1(x) = 1− x:

W [|1⟩⟨1|] = log
(∫

p,q

dp dq
∣∣∣(−1)n

π
e−(q2+p2)

(
1− 2(q2 + p2)

)∣∣∣)
= log

(∫
p,q

dp dq
∣∣∣(−1)n

π
e−(q2+p2)

(
1− 2(q2 + p2)

)∣∣∣)
= log

(
2

∫ ∞

r=0

dr re−r
2

(1− 2r2)
)

= log
(
2

∫ 1/
√
2

r=0

dr re−r
2

(1− 2r2)−
∫ ∞

r=1/
√
2

dr re−r
2

(1− 2r2)
)

= log(2) + log
(
e−r

2(
r2 +

1

2

)∣∣∣1/√2

0
− e−r

2(
r2 +

1

2

)∣∣∣∞
1/

√
2

)
= log(2) + log

(
2e−

1
2 − 1

2

)
= log

( 4√
e
− 1
)
≈ 0.5 .

(4.95)

Along with the inter-conversion inequality from equation 4.93, W [|1⟩⟨1|] can be used to obtain

the minimum number of photons needed to generate a particular state.

4.7.2 Wigner function of the grid states

Subsection 4.7.2 consists of my own work.

We aim to derive the Wigner functions of the finite energy logical GKP states and grid sensor

states in order to compute their WLN. An even wavefunctions have a Wigner functions of the

form:

W (q, p|ρ̂) = 1√
π
Fy→

√
2p

{
R[ρ(

√
2q, y)]

}
, (4.96)

where ρ(x, y) is the density matrix function of the state, Fa→b is the Fourier transform from

variable a → b and R[f(x, y)] = f
(
x−y√

2
, x+y√

2

)
is the rotation of a two-dimensional function

f(x, y) by π
4
radians anticlockwise. We will use equation 4.96 to compute the following Wigner

functions.
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Wigner function of |S∆⟩

We shall compute the Wigner function of the grid sensor state now, starting with equation

4.96:

W (q, p| |S∆⟩) =
1√
π
Fz→

√
2p

{
S∆

(
q − z√

2

)
S∆

(
q +

z√
2

)}
=

√
2

π
Fz→

√
2p

{∑
n∈Z

e−
(n

√
2π)2∆2

2 e−
(q−z/

√
2−n

√
2π)2

2∆2

∑
m∈Z

e−
(m

√
2π)2∆2

2 e−
(q+z/

√
2−m

√
2π)2

2∆2

}

=

√
2

π
Fz→

√
2p

{∑
n,m

e−
((m−n)

√
π)2∆2

2 e−
(z−(m−n)

√
π)2

2∆2 e−
((m+n)

√
π)2∆2

2 e−
(
√
2q−(m+n)

√
π)2

2∆2

}
(4.97)

Using the sum re-indexing technique of
∑

n,m∈Z2

=
1∑
j=0

∑
a,b∈Z2

with m+n = 2a+ j,m−n = 2b+ j:

W (q, p| |S∆⟩) =
1√
2π

1∑
j=0

Fz→
√
2p

{ √
2

π1/4

∑
m

e−
((2m+j)

√
π)2∆2

2 e−
(z−(2m+j)

√
π)2

2∆2

}
ψ∆
j (

√
2q)

=
1√
π

(
ψ∆
0 (

√
2q)ψ∆

+ (
√
2p) + ψ∆

1 (
√
2q)ψ∆

− (
√
2p)
)

√
2

,

(4.98)

the Wigner function of the grid sensor state can be expressed back as sum of scaled wavefunc-

tions of the GKP state.

WLN of the grid sensor state

Using the expression in equation 4.99 for the Wigner function of the grid sensor state, the

only negative region of the Wigner function resides on the term containing ψ∆
− , therefore the

absolute value of this Wigner can be obtained by turning ψ∆
− (

√
2p) → ψ∆

+ (
√
2p) in the second

term of 4.99,

∣∣W (q, p| |S∆⟩)
∣∣ = 1√

π
ψ∆
+ (

√
2q)ψ∆

+ (
√
2p) , (4.99)
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Computing the following integral in order to compute the WLN:

∫
q,p

dq dp
∣∣W (q, p| |S∆⟩)

∣∣ = ∆2

(∑
n∈Z

e−π∆
2n2/2

)2

= ∆2θ3
(
0, e−π∆

2/2
)
, (4.100)

the theta function is approximately
√
2/∆ for small ∆, hence the integral

∫
q,p
dq dp

∣∣W (q, p| |S∆⟩)
∣∣ ≈

2. This implies the WLN is approximately log(2), with a full expression being:

W(|S∆⟩) = log
(
∆2θ3

(
0, e−π∆

2/2
))

≈ log(2) ≈ 0.69 , (4.101)

Wigner function of the logical GKP state

We shall compute the Wigner function of the logical GKP states now: Starting with equation

4.96 with ρ̂ =
∣∣∣ψ∆⃗

µ

〉〈
ψ∆⃗
µ

∣∣∣:
W
(
q, p
∣∣∣ ∣∣∣ψ∆⃗

µ

〉)
=

1√
π
Fz→

√
2p

{
ψ∆⃗
µ

(
q − z√

2

)
ψ∆⃗
µ

(
q +

z√
2

)}
(4.102)

W
(
q, p
∣∣∣ ∣∣∣ψ∆⃗

µ

〉)
=

2

π

κ

∆
Fz→

√
2p

{∑
n∈Z

e−
((2n+µ)

√
π)2κ2

2 e−
(q−z/

√
2−(2n+µ)

√
π)2

2∆2

∑
m∈Z

e−
((2m+µ)

√
π)2κ2

2 e−
(q+z/

√
2−(2m+µ)

√
π)2

2∆2

}
(4.103)

Expanding and completing the square in the exponential with q, z, this implies,

e−
(q−z/

√
2−(2n+µ)

√
π)2

2∆2 e−
(q+z/

√
2−(2m+µ)

√
π)2

2∆2 = e−
2(q−(n+m+µ)

√
π)2

2∆2 e−
(z+(n−m)

√
2π)2

2∆2 , substituting this back

into equation 4.103:

⇒W
(
q, p
∣∣∣ ∣∣∣ψ∆⃗

µ

〉)
=

2

π

κ

∆
Fz→

√
2p

∑
n,m∈Z2

{
e−

2(q−(n+m+µ)
√
π)2

2∆2 e−
(z+(n−m)

√
2π)2

2∆2 e−
((2n+µ)

√
π)2κ2

2 e−
((2m+µ)

√
π)2κ2

2

} (4.104)

Using the sum re-indexing technique of
∑

n,m∈Z2

=
1∑

ν=0

∑
a,b∈Z2

with m+n = 2a+ν,m−n = 2b+ν:
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⇒W
(
q, p
∣∣∣ ∣∣∣ψ∆⃗

µ

〉)
=

2

π

κ

∆

1∑
ν=0

∑
a,b∈Z2

Fz→
√
2p

{
e−

2(q−(2a+ν+µ)
√
π)2

2∆2 e−
(z+(2b+ν)

√
2π)2

2∆2 e−
((2a−2b+µ)

√
π)2κ2

2 e−
((2(a+b+ν)+µ)

√
π)2κ2

2

}
(4.105)

We can re-write e−
((2a−2b+µ)

√
π)2κ2

2 e−
((2(a+b+ν)+µ)

√
π)2κ2

2 = e−πκ
2(2a+ν+µ)2e−πκ

2(2b+ν)2 by expanding

and re-collecting terms, substituting this back into equation 4.105 implies:

⇒W
(
q, p
∣∣∣ ∣∣∣ψ∆⃗

µ

〉)
=

2

π

κ

∆

1∑
ν=0

∑
a∈Z2

e−
(q−(2a+ν+µ)

√
π)2

∆2 e−πκ
2(2a+ν+µ)2 Fz→

√
2p

{∑
b∈Z2

e−
(z+(2b+ν)

√
2π)2

2∆2 e−πκ
2(2b+ν)2

}
︸ ︷︷ ︸∑

m

e
−(

√
πm
2

)2 ∆2

1+κ2∆2 e
−
(
p−

√
πm

2(1+κ2∆2)

)2
(1+κ2∆2)

κ2 (−1)mν

(4.106)

⇒ W
(
q, p
∣∣∣ ∣∣∣ψ∆⃗

µ

〉)
=

1

π

1∑
ν=0

∑
n,m

e
−(

√
πm
2

)2 ∆2

1+κ2∆2 e
−
(
p−

√
πm

2(1+κ2∆2)

)2
(1+κ2∆2)

κ2 ×

{
(−1)mνe−κ

2(2n+ν+µ)2πe−
(q−(2n+ν+µ)

√
π)2

∆2

}
.

(4.107)

WLN of the logical GKP state

We can now use this expression of the GKP to compute the WLN of the logical GKP states.

Let’s splitW
(
q, p
∣∣∣ ∣∣∣ψ∆⃗

µ

〉)
intoW+ (evenmν) andW− (oddmν), the positive part and negative

part of W
(
q, p
∣∣∣ ∣∣∣ψ∆⃗

µ

〉)
respectively. Note that, W = W+ +W−.
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Figure 4.8: GKP ψ∆
+ Wigner function in phase space with an average photon number of 5.

W+ =
1

π

1∑
ν=0

∑
n,m

e−(
√
πm)2∆2

e−
(p−

√
πm)2

κ2 e−κ
2(2n+ν+µ)2πe−

(q−(2n+ν+µ)
√
π)2

∆2

+

1

π

∑
n,m

e−(
√
π(2m+1)/2)2∆2

e−
(p−

√
π(2m+1)/2)2

κ2 e−κ
2(2n+µ)2πe−

(q−(2n+µ)
√
π)2

∆2 ,

W− = − 1

π

∑
n,m

e−(
√
π(2m+1)/2)2∆2

e−
(p−

√
π(2m+1)/2)2

κ2 e−κ
2(2n+1+µ)2πe−

(q−(2n+1+µ)
√
π)2

∆2 .

(4.108)

Now we compute the wigner negativity,

⇒
∫
dq dp W+ = κ∆

1∑
ν=0

∑
n,m

e−(
√
πm)2∆2

e−κ
2(2n+ν+µ)2π + κ∆

∑
n,m

e−(
√
π(2m+1)/2)2∆2

e−κ
2(2n+µ)2π ,

∫
dq dp W− = −κ∆

∑
n,m

e−(
√
π(2m+1)/2)2∆2

e−κ
2(2n+1+µ)2π .

(4.109)
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Using
∫
dq dp W+ +

∫
dq dp W− = 1 and

∫
dq dp W+ −

∫
dq dp W− =

∫
dq dp |W |,

⇒
∫
dq dp W− =

1−
∫
dq dp |W |
2

⇒
∫
dq dp |W | = 1− 2

∫
dq dp W−

(4.110)

⇒
∫
dq dp |W | = 1 + 2κ∆

∑
n,m

e−(
√
π(2m+1)/2)2∆2

e−κ
2(2n+1+µ)2π

⇒
∫
dq dp |W | = 1 +∆θ2(0, e

−π∆2

) θ3(π(µ+ 1)/2, e−πκ
−2/4)

(4.111)

In the paper [100], the authors calculated the Wigner negativity of the ideal GKP states to be,∫
dq dp |W | = 2. In order to check if we recover this result, we take the limit of:

lim
∆,κ→0

∫
dq dp |W | = lim

∆,κ→0

(
1 + ∆θ2(0, e

−π∆2

) θ3(π(µ+ 1)/2, e−πκ
−2/4)

)
(4.112)

Using the lim∆→0 θ2(0, e
−π∆2

) = 1
∆
and limκ→0 θ3(π(µ+1)/2, e−πκ

−2/4) = 1 [104]. We will indeed

recover,

lim
∆,κ→0

∫
dq dp |W | = 2 . (4.113)

We have computed a more general result for non-zero ∆. Numerically, we have plotted both

the Wigner negativity and WLN in figure 4.9 and 4.10 respectively.

Notice the WLN of the grid sensor state and GKP logical states are both approximately W ≈

0.69, it’s possible to use Gaussian operation and measurements to convert one to another.

Using the the inter-conversion ratio from equation 4.93 implies at least 1.38 (in practice 2)

single photons is needed to generate a any grid states. Historically, WLN had always been used

as a measure for the difficulty of CV state generation [99]. However, unfortunately this bound

is not very insightful in this circumstance, but could be useful to check if specific protocols

increases/decreases the WLN, an indication of the performance of a particular protocol.
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Figure 4.9: 2W of an approximate logical 0 GKP state with ∆ = κ.

Figure 4.10: WLN of an approximate logical 0 GKP state with ∆ = κ.

4.7.3 Maximum phase-space variance as a monotone

Subsection 4.7.3 consists of my own work other than the definition of equation 4.114.

The WLN does not give a good bound on the number of single photons needed, the authors

from [105] suggested another monotone and resource theory that is operationally relevant for

generating states useful for continuous variable quantum information. To simplify the result

in [105], one can choose the free states to be Gaussian states and the free operations to be all
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probabilistic mixture of passive linear optics along with Gaussian measurements and feedfor-

ward. The choice of monotone would be the maximum phase space distance (only for pure

states) given by [105]:

V1(|Ψ⟩) = max
θ

{
Var
(
B̂θ |Ψ⟩

)}
− 1

2
, (4.114)

where B̂θ is the action of a beamspliter by an arbitrary angle. For the grid sensor state, no

matter what the beamsplitter rotation is, the Maximum phase space variance is at least its

variance in the q- or the p- quadrature, hence it can be lower bound by the average of these

two:

V1(|S∆⟩) >
⟨S∆| q̂2 |S∆⟩+ ⟨S∆| p̂2 |S∆⟩

2
− 1

2
= ⟨S∆| n̂ |S∆⟩ ≈ (∆2 +∆−2 − 1)/2 . (4.115)

V1(|S∆⟩) >
∆2 +∆−2 − 1

2
, (4.116)

due to its symmetry in the two quadratures. A Fock state |n⟩ have a maximum phase space

distance of n, V1(|n⟩) = n [105]. The inter-conversion ratio that gives the minimum number of

single photons needed to generate a grid sensor state of a particular quality is given by:

V1(|S∆⟩)
V1(|n = 1⟩)

>
∆2 +∆−2 − 1

2
. (4.117)

This result is computed numerically in figure 4.11. Note that at least 200 single photons

is required for a reasonable high quality grid sensor state at ∆ ≈ 0.1 to be generated on

average. With the presence of errors in the state generation optical circuit, it’s incredible

difficult to have over 200 photons surviving loss over many optical components, making the

generation of such states out of reach in our current technologies. However, the grid states

could still be potentially useful in other emerging quantum information processing platforms

where there had been experimental generation of these states such as [49] (trapped-ions) and

[50] (superconducting microwave cavities).
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Figure 4.11: Maximum phase space variance of the grid sensor state in terms of ∆.
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4.8 Generating a logical GKP Bell states with |S∆⟩ and

a 50:50 beam-splitter

Section 4.8 consists of my own work.

Discovered independently by [106, 79], one can transform a pair of grid sensor state to a logical

GKP |00⟩ + |11⟩ type Bell state through the application of a 50:50 beamsplitter. Each GKP

Gaussian peak is still perfectly circularly symmetric in the 2 mode wavefunction, an advantage

to using the convention CNOT gate [77]. The CNOT will introduce additional shearing of the

peaks in either directions. We will explicitly calculate how these different Bell states are formed

and compare the different states resulting from these two different methods.

Starting with 2 copies of |S∆⟩⊗2, we shall work primarily in the two mode q-quadrature basis,

where we will manipulate the two-mode wavefunction S∆(x)S∆(y). An application of a beam-

splitter transforms x → x+y√
2

and y → −x+y√
2
, which is essentially a 45 degree rotation of the

2 mode wavefunction S∆(x)S∆(y) around its origin, in this calculation, we shall use λ(∆) the

normalisation of the grid sensor state to be (2/π)1/4 for simplicity.

S∆(x)S∆(y) → S∆

(x+ y√
2

)
S∆

(−x+ y√
2

)
(4.118)

S∆

(x+ y√
2

)
S∆

(−x+ y√
2

)
=

√
2

π

∑
n,m∈Z2

e−
(n

√
2π)2∆2

2 e−

(
x+y√

2
−n

√
2π

)2
2∆2 e−

(m
√
2π)2∆2

2 e−

(
x−y√

2
−m

√
2π

)2
2∆2

(4.119)

Expanding the exponent inside the sum, re-arranging terms and completing the square gives

the following result

⇒ S∆

(x+ y√
2

)
S∆

(−x+ y√
2

)
=

√
2

π

∑
n,m∈Z2

e−
((n−m)

√
π)2∆2

2 e−
(x−(n−m)

√
π)2

2∆2 e−
((n+m)

√
π)2∆2

2 e−
(y−(n+m)

√
π)2

2∆2

(4.120)

We can trade the double sum for a triple sum if we make this following sum re-indexing:
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∑
n∈Z

∑
n∈Z →

∑1
µ=0

∑
n′∈Z

∑
m′∈Z, where n−m = 2n′ + µ, n+m = 2m′ + µ:

S∆

(x+ y√
2

)
S∆

(−x+ y√
2

)
=

√
2

π

1∑
µ=0

∑
n′∈Z

e−
((2n′+µ)

√
π)2∆2

2 e−
(x−(2n′+µ)

√
π)2

2∆2

∑
m′∈Z

e−
((2m′+µ)

√
π)2∆2

2 e−
(y−(2m′+µ)

√
π)2

2∆2

=
ψ∆⃗
0 (x)ψ

∆⃗
0 (y) + ψ∆⃗

1 (x)ψ
∆⃗
1 (y)√

2
.

(4.121)

Hence we have shown that a 50:50 beamsplitter transforms a 2 copies of the grid sensor state to

a GKP Bell state: |S∆⟩⊗2 →= 1√
2

( ∣∣∣ψ∆⃗
0

〉 ∣∣∣ψ∆⃗
0

〉
+
∣∣∣ψ∆⃗

1

〉 ∣∣∣ψ∆⃗
1

〉)
. Geometrically, it’s easier to see.

The wavefunction of |S∆⟩⊗2 has Gaussian peaks at locations
(
n
√
2π,m

√
2π
)T

in the x,y plane.

If you rotate this grid 45 degrees clockwise/anticlockwise, the Gaussian peaks are located on

two overlapping grids at locations
(
2n

√
2π, 2m

√
2π
)T

and
(
(2n+1)

√
2π, (2m+1)

√
2π
)T

, which

is exactly what the |00⟩ + |11⟩ logical GKP state is. This is better illustrated with a plot. In

Figure 4.12: Contour plot of the two mode wavefunction of |S∆⟩⊗2. The squeezing parameter
was arbitrarily chosen to be ∆ = 0.3 here.

figure 4.12, we have a contour plot of the q-quadrature wavefunction of |S0.3⟩⊗2. An application

of a 50:50 beamsplitter rotates the two mode wavefunction by 45 degrees as illustrated by the
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top plot in figure 4.14. The middle and bottom plot in figure 4.14, we have the plots
∣∣ψ∆

0

〉⊗2
/
√
2

and
∣∣ψ∆

1

〉⊗2
/
√
2. One can see that if we superimpose the plots of

∣∣ψ∆
0

〉⊗2
/
√
2 and

∣∣ψ∆
1

〉⊗2
/
√
2

we have the rotated |S∆⟩⊗2 grid. The other approach to generating Bell states involves using

the CNOT gate on |+L⟩ ⊗ |0L⟩. The CV CNOT gates is given by ĈX = e−iq̂1⊗p̂2 [66]. If we

apply ĈX on
∣∣ψ∆

+

〉
⊗
∣∣ψ∆

0

〉
we have a wavefunction of:

e−iq̂1⊗p̂2
∣∣ψ∆

+

〉
⊗
∣∣ψ∆

0

〉
=

∫
x,y

dx dy ψ∆
+ (x)ψ

∆
0 (y) |x, y⟩q

=

∫
x,y

dx dy e−ixp̂2ψ∆
+ (x)ψ

∆
0 (y) |x, y⟩q

(4.122)

the operator e−ixp̂2 is just a q-quadrature displacement on the second mode by x:

e−iq̂1⊗p̂2
∣∣ψ∆

+

〉
⊗
∣∣ψ∆

0

〉
=

∫
x,y

dx dy ψ∆
+ (x)ψ

∆
0 (y − x) |x, y⟩q . (4.123)

Hence, the original wavefunction transformed according to ψ∆
+ (x)ψ

∆
0 (y) → ψ∆

+ (x)ψ
∆
0 (y − x)

after the application of ĈX . This makes sense because, the CNOT’s purpose is to coupled the

two wavefunctions ψ∆
+ (x) and ψ

∆
0 (y).

Now, the function ψ∆
+ (x)ψ

∆
0 (y − x) as shown in figure 4.13 exhibits shearing in each Gaussian

peak. Each Gaussian peak is centered at the correct location, but is extremely distorted. This

effect is non-negligible in states with non-zero ∆. Which implies

ĈX
∣∣ψ∆

+

〉
⊗
∣∣ψ∆

0

〉
̸=
∣∣ψ∆

0

〉
⊗
∣∣ψ∆

0

〉
+
∣∣ψ∆

1

〉
⊗
∣∣ψ∆

1

〉
√
2

, if ∆ ̸= 0 . (4.124)

The beamsplitter method preserves and creates exact GKP Bell states for all ∆. The beam-

splitter method is a better way of generating GKP Bell states, because the continuous variables

CNOT gate introduces additional errors.
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Figure 4.13: The q-quadrature two mode wavefunction of ĈX
∣∣ψ∆

+

〉
⊗
∣∣ψ∆

0

〉
, with ∆ = 0.3.
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Figure 4.14: Contour plots of and application of a 50:50 beamspliter to |S∆⟩⊗2,
∣∣ψ∆

0

〉⊗2
/
√
2

and
∣∣ψ∆

1

〉⊗2
/
√
2 respectively from top to bottom. The squeezing parameter was arbitrarily

chosen to be ∆ = 0.3 here.
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4.9 Summary

We have studied the grid sensor state, first proposed as a quantum state to infer small dis-

placements in phase space in a bosonic mode. We have showed that grid sensor state has

certain level of error resistance to the Gaussian random displacement channel, studied its Fock

state amplitudes explicitly, quantitatively bounded the difficulty of state generation, computed

the quantum Fisher information matrix explicitly. We also showed that the gird sensor state

minimises the trace of the inverse quantum Fisher information matrix for the displacement

detection problem in q- and p-quadrature simultaneously, but the Helstrom bound is not at-

tainable. Despite the huge cost of generation experimentally and numerically to study due to

its complicated Fock space and phase space state amplitudes structure, it is important to note

that because of these qualities, it’s a good motivator for the use of grid like states for error

correction of errors in phase space because it would often require quite drastically large errors

to destroy the grid like structure in phase space entirely.



Chapter 5

Memory assisted

Gottesman-Kitaev-Preskill decoder

5.1 Introduction

Gottesman, Kitaev and Preskill published a paper in 2001 [35] using CV quantum mechanics

to encode a qubit inside a bosonic mode. The GKP code is a stabilizer code [63], but the

codeword wavefunctions are Dirac combs and they are only orthogonal when the energies of

the states diverge. GKP also supplied a scheme to regularise the codewords, by replacing the

Dirac combs with finite width Gaussians and an overall envelope to suppress the wavefunction

at ±∞. They also supplied an error syndrome extraction scheme based on the CV stabilizer

generalisations of the Steane circuits [107] to error correct the GKP states. A few years later,

Glancy and Knill (GK) proposed a different optical implementation for error correcting the

GKP states based on the geometry of the GKP states [6]. Additionally, Vasconcelos, Sanz,

and Glancy proposed an all optical GKP state generation method by using many cat states

[108] as inputs. In recent years, Albert et al. [68] showed that the GKP code provides the

best performance compared to other bosonic codes if no error occurred during the recovery in

light of a Gaussian random displacement error channel. This error channel is the pre-amplified

amplitude damping channel. Since the amplitude damping channel is the dominant source

78
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of error in optics in general, this suggests that the GKP code might be a good candidate

for optical quantum computing. However, the resource trade-off vs code performance of a

GKP code compared to a cat code is not well understood—it is possible that consuming many

cat states to generate few GKP states is only beneficial in certain energy and error regimes.

Although all the analysis revolves around the Gaussian random displacement channel, this error

channel is a pre-amplified amplitude damping channel and the amplification can be interpreted

as a step in the error correction. Hence, we can argue that the GKP code is well suited to the

amplitude damping channel as well.

In this chapter, we present a new memory 1 decoder for the GKP code undergoing Gaussian

random displacement errors, based on the Glancy and Knill error recovery scheme and Bayesian

estimation. In particular, we extend the scheme to enable enhanced error estimation using

multiple syndrome extractions, enabling improved error supression which we show to be useful

in extending the lifetime of states with a mean number of photons as low as ten. We find

that many rounds of syndrome extraction without active corrective displacement causes the

qubit to drift in phase space by at most approximately 2
√
π in each quadrature. Since this

bounded drift is finite, a corrective displacement can be used to correct for this drift at the

end of the decoding stage. Additionally, we recompile the syndrome extraction circuit in an

experimentally friendly way, such that squeezing need only be applied to auxiliary states which

can be prepared offline.

5.2 Syndrome Extractions

The GKP syndrome extraction scheme of Glancy and Knill [6] can be broken down into

two sequential circuits: q-SE and p-SE, which extract the error syndromes in the q- and p-

quadrature respectively (see Fig. 5.1).

We begin our analysis with an arbitrary input qubit wavefunction Q∆⃗(x) = αψ∆⃗
0 (x) + βψ∆⃗

1 (x)

that has undergone an unknown displacement error (u, v)

1The word ‘memory’ refers to the use of classical memory to store data, which will then be used to assist
the decoding of quantum information.
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Figure 5.1: The q-quadrature error-syndrome extraction circuit (q-SE), as proposed by Glancy
and Knill [6]. The GKP qubit and an auxiliary state are input in the top and bottom modes
respectively. Following beamsplitting and squeezing operations, the error syndrome xm is gen-
erated by a q-quadrature measurement on the auxiliary mode.

Q∆⃗(x)
error−−→
(u,v)

eivxQ∆⃗(x− u) . (5.1)

This corrupted qubit is input into the top mode of the q-SE circuit, while an auxiliary GKP

state
∣∣∣ψ∆⃗

+

〉
∝
∣∣∣ψ∆⃗

0

〉
+
∣∣∣ψ∆⃗

1

〉
is input into the bottom mode. The action of the q-SE circuit

can be visualised in terms of the two-mode q-quadrature wavefunction. The beamsplitter B̂π
2

causes an anticlockwise rotation by 45◦ in the joint quadrature space, and the subsequent

squeezer Ŝ√
2 scales the top-mode quadrature by

√
2. The error syndrome is then generated by

a q-quadrature measurement of the auxiliary mode.

The p-SE circuit proceeds similarly, although there are subtle differences beyond a change of

variables q → p, and squeezing in the conjugate direction (Ŝ√
2 → Ŝ†√

2
). Indeed, we must also

change the auxiliary state
∣∣∣ψ∆⃗

+

〉
→
∣∣∣ψ∆⃗′

0

〉
where ∆⃗′ = (∆/

√
2, κ

√
2)—a departure from the

proposal of Glancy and Knill, which we found necessary for sequential q-SE and p-SE circuits

to be applied to approximate GKP states (see figure 5.2).

5.3 Single-step decoding problem

Section 5.3 to the end of this chapter consists of my own work.

We begin with a graphical illustration with a sydrome extraction step. We define an error shift

in the q and p quadrature as (u, v). For example, in the q-SE stage, take an error free (u, v = 0)
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Figure 5.2: The p-quadrature error-syndrome extraction circuit (p-SE), as proposed by Glancy
and Knill [6]. The GKP qubit and an auxiliary state are input in the top and bottom modes
respectively. Following beamsplitting and anti-squeezing operations, the error syndrome pm is
generated by a p-quadrature measurement on the auxiliary mode.

input state of ψ
(∆,κ)
− (x) multiplied with its fixed resources state ψ

(∆,κ)
+ (y) (with ∆ = 0.14 = κ).

The two mode wavefunction is plotted in figure 5.3a. The beam-splitter rotates the two mode

wavefunction 45 degrees counter clockwise as shown in figure 5.3b. The squeezing in the top

mode will result in a wavefunction as shown in figure 5.3c. Notice that the y-axis in figure 5.3c

is rescaled to y

(
√

π
2
)
and x-axis to x

(
√
π
2

)
. The peaks will appear at every integer value of

√
π
2
in

the y-axis and every integer value of
√
π
2

in the x-axis in figure 5.3c.

A measurement measurement conditioned displacement should be applied at the end of in the

q-SE/p-SE to infer the shift that has occured in order to return the qubit wavefunction into

its original position in phase-space before error and syndrome extraction. It can be pictured

by taking a line of constant y-values (y = xm) out from plot in figure 5.3c and then asking,

how much shift is required such that the peak locations are fixed at 2n
√
π for logical 0 and

(2n + 1)
√
π for logical 1, ∀n ∈ Z. Glancy and Knill (GK) [6] suggested an adaptive shift

function of the form (for errors |u|, |v| <
√
π/2):

fGK(xm) =

√
π

2
rem

[
round

{ xm√
π/2

}
, 4
]

− SAW
(
xm,

1√
2
,

√
π

2

)
,

(5.2)

where rem[z , 4] is the remainder of z when divided by 4, round{z} is the rounding function

that includes positive and negative values in its range and domain and SAW is the function
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defined in FIG. 5.9 2. The SAW part of fGK is to deal with errors. Since we have no external

errors we can ignore the sawtooth linear part of fGK. We can define fstep as:

fstep(xm) =

√
π

2
rem

[
round

{ xm√
π/2

}
, 4
]
. (5.3)

We can look at how the peaks shift in figure 5.3d. Figure 5.3d is an enlarged version of figure

5.3c with quiver vectors overlaid on top of the peaks, showing the shift direction and magnitude.

The red and blue nodes represents the logical 0 and 1 peaks respectively. The quiver plot shows

the effect of shift function fstep(y). We can see that all the red and blue peaks return to even

and odd integers of
√
π effectively.

5.3.1 q-SE output wavefunction

Theorem 5.1. The q-quadrature syndrome extraction circuit transforms the input approximate

GKP state with width (∆, κ) into superpositions of shifted GKP states with width (∆/
√
2, κ

√
2).

Proof. The input state into the q-quadrature syndrome extraction circuit has the wavefunction:

Φ(x, y) =

(
1∑

µ=0

aµψ
(∆,κ)
µ (x)︸ ︷︷ ︸

qubit

)
· ψ(∆,κ)

+ (y)︸ ︷︷ ︸
ancilla

. (5.4)

Φ(x, y) ∝
1∑

µ=0

∑
n,m∈Z2

aµNµG 1
κ
[(2n+ µ)

√
π ]

·G∆[x− (2n+ µ)
√
π ]

·G 1
κ
(m

√
π )G∆(y −m

√
π )

(5.5)

The beams-plitter transforms the variables (x, y) 7→
(
x+y√

2
, −x+y√

2

)
and the squeezing transforms

this further:
(
x+y√

2
, −x+y√

2

)
7→
(
x+ y√

2
,−x+ y√

2

)
and finally the measurement of the sets mode

2The SAW function has a Fourier series function of SAW(x, a, b) = − ab
2π ln(e

−iπ(2x/b−1)) defined in its standard
form [109]
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(a) (b)

(c) (d)

Figure 5.3: a) This is the two mode wavefunction of ψ
(∆,κ)
− (x)ψ

(∆,κ)
+ (y) in the joint qubit-resource

q quadrature basis |x⟩q ⊗ |y⟩q with ∆ = 0.14 = κ. b) This is the two mode wavefunction of

ψ
(∆,κ)
− (x)ψ

(∆,κ)
+ (y) rotated 45 degrees counter clockwise after the action of a beam-splitter. c)

This is the two mode wavefunction of ψ
(∆,κ)
− (x)ψ

(∆,κ)
+ (y) rotated 45 degrees counter clockwise

after the action of a beam-splitter and the squeezing operation in the x mode. d) The black
quiver arrow overlay on top shows the effect of an x shift of x→ x− fstep(y) on the two mode
wavefunction before shifting.

y = xm, the measurement results. All in all, prior to the conditional shift, the aggregate

transformation of the beam-splitter, squeezing and measurement outcome at xm results in the

change of variables in the wavefunction from: (x, y) → (x+ xm√
2
,−x+ xm√

2
) .

The resulting wavefunction will now be (up to global normalisation constant):
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1∑
µ=0

∑
n,m∈Z2

aµNµG 1
κ
[(2n+ µ)

√
π ]

·G∆[x+
xm√
2
− (2n+ µ)

√
π ]

·G 1
κ
(m

√
π ) · G∆(−x+

xm√
2
−m

√
π )

(5.6)

Regrouping the Gaussian functions with the same width and then competing the square up in

the exponent, i.e. complete the square of the exponents of G 1
κ
[(2n + µ)

√
π ] · G 1

κ
(m

√
π ) and

G∆(−x+ xm√
2
−m

√
π ) ·G∆[x+

xm√
2
− (2n+ µ)

√
π ] separately, this implies,

1∑
µ=0

∑
n,m∈Z2

aµNµG 1√
2κ

((2n+m+ µ)
√
π

2

)
·G ∆√

2

(
x− (2n+m+ µ)

√
π

2

)
·G 1√

2κ

((2n−m+ µ)
√
π

2

)
·G ∆√

2

(
− xm − (2n−m+ µ)

√
π

2

)
(5.7)

The natural indices in this sum are 2n + m and 2n − m. We want to decouple the n and

m indices so that the double sum factors out into a product of single sums. If we make the

following re-indexing, 2n+m = 4j+c and 2n−m = 4l−c, where j, l ∈ Z2 and c ∈ {−1, 0, 1, 2},

then we can trade the infinte (n,m) ∈ Z2 coupled double sum for a decoupled triple sum over

c, j, l ∈ {−1, 0, 1, 2},Z2 , this implies:

∑
µ,c

aµNµ

·
[∑
j∈Z

G 1√
2κ

(
(2j +

c+ µ

2
)
√
π
)
G ∆√

2

(
x− (2j +

c+ µ

2
)
√
π
)]

·
[∑
l∈Z

G 1√
2κ

(
(2l +

µ− c

2
)
√
π
)
G∆√

2

(
xm + (2l +

−c+ µ

2
)
√
π
)]

(5.8)

Now, we have a product of two separate infinite sums. before we proceed, we need to define the

±1/2 ‘logical’ wavefunctions. The possible non-Pauli errors of a one step q-SE can be expressed
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in terms of two possible wave functions ψ
(∆,κ)
1/2 (z) and ψ

(∆,κ)
−1/2 (z):

ψ
(∆,κ)
±1/2 (z) = N± 1

2

∑
s∈Z

e−
κ2

2
((2s±1/2)

√
π)2e

−[z−((2s±1/2)
√
π)]2

2∆2 . (5.9)

Next, we can expand the wavefunction in c and µ, resulting in 4 terms which are super-

positions of ψ
( ∆√

2
,κ
√
2)

±1/2 (x), ψ
( ∆√

2
,κ
√
2)

0 (x) and ψ
( ∆√

2
,κ
√
2)

1 (x). Let’s name these terms {Ti}, so that

Φbefore shift(x) ∝
∑

i Ti. In the limit where the normalization constants are approximately equal.

T0 = ψ
( ∆√

2
,κ
√
2)

0

( xm√
2

)
·
(
a0ψ

( ∆√
2
,κ
√
2)

0 (x) + a1ψ
( ∆√

2
,κ
√
2)

1 (x)
)

(5.10)

T1 = ψ
( ∆√

2
,κ
√
2)

1

( xm√
2

)
·
(
a1ψ

( ∆√
2
,κ
√
2)

0 (x) + a0ψ
( ∆√

2
,κ
√
2)

1 (x)
)

(5.11)

T−1/2 = ψ
( ∆√

2
,κ
√
2)

−1/2

( xm√
2

)
·
(
a0ψ

( ∆√
2
,κ
√
2)

−1/2 (x) + a1ψ
( ∆√

2
,κ
√
2)

1/2 (x)
)

(5.12)

T1/2 = ψ
( ∆√

2
,κ
√
2)

1/2

( xm√
2

)
·
(
a0ψ

( ∆√
2
,κ
√
2)

1/2 (x) + a1ψ
( ∆√

2
,κ
√
2)

−1/2 (x)
)

(5.13)

Note that the all terms Ti have width change from (∆, κ) → (∆/
√
2, κ

√
2). Also, T0 corres-

pounds to the codeword with no logical error and T1 is a bit flip error of logical 0 to 1 and vice

versa, which we refer to as a Pauli error. Finally, T±1/2 are shifted codewords of ∓
√
π/2 in the

envelope and the locations of each individual Gaussian peaks, referred to as non-Pauli errors 3.

Each Ti term has coefficients based on ψ
( ∆√

2
,κ
√
2)

i (xm/
√
2), and for a likely measurement result

xm, one of these terms dominates.

It is useful to see how the q-SE procedure produces Pauli and non-Pauli error terms and also

the width change from (∆, κ) → (∆/
√
2, κ

√
2), no matter what the measurement conditional

shift is. If the p-quadrature syndrome extraction procedure is performed on inputs states and

3an error that brings the qubits outside of the 2-level qubits logical codeword subspace, also known as a
leakage error in [48]
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ancilla of (∆, κ), one could show that the output wavefunction will also consist of Pauli and

non-Pauli terms, but the width of the output GKP state would be (∆
√
2, κ/

√
2), this looks

like the inverse width change compared to the q-SE. This suggests, by performing the q-SE

with (∆, κ) width qubit and ancilla states and then the p-SE with (∆/
√
2, κ/

√
2) width ancilla

states, one might be able to reverse this width change induced by the syndrome extraction.

The effect of width reduction through syndrome extraction cannot be observed in the ∆ = 0

unphysical states calculation.

5.3.2 Justification for fstep

Looking at the equations Ti, we can see a reason for using the fstep terms in the shift function.

The relative amplitudes between terms are: ψ
( ∆√

2
,κ
√
2)

i

(
xm√
2

)
. We can see that if one of the Ti is

much bigger than the others, then that term dominates. For example, when xm ≈ 2n
√
2π, n ∈

Z, then T0 dominiates.

xm ≈ term shift

(2n)
√
2π T0 0

(2n+ 1
2
)
√
2π T− 1

2

√
π
2

(2n+ 1)
√
2π T1

√
π

(2n+ 3
2
)
√
2π T 1

2

3
√
π

2

Table 5.1: This table shows the dominant Ti term when xm is close certain integers or half-
integers of

√
2π and also what amount to shift given a dominant term.

Let’s have a look at what does the function fstep(xm) do on the arguement xm = (2n+j)
√
2π, j ∈

{0, 1
2
, 1, 3

2
}.

⇒ fstep((2n+ j)
√
2π ) =

√
π
2
rem

[
round

{
(2n+j)

√
2π√

π/2

}
, 4
]

⇒ fstep((4n+ j)
√
2π ) =

√
π
2
rem

[
round

{
4n+ 2j

}
, 4
]

⇒ fstep((4n+ j)
√
2π ) =

√
π
2
rem

[
2j , 4

]
For j ∈ {0, 1

2
, 1, 3

2
}, this gives you the exact amount to shift as stated in the table 5.1.
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5.3.3 q-SE followed by p-SE with errors

Given an input state of ψ∆,κ
α (x), undergoing an error shift in phase space by u, v in the q, p

quadratures:

ψ∆,κ
α (x)

error−−→
(u,v)

eivxψ∆,κ
α (x− u) , (5.14)

by carrying out the syndrome extraction procedures, the output state has an exact decompo-

sition in terms of Pauli/non-Pauli errors and has the same width as the input state (∆, κ).

Definition 5.1. The Fourier transform wavefunction of an arbitrarily shifted GKP state (α ∈

R+) is:

ψ̃∆,κ
α (p) = Fx→p{ψ∆,κ

α (x)} (5.15)

The output wavefunction of the combined q-SE and p-SE is:

Ψout(x, u, v) ∝ ei
(

v
2
+ps

)
x
∑

β∈{− 1
2
,0, 1

2
,1}

Lβ(x, u, v) (5.16)

L0 = ψ∆⃗′

0

( xm√
2
− u

2

)[
a0ψ̃

∆⃗
0

( pm√
2
− v

2

)
ψ∆⃗
0

(u
2
− (x− xs)

)
+a1ψ̃

∆⃗
1

( pm√
2
− v

2

)
ψ∆⃗
1

(u
2
− (x− xs)

)] (5.17)

L1 = ψ∆⃗′

1

( xm√
2
− u

2

)[
a0ψ̃

∆⃗
1

( pm√
2
− v

2

)
ψ∆⃗
1

(u
2
− (x− xs)

)
+a1ψ̃

∆⃗
0

( pm√
2
− v

2

)
ψ∆⃗
0

(u
2
− (x− xs)

)] (5.18)

L 1
2
= ψ∆⃗′

1
2

( xm√
2
− u

2

)[
a0ψ̃

∆⃗
− 1

2

( pm√
2
− v

2

)
ψ∆⃗
− 1

2

(u
2
− (x− xs)

)
+a1ψ̃

∆⃗
1
2

( pm√
2
− v

2

)
ψ∆⃗

1
2

(u
2
− (x− xs)

)] (5.19)
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L− 1
2
= ψ∆⃗′

− 1
2

( xm√
2
− u

2

)[
a0ψ̃

∆⃗
1
2

( pm√
2
− v

2

)
ψ∆⃗

1
2

(u
2
− (x− xs)

)
+a1ψ̃

∆⃗
− 1

2

( pm√
2
− v

2

)
ψ∆⃗
− 1

2

(u
2
− (x− xs)

)] (5.20)

∆⃗′ ≡ (∆′, κ′) ≡ ( ∆√
2
, κ

√
2) and ∆⃗ ≡ (∆, κ).

We can see from the forms of the Lβ, with errors (u, v) in phase space, it is more difficult to

isolate the dominant Lβ term. the relative amplitudes of Lβ depends on xm√
2
− u

2
and pm√

2
− v

2
.

Hence, we need a way to estimate the probability distribution of the errors u, v given xm, pm, σ0,

namely P(u|xm) and P(v|pm).

5.3.4 Bayesian estimator for q-SE shift

We now seek an optimized estimator for the total displacement after a q-SE step and then

p-SE. In particular by using knowledge of our error model, we derive an improvement upon the

GK shift function in equation 5.2.

The probability distribution of measurement outcome xm given error shift u can be approxi-

mated by:

P(xm|u) ∝ ψ
(∆,κ)
+ (

√
2xm − u) . (5.21)

Note that the probability distribution is proportional to a function that is functionally the same

as a GKP wavefunction not the absolute square of it here. This equation is independent of the

input qubit to the q-SE. We shall give the proof to equation 5.21 now.

Theorem 5.2. The probability distribution of the measurement result xm in the q-SE circuit

given an initial arbitary shift u in the q-quadrature is

P(xm|u) ∝ ψ
(∆,κ)
+ (

√
2xm − u).

Proof. The probability distribution can be computed from
∑

α Tα, with Tα from equation 5.10
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to 5.13, with α ∈ {0, 1,−1
2
, 1
2
}.

P(xm|u) ∝
∫
x∈R

∣∣∣∑
α

Tα

∣∣∣2 dx
For ∆ ≪ 1√

π
, the GKP peak don’t overlap sufficiently, hence a valid approximation is:

∫
x∈R

∣∣∣∑
α

Tα

∣∣∣2 dx ≈
∫
x∈R

∑
α

∣∣∣Tα∣∣∣2 dx ,

ignoring all the cross terms in the sum. Since all the Tα terms can be written as a product

of functions in xm and x, i.e. |Tα|2 = |Aα(xm)|2 · |Bα(x)|2, the product function of |Bα(x)|2

integrates to 1. Note that, Aα(xm) = ψ∆⃗′
α

(
xm√
2
− u

2

)
.

⇒ P(xm|u) ∝
∑
α

∣∣∣ψ∆⃗′

α

( xm√
2
− u

2

)∣∣∣2 ∫
x∈R

∣∣∣Bα(x)
∣∣∣2 dx︸ ︷︷ ︸

=1

With a bit of reindexing,

∣∣∣ψ∆⃗′

α={0,1}

( xm√
2
− u

2

)∣∣∣2 = ψ∆⃗
+ (0)ψ

∆⃗
0

(√
2xm − u

)
(5.22)

and

∣∣∣ψ∆⃗′

α={± 1
2
}

( xm√
2
− u

2

)∣∣∣2 = ψ∆⃗
+ (0)ψ

∆⃗
1

(√
2xm − u

)
. (5.23)

The non-Pauli terms gives the logical 1 component and the Pauli terms returns the logical 0

components.

⇒ P(xm|u) ∝ 2
[
ψ∆⃗
0

(√
2xm − u

)
+ ψ∆⃗

1

(√
2xm − u

)]

⇒ P(xm|u) ∝ ψ∆⃗
+

(√
2xm − u

)
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Figure 5.4: The false colour plot (z axis in arbitary units) of the conditional probability
distribution P(u|xm) with σ0 = 0.1 and ∆ = 0.3. The slope of the repeating rod like structures
will steepen as σ0 increases or ∆ decreases.

Using the marginal rule, one can compute

P(xm) =
∫ ∞

u=−∞
du P(xm|u)P(u) = ψ

(
√

∆2+σ2
0 ,κ)

+ (
√
2xm) , (5.24)

where P(u) ∝ e
− (u)2

2σ2
0 . Using Bayes’ theorem,

P(u|xm) ∝
ψ

(∆,κ)
+ (

√
2xm − u)

ψ
(
√

∆2+σ2
0 ,κ)

+ (
√
2xm)

e
− u2

2σ2
0 (5.25)

From the plot in figure 5.4, one can see why the GK shift has this structure of a sawtooth offset

by a step function. The sawtooth part aims to counteract the effects of the shift u and the

integer steps bit arise from the rotational structure of the QEC code.

We shall maximise the P(u|xm) now:

P(u|xm) ∝ ψ
(∆,κ)
+ (

√
2xm − u)Gσ0(u) . (5.26)

For a particular value of xm and u, given u is small (see section 5.5.3 for error analysis for larger
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values of u and its impact on overall qubit recovery fidelity),

⇒ max(P(u|xm)) ∝G∆

[√
2xm − u−

√
πround

(√2xm√
π

)]
·Gσ0(u) .

(5.27)

Maximising the log of max(P(u|xm)) gives an estimator of u, we shall call the estimator: ũ.

ũ =
σ2
0

σ2
0 +∆2

[√
2xm − round

(√2xm√
π

)]
. (5.28)

Now we have the sawtooth structure, shown in figure 5.4, extracted from maximising the

conditional probability distribution.

Alternatively, if we expand the sums involved in P(u|xm) and only concentrate on the central

rod, we can extract the mean slope of the diagonal “rods” like figures in figure 5.4, which

represents high probability regions of error given measurement result. This can be used to form

a new shift function that adaptively changes depending on the parameters σ0 and ∆ to achieve

a optimal code for our error model. The mean slope is:

S(∆, σ0) =

√
2σ2

0

σ2
0 +∆2

. (5.29)

For unphysical GKP states, S(∆=0,σ0)
2

= 1√
2
, which saturates the slope value of 1√

2
provided by

the striaght line in the GK shift. Also, the mean square error for the slope estimation is the

width of the rods in figure 5.4. This works out to be:

MSE[S(∆, σ0)] =
1√

∆−2 + σ−2
0

(5.30)

To optimise the shift function more, when the rounding function outputs 3, take the output -1

instead. This will minimise the overall magnitude of the shift function and hence preserves the

overall 1/κ width of the physical state more. With such a rounding function we shall call it

round*. We define the BE shift function fBE as:
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fBE(xm,∆, σ0) =

periodically increasing term︷ ︸︸ ︷√
π

2
rem∗

[
round

{ xm√
π/2

}
, 4
]

−SAW(xm,
S(∆, σ0)

2
,

√
π

2
)︸ ︷︷ ︸

sawtooth term

.

(5.31)

The sawtooth term in equation 5.31 aims to counteract the u
2
− xs term in the argument of the

Lβ.

5.3.5 q-SE & p-SE combined Bayesian estimator shift

Theorem 5.3. The probability distribution of the measurement results xm, pm after the q-SE

followed by p-SE given an initial arbitary shift of u, v in the q,p quadrature is

P(xm, pm|u, v) ∝ ψ
(∆,κ)
+ (

√
2xm − u) · ψ(2∆,κ/2)

+ (
√
2pm − v) . (5.32)

Proof. Similar to the proof of theorem 5.5. We shall illustrate the sketch of the proof here.

The probability distribution can be computed from
∑

α Lβ, with Lβ from equation 5.17 to 5.20,

Figure 5.5: This is a false colour plot of S(∆, σ0) over all possible σ0 ∈ [0, 1] and ∆ ∈ [0, 1√
π
≈

0.56]. At ∆ = 0, for all values of σ0, S(∆, σ0) →
√
2 ≈ 1.414... .
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with β ∈ {0, 1,−1
2
, 1
2
}.

P(xm, pm|u, v) ∝
∫
x∈R

∣∣∣∑
β

Lβ

∣∣∣2 dx
Using the following approximation again for ∆ ≪ 1√

π
:

∫
x∈R

∣∣∣∑
β

Lβ

∣∣∣2 dx ≈
∫
x∈R

∑
β

∣∣∣Lβ∣∣∣2 dx ,

Since ψ∆⃗
0 (z) and ψ

∆⃗
1 (z) are approximately orthogonal, we can ignore terms in the expansion of∣∣∣Lβ∣∣∣2 that involves ψ∆⃗

0 (u/2− (x− xs)) · ψ∆⃗
1 (u/2− (x− xs)) as they integrate to approximated

zero. Collecting terms, use the fact that |a0|2 + |a1|2 = 1 and the identities from equation 5.22

and 5.23, we can arrive at:

P(xm, pm|u, v) ∝

ψ
(∆,κ)
0 (

√
2xm − u)

[ ∣∣∣ψ̃∆⃗
0

( pm√
2
− v

2

)∣∣∣2 + ∣∣∣ψ̃∆⃗
1

( pm√
2
− v

2

)∣∣∣2]
+

ψ
(∆,κ)
1 (

√
2xm − u)

[ ∣∣∣ψ̃∆⃗
1
2

( pm√
2
− v

2

)∣∣∣2 + ∣∣∣ψ̃∆⃗
− 1

2

( pm√
2
− v

2

)∣∣∣2]
(5.33)

Notice that:

∣∣∣ψ̃∆⃗
0

( pm√
2
− v

2

)∣∣∣2 = ∣∣∣ψ̃∆⃗
1

( pm√
2
− v

2

)∣∣∣2
=
∣∣∣ψ̃∆⃗

1
2

( pm√
2
− v

2

)∣∣∣2 = ∣∣∣ψ̃∆⃗
− 1

2

( pm√
2
− v

2

)∣∣∣2

⇒ P(xm, pm|u, v) ∝ ψ
(∆,κ)
+ (

√
2xm − u)

∣∣∣ψ̃∆⃗
0

( pm√
2
− v

2

)∣∣∣2 .

With reindexing,
∣∣∣ψ̃∆⃗

0

(
pm√
2
− v

2

)∣∣∣2 = ψ
(2∆,κ/2)
+ (

√
2pm − v) .

⇒ P(xm, pm|u, v) ∝ ψ
(∆,κ)
+ (

√
2xm − u) · ψ(2∆,κ/2)

+ (
√
2pm − v)
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Theorem 5.6 implies:

P(xm, pm|u, v) = P(xm|u) · P(pm|v) , (5.34)

with,

P(pm|v) = ψ
(2∆,κ/2)
+ (

√
2pm − v) (5.35)

P(pm|v) differs from P(xm|u) by the transformation of ∆ → 2∆, κ→ κ/2, xm → pm and u→ v.

Since u, v are both a Gaussian random variable with width σ0 (because u, v represents the single

error realisation of the random shift in light of the Gaussian random displacement channel),

hence, we can quickly write down the optimal slope for the p-SE step by using the same shfting

function as the q-SE stage but substituting ∆ → 2∆.

5.4 Multi-step decoding problem

We aim to derive a Bayesian estimator for multiple steps (M steps) of Gaussian q- and p-

quadratures shift errors (width σ0) followed by GKP syndrome extraction under the assumption:

σ0 ≪ ∆ ≪ 1. This translates to looking at the behaviour of our estimator for small Gaussian

errors with good GKP states. Our intuition of GKP states tells us that under small errors

and SE, at least in the single shot evolution of the wavefunction, we only need to keep track

of a reference point of the GKP wavefunction w.r.t the origin in phase space to perform the

correction. We present another method of understanding details for a single round of syndrome

extraction (SE) and error estimation. This involves tracking the additional terms obtains in

the wavefunction via the syndrome extraction as displacements shifts. This will be extremely

useful in the understanding of the multi-step syndrome extraction and decoding problem.
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5.4.1 Overview of multi-step results [1]

Following sequential q-SE and p-SE circuits, the qubit has transformed according to

eivxQ∆⃗(x− u)
q-,p-−−→
SE

eiθ(pm,v)xQ∆⃗
(
x− θ(xm, u)

)
(5.36)

with a high fidelity (see 5.5.3) when the displacement is small. Here, θ(xm, u) is given by

θ(xm, u) =
u

2
− f ∗

step(xm) (5.37)

where f ∗
step(xm) is the modified modular division by 4 function defined in 5.7, and θ(pm, v) is

defined similarly. These quantities can be interpreted as the total displacement experienced by

the qubit: an unknown, random part u
2
remaining from the error channel and a known part

f ∗
step(xm) introduced by the measurement.

While an error correcting procedure could involve estimation of the total displacement θ(xm, u)

and immediately applying a corrective displacement based on this estimate, we note that al-

lowing an uncorrected qubit to undergo a further syndrome extraction process only results in

another displaced version of the input qubit. With this in mind, our decoder uses measurement

information from multiple rounds of errors and syndrome extraction without intermediate cor-

rection to estimate a single corrective displacement to apply. This memory-assisted approach is

summarised in Fig. 5.6, alongside a contrasting memoryless approach which applies a correction

after each syndrome extraction and then forgets about it.

We now proceed by extending our analysis from one round to multiple rounds of syndrome ex-

traction. Say that after the hth round of syndrome extraction we have histories of q-quadrature

syndrome measurements x⃗m = (x
(1)
m , . . . , x

(h)
m ) and displacement errors u⃗ = (u1, . . . , uh), and

similarly p-quadrature values p⃗m = (p
(1)
m , . . . , p

(h)
m ) and v⃗ = (v1, . . . , vh) for the p-quadrature. If

each displacement error is small, then the input qubit is transformed according to

Q∆⃗(x) −→ eiθh(p⃗m,v⃗)xQ∆⃗
(
x− θh(x⃗m, u⃗)

)
. (5.38)
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with high fidelity (again, see 5.5.3). Focusing on the q-quadrature: the total shift in q is given

by

θh
(
x⃗m, u⃗

)
=

h∑
j=1

[ uj
2h−j+1

]
−

h∑
k=1

[f ∗
step

(
X (k)

m (x⃗m)
)

2h−k

]
= θerrh (u⃗)− θsteph (x⃗m) ,

(5.39)

where X (k)
m can be interpreted as the measurement outcome x

(k)
m transformed to account for

previous measurement-induced shifts, and is given explicitly by

X (h)
m (x⃗m) = x(h)m +

1√
2

k−1∑
j=1

[f ∗
step

(
X (j)

m (x⃗m)
)

2k−j−1

]
(5.40)

for h > 1, and X (1)
m = x

(1)
m . In analogy with the single round case above, we have an unknown

contribution to the total displacement θerrh (u⃗) together with a known, measurement-induced

contribution θsteph (x⃗m).

Without active corrective shifts at each round, the distance a GKP qubit drifts in phase space af-

ter h rounds is bounded above as:
∣∣∣θ(x⃗m, u⃗)∣∣∣ < 2

√
π (1−2−h)+|X|, whereX ∼ N

(
0, σ2

0
(1−4−h)

3

)
is a Gaussian random variable with mean 0 and variance σ2

0
(1−4−h)

3
(see 5.5 for proof). It follows

that the expected value for total displacement error in each quadrature after any number of

syndrome extraction rounds is bounded above by approximately 2
√
π.

In Fig. 5.6a, we identify a practical simplification to the combined q-SE, p-SE circuit that moves

all squeezing operations offline onto auxiliary state preparation. To do so, we use a modified

p-SE auxiliary state, Ŝ†√
2

∣∣∣ψ∆⃗′
0

〉
, and reinterpret the p-quadrature measurement (pm →

√
2pm)

(see 5.5.8 for proof).

5.4.2 Decoder (Bayesian estimation)

We now show how to use the q- and p-SE measurement outcomes to estimate the final displace-

ments when the loss channel is well characterised (i.e. σ0 is known). For convenience, we set
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(a)

(b)

(c)

Figure 5.6: a) The standard q- and p-quadrature syndrome extraction circuits (left), which
feature squeezing operations on the qubit mode, can be represented by a measurement de-
pendent Kraus operator K̂ (centre), and recompiled such that squeezing is applied to the p-
auxiliary state, with a reinterpreted p-quadrature measurement (right). b) Memoryless error
correction—syndrome measurement results are used to inform a corrective displacement at
each round, and no information is carried forward to future rounds. c) Memory-assisted error
correction—no active corrective shift is performed after each syndrome measurement. Instead,
all the syndrome measurement results are used together to decode and perform a single correc-
tive displacement after M rounds.
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κ = ∆ in this section, although it is straightforward to extend the results to the more general

case.

In the case of a single round of q-SE and p-SE application, the probability of measuring xm given

a shift error u can be approximated as P(xm|u) ∝ ψ∆⃗
+ (

√
2xm−u), which we note is independent

of both v and pm. By using a prior probability density function (PDF) corresponding to our

characterised error channel and applying Bayes’ theorem, we obtain a posterior PDF

P(u|xm) ∝ ψ∆⃗
+ (

√
2xm − u)e

− u2

2σ2
0 . (5.41)

Assuming that ∆⃗ and σ0 are both small compared to
√
π, this posterior is well approximated

by

P(u|xm) ≈ N

√
2σ2

0xm −
√
πσ2

0

⌊√
2xm√
π

⌉
∆2 + σ2

0

,
∆2σ2

0

∆2 + σ2
0

 (5.42)

and we take our estimate ũ of the shift error u to be the mean of this Gaussian. Explicitly,

ũ =

√
2σ2

0xm −
√
πσ2

0

⌊√
2xm√
π

⌉
∆2 + σ2

0

, (5.43)

which is a good approximation of the minimum mean square error (MMSE) estimator for u. The

estimate for the displacement required to counteract the acquired error is therefore θ(xm, ũ),

from combining equations (5.37) and (5.43).

The corresponding p-quadrature conditional probabilities can be obtained by substituting

(u, xm,∆) → (v, pm, 2∆), where the asymmetry between the q- and p-quadrature originates

from the differing widths of the auxiliary states.

For multiple rounds, the estimation of the cumulative unknown displacement caused by the

vector u⃗ is achieved in the same spirit as estimating the parameter u in the single round case,

except with a messier-looking (although, still efficiently computable) estimator.

The probability of obtaining the q-quadrature measurement outcome x
(h)
m in the hth round,

given the measurement values obtained in the previous (h− 1) rounds and displacement shifts
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in all h rounds, is P(x(h)m |u1, ..., uh, x(1)m , ..., x
(h−1)
m ) ∝ ψ∆⃗

+ (
√
2x

(h)
m − Uh). Here, Uh is the shift

contributed in the hth round by the error channel, transformed to account for all previous steps

(see 5.7 for an explicit definition). We now apply Bayes’ theorem with Gaussian prior PDFs

for the error in each of M rounds, resulting in the posterior PDF

P(q)
M

(
u⃗
∣∣x⃗m) ∝ M∏

h=1

ψ∆⃗
+

(√
2x(h)m − Uh

)
· Gσ0 (uh) , (5.44)

Assuming, again, that σ0 and ∆ are small compared to
√
π, we show that the posterior

P(q)
M (u⃗|x⃗m) is well approximated by a multivariate Gaussian N (⃗̃u,Σ) with mean vector ⃗̃u and

covariance matrix Σ, in analogy with the single round case. The quantity that we actually wish

to estimate is θerrM (u⃗) from equation (5.39), which is a linear combination of elements from u⃗.

The corresponding PDF is given by

P
(
θerrM (u⃗)

∣∣x⃗m) ≈ N
(
a⃗ · ⃗̃u , a⃗T · Σ · a⃗

)
, (5.45)

with ak = 2−(M+1−k) and

ũk =
(σ0
∆

)2{
2k

M∑
j=1

Fj
2j

−
(σ0
∆

)2 M∑
h=1

[( M∑
n=mk,h

2k+h

4n

)( M∑
j=h

Fj
2j

)]
2h

}
,

(5.46)

to order
(
σ0
∆

)4
, where mk,h = max{k, h} and Fh =

√
2X (h)

m −
√
π
⌊√

2X (h)
m /

√
π
⌉
.

As in the single round case, the posterior mean is used as the MMSE estimator for the displace-

ment error. We see that the posterior is well approximated by a Gaussian with a mean a⃗ · ⃗̃u

which can be calculated directly from syndrome measurement results. An explicit approach to

this calculation is presented as an algorithm in 5.5.7.

Also of interest is the variance of this Gaussian, a⃗T ·Σ · a⃗, as it corresponds to the uncertainty

in our estimation. In 5.5 we show that, if σ0
∆
< 1

2
(which is true for all M > 1), the variance
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converges to

Vq(M) =
σ2
0

3

[
(1− 4−M)

+
(σ0
∆

)24
9

(
4−2M + 3(1 + 2M)4−M − 4

)]
,

(5.47)

neglecting terms within the bracket of order
(
σ0
∆

)4
and higher. Note that Vq → σ2

0

3
very quickly

as M grows, given that σ0
∆

≪ 1.

5.4.3 Single-Round Error Estimation

Here we present further details for a single round of syndrome extraction (SE) and error esti-

mation.

5.4.4 Wavefunction after the q-SE circuit

First, we show that the state after the q-SE circuit is approximated by simple transformation

of its initial wavefunction.

Theorem 5.4. A q-SE circuit with measurement result xm approximately transforms an input

qubit wavefunction according to

Q∆⃗
α (x− u) → Q∆⃗′

s(xm)+α
2

(
x− u

2

)
.

Proof. The two-mode input to the q-SE circuit has the wavefunction

Φin(x, y) = Q∆⃗
α (x− u) · ψ∆⃗

+ (y), (5.48)

where the qubit Q∆⃗
α = a0ψ

∆⃗
0+α + a1ψ

∆⃗
1+α has an error shift u and relative peak shift α.
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After the beam-splitter and squeezer of the q-SE circuit, the wavefunction is

Φ(x, y) = Q∆⃗
α (x+

y√
2
− u) · ψ∆⃗

+ (−x+
y√
2
), (5.49)

which may be expanded as

Φ(x, y) =
∑
µ,n,m

aµNµG 1
κ
[(2n+ µ+ α)

√
π ]

·G∆[x− u+
y√
2
− (2n+ µ+ α)

√
π ]

·G 1
κ
(m

√
π ) · G∆(−x+

y√
2
−m

√
π ),

(5.50)

where the sums are for integer n,m and µ ∈ {0, 1}.

We now identify that this may be written in terms of un-rotated GKP wavefunctions. To do

so, we regroup Gaussian functions of the same width by completing the square in the exponent,

resulting in

Φ(x, y) ∝
∑
β

ψ∆⃗′

−β+α
2

( y√
2
− u

2

)
·
(
a0ψ

∆⃗′

β+α
2

(
x− u

2

)
+ a1ψ

∆⃗′

1+β+α
2

(
x− u

2

)) (5.51)

where the sum is over β ∈ {−1
2
, 0, 1

2
, 1}. This wavefunction is a superposition of two-mode

GKP states with relative peaks shifts differing by β. Note also that the initial error u is now

shared equally by the modes. To simplify the expression, we have used the approximation that

the normalization constants are equal.

For a measurement result xm, the output wavefunction is proportional to Φ(x, xm). For a

particular xm, one term from equation (5.51) is much larger than the others, since the weighting

functions are positive-valued and nearly orthogonal if ∆ is sufficiently smaller than
√
π/2. The

dominant term is given by β = s(xm − u√
2
− α

√
π
2
), and therefore we approximate that the

output state as that given by the most likely case u = 0.

The average fidelity of this approximation is given by the average value of |ψ∆⃗′

s(xm)+α
2
|2 taken

over the joint probability distribution P(xm, u) = P(xm|u)P(u) (these distributions are discussed
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below).

A similar result is obtained for the p-quadrature syndrome extraction. In this case, however, the

widths undergo the inverse transformation according to (∆, κ) → (∆
√
2, κ/

√
2). Appropriately

designed q-SE and p-SE steps can therefore be used sequentially to prevent any overall change

in the widths. In particular, we begin with a q-SE step using a qubit and auxiliary state of

width (∆, κ). The following p-SE step then uses an auxiliary state of width (∆/
√
2, κ/

√
2),

and the final state from this has the same width as the initial one. We note that the effect

of width reduction through syndrome extraction cannot be observed in the ∆ = 0 unphysical

states calculation.

5.4.5 Wavefunction after error, q-SE and p-SE

We now extend the above calculation to include a subsequent p-SE step. In particular, we will

show the transformation of the input state is well approximated by

Q∆⃗(x− u)eivx → Q∆⃗
(
x− θ(xm, u)

)
eiθ(pm,v)x (5.52)

where the shift function θ is defined as

θ(y, b) = b/2− f ∗
step(y). (5.53)

The two-mode state after the p-SE beam-splitter and squeezer is given by

Φ(x, z) = e
i(x

2
+ z√

2
)v · ψ∆⃗′

0

(x
2
− z√

2

)
·Q∆⃗′

(x
2
+

z√
2
− u

2
+ f ∗

step(xm − u/
√
2)
)
,

(5.54)

where the quadrature z corresponds to the mode to be measured. This p-quadrature measure-
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ment is achieved using the Fourier transform of the two-mode wavefunction

F
{
Φ(x, z)

}
= Fy→p− pm√

2

{
ψ∆⃗′
0 (y)

}
· Fw→p+ pm√

2

{
eiwvQ∆⃗′(

w − u

2
+ f ∗

step(xm − u/
√
2)
)}
.

(5.55)

where the transform is taken for variables (x, z) → (p, pm), and on the right hand side we use

the change of variables w = x
2
+ z√

2
and y = x

2
− z√

2
. The shift property of the transform yields

Φ̃(p, pm) =ψ̃
∆⃗′
0 (p− pm√

2
)Q̃∆⃗′

0 (p+
pm√
2
− v)

· e−ip(u/2−f∗step(xm−u/
√
2))

(5.56)

where we denote Fourier transforms as g̃ = F{g}.

Since the finite-energy GKP states are approximate eigenstates of the Fourier transform, the

first two terms are similar to the product of two rotated GKP states, treated above. Using

similar methods, we find the approximate relationship

ψ̃∆⃗′
0

(
p− pm√

2

)
· Q̃∆⃗′

(
p+

pm√
2
− v
)

∝ Q̃∆⃗
(
p− v

2
+ f ∗

step(pm − v/
√
2)
)
.

(5.57)

We now simplify the step function by noting that f ∗
step(pm − v/

√
2) ≈ f ∗

step(pm). The success

probability of this approximation will be discussed later. Finally, we take the inverse Fourier

transform to find the desired result given by equation (5.52).

5.4.6 Bayesian estimation of the q-quadrature error

In order to estimate the unknown shift error, we wish to determine its posterior probability

distribution. To do so, we use the prior probability distribution, specified by the error model,

and a likelihood function P(xm|u) that we now calculate from the wavefunction.

Theorem 5.5. The probability of measurement result xm from a q-SE circuit with initial state
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ψ∆⃗
α (x− u) is

P(xm|u) ∝ ψ∆⃗
+ (

√
2xm − u).

Proof. We start with the two-mode wavefunction given in equation (5.51). The probability for

measurement result xm is

P(xm|u) =
∫
x∈R

∣∣Φ(x, xm)∣∣2dx
≈
∑
β

∣∣∣ψ∆⃗′

β

( xm√
2
− u

2

)∣∣∣2, (5.58)

where in the second step we neglect overlap of the GKP wavefunctions to approximate |
∑
ψβ|2 ≈∑

|ψβ|2.

An alternate expression is obtained from the relationships

∑
β∈{0,1}

∣∣∣ψ∆⃗′

β

( xm√
2
− u

2

)∣∣∣2 ∝ ψ∆⃗
0 (0)ψ

∆⃗
0

(√
2xm − u

)
∑

β∈{± 1
2
}

∣∣∣ψ∆⃗′

β

( xm√
2
− u

2

)∣∣∣2 ∝ ψ∆⃗
0 (0)ψ

∆⃗
1

(√
2xm − u

)
,

(5.59)

which may be shown by re-indexing akin to the derivation of equation (5.57). Addition of these

two equations yields the desired result.

Using Bayes’ theorem, the posterior probability distribution is

P(u|xm) ∝ P(xm|u)P(u)

∝ ψ∆⃗
+ (

√
2xm − u)e

− u2

2σ2
0 ,

(5.60)

where in the last step we have explicitly written the Gaussian error model. The unknown shift

can now be estimated from equation (5.60) using an appropriate estimator, such as the mean

of P(u|xm). For a given xm, along with ∆ ≪
√
π and u≪ 1, P(u|xm) can be well approximated
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by a normal distribution

P(u|xm) ≈ N

√
2σ2

0xm −
√
πσ2

0

⌊√
2xm√
π

⌉
∆2 + σ2

0

,
∆2σ2

0

∆2 + σ2
0

 . (5.61)

The approximation of the posterior as a normal distribution given reasonable parameter choices

is an important step used below in multi-round calculations.

5.4.7 Bayesian estimation of q- and p-quadrature error

We now expand on the previous section to estimate an unknown shift in both quadratures.

Theorem 5.6. The probability of measurement results xm and pm from sequential q-SE and

p-SE circuits with an initial state eivxψ∆⃗
α (x− u) is

P(xm, pm|u, v) ∝ ψ∆⃗
+ (

√
2xm − u) · ψ(2∆,κ/2)

+ (
√
2pm − v) .

Proof. Starting from the wavefunction in equation (5.51), the probability of pm is

P(pm|u, v, xm) =
∫
p∈R

∣∣Φ̃(p, pm)∣∣2 dp
∝ ψ

(2∆,κ/2)
+ (

√
2pm − v),

(5.62)

where the second step follows by analogy to equations (5.49-5.51) and (5.62-5.59). The desired

result follows from the relationship of conditional probabilities P(xm, pm|u, v) = P(xm|u, v)P(pm|u, v, xm).

Note that P(pm|u, v, xm) is independent of xm and u. We can therefore write P(xm, pm|u, v) =

P(xm|u)P(pm|v) where the P(pm|v) differs from P(xm|u) according to the transformation ∆ →

2∆, κ→ κ/2.
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5.5 Multi-Round Error Estimation

We now considerM rounds of error followed by q-SE and p-SE circuits, with an aim to estimate

the shift error on the final state.

Wavefunction after multiple rounds

As shown for the single-round scenario, the wavefunction after each round is a shifted version

of the input. An expression for the shift after each round is calculated iteratively. After round

h, with a history of measurements x⃗m = (x
(1)
m , . . . , x

(h)
m ) and shift errors u⃗ = (u1, . . . , uh), the

total q-shift is

θh
(
x⃗m, u⃗

)
=

h∑
k=1

1

2h−k
θ
(
Xk(x⃗m), uk

)
, (5.63)

where θ is defined in equation (5.53) and

X (k)
m (x⃗m) = x(k)m +

1√
2

k−1∑
j=1

[f ∗
step

(
X (j)

m (x⃗m)
)

2k−j−1

]
(5.64)

for h > 1, and X (1)
m = x

(1)
m . The parameter X (k)

m can be interpreted as the measurement outcome

x
(k)
m transformed to account for previous measurement-induced shifts.

Equation (5.63) can also be expanded as

θh
(
x⃗m, u⃗

)
=

h∑
j=1

[ uk
2h−j+1

]
−

h∑
k=1

[f ∗
step

(
X (k)

m (x⃗m)
)

2h−k

]
= θerrh (u⃗)− θsteph (x⃗m),

(5.65)

which identifies the total shift as comprised of a known measurement-induced shift θsteph (x⃗m)

and the accumulation of unknown error θerrh (u⃗). The aim of our error estimation afterM rounds

is to use x⃗m to estimate θerrM (u⃗).
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An analogous approach to the p-shifts leads to the wavefunction

eiθh(p⃗m,v⃗)xQ∆⃗
(
x− θh(x⃗m, u⃗)

)
(5.66)

after h rounds, for an initial qubit state Q∆⃗(x). This is assuming that fstep is independent

of uk, which is true if f ∗
step(xm) = f ∗

step(xm − u/
√
2). We shall discuss the error of such an

approximation in a later section.

5.5.1 Total qubit drift

Without active corrective shift at each round of QEC, the magnitude of the total drift of the

state in phase space can be bounded. Using the fact that |f ∗
step| ≤

√
π and taking the variance

of each the error shifts to be σ2
0, an application of the triangle inequality gives:

|θ(x(h)m ,Uh)| , |θ(p(h)m ,Vh)| ≤ 2
√
π(1− 2−h)

+
∣∣∣N(0, σ2

0

(1− 4−h)

3

)∣∣∣ , (5.67)

where N (µ, V ) is a Gaussian random variable with mean µ and Variance V . The quantities

1−4−h and 1−2−h converge very quickly to 1 as h increases, meaning that for multiple rounds

we have

|θ(x(h)m ,Uh)| , |θ(p(h)m ,Vh)| ≤ 2
√
π +

∣∣∣N(0, σ2
0

3

)∣∣∣ . (5.68)

This means that even without active error corrective shift after each round of syndrome ex-

traction, the GKP qubit is expected to drift by a maximum of 2
√
π in phase space along with

some Gaussian random variable with variance σ2
0/3 in the worst case scenario. Consequently,

the energy of the physical system is not divergent if we extend the QEC for many rounds, if

errors are sufficiently small at each round.
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5.5.2 Memory-assisted decoder

The probability distributions for the x and p measurement values obtained in the hth round,

given all the previous measurement results and displacement shifts, are given by expressions

similar in spirit to that in Theorem 5.5:

P(x(h)m |u1, ..., uh, x(1)m , ..., x(h−1)
m ) ∝ ψ

(∆,∆)
+ (

√
2x(h)m − Uh)

P(p(h)m |v1, ..., vh, p(1)m , ..., p(h−1)
m ) ∝ ψ

(2∆,∆/2)
+ (

√
2p(h)m − Vh).

(5.69)

Using Bayes’ Theorem to flip these distributions, for M rounds we obtain

PM(u⃗, v⃗|x⃗m, p⃗m) = P(q)
M (u⃗|x⃗m) · P(p)

M (v⃗|p⃗m)

P(q)
M (u⃗|x⃗m) ∝

M∏
h=1

ψ∆⃗
+ (

√
2x(h)m − Uh) · Gσ0(uh)

P(p)
M (v⃗|p⃗m) ∝

M∏
h=1

ψ
(2∆,∆/2)
+ (

√
2p(h)m − Vh) · Gσ0(vh).

(5.70)

We can see that the q- and p-quadratures equations have the similar forms and can be un-

changeable (q ↔ p) if u ↔ v, xm ↔ pm and (∆, κ) ↔ (2∆, κ/2), so we will focus on the

q-quadature version for now. The PDF for u⃗ is well approximated by a multivariate Gaussian

distribution, a step known as Laplace’s approximation in statistics, which we write as

P(q)
M (u⃗|x⃗m) ≈ N (⃗̃u,Σ) , (5.71)

for mean vector ⃗̃u and covariance matrix Σ.

We derive the inverse of the covariance matrix, Σ−1, exactly by completing the square of the

exponents of the Gaussians in equation (5.71):

(Σ−1)α,β =
(δα,β
σ2
0

+
1

∆2

M∑
h=mα,β

1

4h2−(α+β)

)
,

mα,β = max {α, β} .

(5.72)
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To derive ⃗̃u via completing the square, we need to invert the matrix Σ−1. It’s generally hard

to invert a M ×M symmetric matrix for an arbitrary M, but we can approximate the covari-

ance matrix via a Neumann series expansion of the matrices, under the assumption of small

displacements. We find the covariance matrix has components

Σα,β ≈ σ2
0 δα,β −

σ4
0

∆2

M∑
h=mα,β

1

4h2−(α+β)
+O

( σ6
0

∆4

)
, (5.73)

and note that this Neumann series converges if σ0
∆
< 1

2
(which works for all M). By ignoring

from order O
(
σ6
0

∆6

)
upwards in the expansion, we compute

ũk =
(σ0
∆

)2{
2k

M∑
j=1

Fj
2j

−
(σ0
∆

)2 M∑
h=1

[( M∑
n=mk,h

2k+h

4n

)( M∑
j=h

Fj
2j

)]
2h

}
,

(5.74)

where mk,h = max{k, h} and Fh =
√
2X (h)

m −
√
π
⌊√

2X (h)
m /

√
π
⌉
, which is equation (5.46) in the

main text.

Now that we have characterised the multivariate Gaussian noise model (multivariate due to

many rounds) by its covariance matrix, we wish to estimate the random part of the total

displacement after M rounds, given by
∑M

k=1 uk/2
M−k+1. The corresponding PDF is

P
( M∑
k=1

uk
2M−k+1

∣∣∣x⃗m) = N (⃗a · ⃗̃u , a⃗T · Σ · a⃗) , (5.75)

with ak = 2−(M+1−k).

We use the mean of this posterior distribution as the MMSE estimator, with uncertainty given

by the variance

Vq = Var
( M∑
k=1

uk
2M−k+1

)
= a⃗T · Σ · a⃗. (5.76)
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Neglecting terms of order
( σ6

0

∆4

)
and higher, we compute

Vq(M) =
σ2
0

3

[
(1− 4−M)+(2σ0

3∆

)2
(4−2M + 3(1 + 2M)4−M − 4)

]
.

(5.77)

We can see that Vq → σ2
0

3
, very quickly as M grows. Note that using measurement results from

all rounds of syndrome measurements allows the error to be estimated more precisely than is

achievable otherwise.

5.5.3 Approximations and qubit fidelity

In our calculations, two significant approximations are made in expressing the qubit wavefunc-

tion emerging from a syndrome extraction circuit as a displacement of the incoming wave-

function. For the single-round case, these were discussed following equation (5.51). First, in

identifying the dominant GKP-like term in the resulting wavefunction, we approximate that

f ∗
step(xm − u/

√
2) = f ∗

step(xm). Second, we keep only the dominant term in the sum of equa-

tion (5.51). Each of these approximations reduce the fidelity of our description of the final

state.

5.5.4 Tracking error

Unlikely measurement outcomes and unusually large displacement errors can cause an incorrect

identification of the dominant GKP-like term, which we refer to as a tracking error. In this

section, we estimate the probability that our description of the state after one or multiple

rounds of syndrome extraction, as given in equation 5.66, does not contain a tracking error.
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Single round

For a single round, the joint probability density function of xm and u is

P(u, xm) = C
∑
n∈Z

G1/∆(n
√
π)G∆(

√
2xm − u− n

√
π)Gσ0(u) . (5.78)

No tracking error occurs if xm and u are in the region S for which |f ∗
step(xm)−f ∗

step(xm−u/
√
2)| =

0.

We therefore define the success probability for one round and error width σ0 to be

P succ
track(1, σ0) =

∫
S

P(u, xm)dS , (5.79)

for which the integration region could be re-written as xm ∈ R and u ∈ T , where T = [−
√
π, 0]+

√
2mod(x −

√
π
2
/2,
√

π
2
). The normalisation constant C = [

√
2πσ0∆Θ3(0, e

−π∆2/2)]−1, where

Θ3 is the Jacobi-Theta function of the third kind.

For our example in the main text where (∆, σ2
0) = (0.2182, 0.0005), we calculate 1−P succ

track(1, σ) ≈

1× 10−5.

Multiple rounds

For multiple rounds, the joint probability density function of x⃗m and u⃗ is

P(u⃗, x⃗m) =
M∏
h=1

ψ∆⃗
+ (

√
2x(h)m − Uh) · Gσ0(uh) (5.80)

Similar to the single round case, the probability for M successful rounds is given by

P succ
track(M,σ0) =

∫
L

P(u⃗, x⃗m)dL , (5.81)

where L is the region defined by f ∗
step(X

(j)
m ) = f ∗

step(x
(j)
m − Uj/

√
2), ∀1 < j < M .
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This calculation is simplified by changing variables to X⃗ and U⃗, where Uh =
∑
k=1

uk
2h−k

for h > 1

and U1 = u1, which leads to

P succ
track(M,σ0) >

∫
L

M∏
h=2

[
ψ∆⃗
+ (

√
2X (h)

m − Uh) ·G 2σ0√
5

(Uh)
]

· ψ∆⃗
+ (

√
2X (1)

m − U1) · Gσ0(Uh) · dMX⃗ dM U⃗ .

(5.82)

Note the multidimensional integral is now separated into a product of single integrals over the

integration regions f ∗
step(X

(j)
m ) = f ∗

step(X
(j)
m − Uj/

√
2) for all 2 < j < M . A convenient bound

lower bound can be written in terms of single-round probabilities

P succ
track(M,σ0) >

[
P succ
track

(
1,

2σ0√
5

)]M
. (5.83)

For (∆, σ2
0) = (0.2182, 0.0005) and M = 200, we calculate 1− P succ

track(M,σ0) ≈ 3× 10−3.

5.5.5 Truncation error

The approximation that only the dominant term in the state survives at each round of syndrome

extraction leads to a probability that our decoder fails. We use an approximation of this

probability to bound the long term fidelity of a state recovered using information from the

memory-assisted decoder. In particular, we approximate the state after each round of syndrome

extraction by decohering the dominant term with respect to the rest of the state: pρ̂dom.+(1−

p)ρ̂junk, where p is the phenomenological success probability per round, ρ̂dom. is the dominant

term we keep and ρ̂junk is the state we throw away in the truncation.

Single round

The wavefunction emerging from single syndrome extraction circuit, described by equation 5.51,

can be expressed in ket notation as

|Φ(x|u, xm)⟩ = R(u, xm)
∑
γ

ψ∆⃗′

γ

( xm√
2
− u

2

) ∣∣∣Q∆⃗′

γ

〉
, (5.84)
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where R(u, xm) is a normalisation constant. We note the dominant term as
∣∣∣Q∆⃗

β

〉
and calculate

its amplitude

A(β) = R(u, xm)
∑
γ

ψ∆⃗′

γ

( xm√
2
− u

2

)〈
Q∆⃗
β |Q∆⃗′

γ

∣∣∣Q∆⃗
β |Q∆⃗′

γ

〉
. (5.85)

The average success of the truncated description is given by

P succ
trunc(1, σ0) =

∫
all space

|A(β)|2P(u, xm) dudxm. (5.86)

For the example (∆, σ2
0) = (0.2182, 0.0005), we calculate 1− P succ

trunc(1, σ0) ≈ 5× 10−5.

Multiple rounds

Similarly, we estimate a success probability after M rounds as

P succ
trunc(M,σ0) =

M∏
h=1

∫ ∑
βh

|A(βh)|2Gσ0(uh)

· ψ∆⃗
+ (

√
2x(h)m − Uh) du⃗dx⃗m .

(5.87)

As in equation 5.83, we bound the multi-round probability in terms of the single-round expres-

sion

P succ
trunc(M,σ0) > (P succ

trunc(1, 2σ0/
√
5))M . (5.88)

For (∆, σ2
0) = (0.2182, 0.0005) and M = 200 we calculate 1− P succ

trunc(M,σ0) ≈ 1× 10−2.

5.5.6 Total error and state fidelity

To estimate a final qubit fidelity, as in the example shown in Fig. 5.8, we first calculate the

fidelity Fρ from the output state described by our Bayesian estimation procedure, following the

approach of Pantaleoni et al. [110]. We then assume that a tracking, truncation or syndrome
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error results in a complete depolarized qubit with probability upper-bounded by 1 − P succ
total. A

lower bound on the final qubit fidelity is therefore given by F = (Fρ − 1
2
)P succ + 1

2
.

5.5.7 Pseudocode for Error Estimation

After M rounds of syndrome extraction, as depicted in Fig. 5.6c, our results can be used to

estimated the random contribution of the total displacement error from measurement results

x⃗m and p⃗m. Algorithm 1 gives an explicit description of this calculation for the q-quadrature.

5.5.8 Offline Squeezing Derivation

A diagrammatic derivation of the offline squeezing circuit is shown in FIG. 5.7. Starting with the

Glancy-Knill syndrome extraction circuits, we recompile and re-interpret measurement results

to obtain a circuit in which the qubit state interacts only with 50:50 beamsplitters.

Algorithm 1 Estimation of the q-quadrature error

Initialise empty vectors X⃗m, F⃗ , ⃗̃u

for h = 1 to M do
Receive data x

(h)
m

Compute X (h)
m = x(h)m +

1√
2

h−1∑
k=1

f ∗
step(X

(k)
m )

2h−k−1

Compute Fh =
√
2X (h)

m −
√
π

⌊√
2X (h)

m√
π

⌉
Append X (h)

m to X⃗m and Fh to F⃗
end for

Compute total displacement
M∑
k=1

ũk
2M−k+1

where

ũk =
(σ0
∆

)2{
2k

M∑
j=1

Fj
2j

−
(σ0
∆

)2 M∑
h=1

[( M∑
n=mk,h

2k+h

4n

)( M∑
j=h

Fj
2j

)]
2h

}
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Figure 5.7: Diagrammatic derivation of the offline squeezing circuit. In a), we start with the
GK syndrome-extraction circuit with the corrective displacement removed. In b), we insert
an identity operator before the momentum measurement. In c), we rearrange the 50:50 beam-
splitter and squeezers in both modes. Finally in d), we achieve a simplified circuit in which
all squeezing is effectively moved to the momentum resource state and interpretation of the
momentum measurement result.
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5.5.9 Numerical results

The aim of a quantum error correction (QEC) procedure is to protect logical quantum in-

formation. Pantaleoni et al. recently reported a method to extract logical information from

approximate GKP states [110]. In essence, this reduces a density matrix function describing a

CV state to a qubit density matrix (ρ̂CV → ρ̂qubit). Using this, fidelities between qubit density

matrices at the input and output of an error correction procedure can be computed in order to

benchmark its performance.

Figure 5.8: Qubit fidelity achieved by the memory-assisted decoder (black), memoryless de-
coder (yellow) and no QEC (aqua). A Gaussian error channel of width σ2

0 = 0.0005 is applied
in each of the M rounds of syndrome extraction to a GKP-state with width ∆ = κ = 0.22.
The initial fidelity F0 = 0.981, and the inset plot shows how the black curve decreases over a
smaller range.

In Fig. 5.8 we present the results of numerical simulations for the specific case of a GKP code

with ∆ ≈ 0.22 (corresponding to an average number of bosons n̄ ≈ 10). For varying numbers
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of rounds of error channel application followed by syndrome extraction, we benchmark error

correction with our memory-assisted decoder against density matrix function simulations of the

memoryless decoder and no error correction at all.

We observe that error correction is improved by using our memory-assisted decoder instead of

the memoryless decoder — a finding similar to that of Vuillot et al. [111] and Noh et al. [48]

for Steane-based GKP syndrome extraction. Note that ∆ is large enough that the memoryless

decoder performs worse than no QEC once a few hundred rounds are considered. We also see

that the quality of the memory-assisted error corrected state is higher than the uncorrected

state, despite the state containing a low average number of bosons. Furthermore, the fidelity

of the input state is approximately preserved through application of the memory-assisted error

correction scheme.

5.6 Summary

We have described an explicit protocol for GKP quantum error correction that provides im-

proved protection from Gaussian displacement errors with reduced experimental requirements.

Notably, we have shown that GKP states undergo a total displacement (and therefore require

a correction) that is approximately bounded by 2
√
π in each quadrature, after multiple rounds

of error syndrome extraction. A memory-assisted decoder based on Bayesian estimation was

developed to specify the near-optimal corrective displacement, and numerical simulations have

shown that this results in significantly improved error correction compared to a memoryless

decoder when applied to an approximate GKP state with a small average number of bosons.

Recent experiments have demonstrated GKP states encoded in oscillations of trapped ions [49]

and microwave fields of superconducting resonators [50]. In the latter case, states are shown

with widths of (∆, κ) = (0.16, 0.32). As these values are similar to those we have studied here,

this suggests that our decoder can be exploited by near-term experiments as part of an error

correction procedure. Additionally, the Glancy-Knill syndrome extraction circuit at the core of

our method may be better suited to realistic devices than the more studied SUM gate syndrome
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extraction, since the latter requires more gates, and therefore more physical components, to

implement [112].

The error model that we have considered in this work also pertains to errors that arise in

teleporting a GKP state along a CV cluster state with finite squeezing [113]. In this situation,

the finite squeezing of the cluster state induces a displacement error. We anticipate that it

will therefore be possible to apply our error correction scheme between nodes on a CV cluster

state graph, and thereby lower the squeezing threshold for universal fault tolerant quantum

computation using CV cluster states and GKP state injection.

5.7 Useful formulae

Throughout our text, we use the following notations and conventions:

• Plank’s constant ℏ = 1.

• Displacement operator D̂(α) = e
αâ†−α∗â√

2 .

• Beamsplitter operator B̂ϕ = e−
ϕ
2
(â†b̂−âb̂†).

• Squeezing operator Ŝa = e
ln(a)

2
(â2−(â†)2).

• Gaussian function Gσ(x) = exp
(
− x2

2σ2

)
.

• N (µ, V ) is a Gaussian random vector with mean µ and covariance V .

• Rounding function ⌊x⌉ gives the nearest integer to x.

• Remainder function rem(n, 4) gives the remainder from dividing integer n by 4.

Additionally, we define:

• GKP wavefunctions widths ∆⃗ = (∆, κ) and ∆⃗′ = (∆/
√
2, κ

√
2).
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• Normalized GKP wavefunctions

ψ∆⃗
µ (x) = Nµ

∑
s∈Z

G 1
κ
[(2s+ µ)

√
π ]G∆[x− (2s+ µ)

√
π ]. (5.89)

• Step functions

s(x) =
1

2
rem

(⌊
x/
√
π/2
⌉
, 4
)
,

f ∗
step(x) =

√
π

2
rem∗

(⌊
x/
√
π/2
⌉
, 4
)
.

(5.90)

• The effective measurement results X (h)
m and effective errors Uh if passive error correction

is carried out:

X (h)
m = x(h)m +

1√
2

h−1∑
k=1

[f ∗
step(X

(k)
m )

2h−k−1

]
, ∀ h > 1

X (1)
m = x(1)m

Uh = uh +
h−1∑
k=1

[ uk
2h−k

−
f ∗
step(X

(k)
m )

2h−k−1

]
, ∀ h > 1

U1 = u1 .

(5.91)

• ∑
n,m∈Z2

f(n+m)g(n−m) =
1∑
l=0

∑
n,m∈Z2

f(2n+ l)g(2m+ l) , (5.92)

• SAW(x, a, b) is the sawtooth function with slope a and period b as shown in figure 5.9.
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Figure 5.9: This is a sawtooth function with a positive slope a and period b.



Chapter 6

Summary and outlook

This thesis consisted of two related pieces of work. Chapter 4 introduces and investigates several

different properties of the grid sensor and GKP state, providing motivations for the GKP state

as a suitable quantum state for optical quantum error detection. The main project in this

thesis covered the theoretical studies of an improved decoder for the GKP code in chapter 5,

expanding on the work done by Glancy and Knill. We introduced new methods to calculate the

Fock state, investigate the resource count of state generation and finally introduced a detailed

analysis of a memory decoder biased under the Gaussian random displacement error channel.

In chapter 4, we briefly assessed and showed that both the GKP and grid sensor states require

high number of single photons to generate. Coupled with their complicated Fock state ampli-

tude structure and the need to retain up to a 100 basis states to simulate in the Fock basis, they

are difficult to study both theoretically and experimentally. In general, a highly localised state

in one quadrature provides good inference of displacement errors in that particular quadrature.

However, this means the sensing state is highly de-localised in the conjugate quadrature, and

so inference is poor in this quadrature. On the other hand, de-localisation of the sensing state

in phase makes it resilient to errors. The grid sensor state combines both features, while being

roughly identical in both the q- and p-quadrature and is localised in packets periodically spread

out over phase space. This gives the grid sensor state error resilience and good performance in

sensing displacement errors in perpendicular directions in phase space. These ideas then moti-

121
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vated the investigation of the quantum Fisher information matrix of the displacement problem

using the grid sensor state - which was shown to be a diagonal matrix. This showed that

this state satisfies the Helstrom bound and is therefore optimal for estimating errors in both

directions in phase space. Further analysis is required to studying how this compares with the

squeezed state and which measurement POVMs are required to potentially achieve this.

In chapter 5, a memory-assisted decoder based on Bayesian estimation was developed to enhance

the corrective displacement needed for state recovery. Numerical simulations have shown that

this result significantly improved error correction compared to a memoryless decoder when ap-

plied to an approximate GKP state with a small average number of bosons. The results showed

that multiple rounds of error-syndrome extraction with Bayesian estimation offer enhanced

protection of GKP-encoded qubits over comparable single-round approaches. Furthermore the

expected total displacement error after multiple rounds of error followed by syndrome extrac-

tion is bounded by 2
√
π in phase space. It was demonstrated that the syndrome extraction

circuits could be recompiled in a way such that all squeezing operations are pushed into aux-

iliary state preparation offline. This reduced the circuit to beamsplitter transformations and

quadrature measurements, providing a realistic picture of a bosonic GKP qubit undergoing a

physical error channel in quantum optics.

We hope this work motivates further study into the relatively unexplored Glancy-Knill approach

to quantum error correction with the GKP code. We want to highlight that offline squeezing of

auxiliary states have been generalised to arbitrary n-mode GKP codes [114] using techniques

from the Heisenberg representation of quantum mechanics. Independently, authors from [115]

are actively trying to generalise the Glancy-Knill approach as a teleportation error correcting

scheme for the GKP code. Interestingly, the grid sensor state have been used as resource state in

a separate scheme of quantum error correcting [79]. Combining and comparing different schemes

of GKP error correcting biased for realistic noise models in a larger architecture of optical

quantum computing could lead to a fully error corrected fault tolerant quantum computer.
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