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Abstract

In this thesis, I explore the possibility of constructing machine-learning models of the interacting

density-density response function (DDRF) and quantities derived from it. Accurate models of

the DDRF are a crucial ingredient to enabling GW quasiparticle calculations of more complex

systems. Model DDRFs bypass the expensive calculation and inversion of the dielectric matrix,

which is the origin of the poor scaling of the GW method with the number of atoms.

The thesis is organized as follows:

• Chapter 2 systematically reviews common descriptors used for machine-learning physical

quantities. The key ideas behind the construction of such descriptors are discussed. First,

I introduce several descriptors that systematically incorporate symmetry transformations

that leave the target quantity invariant. These descriptors can be used for learning

quantities such as the ground-state energy, atomization energies and scalar polarizabilities.

Next, I discuss several descriptors and models that are equivariant under transformations

of the molecular structure. These descriptors are ideal for learning quantities which

transform in a defined way under the action of a transformation, such as vectors, tensors

and functions, including the DDRF.

• In Chapter 3, I introduce the key electronic structure methods employed throughout the

thesis. I start by introducing density functional theory, followed by a detailed introduction

to the GW method and the DDRF.

• In Chapter 4, I develop a machine-learning model of an invariant quantity derived from

the random phase approximation (RPA) DDRF: the scalar polarizability. In this chapter, I

calculate the DDRF of 110 hydrogenated silicon clusters. The results of these calculations

are then used to train a model of the scalar polarizability based on the SOAP descriptor [16].

The resulting model is then used to predict the scalar polarizability of clusters with up to

3000 silicon atoms while converging to the correct silicon scalar polarizability bulk limit.

The findings of this chapter indicate that the scalar polarizability - even though derived

from the non-local DDRF - can be accurately predicted from structural descriptors that

only encode the local environment of each atom. These results indicate that the response

of a non-metallic system to an external potential described by the DDRF may also be
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approximated as a sum of localized atomic contributions, which forms the motivation for

the following two chapters.

• In Chapter 5, I develop an approximation to the DDRF of the silicon clusters based on a

projection onto atom-centred auxiliary density-fitting basis sets. The results of this chapter

indicate that the plane-wave DDRF can be efficiently represented by a small localized basis,

thus significantly reducing the size of the DDRF. At the end of this section, I develop a

simple neural-network model of the DDRF in this localized basis, highlighting the necessity

for using an equivariant descriptor and motivating the next chapter’s developments.

• In Chapter 6, I develop a new approximation to the DDRF, which allows a decomposition

into atomic contributions. I further introduce the neighbourhood density matrix (NDM),

a non-local extension of the SOAP descriptor [16], which transforms under rotations in

the same way as the atomic contributions to the DDRF. The developed method is then

applied to the silicon clusters from the previous chapters. Using the NDM, I develop a

neural-network model capable of accurately predicting the atomic contributions to the

DDRF. These atomic contributions are transformed into a plane-wave basis and summed

to obtain the DDRF of a silicon cluster. The predicted DDRFs are then used in GW

calculations, which show that the model DDRFs accurately reproduce the quasiparticle

energy corrections from GW calculations, as obtained within the atomic decomposition

of the DDRF. This methodology can be used to construct arbitrarily complex model

DDRFs based on purely structural properties of clusters and nanoparticles, paving the

way towards GW calculations of complex systems, such as disordered materials, liquids,

interfaces and nanoparticles.
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Chapter 1

Introduction

1.1 Excited state calculations

Density functional theory [85, 103] has shown tremendous success in the calculation of ground

state properties from first principles. However, it is well known that the fundamental band gap

is significantly underestimated when computed using Kohn-Sham eigenvalues [169, 166]. The

band gap EG of a system with N electrons is defined as the difference between its ionization

potential I and its electron affinity A [30]

EG = I − A. (1.1)

Naively, one might assume that the Kohn-Sham band gap, i.e. the difference between the

valence band maximum (VBM) and conduction band minimum (CBM) [30]

EKS
G = ϵCBM − ϵV BM , (1.2)

yields a good approximation to EG. However, it can be shown [145, 169] that these two quantities

differ by the so-called derivative discontinuity of the exchange-correlation potential ∆XC , which

corresponds to a discontinuity in the exchange-correlation energy as a function of the total

number of electrons. This is commonly used as an explanation for the underestimation of the

band gap [169, 30]. A common procedure for calculating the band gap is the ∆-scf method
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which estimates EG as [37]

EG = I − A = E(N + 1) + E(N − 1)− 2E(N), (1.3)

by explicitly calculating the ground state total energies of systems with N , N + 1 and N − 1

electrons. This approach significantly improves the HOMO-LUMO gap in molecules [37, 126].

For solids, however, this quantity is problematic as there are no localised states in which the

occupation can be changed and adding an electron to a completely delocalized state would not

have an effect [126]. Moreover, it should be noted that only the band gap is accessible through

the ∆-scf method, and higher excitations are inaccessible.

One approach that yields significantly better estimations of the band gap in solids is the GW

approximation to the self-energy Σ, which is based on the self-consistent set of equations for the

one-electron Green’s function first derived by Hedin in 1965 [79]. The earliest applications of

the GW approximation were developed by Strinati et al. in 1982 [175] and later by Hybertsen

and Louie [90]. A detailed summary of the GW approximation will follow in Chapter 3, but

to motivate this thesis, I will briefly introduce the core concepts. The key idea behind the

GW approximation is to replace the local or semi-local exchange-correlation potential Vxc by

the non-local, frequency-dependent self-energy Σ, yielding corrected quasi-particle energies

according to [90]

EQP
nk = ϵDFT

nk − ⟨nk|Vxc|nk⟩+ ⟨nk|Σ|nk⟩, (1.4)

where evaluating only the diagonal elements of the self-energy operator ⟨nk|Σ|nk⟩ already yields

excellent estimates of the band gap, with errors of the order of 0.01 eV [90], compared to the

result obtained by also including off-diagonal elements. In the case of silicon, Hybertsen et al.

found that the GW approximation yields errors in the band gap as small as 0.12 eV.

The name GW stems from the approximation to the self-energy operator Σ in terms of the

many-body one-electron Green’s function G and the screened Coulomb interaction W [139]
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Σ = iGW. (1.5)

In contrast to the bare Coulomb interaction ν, the screened Coulomb interaction is frequency

dependent and is evaluated via the inverse dielectric function ϵ−1 according to

W (r, r′, ω) =

∫
dr2ϵ

−1(r, r2, ω)ν(r2, r
′). (1.6)

Within the random-phase approximation (RPA), which will be introduced in Chapter 3, the

inverse dielectric function is computed by inverting the dielectric function [90]

ϵ(r, r′, ω) = δ(r− r′)−
∫
dr′′ν(r, r′′)χ0(r

′, r′′, ω). (1.7)

Here χ0 denotes the non-interacting density-density response function (DDRF), which maps an

external potential to the resulting density response of a system of non-interacting electrons. χ0

is commonly calculated as a sum over states within the Adler-Wiser formulation [3, 195], which

I will derive in Chapter 3.

In many cases, it is sufficient to only evaluate χ0 at ω = 0, since the zero frequency

inverse dielectric matrix can be extended to finite frequencies using the generalised plasmon-

pole approximation (GPP) [90, 171]. The GPP models the frequency dependence of the

dielectric matrix in terms of collective modes called plasmons and will be introduced in detail in

Chapter 3. The GPP has been shown to yield excitation energies in excellent agreement with

experiment while significantly reducing the computational cost of computing the self-energy

[119]. However, the DDRF within the Adler-Wiser formulation requires a sum over empty and

occupied states [3, 195]. The summation scales roughly as 1/ϵnmax , with ϵnmax being the highest

unoccupied state included in the summation. As such, many empty states are required to

converge χ0, making it one of the critical bottlenecks of GW calculations [139, 153]. The poor

convergence properties of χ0 led to the development of a number of model dielectric functions,

which are discussed in the next section.
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1.2 Model dielectric functions

In order to understand the development of more advanced dielectric functions, it is instructive

first to consider a classical treatment of screening via the Drude model. The Drude model

results from a classical treatment of the equations of motion in a free electron gas, where it is

assumed that atoms lose their valence electrons to become positive ions [11]. The electrons form

a non-interacting electron gas and are scattered randomly by the metallic ions [7]. The response

of these electrons to an external electric field E(t) is given by the classical equation of motion

m
∂2

∂t2
r(t) +mγ

∂

∂t
r(t) = −eE(t), (1.8)

where m is the effective mass of an electron, and γ is a characteristic collision frequency [7, 11].

By taking the Fourier transform of the above expression, one obtains

r(ω) =
eE(ω)

m(ω2 + iωγ)
. (1.9)

The macroscopic polarization P(ω) resulting from the displaced electrons is then given via the

density of charge carriers n according to

P(ω) = − ne2E(ω)

m(ω2 + iωγ)
. (1.10)

Since the macroscopic polarization is given via the density response function χ, with P(ω) =

χ(ω)E(ω) we find that [7]

χ(ω) = − ne2

m(ω2 + iωγ)
. (1.11)

Using the definition of the dielectric function in terms of the density-density response function

as ϵ(ω) = 1 + 4πχ(ω), we obtain the Drude dielectric function [7]

ϵ(ω) = 1− 4πne2

m(ω2 + iωγ)
, (1.12)
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which is often written as

ϵ(ω) = ϵ∞ −
ω2
p

(ω2 + iωγ)
, (1.13)

where ωp is the plasma frequency and ϵ∞ is a parameter that accounts for the contribution of

positive ion cores [7]. From Eq. (1.13), it is clear that the Drude model only considers the large

wavelength limit q → 0.

One of the first rigorous quantum mechanical treatments of screening in the free electron gas was

developed by Lindhard [118], who derived the well-known Lindhard dielectric function of the

electron gas. The Lindhard dielectric function is derived from the non-interacting DDRF χ0 of

the free electron gas, for which an analytical solution can be obtained at zero temperature [172].

This allows the determination of the RPA dielectric function according to Eq (1.7). Lindhard

[118] showed that the non-interacting density-density response function of the free electron gas

can be written as

χ0(q, ω) =
2

V

∑
k

f0(ϵk)− f0(ϵk+q)

ℏω − ϵk+q + ϵk + iδ
, (1.14)

where δ is an infinitesimal constant to shift the poles away from the real line, V is the unit-cell

volume, and f0 is the zero temperature Fermi distribution [172]. This sum can be evaluated

by replacing it with an integral over k and by assuming parabolic dispersion in k [7]. Several

generalisations have been introduced since then to allow the treatment of semiconductors using

model functions. These model functions are usually constructed to obey the Kramers-Kronig

relations and the sum rules of the exact dielectric function. For example, the models proposed

by Hybertsen, Levine and Louie [114, 92] or the one by Capllini et al. [35, 19] have been applied

in the past [136, 23, 76].

One of the key limitations of these models is that they rely on a spatially uniform dielectric

constant, which may prevent them from being used for complex systems with spatially dependent

screening [153]. In order to apply model dielectric functions to more complex systems, Rohlfing

[153] proposed to model the dielectric function as a sum of atomic contributions

ϵGG′(q) = δGG′ +
1

|G+ q||G′ + q|

N∑
n

Vn
V
χnGG′(q), (1.15)

20



CHAPTER 1. INTRODUCTION

where Vn is the atomic volume and G are reciprocal lattice vectors. The atomic DDRF χnGG′(q)

is computed from the Fourier transform of a Gaussian charge density centred on individual

atoms. The atomic volume can be used to assign a different weight to the contribution of each

atom to the total density response.

The modelling of the dielectric function as a sum over atomic contributions forms the key

motivation for this project: to develop flexible model dielectric functions using machine learning.

While machine learning usually focuses on the prediction of scalar quantities, several attempts

at predicting more complex quantities such as the ground state electron density have been

made [31, 5, 72, 38]. The work by Grisafi et al. [72], who predicted ground state densities in a

local atom-centred basis using the equivariant SOAP kernel, is of particular relevance in the

context of this thesis. In this thesis, I develop an approach similar to that of Grisafi [72] for

the electronic density, where the DDRF is first decomposed into atomic contributions, each of

which can then be learned by a neural network model based on a purely structural descriptor.

To the best of my knowledge, this work constitutes the first application of machine learning to

predict non-local quantities based on purely structural descriptors.
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Navigating the feature forest

Modern machine learning algorithms such as Kernel Ridge Regression (KRR), Gaussian Process

Regression (GPR) or Artificial Neural Networks (ANNs) are well understood and widely used,

with extensive literature describing them in detail such as Barber [12] or Murphy [132]. However,

in order to apply these methods in the context of materials property prediction, information

about the structure and chemistry of a given material has to be encoded appropriately in a

descriptor, also commonly referred to as a feature vector in the machine learning community. The

following sections discuss the key ideas involved in the construction of these descriptors and how

to classify them into different types of descriptors. The prediction of scalar properties requires

descriptors to be invariant under transformations that leave the target property unchanged.

As we will see throughout this chapter, this invariance can be achieved in different ways. For

tensor properties, as well as functions, invariant descriptors are no longer sufficient to encode

the structure of a molecule or cluster, and further considerations are required. The solution to

this problem is discussed in Section 2.2, where I discuss equivariant descriptors, as well as what

properties a model, such as a neural network, has to obey in order to respect the behaviour of a

target property under the action of certain transformations. These equivariant descriptors are

particularly interesting in the context of developing an ML model of the DDRF, as the DDRF is

not invariant with respect to many transformations of the underlying structure, such as rotation

or translation. As such, an understanding of the ideas behind equivariant descriptors is a key

requirement for the development of model DDRFs based on structural descriptors of molecules
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and clusters.

2.1 Invariant representations

In order to apply machine learning methods to the prediction of scalar properties, descriptors

should be constructed such that they are invariant under symmetry transformations of a molecule

(permutation, rotation, reflection, translation, etc.) and such that they uniquely define the

system. One of the simplest descriptors that characterise a system would be a list of chemical

species and Cartesian coordinates of a system. However, in such a list, the ordering of atoms is

arbitrary. Thus, two systems which are physically the same can have a very different descriptor

[15]. Hence, a number of more elaborate descriptors have been proposed in the literature, such

as wavelet scattering invariants [83, 56, 82], the bispectrum [104, 100], the smooth overlap of

atomic positions (SOAP) descriptor [15, 36], the bag of bonds descriptor [77] and the Coulomb

matrix [159].

2.1.1 Coulomb matrix

The Coulomb matrix is a descriptor inspired by the input to electronic structure calculations.

It encodes information about pairwise distances |ri − rj| and nuclear charges Zi in a matrix

according to [158]

Mij =


0.5Zn

i , if i = j.

ZiZj

|ri−rj|
, if i ̸= j,

(2.1)

where n is a positive number.

Using this definition, the Coulomb matrix only depends on distances between atoms and is

thus invariant under translations, rotations and reflections of the molecule. However, similar

to a list of Cartesian coordinates and atomic species, the ordering of the rows of the Coulomb

matrix is arbitrary. Moreover, the dimensions of the matrix depend on the number of atoms in

a given system. The dimensionality problem is typically solved by padding smaller Coulomb
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matrices with zeros, such that they all have the same dimensions as the largest Coulomb matrix

in the data set [78]. In order to solve the problem of ordering, a number of approaches have been

proposed in the literature, namely the eigenspectrum representation, sorted Coulomb matrices,

and using a set of randomly sorted Coulomb matrices [78].

In the eigenspectrum representation proposed by Rupp et al. [160], the Coulomb matrix

of a system is diagonalised, and the eigenvalues are sorted by magnitude. The list of sorted

eigenvalues is now invariant with respect to permutations of atoms and also retains the invariants

of the original Coulomb matrix. While the eigenspectrum representation is invariant under the

symmetries of a system, the dimensionality of the descriptor is reduced drastically, which may

lead to a loss of information as noted by Hansen et al. [78].

The second approach to construct permutationally invariant Coulomb matrices is achieved

by sorting the rows of a given matrix in descending order of their norm [78]. While this approach

maintains the dimensionality of the original Coulomb matrix, it may lead to drastic changes in the

representation if the ordering of rows changes due to small perturbations to atomic positions [78].

The most robust variant of the Coulomb matrix descriptor consists of using a set of randomly

permuted Coulomb matrices. Hansen et al. [78, 130] proposed to construct a vector |C|,

containing the norms of rows of Coulomb matrices and to add a noise term ϵ drawn from a

normal distribution. A randomly sorted Coulomb matrix is then computed by permuting the

rows of the original Coulomb matrix such the permutation sorts |C|+ ϵ in descending order.

This procedure is repeated until a sufficiently large sample size from the set of all valid Coulomb

matrices of a system is obtained.

The key disadvantage of this approach is that the computational cost of training and predic-

tion grows with the number of randomly sorted coulomb matrices included in the sample [78].

The Coulomb matrix has been successfully applied to several problems in quantum chemistry,
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such as the prediction of atomization energies [78, 160, 130], and several other molecular prop-

erties, such as polarizabilities, ionization potentials and electron affinities [131]. Furthermore,

a number of generalisations have been proposed to extend the applicability of the Coulomb

matrix to crystalline systems [57, 167].

2.1.2 Bag of Bonds

The bag of bonds descriptor, originally proposed by Hansen et al. [77] for fitting many-body

potentials, is inspired by a descriptor called bag of words, frequently used in the field of natural

language processing [99]. The basic idea behind the bag of bonds descriptor is similar to the

Coulomb matrix in that information about different bonds is collected in ”bags”, each bag

corresponding to a certain type of bond (e.g. a C-C bond) [77]. The entries in each bag are

essentially the same as the entries of the Coulomb matrix, i.e. ZiZj/|ri − rj|, with Zi and Zj

being the nuclear charges and ri and rj being the positions of the two atoms forming the bond

[77]. Once the entries of each bag are computed, they are sorted by their magnitude. Then,

bags are padded with zeros such that the length of all bags in the data set is equal. Finally, all

bags are concatenated to form a vector [77]. As such, the bag of bonds descriptor is essentially

a different ordering scheme for the Coulomb matrix [42].

While this descriptor, like the Coulomb matrix, is invariant to translations and rotations, it

suffers from the same problem as the Coulomb matrix, namely permutational invariance. Hansen

et al. [77] solved this problem by employing a consistent sorting scheme for bags across the

data set. Another disadvantage of the bag of bonds model is that it is not a unique descriptor.

Specifically, it cannot distinguish between systems which have distinct geometries but have the

same pairwise distances [77]. This flaw has been demonstrated by Bing et al. [88], who showed

that two homomeric molecules yield exactly the same energy curves, even though their structures

are distinct. As a result of this, Bing et al. [88] developed the so-called BA-representation,

which extends the bag of bonds model to include bond angles and torsions. They showed that

adding bond angles and torsions to the representation creates a unique descriptor and, as such,
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improves the learning rate and accuracy of the bag of bonds model [88].

The bag of bonds descriptor has been successfully applied in constructing many-body poten-

tials, achieving chemical accuracy (1 kcal/mol) [77]. The extended bag of bonds representation

has been shown to yield predictive accuracy among a large range of chemical properties and

is competitive with many other descriptors, such as SOAP, the Coulomb matrix, and other

bag-of-bonds variants [88].

2.1.3 Introduction to spectral descriptors

There is a large class of descriptors derived from rigorous mathematical arguments. These

methods use spectral representations by expanding an atomic neighbourhood density in either

spherical harmonics (to enforce rotational invariance) or Fourier series (to enforce translational

invariance). In order to understand this class of methods, this section starts by introducing

the rotationally invariant power spectrum [15] and the 1-D Fourier representation [186]. The

starting point for the rotationally invariant power spectrum is the projection of an atomic

neighbourhood density ρ(r) =
∑

iwZiδ(r− ri) formed by delta functions centred on the position

ri of the neighbour of a central atom with a charge dependent weighting wZi
onto the unit

sphere according to [15]

ρ(r̂) =
∞∑
l=1

l∑
m=−l

clmYlm(r̂). (2.2)

The expansion coefficients clm can be collected in a vector cl for each value of l. This vector

then transforms under rotation by multiplication with the Wigner Dl matrix (the rotation

matrix for spherical harmonics) [15, 104]

cl → Dlcl. (2.3)

Analogous to the Fourier power spectrum, the coefficients of the spherical harmonic power

spectrum pl are then obtained by calculating the squared norm for each value of l according to
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pl = c†lcl. (2.4)

Clearly, this representation is rotationally invariant since Dl is a unitary matrix and under

rotation we find

pl → (Dlcl)
†Dlcl = c†lcl = pl.

Moreover, the power spectrum is invariant to reflection [15]. Translational invariance is

enforced by using local neighbourhood densities centred on each atom rather than constructing

a density for the full cluster or molecule. While Bartók et al. [15] proved that the power

spectrum is not a complete descriptor, they showed in numerical experiments that representation

can be improved by introducing a truncation distance for the number of neighbours to be

included in the neighbourhood density. They also found that increasing the cut-off requires an

increase in the maximum value of l to maintain an accurate representation of the system. The

incompleteness of descriptors based on n-body correlations, such as the power spectrum, has

since been investigated in detail by Pozdnyakov et al. [147] and will be discussed later in this

chapter.

An idea related to the power spectrum was used by v. Lilienfeld et al. [186], who expanded

the global density of a molecule in a sum of atom-centred Gaussian functions, followed by taking

its Fourier transform. While the Fourier transform is naturally invariant to translations, it is

not invariant to rotations. Rotational invariance is achieved by multiplication with its conjugate

and projecting the 3-dimensional Fourier transform onto one dimension yielding a descriptor

[186]

FD(ω) =
1

(2a)3
e−

ω2

2a

Natoms∑
ij=0

ZiZj cos(ωrij), (2.5)

where a is a hyperparameter, Zi are the charges of the respective atoms and ω is a frequency. It

should be noted that the sum runs over all atoms in the molecule. The model was further tuned
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by using a radial distribution function instead of the interatomic distance rij. The descriptor

was tested on atomization enthalpies [186], but was shown to be less accurate than the Coulomb

matrix, which may be a consequence of the descriptor not being complete.

In the following section, I will focus on the spectral representation in the spherical harmonic

domain and present improvements that can be made to the simple power spectrum presented

above.

2.1.4 Bispectrum

The Bispectrum is a descriptor originally introduced by Kondor [104] in the context of image

processing and was further developed for use in the context of quantum chemistry by Bartók

et al. [15]. In contrast to the previous descriptors, which are mainly constructed ad-hoc, the

bispectrum has a rigorous mathematical foundation and symmetries are incorporated by group

theoretical arguments.

Construction of the bispectrum descriptor starts from projecting the atomic neighbourhood

density ρ(r) =
∑

iwZiδ(r− ri), with the summation running over atomic positions ri and charge

dependent weight factors wZi, onto the unit sphere and expanding it in a basis of spherical

harmonics according to [15]

ρ(r̂) =
∞∑
l=1

l∑
m=−l

clmYlm(r̂). (2.6)

The starting point for the bispectrum invariants is the tensor product between different

angular momentum channels cl, where cl contains all clm coefficients in Eq. (2.6). The tensor

product of two of these vectors transform according to [15]

cl1 ⊗ cl2 → (Dl1 ⊗Dl2)(cl1 ⊗ cl2), (2.7)

where Dli denote the Wigner matrices, which are the rotation operators for spherical harmonics.

The tensor product of the two Wigner-Matrices is reducible [127, 98]. Thus, the tensor product

Eq. (2.7) can be rewritten in terms of the matrices of Clebsch-Gordan coefficients Cl1l2 and a
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direct sum of Wigner matrices [15, 104]

cl1 ⊗ cl2 → (Cl1l2)†
( l1+l2⊕

l=|l1−l1|

Dl

)
Cl1l2(cl1 ⊗ cl2). (2.8)

Since the matrices of Clebsch-Gordan coefficients are unitary [15], we find (by multiplication

of Eq. (2.8) with the Clebsch-Gordan matrix) that the vector Cl1l2cl1 ⊗ cl2 transforms as

Cl1l2cl1 ⊗ cl2 →
( l1+l2⊕

l=|l1−l1|

Dl

)
Cl1l2(cl1 ⊗ cl2). (2.9)

Finally by rewriting

Cl1l2cl1 ⊗ cl2 =

l1+2⊕
l=|l1−l2|

gl,l1,l2

we can define the coefficients of the bispectrum descriptor by multiplication of each gl,l1,l2 by

the spherical harmonic expansion coefficients cl
† as [104, 15]

bl,l1,l2 = c†l · gl,l1,l2 . (2.10)

Each gl,l1,l2 transforms in the same way as cl. This can be used to trivially show that the

bispectrum coefficients are invariant under rotations [15]

bl,l1,l2 = (Dlcl)
†Dlgl,l1,l2 = c†l · gl,l1,l2 . (2.11)

It should be noted that the projection onto the unit sphere does not allow for encoding

distances between the central atom and its neighbours [15]. However, the formalism can be

extended to encode distances to the neighbours by either introducing radial basis functions

[15, 178] or by projecting the neighbourhood density onto the 4D unit sphere [15, 16]. Bartók et al.

[15] systematically reviewed the completeness of the bispectrum using a series of reconstruction

experiments and showed that in order to obtain an accurate representation for a larger number

of neighbours included in the environment, the length of the descriptor vectors has to be

increased. As we will see in Section 2.1.5; however, the completeness of the bispectrum has since

been disproven. The bispectrum descriptor has been used in the context of fitting potential

29



CHAPTER 2. NAVIGATING THE FEATURE FOREST

energy surfaces using Gaussian approximation potentials [16]. Despite the incompleteness, they

managed to predict surface energies of different semiconductors with close to DFT accuracy,

with the resulting potential energy surfaces yielding elastic constants within 25% of the DFT

value [16].

2.1.5 SOAP

The smooth overlap of atomic positions (SOAP) representation is another descriptor from the

class of spectral descriptors and was first introduced by Bartók et al. [15]. The key insight that

inspired the SOAP representation is that in kernel methods, such as kernel ridge regression

or Gaussian process regression, the kernel should define a smooth similarity measure between

different atomic environments [36]. Moreover, the kernel measure needs to be invariant with

respect to the symmetries of a system, such as translation, permutation, reflection and rotation

[36, 15]. In order to fulfil these requirements, Bartók et al. derived the SOAP representation

directly from a kernel that adheres to all these conditions.

Specifically, the starting point for the SOAP representation is an expansion of the local

neighbourhood density as a sum of atom-centred Gaussians up to a certain cut-off radius

ρη(r) =

Nη∑
i=1

e−γη(r−ri)
2

, (2.12)

where η denotes a specific element that is present in the environment of an atom and Nη is the

number of atoms of that species present in the environment. Furthermore, γη is a parameter

that can be thought of as the atomic size and can be used to control the sensitivity of the SOAP

kernel to differences between atomic environments. The kernel or similarity measure is then

constructed as an exponentiated inner product between two chemical environments ρ = {ρη}

and ρ̃η = {ρ̃η} according to [36]

k(ρ, ρ̃) =
∑
η

∫
dR̂

∣∣∣∣ ∫ drρη(r)ρ̃η(R̂r)

∣∣∣∣k, (2.13)

where R̂ is the rotation operator and the exponent k is another hyperparameter, typically set to
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k = 2 [36]. In a multi-species system, Eq. (2.13) can be generalised by moving the sum over η

into the norm, thus adding correlations between different species in the environment. However,

for the sake of conciseness, I will avoid this generalisation here. The kernel integral in Eq. (2.13)

has the appealing property that it can be evaluated analytically in a basis of spherical harmonics

Ylm and orthogonal radial basis functions gn(r)

ρη(r) =
∑
nlm

c
(η)
nlmgn(r)Ylm(r̂). (2.14)

Substituting into Eq. (2.13) for the case k = 2, we obtain

k(ρ, ρ̃) =
∑
η

∫
dR̂

∣∣∣∣ ∫ dr
∑
nlm

∑
n′l′m1

∑
m′

c
(η)
nlmc

(η)∗
n′l′m′gn(r)Ylm(r̂)gn′(r)D∗

m1m′(R̂)Y ∗
l′m1

(r̂)

∣∣∣∣2, (2.15)

where Dm1m′ are the coefficients of the Wigner-D matrix [155]. Evaluating the integral inside

the norm, we get

k(ρ, ρ̃) =
∑
η

∫
dR̂

∣∣∣∣∑
nlm

∑
n′l′m1

∑
m′

c
(η)
nlmc̃

(η)∗
n′l′m′(r)D

∗l
m1m′(R̂)δnn′δll′δmm1

∣∣∣∣2
=
∑
η

∫
dR̂

∣∣∣∣∑
nlm

∑
m′

c
(η)
nlmD

∗l
mm′(R̂)c̃

(η)∗
nlm′

∣∣∣∣2
=
∑
η

∫
dR̂
∑
nlm

∑
m′

∑
n′l′m1

∑
m′′

c
(η)
nlmD

∗l
mm′(R̂)c̃

(η)∗
nlm′c

∗(η)
n′l′m1

Dl′

m1m′′(R̂)c̃
(η)
n′l′m′′ . (2.16)

The Wigner-D matrices are orthogonal [155], yielding

k(ρ, ρ̃) =
∑
η

∑
nlm

∑
m′

∑
n′l′m1

∑
m′′

8π2

2l′ + 1
c
(η)
nlmc̃

(η)∗
nlm′c

∗(η)
n′l′m1

c̃
(η)
n′l′m′′δmm1δm′m′′δll′

=
∑
η

∑
nn′l

∑
mm′

8π2

2l + 1
c
(η)
nlmc̃

(η)∗
nlm′c

∗(η)
n′lmc̃

(η)
n′lm′ . (2.17)

As noted by Bartók et al. [15, 193], the summations over m and m′ can now be carried out

individually for each atomic environment, where the coefficients of the SOAP descriptor are

defined as

d
(η)
nn′l =

√
8π√

2l + 1

∑
m

c
(η)
nlm(c

(η)
n′lm)

∗, (2.18)
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yielding

k(ρ, ρ̃) =
∑
η

∑
nn′l

d
(η)
nn′ld̃

(η)
nn′l, (2.19)

where d
(η)
nn′l and d̃

(η)
nn′l are the coefficients of the descriptor vectors corresponding to the neigh-

bourhood densities ρ and ρ̃, respectively. The factor of
√
8π√

2l+1
was added in an Erratum to

the original paper by Bartók et al.[15] and slightly improved interatomic potential fits. This

result indicates that using SOAP with k = 2 is equivalent to computing the power spectrum

in Eq. (2.4) of a smooth Gaussian neighbourhood density [15]. Furthermore, it can be shown

[36, 15] that for k = 3, the SOAP kernel corresponds to computing the bispectrum of the

Gaussian neighbourhood densities.

While the power spectrum (or bispectrum) and SOAP are formally equivalent, SOAP has

a few advantages. Specifically, expanding the neighbourhood densities in terms of Gaussians

instead of delta functions leads to a smoother similarity measure [15]. In practice, this has the

benefit of being more resistant to artifacts in the predicted quantity due to highly oscillatory

basis functions corresponding to high angular momentum channels [15].

The SOAP representation and kernel have been applied to a large array of problems such

as the prediction of atomization energies [45], electron densities [72], scalar- [192] and tensor-

polarizabilities [73, 74] and the prediction of grain boundary structures [148]. Despite the success

of SOAP in various applications, Pozdnyakov et al. [147] showed that SOAP and other descriptors

based on n-body correlation functions are, in fact, not complete and may be degenerate. Specific

examples of degenerate pairs of environments in the case of 3-body correlations (power spectrum

or ν = 2 SOAP) and four-body correlation functions, which correspond to the bispectrum

or ν = 3 SOAP, were provided by Pozdnyakov [147] to demonstrate the incompleteness of

the SOAP descriptor. As further pointed out by Pozdnyakov and co-workers, the success of

n-body correlation functions like SOAP, despite this incompleteness, is largely attributable to

the decomposition of properties such as potential energy surfaces into atomic contributions [147].

Very recently, Nigam et al. [135] developed an extension to the usual framework of constructing

descriptors from n-body correlations (such as SOAP), which is based on building descriptors by

taking tensor products between the smooth neighbourhood density ρ and one or more localized
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functions ϕ centred on the distance vectors between neighbouring atoms. This procedure yields

descriptors of the form

d(ri, rj, rk) = ϕ(rij)⊗ ϕ(rik)⊗ ρ(ri). (2.20)

A rotationally invariant descriptor is then obtained by expanding ϕ(rij), ϕ(rik) and ρ(ri) in a

basis of spherical harmonics and radial basis functions and symmetrizing approrpiately [135],

yielding

dijkn1n2n3l1l2l3
=

∑
m1m2m3

C l3m3
l1m1l2m2

ϕij
n1l1m1

ϕik
n2l2m2

ρin3l3m3
, (2.21)

where C l3m3
l1m1l2m2

is a Clebsch-Gordan coefficient. Summing over all neighbours j and k would

yield the bispectrum, which, as described previously, is incomplete. Thus, the authors in [135]

instead pass the features in Eq. (2.21) through a non-linear function before summing over j, k.

This procedure helped in eliminating the degeneracies discovered by Pozdnyakov [147].

2.1.6 Long-distance equivariant descriptor

In many cases, it is necessary to incorporate long-range information into a structural descriptor.

In order to remedy this issue, Grisafi and Ceriotti developed the Long-distance equivariant

(LODE) descriptor [71]. The starting point for the LODE descriptor is very similar to the SOAP

descriptor, but the smooth neighbourhood density is replaced by a neighbourhood potential

function for each species η

V
(η)
j (r, p) =

∑
i

∫
ds

1

|s− r|p

∫
dte−γη(t−rj)

2

e−γη(s+t−ri)
2

. (2.22)

Similar to SOAP, the resulting potential function can be expanded in a basis of spherical

harmonics and radial basis functions and then symmetrized for rotational invariance, resulting

in

V
(η,η′)
pnn′l ∝

∑
m

c
(η)
pnlmc

(η′)∗
pn′lm, (2.23)

where c
(η)
pnlm are the expansion coefficients of the neighbourhood potential in the spherical

harmonic basis. The LODE descriptor was used in conjunction with the SOAP descriptor in the
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prediction of the dielectric response of water in the liquid phase and binding curves of charged

organic dimers [71] and was found to yield significantly better predictions than using SOAP

alone.

2.1.7 Wavelet scattering representation

Wavelet scattering is a technique first introduced by Mallat [122] in the context of image

classification. Mallat created a set of translationally and rotationally invariant representations

of an image by successive convolutions followed by a non-linear function [122]. This procedure

is related to convolutional neural networks in the sense that they apply a sequence of wavelet

filters followed by a non-linear “pooling” or averaging operation. In contrast to convolutional

neural networks, however, the filters are predefined and not learned from data, which can reduce

the number of samples required to achieve accurate results [122]. A variant of this technique has

been used by Hirn et al. to generate rotationally and translationally invariant descriptors for

2D molecules [83, 82] by performing convolutions with oriented wavelets. However, it has been

noted by Eickenberg et al. [56] that for 3D molecules too many different orientations would be

required to cover all possible rotations in 3D. As such, Eickenberg et al. [56] used convolutions

with solid harmonic wavelets where the invariance to rotations is derived from the properties of

solid harmonic wavelets. While a full account of the theory behind wavelet scattering invariants

is beyond the scope of this work, I will provide a brief summary of the basic ideas behind this

type of descriptor.

The starting point for the 3D wavelet scattering representation is very similar to the starting

point of the SOAP descriptor, where a “naive” electronic density constructed from Gaussians is

associated with each molecule i with N
(i)
at atoms and zk nuclear charge [56]

ρi(r) =

N
(i)
at∑
k

c(zk)g(r− rk), (2.24)

where the sum over k runs over all atomic positions rk and charges zk in molecule i and c(zk)

is used to discriminate between different species [56]. In contrast to SOAP, which assigns a
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local descriptor to each atom in a molecule [15], the scattering transform descriptor encodes an

entire molecule. The next step in computing the scattering transform descriptor is to perform a

wavelet transform with respect to a solid harmonic wavelet which is formed from a product of

solid harmonics and a Gaussian function [56]

ψl,m(r, ϕ, γ) =
1√
(2π)2

e−
1
2
r2rlYlm(ϕ, γ). (2.25)

We then define the wavelet dilated by 2j (i.e. r is scaled by a factor of 2−j) as ψl,m,j. Next,

the wavelet modulus operator U [l, j1] is defined as a convolution (∗) of ρi with ψl,m,j [56]

U [l, j1]ρi(r) =

( l∑
m=−l

|ρi ∗ ψl,m,j1|2
)1/2

, (2.26)

where the sum over m results in rotational covariance [56]. Application of the operator U [l, j1]

is equivalent to the filtering operators in convolutional neural networks [56]. Integration (or

summation in a discrete setting) over all spatial variables then yields a set of rotationally

invariant first-order scattering coefficients

S[l, j1, q]ρi =

∫
d3r

∣∣∣∣U [l, j1]ρi(r)∣∣∣∣q, (2.27)

where different powers of q can be used to obtain a larger number of coefficients. The second-

order scattering coefficients are then obtained by applying the operator U [l, j2] onto Eq. (2.26)

and integrating over all space according to

S[l, j1, j2, q]ρi =

∫
d3r

∣∣∣∣U [l, j2]U [l, j1]ρi(r)∣∣∣∣q. (2.28)

The third order scattering coefficients can then be obtained by applying the operator U [l, j3]

analogously to Eq (2.28); however, it is usually not necessary to go beyond second order [56].

The scattering transform descriptor is then formed by collecting all computed coefficients in a

vector.

Mallat [122] showed that in the case of the SOAP descriptor, the changes in power spec-
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trum coefficients resulting from a small deformation are proportional to the cut-off radius. Thus,

it can be expected that the utility of the SOAP descriptor deteriorates as the cut-off radius is

increased. While the wavelet scattering representation is slightly more involved than many of

the descriptors discussed here, it has a number of appealing properties. Most notably, apart

from translational and rotational invariance, the scattering coefficients are Lipschitz continuous

with respect to deformations [122, 56]. This means that if ρi is slightly deformed, the scattering

coefficients change by a small amount which is proportional to the deformation of ρi [122]. This

non-trivial property is particularly useful in the context of learning physical properties, as small

changes in structure usually lead to minor changes in a given property. It is well known from

the fields of signal- [8] and image-processing [32] that the Fourier transform is not stable to

deformation. In particular, high frequencies undergo large shifts when small deformations to

the signal occur. This can lead to the representations of a system changing significantly when

atoms are moved slightly. Similar arguments can be made for methods based on autocorrelation

functions [81], which include the spectral methods described above. When transformed into real

space, the power spectrum corresponds to an autocorrelation and the bispectrum to a triple

autocorrelation [104]. Since SOAP is, in essence, equivalent to the bispectrum or the power

spectrum [15], depending on the exponent of the kernel integral, it can also be said that SOAP

is not stable to deformations.

Scattering invariants have been used to predict DFT ground state energies of 2D [82, 81] and

3D [56] molecules, achieving close to state-of-the-art accuracy even when used with simple

linear models. Scattering invariants have also been applied to the prediction of grain boundary

structures [86].

2.1.8 Atomic cluster expansion

The atomic cluster expansion (ACE) was first introduced by Drautz [51] and can be thought of

as a natural generalization of SOAP and related methods to arbitrary body-orders [55]. The

fundamental idea of the ACE descriptor is the definition of a scalar property of a certain atom i

as a function of all distance vectors rij = ri − rj
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Ei(σ) ≡ Ei(r1i, r2i, r3i, . . . , rNi). (2.29)

Next, a complete and orthogonal single-bond basis ϕν(r) is defined, with ϕ0 = 1 [51]. Using the

single-bond basis functions, a cluster basis is defined using all single-bond basis functions with

ν > 0

Φαν = ϕν1(rj1i)ϕν2(rj2i)ϕν3(rj3i) . . . ϕνK (rjK i), (2.30)

where the cluster index α labels the tuple of all bonds (j1i, j2i, . . . , jKi), in a cluster with K

elements, with ν labelling the tuple of all single-bond basis functions (ν1, ν2, . . . , νk) [51]. The

orthogonality of the cluster basis is inherited from the single-bond basis, which can be seen from

⟨Φαν |Φβµ⟩ = δαβ

∫
drj1iϕ

∗
ν1
(rj1i)ϕµ1(rj1i)

∫
drj2iϕ

∗
ν2
(rj2i)ϕµ2(rj2i)· · ·

∫
drjK iϕ

∗
νK
(rjK i)ϕµK

(rjK i)

= δαβδνµ, (2.31)

where the term δαβ results from the fact that ϕ0(rji) = 1 is orthogonal to the other single-bond

basis functions [50]: where there are no matching bonds, the integrals will be of the form of

∫
drij1 · ϕν(rij) = 0 ∀ ν ̸= 0. (2.32)

Using these results in conjunction with the completeness relation [51] with σ ≡ (r1j, r2j, r3j, . . . , rNij)

1 +
∑
γ⊆α

∑
ν

Φ∗
γν(σ)Φγν(σ

′) = δ(σ − σ′), (2.33)

the atomic property may be expanded as

Ei(σ) = J0 +
∑
αν

JανΦαν(σ). (2.34)

In the case of single-species materials, the order of bonds can be permuted arbitrarily, which

allows us to replace the coefficients Jαν , by another set of coefficients which is only characterized
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by the body-order K of the expansion term J
(K)
ν

Ei(σ) =
∑
jν

J (1)
ν ϕν(rji) +

1

2!

j1 ̸=j2∑
j1j2

∑
ν1ν2

J (2)
ν1ν2

ϕν1(rj1i)ϕν2(rj2i)

+
1

3!

j1 ̸=j2 ̸=j3∑
j1j2j3

∑
ν1ν2ν3

J (3)
ν1ν2ν3

ϕν1(rj1i)ϕν2(rj2i)ϕν3(rj3i) + . . . . (2.35)

As noted by Drautz [51], the expansion can also be written as an unrestricted sum using a

different set of coefficients c
(K)
ν , where the completeness of the basis is invoked by expanding

“self-interaction” terms, i.e. where j1 = j2, etc., at a lower body order

Ei(σ) =
∑
jν

c(1)ν ϕν(rji) +
1

2!

∑
j1j2

∑
ν1ν2

c(2)ν1ν2
ϕν1(rj1i)ϕν2(rj2i)

+
1

3!

∑
j1j2j3

∑
ν1ν2ν3

c(3)ν1ν2ν3
ϕν1(rj1i)ϕν2(rj2i)ϕν3(rj3i) + . . . . (2.36)

One of the challenges with the expansion in Eq. (2.36) is the unfavourable scaling with increasing

body-order terms. In order to avoid these issues, Drautz [51] introduces an atomic neighbourhood

density ρi(r) =
∑

j δ(r− rji) and a set of coefficients

Aiν =

∫
drρi(r)ϕν(r) =

∑
j

ϕν(rji). (2.37)

Using these coefficients, Eq. (2.36) may be rewritten as

Ei(σ) =
∑
ν

c(1)ν Aiν +
1

2!

ν1≥ν2∑
ν1ν2

c(2)ν1ν2
Aiν1Aiν2 +

1

3!

ν1≥ν2≥ν3∑
ν1ν2ν3

c(3)ν1ν2ν3
Aiν1Aiν2Aiν3 + . . . , (2.38)

which now scales linearly with the number of atoms. Finally, a basis of spherical harmonics and

radial basis functions is introduced

ϕν(r) = Rnl(r)Ylm(r̂). (2.39)
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Rotational invariance is then imposed by only including coefficients in the expansion that do

not change under rotation, thus changing the expansion in Eq. (2.38) to

Ei(σ) =
∑
ν

c(1)n B
(1)
in +

1

2!

∑
n1n2l

c
(2)
n1n2l

B
(2)
in1n2l

+
1

3!

∑
n1n2n3l1l2l3

c
(3)
n1n2n3l1l2l3

B
(3)
in1n2n3l1l2l3

+ . . . , (2.40)

where the summation is ordered as in Eq. (2.38) to avoid double counting of equivalent terms [51].

Expressions for the first few expansion coefficients were by provided Drautz [51], the first three

are given by

B
(1)
in = Ain00, (2.41)

B
(2)
in1n2l

=
∑
m

(−1)mAin1lmAin2l−m, (2.42)

B
(3)
in1n2n3l1l2l3

=
∑

m1m2m3

(−1)l1−l2−l3

√
2l3 + 1

C
l3(−m3)
l1m1l2m2

Ain1l1m1Ain2l2m2Ain2l2m2 , (2.43)

where C lm
l1m1l2m2

are the Clebsch-Gordan coeffcients. The significance of these expressions is

that only terms where m1 +m2 = 0, m1 +m2 +m3 = 0, etc., are included by the selection

rules of the Clebsch-Gordan coefficients. Drautz [51] demonstrated the power of the atomic

cluster expansion by parametrizing an interatomic potential for copper and small clusters,

achieving accuracies in energies on par with DFT. Efficient implementations of ACE were

developed in the PACE [121] software package, and efficient parametrization strategies for ACE

were implemented in the PACEMAKER [27] software. ACE has been applied to the construction

of interatomic potentials [28, 150], on-the-fly learning schemes used in molecular dynamics

simulations [120], and the representation of wave functions in terms of ACE [198, 53]. The

success of ACE can largely be attributed to the generality and completeness of the expansion [55],

which is demonstrated by the fact that many previously developed descriptors such as the

bispectrum [16], SOAP [15], Behler-Parinello symmetry functions [22, 10] and moment tensor

potentials [170] can be recast in terms of ACE [51, 55], and even wavelet-transforms [162] can

be related to the atomic cluster expansion. As such, it can be argued that ACE encompasses

many previously developed descriptors. For the SOAP descriptor specifically, we can express

SOAP(2) and SOAP(3) in terms of ACE coefficients (obtained from a smooth neighbourhood
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density instead of the delta-function density) using [51]

k(2)(ρ, ρ′) =
∑
nn′l

B
(2)
inn′l(ρ)B

(2)
in1n2l

(ρ′), (2.44)

and

k(3)(ρ, ρ′) =
∑

n1n2n3l1l2l3

B
(3)
in1n2n3l1l2l3

(ρ)B
(3)
in1n2n3l1l2l3

(ρ′). (2.45)

2.2 Equivariant representations

The descriptors discussed so far are all invariant with respect to rotation and translation.

This is sufficient in the case of modelling scalar properties, such as potential energy surfaces,

scalar polarizabilities or atomization energies. In order to apply ML methods to tensor- and

function outputs, such as polarizability tensors, the electron density, or the density-density

response function, descriptors that transform in a predictable way are required. In order to

understand the construction of descriptors and models that are equivariant with respect to

a certain transformation, it is worth formalizing the definition of equivariance, which is also

commonly referred to as covariance. Covariance, when it comes to a regression model, is a

property that requires the outputs of a model to transform under the action of a group element

g ∈ G in exactly the same way as the inputs. To make this more concrete, we require a bit of

jargon from representation theory. A more thorough treatment can be found, for example, in

Ref. [98].

A representation D of a group G is defined as a function from G to square matrices, with

the following property [179]

D(g)D(h) = D(gh) ∀g, h ∈ G. (2.46)

A function f : V −→ W , where V and W are vector spaces, is then said to be covariant with

respect to a group G, if it has the following property [179, 105]

f(DV (g)x) = DW (g)f(x) ∀g ∈ G,x ∈ V, f(x) ∈ W, (2.47)
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where we have denoted DV (g) as the the group transformation matrix of g acting on the vector

space V . In simple terms, this means that the action of the function f needs to commute with

the group action of g. This means that an ML model can only be covariant if the transformation

of the descriptor or model input transforms if the underlying atomic coordinates are transformed.

In the case of neural networks, for example, it has been shown by Kondor et al. that a Neural

Network layer can only be covariant with respect to a group if it implements a generalized form

of convolution [106]

(f ∗ g)(u) =
∫
G

f(uv−1)g(v)dµ(v), (2.48)

where f and g are functions from a compact group G −→ C, and µ(v) is the Haar Measure.

2.2.1 Symmetry-adapted SOAP

As we have seen before, the SOAP descriptor achieves rotational invariance by integrating over

the space of rotation matrices R̂, an integral which can be computed analytically when the

chemical environment is expanded in a basis of spherical harmonics and radial basis functions [15].

Due to their well-defined transformation properties under rotation, the spherical harmonics form

a natural basis for constructing descriptors which are equivariant under the action of elements of

SO(3), the rotation group in three dimensions. As such, the SOAP descriptor lends itself to the

construction of a descriptor SO(3) covariant descriptors. The construction of such a descriptor

was first achieved by Grisafi et al. [73] in the context of machine-learning tensorial properties.

The starting point for the so-called λ-SOAP descriptor introduced by Grisafi and co-workers is

the scalar SOAP kernel

k(ρ, ρ̃) =

∣∣∣∣ ∫ drρ(r)ρ̃(R̂r)

∣∣∣∣2. (2.49)

For simplicity, I have also dropped the coefficient η, which labels different kinds of atoms in the

chemical environments. The neighbourhood densities ρ, are again a sum of Gaussians centred

on atoms in the neighbourhood of the central atom. Next, the above integral is augmented by

introducing an integral over rotation matrices R̂ and the Wigner-D matrix corresponding to the
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rotation Dλ(R̂). This yields a series of matrix-valued kernels of dimension 2λ+ 1× 2λ+ 1

kλ(ρ, ρ̃) =

∫
dR̂Dλ(R̂)

∣∣∣∣ ∫ drρ(r)ρ̃(R̂r)

∣∣∣∣2. (2.50)

As noted by Grisafi [73], the original scalar SOAP kernel in Eq. (2.13) is recovered in the case

λ = 0. The coefficients of the descriptor can be computed in a similar way to the standard

SOAP descriptor [73], for arbitrary λ. The starting point of the derivation is the evaluation of

the norm which was already computed as part of Eq. (2.16)

k(ρ, R̂ρ̃) =

∣∣∣∣ ∫ drρ(r)ρ̃(R̂r)

∣∣∣∣2 =∑
nlm

∑
m′

∑
n′l′m1

∑
m′′

cnlmD
∗l
mm′(R̂)c̃∗nlm′c∗n′l′m1

Dl′

m1m′′(R̂)c̃n′l′m′′ ,

(2.51)

where I removed the species labels for simplicity. The coefficients of the tensor kernel kλµν(ρ, ρ̃)

are then obtained by computing the Haar integral

kλµν(ρ, ρ̃) =

∫
dR̂Dλ

µν(R̂)
∑
nlm

∑
m′

∑
n′l′m1

∑
m′′

cnlmD
∗l
mm′(R̂)c̃∗nlm′c∗n′l′m1

Dl′

m1m′′(R̂)c̃n′l′m′′ . (2.52)

The Haar integral of three Wigner-D matrices can be evaluated in terms of the Clebsch-Gordan

coefficients CLM
l1m1l2m2

[155]

∫
dR̂D∗l

mm′(R̂)Dλ
µν(R̂)D

l′

m1m′′(R̂) =
8π2

2l + 1
C lm

λµl′m1
C∗lm′

λνl′m′′ . (2.53)

Substituting into Eq. (2.52), we obtain,

kλµν(ρ, ρ̃) =
∑
nlm

∑
m′

∑
n′l′m1

∑
m′′

(
8π2

2l + 1

)
C lm

λµl′m1
C lm′∗

λνl′m′′cnlmc̃
∗
nlm′c∗n′l′m1

c̃n′l′m′′ . (2.54)

We can now define the coefficients of the λ-SOAP descriptor as

dλµnn′ll′ =
∑
m1m

√
8π2

2l + 1
C lm

λµl′m1
cnlmc

∗
n′l′m1

, (2.55)
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and

d̃λν∗nn′ll′ =
∑
m′m′′

√
8π2

2l + 1
C lm′∗

λνl′m′′ c̃∗nlm′ c̃n′l′m′′ . (2.56)

Similar to the original paper by Grisafi et al. [73], we arrive at an expression for the elements of

the kernel in Eq. (2.50) kλµν(ρ, ρ̃), as a summation over outer products between the descriptors

kλµν(ρ, ρ̃) =
∑
nn′ll′

dλµnn′ll′ d̃
λν∗
nn′ll′ , (2.57)

or

kλ(ρ, ρ̃) =
∑
nn′ll′

dλ
nn′ll′

(
d̃λ
nn′ll′

)†

. (2.58)

It should be noted that each of the vectors now contains 2λ+ 1 rows. Now consider how the

kernel in Eq. (2.50) changes if the atoms in the environment ρ(r) are rotated by the action of a

rotation R̂1. In this case, we obtain

kλ(R̂1ρ, ρ̃) =

∫
dR̂Dλ(R̂)k(R̂1ρ, R̂ρ̃) =

∫
dR̂Dλ(R̂1)D

λ(R̂−1
1 )Dλ(R̂)k(ρ, R̂−1

1 R̂ρ̃)

= Dλ(R̂1)

∫
dR̂′Dλ(R̂′)k(ρ, R̂′ρ̃) = Dλ(R̂1)k

′λ(ρ, ρ̃) (2.59)

where the invariance of the kernel under simultaneous rotation of environments ρ and ρ̃ was

exploited in the second step [73] and R̂′ = R̂−1
1 R̂. The renaming of dR̂ to dR̂′ is possible due to

the left and right invariance of the Haar measure in compact Lie groups [33]. Now consider a

Cartesian tensor property α, which can be written as a spherical tensor [98] with components

αλ. For a given atomic environment i, the components of the spherical tensor are obtained using

αλ
i =

∑
j

kλ(ρi, ρj)wj, (2.60)

where wj are learned weights. Using Eq. (2.59), rotation of the chemical environment i transforms

the components of the spherical tensor according to

α′λ
i =

∑
j

kλ(R̂ρi, ρj)wj = Dλ(R̂)
∑
j

k′λ(ρi, ρj)wj, (2.61)
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where k′λ(ρi, ρj) is the kernel corresponding to the unrotated environment. This proves the

covariance of the λ-SOAP kernel according to Eq. (2.47). The λ-SOAP kernel has been used in

the prediction of dipole moments, polarizabilities and hyper-polarizabilities of water [73], dipole

moments of small organic molecules [184] in the QM9 dataset [26, 157] and the prediction of

electronic densities [72, 115, 60].

2.2.2 Equivariant neural networks

As mentioned, the requirements for neural network layers to be equivariant were formalized by

Kondor [106] and need to be of the form of a generalized convolution in Eq. (2.48). Many different

architectures are discussed in the literature, such as Clebsch-Gordan networks [105, 106, 6],

tensor-field networks [179] and spherical CNNs [41, 40]. Furthermore, the E3NN library [112, 67]

was developed to allow for the construction of many proposed layer architectures. For the

purposes of this discussion, I will focus on the Clebsch-Gordan network architecture [105]. This

type of network works by forming the tensor product between all angular momentum channels of

the layer inputs, followed by the reduction of the tensor product by Clebsch-Gordan summation.

The input of the first layer has to be the spherical harmonic transform of the real-space input.

The input should be a real-space function encoding information about the molecule or cluster.

For example, Kondor [105] and Cohen [41] used a generalized version of the Coulomb matrix as

their input function. Here, I will use the smooth electron density as employed in the SOAP

descriptor [15]

ρ(k)(r) =
∑
i

e−αi(r−rik)
2

. (2.62)

As we have seen before, the neighbourhood density can then be expanded in a basis of spherical

harmonics and radial basis function, yielding a set of expansion coefficients

ρ
(k)
nlm =

∫
drρ(k)(r)Ylm(r̂)gn(r). (2.63)

These coefficients are then placed into matrices ρ
(k)
l according to their angular momentum l. The

layer operation of the Clebsch-Gordan network starts by building the tensor product between

all pairs of angular momentum channels, which is effectively a quadratic non-linearity [105]. For

44



CHAPTER 2. NAVIGATING THE FEATURE FOREST

the first layer, the layer operation is written as

g
(k,1)
l,l′ = ρ

(k)
l ⊗ ρ

(k)
l′ . (2.64)

After building all possible tensor products, a Clebsch-Gordan summation is computed [155].

The result of this summation is given by Kondor [105] as

g
(k,1)
n1n2lm

=
∑

m1,m2

C lm
l1m1l2m2

ρ
(k)
n1l1m1

ρ
(k)
n2l2m2

(2.65)

where C lm
l1m1l2m2

are the Clebsch-Gordan Coefficients. An equivalent Clebsch-Gordan summation

is also employed to generalise the ACE descriptor to tensorial properties [52]. One can show that

the Clebsch-Gordan sum commutes with the Wigner-D matrix by assuming that the environment

is rotated - i.e. ρ
(k)
nlm →

∑
m′ Dl

mm′ρ
(k)
nlm′ . Substituting this expression into Eq. (2.65), one obtains

g
(k,1)
n1n2lm

=
∑

m1,m2

∑
m3,m4

C lm
l1m1l2m2

Dl1
m1m3

Dl2
m2m4

ρ
(k)
n1l1m3

ρ
(k)
n2l2m4

. (2.66)

Now using [4]

Dl1
m1m3

Dl2
m2m4

=
∑

l3m5m6

Dl3
m5m6

C l3m5
l1m1l2m2

C l3m6
l1m3l2m4

, (2.67)

and substituting into Eq. (2.66), we obtain

g
(k,1)
n1n2lm

=
∑

m1,m2

∑
m3,m4

∑
l3m5m6

Dl3
m5m6

C l3m5
l1m1l2m2

C l3m6
l1m3l2m4

C lm
l1m1l2m2

ρ
(k)
n1l1m3

ρ
(k)
n2l2m4

. (2.68)

We can now sum over m1 and m2 and use the orthogonality relation for the Clebsch Gordan

coefficients [4]

δl3lδm5m =
∑

m1,m2

C l3m5
l1m1l2m2

C lm
l1m1l2m2

. (2.69)

Hence,

g
(k,1)
n1n2lm

=
∑

m3,m4

∑
l3m5m6

Dl3
m5m6

C l3m6
l1m3l2m4

δl3lδm5mρ
(k)
n1l1m3

ρ
(k)
n2l2m4

. (2.70)
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Again summing over m5 and l3 yields

g
(k,1)
n1n2lm

=
∑

m3,m4

∑
m6

Dl
mm6

C lm6
l1l2m3m4

ρ
(k)
n1l1m3

ρ
(k)
n2l2m4

, (2.71)

which is the same as

g
(k,1)
n1n2lm

=
∑
m6

Dl
mm6

g
(k,1)
n1n2lm6

, (2.72)

which shows that transforming the inputs ρ
(k)
n1l1m1

of a layer is equivalent to transforming the

outputs of a layer. The number of radial channels in Eq. (2.65) grows quadratically in each layer.

Moreover, several pairs of tensor products will produce the same output angular momentum l.

The fragments with the same angular momentum are collected in a larger matrix. To avoid

the exponential growth of n channels, the Clebsch-Gordan network includes a multiplication

with a learnable weight matrix [105]. Assuming concatenation of equivalent l channels has been

performed, the multiplication with the weights looks as follows

o
(k,S)
nlm =

∑
n1n1

g
(k,S)
n1n2lm

Wn,n1n2 , (2.73)

where o
(k,S)
nlm forms the output of layer S, which is then passed to the next layer (S + 1), where

the process is repeated. In contrast to traditional neural networks, the non-linearity of the

Clebsch-Gordan layer is performed before reduction with the weight matrix. In general (ignoring

the atomic index k), the output of layer S is given by

o
(S)
nlm =

∑
n1n2

C lm
l1m1l2m2

o
(S−1)
n1lm

o
(S−1)
n2l′m′Wn,n1n2 , (2.74)

In the final layer of the network, only the required angular momentum channels are output [105]:

for scalar properties, only the l = 0 outputs are needed. For vectors, outputs with l = 1 are

used, and for rank-2 tensors, outputs up to l = 2 are used, depending on the symmetry of the

rank-2 tensor.
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2.3 Discussion

The construction of representations for molecules and clusters has seen significant developments

over the last few decades. In this chapter, we explored several invariant descriptors, such as the

Coulomb matrix [158] and the bag-of-bonds descriptor [77]. While these descriptors are trivially

invariant under rotations and translations, their main drawback is that they are not invariant

under the permutation of atoms in a system. To achieve permutational invariance, several

heuristics have to be employed, such as using consistent orderings of descriptor entries [77],

eigenspectrum decompositions [78] or summing over randomly permuted descriptors [130]. More-

over, zero padding is usually required in order to ensure all descriptors in the dataset have the

same dimension. Next, we looked at a class of descriptors which are systematically constructed

from an atomic neighbourhood density, such as the bispectrum [104, 16], SOAP [15], ACE [51]

and wavelet-scattering descriptors [122]. These descriptors impose the invariances of the system

by starting from a spectral decomposition and integrating out rotational degrees of freedom. In

our exploration of these different spectral descriptors, we saw that there is a close relationship

between most spectral descriptors. For example, the power spectrum from Section 2.1.3, as

well as the bispectrum from Section 2.1.4, are equivalent to SOAP(2) and SOAP(3) descriptors

under the assumption that a smooth atomic neighbourhood density is used. The coefficients of

the SOAP descriptor can, in turn, be recast within the ACE framework [51], illustrating that

the hierarchy of SOAP descriptors SOAP(n), is equivalent to the n-body cluster coefficients

of ACE. Thus, it can be said that ACE is a generalization of previous descriptors based on

expansions of the neighbourhood density. While ACE arguably provides the most complete

description of a system if the expansion is taken to the maximum order, as stated by Pozd-

nyakov [147], the common practice of introducing a cutoff sphere beyond which neighbours are

ignored introduces a further consideration with regards to the choice of descriptors. As argued

by Mallat [81], simply increasing the radius of the cutoff sphere may negatively impact the

stability of the descriptor to deformations of the atomic environment. To still include long-range

physics typically ignored in density-based descriptors, methods such as the LODE descriptor [71]

may be employed in conjunction with descriptors based on n-body correlations. All of these
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considerations make the selection of appropriate descriptors a challenging problem, and one can

find advantages and disadvantages for each specific choice. A reasonable procedure for predicting

scalar properties, such as the scalar polarizability, would be to start with a simple descriptor

such as SOAP(2) and increase the body order of the SOAP kernel if the incompleteness is

found to cause issues. If this is still insufficient, another descriptor, such as ACE, could be

employed and long-range information could be incorporated using a long-range descriptor such

as LODE. Another consideration in this procedure would be the extrapolation capability of

the model. If the model is trained on small molecules or clusters and subsequently used to

predict a property of a larger cluster, it may be desirable only to include information about

the immediate neighbourhood of an atom to facilitate the recognition of chemical environments

across different system sizes [196], as we will see in Chapter 4.

In the case of machine learning functions such as the DDRF, the use of a descriptor that

transforms under rotation is required. For example, the symmetry adapted λ-SOAP descriptor

was employed by Grisafi [72] who exploited the fact that the spherical harmonics of angular

momentum l transform in the same way as a spherical tensor of rank l. While this is a viable

strategy for developing models of local functions such as the electron density, it cannot be easily

extended to non-local functions. Looking at Eq. (2.58), it is clear that an extension to non-local

functions would result in a hierarchy of λ-SOAP kernels indexed by two angular momentum

indexes λ1 and λ2, each with dimension (2λ1 + 1)× (2λ1 + 1)× (2λ2 + 1)× (2λ2 + 1). Such a

kernel would take the form

kλ1,λ2(ρ, ρ̃) =

∫
dR̂Dλ1(R̂)⊗Dλ2(R̂)

∣∣∣∣ ∫ drdr′ρ(r, r′)ρ̃(R̂r, R̂r′)

∣∣∣∣2, (2.75)

for a non-local descriptor ρ(r, r′). Following similar to steps to Eq. (2.59), it can be shown that

this kernel transforms as

kλ1,λ2(R̂1ρ, ρ̃) =

∫
dR̂Dλ1(R̂)⊗Dλ2(R̂)

∣∣∣∣ ∫ drdr′ρ(R̂1r, R̂1r
′)ρ̃(R̂r, R̂r′)

∣∣∣∣2
= Dλ1(R̂1)⊗Dλ2(R̂1)k

λ1,λ2(ρ, ρ̃), (2.76)
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which would be the desired transformation property for a non-local quantity, such as the DDRF.

Thus, while formally possible, an extension of the λ-SOAP framework to non-local functions

such as the DDRF may not be practical. Another option would be the use of the Clebsch-

Gordan network architecture [105], or general equivariant neural networks constructed using

E3NN [67, 112]. In order to use this network architecture to learn the density-density response

function, the final layer (S) has to be slightly modified. In this layer, the Clebsch-Gordan sum

is omitted, and instead, the following expression is evaluated

o
(S)
nlmn′l′m′ =

∑
n1n2

o
(S−1)
n1lm

o
(S−1)
n2l′m′Wnn′,n1n2 , (2.77)

where Wnn′,n1n2 is again a learnable weight matrix and o
(N)
nlmn′l′m′ is a prediction for the expansion

coefficients of a non-local function χ
(i)
nlmn′l′m′ , expanded in a basis of spherical harmonics and

radial basis functions. This final layer also trivially commutes with the Wigner-D matrix

Dl
mm1

(R̂), as no summation over m is involved. Depending on the number of radial channels in

the final layer and the number of radial channels in the output, the weight matrix Wnn′,n1n2

may still become prohibitively large. Thus, it is questionable if an equivariant model for

non-local functions is practical. This issue is revisited in Chapters 5 and 6, where I develop a

machine-learning model of the DDRF.
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Chapter 3

Electronic structure methods

The development of the famous Schrödinger equation by the Austrian physicist Erwin Schrödinger [164]

formed one of the most impactful discoveries of the 20th century and the starting point for the

rigorous mathematical treatment of quantum mechanics. Unfortunately, an analytical solution

to the Schrödinger equation is only possible for the most trivial systems, which led to the

development of many approximate methods. In this chapter, I will start by introducing density

functional theory, one of the most successful approximate methods for finding the ground-state

energy of a system. In the second part of this chapter, I introduce the GW method, which is a

solution to the famous band-gap problem of density-functional theory [169, 166]. At the heart

of these theories lies the many-body Hamiltonian [126] Ĥ given by

Ĥ = −1

2

∑
i

∇2
i +

1

2

∑
i ̸=j

1

|ri − rj|
−
∑
i,I

ZI

|ri −RJ |
− 1

2

∑
I

∇2
I

MI

+
1

2

∑
I ̸=J

ZIZJ

|RI −RJ |
, (3.1)

where ZI is the number of protons in an atom, andMI is the mass of the nucleus. Hartree atomic

units are used throughout this chapter. The first term in Eq. (3.1) corresponds to the kinetic

energy of electrons, the second to electron-electron interactions, the third to the attraction

between electrons and nuclei and the fourth and fifth to the kinetic energy of nuclei and nucleus-

nucleus repulsion, respectively, where electron positions are given by coordinates ri and nuclear

coordinates are given by positions RI . The first step in simplifying Eq. (3.1) is the so-called Born-

Oppenheimer approximation [126], in which electron and nuclear wavefunctions are assumed
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to be separable and electrons respond to nuclear motion adiabatically. This approximation is

justified since nuclei are significantly heavier than electrons. Under this approximation, the

fourth term can be neglected when solving the electronic Schrödinger equation. If nuclei are

further assumed to be completely static, the fifth term results in a constant energy shift to the

total energy.

3.1 Density Functional Theory

Density functional theory was first introduced in 1964 by Hohenberg and Kohn [85], where

instead of finding an explicit solution to the many-body Schrödinger equation, the problem

of finding the ground state of a many-body system was recast by expressing properties of

the many-body system as a functional of the ground-state electron density ρ0(r) [126]. The

foundation of density-functional theory is formed by two fundamental theorems [85]:

• Theorem I: In a system of N interacting particles in an external potential Vext(r), the

external potential Vext(r) is uniquely determined (up to a constant) by the ground state

density ρ0(r) of the system.

• Theorem II: There exists a universal energy functional of the electron density E[ρ], valid

for any external potential Vext(r). This universal functional is minimized by the ground

state density of the N -particle system ρ0(r).

The first theorem follows from a proof-by-contradiction [126]: Assume there exist two different

external potentials V
(1)
ext (r) and V

(2)
ext (r), which have the same ground state density ρ0(r). These

two external potentials yield differing Hamiltonians and, thus, differing ground state wave

functions. It follows that

E(1) =
〈
Ψ(1)

∣∣Ĥ(1)
∣∣Ψ(1)

〉
<
〈
Ψ(2)

∣∣Ĥ(1)
∣∣Ψ(2)

〉
. (3.2)

This inequality can be rewritten as

E(1) < E(2) +

∫
dr[V

(1)
ext (r)− V

(2)
ext (r)]ρ0(r). (3.3)

51



CHAPTER 3. ELECTRONIC STRUCTURE METHODS

An analogous inequality can be derived by starting at E(2), yielding

E(2) < E(1) +

∫
dr[V

(2)
ext (r)− V

(1)
ext (r)]ρ0(r). (3.4)

Adding Eq. (3.3) and Eq. (3.4), we arrive at the contradicting inequality

E(1) + E(2) < E(2) + E(1), (3.5)

which proves that there cannot be two external potentials yielding the same ground state density.

Given that the ground state density uniquely determines the external potential, it follows that

each property of the system, including the total energy can be written as a functional of the

electronic density ρ(r)

E[ρ] = T [ρ] + Eint[ρ] +

∫
drVext(r)ρ(r), (3.6)

where T [ρ] is the kinetic energy and Eint[ρ] is the electron-electron interaction energy. These

two terms are universal functionals and independent of the external potential. Suppose the

ground state density associated with an external potential V
(1)
ext (r) is given by ρ(1)(r) and has a

corresponding ground state wave function Ψ(1). To prove the second theorem, we define the

energy E(1)[ρ] as

E(1)[ρ] = T [ρ] + Eint[ρ] +

∫
drV

(1)
ext (r)ρ(r). (3.7)

A density ρ(2)(r) associated with a different external potential V
(2)
ext (r) and wave function Ψ(2)

yields a larger energy E(1)[ρ(2)] [85], when evaluated against the Hamiltonian H(1)

E(1)[ρ(1)] =
〈
Ψ(1)

∣∣Ĥ(1)
∣∣Ψ(1)

〉
<
〈
Ψ(2)

∣∣Ĥ(1)
∣∣Ψ(2)

〉
= E(1)[ρ(2)]. (3.8)

Since no assumption was made about ρ(2)(r) (other than it being the ground state density

associated with some external potential), it follows that the ground state density yields a lower

total energy than any other density [126]. While these two theorems justify the electron density

as a central property of a many-body system, they don’t provide explicit expressions for the form

of the universal density functional. A solution to finding the ground state energy was proposed
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by Kohn and Sham in 1965 [103], which introduces an auxiliary system of non-interacting

electrons.

3.1.1 Kohn-Sham equations

The Ansatz for solving the many-body problem proposed by Kohn and Sham [103] relies on two

fundamental assumptions: (1) An auxiliary system of non-interacting electrons representing the

exact ground state density exists. (2) The Hamiltonian of this auxiliary system consists of the

single-particle kinetic energy operator and an effective potential acting on the electron in question.

For the purposes of this presentation, I will ignore the spin index of the wavefunctions, which is

a valid assumption in the case of non-magnetic systems. In atomic units, the Hamiltonian of

individual electrons in the auxiliary system is given by [126]

Ĥaux = −1

2
∇2 + Veff(r), (3.9)

yielding solutions {ψi(r), ϵi}. The electron density of the auxiliary system is then defined as

ρ(r) = 2

N/2∑
i=1

|ψi(r)|2, (3.10)

where the factor of 2 is included to account for spin degeneracy. It should be noted that the

restricted sum in the above equation is only valid at zero temperature. This auxiliary system

gives rise to an expression for the total energy of a system

EKS = Ts[ρ] +

∫
drVext(r)ρ(r) + EHartree[ρ] + Exc[ρ], (3.11)

where Ts[ρ] is the independent particle kinetic energy [126]

Ts = −
N/2∑
i

〈
ψi

∣∣∇2
∣∣ψi

〉
, (3.12)
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EHartree[ρ] is the Hartree contribution to the total energy,

EHartree[ρ] =
1

2

∫
dr

∫
dr′

ρ(r)ρ(r′)

|r− r′|
, (3.13)

Vext(r) is the external potential, which, in the absence of any external fields, is simply the

potential caused by the presence of the nuclei. Finally, Exc[ρ] combines together all many-body

effects and the difference between the single-particle kinetic energy and the true kinetic energy

of the many-particle system [126]. A system of linear equations can be derived by taking the

functional derivative

δEKS

δψ∗
i (r)

=
δTs

δψ∗
i (r)

+

[
δEext

δρ(r)
+
δEHartree

δρ(r)
+
δExc

δρ(r)

]
δρ(r)

δψ∗
i (r)

−
δ
[
2
∑N/2

i ϵi
∫
drψ∗

i (r)ψi(r)
]

δψ∗
i (r)

= 0, (3.14)

under the constraint that wavefunctions are normalized. This constraint is given by the last

term in the above equation, where the energy ϵi plays the role of the Lagrange multiplier. This

results in the equation

(
− 1

2
∇2 + Vext(r) + VHartree(r) + Vxc(r)

)
ψi(r) = ϵiψi(r), (3.15)

where we identify the effective potential Veff with

Veff(r) = Vext(r) + VHartree(r) + Vxc(r). (3.16)

Eq. (3.15) is usually solved self-consistently: An initial guess for the starting density is generated,

and the effective potential is calculated from which wavefunctions are obtained. Then the new

density is calculated, and the process repeats. This procedure is iterated until convergence is

reached. The only unknown term in Eq. (3.16) is the so-called exchange-correlation potential

Vxc(r). The exchange-correlation energy Exc[ρ] can be written as the Coulomb repulsion of the

density of an electron and the so-called exchange-correlation hole charge density ρxc(r, r
′) [75]

EXC[ρ] =

∫
drρ(r)

∫
dr′

ρxc(r, r
′)

|r− r′|
. (3.17)
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The simplest approximation to the exchange-correlation energy is given by the local density

approximation (LDA), in which it is assumed that ϵxc(ρ, r) at a given point r is assumed to

be the same as that of a uniform electron gas of the same density as ρ(r), evaluated at point

r [126]. In this case, the exchange-correlation energy can be written as

ELDA
XC [ρ] =

∫
drρ(r)ϵLDA

xc (ρ(r)). (3.18)

In practice, ϵLDA
xc (ρ(r)) is parametrized based on known low- and high-density limits and fitted

to the result of quantum Monte Carlo (QMC) calculations, leading to parameterizations such as

those obtained by Perdew and Zunger (PZ) [143] or by Vosko, Wilk and Nusair [187]. More

sophisticated approximations, such as the generalized gradient approximation (GGA), where

the exchange-correlation density depends on the magnitude of the gradient |∇ρ(r)| and density

at point r. The most famous approximation of this kind is the parametrization proposed by

Perdew, Burke and Ernzerhof (PBE) [144]. Approximations beyond the GGA exist in so-called

meta-GGA functionals such as the recently popularized SCAN functional [176, 17], or hybrid

functionals which include a fraction of the exact Hartree-Fock exchange energy [20, 21].

3.1.2 Plane-wave DFT

Many DFT codes rely on the use of plane-wave basis sets, including Quantum Espresso (QE) [70,

69], which is used throughout this thesis. In plane-wave DFT, single-electron wavefunctions are

expanded as [126]

ψn(r) =
1√
V

∑
q

cn,qe
iq·r ≡

∑
q

cn,q⟨r|q⟩, (3.19)

where V is the crystal volume, q the crystal momentum and cn,q a set of expansion coefficients.

Eq. (3.9) then becomes ∑
q

⟨q′|Ĥaux|q⟩cn,q = ϵncn,q′ . (3.20)

The kinetic energy contribution to the Hamiltonian trivially evaluates to

⟨q′| − 1

2
∇2|q⟩ = 1

2
|q|2δq,q′ . (3.21)
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The effective potential Veff is unit-cell periodic and thus can be written as a Fourier series

Veff (r) =
∑
m

Veff (Gm)e
iGm·r, (3.22)

where G are reciprocal lattice vectors. The matrix elements of the effective potential are given

by

⟨q′|Veff (r)|q⟩ =
1

V

∑
m

∫
drVeff (Gm)e

i[Gm−(q′−q)]·r =
∑
m

Veff (Gm)δq−q′,Gm . (3.23)

Now using the substitutions q = k + Gm and q′ = k + Gm′ [126], where k is the crystal

momentum constrained to the first Brillouin-zone, we arrive at a set of linear equations for each

k-point ∑
m′

Hmm′(k)ci,m′(k) = ϵi(k)ci,m(k), (3.24)

where

Hmm′(k) =
1

2
|k+Gm|2δmm′ + Veff (Gm −Gm′). (3.25)

In the case where pseudopotentials are used, Eq. (3.25) has to be generalized to non-local

effective potentials [126].

3.1.3 Pseudopotentials

In order to avoid all-electron calculations, where core electrons are included explicitly, pseu-

dopotentials are often employed in plane-wave DFT calculations. The first step towards the

pseudopotential approximation is the frozen core approximation [168], in which core electrons

are assumed to remain in the states occupied in an isolated atom. However, core states are

localized around the nucleus and thus rapidly oscillate. In order to maintain orthogonality with

the core states, valence states also rapidly oscillate inside the core region [168]; therefore, many

plane waves are required to correctly describe the valence states in the vicinity of the nucleus.

Even if one replaces the effect of the core electrons with an effective potential, as is done in

the effective core approximation [168], valence states still oscillate rapidly in the vicinity of the
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nucleus. The fundamental idea of the pseudopotential is to replace the valence wave functions

with pseudo wavefunctions, which are equal to the valence wave functions in an all-electron

calculation of an isolated atom outside a core region with cut-off Rc but are smooth and nodeless

inside the core region [168]. As noted by Kresse et al. [107], the pseudo wavefunctions must

also be continuously differentiable at least twice at Rc. Another important consideration is

that BerkeleyGW, the GW code employed throughout this thesis, requires norm-conserving

pseudopotentials [90, 49]. In norm-conserving pseudopotentials, the pseudo wavefunctions still

differ from the all-electron wavefunctions; however, the charge enclosed inside the core region

is the same [107]. These criteria are enforced when fitting the pseudo wavefunctions on an

isolated atom. Once the pseudo wavefunctions are obtained by smoothing the all-electron

valence wavefunctions, the radial Schrödinger equation can be inverted to obtain a non-local

pseudopotential [107] which replaces the bare Coulomb potential of the nucleus. In this thesis,

norm-conserving pseudopotentials fitted using the method by Rappe et al. [151] (RRKJ) and

the method by Von Barth and Car [185] (VBC) are employed.

3.2 Electronic excitations and the GW approximation

As mentioned in the introduction, the DFT band gap is significantly underestimated when

calculated using the Kohn-Sham energies [145, 169]. In order to tackle this problem, the GW

method is often employed. The system of self-consistent equations that form the basis for

the GW method was first derived by Hedin [79]; however, these equations are rarely solved

self-consistently due to the difficulty of accounting for so-called vertex-corrections [139]. The

vertex correction effectively accounts for higher-order perturbative corrections, as will become

clear in this section. Thus, in this section, I will develop the central equations of the so-called

one-shot G0W0 approach, which is used in all quasiparticle calculations in this thesis. The

GW method is based on many-body perturbation theory, where the central quantity is the

single-particle Green’s function G(r, r′, t, t′). Roughly speaking, the Green’s function describes

the propagation of a particle added to the system at time t′ and point r′ and removed from

the system at r, t. To fully understand the significance of the Green’s function, familiarity with

57



CHAPTER 3. ELECTRONIC STRUCTURE METHODS

second quantization and diagrammatic perturbation theory are required. A brief overview of

these concepts is provided in Appendix A. For a more comprehensive introduction, I refer the

interested reader to Fetter and Walecka [63] Chapter 3.

3.2.1 The interacting Green’s function

The Green’s function is a fundamental property of many-particle systems, and its utility has

been demonstrated in great detail, for example, by Fetter and Walecka [63], Galitskii et al. [66],

Klein et al. [102] or Martin et al. [125]. The Green’s function is defined as [63]

iGαβ(r, r
′, t, t′) =

⟨Ψ0|T [ψ̂Hα(r, t)ψ̂
†
Hβ(r

′, t′)]|Ψ0⟩
⟨Ψ0|Ψ0⟩

, (3.26)

where |Ψ0⟩ is the interacting ground state in the Heisenberg picture, and ψ̂Hα(r, t) is a field

operator in the Heisenberg picture (see Appendix A). Moreover, the operator T [. . . ] orders

operators inside the T -product from left to right in order of increasing time. Additionally, a

factor of (−1)k has to be added, where k is the number of interchanges necessary to achieve the

correct time order [63]. We can express Eq. (3.26) more explicitly by using the expressions for

operators in the Heisenberg picture and by expressing the time-ordering with Heaviside step

functions θ(t− t′)

iGαβ(r, r
′, t, t′) = θ(t− t′)⟨Ψ0|eiĤtψ̂α(r)e

−iĤteiĤt′ψ̂†
β(r

′)e−iĤt′ |Ψ0⟩

− θ(t′ − t)⟨Ψ0|eiĤt′ψ̂†
β(r

′)e−iĤt′eiĤtψ̂α(r)e
−iĤt|Ψ0⟩, (3.27)

where it was further assumed that the ground state is normalized to unity. Applying the

operators to the ground states, we obtain

iGαβ(r, r
′, t, t′) = θ(t− t′)eiE0(t−t′)⟨Ψ0|ψ̂α(r)e

−iĤtψ̂†
β(r

′)e−iĤt′|Ψ0⟩

− θ(t′ − t)e−iE0(t−t′)⟨Ψ0|ψ̂†
β(r

′)e−iĤt′eiĤtψ̂α(r)|Ψ0⟩, (3.28)

where E0 is the ground-state of the N -electrons system.
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Inserting a complete set of states |Ψn⟩, including all possible numbers of electrons, in between

the exponential operators, we find that

iGαβ(r, r
′, t, t′) =

∑
n

θ(t− t′)e−i(En−E0)(t−t′)⟨Ψ0|ψ̂α(r)|Ψn⟩⟨Ψn|ψ̂†
β(r

′)|Ψ0⟩

− θ(t′ − t)ei(En−E0)(t−t′)⟨Ψ0|ψ̂†
β(r

′)|Ψn⟩⟨Ψn|ψ̂α(r)|Ψ0⟩. (3.29)

Now inserting the integral expression for the step function [63]

θ(t− t′) = −
∫
dω

1

2πi

e−iω(t−t′)

ω + iη
, (3.30)

and substituting ω′ = ω + (En − E0) and ω′ = ω − (En − E0) in the first and second term

respectively, we obtain

iGαβ(r, r
′, t, t′) =

∑
n

{
−
∫
dω′ 1

2πi

e−i(ω′)(t−t′)

ω′ − (En − E0) + iη
⟨Ψ0|ψ̂α(r)|Ψn⟩⟨Ψn|ψ̂†

β(r
′)|Ψ0⟩

−
∫
dω′ 1

2πi

e−i(ω′)(t−t′)

ω′ + (En − E0)− iη
⟨Ψ0|ψ̂†

β(r
′)|Ψn⟩⟨Ψn|ψ̂α(r)|Ψ0⟩

}
. (3.31)

Now computing the Fourier transform, we finally obtain the so-called Lehmann representa-

tion [113] of the Green’s function

Gαβ(r, r
′, ω) =

∑
n

(
⟨Ψ0|ψ̂α(r)|Ψn⟩⟨Ψn|ψ̂†

β(r
′)|Ψ0⟩

ω − (En − E0) + iη
+

⟨Ψ0|ψ̂†
β(r

′)|Ψn⟩⟨Ψn|ψ̂α(r)|Ψ0⟩
ω + (En − E0)− iη

)
. (3.32)

Since the quantities in the numerator involve fully-interacting states, they are not practical to

compute. However, since the field operators add or remove a particle from the ground state, we

can already conclude that only states containing N ± 1 electrons will contribute, as overlaps

with the ground state will otherwise vanish. It is also instructive to consider the case where

the states |Ψn⟩ and the ground state are given by a single Slater determinant, as is the case in

Hartree-Fock and Kohn-Sham DFT methods. We will denote the states with an additional or
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missing electron in state s compared to the ground state |N ± 1, s⟩. We then obtain

Gαβ(r, r
′, ω) =

∑
s

{
ψαs(r)ψ

∗
βs(r

′)⟨Ψ0|ĉαs|N + 1, s⟩⟨N + 1, s|ĉ†βs|Ψ0⟩
ω − (Es − E) + iη

+
ψ∗
βs(r

′)ψαs(r)⟨Ψ0|ĉ†βs|N − 1, s⟩⟨N − 1, s|ĉαs(r)|Ψ0⟩
ω + (Es − E)− iη

}
. (3.33)

which is the same as

Gαβ(r, r
′, ω) =

∑
s

{
ψαs(r)ψ

∗
βs(r

′)(1− fαs)(1− fβs)

ω − ϵs + iη
+
ψ∗
βs(r

′)ψαs(r)fαsfβs

ω − ϵs − iη

}
, (3.34)

where fαs is the occupancy of state s with spin-index α. Additionally, the total energy differences

will correspond to the Kohn-Sham/Hartree-Fock single-particle energies ϵs. The first term in

Eq. (3.34) runs over all unoccupied states, while the second term runs over all occupied states.

It is important to emphasize that this form of the Green’s function is equivalent to the Green’s

function of a non-interacting system, which is why this form is typically used as an initial

guess for self-consistent GW calculations, or as the Green’s function G0 in one-shot G0W0

calculations [139]. Additionally, if the Hamiltonian is not spin-dependent, we can further

simplify the expression for the Green’s function to obtain

Gαβ(r, r
′, ω) = δαβ

∑
s

ψs(r)ψ
∗
s(r

′)(1− fs)

ω − ϵs + iη
+
ψ∗
s(r

′)ψs(r)fs
ω − ϵs − iη

. (3.35)

3.2.2 The density-density response function

As described in the Introduction, the density-density response function maps a perturbing

potential to the change in charge density resulting from the perturbation. Formally, the DDRF

is defined as [63]

χ(r, r′, t, t′) =
⟨Ψ0|T [n̂Hα(r, t)n̂Hβ(r

′, t′)]|Ψ0⟩
⟨Ψ0|Ψ0⟩

, (3.36)

where n̂Hα(r, t) is the number-density operator in the Heisenberg picture. Starting from this

definition, it can be shown (see, for example, Fetter and Walecka Chapter 4 [63]) that for a
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non-interacting system, the DDRF in the frequency domain can be written as

χ0(r, r
′, ω) = − i

π

∫
dω′G0(r, r

′, ω′)G0(r
′, r, ω + ω′), (3.37)

where G0(r, r
′, ω′) is the Green’s function of a non-interacting system, defined in Eq. (3.35).

The single-particle states ψs(r), and corresponding energies are obtained from a non-interacting

calculation or a mean-field calculation like Kohn-Sham DFT. In this product, two of the terms

will have poles on the same side of the real axis; thus, their contributions vanish. The remaining

terms are given by

χ0(r, r
′, ω) =

∑
ss′

− i

π

∫
dω′
[
ψs(r)ψ

∗
s(r

′)ψs′(r
′)ψ∗

s′(r)(1− fs)fs′

(ω′ − ϵs + iη)(ω + ω′ − ϵs′ − iη)
+
ψ∗
s(r

′)ψs(r)ψ
∗
s′(r)ψs′(r

′)fs(1− fs′)

(ω′ − ϵs − iη)(ω + ω′ − ϵs′ + iη)

]
.

(3.38)

We can evaluate this integral by contour integration, closing the contour in the upper half-plane

in both terms. The two residues are given by

Res

[
1

(ω′ − ϵs + iη)(ω + ω′ − ϵs′ − iη)

]
= lim

ω′→−ω+ϵ′s+iη

ω′ + ω − ϵ′s − iη

(ω′ − ϵs + iη)(ω + ω′ − ϵs′ − iη)

=
1

(−ω + ϵs′ − ϵs + 2iη)
, (3.39)

and

Res

[
1

(ω′ − ϵs − iη)(ω + ω′ − ϵs′ + iη)

]
= lim

ω′→ϵs+iη

ω′ − ϵs − iη

(ω′ − ϵs − iη)(ω + ω′ − ϵs′ + iη)

=
1

(ω − ϵs′ + ϵs + 2iη)
. (3.40)

Thus (by relabelling 2η → η′, we find that the non-interacting DDRF is given by

χ0(r, r
′, ω) =

∑
ss′

2

(
ψ∗
s(r

′)ψs(r)ψ
∗
s′(r)ψs′(r

′)fs(1− fs′)

ω + ϵs − ϵs′ + iη′
− ψs(r)ψ

∗
s(r

′)ψs′(r
′)ψ∗

s′(r)(1− fs)fs′

ω + ϵs − ϵs′ − iη′

)
.

(3.41)

We can further simplify this expression (including absorption of the factor of 2 into the sum

and summing over both spin states), yielding the Adler-Wiser formulation [3, 195] of the
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(time-ordered) non-interacting DDRF

χ0(r, r
′, ω) =

occ∑
s

empty∑
s′

ψ∗
s(r

′)ψs(r)ψ
∗
s′(r)ψs′(r

′)

(
1

ω + ϵs − ϵs′ + iη′
− 1

ω + ϵs′ − ϵs − iη′

)
. (3.42)

3.2.3 The random phase approximation and electronic screening

The random phase approximation (RPA) is an approximation that introduces the concept of a

screened Coulomb interaction [29]. This screened Coulomb interaction is dynamic and frequency

or time-dependent and can be drawn diagrammatically in terms of the Feynman diagrams

in Fig. 3.1. For a brief introduction to Feynman diagrams, please refer to Appendix A. The

polarization bubbles, consisting of two Green’s functions in opposite directions, correspond to

the non-interacting DDRF, and the interaction lines correspond to the bare Coulomb interaction.

= + +

+ · · ·

Figure 3.1: Diagrammatic expansion of the screened Coulomb interaction within the RPA
approximation.

We can write the diagrammatic expansion in Fig. 3.1 as a Dyson equation by using the

Feynman rules. This results in

W (r, r′, t, t′) = V (r, r′)δ(t− t′) +

∫
dr1

∫
dr2V (r, r1)χ0(r1, r2, t, t

′)V (r2, r
′)+∫

dr1

∫
dr2

∫
dr3

∫
dr4

∫
dt1V (r, r1)χ0(r1, r2, t, t1)V (r2, r3)χ0(r3, r4, t1, t

′)V (r4, r
′) + . . .

= V (r, r′)δ(t− t′) +

∫
dr1

∫
dr2V (r, r1)χ(r1, r2, t, t

′)V (r2, r
′), (3.43)

where the screened Coulomb interaction is given byW (r, r′, t, t′) and I have defined the interacting
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DDRF as χ(r, r′, t, t′), which is given by

χ(r, r′, t, t′) = χ0(r, r
′, t, t′) +

∫
dr1

∫
dr2

∫
dt1χ0(r, r1, t, t1)V (r1, r2)χ0(r2, r

′, t1, t
′) + . . .

= χ0(r, r
′, t, t′) +

∫
dr1

∫
dr2

∫
dt1χ0(r, r1, t, t1)V (r1, r2)χ(r2, r

′, t1, t
′). (3.44)

We can further simplify Eq. (3.43) by introducing the inverse dielectric function ϵ−1(r, r′, t, t′)

defined as

ϵ−1(r, r′, t, t′) = δ(r− r′)δ(t− t′) +

∫
dr1V (r, r1)χ(r1, r

′, t, t′), (3.45)

yielding the equation for the RPA-screened Coulomb interaction

W (r, r′, t, t′) =

∫
dr1ϵ

−1(r, r1, t, t
′)V (r1, r

′). (3.46)

The inverse dielectric function describes the screening of an electron’s charge by the surrounding

electrons’ response, yielding an effective quasiparticle interaction. The repulsive interaction

between electrons results in electron density depletion around each electron. The electrons with

the depleted charge region surrounding them are modelled as quasiparticles within the RPA.

We will see in the next section how this weak interaction is exploited.

3.2.4 The self energy

When introducing the Green’s function, we have defined it in terms of the interacting ground

state |Ψ0⟩. However, the interacting ground state is inaccessible for all intents and purposes due

to the complexity of solving the many-particle Schödinger equation. Fortunately, a diagrammatic

expansion of the many-body Green’s function is made possible by the Gell-Mann and Low

theorem [68]. The Gell-Mann and Low theorem connects the interacting ground state to the non-

interacting ground state, which yields a diagrammatic expansion in terms of the non-interacting

Green’s function G0 and the Coulomb interaction V . In terms of Feynman diagrams, the

interacting Green’s function (denoted with a directed double line) is given by the diagrams in

Fig. 3.2. The first term in Fig. 3.2 corresponds to the non-interacting Green’s function G0, and

the other two terms to the first order perturbation terms. Only the zeroth and first-order terms
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= + + + · · ·

Figure 3.2: Diagrammatic expansion of the interacting Green’s function in terms of the non-
interacting Green’s function and the Coulomb interaction.

are included explicitly. The higher order terms correspond to all possible Feynman diagrams

with 2n+1 Green’s function lines and n interaction lines, where n is the perturbation order [63].

We can replace the series of non-repeating diagrams between the incoming and outgoing lines

by the proper self-energy insertion Σ, resulting in Fig. 3.3. We can write down an equation for

= + Σ + Σ Σ + · · ·

= + Σ

Figure 3.3: Diagrammatic expansion of the interacting Green’s function in terms of the non-
interacting Green’s function and the proper self-energy Σ.

the diagram in Fig. 3.3, resulting in a Dyson equation for the interacting Green’s function

G(r, r′, t, t′) = G0(r, r
′, t, t′) +

∫
dr1dt1

∫
dr2dt2G0(r, r1, t, t1)Σ(r1, r2, t1, t2)G(r2, r

′, t2, t
′).

(3.47)

By introducing a basis set (as in Eq. (3.35)), the above equation can be turned into an algebraic

equation, which allows us to define the interacting Green’s function as

G =
1

G−1
0 − Σ

. (3.48)

The non-interacting Green’s function is diagonal in the basis of single-particle eigenstates.

Assuming that the self-energy is also diagonal, we can get a simple approximation for the poles
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of the Green’s function as

0 = G−1
0ss − Σss = ω − ϵs − Σss. (3.49)

The above equation highlights the significance of the self-energy: it is equivalent to a perturbative

correction to the energy levels of the non-interacting system and incorporates all many-body

interactions. Thus, it plays a similar role to the exchange-correlation functional in DFT. The

self-energy is, however, again given by an infinite series of Feynman diagrams, the first few of

which are shown in Fig. 3.4.

Σ = + + +· · ·

Figure 3.4: Diagrammatic expansion of the self energy Σ.

To make progress, one has to approximate the self-energy by only retaining certain diagrams.

One potential approximation is only to retain the first two terms. Evaluating the first term

results in

−i
∫
dr′V (r, r′)G0(r

′, r′, t, t+) =

∫
dr′V (r, r′)ρ(r′),

where ρ(r′) is the electron density. The second term is given by

iV (r, r′)G0(r, r
′, t, t′)δ(t− t′), (3.50)

The first term corresponds to the Hartree potential, and the second term to the Hartree-Fock

exchange potential. One can further replace the non-interacting Green’s function with the

interacting Green’s function, as shown in Fig 3.5. However, it can be shown [63] that this

corresponds precisely to the self-consistent Hartree-Fock method, which is known to overestimate

properties like the band gap [139] significantly. Going beyond the first order terms can be

problematic. In fact, the series in Fig. 3.4 may not have a limit at all [61] and some diagrams,
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Σ ≈ +

Figure 3.5: Approximate self-consistent expansion of the self-energy Σ.

in particular, the ones containing repetitions of polarization bubbles (e.g. the ones in Fig. 3.1)

can be unbounded [61] due to the long range of the Coulomb interaction. One solution to these

problems is to select the problematic diagrams containing polarization bubbles and sum them

to infinite order. It turns out that this is equivalent to replacing the bare Coulomb interaction

with the screened Coulomb interaction in Fig. 3.1. The screened Coulomb interaction W is

much shorter ranged than the bare Coulomb interaction V [63], and a diagrammatic expansion

in terms of W instead of V is thus more well-behaved and should converge rapidly. Within the

RPA, the self-consistent GW method corresponds to a truncation after the first order in W and

is thus equivalent to replacing the bare Coulomb interaction in the exchange term with the

dynamically screened Coulomb interaction. The distinction between the classical RPA method

and the self-consistent GW method is that the DDRF is recalculated at each iteration step, thus

replacing the non-interacting Green’s function lines of the polarization insertion with interacting

Green’s function lines. The self-consistent GW method is thus equivalent to the Hartree-Fock

method with a dynamically screened exchange energy. Graphically the resulting self-energy is

therefore given by the diagram in Fig. 3.6 (excluding the Hartree potential). However, when

Σ ≈

Figure 3.6: Self-energy within the self-consistent GW method Σ.

using this self-consistent approach, introducing a suitable vertex correction is crucial [139]. The

vertex correction effectively accounts for higher-order contributions to the self-energy, such

as the third term in Fig. 3.4. However, including vertex corrections is far from trivial [142]
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and often does not outperform non-selfconsistent approaches [139]. In order to avoid these

complexities, in this thesis, I will focus on the so-called one-shot G0W0 method. Within this

approximation, the self energy Σ is given by [119]

Σ(r, r′, t, t′) = iG0(r, r
′, t, t′)W0(r, r

′, t, t′), (3.51)

with G0 being an initial guess for the Green’s function obtained from a suitable reference

calculation (typically Kohn-Sham DFT or Hartree-Fock) and W0 being evaluated using the

interacting DDRF as defined in Eq. (3.44). Once the self-energy is computed, a first-order

correction to the Kohn-Sham/Hartree-Fock (denoted “MF”) energies is computed, obtaining

quasiparticle energies [173]

ϵQP
s = ϵMF

s + (1− ⟨ψMF
s |∂Σ

∂ω
|ϵMF

s
|ψMF

s ⟩)−1⟨ψMF
s |Σ(r, r′, ω = ϵMF

s )− Vxc(r)|ψMF ⟩, (3.52)

where it was further assumed that the off-diagonal elements of Σ are vanishingly small [173].

3.3 GW in practice

3.3.1 Extension of the static dielectric matrix to finite frequencies

So far, we have assumed that the dielectric function is computed at all frequencies. In practice,

this is challenging, as it often has to be evaluated at many discrete frequencies. Therefore the

generalized plasmon-pole model [90] (GPP) is often employed. Within the GPP, the frequency

dependence of the dielectric matrix is described by collective modes called plasmons [43].

Specifically, the GPP relies on the observation that ϵ−1 is dominated by energies close to the

plasmon frequency [173]. As the BerkeleyGW [90, 49] code employed in this thesis uses a plane

wave basis, it is convenient to express all quantities in terms of plane waves. In this basis, the
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dielectric matrix is written as [173]

ϵGG′(q, ω) = δG,G′ − V (q+G)
occ∑
s

empty∑
s′

∑
k

MG
s,s′(k,q)M

∗G′

s,s′ (k,q)

×
{

1

Es,k−q − Es,k − ω + iη
+

1

Es,k−q − Es,k + ω − iη

}
, (3.53)

where G,G′ are reciprocal lattice vectors and MG
s,s′(k,q) = ⟨s,k|ei(q+G)·r|s′,k− q⟩. Within the

GPP, the imaginary part of the inverse dielectric function is given by [90]

Im(ϵ−1
GG′)(q, ω) = −π

2

Ω2
GG′

ω̃GG′

[
δ(ω − ω̃GG′)− δ(ω + ω̃GG′)

]
. (3.54)

The real part can be obtained using the Kramers-Kronig relations, yielding [90]

Re(ϵ−1
GG′)(q, ω) = δGG′ − P

∫ ∞

0

Ω2
GG′

ω̃GG′

[
δ(ω′ − ω̃GG′)− δ(ω′ + ω̃GG′)

]
ω′

ω′2 − ω2
dω′

= δGG′ +
Ω2

GG′

ω2 − ω2
GG′

. (3.55)

The coefficients ω̃GG′ are obtained using the the Kramers-Kronig relation evaluated at the static

limit of the dielectric function (ω = 0), which is explicitly calculated, yielding [177]

ω̃2
GG′ =

Ω2
GG′

δGG′ − ϵ−1
GG′(q, ω = 0)

. (3.56)

The coefficients Ω2
GG′ are calculated by using the generalized f-sum rule [91]

∫ ∞

0

ω Im(ϵ−1
GG′)(q, ω) = −π

2

ωp(q+G) · (q+G′)ρ(G−G′)

|q+G|2ρ(0)
, (3.57)

where ωp is the plasma frequency and ρ(G) is the reciprocal space representation of the electron

density [173]. Thus, the coefficients evaluate to

Ω2
GG′ =

ωp(q+G) · (q+G′)ρ(G−G′)

|q+G|2ρ(0)
. (3.58)

Using the GPP, a full frequency calculation can often be avoided while obtaining excellent
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agreement with experimental excitation energies [119].

3.3.2 Coulomb truncation

For finite systems, truncation of the Coulomb interaction can significantly improve the speed of

convergence with respect to the unit cell size. The Coulomb truncation replaces the Coulomb

potential with a truncated version

Vt(r− r′) =
θ(f(|r− r′|))

|r− r′|
, (3.59)

where the function f defines the geometry of the truncation [49]. Within the cell-box truncation

scheme used in this thesis, the Coulomb interaction is truncated at the boundaries of a supercell-

shaped region around each point. The cell-box truncation is achieved through a numerical

truncation; however, to illustrate the behaviour, it is instructive to look at the definition of the

spherical truncation, which has an analytic expression [93]

Vt(r− r′) =
θ(rc − |r− r′|)

|r− r′|
, (3.60)

where rc is a cut-off radius. The cell-box (or supercell) truncation behaves analogously and is

r

Figure 3.7: 2D visualization of the cell-box truncation scheme.

visualized in Fig. 3.7: the black circles indicate a spherical cluster in the centre of the supercell.

Now suppose the truncated Coulomb interaction is evaluated at point r indicated in Fig. 3.7.

The red box centred at r has the same size as the supercell and indicates the region where the

truncated Coulomb interaction is non-zero: For every point r′ outside the red box, the Coulomb

interaction is truncated. This truncation scheme helps to limit interactions between periodic
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images and thus leads to faster convergence with respect to supercell size [49]. To fully avoid

interactions with periodic images, the supercell has to be large enough, such that for every

point r inside the cluster, the red truncation box does not intersect with the clusters in the

neighbouring supercells. While spherical truncation can be used as well, supercell truncation is

recommended for the treatment of 0D systems within BerkeleyGW [49].
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Chapter 4

Predicting polarizabilities of silicon

clusters using local chemical

environments

4.1 Introduction

Clusters and nanoparticles are used in a variety of scientific and industrial applications, in-

cluding optoelectronics [189], photocatalysis [44], medical imaging [141, 138] or single electron

transistors [65]. Electronic excitations often play a key role in these applications, but theoretical

techniques for calculating excited-state properties of materials, such as the first-principles

GW/Bethe-Salpeter method, are typically limited to very small systems. As discussed in the

introduction, the main bottleneck of the GW method is the calculation of the interacting DDRF.

As an efficient alternative to first-principles techniques, machine learning (ML) based tech-

niques have been explored in recent years. For example, ML has efficiently been applied to poten-

tial energy surfaces [16, 77, 116, 59] or to predict electronic ground state densities [31, 5, 72, 38].

Additionally, projects such as the Materials Project [96] and the Open Quantum Materials

database [101, 161] have made an effort to make first-principles data of a wide range of materials

publicly available. As discussed in Chapter 2, descriptors or fingerprints encoding the structure

of a molecule or cluster are crucial ingredients in the application of ML in materials physics.
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For example, the smooth-overlap of atomic positions (SOAP) kernel [15] has been widely used

as a similarity measure between different chemical environments. Recently, several groups

have also started to explore the applicability of ML approaches to calculate molecular polar-

izabilities and dipole moments [192, 73, 181, 184]. For example, Grisafi et al. [73] introduced

a symmetry-adapted variant of the SOAP descriptor [15] to predict polarizability tensors of

molecules. Similarly, Wilkins and coworkers [192] used the symmetry-adapted SOAP kernel

to predict polarizabilities and first hyperpolarizabilities of small organic molecules with high

accuracy. Recently, Ceriotti et al. [184] used a combination of the symmetry-adapted SOAP

kernel and the scalar SOAP kernel to predict dipole moments of small molecules with close

to DFT accuracy. However, the applicability of machine learning models to the prediction of

non-local response functions such as the DDRF remains largely unexplored.

Before approaching the development of a model of the DDRF, this chapter focuses on a

simpler problem: the RPA scalar polarizability, which is closely related to the DDRF, and thus

may provide valuable insights into the ability to predict response functions of clusters based on

purely structural descriptors. In order to test this approach, we create a dataset of RPA scalar

polarizabilities of hydrogenated silicon clusters. These systems are well suited for this purpose

because their polarizabilities have been studied in detail with a variety of modelling techniques.

For example, simple empirical models, such as bond polarizability models, have been used to

predict Raman spectra of silicon clusters in good agreement with experiment [146]. Empirical

models can be extended beyond the assumption of additivity of atomic polarizabilities. A class

of models that captures interactions between polarization centres are dipole interaction models

[188], which have been successfully applied to the construction of polarizable force fields [190].

Highly accurate cluster polarizabilities can be obtained using ab initio approaches such as density

functional theory (DFT) [183, 47, 18, 95, 94, 124], Møller-Plesset perturbation theory [124],

coupled-cluster theory [123, 140, 124] or the random phase approximation (RPA) [63, 97, 129].

For example, Mochizuki and Agren [129] used the RPA and the second-order polarization

propagator approximation to calculate the polarizabilities of spherical hydrogenated silicon

clusters with up to 35 Si atoms and found that the polarizability per silicon atom approaches the
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bulk limit from below. In contrast, for unhydrogenated silicon clusters, Jackson and coworkers

found that the bulk value is approached from above as the size of the cluster increases [95, 94].

This behaviour was attributed to the presence of dangling bonds on the surface. Furthermore,

it was observed that the polarizability depends sensitively on the shape of the cluster [97, 94].

Jansik et al. [97] compared polarizabilities of three-dimensional (3D), two-dimensional (2D) and

one-dimensional (1D) hydrogenated silicon structures and found that the presence of π-bonds

in 2D systems leads to a much stronger increase in the polarizability as a function of cluster

size when compared to 1D and 3D clusters [97]. A similar trend was observed when comparing

prolate and compact clusters, with prolate structures showing a significantly larger polarizability

per silicon atom than compact structures [94].

Here, we explore the ability of machine learning models based on the SOAP [15] descriptor

to describe and predict static polarizabilities of hydrogenated silicon clusters calculated from

RPA DDRFs. Despite the incompleteness of the SOAP descriptor discussed in Chapter 2, the

SOAP descriptor has proven to reliably represent chemical environments while being invariant

to rigid translations and rotations. Previous work [192, 73] has already demonstrated the ability

to predict isotropic scalar polarizabilities and also the full polarizability tensor using SOAP and

generalizations thereof. The symmetry-adapted SOAP descriptor has also been used successfully

in conjunction with physical insights [184] to predict molecular dipole moments. As SOAP is a

generic 3-body descriptor of the neighbourhood density [133], many simpler descriptors such as

RDFs and ADFs [87, 39, 154] (which are particular projections of the neighbour density) can

be represented in the SOAP basis, and in the limit of no basis truncation, SOAP is equivalent

to other 3-body descriptors such as Behler-Parrinello Atom Centered Symmetry Functions [22]

and the FCHL [58] descriptors. To generate a data set, we start by calculating scalar isotropic

polarizabilities of a set of clusters containing between 10 and 110 silicon atoms using the

RPA DDRF. Next, we investigate the ability of the ML approach to reproduce the calculated

polarizabilities and find that almost perfect agreement can be obtained when the size of the

local chemical environments is sufficiently large to contain the whole cluster. Importantly, the

ML models already describe the qualitative behaviour of the average polarizability per atom

if the local environment only contains nearest neighbour atoms. These findings establish the
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fittability of RPA scalar polarizabilities using local SOAP descriptors, which has not been

explored to date in contrast to mean-field DFT data. Next, we study the ability of ML to predict

the polarizabilities of clusters not included in the training set. Interestingly, the predictive

power of ML is strongest when the size of the chemical environment is relatively small. These

insights enable the reliable prediction of polarizabilities of large clusters, which are difficult to

calculate with standard first-principles techniques and constitute a first step towards efficient ML

approaches for excited-state properties of materials, such as the DDRF which will be explored

in Chapters 5 and 6.

4.2 Methods

4.2.1 Random Phase Approximation polarizabilities

Scalar polarizabilities of molecules and clusters were calculated within the RPA in a linear

response framework. The RPA was chosen because it is known to give an accurate description

of the dielectric properties of bulk silicon [91]. The polarizability tensor αij relates the induced

dipole moment with Cartesian components µi to the applied static electric field Ej according to

µi =
∑
j

αijEj. (4.1)

To obtain an expression for αij, we express µi in terms of the induced electronic charge

density ∆ρ(r) via

µi = −e
∫
dr∆ρ(r)ri, (4.2)

where e denotes the proton charge, and ri is the Cartesian component of the position vector.

The induced charge density is determined by the interacting density-density response function

χ(r, r′) according to

∆ρ(r) = e
∑
j

Ej

∫
dr′χ(r, r′)r′j, (4.3)
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where the potential associated with the applied electric field V (r) = e
∑

j Ejrj was used.

Combining these equations yields

αij = −e2
∫
drdr′χ(r, r′)rir

′
j. (4.4)

The scalar polarizability α is obtained by dividing the trace of αij by three, which shows the

close relationship between the scalar polarizabilitiy and the DDRF. To evaluate Eq. (4.4), the

interacting density-density response function must be determined. As described in Chapter 3,

the RPA χ obeys the Dyson equation

χ(r, r′) = χ0(r, r
′) +

∫
dr1dr2χ0(r, r1)V (r1, r2)χ(r2, r

′), (4.5)

where V (r1, r2) denotes the Coulomb interaction and χ0 is the non-interacting density-density

response function within the Adler-Wiser formulation [3, 195] in Eq. (3.42). To numerically cal-

culate scalar polarizabilities, the plane-wave/pseudopotential approach is employed. Specifically,

the BerkeleyGW program [90, 49] is used to calculate χGG′ where G and G′ denote reciprocal

lattice vectors of the periodically repeated supercell. Note that interactions between images are

avoided by using a truncated Coulomb interaction. The interacting density-density response

function in real space is then given by

χ(r, r′) =
1

V

∑
G,G′

eiG·rχG,G′e−iG′·r′ , (4.6)

where V = L3 denotes the volume of the cubic supercell, with L being the side length. Finally,

the scalar polarizability is found to be

α =
e2

3V

∑
i

∑
G,G′

χG,G′∆G,i∆
∗
G′,i, (4.7)

with

∆G,x =


L4

2
δGx,0δGy ,0δGz ,0 if Gx = 0,

L3

iGx
δGy ,0δGz ,0 otherwise,

(4.8)
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and similar expressions for ∆G,y and ∆G,z.

It should be noted that other, more efficient approaches than the one described above exist for

the calculation of the static scalar polarizability, such as the finite field method [34]. However,

the ultimate interest of this work is in applying ML techniques to accelerate excited-state

calculations, and these methods require the full interacting density-density response function,

which cannot easily be obtained with other methods.

4.2.2 Kernel ridge regression

In order to model the polarizabilities obtained using the method described above, we use kernel

ridge regression (KRR). The relevant expressions can be derived starting from ordinary linear

regression, where the target quantity yi is modelled as a linear combination of individual inputs

in the feature vector xi

yi ≈ f(xi) = xT
i w, (4.9)

where w is a learnable vector of weight parameters. First, the input vector is projected into a

(usually higher dimensional) feature space through a function ϕ(xi) [152]. An example would be

the projection of a scalar x into the space of powers ϕ(x) = (1, x, x2, . . . ) [152]. After applying

the projections, the linear model takes the form of

f(xi) = ϕ(xi)
Tw. (4.10)

Next, the weight vector is expanded as a linear combination of feature vectors contained in the

training set w =
∑Ntrain

j ζjϕ(xj) [132], yielding

f(xi) =

Ntrain∑
j

ϕ(xi)
Tϕ(xj)ζj. (4.11)

The inner product between feature vectors corresponds to elements of the symmetric kernel

matrix Kij, which allows us to rewrite Eq. (4.11)

f(xi) =

Ntrain∑
j

Kijζj. (4.12)
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Thus, elements of the kernel matrix effectively measure the similarity between different feature

vectors. When training a KRR model, we want to minimize the squared difference between the

target quantity y and our model function f(x)

ϵ = (y −Kζ)T (y −Kζ) + λζTKζ, (4.13)

where the kernel matrix is computed between all feature vectors in the training set, and the vector

y is the vector containing the corresponding target quantities. The second term in Eq. (4.13)

penalizes for larger magnitudes in the weight vector, and λ is a positive parameter determining

the strength of the penalty. λ is usually referred to as a regularization parameter [132]. Taking

derivatives with respect to ζ and equating to zero, we obtain a solution for the coefficients ζ in

terms of the kernel matrix K and the vector of target quantities y

ζ = (K+ λI)−1y. (4.14)

If the training set is large, Eq. (4.14) can become prohibitively expensive to solve. One possible

solution is the subset of regressors approach [152] in which a subset of M representative points

is selected from the training set. In this case, the use of an alternative equation for obtaining

the coefficients ζ is required [36]

ζ =
[
KMM +KMNΛ

−1KNM

]−1
KMNΛ

−1y, (4.15)

where KMM is the kernel matrix computed between representative points and KNM is the kernel

matrix between the N training points and the M representative points. Λ = λI is again a

regularization term. Equation (4.15) is the result of minimizing [36]

ϵ = (y −KNMζ)
TΛ−1(y −KNMζ) + ζTKMMζ. (4.16)

77



CHAPTER 4. PREDICTING POLARIZABILITIES OF SILICON CLUSTERS USING
LOCAL CHEMICAL ENVIRONMENTS

4.2.3 Environment descriptors

As the kernel matrix measures the similarity between features, the ability to assess the similarity

of different chemical environments plays a key role in machine learning of material properties.

Here, we use the SOAP approach [15] where the environment of atom i is described by the set

of neighbourhood densities

ρνi (r) =
Nν∑
i=j

e−γν(r−rij)
2

, (4.17)

where ν denotes a specific element that is present in the atom’s environment with Nν being

the number of such atoms up to a given cut-off radius rcut. In addition, γν is a hyperparameter

describing the size of the neighbour atom.

The similarity of two chemical environments described by the neighbourhood densities

ρi = {ρνi }ν and ρj = {ρjν}ν can be measured by the kernel [36]

k(ρi, ρj) =

∫
dR̂

∣∣∣∣∑
ν

∫
drρνi (r)ρ

ν
j (R̂r)

∣∣∣∣2, (4.18)

where R̂ denotes a rotation matrix. Note that in Eq. (4.18), the sum is inside the norm in

contrast to the simpler SOAP kernel introduced in Chapter 2. In this version of the SOAP

kernel, correlations between the environments corresponding to different species ν and ν ′ are

included in the descriptor. To evaluate the kernel integral, the angular dependence of the

neighbourhood densities is expanded in a basis of spherical harmonics Ylm and the radial part

in a set of orthogonal radial basis functions gn(r) according to

ρνi (r) =
∑
nlm

cνi,nlmgn(r)Ylm(r̂), (4.19)

where cνi,nlm is an expansion coefficient. Here, l ranges from zero to a cut-off value lmax and m

ranges from −l to l and the radial index n has a cut-off of nmax.

The similarity kernel Eq. (4.18) has the appealing property that the integrals can be carried

out analytically yielding [15]
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k(ρi, ρj) =
∑
ν≤ν′

∑
nn′l

dν,ν
′

i,nn′ld
ν,ν′

j,nn′l (4.20)

dν,ν
′

i,nn′l =
∑
m

cνi,nlm(c
ν′

i,n′lm)
∗. (4.21)

From the above expressions, it can be seen that the set of coefficients {dν,ν
′

i,nn′l} with ν ≤ ν ′

plays the role of a descriptor vector di for the environment of atom i. In practice, the descriptor

vectors are calculated using the QUIPPY software package [15]. The kernel matrix k(ρi, ρj) is

then calculated according to

k(ρi, ρj) = di · dj. (4.22)

The sensitivity of the kernel to differences between atomic environments can be increased by

defining the effective SOAP kernel [15, 36]

K(ρi, ρj) =

(
k(ρi, ρj)√

k(ρi, ρi)k(ρj, ρj)

)ϵ

. (4.23)

In this work, we use ϵ = 2.

4.2.4 Learning cluster polarizabilities

The SOAP descriptor allows the comparison of different environments of atoms in a cluster.

However, the polarizability is calculated for an entire molecule or cluster consisting of many

atoms. To harness the SOAP approach for the prediction of cluster polarizabilities, it is,

therefore, necessary to relate atomic properties to cluster properties. One way to achieve this

is by expressing the polarizability αI of cluster I as the sum of atomic contributions αi [36]

according to

αI =

NI∑
i=1

αi, (4.24)
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where NI denotes the total number of atoms in the cluster. While the atomic contributions can

provide some valuable intuition about the dielectric response of complex clusters, it is important

to stress that these quantities are not directly measurable and should be interpreted with care

[14].

Using standard kernel ridge regression, the atomic polarizabilities can be expressed as

αi =

Ntrain∑
j

Kijζj, (4.25)

where Ntrain denotes the total number of atoms in the training set (i.e. the total number of

atoms contained in all training set clusters), ζj is a coefficient obtained from training the SOAP

model, and Kij ≡ K(ρi, ρj). Inserting Eq. (4.25) into Eq. (4.24) yields

αI =

NI∑
i

Ntrain∑
j

Kijζj =

Ntrain∑
j

Ksum
I,j ζj, (4.26)

where we defined the sum kernel Ksum
I,j =

∑NI

i Kij.

Determining the coefficients ζj is difficult as the fit to the calculated cluster polarizabilities

is strongly underdetermined (as the number of coefficients is the total number of atoms of all

clusters in the training set). To make progress, the number of coefficients must be reduced.

Intuitively, this should be possible as the atomic environments of many atoms in the training

set are very similar. While it is also possible to select a subset of data points from the training

set [152], we achieve this sparsification by means of a singular value decomposition (SVD) of

the descriptor matrix D whose rows contain the descriptor vectors from Eq. (4.21). Specifically,

D is expressed as

D = UΣVT , (4.27)

where U and VT contain the right and left singular vectors, respectively, and Σ is a diagonal

matrix containing the singular values. If many environments in D are similar, only a few singular

values will have large magnitudes. Only those singular values which are larger than a given

threshold are retained, and the corresponding left singular vectors (which form a matrix Ṽ) are

used as a new basis to represent D.
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The elements of the SOAP kernel K̃ corresponding to this new set of effective descriptors are

obtained by projecting the descriptors di onto the rows ṽj of the truncated matrix of singular

vectors Ṽ according to

K̃ij = di · ṽj. (4.28)

Next, the effective sum kernel K̃sum can be calculated using Eq. (4.26), but now the number

of coefficients ζi is equal to the number of singular vectors whose singular values exceed the

threshold. Finally, the vector of coefficients ζ is obtained from Eq. (4.15)

ζ =
[
ṼT Ṽ + (K̃sum)TΛ−1K̃sum

]−1

(K̃sum)TΛ−1α, (4.29)

where Λ = λI with λ being a regularization parameter and α denotes the vector of calculated

cluster polarizabilities.

Alternatively, the cluster polarizability can be expressed as the number of silicon atoms

multiplied by their average polarizability αav (note that in this definition, αav also contains the

smaller contribution from the hydrogen atoms)

α = NSiα
av
Si. (4.30)

To calculate the average polarizability, the SOAP kernel matrix is averaged over environments

belonging to pairs of clusters [14]

Kav
IJ =

1

NINJ

NI∑
i

NJ∑
j

Kij. (4.31)

Using kernel ridge regression, the average polarizability of the silicon atoms in a given cluster

is expressed as

αav
Si =

ntrain∑
J

Kav
J ζJ , (4.32)

where ntrain denotes the number of clusters in the training set, and the vector of coefficients ζJ
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is determined by

ζ = (Kav +Λ)−1 αav, (4.33)

where αav is the vector containing the average polarizabilities per atom of the training set

clusters. As a consequence of the averaging, no additional sparsification procedure is required,

as in the case of the sum kernel.

This method has the advantage that the average polarizability can be written as a sum of

atomic contributions, which allows one to assign polarizabilities to individual atoms. This can

be achieved by omitting the average over the index i in Eq. 4.31, which yields a prediction for

each silicon atom in a cluster

It is interesting to note that the polarizability obtained from the average kernel can also be

expressed as a sum of atomic contributions given by

αi =
1

NJ

ntrain∑
J

NJ∑
j

KijζJ . (4.34)

Apart from the scaling factor 1/NJ , the last equation is very similar to Eq. (4.25) of the sum

kernel approach, with the additional constraint that the coefficients ζj on atoms in a cluster J

are all equal, ζj = ζJ ∀j ∈ J . The effect of the scaling factor is that while the sum kernel is

extensive (its magnitude scales with the number of atoms in the cluster), the average kernel is

intensive, independent of system size. Consequently, large clusters get more heavily weighted in

the solution of the least squares problem, Eq. (4.29), compared with that for the average kernel.

Finally, we also use the “coherent average” kernel (denoted “coh”), which is obtained as

follows. Rather than computing a SOAP descriptor for each atomic environment, as in Eq. (4.20),

we take the spherical harmonic coefficients cνnlm and average them first to obtain, for cluster I

c̄νI,nlm =
1

NI

NI∑
i=1

cνi,nlm, (4.35)

and then square these to form the averaged descriptor vector d̄I with components,

d̄ν,ν
′

I,nn′l =
∑
m

c̄νI,nlm(c̄
ν′

I,n′lm)
∗, (4.36)
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and the coherent (unnormalized) kernel between clusters I and J as

kcoh(I, J) = d̄I · d̄J . (4.37)

4.2.5 Physical models

Apart from the SOAP models, two simpler, physical-based models are used to fit the calculated

RPA polarizabilities. In the first approach, the cluster polarizability is assumed to be proportional

to the number of silicon atoms NSi in the cluster, i.e.

α = αav
SiNSi, (4.38)

with αav
Si denoting the average polarizability per silicon atom (again, any contributions from

hydrogen atoms are included in αav
Si in this definition). In contrast to the SOAP fitting with the

average kernel, the average polarizability is assumed to be the same for all clusters.

The second model is a bond polarizability approach where the cluster polarizability is

expressed as a sum of contributions from Si-Si bonds and Si-H bonds according to

α = αSi−SiNSi−Si + αSi−HNSi−H , (4.39)

where αSi−H and αSi−Si are the polarizabilities of Si-H and Si-Si bonds, respectively, and NSi−Si

and NSi−H are the number of Si-Si and Si-H bonds, respectively. While this model explicitly

includes the contribution of the hydrogen atoms, it is also assumed that the bond polarizabilities

are independent of the cluster size and shape.

In a hydrogenated silicon cluster with only sp3 bonding, the number of Si-Si bonds and Si-H

bonds can be expressed in terms of the number of silicon and hydrogen atoms. In particular,

NSi−Si is given by (4NSi −NH)/2, and NSi−H is equal to NH . Substituting these expressions

into Eq. 4.39 yields

α =
4NSi −NH

2
αSi−Si +NHαSi−H . (4.40)
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Dividing both sides by NSi yields the polarizability per silicon atom

α

NSi

= 2αSi−Si +
(
αSi−H − αSi−Si

2

) NH

NSi

. (4.41)

Interestingly, this shows that the polarizability per silicon atom is a function of the ratio of

hydrogen and silicon atoms only.

4.2.6 Generation of clusters

To generate atomic structures of hydrogenated silicon clusters we initially followed a similar

procedure as Barnard et al. [13] who carve spherical clusters from a perfect silicon crystal,

terminate the dangling bonds on the surface with hydrogen atoms and then relax the atomic

positions using DFT. Unfortunately, this approach only yields very few clusters with 100 or

fewer silicon atoms. Because of the relatively large computational cost associated with the RPA

polarizability calculations, we instead use the following approach to generate clusters: starting

from the spherical Si123H100 cluster, we remove silicon atoms from the surface, terminating any

dangling bonds with hydrogen atoms and relax the structure with DFT. In this way, a set of

100 hydrogenated silicon clusters containing between 10 and 110 Si atoms is obtained for which

RPA polarizabilities are calculated. In addition, we include the spherical clusters with fewer

than 123 Si atoms from Barnard et al. [13].

4.2.7 Computational details

The plane-wave/pseudopotential DFT code Quantum Espresso [70, 69] was used to obtain

Kohn-Sham energies ϵn and wavefunctions ϕn(r). We employed the PBE exchange-correlation

functional, norm-conserving pseudopotentials from the original Quantum Espresso Pseudopoten-

tial library [70, 69] and a plane-wave cut-off of 65 Ry. The clusters were placed in a cubic unit

cell with sufficient vacuum to avoid interactions between periodically repeated images. Next,

cluster polarizabilities were calculated with BerkeleyGW [90, 49] using a plane-wave cutoff of 6

Ry and a truncated Coulomb interaction. A total of 600 Kohn-Sham states were included in

the summation for χ which was found to be sufficient to converge the scalar polarizabilities.
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SOAP descriptors were constructed with lmax = 9 and nmax = 20 and γν = 2.0 for rcut ≤ 10.0Å

and γν = 0.5 for rcut > 10.0Å. In all calculations, we only study local environments of silicon

atoms. As all hydrogen atoms are bonded to silicon atoms, their contribution to the cluster

polarizabilities can be captured indirectly through their influence on the silicon atoms.

4.3 Results and Discussion

4.3.1 Fitting polarizabilities

Fig. 4.1(a) shows the RPA polarizabilities of the hydrogenated silicon clusters as function of

the number of silicon atoms in the cluster. We observe that the polarizability exhibits a linear

behaviour which suggests that the Si atoms provide the dominant contribution.

Deviations from the linear behaviour become explicit when the cluster polarizability is

divided by the number of silicon atoms, see Fig. 4.1(b). For clusters containing more than 80 Si

atoms, the polarizability per silicon atom decreases. Interestingly, α/NSi increases for cluster

between 70 and 80 silicon atoms, but decreases again for clusters between 40 and 70 silicon

atoms. For clusters with fewer than 40 Si atoms, there is a significant amount of scatter in the

polarizabilities but overall α/NSi tends to increase with increasing number of Si atoms. Overall,

the polarizability per silicon atom has an M-like shape as function of the number of silicon

atoms.

For very large clusters, α/NSi should converge to the atomic RPA polarizability of bulk

silicon which is 3.77 Å3 (determined using the Clausius-Mossotti relation and the bulk dielectric

constant of 12.2 [91]). This explains the observed decrease of α/NSi for NSi > 80. Note that

in our results the bulk value is not approached from below because we have not removed the

hydrogen contributions from the cluster polarizabilities [129, 97].

To understand these findings, we first compare the results to two physical-based models: a

model in which the cluster polarizability is assumed to be proportional to the number of Si atoms

(denoted the linear NSi model) and a bond polarizability model (see Methods). The parameters

of both models were fitted to the calculated RPA data using a least squares optimization. The

results are shown in Fig. 4.2 (a). While the linear NSi model cannot capture any dependence of
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Figure 4.1: (a) RPA scalar polarizability α of hydrogenated silicon clusters versus number
of silicon atoms NSi. The polarizability increases approximately linearly with NSi. (b) RPA
polarizability divided by NSi shows deviations from linearity.

α/NSi on the number of silicon atoms, the bond polarizability model correctly describes several

key features. In particular, it shows a decreasing trend for large clusters and a minimum near

NSi = 70. For small clusters, the bond polarizability model predicts an increase in polarizability

as the number of Si atoms is reduced in disagreement with the RPA data. Interestingly, the

bond polarizability model also features a significant scatter for small clusters. As discussed

in the methods section, α/NSi in the bond polarizability model only depends on the ratio of

hydrogen and silicon atoms NH/NSi suggesting that the fraction of surface hydrogen atoms

captures a large part of the variation the polarizability of the clusters.

While the bond polarizability model captures several features, we note that neither of

the two physical models can capture the full M-shape of the polarizability per Si atom in

Fig. 4.2 (a). Furthermore, from the least square fits of the linear NSi model to the RPA

data, we find αav
Si = 4.29 Å

3
. This is significantly larger than the RPA value in bulk Si of

3.77 Å
3
. The parameters of the bond polarizability model are found to be αSi−Si = 1.98 Å

3

and αSi−H = 1.32 Å
3
. As the polarizability per Si atom is 2αSi−Si, the predicted bulk value is

3.96 Å
3
, which is in better agreement with RPA results.

The above analysis demonstrates that both physical-based models have several shortcomings.

This is a consequence of two factors: (i) their parameters do not depend on the properties of the

local chemical environment, i.e. bond lengths or bond angles. In particular, significant atomic

relaxations occur for small clusters, resulting in changes to the bond polarizabilities compared
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Figure 4.2: Comparison of α/NSi (cluster polarizability divided by the number of silicon atoms)
from RPA calculations (blue dots) with fits from various models. (a) The black line shows the
optimal fit for the linear NSi model, see Eq. 4.38. Orange triangles denote results from the bond
polarizability model; see Eq. 4.39. (b) Results obtained using SOAP with the sum kernel (green
squares), the average kernel (red squares) and the coherent kernel (black crosses). A cut-off of
2.5 Å was employed. (c) Same as (b) but with a cut-off of 20 Å.
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to the larger clusters that the bond polarizability model does not capture. (ii) The models do

not capture the effects of interactions between the polarizable units. Consequently, they cannot

distinguish between clusters containing the same numbers of Si and H atoms and do not capture

the dependence of the polarizability on the cluster shape. To overcome these problems, we now

explore the ability of machine learning models to describe the polarizabilities of Si clusters.

Figures 4.2 (b) and 4.2 (c) show the results from the machine learning model using the

sum kernel, the average kernel and the coherent kernel (see Methods). The real-space cut-off

that determines the size of the chemical environment of each atom is rc = 2.5 Å in Fig. 4.2(b)

and rc = 20 Å in Fig. 4.2(c). In the fit, the regularization parameter λ was kept small (10−15

for the sum kernel model and 10−12 for the average and coherent kernels) in order to allow as

much flexibility in the parameters as possible. Furthermore, no train-test split was performed.

For the smaller cut-off (where only the nearest neighbour atoms are included in the local

environment), all three kernels provide an improved description compared to the physical-based

models. Specifically, they capture the M-shape of α/NSi as a function of NSi and also reproduce

the scatter for smaller clusters. The coherent kernel is slightly better than the averaged kernel.

Significant deviations from the calculated polarizabilities are only observed for the smallest

cluster sizes when the sum kernel is used. When rc is increased to 20 Å, the agreement between

the ML models and the calculated polarizabilities significantly improves. In particular, the

average and the coherent kernel results almost perfectly agree with the data, while the sum

kernel results show minor deviations for smaller clusters. The good results obtained for the

short cut-off indicate that local chemical effects dominate polarizabilities. However, long-range

interactions also influence polarizabilities. These long-range interactions are captured when the

cut-off radius is increased.

4.3.2 Predicting polarizabilities

Up to this point, we only considered the ability of the SOAP approach to fit the calculated

cluster polarizabilities. To investigate SOAP’s capacity to predict polarizabilities of clusters

that it was not trained on, k-fold cross validation [152] is employed. In this procedure, the

clusters in the data set are randomly assigned to five sub-sets. Next, four sub-sets are used to
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train the ML approach, and the fifth sub-set is used as the test set. This is done five times, with

each sub-set acting as a test set once. We optimize the regularization parameter λ to minimize

the mean average error (MAE). The optimal parameters are listed in Table 4.1 below.

Table 4.1: Regularization paramaters λav and λsum determined from k-fold cross validation at
different cut-off radii rcut.

rcut [Å] λav λsum λcoh
2.5 10−8 10−8 10−8

5.0 10−5 0.0001 10−6

7.5 10−5 0.01 10−5

10.0 0.0001 0.01 0.0001
12.5 10−5 10−6 10−5

15.0 10−5 10−5 10−5

17.5 0.0001 0.001 0.0001
20.0 0.0001 0.001 0.0001

The resulting MAE and its standard deviation as a function of rcut are shown in Fig. 4.3

(a). The average kernel and the coherent kernel yield very similar results and are compared in

Fig. 4.3 (b). Strikingly, the sum kernel model produces the largest MAE for the test set among

all methods. In particular, the test set MAE is significantly larger than the training set MAE

indicating poor capacity to predict polarizabilities. In contrast, the average kernel model yields

the smallest test set MAE, which is only slightly worse than the training set error. The coherent

kernel model yields slightly worse predictions than the average kernel, with the most significant

difference between the two occurring at rcut = 5.0 Å. The MAE of the two physical-based models

lies between those of the sum kernel and the average kernel. The different performances of the

sum kernel and the average kernels originate from the different training procedures: the sum

kernel model is trained on total cluster polarizabilities. In contrast, the average kernel is trained

on the average polarizability per silicon atom, see Eq. (4.33). Consequently, the sum kernel

model is biased towards more accurate predictions for large clusters and is less accurate for

small clusters. This can also be seen in Fig. 4.2(c), which shows that the quality of the sum

kernel fit improves for larger clusters. This has been observed before by Stocker et al. [174], who

argued that the intensive average kernel has the advantage of equally weighting small and large

molecules, which is beneficial when learning quantities over an extensive range of cluster sizes.

Interestingly, the average kernel performs somewhat better than the coherent kernel suggesting
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Figure 4.3: Average mean absolute error (MAE) of α/NSi (the cluster polarizability divided by
the number of silicon atoms) from various machine learning models and physical-based models
versus the cut-off radius rcut that determines the size of the local chemical environment. Optimal
regularization parameters were determined using five-fold cross-validation. Error bars indicate
the standard error of the average MAE across the five training and validation sets used in the
cross-validation procedure.

that a model of the cluster polarizability that can be expressed as a sum of atomic contributions

constitutes a better representation of the system’s dielectric response.

Fig. 4.3 also shows that the minimum test set MAE for the average kernel and the coherent

kernel is obtained for cut-offs around rcut = 12.5 Å. In contrast, for the sum kernel, the

minimum is achieved for rcut = 15.0 Å. Interestingly, neither kernel benefits significantly from

increasing rcut beyond 5 Å. To understand this finding, we compare the elements of the average

kernel matrix for rcut = 5.0 Å and rcut = 17.5 Å, see Fig. 4.4. When a smaller cut-off is used,

the elements of the kernel matrix decay slowly along the rows and columns. In contrast, the

decay is significantly more pronounced for the larger cut-off, suggesting that a smaller cut-off

facilitates the recognition of similar chemical environments in clusters of different sizes. This

is not surprising because, for large cut-offs, the chemical environment contains a significant

amount of vacuum for small clusters but not for large clusters.

Next, the ability of the ML approach to predict polarizabilities of large clusters based on a

training set of small clusters is explored. For this, we train the average kernel on the 60, 70 or

80 smallest clusters and then predict the polarizabilities of the remaining large clusters in the

data set. Fig. 4.5 shows the resulting test set MAE as a function of the cutoff radius. All curves
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Figure 4.4: Matrix elements of the average SOAP kernel Kav
IJ , see Eq. (4.31), for cut-offs rcut of

5.0 Å (a) and 17.5 Å (b). Note the rapid decay of the matrix elements along rows and columns
when a large cut-off radius is used.

exhibit a minimum at small cut-offs near rcut = 5 Å and the smallest MAE is obtained for the

largest training set. For the smaller training sets (nt = 60 or 70), the MAE increases rapidly

as the cutoff is increased, while for the largest training set, the increase is mild (and another

minimum is found at rcut = 15.0 Å). Similar to our findings in the k-fold cross-validation, this

shows that increasing the cut-off radius beyond a certain value is not beneficial.

Figures 4.6 (a)-(c) compare the predictions of the average kernel with rcut = 5 Å with

the calculated RPA polarizabilities per silicon atom. The ML model captures the qualitative

trends for all three training set sizes. For nt = 60, the average kernel correctly predicts the

increase of α/NSi at NSi = 70 and also the decrease starting at NSi = 80. While the ML models

underestimate the polarizabilities per Si atom for large clusters when nt = 60 and nt = 70, good

quantitative agreement is achieved for nt = 80.

Finally, we train the average kernel model on the entire data set (using rcut = 5 Å) and

predict the average polarizabilities of the entire Silicon Quantum Dot data set containing clusters

with up to 3000 silicon atoms [13]. The results are shown in Fig. 4.7. It can be observed that

the polarizability per Si atom converges slowly to its bulk limit as NSi increases, and there is a

significant scatter in the results. The scatter in α/NSi reflects the different NH/NSi ratios and

different environments present in the clusters. To understand the slow convergence to the bulk

value, note that the number of silicon atoms scales with the cluster volume, while the number
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Figure 4.5: Average kernel test set error as a function of SOAP cut-off. The smallest nt clusters
were included in the training set for each curve. The test set consists of the remaining 100− nt

clusters.

of hydrogen atoms is roughly proportional to the surface area. This suggests that α/NSi should

be proportional to the inverse radius of the cluster or, equivalently, to 1/N
1/3
Si . Indeed, Fig. 4.7

shows that the ML predictions are well described by the function a+ b/N
1/3
Si with a = 3.89 Å3

and b = 1.55 obtained from a least-squares fit. The value of a agrees well with the RPA atomic

polarizability of bulk silicon of 3.77 Å3[91].

Additional insights can be obtained by analyzing the atomic polarizabilities obtained from

the SOAP average kernel method; see Eq. (4.34). Fig. 4.8 shows the atomic polarizabilities of a

Si2109H604 cluster. In Fig. 4.8 (a) only local chemical environments of silicon atoms are considered

(and the effect of the hydrogen atoms is captured indirectly through their influence on the

silicon chemical environments). Silicon atoms in the centre of the cluster have a polarizability of

3.76 Å3, in excellent agreement with the value extracted from bulk calculations of 3.77 Å3 [91].

The polarizability of the silicon atoms in the two surface layers is larger, sometimes as large as

5 Å3. The reason for this increase is that the surface silicon atoms are bonded to hydrogen atoms,

and their atomic polarizability is effectively the sum of the silicon and hydrogen contributions.
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Figure 4.6: Comparison of RPA results for α/NSi (cluster polarizability divided by the number
of silicon atoms) and training and test set predictions of the average kernel model. The training
set consists of the (a) nt = 60, (b) nt = 70 and (c) nt = 80 smallest clusters and the test set
contains the remaining 100− nt large clusters.
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Figure 4.7: Cluster polarizability divided by the number of silicon atoms for all clusters of
Silicon Quantum Dot database [13] from the average SOAP kernel model with rcut = 5.0 Å.
Bulk polarizability obtained from Hybertsen et al. [91].

To disentangle contributions from silicon and hydrogen atoms to the cluster polarizability,

Fig. 4.8 shows the atomic polarizabilities from a calculation that explicitly takes the chemical

environments of hydrogen atoms into account. Interestingly, the results suggest that the atomic

polarizability of subsurface silicon atoms is larger than the bulk value, but the polarizability

of surface silicon atoms (which are bonded to hydrogens) is smaller. The average atomic

polarizability of the silicon atoms is found to be 3.63 Å3. This is in agreement with the results

of Mochizuki et al. [129], who predicted that the bulk limit of the silicon atomic polarizability

is approached from below.

4.4 Conclusions

In this chapter, it was demonstrated that machine learning models based on the smooth

overlap of atomic positions (SOAP) descriptor can be used to accurately and efficiently predict

polarizabilities of large hydrogenated silicon clusters. Using the random phase approximation,

the polarizabilities of a set of hydrogenated silicon clusters containing between 10 and 110 silicon
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atoms were calculated. We then assessed the ability of three machine learning models (one using

the sum kernel, one using the average kernel and one the coherent kernel) to fit the calculated

polarizabilities and find that all three models perform well when the local environment includes

nearest neighbour atoms only. Increasing the size of the environment improves the quality of the

fit. Next, we investigated the ability of the machine learning models to predict polarizabilities

of clusters that are not in the training set. Using k-fold cross-validation, we find that the

average kernel performs significantly better than the sum kernel and that the predictions only

weakly depend on the size of the chemical environment. We also tested the predictive power

of the average kernel when it is trained on small clusters only and found that quantitative

accuracy can be achieved if the training set is sufficiently large. Finally, we use the average

kernel approach to predict the polarizabilities of hydrogenated silicon atoms with up to 3000

silicon atoms and find that the results approach the correct bulk limit. The ability to efficiently

calculate polarizabilities of large clusters paves the way towards using machine learning for

excited-state properties of these systems. These results further suggest that quantities derived

from the DDRF are well described by descriptors based on the local chemical environment of an

atom. In the following two chapters, the locality of the DDRF in semi-conductor clusters is

exploited to achieve an atomic decomposition of the DDRF and develop flexible model DDRFs

which can be used in GW calculations.

95



CHAPTER 4. PREDICTING POLARIZABILITIES OF SILICON CLUSTERS USING
LOCAL CHEMICAL ENVIRONMENTS

(a)

20 10 0 10 20
x [Å]

20

10

0

10

20

y 
[Å

]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

(b)

20 10 0 10 20
x [Å]

20

10

0

10

20

y 
[Å

]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Figure 4.8: Atomic polarizabilities of the Si2109H604 cluster obtained from the SOAP average
kernel method. Shown is a cross-section through the centre of the cluster. (a) Atomic polarizabil-
ities when only silicon chemical environments are used. (b) Atomic polarizabilities when both
silicon and hydrogen chemical environments are used. For hydrogen environments rcut = 1.6 Å
was used and for silicon environments rcut = 5.0 Å was used. Large dots represent silicon atoms,
and small dots represent hydrogen atoms.
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Chapter 5

Approximating the RPA density-density

response function

5.1 Introduction

As mentioned in Chapter 1, the GW method [90, 139] is often employed in the calculation of

quasiparticle energies, in which corrections to the DFT energies are computed perturbatively.

While yielding highly accurate excitation energies, the GW method is largely restricted to small

systems due to its poor scaling with system size [139, 153]; the most expensive step is the

computation of the density-density response function (DDRF), which is typically computed as

a sum over states using Eq. (3.42). In order to converge the sum, however, a large number of

empty states have to be included in the summation, which is the main cause of the poor scaling

with system size [139].

The poor convergence of the computation of the DDRF led to the development of several

model dielectric functions, the simplest of which are based on the Lindhard dielectric function

[118] of the free electron gas. More general model functions were proposed later by Hybertsen,

Levine and Louie [114, 92] and Cappellini et al. [35, 19]. However, as noted by Rohlfing [153],

these model functions cannot be used for systems with non-uniform screening, as they rely on a

spatially uniform dielectric constant. This restriction makes these model functions especially

unsuitable in the extreme case of isolated clusters or molecules, where one cannot start from the
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assumption of uniform screening. Rohlfing [153] proposed to model the dielectric function as a

sum of atomic contributions, attributing a density response resulting from a Gaussian-shaped

charge density to each atom. The various parameters in Rohlfing’s model are obtained by fitting

to existing data for RPA dielectric functions. The resulting dielectric function yields reliable

estimates of the band gaps in extended systems [54, 9]. However, the errors for individual

quasiparticle (QP) energies, in particular energies below the conduction band and above the

valence band, are less reliable [153]. Furthermore, the errors in QP energies for finite systems

are substantially larger, approximately 0.5 eV for HOMO-LUMO gaps and 0.7 eV for HOMO

energies [153]. This failure is likely a consequence of Rohlfing’s approach using a baseline model,

which assumes metallic screening [153], to which corrections are calculated.

In Chapter 4, I showed that the RPA scalar polarizability, which is a scalar quantity derived

from the DDRF, can be accurately predicted within an atom-centred framework. The results

from the previous chapter and the limitations of existing model dielectric functions are the

motivation for the next two chapters, where I build the foundation for accurate machine learning

models of the DDRF. Predicting such quantities is a formidable challenge: for example, the

DDRF of a small silicon cluster can be tens of gigabytes in size when represented in a plane-wave

basis, even when a modest plane-wave cutoff is used. As such, in order to make progress,

it is necessary to express the DDRF in a more compact way. In this chapter, I develop an

approximation to the DDRF by projecting it onto an auxiliary basis of Gaussian-type orbitals

(GTOs). This approach drastically reduces the size of the DDRF while retaining most of the

accuracy in quasi-particle (QP) energies.

I then apply the method of projecting the DDRF onto an atom-centred basis of GTOs

to the silicon clusters used in the polarizability calculations in Chapter 4. Finally, a simple

machine-learning model of the approximated DDRF is developed, and its shortcomings are

discussed in order to motivate the development of a more systematic machine-learning approach

in the next chapter.
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5.2 Recap of the role of the DDRF within GW

The GW method relies on applying a correction to mean-field energy levels that is based on the

self-energy Σ(r, r′, ω), which is in turn calculated from the many-body Green’s function G(r, r′)

and the screened Coulomb interaction W (r, r′, ω): [139, 90, 89]

Σ(r, r′, ω) =
i

2π

∫
e−iδω′

G(r, r′, ω + ω′)W (r, r′, ω′)dω′ (5.1)

The screened Coulomb interaction is, in turn, computed from the bare Coulomb interaction

ν(r, r′) and the dielectric function ϵ(r, r′, ω):

W (r, r′, ω) =

∫
ϵ−1(r, r2, ω)ν(r2, r

′)dr2. (5.2)

As such, the dielectric function forms one of the key ingredients of GW calculations, where

ϵ(r, r2) is computed from the interacting DDRF

ϵ−1(r, r′, ω) = δ(r, r′) +

∫
ν(r, r2)χ(r

′, r2, ω)dr2. (5.3)

The non-interacting DDRF χ0 is calculated as a sum over empty and occupied states within

the Adler-Wiser [3, 195] formulation in Eq. (3.42). Then, the interacting DDRF χ is computed

using the Dyson equation

χ(r, r′) = χ0(r, r
′) +

∫
dr1dr2χ0(r, r1)v(r1, r2)χ(r2, r

′). (5.4)

The resulting Dyson-equation can be solved by either a truncated summation or, more

accurately, by inversion of the dielectric function given by

ϵ(r, r′, ω) = δ(r, r′)−
∫
ν(r, r2)χ0(r

′, r2, ω)dr2. (5.5)

Computing the inverse dielectric function is one of the critical bottlenecks of a GW calculation,

the reason for which is twofold: (1) Due to the energy dependence of the non-interacting DDRF
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in Eq. (3.42), a large number of empty states is required for convergence. (2) To invert the

dielectric function in Eq. (5.5), it has to be represented on either a real-space grid or in a

basis set, both of which require the inversion of a large matrix. Since the density-density

response function can be several gigabytes in size when represented in a plane-wave basis, a

more efficient representation that makes matrix elements readily learnable has to be found. In

the remainder of this chapter, I will focus on the static DDRF χ(r, r′, 0) ≡ χ(r, r′), since the

frequency dependence can be approximated using the Generalized Plasmon-Pole model (GPP)

[90, 171].

5.3 A compact representation of the DDRF

The Adler-Wiser formulation in Eq. (3.42) described in Chapter 3 consists of a product of four

mean-field Eigenfunctions. When expanding Eq. (3.42) in a real, atom-centred basis set, one

obtains a four-point function for χ0

χ0(r, r
′) =

∑
ijkl

dijklϕi(r)ϕj(r)ϕk(r
′)ϕl(r

′). (5.6)

By expanding Eq. (5.4), one can show that the interacting DDRF χ can also be written as a

four-point function using a different set of coefficients

χ(r, r′) =
∑
ijkl

χijklϕi(r)ϕj(r)ϕk(r
′)ϕl(r

′). (5.7)

However, as commonly done in quantum chemistry for fitting electron densities, one can use an

auxiliary density-fitting basis set to represent products of basis functions [110] efficiently. Thus,

using an appropriate basis set, one can approximate χ as a two-point function:

χ(r, r′) =
∑
ij

χijϕi(r)ϕj(r
′). (5.8)
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Within BerkeleyGW, the DDRF is represented in a plane wave basis [90, 49]. Thus, the real-space

DDRF is given by

χ(r, r′) =
1

V

∑
G,G′

χG,G′eiG·re−iG′·r′ . (5.9)

Assuming the atom-centred basis set is orthogonal, the projection of the BerkeleyGW DDRF

onto the atom-centred basis set is computed as

χij =
1

V

∑
G,G′

χG,G′

∫
V

ϕi(r)e
iG·rdr

∫
V

ϕj(r
′)e−iG′·r′dr′ =

∑
G,G′

ϕ̃i
∗
(G)ϕ̃j(G

′)χG,G′ . (5.10)

The functions ϕ̃i(G) denote the Fourier transforms of the orthogonal basis functions, defined as

ϕ̃i(G) =
1√
V

∫
V

ϕi(r)e
−iG·rdr, (5.11)

where the integral runs over the unit-cell volume V .

5.3.1 Introducing a basis of CGTOs

The first step in achieving the previously outlined projection for an explicit basis of Cartesian

Gaussian-type orbitals (CGTOs) is constructing an orthogonal set of basis functions. The

starting point are a set of CGTOs {ϕa
αa
(r)}, with a labelling the atom on which the CGTO

is centred and αa labelling the basis functions on atom a. Building the orthogonal basis set

can be achieved in several ways. However, the simplest method is to choose the orthogonal set

{ϕ̂a
αa
(r)} from the Eigenvectors of the overlap matrix

Sab
αaαb

=

∫
drϕa

αa
(r)ϕb

αb
(r). (5.12)

The orthogonal basis functions are then defined as

ϕ̂i
αi
(r) =

∑
k

∑
αk

Aαiαk
ik ϕk

αk
(r), (5.13)
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where Aαiαk
ik is the matrix of eigenvectors of the overlap matrix. The coefficients of the DDRF,

when expanded in the orthogonalized basis are

χ̂ij
αiαj

=
1

V

∑
G,G′

χG,G′ ×
∫ ∞

−∞
ϕ̂i
αi
(r)eiG·rdr

∫ ∞

−∞
e−iG′·r′ϕ̂j

αj
(r′)dr′, (5.14)

where, due to the localised nature of the basis functions, I extended the integral from an integral

over the supercell to an integral over all space. It should be noted that orthogonalizing the

CGTO basis generally yields extended functions. However, the orthogonalized functions are a

linear combination of GTOs. Thus, extending the integral over all space is a valid approximation

if the decay coefficients of the GTOs and the distances to the supercell edge are sufficiently

large. These integrals are proportional to the Fourier transforms of the basis functions (or their

complex conjugates). χ̂ can then be transformed from the orthogonal basis to the atom-centred

basis using the coefficients Aαiαk
ik from Eq. (5.13). This transformation can be expressed in

terms of matrix multiplication with the transformation matrix A, containing these coefficients.

χ(r, r′) =
∑
αiαj

∑
ij

χ̂ij
αiαj

ϕ̂i
αi
(r)ϕ̂j

αj
(r′) =

∑
αkαl

∑
kl

∑
αiαj

∑
ij

Aαiαk
ik A

αjαl

jl χ̂ij
αiαj

ϕk
αk
(r)ϕl

αl
(r′)

=
∑
αkαl

∑
kl

χkl
αkαl

ϕk
αk
(r)ϕl

αl
(r′), (5.15)

where I defined,

χkl
αkαl

=
∑
αiαj

∑
ij

χ̂ij
αiαj

Aαiαk
ik A

αjαl

jl . (5.16)

In matrix notation, the above equation can be written as

χ = ATχ̂A. (5.17)

5.3.2 Evaluation of the Fourier transform

A primitive CGTO is defined as

ϕabc(r) = Nabc(x− x0)
a(y − y0)

b(z − z0)
ce−α|r−r0|2 , (5.18)
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where Nabc is a normalization constant and r0 is the position of the atom the orbital is centred on.

The angular momentum l of a CGTO is given by the sum of the exponents, i.e. l = a+b+c. The

3-D Fourier transform of a CGTO decomposes into a product of three 1-D Fourier transforms,

which simplifies the problem to three 1-D Fourier transforms of functions of the form (ignoring

the normalization constant)

fk(x) = (x− x0)
ke−α(x−x0)2 . (5.19)

Moreover, using the shift property of the Fourier transform, the Fourier transform only has

to be computed for x0 = 0. The resulting Fourier transform is multiplied by a phase factor of

e−iGxx0 . Thus, the problem is simplified to evaluating Fourier transforms of the form:

f̃k(Gx) =

∫
xke−αx2

e−iGxxdx (5.20)

Conveniently, the Fourier transform has the property that FT (xf(x))(Gx) = i ∂
∂Gx

FT (f(x))(Gx).

This allows the derivation of a recursive expression for the Fourier transform of a Gaussian of

order k, where I will denote

Fk = FT (fk)(Gx). (5.21)

F0 can be computed by simply using the Fourier transform of a 1-D Gaussian, centred at

0. Extending the Fourier integral over the unit cell to an integral over all space, the Fourier

transform can be evaluated analytically and is given by

f̃0(Gx) =

√
π

α
e−

G2
x

4α . (5.22)

The recursive expression can then be constructed by repeatedly applying the operator i ∂
∂Gx

to F0. Starting with F1

F1 = i
∂

∂Gx

F0 = i
∂

∂Gx

√
π

α
e−

G2
x

4α = −iGx

2α
F0 (5.23)
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F2 = i
∂

∂Gx

F1 =
1

2α
F0 −

iGx

2α
F1 (5.24)

F3 = i
∂

∂Gx

F1 =
2

2α
F1 −

iGx

2α
F2 (5.25)

Repeated application of the operator results in the following pattern

Fn =
n− 1

2α
Fn−2 −

iGx

2α
Fn−1. (5.26)

The Fourier transform of the CGTO is then given by

ϕ̃klm(G) = Fk(Gx)Fl(Gy)Fm(Gz)e
−iG·r0 . (5.27)

5.3.3 Enforcing of the integration sum-rule of the projected density-

density response function

Since the DDRF is used to calculate the density response to a perturbing potential V (r), it is

clear that for the charge to be conserved, the following sum rule has to apply

∫ ∫
drdr′χ(r, r′)V (r′) = 0 ∀V (r′). (5.28)

When χ is expanded in a plane wave basis, this results in the following constraint on the plane

wave coefficients

∫ ∫
drdr′

∑
G,G′

χGG′eiG·re−iG′·r′V (r′) =
∑
G,G′

χGG′δG0V (G′) =
∑
G′

χ0G′V (G′) = 0. (5.29)

For this condition to be true for all V (r), it is necessary that all χ0G′ are 0. Since the static

density-response is real, χGG′ is a hermitian matrix. Thus it is also required that all χG0 are 0.

For the CGTO basis, I enforced this constraint as a post-processing step, i.e. by setting the first

row and column of the Fourier transform of the projected matrix to zero. This constraint helped

in improving the quality of the quasi-particle energy levels when performing a GW calculation

with the projected matrix.
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5.3.4 Cartesian vs. solid harmonic Gaussians

An alternative to the CGTO basis are the solid harmonic Gaussian basis functions (SGTOs),

defined as

ϕnlm(r, θ, ϕ) = Nl(βnl)r
le−βnlr

2

Ylm(θ, ϕ), (5.30)

where Ylm(θ, ϕ) is a spherical harmonic following the Condon-Shortey phase convention. The

CGTOs and SGTOs are connected via a transformation matrix, the expressions for which are

provided, for example, in Schlegel et al. [163]. For s- and p-type orbitals, the CGTOs can be

expressed exactly in terms of the SGTOs of the same angular momentum l. For d-orbitals and

higher, this is no longer the case. There are a total of 6 CGTOs with angular momentum l = 2,

but only 5 SGTOs of the same angular momentum. In order to express CGTOs in terms of

SGTOs, an additional basis function with s-type symmetry has to be added to the l = 2 SGTOs

ϕn26(r, θ, ϕ) = Nl(βnl)r
2e−βnlr

2

Y00(θ, ϕ). (5.31)

For l = 3, there are 7 SGTOs and 10 CGTOs, and three p-symmetry orbitals need to be added

to the SGTOs. In practice, these additional orbitals are not included in most quantum chemistry

codes. This is also the case in LibInt [182], which is used for the calculation of overlap integrals

in this chapter. Thus, the SGTOs can be expressed in terms of CGTOs, but the reverse is not

the case for l = 2 and higher. However, SGTOs have a few advantages: 1) There are fewer

SGTOs than CGTOs for the same angular momentum l, thus providing a more compact basis

set. 2) As shown by Kuang et al. [108], the Fourier Transform of an SGTO is also an SGTO.

Provided the SGTOs follow the Condon-Shortley phase convention, the Fourier Transform of

the SGTO in Eq. (5.30) is given by

1

(2π)3/2

∫
dre−iG·rNl(βn)r

le−βr2Ylm(r̂) = (−i)lÑl(βn)G
le−G2/(4βn)Ylm(Ĝ), (5.32)

with Ñl(βn) = Nl(βn)/(2βn)
3/2. Equation (5.32) shows that only the l = 0 SGTOs are non-zero

at |G| = 0. Thus, for SGTOs, the integration sum rule for the DDRF could also be enforced

by removing s-type orbitals from the basis set. SGTOs can also be expressed in terms of real
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basis functions. The relationship between complex SGTOs and real SGTOs is given by the

relationship between complex spherical harmonics Ylm and their real counterparts Rlm. The

real and complex spherical harmonics are related by the unitary transformation

Rlm(θ, ϕ) =



i√
2

(
Yl−|m|(θ, ϕ)− (−1)mYl|m|(θ, ϕ)

)
if m < 0

Ylm(θ, ϕ) if m = 0

1√
2

(
Yl−|m|(θ, ϕ) + (−1)mYl|m|(θ, ϕ)

)
if m > 0.

(5.33)

In this chapter, the real SGTOs (RSGTOs) are used exclusively. The Fourier transform of the

RSGTOs is computed by first evaluating Eq. (5.32), followed by applying the transformation in

Eq. (5.33).

5.3.5 Symmetry of the projected density-density response function

The density-density response function is symmetric under the exchange of r and r′. Looking at

Eq. (5.15), we thus require that

χkl
αkαl

= χlk
αlαk

. (5.34)

Since χGG′ is hermitian, this constraint is automatically satisfied for RSGTOs and CGTOs.

5.4 Application to silicon clusters

This section applies the previously outlined method to the silicon clusters from Chapter 4. First,

the properties of the approximate DDRFs are investigated, followed by an assessment of the

accuracy in HOMO-LUMO gaps when using the approximate DDRFs in GW calculations. Then,

a neural network model is trained to predict the resulting DDRFs.

5.4.1 Computational Details

In order to increase the size of the data set, I perturbed the atomic coordinates of the Si-H

clusters used to train the polarizability model in Chapter 4 by a random vector with between 0
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and 0.1 Å magnitude. Only clusters with fewer than 60 silicon atoms are included in the data

set. Using this approach, I generated 6 randomly perturbed clusters out of each relaxed cluster

in the original data set. These perturbed clusters are then used as a training set for a simple

neural network model of the DDRF. The DDRF and QP corrections were calculated using the

BerkeleyGW software package [90, 49]. Mean-field DFT calculations were performed using the

Quantum Espresso code [69, 70]. Norm-conserving pseudopotentials from the Quantum Espresso

Pseudopotential Library were used. The parameters of the DFT calculations were the same as

those used by Zauchner et al. [196] (see Chapter 4): a plane-wave cut-off of 65 Ry, and a supercell

with sufficient vacuum to avoid interactions between periodic images. Also, a plane-wave cut-off

of 6 Ry and a truncated Coulomb interaction were used for the calculation of the DDRF. The

QP corrections were calculated using the generalized plasmon-pole approximation (GPP) [90],

an explicit sum over 1000 Kohn-Sham states and also a static remainder correction [48]. To

calculate the HOMO and LUMO energies, the vacuum level was determined by averaging the

electrostatic potential over the faces of the supercell. To perform the projections onto the

localised basis, auxiliary density fitting basis sets from the admm-series [109] were used. The

basis set was obtained from Basis Set Exchange (BSE) [62, 149, 165]. The smallest of these

basis sets (admm-1) uses 3 contracted s-type orbitals and 2 contracted p-type orbitals for silicon

atoms, and 2 contracted s-type orbitals for hydrogen atoms. Overlap matrices were computed

using LibInt [182]. A parallel implementation of the projection of the DDRF described above

was developed. The smallest CGTO basis set used results in a total of 2 basis functions per

hydrogen atom and 9 basis functions per silicon atom. Since the basis of the DDRF is formed

by products of the basis functions in r and r′, the matrix χij
αiαj

can be constructed out for five

different “types” of blocks. A 9x9 block for silicon onsite terms, i.e. where the basis functions

in r and r′ reside on the same atom. A 9x9 block for silicon-silicon cross-site terms, where the

basis functions in r and r′ reside on different atoms. Equivalent 2x2 blocks for hydrogen atoms.

And finally, a 9x2 block for silicon-hydrogen cross-site terms. The different types of blocks are

shown in Figure 5.1. These five types of blocks form the output of the neural network models

developed at the end of this chapter.
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Si Si-Si

Si-H

H

H-H

Figure 5.1: Matrix χij
αiαj

for cluster Si10H18. The red rectangles highlight the different types of
blocks. Si blocks correspond to silicon onsite terms, Si-Si blocks to silicon-silicon crosssite terms,
H to hydrogen onsite, H-H to hydrogen-hydrogen crossite terms and Si-H to silicon-hydrogen
crosssite terms.

5.4.2 Neural network model

In order to predict the expansion coefficients of the smallest CGTO basis, five dense neural

network models - one for each type of block - were constructed and trained using the Tensorflow

Python-API [2]. A dense neural network is a non-linear model consisting of several layers which

apply a non-linear transformation to the output of the previous layer. All layers between the

input and output layer are usually referred to as hidden layers [25]. The output of an N -layer

neural network model is given by the composition of the non-linear functions of all layers, i.e.

f(x) = oN(oN−1(· · ·o1(x))), (5.35)

108



CHAPTER 5. APPROXIMATING THE RPA DENSITY-DENSITY RESPONSE FUNCTION

where x is the input of the model and o(·) is some non-linear function on the input to the layer.

In a dense neural network, the non-linear function consists of a linear transformation

zNi =
∑
j

wN
ij o

N−1
j + bi, (5.36)

where wN
ij and bNi are learnable parameters, followed a non-linear function h applied to each

intermediate output

oNi = h(zNi ). (5.37)

Neural networks are trained using the backpropagation algorithm [156], which is explained in

Appendix B. The five neural network models used to represent each block type use the same

neural network structure, with three hidden layers (with 400, 300 and 100 nodes, respectively).

The non-linearity used in these models is the Leaky-ReLU function, which has a gradient of 1

for positive values and a gradient which is specified as a hyperparameter for negative values.

It should be noted that the Leaky-ReLU activation function has a discontinuity in the first

derivative. However, since no derivatives of the DDRF are required in the GW method, the

discontinuity should not cause any problems. The models for onsite blocks have a single input -

the first 50 principle components (PCs) of the SOAP descriptor of the corresponding atom, as

obtained from principal component analysis (PCA). While this is a natural choice for onsite

terms, it is not clear how to construct a descriptor for the cross-site terms. Since SOAP is

rotationally invariant by design, there is no information about the relative orientation of the

two atoms encoded in the descriptor. This led to really poor regression performance for certain

types of cross-site terms. In particular, I found that s-p cross-terms (s orbital on one atom and p

orbital on the other) and p-p cross-terms are highly dependent on the relative orientation of the

two atoms. To provide additional orientational information, the cross-site term models have an

additional input: the overlap matrix block corresponding to the two atoms. The overlap matrix

provides two additional pieces of information: 1) It contains information about the distance

between the two atoms; and 2) Due to the presence of p-orbitals in the basis set, it also contains

information about the relative orientation of the two atoms, as the sign of the corresponding

overlap matrix element has a strong dependence on the orientation of the p-orbitals. Cross-site
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blocks thus have three inputs: (1) 50 PCs of the SOAP descriptor of the first atom, (2) 50 PCs

of the SOAP descriptor of the second atom and (3) the overlap matrix block corresponding to

the two atoms. SOAP descriptors were constructed with lmax = 8 and nmax = 12 and γν = 0.5

for rcut = 8.0 Å using the QUIPPY library [15]. In order to enforce the symmetry of the DDRF in

the neural network (NN) model, only χij
αiαj

for j ≥ i are predicted and the remaining coefficients

are obtained by using the symmetry property of the DDRF. Additionally, the coefficients χij
αiαj

were scaled to be between -1 and 1 before training. Both the scaling and the addition of the of

overlap matrix blocks improved regression performance, in particular, a decrease in terminal

training error was observed. The models were trained for 250 epochs on the perturbed versions

of the clusters. The relaxed clusters were retained as a test set. A learning rate of 0.001 was used.

During training dropout of 0.05 was used in each layer to prevent overfitting. The Leaky-ReLu

activation function has an additional parameter defining the slope for negative outputs, which

was set to 0.13. These parameters were optimized using hyperopt [24].

5.4.3 Results and Discussion

Analysis of matrix elements

Before evaluating the accuracy of the QP energies in the projected basis, it is worth analysing

some of the properties of the expansion coefficients. The following analysis shows some of the

properties of the expansion coefficients in the admm-1 and admm-2 CGTO basis sets. A plot of

the average magnitude of matrix elements in the admm-1 and admm-2 CGTO basis sets vs the

number of Si atoms in a cluster is shown in Fig. 5.2. Specifically, the coefficients χab
αaαb

were

averaged over the onsite-blocks of silicon atoms using

χNSi
=

NSi−1∑
a=0

∑
αaβa

∣∣χaa
αaβa

∣∣/NSi, (5.38)

for each cluster. The resulting average values χNSi
were then divided by the maximum value

of χNSi
for a given basis set to bring the averages of the two basis sets to the same scale. The

average magnitude of the onsite terms in the admm-1 basis set appears to drop off by around

20% as the number of silicon atoms in a cluster increases. The steepest drop-off in magnitude
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occurs up to 40 silicon atoms. In the admm-2 basis set, there is no systematic drop-off but

large variations in χNSi
. Significant scatter in the average magnitude can be seen, followed by

a distinctive drop-off between 35 and 40 Si atoms and another increase between 45 and 60 Si

atoms. The variation in the average magnitude of the expansion coefficients indicates that there

is a global dependence on the entire cluster. Thus, it is expected that a descriptor that only

captures the first neighbours is not sufficient for learning the coefficients χab
αaαb

.

10 20 30 40 50 60
NSi

0.75

0.80

0.85

0.90

0.95

1.00

N
Si

admm-1
admm-2

Figure 5.2: Mean of the magnitude of onsite Silicon blocks against the number of Silicon atoms
in the cluster in the admm-1 and admm-2 CGTO basis. The average magnitude appears to
drop off until NSi = 60, beyond which it remains roughly constant.

Decay of cross terms as a function of distance

The cross-site terms are the expansion coefficients χab
αaαb

corresponding to basis functions

ϕa
αa
(r− ra) and ϕb

αb
(r′ − rb), where ra ̸= rb. In order to investigate the non-locality of the

DDRF, we average the magnitude of the cross-site terms by sorting them into bins depending
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on the distance |ra − rb|: for example, atoms with |ra − rb| ≥ 2.5 Å and |ra − rb| < 3.5 Å are

placed into the bin at 3 Å. The average of the absolute value of the coefficients in each bin

is then calculated, and the results are again divided by the maximum in order to bring the

admm-1 and admm-2 results to the same scale. The result of this average χr is plotted in

Fig. 5.3. Fig. 5.3 only includes silicon-silicon cross-site terms, as these are the most numerous

and largest in magnitude; however, a similar trend can be seen in the hydrogen-hydrogen and

silicon-hydrogen terms. Clearly, the magnitude of the matrix elements drops off sharply and is

negligible beyond a distance of around 8− 10 Å. The decrease in χr is slower when the admm-2

basis set is used; however, a drop-off around 90% at a distance of 8 Å can still be observed. The

decay of the cross-site terms indicates electronic localisation around a site - the density response

to a perturbing potential at point ra only extends to the atoms surrounding the point at which

the perturbation is applied. This effect has been studied in detail by Mussard et al. [134], where

it was found that the charge density response is non-zero where the exchange-correlation hole is

non-zero. The consequence of this observation is that the charge density response to a perturbing

potential typically only extends a few atoms away from the perturbation in semiconductors and

insulators, where charge is localised [134].

Accuracy of QP energy levels

The QP HOMO-LUMO gaps (Eg) were calculated at the mean-field (PBE-DFT) level, at the

GW level and using the projected DDRF in the admm-series CGTO basis sets. Fig. 5.4 shows

how the results with the projected matrix compare to the DDRF and the mean-field (DFT)

result. The HOMO-LUMO gap was only calculated for the unperturbed versions of the clusters.

We can see that the bulk band gap of silicon (obtained from GW-RPA calculations by Hybertsen

et al. [90]) is significantly smaller than the HOMO-LUMO gaps of the hydrogenated silicon

clusters. An interesting feature is the drop-off in HOMO-LUMO gap over the range of cluster

sizes. At the mean-field level, the HOMO-LUMO gap decreases by ∼1.8 eV from 10 to 60

silicon atoms, while at the GW+RPA level, this decrease is more pronounced ∼3.1 eV. The

decrease in HOMO-LUMO gap with cluster size is well documented and has also been found by

Degoli et al. [46] or Wippermann et al. [194]. The decrease in HOMO-LUMO gap is largely

112



CHAPTER 5. APPROXIMATING THE RPA DENSITY-DENSITY RESPONSE FUNCTION

2 4 6 8 10 12 14 16
|ra rb| [Å]

0.0

0.2

0.4

0.6

0.8

1.0
r

admm-1
admm-2

Figure 5.3: Average magnitude of Silicon-Silicon cross-site terms vs. distance between basis
function centres using the admm-1 and admm-2 CGTO basis. Clearly, the cross-site terms drop
off sharply with the distance between sites, the density response is localised around a site.

attributed to quantum-confinement effects, which become less significant as the cluster size

increases. Moreover, Wippermann [194] found that the GW QP-corrections to the mean-field

HOMO-LUMO gap were comparable to the corrections shown here (between 3 eV and 4 eV).

For the smallest basis set (admm-1), the projected matrix yields errors in the HOMO-LUMO

gap of up to 1 eV. This is still an improvement over DFT-PBE, even though a minimal basis

set is used to compute the projections. The QP corrections are significantly improved when the

larger admm-2 basis set is used for the projected DDRF. An exception to this improvement is

observed for the clusters with 15 and 16 silicon atoms. Here, the projection fails to yield accurate

quasiparticle energies and significantly underestimates the HOMO-LUMO gap. Further, minor

improvements are achieved with the even larger aug-admm-2 basis set. Moreover, the large error

for the two aforementioned clusters is not observed with this basis set. Interestingly for the
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admm-1 basis set, the difference to the plane-wave G0W0 increases as the cluster size increases.

In contrast, for the two larger basis sets, the error remains constant over the entire range of

clusters. Several calculations with the approximate CGTO basis sets also failed due to numerical

instabilities, as can be seen in the missing points in Fig. 5.4. In Fig. 5.5, different variants of
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DFT-PBE
admm-1
admm-2
aug-admm-2
bulk value

Figure 5.4: HOMO-LUMO gap against number of silicon atoms in the cluster for plane-wave
G0W0 and G0W0 with projected DDRF using different CGTO basis sets. RPA bulk value
obtained from Hybertsen et al. [90].

the admm-2 basis set are compared. In orange, the CGTO admm-2 basis is shown. The other

two admm-2 variants use an SGTO basis. For the SGTO basis, including s-orbitals, one crucial

modification was made: the contracted GTOs, which are basis functions consisting of a linear

combination of GTOs, were separated into individual basis functions. This additional flexibility

in the basis yields slightly more accurate HOMO-LUMO gaps than the CGTO basis, even

though SGTOs generally contain fewer basis functions for the same angular momentum l. In this

SGTO basis, the integration sum rule of the DDRF was enforced as a post-processing step in the
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same way as for the CGTOs. In red, the SGTO admm-2 basis with removed s-orbitals is shown.

This modification eliminates the need for the post-processing step, as discussed in Section 5.3.4.

The accuracy in HOMO-LUMO gaps is slightly lower than for the CGTO basis. The removal of

the s-orbitals will play an essential role in the next chapter, where I will discuss why despite

the slight decrease in accuracy, the removal of s-orbitals is a worthwhile trade-off. Even for the

SGTO basis without s-orbitals, the difference in HOMO-LUMO gap to the plane-wave G0W0

result is consistently within ∼ 0.4 eV. This result indicates that the plane-wave DDRF can

indeed be compactly represented using auxiliary basis sets, thereby reducing the size of the

DDRF from several Gigabytes to a few Megabytes, without losing too much accuracy. It should

also be noted that the numerical instabilities encountered with the CGTO basis sets were not

observed with the SGTO basis sets, making the SGTO basis the choice for the calculations

carried out in the next chapter. To gain more insight into the effect of the projection on the

dielectric matrix, Fig. 5.6 shows the real part of the first 100 rows and columns of the dielectric

matrix of the cluster Si10H18. The LHS heatmap shows the RPA dielectric matrix as used in

the plane-wave G0W0 calculations and the RHS shows the dielectric matrix obtained from the

Fourier transform of the DDRF in the approximate SGTO basis (with no s-orbitals). On both

heatmaps, similar patterns can be observed. Most notably positive values close to 1.0 along

the diagonal. Moreover, the sign of individual elements is mostly equal, which can be seen

clearly in between row 20 and row 80 within the first 20 columns. While the signs of the matrix

elements are mostly correct, it can be seen that the magnitude is consistently overestimated

when using the SGTO basis. The dielectric matrix is directly related to the DDRF, the elements

of which are a rough indicator of the strength of the density response. It appears that the

stronger density response causes the system to become slightly more metallic, decreasing the

HOMO-LUMO gap compared to the plane-wave G0W0 HOMO-LUMO gap.

5.4.4 Machine Learning the expansion coefficients

One of the challenges in developing a model to predict these coefficients is the choice of descriptor.

Ideally, such a descriptor should transform in the same way as the outputs. In the case of the

neural network models representing the different types of blocks of the DDRF, this is not the
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Figure 5.5: HOMO-LUMO gap against number of silicon atoms in the cluster for plane-wave
G0W0 and G0W0 with projected DDRF using different CGTO and SGTO basis sets. The two
outliers in the CGTO admm-2 basis were removed to highlight the differences between the
SGTO and CGTO basis sets. RPA bulk value obtained from Hybertsen et al. [90].

case. The SOAP descriptor is rotationally invariant [16] and thus does not provide a complete

descriptor for the target quantity χab
αaαb

. As a consequence, it was found that both the training

and validation error stopped decreasing after around 250 epochs. The models still appear to

reliably predict the larger coefficients of the DDRF, as illustrated in Fig. 5.7.

Fig. 5.7 (a) and 5.7 (b) shows the predicted coefficients against the actual coefficients for a

small (Si10H18) and a large (Si69H68) cluster. We can see that for smaller coefficients, there is

significantly more scatter than for the larger coefficients. Without pre-scaling the coefficients

to be within the range [-1.0, 1,0], this problem becomes worse, as the mean squared error loss

function is biased towards accurate predictions on larger coefficients. These smaller coefficients

correspond to cross-site terms that have strong orientational dependence discussed before. While

using the overlap matrix as an additional input to the model significantly improves the accuracy
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Figure 5.6: First 100 rows and columns of the RPA dielectric matrix as used in plane-wave
G0W0 and the SGTO dielectric matrix with no s-orbitals. The colour bar indicates the value of
the real part of elements of the dielectric matrix.

in predicting these coefficients, it does not entirely mitigate the issue. The HOMO-LUMO

gap appears to be very sensitive to these coefficients, so the predicted DDRFs do not yield

satisfactory results for the HOMO-LUMO gap. This can be seen in Fig. 5.8 (ML-G0W0), where

the predicted DDRFs in GW calculations led to extremely unreliable QP corrections and changes

in the ordering of the QP energies. In particular, it can be seen that for most silicon clusters,

the QP corrections shift the DFT-PBE LUMO energy below the HOMO energy, leading to a

negative HOMO-LUMO gap when energies are ordered according to their DFT-PBE energies.

Reordering the energies would necessitate the calculation of all states, which is not practical.

The high sensitivity of the QP-energies to small differences in the coefficients χab
αaαb

necessitates

a more systematic approach for machine-learning the DDRF. This is the subject of the next

chapter, where I introduce an atomic decomposition of the DDRF and a corresponding descriptor

which encodes the transformation properties of these atomic contributions under rotation of the

chemical environment.
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(a) Si10H18 (b) Si69H68

Figure 5.7: Predicted vs. actual coefficients of χij . The coefficients were predicted using the NN
models for each block type. The results shown correspond to the relaxed versions of the clusters.

5.5 Conclusion

In this chapter, I have demonstrated how the DDRF can be efficiently approximated using a set

of auxiliary basis functions of GTOs. The resulting DDRFs yield HOMO-LUMO gaps within

∼ 0.4 eV of a full plane-wave G0W0 calculation. While this constitutes significant progress

towards the development of an ML-DDRF, further work is needed.

The failure of the ML model introduced in this chapter is largely due to the fact that ϕi
αi
(r)

and ϕj
αj
(r′) can be centred on different atoms and thus a model that predicts the corresponding

expansion coefficient χij
αiαj

would require a descriptor that depends on the chemical environment

of both atoms, as well as their relative distance and orientation. Ideally, such a descriptor should

also transform in the same way as the target quantity χij
αiαj

under a rotation of the cluster.

Combining these properties into one descriptor is far from trivial, and the ‘naive’ machine

learning model and its failure to predict the DDRF with sufficient accuracy prove that a more

systematic approach is needed. In the next chapter, I describe how an atomic decomposition

of the DDRF is achieved, followed by deriving the transformation properties of these atomic

contributions under rotation. The predictable transformation properties allow for constructing

a neighbourhood density-based descriptor that encodes these transformation properties and can

be used to train a neural network, predicting the expansion coefficients of the atomic DDRFs.
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Figure 5.8: HOMO-LUMO gaps obtained using the plane-wave G0W0, G0W0 using the admm-1
CGTO DDRF and the predicted DDRFs obtained using the neural network model (ML-G0W0).
The negative HOMO-LUMO gaps are a consequence of the reordering of energy levels caused
by the QP corrections.
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Chapter 6

Accelerating GW calculations through

machine-learned dielectric matrices

6.1 Introduction

Recently machine learning has shown tremendous success in reproducing various scalar properties

and may provide a promising path to more flexible model dielectric functions. As discussed

in Chapter 5, to make progress on developing a machine-learned model DDRF, a systematic

approach is required. The starting point of every machine learning model is the descriptor.

Many descriptors used in the fields of computational chemistry are explicitly constructed to

be invariant under rotation and translation. For example, ACE [51], SOAP [16], the Coulomb

matrix [78, 160], Bag-of-bonds [77] or fingerprint-based descriptors have been shown to be

reliable descriptors for the prediction of scalar quantities. As I have shown in Chapter 5, when

predicting tensors or functions, however, it is no longer sufficient to rely on a rotationally

invariant descriptor. Several approaches aimed at addressing this problem can be found in the

literature. For example, Grisafi [73] developed a symmetry-adapted version of the SOAP kernel,

which is equivariant under rotations and was successfully used in the prediction of polarizability

tensors and first hyperpolarizabilities [192, 73], dipole moments [184] and electronic densities

[72].

The prediction of electronic densities is particularly interesting in the context of this work,

120



CHAPTER 6. ACCELERATING GW CALCULATIONS THROUGH MACHINE-LEARNED
DIELECTRIC MATRICES

as, similar to learning the DDRF, the model’s output is a function instead of a scalar or tensor.

As shown by Grisafi and co-workers [72], the electronic density can be expanded in a basis of

spherical harmonics and radial basis functions, yielding a set of coefficients which transform

as spherical tensors. Several other groups have also explored machine learning approaches

of the electronic density in the past, for example, Brockherde et al. [31], Alred et al. [5]

and Chandrasekaran and co-workers [38]. Moreover, the construction of group-equivariant

neural networks, such as Clebsch-Gordan networks [105, 106, 6], tensor-field networks [179] and

spherical CNNs [41, 40] have seen significant developments in recent years and implementation

of these methods has been significantly simplified by frameworks such as e3NN [112] developed by

Geiger et al., thus providing promising alternatives to symmetry adapted SOAP for the learning

of functions. To the best of my knowledge, however, there has been no attempt at developing

machine learning models for the prediction of non-local functions, such as the DDRF. In this

chapter, I aim to bridge this gap and present a scheme to decompose the DDRF into atomic

contributions, which can be learned within an atom-centred framework. The decomposition

into atomic contributions is almost a necessity in the context of learning non-local functions: as

discussed in Chapter 5, the DDRF can quickly grow to several tens of gigabytes in size when

represented on a real-space or plane-wave grid. The immense size of these matrices for larger

systems presents a significant computational and storage bottleneck in GW calculations and a

challenging machine-learning problem that an atomic decomposition can significantly simplify.

In the last chapter, I have shown that the size of the DDRF can be drastically reduced by

approximating it in a basis of GTOs. In this chapter, I build on the previous results and show

that by decomposing the DDRF into atomic contributions and constructing a new atom-centred

descriptor, an accurate machine-learning model of the DDRF can be developed. The resulting

DDRFs are then used in GW calculations to obtain QP corrections. This hybrid ML/GW

approach is called the ML-GW method. I would further like to point out that while a fully

equivariant model would be desirable, extending the previously mentioned equivariant models to

non-local functions quickly becomes intractable due to the large number of parameters required

and the computationally expensive operations needed for each layer. Alternatively, one could

use a purely linear model, which can be easily constructed to be equivariant. However, in
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doing so, one would lose the immense flexibility of neural networks, primarily attributed to the

non-linearities in each layer. As such, I employ a dense neural network to predict the DDRF

while ensuring that the descriptor can discern between different orientations of the atomic

environment.

6.2 Theory

6.2.1 Atomic decomposition of the density-density response function

To bypass the expensive computation of the DDRF and pave the way towards a machine-learning

approach, it is desirable to decompose the DDRF χ(r, r′) as a sum of atomic contributions

χi(r, r
′) according to

χ(r, r′) =
N∑
i=1

χi(r, r
′), (6.1)

where i labels atoms and N is the total number of atoms.

How this partitioning is achieved is not immediately obvious. However, one would expect

certain properties from these atomic contributions: (1) the function has small contributions far

away from the atom; (2) the function retains the global symmetry of χ, e.g.

χ(r, r′) = χ(r′, r). (6.2)

The (intractable) direct approach

The most obvious solution is to define a purely atom-centred basis. The basis functions for

atom i are given by the solid harmonic Gaussians of the form

ψi
nlm(r) = N(βnl)r

le−βnlr
2

Ylm(θ, ϕ), (6.3)
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where N(βnl) is a normalization constant. Using this basis, we can expand the atomic density-

density response function as

χi(r, r
′) =

Nmax∑
n=1

lmax∑
l=0

l∑
m=−l

Nmax∑
n′=1

lmax∑
l′=0

l′∑
m′=−l′

χ
(i)
nlmn′l′m′ψ

i
nlm(r)ψ

i∗
n′l′m′(r′). (6.4)

Recall that the plane-wave density-density response function is given by

χ(r, r′) =
1

V

∑
G,G′

χG,G′eiG·re−iG′·r′ . (6.5)

The projection of χ(r, r′) onto the basis ψi
nlm(r)ψ

i
n′l′m′(r′) can then be computed using the

following integral

w
(i)
nlmn′l′m′ =

1

V

∑
G,G′

χG,G′

∫
drψi

nlm(r)e
iG·r

∫
dr′ψi∗

n′l′m′(r′)e−iG′·r′ =
∑
G,G′

χG,G′ψ̃∗i
nlm(G)ψ̃i

n′l′m′(G′),

(6.6)

where ψ̃i
nlm(G) denotes the Fourier transform of a basis function evaluated at G. However, since

the basis functions on different atoms are not orthogonal, the coefficients wi
nlmn′l′m′ are different

from χ
(i)
nlmn′l′m′ in Eq. (6.4). To find the relationship between the two coefficients, we first expand

the density in the previously described basis set and then multiply by ψj
nlm(r)ψ

j
n′l′m′(r′)∗ and

integrate over all space

w
(j)
nlmn′l′m′ =

∑
i

∑
n1l1m1n2l2m2

χ
(i)
n1l1m1n2l2m2

∫
ψi
n1l1m1

(r)ψj∗
nlm(r)dr

∫
ψi∗
n2l2m2

(r′)ψj
n′l′m′(r

′)dr′ =

∑
i

∑
n1l1m1n2l2m2

χ
(i)
n1l1m1n2l2m2

S
(i,j)
n1l1m1nlm

S
(j,i)
n′l′m′n2l2m2

. (6.7)

By collecting indices nlm together into a combined index k, we arrive at the following expression

w
(j)
kk′ =

∑
i

∑
k1k2

S
(i,j)
k1k

χ
(i)
k1k2

S
(j,i)
k′k2

. (6.8)
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Next, we can use the following property

S
(i,j)∗
nlmn′l′m′ = S

(j,i)
n′l′m′nlm −→ S

(i,j)∗
kk′ = S

(j,i)
k′k , (6.9)

to obtain,

w
(j)
kk′ =

∑
i

∑
k1k2

S
(j,i)∗
kk1

χ
(i)
k1k2

S
(j,i)
k′k2

. (6.10)

Now we define

S
(j,i)∗
kk1

S
(j,i)
k′k2

= S̃
(i,j)
kk′k1k2

. (6.11)

While this large matrix S̃ may, in principle, be inverted naively, it makes sense to identify it

with the Khatri–Rao product [128] of two matrices denoted S† ⊛ S,

S̃ = S† ⊛ S =


S†(1,1) ⊗ S(1,1) · · · S†(1,N) ⊗ S(1,N)

...
. . .

...

S†(N,1) ⊗ S(N,1) · · · S†(N,N) ⊗ S(N,N)

 . (6.12)

Now using the fact that the inverse of a Kronecker Product is the Kronecker Product of the

inverses

(A−1 ⊗B−1)(A⊗B) = (A−1A)⊗ (B−1B) = I ⊗ I = I, (6.13)

the inversion can be recursively solved via inversion by partitioning [64], where the matrix is

first divided into four sub-matrices. This process recursively repeats on each sub-matrix until

the sub-matrices only consist of a single tensor product. Then the inverse tensor product can

be built from the tensor product of the inverses.

Thus, to compute the expansion coefficients in Eq. (6.4), one must first calculate the

projections in Eq. (6.7), followed by multiplication with the inverse of the above matrix.

While this approach of direct inversion of the overlap matrix is appealing, it is unfortunately

intractable for even the most trivial systems. This is because the tensor products in Eq. (6.12)

increase drastically in size as the number of basis functions is increased. For example, if a

total of 100 basis functions are used in r and r′ respectively, each of the tensor-products in

Eq. (6.12) corresponds to a 10000×10000 matrix. For a 10-atom system, the total overlap
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matrix would be around 160GB if double-precision complex floating point numbers are used. As

such, an alternative approach through partitioning the DDRF into atomic contributions before

the projection is required.

Divide and conquer

This can be achieved, for example, without approximation, by defining a symmetric partitioning

function pi(r, r
′) in a similar fashion to Hirshfeld’s Stockholder partitioning [84], which decays

as the distance from the atom increases. Thus, we can define the atomic contributions as

χi(r, r
′) = pi(r, r

′)χ(r, r′), (6.14)

requiring that
N∑
i=1

pi(r, r
′)χ(r, r′) = χ(r, r′). (6.15)

Such a partitioning function can be constructed from any symmetric function p̃i(r, r
′), by

defining

pi(r, r
′) =

p̃i(r, r
′)∑

j p̃j(r, r
′)
. (6.16)

While this approach is appealing, it has two significant disadvantages: 1) integrals and Fourier

transforms can no longer be evaluated analytically. 2) It is not apparent how to enforce the

integration sum rule of the DDRF. As such, I propose a different approach, leveraging the

results from the previous chapter. To extract atomic contributions from the total DDRF, it is

convenient to switch to Bra-Ket notation, where we define

χ(r, r′) = ⟨r|χ̂|r′⟩. (6.17)

and a projection operator P̂n to extract atomic contributions from the DDRF. The projection

operator is defined in the real atom-centred basis from the previous chapter |ϕa
αa
⟩ ⊗ ⟨ϕb

αb
|, where

a, b index atoms and αa, αb index a specific basis function on the respective atoms

P̂n =
1

2

∑
v,αv

∑
w,αw

(δnv + δwn)
∑
k,αk

∑
l,αl

S−1,wl
αwαl

S−1,vk
αvαk

|ϕw
αw
⟩ ⊗ |ϕk

αk
⟩ ⊗ ⟨ϕv

αv
| ⊗ ⟨ϕl

αl
|, (6.18)
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where S−1,vk
αvαk

are the elements of the inverse overlap matrix of the basis set, and the factor 1
2
is

introduced to avoid double counting. The overlap matrix of the basis set is defined as

Sij
αiαj

=

∫
drϕi∗

αi
(r)ϕj

αj
(r) = ⟨ϕi

αi
|ϕj

αj
⟩. (6.19)

Starting from an expansion of χ̂ in the intermediate real atom-centred basis as

χ̂ =
∑
a,αa

∑
b,αb

χab
αaαb

|ϕa
αa
⟩ ⊗ ⟨ϕb

αb
|, (6.20)

where χab
αaαb

is a symmetric matrix to ensure the symmetry of χ(r, r′) under exchange of r and

r′, the action of the operator on χ̂ is given by the contraction

P̂nχ̂ =
1

2

∑
v,αv

∑
w,αw

(δnv + δwn)
∑
k,αk

∑
l,αl

S−1,wl
αwαl

S−1,vk
αvαk

∑
a,αa

∑
b,αb

χαaαb
ab ⟨ϕb

αb
|ϕk

αk
⟩⟨ϕl

αl
|ϕa

αa
⟩|ϕw

αw
⟩ ⊗ ⟨ϕv

αv
|.

(6.21)

After some algebra, we arrive at the definition of the atomic contribution to the DDRF given

by (notice the renaming of the remaining summation index over atoms)

χ̂n =
1

2

∑
αn

∑
w,αw

[(
χnw
αnαw

|ϕn
αn
⟩ ⊗ ⟨ϕw

αw
|
)
+

(
χwn
αwαn

|ϕw
αw
⟩ ⊗ ⟨ϕn

αn
|
)]

. (6.22)

In real space, these atomic contributions can be written as

χn(r, r
′) = ⟨r|χ̂n|r′⟩

=
1

2

∑
αn

∑
w,αw

[(
χnw
αnαw

⟨r|ϕn
αn
⟩ ⊗ ⟨ϕw

αw
|r′⟩
)
+

(
χwn
αwαn

⟨r|ϕw
αw
⟩ ⊗ ⟨ϕn

αn
|r′⟩
)]

=
1

2

∑
αn

∑
w,αw

[(
χnw
αnαw

ϕn
αn
(r)ϕw∗

αw
(r′)

)
+

(
χwn
αwαn

ϕw
αw
(r)ϕn∗

αn
(r′)

)]
. (6.23)

Since the basis functions are real, i.e. ϕw∗
αw
(r) = ϕw

αw
(r), it can be easily verified using the

symmetry of χnw
αnαw

, that χn(r, r
′) inherits the symmetry of the total DDRF. The locality of

χn(r, r
′) is less trivial and depends on the decay of the expansion coefficients χnw

αnαw
as the

distance between atom n and atom w increases. In practice, this property is also inherited from
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the total DDRF of the silicon clusters, which I discussed in Chapter 5. I will refer to the DDRF

in this basis as the two-centre (2C) DDRF. Fig. 6.1 shows the coefficients χab
αaαb

for the silicon

cluster Si10H18, with the red boxes indicating the coefficients that are included in the atomic

contribution of the second silicon atom. We can clearly see the origin of the factor of 1/2 in

the atomic contributions: due to the overlap of the red boxes, each coefficient is used exactly

twice, thus it is necessary to divide the atomic contributions by a factor of 2 in order to avoid

double counting. I want to stress that this atomic representation of the DDRF is exact, i.e.∑
i χi(r, r

′) reproduces the full interacting DDRF when the local basis set is complete. However,

the atomic contributions to the DDRF contain contributions from pairs of basis functions which

are centred on different atoms: see Eq. (6.23). These contributions are difficult to learn using

atom-centred descriptors. To make progress, I exploit the localization of χi(r, r
′) and expand it
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Figure 6.1: Coefficients of the 2C-DDRF in the admm-2 SGTO basis without s-orbitals for the
cluster Si10H18. The red boxes indicate the coefficients included in the atomic contribution of
the second Si atom.
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in terms of a set of basis functions ψi
nlm(r) = Ylm(r̂)Rn(|r|) (with Ylm denoting the spherical

harmonics and Rn a set of radial functions) which are all centered on atom i according to

χi(r, r
′) =

∑
nlm

∑
n′l′m′

χ̂
(i)
nlmn′l′m′ψ̂

i
nlm(r)ψ̂

i
n′l′m′(r′) (6.24)

with χ
(i)
nlmn′l′m′ denoting the expansion coefficients given by

χ̂
(i)
nlmn′l′m′ =

∫ ∫
drdr′χi(r, r

′)ψ̂i
nlm(r)ψ̂

i
n′l′m′(r′), (6.25)

where ψ̂i
nlm(r) are again an orthogonal basis built from the overlap matrix of the orbitals ψi

nlm(r).

These coefficients can be learned using a neural network based on atom-centred descriptors. I

refer to the representation of the DDRF in the basis {ψi
nlm(r)} as 1-centre DDRF (1C-DDRF)

because it only contains pairs of basis functions centred on the same atom.

Integral evaluation

We start from the DDRF in the atom-centred 2C-basis

χ(r, r′) =
1

2

∑
αn

∑
w,αw

[(
χnw
αnαw

ϕn
αn
(r)ϕw∗

αw
(r′)

)
+

(
χwn
αwαn

ϕw
αw
(r)ϕn∗

αn
(r′)

)]
. (6.26)

Next, we can exploit the rapid decay of the cross terms in χnw
αnαw

, with respect to the distance

between the centres of basis functions by evaluating Eq. (6.25). These basis functions are also

given by the solid harmonic Gaussians, however, a larger number of radial basis functions and

larger angular momentum cut-off will be used in order to accurately approximate the cross-terms.

From this point onwards, I will drop the complex conjugates, since we will be using real solid

harmonic Gaussians. If the onsite basis functions are orthogonalised appropriately (e.g. by

choosing the eigenfunctions of the onsite overlap matrix, denoted ψ̂i
nlm(r)), we can compute the

projection of χ(i)(r, r′) for each atom individually
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χ̂
(k)
n1l1m1n2l2m2

=
1

2

∑
j

∑
αiαj

(
χij
αiαj

∫
drϕi

αi
(r)ψ̂k

n1l1m1
(r)

∫
dr′ϕj

αj
(r′)ψ̂k

n2l2m2
(r′)

+ χji
αjαi

∫
drψ̂k

n1l1m1
(r)ϕj

αj
(r)

∫
dr′ψ̂k

n2l2m2
(r′)ϕi

αi
(r′)

)
,

which we can simplify to

χ̂
(k)
n1l1m1n2l2m2

=
1

2

∑
j

∑
αiαj

(
χij
αiαj

Ok,i
n1l1m1αi

Ok,j
n2l2m2αj

+ χji
αjαi

Ok,j
n1l1m1αj

Ok,i
n2l2m2αi

)
, (6.27)

where Ok,i
n2l2m2αi

denotes the overlap between basis functions of the 2C and 1C-basis:

Ok,i
nl2m2αi

=

∫
ψ̂k
n2l2m2

(r)ϕi
αi
(r)dr. (6.28)

The coefficients χ̂
(k)
n1l1m1n2l2m2

can then be transformed from the orthogonalized basis to the

atom-centred basis using a unitary transformation, similar to the 2C-basis:

χ
(k)
nlmn′l′m′ =

∑
n1l1m1n2l2m2

Anlmn1l1m1An2l2m2n′l′m′χ̂
(k)
n1l1m1n2l2m2

. (6.29)

One drawback of the above partitioning, followed by a projection onto atom-centred basis

functions, is that the number of coefficients included in the summation has to be truncated.

This leads to a basis set error that will be introduced in both the intermediate basis, as well

as the atom-centred basis. However, doing so allows the evaluation of all involved integrals in

closed form, e.g. through the Obara-Saika scheme [137] or the method described by Kuang et

al. [108]. These integrals are again evaluated using LibInt [182].

As mentioned in Chapter 5, the total DDRF has to integrate to zero. This property is a

formal requirement since the density-density response function can be used to compute the

density response from a perturbing potential [139]

∆ρ(r) =

∫
χ(r, r′)Vpert(r

′)dr′, (6.30)
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which has to integrate to zero for any perturbing potential in order to be a true density response.

In practice, this property is enforced by removing s-orbitals from the basis set, in the same way

as discussed for the 2C-basis in Chapter 5. Specifically, we need to ensure that χG0 = χ0G′ = 0,

which requires the contribution of basis functions at G = 0 to vanish. The removal of s-orbitals

is a sufficient condition for enforcing this property since only the Fourier transforms of s-orbitals

has a G = 0 contribution.

6.2.2 Density based descriptor

As previously mentioned, it is no longer sufficient to use a scalar descriptor that is invariant

under the action of the rotation group. To alleviate this issue, it is important to use a descriptor

which changes under rotation in order to discern between different orientations of the atomic

neighbourhood. The starting point for such a descriptor is the neighbourhood density matrix

(NDM), a non-local extension of the smooth neighbourhood density employed in the SOAP

descriptor [16], which is analogous to a naive density matrix, defined as

ρηi (r, r
′) =

∑
k∈η

∑
l∈η

e−αr2ike−αr′il
2

, (6.31)

for each species η, where k, l run over atoms in the neighbourhood of atom i, within a certain

cut-off radius Rcut, α is a hyperparameter, which loosely defines the size of an atom, and

rik is given by |r − (rk − ri)|. In our scheme, this corresponds to simply creating a different

neighbourhood density for each species in the environment. This neighbourhood density matrix

is then expanded in a basis of spherical harmonics and radial basis functions,

ρηi (r, r
′) =

∑
nlm

∑
n′l′m′

ρ
(i,η)
nlmn′l′m′Ylm(θ, ϕ)Y

∗
l′m′(θ′, ϕ′)Rn(r)R

∗
n′(r′), (6.32)

where the expansion coefficients ρ
(i,η)
nlmn′l′m′ form the descriptor. Next, we explore the transforma-

tion properties of the atomic contributions to the density-density response function under the

action of a representation of the rotation group D(R̂) [98, 155]. The same steps can be followed
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to show that the coefficients ρ
(i,η)
nlmn′l′m′ transform in the same way.

D(R̂)⊗D†(R̂)χi(r, r
′) = χi(R̂

−1r, R̂−1r′). (6.33)

The transformation is defined by the tensor product representation D(R̂)⊗D†(R̂) of two SO(3)

representations. Given that the descriptor defines a physical system, both r and r′ rotate

simultaneously. Eq. (6.33) yields

χi(R̂
−1r, R̂−1r′) =∑

nlm

∑
n′l′m′

χ
(i)
nlmn′l′m′Rn(r)R

∗
n′(r′)Ylm(R̂

−1r̂)Y ∗
l′m′(R̂−1r̂′) =

∑
η

∑
nlm

∑
n′l′m′

χ
(i)
nlmn′l′m′Rn(r)R

∗
n′(r′)

∑
m1,m2

Dl∗
mm1

(R̂−1)Dl′

m′m2
(R̂−1)Yl′m1(r̂)Y

∗
l′m2

(r̂′). (6.34)

where χ
(i)
nlmn′l′m′ is an expansion coefficient.

Now, exchanging the summations of m,m′ and m1,m2 and using the unitarity property of

the Wigner-D matrices Dl(R̂) [155]

Dl(R̂−1) = Dl†(R̂), (6.35)

we arrive at

χi(R̂
−1r, R̂−1r′) =

∑
nlm

∑
n′l′m1

Rn(r)R
∗
n′(r′)Ylm1(r̂)Y

∗
l′m2

(r̂′)
∑
m,m′

Dl
m1m

(R̂)Dl′∗
m2m′(R̂)χ

(i)
nlmn′l′m′ .

(6.36)

Thus, the atomic DDRF transforms under rotation as

χ
(i)
nlm1n′l′m2

=
∑
m,m′

Dl
m1m

(R̂)Dl′∗
m2m′(R̂)χ

(i)
nlmn′l′m′ . (6.37)

or in matrix notation

χ̃i
nn′ll′ = Dl(R̂)χi

nn′ll′D
l′†(R̂). (6.38)
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where χ̃i
nn′ll′ is the expansion coefficient for the rotated system. Equation (6.38) shows that, when

expanded in terms of spherical harmonics and radial basis functions, the atomic contributions

to the DDRF transform in a well-defined way under rotation of the atomic environment.

Given that the NDM descriptor transforms in exactly the same way, in an equivariant scheme,

it may be necessary to use Eq. (6.31) as a descriptor. It is, however, instructive to notice that

the expression in Eq. (6.31), can be written as a product of two sums

ρηi (r, r
′) = (

∑
k∈η

e−αr2ik)(
∑
l∈η

e−αr′il
2

), (6.39)

which shows that the non-local NDM is simply the η-block-wise tensor product of two equal local

neighbourhood densities. This means that all information about the transformation properties

of the non-local descriptor is already present in the local version, which can be seen clearly by

writing

ρηi (r, r
′) = ρηi (r)ρ

η
i (r

′). (6.40)

Similar to the neighbourhood density matrix, ρηi (r) can be expanded in a basis of spherical

harmonics and radial basis functions Rn(|r|) with coefficients ρ
(i,η)
nlm . It follows that

ρ
(i,η)
nlmn′l′m′ = ρ

(i,η)
nlmρ

(i,η)
n′l′m′ . (6.41)

In practice, I did not find any significant benefit to building the tensor product explicitly

and found that it is sufficient to use the local version of the descriptor as input to our model, i.e.

ρηi (r) =
∑
k∈η

e−αr2ik =
∑
nlm

ρ
(i,η)
nlmYlm(θ, ϕ)Rn(r). (6.42)

Relationship to SOAP

It is worth noting that while the starting point of the descriptor used here is the same as in

SOAP, they are, in fact, distinct. I specifically avoid making the descriptor rotationally invariant,

which is a crucial requirement for this method to work. They are, however, closely related.

Specifically, the rotationally invariant SOAP descriptor can be computed from the spherical
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harmonic expansion of the NDM, using

dη,η
′

i,nn′l =

√
8π2

2l + 1

∑
m

ρ
(i,η)
nlm (ρ

(i,η′)
n′lm )∗. (6.43)

6.3 Computational Details

6.3.1 Data generation

The atomic structures of the hydrogenated silicon clusters were obtained in the same way as

described by Zauchner et al. [196] (see Chapter 4): starting from the Si123H100 cluster of the

silicon Quantum Dot data set [13], we remove the silicon atom furthest from the centre of the

cluster, terminate the dangling bonds with hydrogen atoms and relax the resulting structure

using DFT. The process is repeated until only 10 silicon atoms remain. From this set of silicon

clusters, only clusters with fewer than 60 silicon atoms were used in the training set for DDRF

prediction. From each cluster with less than 60 silicon atoms, we created six additional clusters

in which random displacements were added to the atomic positions. The magnitudes of the

displacements were drawn from a uniform distribution with a width of 0.1 Å. Finally, calculations

were also carried out for clusters with between 60 and 70 silicon atoms. These clusters are not

part of the training set but are used to test the extrapolation capacity of the ML approach.

6.3.2 DFT and GW calculations

The parameters for the DFT and GW calculations are the same as those given in Section 5.4.1.

6.3.3 Projection onto intermediate basis

We first use BerkeleyGW to calculate the inverse dielectric matrix ϵ−1
GG′ in a plane-wave basis [49].

From this, we determine the interacting DDRF via

χGG′ = (ϵGG′ − δGG′)/vG (6.44)

with vG being the Fourier transform of the truncated Coulomb interaction.

133



CHAPTER 6. ACCELERATING GW CALCULATIONS THROUGH MACHINE-LEARNED
DIELECTRIC MATRICES

Next, the DDRF in real space is obtained as

χ(r, r′) =
1

V

∑
G,G′

eiG·rχGG′e−iG′·r′ , (6.45)

where V is the volume of the supercell. To compute the projection onto the 2C-basis, we follow

the steps outlined in the previous chapter, using a basis of RSGTOs, as defined in LibInt [182]

ϕlm(r, θ, ϕ) = Nl(β)r
le−βr2Rlm(θ, ϕ), (6.46)

with the Fourier transform in Eq. (5.32). The basis set used in this work is a modified version

of the admm-2 basis set [109] (see Tables 6.2 and 6.1), in which the s-orbitals were removed and

contracted Gaussians were uncontracted into individual basis functions.

Table 6.1: Hydrogen basis

l β [1/a20]
1 1.0
1 0.457639

Table 6.2: Silicon basis

l β [1/a20]
1 13.8028
1 59.9261
1 4.34446
1 0.267360
1 0.0765250
2 0.45

6.3.4 Projection onto atomic basis

The fully atom-centred basis set also consists of RSGTOs. The basis set was constructed

following the same procedure as in the DScribe library [80], where individual basis functions are

given by

ψnlm(r, θ, ϕ) = Nl(βnl)r
le−βnlr

2

Rlm(θ, ϕ), (6.47)
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with the basis set being truncated at a maximum angular momentum lmax and a maximum

principal quantum number nmax. For silicon atoms we use lmax = nmax = 4. For hydrogen

atoms we use lmax = nmax = 3.

The exponents βnl are constructed such that the corresponding basis functions decay to zero

at a cutoff radius Rn, i.e. βnl = − ln
(

T
Rl

n

)
/R2

n with T = 10−3 Ål being a threshold parameter.

The cutoff radius Rn = Ri+(Ro−Ri)/n lies between an inner radius Ri and an outer radius Ro.

For hydrogen atoms, we used Ri = 0.1 Å and Ro = 3.0 Å and for silicon atoms, we used Ri = 1.0

Å and Ro = 8.0 Å. Both Ri and Ro were optimized to minimize linear dependencies in the basis

set, as such dependencies significantly deteriorate the accuracy of the neural network predictions.

A similar observation was made by Grisafi et al. [72] when learning electron densities, although

a different approach was taken to remedy this issue in their work. For silicon atoms, I also

added the basis functions included in the modified admm-2 basis, which allows for an exact

representation of the onsite terms in the 2C-basis.

In order to compute the coefficients of the atomic contributions to the DDRF in the fully

atom-centered basis the same procedure as in the intermediate basis was used: the basis was

first orthogonalized by computing the eigenvectors of the overlap matrix. Then the atomic

DDRFs in the intermediate basis were projected onto the orthogonalized fully-atom centred

basis with overlaps between the different basis functions being computed using LibInt [182].

Finally the atomic DDRFs were transformed back to the non-orthogonal basis, producing the

desired coefficients χ
(i)
nlmn′l′m′ .

6.3.5 Descriptors

The basis set for the NDM was generated using the same procedure as for the fully atom-centred

basis for the DDRF. However, s-orbitals were not removed and the basis functions of the admm-2

basis set were not included. We used Ri = 1.0 Å for both hydrogen and silicon atoms and

Ro = 4.0 Å for hydrogen atoms and Ro = 9.0 Å for silicon atoms. The exponents of the

Gaussians in Eq. (6.31) were set such that the standard deviation of the Gaussians is 0.5 Å.

LibInt [182] was again used to compute the required integrals for the projection.
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6.3.6 Neural network

A dense neural network with four hidden layers with 2000, 1500, 1000 and 2000 nodes, respectively,

was constructed for both silicon and hydrogen atoms. Each layer uses a Leaky-ReLu activation

function with a leak parameter of 0.1. The output layer was further symmetrized by adding its

transpose. The loss used was the mean-squared error between the predicted and true expansion

coefficients χ
(i)
nlmn′l′m′ (see section ”Loss function selection”). The neural network was trained on

the perturbed clusters for 20,000 epochs.

Loss function selection

Three loss functions were explored in order to select the optimal optimization method for

our ML-G0W0 method. The first loss function, which I call the squared loss, is simply the

mean-squared error between the predicted χ
(i)
nlmn′l′m′ and actual coefficients χ

(i)
nlmn′l′m′ , defined as

ϵi =
1

N

∑
nlmn′l′m′

∣∣∣∣χ(i)
nlmn′l′m′ − χ

(i)
nlmn′l′m′

∣∣∣∣2, (6.48)

where N is the total number of coefficients in the 1C-DDRF. The second loss function, which I

call the real-space loss is defined as the squared real-space difference between the predicted and

actual DDRFs

ϵi =

∫ ∫ ∣∣∣∣ ∑
nlmn′l′m′

χ
(i)
nlmn′l′m′ψ

i
nlm(r)ψ

i
n′l′m′(r′)− χ

(i)
nlmn′l′m′ψ

i
nlm(r)ψ

i
n′l′m′(r′)

∣∣∣∣2drdr′. (6.49)

The third loss function, which I refer to as the 2C-loss, bypasses the projection step of the 2C

basis onto the 1C basis and instead directly computes the real-space squared error between the

predicted 1C-DDRF and the actual 2C-DDRF. This approach is motivated by the observation of

Grisafi et al. [72], who found that direct optimization can help in avoiding numerical instabilities

associated with near-linear dependencies in the basis set. The 2C-loss is defined as
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ϵi =

∫ ∫ ∣∣∣∣( ∑
nlmn′l′m′

χ
(i)
nlmn′l′m′ψ

i
nlm(r)ψ

i
n′l′m′(r′)

)
−

1

2

[∑
αi

∑
j,αj

(
χij
αiαj

ϕi
αi
(r)ϕj

αj
(r′)

)
+

(
χji
αjαi

ϕj
αj
(r)ϕi

αi
(r′)

)]∣∣∣∣2drdr′. (6.50)

In contrast to Grisafi and co-workers [72], we evaluate this loss function analytically by computing

all resulting SGTO overlaps using LinInt [182]. In order to assess the fidelity of each loss function,

we train three equivalent models as described above with the only distinction between the models

being the loss function used for optimizing the NN parameters. Each of the models is trained

on the unperturbed clusters for which the QP energies are calculated: we examine the training

accuracy of the models. The resulting HOMO-LUMO gaps obtained from using each of the

model DDRFs in G0W0 calculations are shown in Fig. 6.2. In blue, the G0W0 QP-energies using

the exact projection onto the 1C-basis is shown. We can see that the model using the squared

loss (orange) closely follows the HOMO-LUMO gaps and is able to nearly exactly reproduce the

HOMO-LUMO gaps. The second-best results are obtained using the real-space loss (green),

where HOMO-LUMO gaps are accurately reproduced up to around clusters with 40 Si atoms,

beyond which the model DDRF underestimates the HOMO-LUMO gaps. Surprisingly, the

2C-loss (red) results in the worst HOMO-LUMO gaps, initially overestimating the gap by a large

margin, then underestimating between clusters with 20 and 40 Si atoms. Finally, in the region

beyond 40 silicon atoms, the 2C-loss model again predicts larger HOMO-LUMO gaps than

obtained with the exact 1C-DDRF. This result is in stark contrast to the original hypothesis

of the direct loss calculation providing improved numerical stability. I attribute this result to

the optimization of the NN parameters being stuck in a local minimum. This hypothesis is

supported by a closer examination of the DDRFs predicted by each model. In Fig. 6.3 the

coefficients χ
(i)
nlmn′l′m′ of a silicon atom in the cluster Si10H18 are shown. We can clearly see that

the squared loss closely resembles the exact 1C-DDRF, whereas both the real-space loss and the

2C-loss DDRFs are visually clearly distinct. This is likely a consequence of the gradient descent

optimizer getting stuck in a local minimum. Unfortunately, this could not be resolved, even by
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choosing different optimizers and optimizer parameters. As such, the squared loss was selected

for all of the models presented in the following results.
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 [e
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G0W0 with 1-C-DDRF
ML-G0W0 with squared loss
ML-G0W0 with real-space loss
ML-G0W0 with 2C-loss

Figure 6.2: G0W0 HOMO-LUMO gaps of unperturbed silicon clusters, obtained using the full
plane-wave GW-method (blue), and ML-G0W0 with different loss functions. The models were
trained on the unperturbed cluster, thus the resulting HOMO-LUMO gaps are indicative of the
training-set accuracy of the models.

6.4 Results and Discussion

We apply our ML approach for predicting DDRFs to the hydrogenated silicon clusters from the

previous chapters and then use the DDRFs to calculate GW quasiparticle energies for these

systems. I refer to this technique as the ML-GW approach. The atomic positions of the clusters

were constructed as described in the computational methods section and then relaxed using

DFT.

To establish the accuracy of this approach, we first investigate the error in the GW quasipar-
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Figure 6.3: Coefficients χ
(i)
nlmn′l′m′ of a silicon atom in cluster Si10H18 using the exact 1C-DDRF

(top left) and predicted 1C-DDRFs using the squared-loss model (top right), the real-space loss
(bottom left) and 2C-loss (bottom right).

ticle energies resulting from the expansion of the DDRF in terms of the intermediate local basis

{ϕa
αa
(r)}: see Eq. (6.22). Fig. 6.4 compares the HOMO-LUMO gaps obtained from mean-field

DFT-PBE calculations, a standard plane-wave G0W0 calculation using a generalized plasmon-

pole approximation [90, 171] and a G0W0 calculation using the 2C-DDRF, where the DDRF

is expanded in terms of a modified version of the admm-2 basis set [109]: see computational

methods section. The DFT-PBE results show that the HOMO-LUMO gap decreases with

increasing cluster size from Eg ≈ 4.8 eV for the smallest cluster containing 10 Si atoms to

Eg ≈ 3 eV for the biggest cluster with almost 60 Si atoms. This decrease is a consequence of

quantum confinement effects which are less pronounced for bigger clusters. The plane-wave

GW HOMO-LUMO gaps show a similar trend as a function of cluster size, but the gaps are

larger than the DFT-PBE gaps by several electron volts. Interestingly, the GW corrections are
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larger for smaller clusters than for larger clusters. As a consequence, the reduction in the GW

HOMO-LUMO gaps as a function of cluster size is larger compared to the DFT-PBE result:

in particular, the gap is as large as 8.6 eV for the smallest clusters and shrinks to 5.5 eV for

the largest clusters corresponding to a decrease of 3.1 eV (compared to a decrease of 1.8 eV in

the DFT-PBE HOMO-LUMO gap energies). Similar results were obtained by Chelikowsky et

al. [180] who also carried out GW calculations on hydrogenated Si clusters. In particular, they

found that the HOMO-LUMO gap shrinks from ∼ 9 eV for a 10 Si atom cluster to ∼ 6.5 eV for

a 47 Si atom cluster. The GW results obtained with the 2C-DDRF are qualitatively similar

to the plane-wave GW results. However, the HOMO-LUMO gaps that are obtained with this

approach are consistently ∼ 0.4 eV smaller than the plane-wave results. This is a consequence

of the incompleteness of the local basis set.
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plane-wave G0W0
DFT-PBE

Figure 6.4: HOMO-LUMO gaps of hydrogenated silicon clusters from DFT-PBE Kohn-Sham
eigenvalues, plane-wave G0W0 and G0W0 calculations using the 2C-DDRF, see section “Atomic
decomposition of the density-density response function”.

Next, we determine the 1C-DDRF. For the basis set we use solid harmonic Gaussians with

optimized decay coefficients: see the methods section. Fig. 6.5 (a) compares the HOMO-LUMO

gaps from G0W0 calculations with the 1C-DDRF to those obtained with the 2C-DDRF and
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also to plane-wave G0W0 results. For small clusters, the HOMO-LUMO gaps obtained with the

1C-DDRF are smaller than those obtained with the 2C-DDRF, while the opposite behaviour is

observed for larger clusters. The largest difference between the two methods is obtained for

clusters containing ∼ 40 Si atoms. The root-mean-square error (RMSE) of the 1C-basis results

relative to the 2C-basis results is 0.22 eV and the RMSE relative to the plane-wave results is

0.45 eV for all clusters. Fig. 6.5 (b) shows the HOMO and LUMO quasiparticle energies. It can

be seen that better agreement with the plane-wave result is obtained for the LUMO than for

the HOMO.

Fig. 6.6 (a) shows the quasiparticle energy corrections of the ten lowest conduction orbitals

and the ten highest valence orbitals from plane-wave G0W0 and G0W0 with the 1C-DDRF.

The corrections obtained with the 1C-DDRF follow a similar trend as those obtained from the

plane-wave calculation. For the unoccupied states, the quantitative agreement is better than for

the occupied states, but the 1C-DDRF results for the unoccupied states are scattered over a

larger energy range than the plane-wave results. To analyze the errors that arise from the use of

the 1C-DDRF in more detail, Fig. 6.6 (b) shows a two-dimensional histogram of the difference

in QP corrections between plane-wave G0W0 and G0W0 with the 1C-DDRF. For the occupied

states the differences are mostly smaller than 0.4 eV, while they are somewhat smaller for the

unoccupied states. The RMSE over all energy levels is 0.32 eV.

Now that we have established the accuracy of the method used to generate the training

set, we use a dense neural network (NN) in conjunction with NDM descriptor to generate the

coefficients of the 1C-DDRF according to

χ
(i)
nlmn′l′m′ = f(ρ

(i,Si)
nlm , ρ

(i,H)
nlm ), (6.51)

where f is the neural network function. The hydrogen and silicon environment descriptors are

concatenated into a single vector before being fed into the neural network. A separate network

is trained for Si and H contributions to the DDRF. The exact architecture of the network as

well as the practical computation of the atomic decomposition and the descriptors, are described

in the computational methods section. To generate the training data for the neural network,
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Figure 6.5: (a) HOMO-LUMO gaps of hydrogenated silicon clusters from plane-wave G0W0

and G0W0 calculations using the 2C-DDRF and G0W0 calculations using the 1C-DDRF, see
section ”Atomic decomposition of the density-density response function”. (b) HOMO and
LUMO energies of hydrogenated Si clusters.

we start from the set of relaxed hydrogenated Si clusters that were studied above. From each

relaxed cluster, we generate six new configurations by randomly displacing the atoms with the

magnitude of the displacements being drawn from a uniform distribution with a maximum of
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Figure 6.6: (a) Quasiparticle corrections from plane-wave G0W0 and G0W0 with the 1C-DDRF
for the 10 highest valence orbitals and the 10 lowest conduction orbitals of hydrogenated silicon
clusters. (b) Histogram of difference in quasiparticle corrections from plane-wave G0W0 and
G0W0 calculations with the 1C-DDRF for the 10 highest valence orbitals and the 10 lowest
conduction orbitals of hydrogenated silicon clusters. The mean-field energies are referenced to
the middle of the mean-field HOMO-LUMO gap.

0.1 Å. For these clusters, we then calculate the 1C-DDRF.

Once the neural network is trained on the 1C-DDRF of the randomly displaced clusters,

we use it to calculate the 1C-DDRFs of the relaxed clusters and then determine quasiparticle

energies via the ML-GW approach. Fig. 6.7 compares the HOMO-LUMO gaps from ML-GW
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and GW with explicitly calculated 1C-DDRFs. Except for the smallest cluster, the ML-GW

method accurately reproduces the HOMO-LUMO gaps of the explicit GW calculations. The

worse performance for the smallest cluster is a consequence of the training set which contains a

large number of bigger clusters containing atomic environments that differ from those found in

the smallest clusters. The overall RMSE of the ML-GW method relative to the explicit GW

with the 1C-basis is only 0.15 eV but reduces to 0.06 eV when the smallest cluster is excluded.

Fig. 6.8 shows the difference in QP corrections between ML-GW and GW with the 1C-DDRF

for the 10 highest valence states and 10 lowest conduction states. The energies of the smallest

cluster were excluded from the plot. ML-GW produces QP shifts for both valence and conduction

states within 0.1 eV from the explicit G0W0 with the 1C-DDRF. The majority of valence states

exhibit a positive error, while for conduction states, the error is largely negative.
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Figure 6.7: HOMO-LUMO gaps of hydrogenated silicon clusters from plane-wave G0W0 and
G0W0 calculations using the 1C-DDRF and ML-G0W0.

Fig. 6.9 compares the ML-G0W0 QP corrections to plane-wave G0W0 results. The energies

of the smallest cluster were again excluded from the plot. As expected, the differences are

very similar to those between plane-wave G0W0 and the explicit G0W0 with the 1C-basis. In

particular, the RMSE is 0.34 eV for all clusters and reduces to 0.30 eV when the smallest cluster

144



CHAPTER 6. ACCELERATING GW CALCULATIONS THROUGH MACHINE-LEARNED
DIELECTRIC MATRICES

4 3 2 1 0 1 2 3 4
EMF [eV]

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

(E
Q
P

E M
F) 

[e
V]

0

1

2

3

4

5

6

7

Figure 6.8: Histogram of difference in quasiparticle corrections from G0W0 using the 1C-DDRF
and ML-G0W0 for the 10 highest valence orbitals and the 10 lowest conduction orbitals of
hydrogenated silicon clusters. The mean-field energies are referenced to the middle of the
mean-field HOMO-LUMO gap. The energies of the smallest cluster were excluded.

is excluded. This result demonstrates that the key obstacle to improving the ML-GW approach

is the development of a better basis set.

Next, we test the ability of the ML-GW approach to predict the quasiparticle energies of

clusters which are larger than those included in the training data. For this, we only include

clusters with up to Nmax Si atoms in the training set with Nmax being 60, 50 and 40. Again,

the training set only includes clusters with randomly displaced atoms and the test set consists

of the relaxed clusters. The predicted ML-GW for the whole set of relaxed clusters is shown

in Fig. 6.10. From this graph, it is clear that the accuracy of the prediction for the largest

clusters deteriorates as Nmax is reduced: while for Nmax = 60, the gaps and QP corrections for

clusters with more than 60 Si atoms are still highly accurate, larger differences are observed

for Nmax = 50. For Nmax = 40, errors as larger as 1 eV are obtained for the gaps of clusters

with around 50 Si atoms. Fig. 6.10(f) shows that the large error in the gaps is a consequence of

having a negative error in the QP shifts for occupied states and a positive error in the shift for
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Figure 6.9: Histogram of difference in quasiparticle corrections from plane-wave G0W0 and
ML-G0W0 DDRF for the 10 highest valence orbitals and the 10 lowest conduction orbitals
of hydrogenated silicon clusters. The mean-field energies are referenced to the middle of the
mean-field HOMO-LUMO gap. The energies of the smallest cluster were excluded.

unoccupied states. In other words: instead of a cancellation, we get an accumulation of errors

when computing HOMO-LUMO gaps.

Finally, we tie together everything discussed in the three main chapters and investigate the

polarizabilities obtained from the ML-DDRFs. To achieve this, we transform the predicted

1C-DDRFs into G-space and use the method outlined in Chapter 4 to compute the scalar

polarizability. The resulting polarizabilities are shown in Fig. 6.11. The plot shows the

polarizabilities obtained in Chapter 4 (RPA-DDRF), the polarizabilities obtained from the

predicted DDRFs (ML 1C-DDRF), and the polarizabilities obtained using the exact 1C DDRFs.

We can see that the polarizabilities obtained from the 1C-DDRF are initially overestimated, and

underestimated for clusters containing more than around 20 Si atoms. The largest deviations

occur between 35 and 50 Si atoms, where the error increases to almost 50 Å3. Similar to

the HOMO-LUMO gaps, however, the polarizabilities computed using the predicted DDRFs

closely follow those obtained from the exact 1C-DDRFs. We also note that for clusters between
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Figure 6.10: HOMO-LUMO gaps (left panels) and errors in quasiparticles shifts (right panels)
from explicit G0W0 calculations with the 1C-DDRF and from ML-G0W0 trained on clusters
containing up to Nmax = 60 Si atoms (upper panels), Nmax = 50 Si atoms (middle panels) and
Nmax = 40 Si atoms (lower panels). The red vertical line indicates Nmax. The panels on the
right hand side only contain results for clusters with more Si atoms than Nmax. The mean-field
energies are referenced to the middle of the mean-field HOMO-LUMO gap.

15 and 25 Si atoms both the ML-DDRF and 1C-DDRF polarizabilities closely follow the

RPA-DDRF result. Moreover, beyond 50 Si atoms, the 1C-DDRF polarizabilities approach
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the RPA-DDRF polarizabilities. Another interesting observation is that the linear trend in

the RPA polarizability is rather poorly reproduced by the polarizabilities obtained from the

1C-DDRF. This is surprising, as the 1C-DDRF explicitly decomposes the RPA density-density

response function into localised atomic contributions. However, it should be noted that the

basis functions used in the 1C-DDRF are relatively long-ranged. In light of the long-rangedness

of the basis functions, one would expect to obtain a linear trend in the polarizability once the

clusters become significantly larger than the extent of the basis functions. However, in order

to confirm this, further research is required. Furthermore, it should be stressed that the 1C

basis was tuned to yield HOMO-LUMO gaps as close to the G0W0 gaps as possible and was not

optimized with the polarizability in mind. In light of these results, it is even more clear that the

largest potential for improvement in this method lies in the basis set. To this end, the major

obstacle is the improvement of the radial basis functions, which are currently non-orthogonal.

Chapter 7 briefly discusses a few potential alternatives to the non-orthogonal basis sets used

here.

6.5 Conclusion

In this chapter, we have developed a machine-learning approach to predict the interacting density-

density response function (DDRF) of materials. To achieve this, we introduce a decomposition

of the DDRF into atomic contributions which form the output of a neural network. We also

introduce the neighbourhood density-matrix descriptor which is a generalization of the widely

used SOAP descriptor [16]: instead of symmetrizing the descriptor using a Haar integral over

a symmetry group [111], we construct the tensor product of the expansion coefficients of

the neighbourhood density which transforms under rotation in the same way as the atomic

contributions to the DDRF. Thus, while not fully covariant, this approach is able to distinguish

between different orientations of a chemical environment, which is a key requirement for

predicting functions, such as the DDRF.

The machine learning technique for DDRFs is then combined with the GW approach. The

resulting approach is called the ML-GW approach. We apply this method to hydrogenated
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Figure 6.11: Scalar polarizabilities of unperturbed silicon clusters obtained using the ML 1C-
DDRF (red), the exact 1C-DDRF (black), and the RPA-DDRF (orange).

silicon clusters. The ML-GW approach reproduces HOMO-LUMO gaps and quasiparticle

energies of GW calculations using the explicitly calculated 1C-DDRF, i.e. the DDRF in a pair

basis where the basis functions of each pair are centred on the same atom, with an accuracy of

about 0.1 eV. The accuracy of the results deteriorates when it is applied to clusters which are

larger than those included in the training set.

However, the error of ML-GW is significantly larger when compared to standard plane-wave

GW results: HOMO-LUMO gaps are reproduced to within 0.5 eV, but the error reduces to 0.4

eV when the smallest cluster is excluded from the test set. These errors are comparable to those

obtained by Rohlfing in his GW calculations for silane using a model dielectric function [153].

These findings demonstrate that the main challenge towards improving the ML-GW method

is the construction of better local basis sets for the DDRF. The basis used for the 2C-DDRF

can be improved straightforwardly by using larger basis sets, such as aug-admm-2, admm-3 or
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aug-admm-3 [109]. However, it is more difficult to increase the basis used for the 1C-DDRF as

this leads to linear dependencies which deteriorate the predictive accuracy of the neural network.

This was also observed by Grisafi et al. [72] when predicting the expansion coefficients of the

electronic density using the symmetry-adapted SOAP kernel [73].

I expect that the ML-GW method can be applied to calculate quasiparticle energies in

systems that have so far been out of reach for standard implementations. Examples include

disordered materials, liquids, interfaces or nanoparticles. It could also be combined with on-

the-fly machine learning methods [117] to perform GW calculations on molecular-dynamics

snapshots to determine finite-temperature quasiparticle energies.

150



Chapter 7

Conclusions

In this thesis, I explored the possibility of developing a Machine Learning model of the Density-

Density response function (DDRF). We started with a review of commonly used descriptors in

the field of materials property prediction. The SOAP descriptor [16] was then used in Chapter 4

to construct an ML model of the scalar polarizability, a quantity which is directly derived from

the DDRF. In this chapter, we found that the SOAP descriptor can indeed be used to predict

scalar polarizabilities of large hydrogenated silicon clusters accurately. This result was achieved

by constructing a kernel-ridge regression model using different variants of the SOAP kernel.

One of the key observations from Chapter 4 was that using a small cut-off radius, which only

includes nearest neighbour and next-nearest neighbour information in the descriptor, facilitates

the recognition of chemical environments across different cluster sizes. Based on this observation,

we used the resulting model to predict the polarizabilities of hydrogenated silicon clusters with

up to 3000 silicon atoms. We found that the results approach the correct bulk limit. These

results gave the first indication that the DDRF may be decomposed into atomic contributions.

In Chapter 5, we tackled the problem of reducing the size of the DDRF by projecting

it onto an auxiliary basis of GTOs, thereby reducing the size of the DDRF from several

gigabytes to a few megabytes, depending on the size of the auxiliary basis, while retaining a

high degree of accuracy in the QP-corrections resulting from using the approximate the DDRF

in a GW calculation. In doing so, we also found that the density response resulting from the

DDRF decays exponentially with the distance from the atom at which the perturbation is
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applied. While the approximate DDRFs yield acceptable QP corrections, we failed to construct

a machine-learning model to accurately predict the expansion coefficients in this basis. The

failure to accurately predict the DDRF in this basis was attributed to the fact that a descriptor

encoding the chemical environments of two atoms and their relative distance and orientation

would be required. It is not apparent how such a descriptor would be constructed. Thus an

alternative approach was developed in Chapter 6. In this chapter, we used the approximate

DDRF from Chapter 5, where basis functions in r and r′ were allowed to be centred on different

atoms as an intermediate result, which allowed the partitioning of the DDRF into atomic

contributions. These atomic contributions were then projected onto a second basis set of GTOs,

where each atomic contribution is centred on a single atom. We then derived the transformation

properties of these atomic contributions under rotation and constructed a descriptor called

the neighbourhood density matrix, which obeys the same transformation rule. This descriptor

was then used to train a dense neural network capable of predicting the atomic contributions

and used the resulting DDRF in GW calculations in a hybrid ML/GW approach called the

ML-GW method. The resulting method is capable of reproducing the HOMO-LUMO gaps and

quasiparticle energies obtained with the approximate DDRF with remarkable accuracy. However,

compared to a full G0W0 calculation, the average error in HOMO-LUMO gaps increases to 0.5

eV, similar to the errors that Rohlfing observed in his GW calculations for silane using a model

dielectric function [153]. These results indicate that the key obstacle to achieving chemical

accuracy is the use of more accurate basis sets in both the intermediate basis introduced in

Chapter 5 and in the fully atom-centred basis introduced in Chapter 6. While the intermediate

basis can be improved by choosing a larger auxiliary basis set [109], the size of the atom-centred

basis is limited due to near-linear dependencies caused by the GTOs being non-orthogonal. One

potential alternative to the SGTO basis sets used in this thesis are hydrogen wavefunctions,

which have an analytical Fourier transform but require numerical evaluation of the overlap

integrals with the intermediate basis of SGTOs. It should be noted, however, that the numerical

evaluation of the aforementioned overlap integrals would only be required in the generation of

training data for the ML-GW method. Furthermore, when using Fourier-space methods for

evaluating the overlap integrals, such as those proposed by Kuang et al. [108], only the radial
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part of the overlap integrals has to be evaluated numerically.

Another candidate for an orthogonal radial basis is given by functions of the form

Rnl(r) = Nnlr
lLn

l+1/2(r
2)e−r2/2, (7.1)

where Ln
l+1/2(r

2) are the associated Laguerre polynomials. These functions are orthogonal, which

can be seen by evaluating

δnn′ =

∫
drNnlNn′lr

2l+2Ln
l+1/2(r

2)Ln′

l+1/2(r
2)e−r2

=
1

2

∫
dr′NnlNn′lr

′l+1/2Ln′

l+1/2(r
′)Ln

l+1/2(r
′)e−r′ , (7.2)

where the second equality was achieved by substitution r′ = r2. Replacing l + 1/2 with ν, we

obtain

δnn′ =
1

2

∫
dr′r′νNnlNn′lL

n
ν (r

′)Ln′

ν (r
′)e−r′ , (7.3)

which is simply the orthogonality relation for Laguerre polynomials [1]. The radial part of the

3-D Fourier can also be evaluated analytically [1]

∫ ∞

0

rν+1e−βr2Ln
ν (αr

2)Jν(kr) = 2−ν−1β−ν−n−1(β − α)nkνe−
k2

4βLn
ν

(
αk2

4β(α− β)

)
, (7.4)

where Jν(kr) is a Bessel function and ν = l + 1/2. Moreover, the overlap of these basis

functions with SGTOs can also be evaluated analytically using the aforementioned method

by Kuang et al. [108]. Hence, these radial functions possess all the properties required for

efficient implementation of the ML-GW method and do not require any integrals to be evaluated

numerically.

While further refinements are required, several potential paths for improvements to the ML-GW

method are available. Thus, the ML-GW method has the potential to enable several applications

of the GW method that are currently outside the reach of traditional GW implementations.
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Bhattacharya, Peter Krüger, Steffen Michaelis de Vasconcellos, Michael Rohlfing, and

Rudolf Bratschitsch. Highly anisotropic in-plane excitons in atomically thin and bulklike

1t’-rese2. Nano Letters, 17(5):3202–3207, May 2017.

[10] Nongnuch Artrith and Jörg Behler. High-dimensional neural network potentials for metal

surfaces: A prototype study for copper. Phys. Rev. B, 85:045439, Jan 2012.

[11] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Holt-Saunders, 1976.

[12] D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012.

[13] Amanda; Wilson Barnard and Hugh. Silicon quantum dot data set. CSIRO, v2., 2015.

[14] Albert P. Bartók, Sandip De, Carl Poelking, Noam Bernstein, James R. Kermode, Gábor
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[18] V́ıctor E. Bazterra, Maŕıa C. Caputo, Marta B. Ferraro, and Patricio Fuentealba. On the

theoretical determination of the static dipole polarizability of intermediate size silicon

clusters. The Journal of Chemical Physics, 117(24):11158–11165, 2002.

[19] F. Bechstedt, R. Del Sole, G. Cappellini, and Lucia Reining. An efficient method

for calculating quasiparticle energies in semiconductors. Solid State Communications,

84(7):765 – 770, 1992.

[20] Axel D. Becke. A new mixing of Hartree–Fock and local density-functional theories. The

Journal of Chemical Physics, 98(2):1372–1377, 01 1993.

[21] Axel D. Becke. Density-functional thermochemistry. III. The role of exact exchange. The

Journal of Chemical Physics, 98(7):5648–5652, 04 1993.

[22] Jörg Behler and Michele Parrinello. Generalized neural-network representation of high-

dimensional potential-energy surfaces. Phys. Rev. Lett., 98:146401, Apr 2007.

[23] Lorin X. Benedict and Eric L. Shirley. Ab initio calculation of ϵ2(ω) including the

electron-hole interaction: Application to gan and caf2. Phys. Rev. B, 59:5441–5451, Feb

1999.

[24] James Bergstra, Daniel Yamins, and David Cox. Making a science of model search:

Hyperparameter optimization in hundreds of dimensions for vision architectures. In Sanjoy

Dasgupta and David McAllester, editors, Proceedings of the 30th International Conference

on Machine Learning, volume 28 of Proceedings of Machine Learning Research, pages

115–123, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

[25] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. Chapter 5.

[26] L. C. Blum and J.-L. Reymond. 970 million druglike small molecules for virtual screening

in the chemical universe database GDB-13. J. Am. Chem. Soc., 131:8732, 2009.

156



BIBLIOGRAPHY

[27] Anton Bochkarev, Yury Lysogorskiy, Sarath Menon, Minaam Qamar, Matous Mrovec,

and Ralf Drautz. Efficient parametrization of the atomic cluster expansion. Phys. Rev.

Mater., 6:013804, Jan 2022.

[28] Anton Bochkarev, Yury Lysogorskiy, Christoph Ortner, Gábor Csányi, and Ralf Drautz.
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[172] J. Sólyom. Fundamentals of the Physics of Solids: Volume 3 - Normal, Broken-Symmetry,

and Correlated Systems. Theoretical Solid State Physics: Interaction Among Electrons.

Springer Berlin Heidelberg, 2010.

[173] Catalin-Dan Spataru. Electron excitations in solids and novel materials. PhD thesis, 2004.
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Appendix A

Further details on many-body

perturbation theory

A.1 Second quantization

In second quantization, the many-body wave function is written in terms of populations in

certain single-particle states. For example the wave function |0, 0, n3, · · · 0⟩ contains n3 particles

in state 3.

We can now define the creation operator ĉ†n, which creates a particle in state n and the

destruction operator, ĉn, which destroys a particle in state n. Assuming the vacuum state is

given by |0⟩, we get

ĉ†n|0⟩ = |0, 0, · · · 1, · · · 0⟩, (A.1)

where the 1 indicates a particle in state n and

ĉn|0, 0, · · · 1, · · · 0⟩ = |0⟩. (A.2)

Since only a single fermion can ooccupy a state, the creation operator yields zero if state n is

already occupied, and the destruction operator yields zero if n is not occupied. For fermions,
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creation and destruction operators have the following anti-commutation relations [63]

[ĉr, ĉs] = [ĉ†r, ĉ
†
s] = 0, (A.3)

and

[ĉr, ĉ
†
s] = δrs, (A.4)

where the anti-commutator is defined as

[Â, B̂] = ÂB̂ + B̂Â. (A.5)

A.2 Field operators

Given a complete set of single-particle wave functions {ψα(r)}, where α is a spin index, we can

define field operators as [63]

ψ̂α(r) =
∑
n

ψαn(r)ĉαn, (A.6)

which follow the anti-commutation relations

[ψ̂α(r), ψ̂
†
β(r

′)] = δαβδ(r− r′), (A.7)

and

[ψ̂α(r), ψ̂β(r
′)] = 0 (A.8)

[ψ̂†
α(r), ψ̂

†
β(r

′)] = 0. (A.9)

We can now further define the operator ψ̂(r) as

ψ̂(r) =

ψ̂1(r)

ψ̂2(r)

 , (A.10)

where the indices correspond to up and down spins, respectively. With these definitions, a
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general single-particle operator in second quantization is defined as [63]

Ô =

∫
drψ̂†(r)O(r)ψ̂(r), (A.11)

where O(r) is the corresponding first quantization operator, while two-body operators are

written as

V̂ =

∫
dr

∫
dr′ψ̂†(r)ψ̂†(r′)V (r, r′)ψ̂(r′)ψ̂(r). (A.12)

A.3 Introduction to Feynman Diagrams

Feynman diagrams are a method to pictorially represent terms occurring in many-body pertur-

bation theory. The terms represented by Feynman diagrams are a consequence of the Gell-Mann

and Low theorem [68], which connects the interacting ground state to the non-interacting ground

state. The result is an expression for the time-ordered Green’s function as [63]

iGαβ(r, r
′, t, t′) =

∞∑
n=0

(−i)n 1

n!

∫
dt1· · ·

∫
dtn

〈
Φ0|T [V̂ (t1) . . . V̂ (tn)ψ̂α(r, t)ψ̂β(r

′, t′)]|Φ0

〉
⟨Ψ0|Ψ0⟩

,

(A.13)

where V̂ (tn) are Coulomb operators, ψ̂α(r, t) are the field operators defined in Section A.2,

|Φ0⟩ are non-interacting ground states and |Ψ0⟩ are interacting ground states. As shown in

Eq. (A.12), the Coulomb operators involve a product of four field operators. Thus, each term

in Eq. (A.13) contains a total of 2 + 4n field operators. Writing the Coulomb potential as

Uijkl(r, r
′, t, t′) = δijδklV (r, r′)δ(t− t′), we obtain (ignoring the denominator)

iGαβ(r, r
′, t, t′) = iG0

αβ(r, r
′, t, t′)

+ (−i)
∑
ijkl

∫
dt1dt2dr1dr2Uijkl(r1, r2, t1, t2)

×
〈
Φ0|T [ψ̂i(r1, t1)ψ̂j(r2, t2)ψ̂k(r2, t2)ψ̂l(r1, t1)ψ̂α(r, t)ψ̂β(r

′, t′)]|Φ0

〉
+ . . . , (A.14)
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where G0
αβ(r, r

′, t, t′) is the Green’s function of the non-interacting system. Wick [191] showed

that each of the terms can be expressed as a sum over terms involving 2n+ 1 non-interacting

Green’s functions [63]. Furthermore, specific terms in Eq. (A.14) can be factored to cancel the

denominator in Eq (A.13). The remaining terms can be represented as Feynman diagrams,

where each directed line corresponds to a non-interacting Green’s function, and each wavy line

corresponds to the Coulomb interaction. For example, Eq. (A.14) is given by the Feynman

diagrams in Fig. A.1, where the second and third terms correspond to the surviving first-order

terms in Eq. (A.14).

= + + + · · ·

Figure A.1: Diagrammatic expansion of the interacting Green’s function in terms of the non-
interacting Green’s function and the Coulomb interaction.

The terms in Feynman diagrams are evaluated using the following set of rules [63]:

1. Each interaction vertex is labelled with a space-time point r, t and incoming and outgoing

spin indices i and j.

2. For each interaction vertex, a sum over incoming and outgoing spin-indices is required.

3. A factor of (−1)P has to be added to each term, where P is the number of Green’s function

lines closing on themselves.

4. Another factor of (i)n is required for each n-th order term.

5. A Green’s function with two equal space-time points is interpreted as G0
αβ(r, r, t, t

+).

6. Finally, an integration over all internal space-time variables has to be performed.

Using these rules, the second diagram in Fig. A.1 evaluates to

(−i)
∑
ijkl

∫
dt1dt2dr1dr2G

0
αi(r, r1, t, t1)Uijkl(r1, r2, t1, t2)G

0
kl(r2, r2, t2, t

+
2 )G

0
jβ(r1, r

′, t2, t
′).

(A.15)
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This expression can be simplified by noting that

iG0
αβ(r, r, t, t

+) = − i

2
δαβρ

0(r), (A.16)

where ρ0(r) is the electron density of the non-interacting system. Furthermore, the Coulomb

potential is given by

Uijkl(r1, r2, t1, t2) = δijδklV (r1, r2)δ(t1 − t2), (A.17)

and the Green’s functions are usually also diagonal in the spin indices. We thus obtain

1

2

∑
ijkl

∫
dt2dr1dr2δαiδijδklδklδjβG

0(r, r2, t, t2)V (r1, r2)ρ
0(r2)G

0(r1, r
′, t2, t

′)

=

∫
dt2dr1dr2δαβG

0(r, r1, t, t2)V (r1, r2)ρ
0(r2)G

0(r1, r
′, t2, t

′). (A.18)

The integral involving the electron density can be identified with the Hartree potential [63]

VHartree(r1) =

∫
dr2V (r1, r2)ρ

0(r2). (A.19)

Similarly, we can evaluate the third term in Fig. (A.1) as

−iδαβ
∫
dt1dt2dr1dr2G

0(r, r1, t, t1)V (r1, r2)δ(t1 − t2)G
0(r1, r2, t1, t2)G

0(r2, r, t2, t
′). (A.20)

180



Appendix B

Further details on neural networks

B.1 Backpropagation

The backpropagation algorithm, initially introduced by Rumelhart et al. [156], is a method for

adjusting the weights of a neural network, such that they approach the minimum of some loss

function E, which computes an error metric between the output of the neural network model f

and the target quantity y. Since neural networks are highly non-linear functions, an analytical

solution cannot be found for this optimization problem. Thus other methods, such as gradient

descent, where the weights of the neural network are adjusted in the direction of the negative

gradient of the loss function with respect to the weights − ∂E
∂wij

, are required. Here, I will consider

the simplest case, where the loss function is computed for each data point individually, and

the weights are adjusted accordingly. This procedure can be generalized for batches of data

points [25], but for simplicity, I will avoid this generalization here.

To simplify the notation, we can absorb the biases of each layer into the weight matrix by

adding a dummy output which is always equal to 1 to each layer [25]. The linear part of the

layer operation in then given by

zNi =
∑
j

wN
ij o

N−1
j , (B.1)

and the output of the model is given by

fi = oNi = h(zNi ), (B.2)
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for some non-linear function h. The loss function we use here is simply the squared error between

the model output fn for input xn and the true target quantity yn

En =
1

2

∑
i

(yni − fni)
2. (B.3)

We now need to evaluate the required gradients using the chain rule

∂En

∂wN
ij

=
∂En

∂zNi

∂zNi
∂wN

ij

. (B.4)

The second part of the above equation is simply given by the output of the previous layer

∂zNi
∂wN

ij

= oN−1
i . (B.5)

Furthermore, assuming the output layer is linear, the first partial derivative is

∂En

∂zNi
= −(yni − fni) ≡ δNi . (B.6)

The crucial step in the backpropagation algorithm is the evaluation of the quantity ∂En

∂zMi
for

hidden layers. For the layer N − 1 we use the chain rule for partial derivatives [25], to obtain

∂En

∂zN−1
i

=
∑
k

∂En

∂zNk

∂zNk
∂zN−1

i

=
∑
k

δNk
∂zNk
∂zN−1

i

≡ δN−1
i . (B.7)

Finally the derivative
∂zNk

∂zN−1
i

is given by

∂zNk
∂zN−1

i

= h′(zN−1
i )wN

ki. (B.8)

Thus, we have an expression for the quantity δN−1
i in terms of δNi

δN−1
i = h′(zN−1

i )
∑
k

wN
kiδ

N
k , (B.9)

where the sum runs over all k that are connected to the hidden unit j [25]. This suggests the
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following procedure for updating the weights [25]:

1. Propagate the input xn forward through the network.

2. Compute the quantity δNi and the gradient ∂En

∂wN
ij

for the final layer.

3. Use the computed δNi ’s to compute the δN−1
j ’s and gradients ∂En

∂wN−1
ij

for the previous layers.

4. Once all gradients are computed, update the weights with −λ ∂En

∂wN
ij
, where λ is a positive

constant.

5. Repeat steps 1-4 for the next input xn.
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