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Abstract

This thesis explores the use of computational methods for discovering new TADF molecules,

with a focus on developing a high-throughput virtual screening workflow that reduces costs and

time associated with experimental screening. Using methods like STONED and SYBA, diverse

molecule libraries were generated and evaluated to identify promising candidates for further

investigation. The study also examines the challenges of using computational methods, such

as discrepancies and limitations with computationally efficient methods. Modifications were

made to parent molecules based on ∆SCF calculations and similarity map analysis. Overall,

this study provides valuable insights into the use of computational methods for TADF molecule

design and offers guidance for future research aimed at designing new TADF materials.
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Chapter 1

Organic Light-Emitting Diodes

1.1 Introduction

Global energy consumption has been rising exponentially since the industrial revolution, and

there are no signs of it slowing down [1]. In 2021, zero-carbon energy sources contributed only

about 16% of global energy consumption. The impact of greenhouse gases, like CO2, on the

global temperature is well-documented [2, 3]. Simply replacing non-renewable sources with

renewable sources, like windmills and solar panels, is only one aspect of addressing the climate

and energy crises. Renewables are intermittent and require significant upfront investment

and land use [4]. Additionally, meeting global energy demand will require a mix of energy

sources, energy-efficient technologies, and policies that promote conservation and innovation.

The rising energy demand, fueled by rapid economic growth worldwide, is contributing to

the increasing global temperature [5]. The other part of the solution is complex and requires

multiple strategies [6]. Nonetheless, this work aims to make everyday technology sustainable

and run at peak efficiency.

In 2019, global electric waste (e-waste) generation reached 53.6 million metric tons, with only

17.4% of this waste being collected and recycled [7]. By 2030, this number is projected to

grow to 74 million metric tons (Mt). The need for sustainable technology is just as critical

as efficiency. The materials used to manufacture a device not only affect its efficiency but

1
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also its sustainability. For example, the size of an electric car’s battery (measured in kilowatt-

hours, or kWh) determines its maximum energy output, while factors like body shape, tire,

motor, and weight can affect its range (efficiency). However, the use of sustainable materials

in the manufacturing process can also improve the device’s overall environmental impact. By

promoting sustainability in technology, we can reduce e-waste and contribute to a cleaner, more

efficient future.

Lighting accounts for approximately 20% of the world’s electricity consumption, making it cru-

cial to develop sustainable and efficient solid-state lighting (SSL) technology for the future [8].

However, the current generation of SSL devices based on OLED technology relies on heavy

metals such as iridium and platinum, which are both harmful to the environment and expen-

sive [8, 9, 10, 11]. Additionally, e-waste generated in 2019 included or was composed of lighting

and display technologies, such as lamps, screens, and monitors, contributing to about 23% of

the total waste generated that year [7]. Therefore, it’s essential to address the environmental

impact of SSL devices and prioritise the use of sustainable materials in their manufacture. Just

as with electric cars, considering the materials used in developing lighting and display solutions

is critical to ensuring their sustainability and efficiency.

Thermally activated delayed fluorescence (TADF) molecules are a highly promising type of

organic molecule used in OLEDs. Unlike traditional OLED emitters, which can only harvest

singlet excitons, TADF molecules are capable of harvesting both singlet and triplet excitons,

leading to highly efficient energy transfer and emission. TADF emitters have attracted sig-

nificant attention due to their potential to replace heavy metal-based OLED emitters [12]. A

recent study [13] has shown that new TADF molecules can be created without the traditional

design strategy. However, the large number of possible TADF emitters can make experimental

screening time-consuming and expensive, which is one of the major challenges in designing the

next-generation OLEDs. Therefore, our work aims to design a blueprint for HTVS that can be

used to design new TADF molecules while simultaneously reducing the costs associated with

experimental screening. Achieving this goal will help us overcome the existing hurdles.

In this chapter, we will embark on a journey through the history of OLED emitter types, be-
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ginning with early fluorescent emitters, advancing to phosphorescent emitters, and ultimately

arriving at the latest generation of TADF emitters. Through this journey, we will analyse the

key differences between these emitter types. Moving forward, we will discuss traditional design

strategies for optimising OLED and TADF emitters, such as molecular structure modifica-

tion. Moreover, we will go beyond these conventional design approaches and examine advanced

strategies that hold the potential to further enhance the performance of these materials.

1.2 Towards Cheap and Eco-Friendly Display Technol-

ogy

The use of display technology is omnipresent in modern devices, playing a crucial role in essential

sectors of daily life, such as work, education, and health. As a primary driver of energy con-

sumption, the demand for more efficient display technology continues to rise. In recent decades,

we have transitioned from traditional incandescent bulbs and compact fluorescent lamps (CFLs)

to light-emitting diodes (LEDs), which have emerged as a superior lighting technology in terms

of lifespan, colour rendering, physical robustness, size, speed, and eco-friendliness [14]. LEDs

are classified as solid-state lighting (SSL) technology, utilising semiconductors to convert elec-

tricity into light, while traditional bulbs rely on electrical filaments or plasma and gas. Notably,

white-light emitting LEDs are currently more than twice as efficient as incandescent bulbs [15].

The first visible LED, emitting only red light, was demonstrated in 1962 [16]. It was not until the

late 1960s that red and green LEDs became commercially available, while blue LEDs remained

a significant challenge due to the requirement for a wider band gap and a limited number of

candidate materials at the time. Three major milestones led to significant improvements in

blue LED efficiency in 1993 [17]. First, techniques were developed in the 1980s to produce

large, high-quality, gallium nitride (GaN) crystals [18]. Second, techniques were developed to

turn GaN into a suitable p-type semiconductor since it is naturally n-type [19, 20]. Finally, in

the 1990s, the efficiency of blue LEDs was significantly improved [17]. These breakthroughs

were the work of Akasaki, Amano, and Nakamura, and earned them the Nobel Prize in Physics
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in 2014 for their contributions to energy-efficient white LED lighting and advances in digital

displays.

All in all, LED technology has replaced traditional lighting technologies like CFL and incandes-

cent bulbs across various applications. However, there is still a need to optimise and enhance

this solid-state lighting technology in terms of improving its efficiency in converting electricity

to light at high operating currents, extending its lifespan, and enhancing its reliability, while

also reducing its size and production costs. Therefore, ongoing research and development efforts

are focused on improving the performance and cost-effectiveness of LEDs, which will enable

further advances in lighting and display technologies.

1.3 The Dawn of Organic Electronics

The invention of LEDs revolutionised the lighting industry and modern society is heavily reliant

on this technology. However, LEDs do have some limitations, including their inability to be

used as a pixel in high-resolution displays due to their large size, and their narrow band of

wavelengths resulting in poor colour production. To address this, a ”white light” LED is used as

a backlight in displays [21, 22], with different types of phosphors converting monochromatic light

to a desired spectrum [23]. This has led to the development of LCD technology, which utilises

liquid crystals and colour filters to create pixels. However, this use of additional materials can

make LED devices complex, large, and expensive to produce. To overcome these limitations,

organic light-emitting diodes (OLEDs) have been developed. OLEDs are self-emissive and do

not require additional materials like a backlight or phosphors to produce a broad spectrum of

light. This results in simpler and smaller devices, making OLEDs an attractive alternative to

LED-based displays.

Nowadays, OLED technology has matured and has been successfully employed in various com-

mercial applications, ranging from small portable systems like smartphones and watches to

large televisions and monitors. Compared to their LED counterparts, the latest OLED-based

displays are considerably lighter, thinner, and smaller while delivering superior picture quality.
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In fact, recent advancements in OLED fabrication techniques [24] have made it possible to

create highly efficient displays on ultra-thin fibres, with diameters thinner than that of human

hair. This paves the way for wearable displays and other innovative applications in the future.

While OLEDs offer numerous advantages over LEDs, they also have limitations that must be

considered. One major drawback is their shorter lifespan compared to LEDs. Due to the organic

materials used in their construction, OLEDs degrade faster over time, leading to decreased

brightness and colour accuracy that make them unsuitable for long-lasting applications. This is

because OLEDs are sensitive to moisture and oxygen, which can damage their performance over

time [25]. As a result, the production environment for OLEDs must be highly controlled, which

requires complex fabrication methods and increases production costs. Additionally, factors such

as the roughness of metal electrodes, poor bonding between organic and inorganic layers, and

migration of metal ions from electrodes into organic layers can significantly impact device

efficiency and lifespan [26]. LEDs, on the other hand, are more robust and markets claim up to

50,000 hours or more [27], making them a better option for applications that require longevity

and durability.

As briefly mentioned in the introduction, TADF is an emerging technology that holds promise

in overcoming some of the challenges associated with OLED technology. But before delving

into the intricacies of TADF OLED molecules, it is important to understand the origins and key

concepts behind previous generations of OLED. Specifically, the first and second generations of

OLED, based on fluorescence and phosphorescence, respectively, have paved the way for TADF

OLED and will provide useful context for understanding the advancements made by this new

technology.

1.3.1 Electroluminescence

The first report of electroluminescence (EL) using organic materials dates back to 1953 when

Bernanose et al. [28]. A decade later, in 1962, Pope et al. demonstrated the first organic EL

by observing fluorescence induced by a direct current (DC) to an anthracene (C14H10) crystal

at high voltage (400 V) [29]. Although this initial research proved the possibility of EL with
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organic materials, the low efficiency made it unattractive for practical applications until the

groundbreaking work of C. W. Tang and S. A. VanSlyke in 1987 [30]. They achieved green

(λ ≈ 550nm) EL at low voltages (≈ 2.5 V) and high luminance (>1000 cd/m2) at voltages

below 10 V, making OLEDs a practical option for display devices. This breakthrough triggered

widespread interest from both academia and industry, leading to the commercialisation of

OLED displays we see today. Their device structure, consisting of two organic layers sandwiched

between an anode and a cathode, was innovative at the time and is now widely used.

Figure 1.1: Diagram of a simple OLED device structure, featuring multiple layers sandwiched
between an anode and cathode electrode, with a substrate layer providing structural support.
The hole injection and electron injection layers enable the efficient emission of light when a
voltage is applied.

To improve the efficiency of an OLED, it’s important to understand the physical processes that

occur within it. A basic OLED structure (Figure 1.1) consists of organic and/or inorganic layers

sandwiched between the electron transport layer (ETL) and the hole transport layer (HTL) [31].

These layers are sandwiched between a metal cathode layer and a layer of transparent conductive

material acting as the anode, such as indium tin oxide (ITO). When a voltage is applied across

the sandwiched layers, charge carriers are injected into the structure. There are two types

of charge carriers: a hole (positive charge) injected from the anode and an electron (negative

charge) injected from the cathode. These charge carriers perturb the covalent (π) bonding

structure of the organic molecules in the semiconductor, causing localised distortion [32]. This

happens due to the balancing interactions between the charge carriers and the forces that hold

the molecules in place.

The distorted position of the molecules creates a local polarisation centred around the charge
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carriers, resulting in the formation of a polaron (P). A polaron is a quasiparticle that can be

thought of as an electron or hole surrounded by a cloud of phonons. These polarons have a spin 1
2

and they migrate through the organic layer to meet at the recombination zone [33, 34]. Initially,

their spin orientation is random, making them uncorrelated. However, at the recombination

zone, they become correlated and form an intermediate state held by their mutual Coulombic

interaction [35, 36]. This intermediate state can be described as either a singlet or a triplet

charge transfer (CT) state [37].

When polarons combine to form a CT state, they have a probability of either forming a singlet

or a triplet state, depending on the specific molecular and electronic configuration. The S1

state corresponds to the first singlet excited state with zero total electronic spin (S=0). It

involves the promotion of an electron from the Highest Occupied Molecular Orbital (HOMO)

to the Lowest Unoccupied Molecular Orbital (LUMO) or a higher unoccupied orbital.

On the other hand, the T1 state represents the first triplet excited state with a total electronic

spin equal to one (S=1). It involves the promotion of an electron from the HOMO to a higher

unoccupied orbital while changing its spin orientation. Transitions involving triplet states are

typically “forbidden” in optical spectroscopy due to spin selection rules.

Both S1 and T1 states are examples of excited states that depend on the molecular system’s

electronic structure. While S1 states are more frequently observed and relevant for fluores-

cence and light emission, T1 states are essential in understanding photochemical reactivity and

excited-state dynamics. Molecules can have multiple excited states with different energy levels

and spin multiplicities, contributing to their unique photophysical and photochemical proper-

ties. The investigation of these excited states is critical in photochemistry, photophysics, and

the design of electronic materials.

Based on quantum mechanical spin statistics [38], there are four possible combinations of S1

or T1 states:

1. ↑↑ T1

2. ↓↓ T1
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3. 1√
2
[↑↓ + ↓↑] T1, spin precessing in-phase

4. 1√
2
[↑↓ − ↓↑] S1, spin precessing out-of-phase

The probability of forming a singlet state is 25%, while the probability of forming a triplet

state is 75%, resulting in a 1:3 ratio. Understanding these statistics is crucial in addressing the

quantum limitations of OLEDs.

Regarding the development of OLED efficiency, it is essential to define two crucial parameters:

EQE and IQE. The EQE refers to the ratio of the number of photons emitted by the device to

the number of electrons injected into the device. It quantifies the overall efficiency of converting

electrical current into emitted light from the OLED, taking into account both the internal and

external factors that influence light extraction and outcoupling.

On the other hand, IQE specifically measures the efficiency of the internal processes within the

OLED device. It represents the ratio of the number of excitons (electron-hole pairs) formed to

the number of electrons injected into the device. IQE focuses solely on the quantum efficiency

of exciton formation and recombination within the OLED’s active layer, disregarding any losses

due to light extraction or other external factors.

It is important to maintain consistency and avoid interchanging EQE and IQE throughout the

manuscript to ensure clarity and accuracy in discussing the different aspects of OLED efficiency.

By understanding the distinction between EQE and IQE, researchers can comprehensively

assess the performance and optimise the efficiency of OLED devices.

1.3.2 Fluorescence-based OLED

Fluorescent OLEDs harvest singlet excitons, which are excited states of molecules with the

same spin, resulting in light emission. However, they face limitations in their efficiency due to

the under-utilisation of triplet excitons. These excitons are typically classified as spin-forbidden

transitions, leading to a lower probability of emitting light compared to singlet excitons. This
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reduced probability arises from selection rules that limit the radiative decay of triplet states.

Consequently, the emission efficiency of triplet excitons is generally lower in fluorescent OLEDs.

Triplet excitons in fluorescent OLEDs predominantly undergo non-radiative decay, primarily

thermal in nature, rather than efficiently emitting light. This non-radiative decay process re-

sults in the dissipation of a significant portion of the initially absorbed energy, up to 75%.

Such energy losses significantly limit the overall efficiency of OLEDs. Figure 1.2 visually illus-

trates this non-radiative decay mechanism and its impact. As a result, the maximum IQE of

Figure 1.2: Jablonski diagram of the fluorescence mechanism in OLEDs. ISC, ∆EST , e-, h+
represent intersystem crossing (ISC), singlet-triplet energy gap ∆EST , electrons (e-) and holes
(h+), respectively.

fluorescent-based OLEDs is limited to 25%, as any additional energy that is absorbed beyond

this point is lost due to non-radiative decay.

In 1998, Baldo et al. [38] reported a breakthrough discovery that revolutionised OLED tech-

nology. By harvesting both singlet and triplet excitons using a red-emitting organometal-

lic complex, phosphorescent dye 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine platinum(II)

(PtOEP), they achieved an impressive IQE of 23%, almost reaching the maximum limit of

fluorescence-based devices. This pioneering work opened the door for research into phosphorescence-

based OLEDs, ushering in a new era of more efficient and advanced lighting and display tech-

nologies.
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1.3.3 Phosphorescence

Phosphorescent materials are a type of light-emitting compound that has received significant

attention in recent years due to their ability to achieve high efficiency and long operational

lifetimes in OLEDs. Unlike fluorescent materials, which can only utilise singlet excitons, phos-

phorescent materials are able to use both singlet and triplet excitons, which allows them to

achieve higher IQEs. This was due to the introduction of heavy metal atoms, such as irid-

ium (Ir) and platinum (Pt). The heavy metal in these organometallic complexes mediates a

strong spin-orbit coupling that allows for intersystem crossing (ISC) (Figure 1.3) from S1 to

T1 [8, 38, 9].

Figure 1.3: Jablonski diagram of the phosphorescence mechanism in OLEDs. ISC, ∆EST , e-,
h+ represent intersystem crossing (ISC), singlet-triplet energy gap ∆EST , electrons (e-) and
holes (h+), respectively.

Since 2001, there have been reports of devices with an IQE of almost 100% [10]. Although

green and red-emitting cyclometalated iridium complexes are currently used in commercial

OLED devices [39], blue-emitting complexes suffer from poor stability and performance during

operation [40, 41]. As a result, phosphorescent-based blue emitters have not yet been com-

mercialised. The poor performance of blue emitters is believed to be due to processes called

triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA), which reduce effi-

ciency under high current density and degrade the device by creating highly energetic polarons.

In addition to this, concerns exist over the use of heavy metal salt reagents, which are low in

abundance and increase the overall cost of devices, as well as the potential for environmen-
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tal contamination [11]. These factors make current phosphorescent OLEDs unsustainable and

polluting.

Today, the challenge is to design OLED emitters that are not only cost-effective but also sus-

tainable and environmentally friendly, without compromising on performance. Several strate-

gies have been proposed to utilise the 75% and avoid the use of expensive metals, such as

TTA [42], tuning spin-orbit coupling by side-stepping Kasha’s rule [43], hybridized local and

charge-transfer (HLCT) [44, 45, 46, 47, 48], and TADF [49, 50, 51]. Recent investigations have

shown that TADF has made the most rapid progress among these strategies.

OLED emitters based on TADF properties show great promise in achieving almost 100% IQE,

while also addressing the concerns associated with phosphorescent emitters. A TADF-based

OLED is considered the third-generation OLED and is expected to be the successor to the

current OLED technology.

1.4 Thermally Activated Delayed Fluorescence

A thermally activated delayed fluorescence (TADF) emitter is a type of light-emitting molecule

that can use both singlet and triplet excitons, enabling it to achieve a maximum theoretical

IQE of 100%, similar to a phosphorescent emitter. Unlike phosphorescent emitters, however,

TADF emitters can be purely organic, which makes them more versatile and easier to integrate

into various electronic devices.

The concept of TADF emitters has been around since 1961 [52, 53], when an organic chemical

compound called ‘eosin’ was observed to emit delayed fluorescence in ethanol, leading to the

term ‘E-type’ delayed fluorescence. From the 1970s to the 1990s, other organic compounds

with this ‘E-type’ nature were discovered, such as benzophenone [54], 9,10-anthraquinone [55],

aromatic thiones [56, 57], and thioketones [58].

The observation of delayed fluorescence in a Cu(I)-complex in 1980 marked the discovery of

the first metal-containing TADF material [59]. This discovery expanded the range of materials
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capable of exhibiting this phenomenon beyond the original group of materials referred to as

‘E-type’ delayed fluorescence and led to the adoption of the term TADF to encompass this

broader range of materials.

Adachi et al conducted a series of studies on the use of TADF molecules in OLED devices in

the late 2000s [60] and early 2010s [61][50]. Their research led to the discovery of highly efficient

purely organic TADF molecules. In 2012, Adachi et al reported a class of TADF molecules

based on carbazolyl dicyanobenzene (CDCB) with an exceptional external quantum efficiency

(EQE) of 19.3% [50]. In contrast, the EQE of a typical inorganic (phosphorescent) OLED

device typically ranges from around 20-25% [62]. This groundbreaking discovery sparked an

enormous research effort worldwide to improve the efficiency of purely organic TADF emitters

[63, 51, 12].

1.4.1 Key TADF Mechanisms

TADF consists of two distinct mechanisms: Prompt fluorescence (PF) and delayed fluorescence

(DF), as seen in Figure 1.4).

Figure 1.4: Jablonski diagram of the TADF mechanism in OLEDs. RISC, ISC, ∆EST , e-, h+
represent reverse intersystem crossing (RISC), intersystem crossing (ISC), singlet-triplet energy
gap ∆EST , electrons (e-) and holes (h+), respectively.

The process of PF and DF can be simplified and explained with the following expressions:

S1
kPF−−→ S0 (1.1)
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S1
kISC−−−→ T1

kRISC−−−→ S1
kDF−−→ S0 (1.2)

In the expressions 1.1 and 1.2, ‘k’ represents the rate of the corresponding mechanism indicated

in the subscript. The PF process described in expression 1.1 involves the decay of singlets to

the ground state (S0). The DF process represented by expression 1.2 entails initial ISC to

T1, followed by the re-population of S1 via the reverse intersystem crossing (RISC) mecha-

nism. TADF emitters can efficiently convert between the lowest T1 and S1 states due to the

small singlet-triplet energy gap (∆EST ), which is typically < 0.1 eV. The thermal activation

mechanism facilitates RISC, hence the name “thermally activated” delayed fluorescence.

According to the Boltzmann distribution relation [50], ∆EST dictates the rate of RISC (kRISC):

kRISC ∝ exp−∆EST

kBT
(1.3)

where kB is the Boltzmann constant and T is the temperature. A small ∆EST would result in

a fast kRISC .

The molecular energy of the lowest singlet (ES1) and triplet (ET1) excited states can be deter-

mined by the orbital energy (E), electron repulsion energy (K), and exchange energy (J) of

the two unpaired electrons in these states, as shown in Equation 1.4 and 1.5 [63].

ES1 = E +K + J (1.4)

ET1 = E +K − J (1.5)

Although the singlet and triplet excited states of a molecule have the same electronic config-

uration, resulting in identical values of the electronic parameters E, K, and J , the energy of

the lowest triplet excited state (ET1) is reduced (as shown in Equation 1.5) due to the same

spin states of the unpaired electrons, while the energy of the lowest singlet excited state (ES1)

is increased (as shown in Equation 1.4). Consequently, the energy difference between the two
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states (∆EST ) is twice the exchange energy (J) (as shown in Equation 1.6).

∆EST = ES − ET = 2J (1.6)

At the lowest S1 excited state and lowest T1 excited state, the two unpaired electrons are

primarily located on the frontier orbitals, HOMO and LUMO. Despite their different spin

states, these electrons have the same J value. Consequently, the exchange energy value for

these electrons at the HOMO and LUMO can be determined using Equation 1.7 [64]:

J =

∫︂ ∫︂
ϕH(r1)ϕL(r2)

1

|r2 − r1|
ϕH(r2)ϕL(r1)dr1dr2 (1.7)

where ϕH and ϕL represent wavefunctions of the HOMO and the LUMO, respectively. r1 and

r2 represent position vectors. Equation 1.7 shows that a smaller (greater) overlap of the HOMO

and the LUMO results in a smaller (greater) J .

Equations 1.4 and 1.5 demonstrate that while the exchange energy of electrons destabilises the

S1 state, it stabilises the T1 state. As a result, in scenarios where the T1 states are not solely

determined by a single HOMO-to-LUMO electronic configuration, research has shown that the

triplet state tends to have a more localised excitation character, while the singlet state exhibits

more charge-transfer excitation character [65, 66].

Equation 1.7 indicates that ∆EST can be minimised by maximising the overlap between HOMO

and LUMO. This would be true if the S1 and T1 states were solely defined by a HOMO-LUMO

CT transition. However, in reality, the electronic configurations of T1 states are often more

complex, requiring a more detailed description than the simple HOMO-LUMO picture. In

such cases, natural transition orbitals (NTOs) can provide a compact representation of the

electronic excitations, particularly when the excited states correspond to a single pair of NTO

orbitals for the hole and the electron [67, 63]. By calculating NTOs, it is possible to identify

the orbitals that are involved in the electronic transitions that give rise to TADF. This can

provide information on the energy level alignment between the donor and acceptor molecules,

which is critical for efficient TADF [68].
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Understanding the underlying mechanisms of spin-orbit coupling (SOC) and the spin-vibronic

mechanism is crucial for optimising TADF materials and device performance.

SOC plays a significant role in TADF due to its influence on ISC and spin dynamics. SOC is the

interaction between the electron spin and its orbital motion, resulting in the mixing of singlet

and triplet states. In TADF systems, strong SOC facilitates the interconversion between these

states, allowing for efficient triplet-to-singlet conversion and subsequent fluorescence emission.

Therefore, a high SOC can enhance the TADF efficiency by facilitating the reverse intersystem

crossing process. The rate of RICS (kRICS) of a TADF material can be evaluated by using the

equation 1.8 [69]:

kRICS ∝

⃓⃓⃓⃓
⃓⟨S1| ĤSOC |T1⟩

∆EST

⃓⃓⃓⃓
⃓
2

(1.8)

Where ĤSOC represents SOC operator, which describes the interaction between the electron

spin and its orbital motion. ⟨S1| ĤSOC |T1⟩ | denotes the SOC matrix element between S1 and

T1 states. Similar to equation 1.3, equation 1.8 also shows what reducing ∆EST can increase

the kRISC of TADF materials.

The spin-vibronic mechanism also contributes to the TADF process [70]. It involves the coupling

of electronic excitations with vibrational modes within the molecule. Vibrational motions can

modify the energy landscape and influence the rates of ISC, internal conversion, and fluorescence

processes. In TADF materials, efficient spin-vibronic coupling enables an efficient population

of the excited triplet state and subsequent RISC to the singlet state, leading to fluorescence

emission. Optimising the spin-vibronic coupling strength and vibrational modes in TADF

systems is essential for achieving high TADF efficiency.

The implications of SOC and the spin-vibronic mechanism for TADF extend beyond the un-

derstanding of fundamental processes. These factors guide the design and synthesis of TADF

materials with tailored molecular structures, energy levels, and vibrational properties. By

optimising SOC and spin-vibronic coupling, researchers can enhance the efficiency of TADF

materials, reduce non-radiative decay pathways, and minimise efficiency roll-off at high current

densities.
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The equation equation 1.9 describes the coupling between the singlet and triplet states and

involves the SOC and spin-vibronic interactions.

kRISC =
2π

ℏ

⃓⃓⃓⃓
⃓⟨1ψCT | ĤSOC |3ψLE⟩ ⟨3ψLE| Ĥvib |3ψCT ⟩

δ(3ELE −3 ECT )

⃓⃓⃓⃓
⃓
2

δ(3ELE −1 ECT ) (1.9)

Where ℏ is the reduced Planck’s constant, ⟨1ψCT | and |3ψLE⟩ represent the wavefunctions of

the singlet CT state, ⟨3ψLE| and |3ψCT ⟩ represent the wavefunctions of the triplet CT and

locally excited (LE) state, Ĥvib represents the vibronic coupling operator, which accounts for

the coupling between the electronic excitations and vibrational modes within the molecule.

δ(3ELE −3 ECT ) and δ(3ELE −1 ECT ) are the energy conservation conditions, ensuring that

the energy differences between the involved states match. The equation quantifies the RISC

rate based on the coupling strengths between the singlet and triplet states mediated by SOC

and spin-vibronic interactions. It takes into account the energy conservation conditions for the

involved electronic states.

Furthermore, the study of SOC and the spin-vibronic mechanism in TADF provides insights into

the fundamental physics of exciton dynamics and electronic transitions in organic materials.

This knowledge contributes to the broader field of organic optoelectronics and aids in the

development of advanced materials for other applications, such as organic photovoltaics and

sensors.

In summary, SOC and the spin-vibronic mechanism play crucial roles in the TADF mechanism.

Understanding and optimising these factors are key to enhancing TADF efficiency and improv-

ing the performance of TADF-based OLEDs. Further research in this area will not only advance

the field of TADF but also contribute to the fundamental understanding of exciton dynamics

and pave the way for the development of next-generation organic optoelectronic devices.

Overall, the TADF mechanism provides an alternative route to designing OLEDs with high effi-

ciency and has the potential to rival phosphorescent OLEDs, which are the current commercial

standard for efficient OLEDs.
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1.4.2 The Traditional Design Strategy for TADF molecules

The traditional design strategy for TADF molecules aims to minimise the key parameter ∆EST

(equation 1.6). This is achieved by reducing the spatial overlap between the HOMO and LUMO

frontier orbitals, resulting in the minimisation of exchange energy J . This approach enables

the efficient conversion of triplets into singlets, as described by the Boltzmann distribution

(equation 1.3).

Donor-acceptor (D-A) compounds are used to reduce spatial overlap between the HOMO and

LUMO. In D-A compounds, the HOMO is mainly localized on the donor moiety, while the

LUMO is situated on the acceptor moiety. However, a large spatial separation between the

HOMO and LUMO frontier orbitals can lead to a strong intramolecular charge-transfer (ICT)

character in the lowest singlet and triplet excited states. The strong ICT character of the

excited states may not be compatible with this emission requirements [71], leading to lower

photoluminescence quantum yields and reduced device performance. Intense emission from

the lowest excited state is typically desired for optoelectronic applications. This requires a

large transition dipole moment, which describes the strength of the interaction between the

excited state and the surrounding environment, as well as a high oscillator strength, which

reflects the probability of emission. Therefore, designing TADF molecules with appropriate

donor and acceptor groups that balance the ICT character and emission properties is essential.

The traditional design strategy extends to intramolecular D-A systems, which involve the use

of a large steric hindrance structure or a twisted/spiro/bulky connection between the donor

and the acceptor [63].

While there is a wide range of organic donors available for selection [63], N-containing aromatic

compounds such as carbazole, diphenyl amine, phenoxazine, and their derivatives are com-

monly used as they exhibit the strong electron-donating ability and stable, high triplet states.

However, to optimise the TADF emission strength, colour, and device performance, a variety

of acceptor molecules are utilised in the design of donor-acceptor compounds.

Overall, the traditional D-A design principle offers great flexibility in tuning the structure and
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properties of TADF molecules. It has proven to be a very successful strategy as there now exists

hundreds of TADF emitters [12]. However, identifying the best TADF molecules can be a time

and resource-intensive process that involves both experimental and computational techniques.

1.4.3 Beyond Donor and Acceptor Designs

Numerous studies have demonstrated the effectiveness of the donor-acceptor (DA) design in

creating TADF molecules. Nevertheless, researchers are currently exploring alternative design

strategies as well [72, 73, 74, 75, 76, 66, 77, 13].

In recent years, multiple-resonance (MR) emitters [72, 73, 74] have emerged as promising can-

didates for achieving high-efficiency TADF OLEDs. These emitters offer a unique molecular

design strategy that goes beyond the conventional electron-donating and electron-accepting

groups, enabling efficient interconversion of singlet and triplet excitons through the RISC pro-

cess.

MR emitters incorporate diverse functional groups within the molecular structure, such as

electron-rich nitrogen and electron-deficient boron or carbonylgroups, resulting in multiple res-

onance structures. These resonances facilitate effective energy transfer and promote efficient

RISC between singlet and triplet states. By creating multiple energy minima and maxima

along the potential energy surface, these emitters enable enhanced energy transfer pathways

and increased harvesting of both singlet and triplet excitons, leading to improved overall TADF

efficiency.

The design of MR emitters involves the careful integration of electron-donating and electron-

accepting moieties, as well as the precise tuning of energy levels and molecular orbital dis-

tributions. This molecular engineering approach enables the optimisation of charge transfer

abilities, energy level alignment, and molecular packing. The resulting MR emitters exhibit ef-

ficient reverse intersystem crossing, even with relatively small energy gaps between the singlet

and triplet excited states.

Beyond donor and acceptor designs, MR emitters provide enhanced flexibility in tailoring the
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emission properties and device performance. By exploring various combinations of functional

groups and their spatial arrangements, researchers can fine-tune the energy levels and charge

transfer characteristics of these emitters. This flexibility allows for the optimisation of TADF

efficiency, reduction of efficiency roll-off at high current densities, and improvement of device

stability.

The development of MR emitters represents a significant advancement in the field of TADF

OLEDs. Their unique molecular design strategies and effective interconversion of singlet and

triplet states offer a promising avenue for achieving highly efficient and stable TADF devices.

By exploring beyond traditional donor and acceptor concepts, MR emitters open up new oppor-

tunities for advancements in organic optoelectronics and pave the way for future breakthroughs

in efficient light-emitting devices.

In summary, while MR emitters often utilise a modified D-A structure, the “beyond” aspect

refers to their incorporation of multiple resonance structures within the molecule, which allows

for enhanced energy transfer and interconversion between singlet and triplet states.

Recently, Zhao and colleagues reported on a group of TADF molecules that depart from the

traditional design rules [13], naming them “Type VII.” These molecules pose a challenge as

their small ∆EST cannot be attributed to a specific donor or acceptor moiety, suggesting that

they were not designed using existing guidelines. In addition, the authors described six other

types of TADF molecules, including Type I (known TADF molecules), Type II (molecules

with common TADF donors and acceptors), Type III (molecules containing a novel donor or

acceptor), Type IV (molecules with non-standard chemical topology), Type V (zwitterionic

molecules), and Type VI (molecules consisting of only acceptors or donors and conjugated or

non-conjugated linkers to form acceptor or donor molecules). This work by Zhao and co-workers

provided inspiration and a foundation for this study.

Type VII molecules represent a novel pathway towards molecular design, as they deviate from

traditional TADF design rules. Typically, these molecules have a larger HOMO-LUMO overlap

and a slightly larger ∆EST than D-A molecules. However, Zhao and colleagues were able

to enhance the properties of these molecules through their innovative design approach. For
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instance, their investigation of ZERJEL02 led them to introduce additional nitrogen atoms

into the peripheral aromatic units, which resulted in a remarkable reduction of ∆EST from 0.35

eV to 0.19 eV.

The discovery of “non-traditional” TADF molecules is intriguing and adds complexity and

flexibility to an already rich, yet expensive, design process. To accelerate and improve this pro-

cess, new strategies are needed. Researchers have turned to high-throughput virtual screening

(HTVS) methods to design optoelectronic materials, which have significantly reduced both time

and cost. With the existence of non-D-A TADF emitters and HTVS workflows, the prospect of

combining these approaches is highly promising. This combination has the potential to identify

novel TADF molecules that may have been overlooked using traditional design rules and in a

cost and time-effective manner.

In the upcoming chapter 2, we will introduce the theory and methods of density functional

theory that were utilised in our workflow.

Chapter 3 will provide an overview and discussion of the techniques employed to create and

screen molecule libraries.

Moving on to Chapter 4, we will delve into a comprehensive analysis of the initial filtering

process and an examination of the molecule library produced by our workflow.

Chapter 5 will present the outcomes of the DFT calculations performed on the candidate

molecules, an extensive analysis of a select few final molecules, and a proposed design strategy

for new TADF molecules.

Finally, in Chapter 6, we will conclude our work and highlight potential avenues for future

research and development.



Chapter 2

Density Functional Theory

In computational chemistry, the electronic structure of molecules can be studied using both

wavefunction-based methods and density functional theory (DFT). While it is true that wave-

function based methods, such as Hartree-Fock (HF) and post-HF methods (e.g., MPn, CCSD) [78,

79], are capable of providing very accurate results, it is important to note that DFT is not in-

herently less accurate than these methods. The accuracy of DFT depends on the choice of

the exchange-correlation functional employed, and there are many functionals available with

varying levels of accuracy.

On the other hand, DFT is a widely used method in computational chemistry that models the

electronic structure of molecules by approximating the electron density as a function. Com-

pared to wavefunction-based methods, DFT exhibits a favourable scaling with system size and

is generally less computationally expensive. This enables the study of larger molecules and

systems, as well as the execution of more extensive simulations.

Despite being an approximate method, DFT has been found to be quite accurate in many cases,

and it has become a standard tool in computational chemistry. One of the advantages of using

DFT is the well-known accuracy-cost trade-off. That is, by choosing an appropriate level of

approximation, one can balance the accuracy of the results with the computational cost. This

makes DFT a powerful and flexible tool for studying the electronic structure of molecules.

21
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In summary, wavefunction-based methods are highly accurate but computationally expensive

and limited to small systems, while DFT is less accurate but more computationally efficient

and capable of handling larger systems. The accuracy-cost trade-off makes DFT an attractive

choice for many computational chemistry applications.

In recent decades, DFT has emerged as a powerful computational tool in the fields of physics,

chemistry, and materials science. Its ability to predict the properties of a system by using

the electronic density (rather than the many-body wave function) as the primary variable has

revolutionised our understanding of materials and their properties. However, to fully appreciate

the value of DFT, it is important to consider its origins and the problem it is trying to solve.

The foundations of DFT can be traced back to the pivotal contributions of Hohenberg and Kohn

in the 1960s. They proposed a theoretical framework [80] based on the proof that the electron

density contains all the information required to describe the ground-state properties of many-

electron systems. The Kohn-Sham approach [81], further developed this theory by introducing

a set of non-interacting fictitious particles with an effective potential that reproduces the same

electron density as the original interacting system. The Kohn-Sham approach has since become

the standard method for performing practical DFT calculations, and its development has played

a significant role in the advancement of modern DFT [82, 83, 84].

At its core, DFT aims to solve the problem of accurately predicting the electronic density of a

system, which provides a complete description of its ground-state properties. It solves for the

electron density rather than the wave function. To comprehend the fundamental principles of

DFT, it is necessary to examine the basic formalism originating from the Schrödinger equation.

In this chapter, we will delve into the DFT methods that we utilise in our workflow. Addition-

ally, we will introduce and discuss our force field optimisation approach. To ensure consistency

in notation, we denote the total wavefunction as Ψ, which is expressed as the product of the

electronic wavefunction Ψelec and the nuclear wavefunction Ψnuc.
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2.1 The Schrödinger Equation

Quantum mechanics is concerned with determining the solutions to the Schrödinger equation,

which describes the behaviour of quantum systems. In most cases, we work with the non-

relativistic, time-independent Schrödinger equation (TISE).

ĤΨ = EΨ (2.1)

where Ĥ is the Hamiltonian, which is a differential operator which represents the total energy

of the system, consisting of kinetic (T̂ ) and potential (V̂ ) energies (equation 2.2). Ψ, the total

wavefunction is a set of solutions (or eigenstates) of the Hamiltonian and E is the eigenvalue.

Ĥ = T̂ + V̂ (2.2)

Each solution Ψn has an associated eigenvalue En.

The detailed definition of the Hamiltonian is dependent on the physical system that we aim

to describe using the Schrödinger equation. Although there are well-known examples like the

particle in a box or the harmonic oscillator, where the Hamiltonian takes on a simple form and

can be solved exactly with a shorter equation, the systems we are interested in are typically

more complex, such as molecules. In these systems, there are multiple nuclei interacting with

numerous electrons, resulting in a more detailed Hamiltonian operator.

Consider a system comprising M nuclei and N electrons in the absence of a strong electric

or magnetic field. To simplify matters, the Hamiltonian in equation 2.3 and in all future

expressions are in terms of atomic units, where physical quantities are measured as multiples of

fundamental constants. In this system, the mass of an electron me, the magnitude of its charge

e, reduced Planck’s constant ℏ, and the permittivity of free space 4πϵ0 are all set to unity (set

to a value of one). By expressing these constants as multiples of the equation, we can simplify
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the equation to the form shown in equation 2.3.

Ĥ = −1

2

N∑︂
i=1

∇2
i −

1

2

M∑︂
A=1

1

mA
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A=1
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riA
+
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N∑︂
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1

rij
+

M∑︂
A=1

M∑︂
B>A

ZAZB

RAB

(2.3)

Where the indices A and B run over the M nuclei, while i and j denote the N electrons

in the system. The nuclear charge of atom A and atom B is represented by ZA and ZB,

respectively. This Hamiltonian contains information regarding the kinetic and potential energies

of all particles of a system. The first two terms describe the kinetic energy of the electrons and

the nuclei, respectively. The mass of nucleus A is represented by mA and its charge by ZA.

The following three terms represent the potential energy of the system: attractive electrostatic

interaction between the nuclei and electrons, repulsive electron-electron and nucleus-nucleus

interaction, respectively. r represents the distance between an electron and another electron or

the nucleus, while R represents exclusively the distance between the nuclei.

However, applying the Schrödinger equation to real-world problems can be challenging for

several reasons. One of the main challenges is the complexity of the systems being modelled.

These systems typically involve many interacting particles, which makes it difficult to solve

the equation 2.3 analytically or numerically. This gives rise to what is known as a many-body

problem, where the interactions between particles have to be considered simultaneously.

In a many-body problem, the behaviour of one particle is affected by the behaviour of all the

other particles in the system. This results in complex and sometimes unexpected behaviour

that is difficult to predict using the Schrödinger equation alone. As a result, additional methods

and approximations are often required to obtain accurate solutions for these types of systems.

One approach to simplify the Schrödinger equation is to use the Born-Oppenheimer approx-

imation, which was introduced in 1927 by Born and Oppenheimer [85]. We will discuss this

approximation in the next section.
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2.2 The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation [85] simplifies the problem of studying a system by

separating the electronic and nuclear motions. This is because the mass difference between

electrons and nuclei is at least three orders of magnitude. Therefore, electrons move much

faster than nuclei for the same amount of kinetic energy, EKE:

velocity =

√︃
2EKE

mass
(2.4)

This approximation assumes that the electrons’ motion is significantly faster than that of nuclei,

allowing for separate treatment of electronic and nuclear degrees of freedom. The electronic part

can be solved first by considering the nuclei as fixed, using the clamped nuclei approximation

(2.5).

As the nuclei’s positions are changed incrementally, the electronic part is solved repeatedly.

This process maps out the electronic energy as a function of the nuclei coordinates, producing

a potential energy surface (PES). The nuclear part is then solved separately, using the PES

calculated from the electronic part. The separation of this problem into nuclear and electronic

parts is known as the Born-Oppenheimer approximation and it simplifies the Hamiltonian

equation 2.3 to equation 2.5.

Ĥ = −1

2

N∑︂
i=1

∇2
i − 0 −

N∑︂
i=1

M∑︂
A=1

ZA

riA
+

N∑︂
i=1

N∑︂
j>1

1

rij
+ Const. (2.5)

In the kinetic term for nuclei reduces to 0 at the positions of nuclei are fixed, while positions of

election can vary. Additionally, since the nuclei are static, the nuclear-nuclear repulsion does

not change, therefore, it stays constant. These two terms can be ignored when only focusing

on the electronic part of the problem: The final term const. represents any constant term that

does not depend on the positions of the electrons and nuclei. It may include contributions from

nuclear-nuclear repulsion, nuclear kinetic energy, or other constant terms. When only focusing
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on the electronic part of the problem, the Hamiltonian reduces to equation 2.6

Ĥelec = −1

2

N∑︂
i=1

∇2
i −

N∑︂
i=1

M∑︂
A=1

ZA

riA
+

N∑︂
i=1

N∑︂
j>1

1

rij
= T̂ + V̂ Ne + V̂ ee (2.6)

Where T̂ is the kinetic energy of electrons, V̂ Ne is the electrostatic nuclei-electrons attraction

and V̂ eeis electrostatic repulsion between the electrons. the electronic Hamiltonian (equation

2.6) is a powerful tool for describing the electronic structure and dynamics of many-body

systems with interacting electrons. This includes a wide range of physical systems such as

molecules, solids, surfaces, and nanostructures. By providing a comprehensive description of

the electronic behaviour of these systems, the electronic Hamiltonian enables the prediction and

understanding of their properties and behaviour, making it a central concept in both theoretical

and experimental studies of condensed matter physics and materials science.

The solution to the Schrödinger equation 2.7, with an electronic Hamiltonian Ĥelec is the

electronic wave function Ψelec, with the eigenvalues Eelec:

ĤelecΨelec(r1, . . . , rN) = EelecΨelec(r1, . . . , rN) (2.7)

The electronic wave function depends only on the electron’s spatial coordinates, although a

complete description must include the electron spin, up or down.

The wave function solution Ψelec that corresponds to the lowest energy state Eelec is commonly

referred to as the ground state. The eigenvalue of this ground state wavefunction is known

as the ground state energy. However, accurately determining an exact solution for Ψelec that

describes a system beyond trivial cases is generally impossible. This is due to the complexity

of the underlying many-body problem, which scales exponentially with the number of electrons

and atomic orbitals in the system.

The term “trivial” refers to simple or easily solvable systems. For example, a system with only

two electrons and two atomic orbitals would be considered trivial, as the calculation of the wave

function and energy of the ground state would be straightforward. However, for more complex

systems, such as those with many interacting particles and orbitals, obtaining an exact solution
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becomes much more difficult and may not be possible with current computational resources.

The complexity of the many-body problem in electronic structure calculations scales exponen-

tially with the number of electrons and atomic orbitals in the system. This makes it computa-

tionally infeasible to obtain an exact solution for the wave function Ψelec for even moderately

sized systems.

The exponential scaling is primarily due to the V̂ ee term in Ĥelec (equation 2.6), which represents

the electrostatic repulsion between all pairs of electrons in the system. The computational cost

of this term scales as O(N2
elec), where Nelec is the number of electrons in the system. In addition

to the V̂ ee term, other factors such as the size of the basis set used to expand the wave function

also contribute to the scaling of the electronic structure problem.

As a result of the scaling considerations and the complexity of the many-body problem, various

approximations and methods have been developed to obtain accurate solutions for the electronic

structure of molecular, solid-state, and nanostructured systems. These methods often involve a

combination of analytical approximations, numerical techniques, and computational algorithms

that exploit various features of the system, such as symmetries and sparsity of the Hamiltonian

matrix, to reduce the computational cost.

The Hartree product approach is a widely used analytical approximation for the many-body

wave function. It assumes that the wave function can be expressed as a product of one-

electron wave functions, where each electron is treated independently, ignoring electron-electron

interactions. Although this approximation reduces the computational cost of the electronic

structure problem, it neglects the correlation between electrons and can lead to inaccurate

predictions for systems with strong electron-electron interactions. Introducing the Hartree

product sets the foundation for understanding how electron correlation is treated in electronic

structure calculations and highlights the motivation for developing more advanced methods

such as DFT.
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2.3 The Hartree Product

In order to overcome the many-body problem, it is necessary to develop an approximation of

the true wave function. However, it is important to remember that the wavefunction cannot

be directly observed. This is a fundamental concept in quantum mechanics and highlights the

need for indirect methods, such as measuring the probabilities of various outcomes, to study

quantum systems. Instead, quantum mechanics provides us with a framework to calculate the

probability of various outcomes. For example, we can calculate the probability that there are

N electrons at a particular set of coordinates r1, . . . , rN . This probability is given by:

|Ψ(r1, . . . , rN)|2 = Ψ∗(r1, . . . , rN)Ψ(r1, . . . , rN) (2.8)

Where Ψ∗ denotes the complex conjugate. It is also possible and useful to approximate

Ψ(r1, . . . , rN) as a product of individual wave functions:

Ψ(r1, . . . , rN) ∼= ψ1(r)ψ2(r) . . . ψN(r) (2.9)

This approximation is known as the Hartree product.

In summary, the Hartree product is a popular method for approximating the many-electron

wave function in quantum mechanics. The Hartree product represents the many-electron wave

function as a product of one-electron wave functions (orbitals), and it is used to calculate the

electron density, which describes the distribution of electrons in space. The electron density

(equation 2.10) is related to the Hartree product because it is calculated based on the probability

density of finding electrons at specific coordinates in space, which is represented by the one-

electron wave functions in the Hartree product. Therefore, the Hartree product provides a

framework for calculating the electron density and gaining insights into the electronic structure

and properties of molecules, atoms, and solids.
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2.3.1 Limitations of Hartree Product

The Hartree product, which represents the many-electron wavefunction as a product of indi-

vidual one-electron wavefunctions (equation 2.9), has several limitations:

Neglects Electron Correlation: The Hartree product does not account for electron-electron cor-

relation, which is a fundamental aspect of the behaviour of electrons in many-electron systems.

Electron correlation refers to the interactions between electrons that cannot be captured by

simply considering their independent motion. Neglecting electron correlation can lead to inac-

curate descriptions of electronic properties, especially for systems with strong electron-electron

interactions.

Violates Pauli Exclusion Principle: The Hartree product does not satisfy the Pauli exclusion

principle, which states that two identical fermions (e.g., electrons) cannot occupy the same

quantum state simultaneously. As a result, the Hartree product may not correctly describe the

antisymmetric nature of the many-electron wavefunction required for fermionic particles.

Not Variationally Stable: The Hartree product is not a variational wavefunction, meaning that

it does not necessarily provide an upper bound to the true ground-state energy. Variational

stability is a desirable property in wavefunctions used in quantum mechanics, as it ensures that

the energy obtained from the wavefunction is always an upper bound to the exact ground-state

energy.

Limited Applicability : The Hartree product is typically used as an initial trial wavefunction in

variational calculations to obtain better approximations to the true wavefunction. However,

as the sole wavefunction for many-electron systems, it has limited applicability for accurately

describing complex electronic structures and properties.

Due to these limitations, the Hartree product is not a fully satisfactory description of the

many-electron wavefunction, especially for systems with strong electron-electron interactions

and significant correlation effects. More sophisticated methods, such as coupled cluster theory

[86], density functional theory [80, 81], or post-Hartree-Fock approaches [87], are employed to

address these limitations and provide more accurate descriptions of electronic structures and
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properties in many-electron systems.

2.4 The Electron Density

In experiments electrons are indistinguishable, thus cannot label them. However, we can mea-

sure the probability that any order of a set of N electrons are the coordinates r1 through rn.

The electron density ρ(r) is closely related as it can be calculated by the following equation:

ρ(r) = 2
∑︂
i

ψ∗
i (r)ψi(r) (2.10)

where ψi(r) represents individual electron wavefunction located at position r. According to the

Pauli exclusion principle, no two electrons in an atom or molecule can have the same set of

quantum numbers, which includes their spin states. As a result, each electronic state can be

occupied by at most two electrons with opposite spins. The factor of 2 arises from this spin

degeneracy. This means that the electron density of a system depends not only on the positions

of the electrons but also on their spin states, which can affect the spatial distribution of the

electrons.

The electron density, ρ(r), of a system is a function of only three coordinates, but it contains

a significant amount of information that is observable from the full wavefunction, which is a

function of 3N coordinates, where N is the number of electrons in the system. The electron

density provides a way to visualise the distribution of electrons in the system without hav-

ing to consider the entire wavefunction. In this way, electron density is a powerful tool for

understanding the electronic structure and properties of molecules, atoms, and solids.

2.5 Foundations of Density Functional Theory

DFT is built upon the Hohenberg-Kohn theorems [80], which serve as the foundation of the

theory. The first theorem states that the ground-state energy E from Schrödinger’s equation
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is a unique functional of the electron density ρ(r):

E[ρ(r)] = E (2.11)

In other words, the ground state energy of a system can be expressed as a functional of the

electron density. Hence, this theory is known as the density functional theory.

The second theorem states that the electron density that minimises the energy of the overall

functional is the true electron density, corresponding to the full solution of the Schrödinger

equation.

The Hohenberg-Kohn theorems provide a way to simplify the Schrödinger equation by defining

a function of just three variables, the electron density ρ(r), instead of a function of 3N variables

(the wavefunction). This reduction greatly simplifies the computational problem, making DFT

a powerful tool for predicting the electronic structure and properties of various systems. The

true ground state density of the system is the density that minimises the total energy.

It is useful to write the functional described by the Hohenberg-Kohn theorems in terms of single

electron wave functions:

E[{ψi}] = Eknown[{ψi}] + EXC [{ψi}] (2.12)

It is composed of two major parts: “known” and “eXchange-Correlation” (XC).

Eknown[{ψi}] = −
∑︂
i

∫︂
ψ∗
i∇2ψid

3r +

∫︂
V (r)ρ(r)d3r +

1

2

∫︂∫︂
ρ(r)ρ(r′)

|r− r′|
d3rd3r′ + En−n (2.13)

The terms in equation 2.13 are defined as: the non-interacting fictitious particles, elections-

nuclei Coulomb interaction, electron-electron pair Coulomb interaction and internuclear inter-

actions, respectively.

While EXC [{ψi}] includes all quantum mechanical effect not included in “known terms”.
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2.5.1 Kohn Sham Formalism of DFT

The Kohn-Sham (KS) formalism [81] is a widely used approach in DFT to calculate the elec-

tronic structure of molecules, atoms, and solids. It was introduced by Walter Kohn and Lu

Sham in 1965 as a way to simplify the problem of finding the ground-state electron density

of a system. In this approach, the motion of correlated and interacting electrons under an

external potential is modelled as fictitious non-interacting particles moving under an effective

potential called the Kohn-Sham potential. The eigensolutions of the Hamiltonian of this mod-

elled system are known as the Kohn-Sham orbitals, which are orthonormal to each other. The

orthonormality of the KS orbitals is important because it is a requirement for the eigenstates

of a Hermitian operator of the electron density. This property is critical for the accuracy of

DFT calculations since the electron density is used to calculate many physical and chemical

properties of a system.

The electronic charge density in Kohn-Sham DFT (KS-DFT) is defined as:

ρ(r) =
∑︂
i

ϕ∗
i (r)ϕi(r) (2.14)

where ϕ(r) represents the KS orbital of the i-th eigenstate and the summation runs over all

the occupied states. The electronic charge density is a function of position in space, r, and

describes the distribution of electrons in the system.

Kohn and Sham demonstrated that obtaining an accurate electron density involves solving a

set of equations, known as the KS equations [81], which are constructed in a way that ensures

that the electron density yields the minimum total energy of the electronic system in its ground

state: [︄
1

2
∇2 + V (r) + VH(r) + VXC(r)

]︄
ψi(r) = ϵiψi(r)) (2.15)

VH(r) =

∫︂
ρ(r′)

|r− r′|
d3r′ (2.16)

VXC(r) =
δEXC(r)

δρ(r)
(2.17)
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Where V (r) is the potential due to the interaction between an electron and a collection of atomic

nuclei (appeared in full Schrödinger equation 2.7). VH(r) is the Hartree potential (equation 2.16)

which describes the Coulomb repulsion between the electron being considered in one of the KS

orbitals and the total electron density defined by all electrons in the problem. As a result, the

Hartree potential includes a self-interaction contribution because the electron being described

in KS equations is also part of the total electron density. The exchange-correlation VXC(r)

(equation 2.17) is the potential that defined the exchange and correlation contributions to the

single-electron equations. It is defined as a functional derivative of the exchange-correlation

energy with respect to electron density.

The equation 2.15 is superficially similar to Ĥelec (equation 2.3). The main difference is that

the KS equations are missing the summations inside the full Schrödinger equation. This is

because the solutions of KS equations are single electron wave functions that depend only on

three spatial variables.

So far, there might be a sense that the KS equations are circular. To recap, solving KS equations

requires Hartree potential. Hatree potential requires knowing the electron density. Electron

density requires knowing the single electron wave functions and solving this requires solving

the KS equations. To break this cycle, the problem is solved iteratively:

1. Define an initial trial electron density ρ(r) which is typically determined using some

approximation or heuristic method based on prior knowledge or assumptions about the

system being studied.

2. Solve the KS equations defined using the trial electron density to find the single-particle

wave functions ψi(r)

3. Calculate the electron density defined by the Kohn-Sham single-particle wavefunctions

from step 2

ρKS(r) = 2
∑︁

i ϕ
∗
i (r)ϕi(r)

4. Compare the calculated electron density ρKS(r) with the trial electron density used to

solve the KS equations ρ(r). If these two densities, ρKS(r) and ρ(r), are equal or nearly
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equal, this is the ground state electron density. Otherwise, update the trail electron

density and start again at step 2.

2.5.2 Exchange Correlation Functional

The Exchange-Correlation (XC) functional is a critical component of DFT, as it accounts for

the effects of electron correlation and exchange that are fundamental to understanding many

properties of matter. However, the true form of the XC functional is generally unknown and

must be approximated to solve the KS equations. Finding a good approximation for the XC

functional is one of the most challenging aspects of DFT. This is because developing accurate

approximations involves balancing the need for accuracy with the need for computational ef-

ficiency, and there are many different approximations that have been proposed, each with its

own strengths and weaknesses. Therefore, finding a good approximation for a particular sys-

tem often requires significant trial and error, as well as a deep understanding of the underlying

physics.

XC functionals are approximations of the true functional and come in various types. These

functionals are classified into families based on specific characteristics, creating distinct groups

that can be likened to the rungs of “Jacob’s ladder”. As we climb each rung, we approach closer

to achieving chemical accuracy, as Perdew explains [88]. Some examples of XC functionals in-

clude the local density approximation (LDA), generalised gradient approximation (GGA) [89],

meta-generalised gradient approximation (meta-GGA) [90], hybrid and double hybrid function-

als [91]. In most XC functionals, the exchange and correlation parts are formulated separately

from each other [92]. This separation makes it easier to design and incorporate different types

of effects into the functional, such as the impact of the molecule’s environment or the presence

of external fields. By formulating the exchange and correlation parts separately, researchers

can more easily modify and tune the functional to better represent the electronic properties of

different systems.

In addition, there exists Range-separated functionals (RSFs) [93, 92] which are a type of XC

functional that divide the calculation of exchange and correlation energies into two regions,
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short-range and long-range. These regions are separated by a range-separation parameter that

determines the distance at which the exchange and correlation contributions switch from short-

range to long-range behaviour. They are designed to address the limitations of traditional

XC functionals, which often struggle to accurately capture both short-range and long-range

interactions simultaneously. By separating the calculation into two distinct regions, range-

separated functionals can more effectively describe both types of interactions and improve the

accuracy of electronic structure calculations.

RSFs have been used in the study of TADF materials to accurately calculate the energy levels

and excited-state properties of the organic molecules involved [94]. Specifically, these function-

als have been shown to improve the accuracy of calculations of excited-state properties, such as

singlet and triplet energies, transition dipole moments, and excited-state geometries. However,

RSFs need to be optimised for specific systems and applications. The optimal range separation

parameter depends on the electronic structure and properties of the system being studied. The

range separation parameter determines the distance at which the functional switches from using

a semi-local functional to using a non-local functional for the exchange contribution.

There are many different types of XC functionals [93, 92], each with its own strengths and

limitations, and choosing the best functional for a specific system can be a challenging task.

The choice of functional can significantly impact the accuracy of the calculated electronic

properties, such as molecular structure, reactivity, and spectroscopic properties.

While there are some general guidelines and benchmarks [93, 92, 94] for choosing an appropriate

functional, the selection process often involves a degree of trial and error, and experience can

be a valuable guide in making an informed decision. Researchers may rely on previous studies

of similar systems, as well as their own knowledge and intuition, to select a functional that is

likely to yield accurate results.

Overall, while the selection of a suitable functional is a complex and challenging task, experience

and careful consideration of the system and the available options can aid in the decision-making

process.
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Local Density Approximation

The LDA is the simplest XC functional (equation 2.18) and assumes that the exchange-

correlation energy of an electron is solely determined by the electron density at its position.

ELDA(ρ) =

∫︂
ϵxc{ρ(r)}d3r (2.18)

LDA offers several advantages that make it a popular choice in many applications. Firstly, LDA

is known for its simplicity and computational efficiency. It provides a reasonable description of

electronic structures while keeping the computational costs relatively low, making it accessible

for studying a wide range of systems. Additionally, LDA exhibits a systematic behaviour that is

particularly suited for certain types of systems. It can capture trends and qualitative features in

electronic properties, making it valuable for investigating bulk materials and solids. Moreover,

LDA is known to provide accurate estimates for the binding energies of atoms and molecules. It

effectively describes the energetics of chemical reactions and processes involving weakly bound

systems.

However, despite its advantages, LDA does have certain limitations [95] that need to be con-

sidered. One limitation is the lack of spatial and non-local information. LDA assumes that the

exchange-correlation energy depends solely on the local electron density, neglecting the density

gradient and other non-local contributions. As a result, it fails to capture spatial variations and

non-local effects, limiting its accuracy in systems where such effects are important. Another

limitation is the underestimation of dispersion forces, which are critical for accurate predictions

of intermolecular interactions. LDA tends to underestimate these forces, leading to incorrect

predictions of molecular geometries and properties in systems governed by weak intermolecular

forces.

Furthermore, LDA often underestimates band gaps in semiconductors and insulators, which

affects its ability to accurately predict electronic excitations and optical properties. The delo-

calisation and non-local character of excited states are not properly captured by LDA, making

it less suitable for studying optical and electronic transitions. Additionally, LDA struggles
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to describe strongly correlated systems, such as transition metal compounds or systems with

strong electron-electron interactions. It does not account for correlation effects beyond the

mean-field level, limiting its accuracy in such cases.

Considering these advantages and limitations is crucial when selecting an appropriate level of

theory for a given system or property of interest. While LDA has its merits, it is important

to recognise its limitations, especially in systems where non-local effects, dispersion forces,

accurate band gaps, or strong correlations play a significant role.

Generalised Gradient Approximation Functional

GGA functionals [89] are a more sophisticated approximation that takes into account the gradi-

ent of the electron density (equation 2.19). The inclusion of the gradient allows GGA functionals

to capture the variations in electron density, which are crucial in describing bonding, non-local

interactions, and other electronic properties. The gradient accounts for how the electron den-

sity changes as one moves from one point in space to another. This information is essential for

systems with rapidly varying electron densities, such as molecules, surfaces, and interfaces.

By taking into account the gradient of the electron density, GGA functionals can provide more

accurate descriptions of molecular properties, such as bond lengths and bond angles. They also

offer improved treatment of weak interactions, such as van der Waals forces, which are sensitive

to the spatial variations in the electron density.

EGGA(ρ) =

∫︂
εxc{ρ(r), |∇ρ(r)|}d3r (2.19)

GGA functionals exhibit notable benefits in terms of energetic properties and reaction energies.

They generally yield improved accuracy in predicting atomisation energies, reaction energies,

and reaction barriers. By incorporating the electron density gradient, GGA functionals capture

important energetic contributions, leading to more reliable results in a wide range of chemical

reactions.
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However, it is important to recognise the limitations of GGA functionals [96]. They face

challenges in accurately describing systems with strong electron correlation, such as transi-

tion metals and strongly correlated materials. These systems often require more sophisticated

methods beyond the GGA level, such as hybrid functionals or techniques incorporating explicit

correlation effects. Additionally, GGA functionals typically underestimate the strength of weak

intermolecular interactions, such as van der Waals forces and hydrogen bonding. Although they

partly account for dispersion interactions, their treatment is less accurate compared to ded-

icated dispersion-corrected functionals or advanced approaches specifically designed for these

interactions.

Moreover, the performance of GGA functionals is sensitive to the chosen approximation schemes.

Different GGA functionals can yield varying results for the same system, highlighting the sensi-

tivity to the functional used. It is essential to carefully consider the advantages and limitations

of GGA functionals when employing them in DFT calculations and to select an appropriate

level of theory based on the system of interest and the desired level of accuracy.

In summary, GGA functionals provide valuable improvements over the LDA, particularly in

describing molecules, surfaces, and energetic properties. However, they have limitations in cap-

turing strong electron correlation effects and accurately describing weak intermolecular inter-

actions. Awareness of these advantages and limitations is crucial for informed decision-making

when employing GGA functionals in DFT studies.

Meta Generalised Gradient Approximation

Meta-GGA functionals [90] are an extension of GGA functionals in DFT, offer several ad-

vantages and exhibit certain limitations. In the context of electronic structure calculations,

it is essential to understand the strengths and weaknesses of meta-GGA functionals for their

successful application in various systems.

One of the primary advantages of meta-GGA functionals is their improved treatment of strong

electron correlation effects. By incorporating not only the electron density and its gradient
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but also higher density derivatives or the kinetic energy density, meta-GGA functionals go

beyond the GGA level of approximation. This additional information enables a more accurate

description of electronic systems with complex electronic structures, such as transition metal

complexes, open-shell systems, and molecules with significant charge transfer.

Meta-GGA functionals also show enhanced accuracy in capturing weak interactions, such as

van der Waals forces and hydrogen bonding. The inclusion of higher-density derivatives in the

functional formulation allows for a better description of the spatial variations in electron density,

resulting in improved predictions of intermolecular interactions. This is particularly relevant

in studying biomolecular systems, molecular aggregates, and supramolecular assemblies.

Despite their advantages, meta-GGA functionals are not without limitations. The increased

computational cost associated with meta-GGA calculations compared to standard GGA func-

tionals can be significant. The inclusion of higher-density derivatives requires more complex

calculations, which can be a challenge for large systems or high-throughput studies. As a result,

careful consideration of the balance between accuracy and computational efficiency is necessary

when employing meta-GGA functionals in research.

Another limitation is related to the difficulty in designing universally applicable meta-GGA

functionals. Different systems may require different levels of information, and a single meta-

GGA functional may not be optimal for all cases. The performance of meta-GGA functionals

can vary depending on the nature of the electronic system being studied, necessitating the

development of specialised functionals for specific applications.

Overall, meta-GGA functionals offer significant advantages in treating strong electron corre-

lation effects and capturing weak interactions, making them valuable tools for a wide range

of electronic structure calculations. However, their increased computational cost and system-

dependent performance require careful consideration and further advancements in functional

development to fully exploit their potential.
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Range-Separated Functional

Range-separated functionals have emerged as a powerful class of density functionals within

DFT, offering several advantages in the description of electronic properties. These function-

als divide the electron-electron interaction into short-range (SR) and long-range (LR) com-

ponents, treating them separately. By incorporating two distinct range-dependent exchange-

correlation functionals, range-separated functionals provide enhanced accuracy in different elec-

tronic regimes. The transition from the SR to the LR behaviour is achieved by “crossfading”

using an error function of the interelectronic distance (r12):

1

r12
=

1 − [α + βerf(ωr12)]

r12

α + βerf(ωr12)

r12
(2.20)

Where the first and second terms represent SR and LR respectively in equation 2.20. In this

equation, ω is the range separation parameter, which can be determined empirically using a

training set [97, 98, 99, 100, 101] or by minimising the deviation from the conditions that the

exact KS functional must satisfy. The parameters α and β represent the percentages of HF

exchange in the short-range and long-range limits, respectively.

The range-separated functional approach offers a balanced treatment of SR and LR electron

interactions, enhancing the accuracy of DFT calculations for a wide range of systems. The

choice of ω and the values of α and β are critical in achieving reliable and physically meaningful

results with range-separated functionals.

One of the key advantages of range-separated functionals is their ability to capture both short-

range and long-range electron-electron interactions appropriately. This feature allows for a more

accurate description of electronic properties, particularly for systems with significant charge

transfer or strongly correlated electrons. By treating SR interactions with a more accurate

functional and LR interactions with a different functional, range-separated functionals can

better capture the intricate interplay between localised and delocalised electronic behaviour.

Furthermore, range-separated functionals offer improved treatment of charge transfer excita-
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tions, such as those occurring in donor-acceptor complexes or charge transfer states in organic

semiconductors. The long-range component of these functionals, often modelled based on a

Coulombic interaction, effectively accounts for the electron-hole interaction and captures charge

transfer phenomena more accurately than traditional functionals. This makes range-separated

functionals particularly relevant for the study of charge transport and optoelectronic properties

of materials.

However, range-separated functionals also have certain limitations. Choosing appropriate

range-separation parameters such as ω can be challenging, as the accuracy of the functional is

sensitive to their values. The range-separation parameters must be carefully tuned for differ-

ent systems to achieve the best compromise between short-range and long-range interactions.

Inaccurate parameter selection can lead to erroneous results and compromise the reliability of

the calculations.

Additionally, range-separated functionals can be computationally demanding compared to tra-

ditional functionals. The separate treatment of short-range and long-range components often

involves more complex calculations and additional computational resources. Therefore, care-

ful consideration of the trade-off between computational cost and accuracy is necessary when

applying range-separated functionals in large-scale or time-sensitive calculations.

In summary, range-separated functionals provide improved accuracy in capturing both short-

range and long-range electronic interactions, making them suitable for systems with charge

transfer and strong electron correlation effects. They offer an enhanced description of charge

transfer excitations and are particularly relevant for studying optoelectronic properties. How-

ever, their accurate application requires careful parameter selection, and their computational

cost should be considered in large-scale simulations. Understanding the advantages and limi-

tations of range-separated functionals is crucial for their effective utilisation in DFT studies.
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Conclusion

Perdew-Burke-Ernzerhof (PBE) [102] is a widely used GGA functional in DFT. It was developed

by Perdew, Burke, and Ernzerhof in 1996 and has become a popular choice for computing the

electronic structures of a wide range of materials. The selection of the PBE functional for

this work calculations was motivated by the specific objectives of the research, which involved

employing a high-throughput virtual screening method for designing OLED molecules. Several

factors influenced the choice, including the accuracy of the functional, its treatment of dispersion

interactions, and computational efficiency.

The PBE functional has been widely utilised in computational chemistry and demonstrated

good performance in describing the electronic structure and energetics of molecular systems.

By incorporating both the electron density and its gradient, the PBE functional offers a more

accurate representation of molecular properties, such as bond lengths, bond angles, and surface

characteristics. Given that the project revolves around the design of OLED molecules, the

precise prediction of these molecular properties is crucial for guiding the exploration of the

chemical space.

Although the PBE functional does not explicitly include the kinetic energy density associated

with dispersion interactions, it still provides an approximate treatment of these weak intermolec-

ular forces. While dedicated dispersion-corrected functionals or range-separated functionals

may offer more accurate treatments, their implementation would significantly increase compu-

tational costs. In the context of high-throughput virtual screening, computational efficiency is

paramount to explore a large chemical space and identify promising candidates. Therefore, the

PBE functional strikes a balance between accuracy and computational feasibility.

It is important to acknowledge the limitations of the chosen functional. The PBE functional

may not accurately capture strong electron correlation effects or provide precise treatments

of dispersion interactions. Thus, caution should be exercised when interpreting the results

obtained using the PBE functional. It is advisable to validate the findings using alternative

methods or experimental data to confirm the reliability of the outcomes.
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In summary, the decision to use the PBE functional for the project calculations was based

on its established accuracy for molecular systems, its approximate treatment of dispersion

interactions, and its computational efficiency for high-throughput virtual screening. However,

the limitations of the PBE functional should be recognised, and additional validation through

alternative methods or experimental data is recommended to support and confirm the obtained

results.

2.5.3 Solving Kohn Sham Equation

The previous sections introduced and discussed the Kohn-Sham (KS) formalism, which relies

on the charge density that is expressed as the sum over squares of KS orbitals. Because the

potential depends explicitly on the charge density, a self-consistent solution must be found.

Two primary methods are typically used to solve the KS equation: the minimisation scheme

and the mixing scheme.

Minimisation Scheme

Solving the Kohn-Sham equation involves minimising the energy in N-dimensional space. To

begin, an initial guess for the KS orbitals is generated using a random or predetermined scheme.

One possible predetermined scheme could be to use the orbitals from a previous calculation as

the initial guess for the current calculation. Alternatively, a predetermined scheme could involve

selecting an initial guess based on the symmetry properties of the system being studied. The

estimated gradient is then used to guide the search for the optimal direction of minimisation,

as illustrated in the equation 2.21 with P as the preconditioner and gi as the gradient. The

iteration continues until the gradient’s norm falls below a specified threshold value.

ϕi = ϕi − Pgi (2.21)
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Mixing Scheme

Another way to solve the KS equation is by using a mixing scheme. Initially, an input guess is

used to construct the KS potential and the corresponding KS equation, which is an eigenvalue

problem. The resulting eigensolutions provide the charge density that replaces a portion of the

input guess. This process is repeated until the difference between the input (ρin) and output

(ρout) charge density is below a certain threshold value. There are various mixing schemes

available, including the linear mixing scheme (equation 2.22) which utilises a mixing fraction

α. Other commonly used and efficient mixing schemes include Broyden’s method [103] and the

Pulay mixing scheme [104].

ρin = (1 − α)ρin + αρout (2.22)

2.6 Density Functional Theory-Based Methods for Sim-

ulating Excited States

DFT’s formulation is grounded in the nature of the ground state, which makes it less suitable for

describing excited states. To overcome this limitation, a range of DFT-based methodologies has

been developed, aimed at improving the treatment of excited electronic states. These method-

ologies include ∆ self-consistent field (∆SCF) [82] and time-dependent DFT (TDDF) [105, 106]

which includes Linear-response (LR-TDDFT) and constrained DFT (CDFT) [107, 108]. In our

work, we use ∆SCF to calculate the energies of the lowest S1 and T1 excited states.

2.6.1 Time Dependent Density Functional Theory

While the DFT has been highly effective in determining the ground state properties of elec-

trons under time-independent potentials, it has limitations when it comes to solving excitation

problems. This is because the density used in DFT is limited to the ground state density. Ad-

ditionally, when the system involves a time-varying potential, an extension to DFT is needed.
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Time-dependent density functional theory (TDDFT) is such an extension that allows for the

solution of time-dependent problems in DFT.

Similar to the Hohenberg-Kohn theorem in DFT, the Runge-Gross theorem [105] is a funda-

mental theory in TDDFT. The theorem proves that for a given initial state, there exists a

one-to-one correspondence between the time-dependent density ρ(r, t) and the time-dependent

external potential Vext(r, t). In other words, if we know the time-dependent external potential

at each point in space and time, we can uniquely determine the corresponding time-dependent

density at each point in space and time, and vice versa. This result is significant because it

allows TDDFT to determine the time-dependent behaviour of quantum systems based on their

initial state, which is often more practical than solving the Schrödinger equation directly.

It is worth noting that several commonly used XC functionals have a reputation for perform-

ing poorly in predicting the energy of CT-excited states via TDDFT [109]. Although range-

separated functionals may alleviate some of these issues, the following DFT methods for excited

states are presented as an alternative to avoid this problem.

2.6.2 ∆Self-Consistent Field Density Functional Theory

The energy splitting of a specific excited state is defined as the difference in energy between

that excited state and the ground state of the system. This energy difference is denoted by

∆En
SCF = En–E0 (2.23)

where E0 is the ground-state energy and En is the energy of the excited state, labelled by n.

The energy of the excited state is obtained by manually adjusting the occupation of the KS

states until the system reaches self-consistency.

The ∆SCF approach has been widely successful due to its simplicity and low computational

cost. In particular, it has been effective when the excited state being studied has the same

symmetry as the ground state of the system [110]. In such cases, ∆SCF has been a justifiable
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and accurate method for determining energy differences. However, the applicability of ∆SCF

has also been extended to the general case [111]. Overall, the ∆SCF approach’s ease of use,

affordability, and ability to determine energy differences accurately has made it a favoured

method in computational chemistry.

The ∆SCF method is especially advantageous for high-throughput virtual screening (HTVS)

processes, which involve filtering large databases of compounds to identify those with specific

desired properties. At the initial stage of molecule filtering, ∆SCF calculations are preferred

over TDDFT because they are significantly faster and require fewer computational resources.

This speed and efficiency enable the screening of a large number of molecules, which accelerates

the discovery of novel compounds with desirable properties.

It should be noted that the ∆SCF method is not valid when multiple electronic configurations

significantly contribute to the description of an excited state [112]. In such cases, the electronic

structure of the system cannot be adequately captured by a single reference configuration, and

the use of a single-reference approach like DeltaSCF may lead to inaccurate results for the

excited state properties. Instead, more sophisticated methods, such as multi-configurational

approaches [113] like multi-reference perturbation theory (MRPT) or configuration interaction

(CI), should be employed to account for the diverse electronic configurations and accurately

describe the complex electronic structure of excited states.

2.7 Pseudopotentials

Atomic pseudopotentials are a widely used technique in computational materials science and

quantum chemistry. These pseudopotentials are used to approximate the potential energy of

an atom’s core electrons, which are always at a lower energy level than the valence electrons.

By replacing the core electrons with an effective potential, the computational cost of electronic

structure calculations can be greatly reduced, allowing for the study of larger and more complex

systems.

The use of pseudopotentials in conjunction with a basis set is a common approach to solving
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the electronic structure problem. The basis set represents the valence electrons and is used

to expand the electronic wavefunctions of the system. The pseudopotential is then used to

describe the behaviour of the core electrons, which are typically less important in chemical

reactions and other phenomena. By separating the electronic structure calculation into these

two components, it becomes possible to use a smaller basis set and achieve a more efficient

calculation.

The choice of pseudopotential depends on the system being studied and the level of accuracy

required. There are several types of pseudopotentials [114, 115], each with its own strengths

and weaknesses. The most commonly used pseudopotentials include norm-conserving pseu-

dopotentials (NCPP) [116] and ultrasoft pseudopotentials(USPP) [117]. NCPPs are designed

to preserve the norm of the wave function, and are typically used in calculations where high

accuracy is required. USPPs are more flexible and can be used in a wider range of systems,

whereas USPPs are more flexible than NCPPs and can accurately describe the core and valence

electrons with fewer basis functions. They are designed to have soft cores, which means that

the potential is smoothly varying at the core region, allowing for a better description of the

core electrons.

2.7.1 Non-linear Core Correction

Nonlocal-core corrected pseudopotentials (NLCCs) [118] are a type of pseudopotential com-

monly used in electronic structure calculations to address the limitations of traditional pseu-

dopotentials, including norm-conserving pseudopotentials (NCPPs), in the treatment of the

core electrons of an atom. NLCCs aim to correct these limitations by including an additional

non-linear correction to the effective potential, which takes into account the behaviour of the

core electrons more accurately. The correction potential is obtained from a density-functional

theory calculation and is added to the norm-conserving potential to produce the final NLCC

pseudopotential. This additional correction improves the transferability and accuracy of the

pseudopotential by accounting for the non-locality of the core electrons.
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2.8 Basis sets

Basis sets are a crucial component in DFT calculations as they are used to represent the wave

function of a molecule or material. They are sets of mathematical functions that are chosen to

represent the spatial distribution of electrons in a molecule or material. The choice of basis set

is a balance between accuracy and computational cost [119, 120]. One might assume that the

larger the basis set, the more accurate the approximation of the wavefunction, however, the

relationship between basis set size and accuracy is not always straightforward and depends on

several factors.

For systematic basis sets such as those based on Gaussian-type functions or plane waves, in-

creasing the number of basis functions usually leads to an improvement in the accuracy of the

results. This is because adding more basis functions allows for a more flexible representation

of the wavefunction, which can capture more of the complexity of the system being studied.

However, there are cases where adding more basis functions does not necessarily lead to more

accurate results. For example, in some cases, adding too many Gaussians can lead to basis set

superposition error (BSSE) [121], where the basis functions become overcomplete and interfere

with each other, leading to unphysical results.

There are several types of basis sets used in Density Functional Theory (DFT), each with its

own advantages and disadvantages. Some of the most common ones are:

1. Gaussian basis sets: These are typically contracted Gaussian functions that are used to

describe the electronic wavefunctions of atoms and molecules. They are widely used in

quantum chemistry software such as Gaussian [122], NWChem [123], and GAMESS [124].

2. Plane wave basis sets: These are used in periodic DFT calculations and are typically

defined on a uniform grid in reciprocal space. They are used in software packages such

as VASP [125, 126, 127] and Quantum ESPRESSO [128].

3. Numeric atom-centred orbital (NAO) basis sets: These are based on the radial functions

of atomic orbitals and can be used for both molecular and periodic DFT calculations.
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They are used in FHI-aims [129]

4. Wavelet basis sets: They are a set of functions that can be used to represent other

functions through linear combinations. While they are not typically used as a complete

orthonormal basis for a function space, they are still considered basis sets. In addition to

wavelet basis sets, real space grid approaches can also be used to represent functions in

numerical calculations. They are commonly used in the BigDFT [130].

5. Mixed basis sets: These are combinations of different types of basis sets, such as Gaussian

and plane wave basis sets used by CP2K [131], or ONETEP [132] which combines plane

waves with sinc functions to accurately represent the electronic wavefunction.

6. Slater-type orbital (STO) basis sets: These are based on the radial functions of hydrogen-

like atomic orbitals and can be used to describe the electronic wavefunctions of atoms

and molecules. They are commonly used in software packages such as MOLPRO [133]

and CFOUR [134].

The choice of basis set is crucial in DFT calculations and depends on the problem being studied

and the computational resources available. For molecular systems, Gaussian-type basis sets are

popular as they are flexible and accurately describe electron density near nuclei. However, these

basis sets are computationally expensive for large systems like solids.

Solid-state systems are better suited for plane-wave basis sets that efficiently describe periodic

systems with many atoms. However, these basis sets may be less precise in describing electron

density near nuclei.

Wavelet basis sets are less common but offer several advantages, including efficient descriptions

of localised electronic states and adaptability to non-uniform grids. They may be useful in

modelling complex systems or problems requiring non-uniform grids.

For small-to-medium-sized molecular systems, Gaussian-type basis sets are preferred, while

large solid-state systems benefit from plane-wave basis sets. Wavelet basis sets are ideal for

complex electronic states or non-uniform grid requirements. By considering the nature of the
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problem and the computational resources available, researchers can choose the most suitable

basis set to obtain reliable and efficient results in their DFT calculations.

2.9 BigDFT

As briefly introduced in the previous section, BigDFT [135, 130, 136] is a powerful computa-

tional software package that uses Density Functional Theory (DFT) as its foundation. It is an

open-source software package that is distributed under the terms of the GNU General Public

License (GPL), which means it is free to use and can be modified and distributed by anyone

as long as the license terms are followed. It utilises a combination of Daubechies wavelets and

pseudopotentials, resulting in efficient and precise calculations [137, 138].

The wavelet basis set is constructed by generating a set of orthogonal wavelets, each with

a different scale and position, and then combining them to form a basis that can represent

the electronic wave function. This approach provides several advantages over traditional DFT

methods, including the ability to efficiently and accurately compute the electronic structure

of large systems. The Kohn-Sham equations are solved using the resulting wavelet basis set,

allowing for the calculation of a wide range of properties for the system under study.

Daubechies wavelets are a type of basis set known for their high level of accuracy due to

their orthonormal property. This property allows them to be both orthogonal and normalised.

Orthogonality means that the wavelets have zero inner product (i.e., they are perpendicular)

unless they are the same function, while normalisation means that the wavelets have a unit

norm (i.e., the integral of the square of the function is equal to one). Daubechies wavelets’

orthogonality property allows them to be localised in both real space and Fourier space, which

is beneficial for accurately representing the electronic wave function. In real space, the wavelets

can be focused on specific regions of the system, leading to a more efficient and accurate

calculation. In Fourier space, the wavelets can represent high-frequency components of the

wave function that are crucial for accurately describing the electronic properties of the system.

Daubechies wavelets’ adaptivity makes them particularly well-suited for simulating isolated or
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homogeneous systems [135, 136].

The wavelet of functions on a uniform grid of points spaced at intervals h in three dimensions

(x, y, z). The spacing of grid points can be adjusted to vary the number of basis functions,

leading to more accurate calculations. The adaptive grid in BigDFT consists of two levels,

a high-resolution region containing chemical bonds and a low-resolution region further away

from the atoms where wave functions decay exponentially to zero [135]. The adaptive grid is

used to efficiently and accurately represent the electron density in a region of interest while

using a coarser representation in regions of lower electronic density. The size and resolution of

the adaptive grid are determined by the coarse and fine multipliers, which define the size and

resolution of the coarse and fine grids, respectively. The adaptive grid is constructed on top of

a uniform grid of points with a fixed spacing, but the resolution of the adaptive grid can be

adjusted based on the local electronic density.

2.9.1 Bromine and Iodine NLCC pseudopotential

As previously mentioned in section 2.7.1, the use of non-local core-correction (NLCC) pseu-

dopotentials (PSPs) can improve the accuracy and efficiency of DFT calculations by reducing

the number of electrons that need to be explicitly included in the calculation.

In BigDFT, the NLCC method is implemented as an option for the exchange-correlation func-

tional [139]. In other words, NLCC is used as a correction to the standard exchange-correlation

functional to account for the non-local correlations in the electron density, which are not cap-

tured by the standard DFT exchange-correlation functionals. This can lead to more accurate

predictions of the electronic and structural properties of molecules and materials.

NLCC PSPs are typically more computationally expensive than the default HGH-GTH (Norm-

conserving) [140, 141] pseudopotentials used in electronic structure calculations based on DFT.

However, they are necessary to accurately account for non-local correlations in electron density.

A limiting factor for the use of NLCC pseudopotentials is that they may not be available for

all elements, such as bromine (Br) and iodine (I) at the time of a particular study. This can
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pose a challenge when studying molecules containing these heavy elements. In such cases, the

grid spacing parameter h becomes crucial as it directly affects the computational accuracy and

efficiency of the DFT calculations.

In a high-throughput workflow, it may not be feasible to converge the grid spacing on a case-

by-case basis for every molecule being studied. Therefore, it is important to find a value for the

h that is good enough across molecules. This is especially challenging when dealing with heavy

elements, where the accuracy of the DFT calculations can be more sensitive to the choice of

the h parameter.

Convergence tests (Figure 2.1) are an essential aspect of electronic structure calculations, as

they ensure the accuracy and reliability of the numerical results obtained from a simulation.

The accuracy of these calculations is highly dependent on the computational parameters used,

such as the grid spacing. Without proper convergence testing, it is difficult to assess the

accuracy and reliability of the results obtained.

In this chapter, we randomly selected twenty molecules containing I or Br from a chemical space

generated from the molecule TXO-TPA. The details of TXO-TPA and the chemical space will

be discussed in the next chapter.

To optimise the gas phase geometry of the ground state, we used the PBE method in BigDFT.

We set the maximum force threshold to 0.02 eV/Å and used grid spacings of h = 0.45 Bohr

(a0).

To investigate the convergence behaviour of the HOMO-LUMO gap (eV) and normalised force

(force Norm) with respect to the h-grid spacing, we performed a convergence test using a range

of h values, starting from 0.30 Bohr (a0) and increasing in increments of 0.05 up to 0.60 Bohr

(a0), as seen in Figure 2.1.

We observed that the absolute difference in the HOMO-LUMO (eV) between two consecutive

h values was similar at ≈ 10−2 eV for h = 0.5 and below. For the force, the absolute difference

was similar at ≈ 10−3 Ha/Bohr for h = 0.45 and below. However, for the force at h = 0.5, we

observed an absolute difference of 10−2 Ha/Bohr. This suggests that the force has not yet fully
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(a) (b)

Figure 2.1: (a) The convergence of LUMO-HOMO absolute relative values with respect to grid
spacing h for molecules containing I and Br atoms. The y-axis represents the absolute relative
LUMO-HOMO values, which are compared to those obtained at h = 0.3 (b) The convergence
of the absolute relative Force Norm as a function of h, where y values are relative to the y value
obtained at h = 0.3. A molecule is represented by a consistent symbol and colour.

converged for this h value, and further calculations with smaller h values may be necessary to

achieve convergence.

Overall, our results suggest that the HOMO-LUMO gap has converged for h values of 0.5 and

below, while further calculations may be necessary to fully converge the force, particularly for

h = 0.5.

The choice of computational parameters for virtual screening involves a trade-off between ac-

curacy and efficiency, as well as the need for validation and comparison with previous studies.

Based on the results of our convergence testing, we found that h = 0.5 may be sufficient for

calculating the HOMO-LUMO gap, while h = 0.45 may be necessary for geometry optimisa-

tion. In the context of high throughput virtual screening, this choice of parameters provides a

good balance between accuracy and efficiency.
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2.10 Force Field Optimisation

Force field optimisation is a computational method used in molecular dynamics simulations

to calculate the interactions between atoms and molecules in a system. A force field is a

mathematical model that describes the interactions between atoms and molecules, including

electrostatic interactions, van der Waals forces, and bond stretching and bending.

The goal of force field optimisation is to determine the force field parameters that best match

experimental data or quantum mechanical calculations so that the simulation accurately pre-

dicts the behaviour of the system being studied. This involves adjusting the values of the force

field parameters, such as bond lengths, angles, and charges until the simulation results match

the experimental data or quantum mechanical calculations.

Force field optimisation can be performed using several techniques [142], such as fitting to

experimental data [143], using quantum mechanical calculations to derive parameters [144], or

using statistical methods such as Bayesian inference [145]. The optimised force field can then

be used to simulate the behaviour of the system under different conditions, such as changes in

temperature, pressure, or composition, allowing researchers to investigate the properties and

behaviour of molecules and materials in a wide range of scenarios.

However, in the context of HTVS, force fields are often used for the initial screening of

molecules [146] due to their computational efficiency and ability to handle larger molecular

systems. As force fields are empirical models that are based on simplified descriptions of

molecular interactions, it makes them much faster than DFT. By using force fields for initial

screening, we can quickly identify a smaller set of promising molecules that can be studied in

more detail using more accurate methods like DFT. Additionally, force fields can provide a

quick and reliable estimate of some properties, which can be used for initial screening. Overall,

force fields are a useful tool for quickly screening a large number of molecules and identifying

promising candidates for further study.



2.10. Force Field Optimisation 55

2.10.1 The Merck Molecular Force Field

The Merck Molecular Force Field (MMFF) [147, 148] is an empirical force field that is commonly

used for studying organic molecules. It was developed by Merck to model the interactions

between atoms and molecules, including bond stretching, bending, out-of-plane (OOP) bending

and torsion, as well as non-bonded interactions such as Van der Waals (VdW) forces and

electrostatic interactions (Q).

The total MMFF energy expression can be written as equation 2.24 [147]. In equation 2.24,

i, j, k, l, . . . represent atoms, Ebond
ij represents the energy associated with stretching or com-

pressing bonds (equation 2.25), Eangle
ijk represents angle bending (equation 2.26), Ebend

ijk repre-

sents stretch-bend interactions (equation 2.27), EOOP
ijkl represents OOP bending (equation 2.28),

Etorison
ijkl represents torsion interaction (equation 2.29), EV dW

ij represents Vander Walls interac-

tions (equation 2.30) and EQ
ij represents electrostatic interactions (equation 2.35).

EMMFF =
∑︂

Ebondij +
∑︂

Eangle
ijk +

∑︂
Ebend

ijk +
∑︂

EOOP
ojk;l +

∑︂
Etorsion

ijkl +
∑︂

EV dW
ij +

∑︂
EQ

ij

(2.24)

Ebond
ij = 143.9325 · k

bond
IJ

2
· ∆rij ·

(︁
1 + cs · ∆r2ij +

7

12
cs22 · ∆r2ij

)︁
(2.25)

In equation 2.25, I, J,K, L, . . . denote the corresponding (to i, j, k, l, . . . ) numerical MMFF

atom types, kbondij is the force constant, ∆rij = rij − rrefij is the difference between actual and

reference bond lengths and cs is the cubic stretch constant.

Eangle
ijk = 0.043844 · k

angle
IJL

2
· ∆θ2ijk · (1 + cb · ∆θijk) (2.26)

In equation 2.26, kangleIJK is the force constant, ∆θijk = θijk−θrefijk is the difference between actual

and reference bond angles and cb is the cubic bend constant.

Ebend
ijk = 2.51210 · (kbendIJK · ∆rij + kbendKJI · ∆rkj) · ∆θijk (2.27)

In equation 2.27, kbendIJK and kbendKJI are force constants which couple the i-j and k-j stretches to
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the i-j-k bend. Stretch bend interactions are omitted for linear bond angles.

EOOP
ijk;l = 0.043844 ·

kOOP
IJK;L

2
·X2

ijk;l (2.28)

In equation 2.27, kOOP
IJK;L is the force constant, Xijk;l is the Wilson angle [149] between the bond

j-l and the plane i-j-k.

Etorison
ijkl =

1

2
· [V1(1 + cos Φ) + V2(1 − cos 2 cos Φ) + V3(1 + cos 3 cos Φ)] (2.29)

In equation 2.29, the constants V1, V2 and V3 depend on the atom types (I, J, J,K, L), where

i− j, j − k and k − l are bonded pairs. Φ is the i− j − k − l torsion angle.

EV dW
ij = εIJ

(︄
1.07R∗

IJ

Rij + 0.07R∗
IJ

)︄7(︄
1.12R∗7

IJ

R7
ij + 0.12R∗7

IJ

− 2

)︄
(2.30)

MMFF employs Buffered-14-7 [150] form, in which the potential is described by the equa-

tion 2.30. This equation is used together with equation 2.31 which relates the minimum energy

separation R∗
II to the atomic polarisability α, with combination rules (equation 2.32 and 2.33),

and utilising a Slater-Kirkwood expression for the well depth εIJ (equation 2.34). Rij is the

internuclear separation.

R∗
II = AI · α

1
4
I (2.31)

R∗
IJ =

1

2
· (R∗

II +R∗
JJ) · {1 + 0.2[1 − exp (−12 · γ2IJ)]} (2.32)

γIJ =
(R∗

II −R∗
JJ)

(R∗
II +R∗

JJ)
(2.33)

εIJ =
181.16GIGJαIαJ

( αI

NI
)
1
2 + ( αJ

NJ
)
1
2

1

R∗6
IJ

(2.34)

EQ
ij =

332.0716qiqj
D(Rij + δ)n

(2.35)

In equation 2.35, qi and qj are partial atomic charges, D is the dielectric constant and δ is

electrostatic buffering.

MMFF force field is that it has been widely used and tested for many years [151], so it has
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a well-established set of parameters that can provide reasonable results for a wide range of

organic molecules, including TADF molecules [152]. The parameters have been calibrated

against experimental data, which makes it a reliable tool for predicting the properties of TADF

molecules.

MMFF comes in two flavours: MMFF94 and MMFF94S [153]. The difference between them

lies in the torsion and out-of-plane bending parameters they use. The ‘s’ in MMFF94S stands

for ‘static’, which means that this set of parameters is better suited for tasks where the output

remains static.

A recent benchmark paper [142] compared several empirical force fields for their ability to

predict molecular geometries using quantum mechanics (QM) calculations. The study found

that MMFF94 and MMFF94S were able to capture QM geometries better than some of the

other force fields tested, but still not as well as OPLS3e [154] or OpenFF [155]. While MMFF94

may not be the most accurate force field compared to some of the newer force fields, it is

still a well-established and widely used force field that has been shown to provide reasonable

predictions for a wide range of organic molecules. Additionally, MMFF94 has been extensively

tested and calibrated against experimental data, which makes it a reliable tool for predicting

the properties of organic molecules. For these reasons, MMFF94 was chosen for this work.

In summary, we employed the BigDFT code for DFT calculations. Our convergence test re-

vealed that a grid spacing of h = 0.50a0 (0.26Å) was adequate for calculating the HOMO-LUMO

gap, whereas h = 0.45a0 (0.24Å) was optimal for geometry optimisation. For the latter, we

utilised MMFF94 to initialise molecular geometries, followed by a single-point DFT calculation

to determine the HOMO-LUMO energy gap and overlap.

In the upcoming chapter, we will delve into the design and methodology of our HTVS workflow.



Chapter 3

High Throughput Virtual Screening

Workflow

3.1 Introduction

The concept of High Throughput Virtual Screening (HTVS) involves using automated algo-

rithms and machine learning techniques to rapidly evaluate large libraries of molecular com-

pounds or materials for specific properties of interest. By harnessing the power of computers,

HTVS allows researchers to efficiently identify potential candidates from vast collections of

molecules or materials, without the need for time-consuming and resource-intensive physical

experimentation.

High-throughput computational approaches have been widely employed in the pharmaceutical

industry to identify compounds for experimental study [156]. In recent times, these strategies

have also gained popularity for designing molecules and materials intended for optoelectronic

applications. Several techniques have been utilised for HTVS [76, 157, 146, 158] designing

TADF molecules [159, 160, 13]. However, the techniques involved in HTVS can be summarised

in basic steps, which serve as a general framework for guidance and should not be followed

strictly, as the process can be highly flexible and adaptable depending on the specific research

question and available resources.

58
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Firstly, a database of TADF molecules with known or hypothetical structures is selected or

prepared. This database may include various molecular structures and properties, such as

HOMO-LUMO energy levels and electron densities. Next, the target for the design of TADF

molecules with a small ∆EST property is identified. The target may be a specific application,

such as OLEDs, or a particular material property, such as ∆EST .

The molecular structures of candidate TADF molecules are then generated using computa-

tional methods, such as DFT calculations or molecular dynamics simulations. The candidate

molecules are designed to have specific structural features that contribute to small ∆EST prop-

erty, such as donor-acceptor or charge-transfer moieties.

The candidate TADF molecules are screened virtually against the target and filtered based on

various criteria, such as ∆EST values and synthetic accessibility. This step is important for

identifying the most promising candidate molecules for further experimental validation.

The most promising candidate TADF molecules are synthesised and tested experimentally to

evaluate their photophysical properties and performance in the target application, such as

OLEDs. The results of these experiments are used to refine the computational models and

screening protocols. Based on the results of experimental validation, the computational models

and screening protocols are refined, and the process is iterated to improve the efficacy of the

candidate molecules. The goal is to identify and optimise TADF molecules with small ∆EST

property and high performance in the target application.

Overall, the HTVS process is a powerful tool for the design of TADF molecules with a small

∆EST property. The process involves selecting and preparing a database of TADF molecules,

identifying a specific target, generating candidate molecules, virtually screening these candi-

dates, filtering them based on various criteria, experimental validation, and iterative refinement.

These steps can be adapted to fit specific research objectives and constraints.
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3.2 Applications

The application of the HTVS method to the design of optoelectronic materials has yielded

numerous successful results in recent times [159, 161, 160, 13, 162, 163].

Shu et al. [159] introduced a flexible approach for automated material design that searches a

large chemical space to identify potential TADF molecules as new fluorophores for OLEDs. The

approach utilises a tree data structure to represent molecules, allowing users to choose fragments

and rules to define a specific chemical space. A genetic algorithm (GA) was then employed to

identify molecules with desired properties, leading to the discovery of 3792 promising candidate

fluorophores from a chemical space comprising 1.26 × 106 molecules. Their GA optimisations

required significant computer time, thus, it is required to take advantage of advanced hybrid

parallel computer architectures.

The application of genetic algorithms for virtual screening has also been extended to the design

of other layers within OLED devices, including Hole Transport, Electron Transport, and Host

Layers [161].

Aspuru-Guzik and collaborators made a groundbreaking effort in HTVS of organic TADF

materials [160]. Their approach utilised machine learning and TDDFT methods, enabling

them to efficiently screen thousands of potential TADF molecules from a pool of 1.6 million

candidates. The best molecules identified through this screening process have the potential

to be used in the fabrication of OLED devices. Impressively, the resulting external quantum

efficiencies of the devices can reach as high as 22%. However, the method described in their

work is tailored to generating OLED molecules with TADF character that adhere to a donor-

bridge-acceptor structure. Therefore, for TADF molecules lacking distinct donor and acceptor

moieties, such as type-VII molecules [13], this method may not be optimal for generating

candidate molecules.

Building on the work of Aspuru-Guzik and collaborators, researchers have leveraged Machine

Learning-Assisted Virtual Screening techniques [162, 163] to design molecules. They have em-

ployed this approach to quickly predict ISC/RISC rates and identify potential TADF candidates
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from experimental databases [162]. Additionally, the researchers have introduced the concept

of mutation and selection from GAs and combined machine learning algorithms with quantum

chemical computations to explore the chemical compound space and obtain organic TADF ma-

terial candidates [163]. While explicit quantum chemistry calculations can help correct false

positive predictions for materials with exceptional properties, these instances are typically rare.

However, the use of machine learning methods for virtual screening poses a greater risk of false

negatives. This means that exceptional materials may not be identified as such, and could be

missed by the screening process.

Zhao et al. [13] investigated a diverse database of 40,000 molecules obtained from the Cam-

bridge Structural Database (CSD) which were not intentionally designed for thermally activated

delayed fluorescence (TADF) and lacked specific criteria. The team performed ∆SCF excited-

state calculations on X-ray geometries and filtered the results based on ∆EST and oscillator

strength of S1. They then performed ∆SCF calculations on their DFT-optimised geometries.

Through a virtual search, the team identified 125 potential TADF candidates without prede-

termined design rules. The candidates offer new possibilities for TADF material design and

exhibit novel donors, acceptors, and molecular structures. Some candidates did not display the

typical donor-acceptor (D-A) character, and they were classified into different types based on

their novelty compared to existing TADF literature. Overall, the study identifies promising

candidates for the development of new TADF materials.

Although Zhao et al. [13] achieved impressive results, it is important to note that their method-

ology can only be applied to databases containing X-ray geometries. However, the team provides

illustrative examples at the end of their paper to showcase how their findings can be used to

design new molecules. Overall, their work has contributed significantly to the discovery of po-

tential candidates for TADF material design and highlights the importance of exploring diverse

databases to identify novel structures.

Overall, HTVS is a powerful tool for designing optoelectronic materials, and researchers have

made significant progress in using this approach to identify promising candidates for OLED

fabrication. The integration of GAs, machine learning, and TDDFT methods has increased the
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efficiency and accuracy of the screening process. However, it’s important to note that while

these approaches have been successful for traditional TADF molecules, they may not be as

effective for type-VII TADF molecules. As mentioned in the introduction of this chapter, the

HTVS approach is highly flexible and adaptable depending on the specific research question

and available resources.

3.3 Philosophy of High Throughput Virtual Screening

The main philosophy of the HTVS process for designing molecules, including TADF molecules,

is to accelerate the discovery of new compounds with desirable properties by screening a large

database of potential candidates using computational methods. The HTVS process combines

computational chemistry methods, such as DFT calculations, with techniques that are able to

rapidly screen a large number of compounds and identify promising candidates with optimised

properties.

The goal of HTVS is to reduce the time and cost involved in the traditional trial-and-error

approach of designing molecules by using a data-driven approach. This approach can help

in identifying potential candidates with desirable properties, such as high TADF efficiency,

suitable energy levels for device applications, and good solubility and stability properties.

The HTVS process typically involves the generation of a large database of potential molecules,

calculation of molecular descriptors using DFT calculations, training of machine learning models

using a subset of the database with known properties, prediction of the properties of the

remaining molecules in the database using the trained model, and experimental validation

of the predicted properties of the selected candidates. Pyzer-Knappet al. has summarised

these ideas into ‘four philosophies of High Throughput Virtual screening [146]: Timescale is

important, Automated techniques, Data-driven discovery, Computational Funnels.
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3.4 Our Workflow

HTVS projects require the selection of candidate molecules to investigate, which is crucial to

the success of the project. The successful candidate can come only from the initial library or its

successive rounds of growth, putting boundaries on the possible outcomes from the start. Gen-

erating novel lead backbones is a harder challenge than pursuing a complete set of substitution

patterns through side-chain enumeration. Side-chain modeling [164] is a computational method

that involves systematically exploring variations in the substituents attached to a specific site

on the core structure of a molecule, while keeping the core structure fixed.

Performing systematic explorations in molecular space is difficult as there are no predefined

magnitudes to survey chemical space. Molecular structure obeys a large and complex set of

rules that so far defies systematic exploration. Therefore, there is much effort put into methods

to avoid explicit enumeration in high-throughput screening, such as optimisation of poten-

tials [165], alchemical transformation [166], generation of electronically equivalent aromatic

rings [167], stochastic generation of derivatives [168], recursive substructure searches [169], and

morphing of starting molecules of interest [170].

One of the first decisions that need to be made is whether to search for novel properties among

pre-existing compounds or completely new chemical motifs. If pre-existing molecules are not

to be considered, navigating the vast chemical space of organic molecules becomes the focus.

However, this space is too large to sample fully, making the task impossible.

Randomly generating molecules based on organic chemistry rules is not efficient in searching for

niche phenomena, as it will produce a large list of uninteresting structures. Instead, synthetic

accessibility of hypothetical compounds is an important aspect to consider when designing a de

novo library for exploring chemical space. The generation of 3D structural information is often

difficult in HTVS, which makes the ease of synthetic accessibility of hypothetical compounds a

crucial factor in designing a de novo library for exploring chemical space.

As seen in section 3.2 there are several methods to sample the chemical space, such as Combina-

torial modifications involving modifying a starting molecule, structural and chemical databases



64 Chapter 3. High Throughput Virtual Screening Workflow

screening pre-existing compounds, and generative models using machine learning to generate

novel compounds. We also see that these methods are not mutually exclusive and can be used

either individually or in combination to effectively explore and sample the vast chemical space

in pursuit of compounds possessing desired properties.

The outline of our workflow is summarised in Figure 3.1, highlighting the various steps involved

in the method and design space exploration. Each step represents a crucial component of the

research process, and the diagram serves as a visual roadmap for the overall investigation.

Figure 3.1: Outline of our workflow schematic illustrating the method and design space, with
accompanying snapshots of analysis and results from later chapters.

In the following section, we provide a detailed description of the methods employed in our

HTVS workflow, along with relevant computational details. This will include library generation,

molecular diversity, synthetic accessibility and DFT calculations.
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3.4.1 Library Generation

In this work, we aim to design molecules with desirable properties, such as high TADF effi-

ciency, using the HTVS workflow. To achieve this, we used the Self-Referencing Embedded

Strings (SELFIES) [171] molecular representation and the Superfast Traversal, Optimisation,

Novelty, Exploration and Discovery (STONED) algorithm [172]. Specifically, we used these

tools to generate a chemical space from a selected set of TADF molecules. This involves mak-

ing modifications to the SELFIES representation through point mutations, which correspond

to single-character additions, deletions, or replacements. The details regarding the composition

and contents of the TADF molecule set are provided in a later section of this chapter, section

3.4.4.

This method allows for the rapid generation of a large number of structurally diverse molecules.

This can be particularly useful when searching for novel compounds with specific properties

or when exploring a wide range of chemical space. By generating a diverse set of compounds,

we can increase the likelihood of finding molecules with desirable properties. The SELFIES

molecular representation allows for flexible modification of existing molecules, which can be

useful for improving properties or generating new scaffolds. For example, the SELFIES repre-

sentation can be used to modify a known molecule to improve its potency, selectivity, or other

properties. Alternatively, it can also be used to generate new scaffolds by combining different

molecular fragments.

Overall, SELFIES representation offers a flexible, robust, and efficient approach to generating

and screening a library of molecules.

In this project, we used RDKit, a popular open-source cheminformatics toolkit written in

Python, to preprocess a set of TADF molecules and extract their corresponding SELFIES

and SMILES (Simplified molecular-input line-entry system) [173] representations. In the next

section, we will explain how the molecules are represented with SMILES and SELFIES.
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3.4.2 Molecule Representation

Line notations like SMILES [173] and SELFIES [171] are a shorthand way to represent the

structure of a molecule in a compact and easily human-readable representation of molecular

structures that can be easily processed and analysed by computers. Furthermore, line notations

are standardised formats that are widely recognised and supported by a large number of software

tools and databases, making it easy to integrate into existing workflows and applications. In

contrast, 3D xyz files may have different formats and conventions depending on the software

used to generate them, which can make them difficult to work with.

There are other several line notations used to represent molecular structures, such as interna-

tional Chemical Identifier (InChI) [174], Modular Chemical Descriptor Language (MCDL) [175,

176], SYBYL Line Notation (SLN) [177], Representation of Structure Description Arranged

Linearly (ROSDAL) [178] and many more [179, 180, 181, 182, 183, 184, 185, 186]. However,

SMILES strings and InChI strings are widely recognised as the most established ones.

The main goal of InChI is to provide a unique and canonical identifier for chemical struc-

tures. To achieve this, InChI uses a layered approach where the molecular structure is first

standardised into a set of structural features, which are then encoded into a text string. In

contrast to SMILES strings, which can have multiple representations for the same molecule,

InChI addresses this weakness by providing a single, unambiguous identifier.

On the other hand, SMILES strings are widely utilised for the storage and exchange of chem-

ical structures, but there is currently no standardised approach for generating a canonical

SMILES string [187]. This is because the algorithm for canonicalising SMILES strings is propri-

etary, leading to varying implementations across different companies and research teams [188].

SMILES strings are relatively simple and easy to use, with a well-defined syntax and rules for

representing atoms, bonds, and other molecular features. SMILES can represent both small

and large molecules and are widely used in cheminformatics and computational chemistry ap-

plications.

SELFIES is a novel line notation for representing molecular structures using a predefined set of
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symbols and rules, which was introduced in 2020 [171]. Unlike other line notations, SELFIES

guarantees a 100% robust molecular string representation, ensuring that any combination of

symbols in the SELFIES alphabet corresponds to a chemically valid graph. This makes SELF-

IES a highly reliable method for representing molecular structures, particularly in applications

where accuracy is critical. Moreover, SELFIES allows for the generation of canonical STLFIES

strings, which are standardised SELFIES strings for a given molecule that are invariant to

different representations of the same molecule.

Overall, the choice between InChI, SMILES, and SELFIES depends on the specific application

and requirements. InChI is suitable for global chemical identification and integration with

chemical databases and search engines, while SMILES is useful for general molecular structure

representation and analysis. SELFIES is a 100% robust notation that is particularly useful for

machine learning and other computational applications.

We chose to use SELFIES over InChI for representing molecular structures in our project due

to its 100% robustness and other related advantages. In comparison, InChI relies on a fixed

set of rules that may not always result in chemically valid structures, leading to errors and

inaccuracies. SELFIES, on the other hand, guarantees that every combination of symbols

in its alphabet corresponds to a valid molecular graph, making it a highly reliable method for

representing molecular structures. Additionally, SELFIES allows for the generation of canonical

STLFIES strings that are invariant to different molecular representations. These benefits make

SELFIES an ideal choice for our project.

In this work, we utilise two popular line notations, SMILES and SELFIES, in conjunction

with RDKit, a powerful cheminformatics toolkit, to represent and manipulate the molecular

structures in our computational analyses. In this work, we employ two line notations, SMILES

and SELFIES, to represent and manipulate molecular structures in our computational analyses.

SMILES was used to for molecular representation and SELFIES for molecular mutation and to

generate canonical string representations that can be converted back to SMILES, making them

readable and compatible with existing chemical databases. Overall, By utilising the combined

power of SMILES and SELFIES in RDKit, we can enhance our ability to represent, modify, and
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analyse molecular structures in our computational studies, thus providing a robust platform

for conducting effective research.

In the following section, we will give examples of SMILES and SELFIES string representations

of molecules.

Simplified Molecular-Input Line-entry System

SMILES is a line notation for representing the structure of a molecule as a text string. It

was developed in the 1980s [173] and has become one of the most widely used notations for

representing molecular structures in cheminformatics and computational chemistry.

SMILES represent a molecular structure as a text string, where atoms are represented by their

elemental symbols and bonds are represented by various symbols and characters. The notation

is designed to be easily readable and writable by humans, while also being easily interpretable

by computers.

An example of a simple molecule, methane (CH4), is represented in SMILES notation: C. In

this notation, “C” represents the carbon atom and no explicit symbol is used for the hydrogen

atoms. The implicit hydrogen atoms are assumed to be attached to the carbon atom. The

SMILES string for methane can also be written with explicit hydrogen atoms as follows:

C[H][H][H][H]

This notation explicitly shows that there are four hydrogen atoms attached to the carbon atom.

Another example of a more complex molecule, aspirin (C9H8O4), is represented in SMILES

notation:

CC(=O)Oc1ccccc1C(=O)O

In this notation, “C” represents a carbon atom,“O” represents an oxygen atom, “c” represents

an aromatic carbon atom, and “()” represents a functional group. The SMILES string encodes
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the molecular structure of aspirin, including the positions of the atoms and the nature of

the bonds between them. In general, each unique molecule should have one unique SMILES

representation.

However, there are certain cases where a molecule can have multiple SMILES representations.

This occurs when there are different valid ways to represent the same molecular graph, due to

the various possible arrangements of hydrogen atoms and/or stereochemistry. These alternate

SMILES representations can arise from differences in the order of atoms or the assignment of

bond types and can be caused by differences in the software used to generate the SMILES

strings or the options and settings used.

For example, consider the molecule 1,2-dichloroethene. One valid SMILES string for this

molecule is “ClC=CCl”, which represents the molecule in the transform. However, this same

molecule can also be represented in the cis form with the SMILES string “Cl~C=C/Cl”. In this

case, the double bond is represented using the slash notation to indicate the cis configuration of

the two chlorine atoms. It is important to note that while these SMILES strings represent the

same molecular graph, they do not necessarily represent the same physical molecule, since the

cis and trans isomers can have different properties and reactivity. In the context of HTVS and

chemical space exploration, the cis and trans isomers may not be as important, as the focus

is often on identifying compounds with certain molecular properties or functional groups that

could be useful for a particular application. However, it is still important to be aware of the

stereochemistry when evaluating the potential properties and reactivity of a molecule.

SELF-referencIng Embedded Strings

SELFIES (SELF-referencIng Embedded Strings) [171] is a recently developed line notation for

representing the structure of a molecule as a string of text. It was developed in 2020 as a

successor to SMILES, with the goal of addressing some of the limitations of SMILES and other

line notations. SELFIES represent a molecular structure using a set of predefined symbols

and rules. These symbols and rules are designed to be easily interpretable by computers and

can represent a wide range of molecular structures, including those that may be difficult to
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represent using other line notations.

An example of a simple molecule, methane (CH4), is represented in SELFIES notation: [CH4].

In this sting notation, “[CH4]” represents the methane molecule, with the square brackets

indicating the start and end of the SELFIES string. The notation is similar to SMILES but

uses square brackets to group atoms and functional groups.

Another example of a more complex molecule, aspirin (C9H8O4), is represented in SELFIES

notation:

[O][=C][OH][C][c][c][c][c][c][C][=O][O][C][C][C]

In this notation,“[O]” represents an oxygen atom, “[=C]” represents a double bond, “[OH]”

represents a hydroxyl group, “[c]” represents an aromatic carbon atom, and “[C]” represents

a non-aromatic carbon atom. The SELFIES string encodes the molecular structure of aspirin,

including the positions of the atoms and the nature of the bonds between them.

SELFIES is designed to address some of the limitations of SMILES. One major advantage

of SELFIES is that it is a more robust representation of molecular structures. SMILES can

produce different representations of the same molecule, which can cause issues with data con-

sistency and reproducibility. SELFIES, on the other hand, is a unique string representation

that guarantees a one-to-one correspondence between the SELFIES string and the underlying

molecular structure.

Another advantage of SELFIES is that it allows for easier handling of complex molecular

structures. SELFIES can represent complex molecular features such as rings, stereochemistry,

and charges in a more concise and consistent manner compared to SMILES.

It should be noted that while SELFIES were considered superior to SMILES, the format was

still in the process of being standardised. Therefore, to generate a molecule library, we used

both SMILES and SELFIES. The SMILES format was converted to SELFIES before point

mutations were applied. This approach allowed us to take advantage of the benefits of both

formats while mitigating any potential issues with their standardisation.
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Overall, SELFIES are better than SMILES regarding data consistency, reproducibility, and

the representation of complex molecular features. The authors of SELFIES acknowledge that

further work is required to standardise the format. They plan to organise a workshop to extend

the format to include features present in SMILES, such as stereochemistry, polyvalency, and

isotopic substitution, and to define the direct canonicalisation of SELFIES. The authors aim

to use Unicode to create readable symbols and to allow for canonical SELFIES strings for

unique molecules. Currently, SMILES can be indirectly made canonical by translating them to

SELFIES and converting the canonical SMILES back to SELFIES.

3.4.3 Superfast Traversal, Optimisation, Novelty, Exploration and

Discovery Algorithm

To generate a diverse library of molecules, we employed part of the STONED algorithm [172]

that forms local chemical spaces, which utilises the SMILES string representation of each

molecule as input. The algorithm then transformed the SMILES representation into SELF-

IES, a more recent format that allows for point mutations. In SELFIES, each point mutation

corresponds to a single-character addition, deletion, or replacement, with an equal probabil-

ity (33%) for each type of mutation. The algorithm repeated this process iteratively until it

achieved a canonical SELFIES representation of the molecule, ensuring a unique and standard-

ised representation regardless of its initial form. Finally, the canonical SELFIES representation

was converted back to the original SMILES format.

3.4.4 Parent Molecules

Our study centres around investigating five TADF molecules (Figure 3.2) to explore their

chemical space and provide insights towards the development of better TADF molecule designs.

Among these molecules, three are identified as D-A TADF molecules, namely PXZ-TRZ, TXO-

PhCZ, and TXO-TPA. The remaining two are classified as type-VII TADF molecules [13],

which are unique types of TADF that cannot be designed using traditional D-A design rules.
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(a) PXZ-TRZ (b) TXO-PhCz (c) TXO-TPA

(d) GOBVUP (e) TUFWAS

Figure 3.2: 2D SMILES representation of TADF molecules used to generate molecule library.

As discussed in section 1.4.3 (Chapter 1), their small ∆EST values were found to be dependent

on specific cases.

lifetimes, and good stability. For type-VII TADF molecules, we chose them due to their size and

small ∆EST values, which were calculated computationally as they have not been synthesised

yet. Additionally, the selection of these molecules was also based on their structure, as some

molecules can be challenging or even impossible to represent using SMILES notation.

We selected D-A TADF molecules for their molecule size, high efficiency, long fluorescence

lifetimes, and good stability. For type-VII TADF molecules, we chose them due to their size

and small ∆EST values, which were calculated computationally [13]. Additionally, the selection

of these molecules was also based on their structure, as some molecules can be challenging or

even impossible to represent using SMILES notation. This is because SMILES notation is a

linear string of characters that represents the molecular structure based on a set of rules, and

not all molecular structures can be described using these rules. For example, molecules with
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complex or highly branched structures may be difficult to represent accurately with SMILES

notation. In addition, molecules with ambiguous stereochemistry, such as cis/trans isomers,

may require additional information beyond what is available in the SMILES string to represent

their structure accurately.

It is important to note that the methods used in our HTVS workflow to generate and analyse

TADF molecules have not been applied to D-A TADF molecules before. By extending our

analysis to include D-A TADF molecules, we can assess the effectiveness of these methods in

predicting TADF molecules for both types. This will provide insights into the applicability and

robustness of our methods for discovering new TADF molecules.

In the next section, we will discuss how to determine the diversity of the molecules generated.

3.4.5 Molecular Diversity

To ensure the chemical space of interest is well-represented in the library, it is crucial to include

a diverse range of compounds. This diversity will allow for the incorporation of compounds

with a broad range of properties, including those that are conducive to efficient and effective

TADF emission, as well as compounds relevant to this research area.

Structural diversity is a crucial aspect of diversity that measures the differences in chemical

structures among molecules in a library. One common approach to assess structural diver-

sity is by computing the molecular fingerprint of each compound and comparing them using

similarity metrics, such as Tanimoto. While other similarity metrics have been proposed for

specific use cases, the Tanimoto coefficient remains the most extensively used in cheminformat-

ics, as demonstrated by numerous studies [189, 190, 191]. Its popularity is attributed to its

simplicity, fast computation, and proven performance across various scenarios. Therefore, we

employed the Tanimoto coefficient to analyze our molecule library. However, it is worth noting

that some studies suggest using alternative metrics if specific information on molecule sizes is

available [192].
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Tanimoto Coefficient

The Tanimoto coefficient, defined by equation 3.1, is defined as the ratio of the intersection of

the two sets (A,B) over the union of the two sets.

T =
NAB

NA +NB −NAB

(3.1)

In equation 3.1, NAB represents the number of common elements or features between sets A

and B, NA is the total number of elements or features in set A and NB is the total number of

elements or features in set B.

In the context of chemistry and molecular similarity, sets A and B can represent molecular

fingerprints or descriptors, where each element or feature corresponds to a specific molecular

property or substructure present in the molecules. These fingerprints or descriptors encode

information about the presence or absence of specific molecular features or substructures in

each molecule.

To calculate the Tanimoto coefficient for chemical structures, the molecular fingerprints or de-

scriptors of two molecules are first generated. Molecular fingerprints are binary representations

of molecular structures, where each bit represents the presence (1) or absence (0) of a specific

molecular feature or substructure. Fingerprints can be generated using various algorithms,

such as the Extended Connectivity Fingerprints (ECFPs) [193], Morgan fingerprints [194], or

MinHash fingerprints (MHFPs) [195]. Each molecule in the dataset is assigned a unique finger-

print, resulting in a set of binary values for each molecule. More detailed discussions on types

of fingerprints are present in the next section.

Molecular descriptors are numerical representations of molecular properties, such as molecular

weight, topological indices, and physicochemical properties. Each molecule is characterized by

a vector of numerical values corresponding to its descriptors.

A Tanimoto coefficient of 1 indicates that the two sets (fingerprints or descriptors) are identical,

meaning the molecules have the same molecular features or properties. A coefficient of 0
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represents no similarity, indicating that the two sets have no common features or properties.

The Tanimoto coefficient is widely used in cheminformatics and drug discovery to assess the

similarity between molecules, screen compound libraries, and perform virtual screening to iden-

tify potential candidates with similar properties to the target molecule. It provides a valuable

quantitative measure of molecular similarity, aiding in the exploration of chemical space and

the identification of promising leads for further experimental investigation.

In the following section, we will discuss the types of fingerprints and the reasons for the finger-

print method we used.

Fingerprint

As briefly mentioned in the previous section, various algorithms can be used to generate fin-

gerprints, such as the Morgan fingerprint [194], ECFPs [193], MHFPs [195], and atom-pair

fingerprints [196]. ECFPs are derived from the Morgan fingerprint algorithm and are typically

used for small molecules, while atom-pair fingerprints are designed for large molecules. MHFPs

are versatile and can be used for both small and large molecules [197].

The terms “small” and “large” are relative and can be used in different contexts with different

meanings. In the context of molecular fingerprints, the size of a molecule can refer to the

number of atoms it contains. As fingerprint algorithms are typically used in drug design (but

are not limited to), TADF molecules can be considered relatively small.

ECFP4 is considered one of the most effective molecular fingerprints for small molecule virtual

screening, as well as for target prediction benchmarks, according to several studies [198, 199,

200, 197]. Along with the related MinHashed fingerprint MHFP6, these fingerprints have shown

to be highly reliable and efficient in identifying potential drug candidates and predicting their

targets.

The numbering of ECFP4 and MHFP6 corresponds to the particular implementation of these

algorithms. ECFP4 is a variant of the ECFPs family of fingerprints, where the fingerprints are

based on the molecular graph topology up to a certain radius (in the case of ECFP4, up to a
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radius of 4 bonds). MHFP6 is a variant of the MHFPs family, where the fingerprints are based

on random hashing of molecular substructures with a minimum frequency cutoff (in the case of

MHFP6, the minimum frequency cutoff is 6). These numbering schemes help to differentiate

between the various versions of these algorithms and provide a reference for researchers using

these fingerprints in their studies.

For our work, we chose to use the ECFP4 fingerprint algorithm due to its proven performance

and efficiency in small molecule virtual screening and target prediction benchmarks [198, 199,

200]. In the next section, we will discuss the synthetic accessibility assessment method we used

for our HTVS workflow.

3.4.6 Synthetic Accessibility Assessment

Synthetic accessibility refers to the ease or difficulty of synthesising a specific chemical com-

pound using currently available chemical reactions and methodologies. Given the vastness of

chemical space [159, 161, 160, 13, 162, 163], it is not feasible to synthesise and test every possible

compound. Therefore, synthetic accessibility is a measure of the practicality of the synthetic

route to obtain a desired molecule.

There are several methods that are used to calculate the synthetic accessibility score of molecules,

such as Synthetic Complexity score (SCScore) [201], synthetic accessibility score (SAScore) [202]

and SYnthetic Bayesian Accessibility (SYBA) [203]. These methods cannot compare to sophis-

ticated synthetic path-reconstruction methods [204, 74] that can predict and optimise chemical

reaction pathways to synthesise a target molecule. However, they are more computationally

intensive than fragment-based approaches like SCScore, SAScore and SYBA, thus we will be

discussing these.

SCScore is a data-driven metric designed to describe real syntheses and assess the synthetic

accessibility of a molecule [201]. It is based on the idea that reaction products are synthetically

more complex than reactants. SCScore assigns a synthetic complexity score between 1 and 5

to a molecule using a neural network. The neural network was trained on 22 million reactant-
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product pairs from the Reaxys database [205].

SAScore [202] is based on the analysis of ECFP4[193] fragments obtained from one million

compounds randomly selected from the PubChem database [206]. Each fragment is assigned

a numerical score, where frequent fragments have positive scores and less frequent fragments

have negative scores. SAScore also includes a complexity penalty and symmetry bonus, which

penalise nonstandard structural motives such as macrocycles, stereo centres, spiro and bridge

atoms, but reward the symmetry of a structure. The method produces values between 1 (easy

to make) and 10 (very difficult to make), where 6.0 is suggested by the authors as a threshold

to distinguish between easy- and hard-to-synthesise compounds.

SYBA [203] is a fragment-based computational method that predicts the feasibility of con-

structing a molecule from simpler fragments based on their structural and chemical properties.

Using a Bayesian statistical framework, prior knowledge and uncertainty are incorporated into

the prediction. The model was trained on easy-to-synthesise (ES) molecules from the ZINC15

database [207, 208] and hard-to-synthesise (HS) molecules generated by the Nonpher method-

ology [170, 209].

The SYBA method has been shown to provide comparable or better performance than other

methods like SAScore and SCScore while being less computationally demanding and providing

a more straightforward analysis of individual fragment contributions [203]. Specifically, in a

study comparing SYBA to SAScore and SCScore, the authors recommended using SYBA over

SAScore due to its smaller complexity and more straightforward analysis and noted that SYBA

outperformed SAScore when the threshold value was set to 6.0 but had comparable accuracy

when the threshold was reduced to ∼ 4.5. Additionally, all three methods (SYBA, RF/ECFP4,

and SAScore) substantially outperformed SCScore in the same study. Therefore, we have chosen

to use SYBA for our HTVS workflow as it has been shown to provide a reliable and efficient

classification of organic compounds.
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SYnthetic Bayesian Accessibility

The SYBA method provides an accessibility score, which may be positive or negative, depending

on the synthetic accessibility of the molecule. A positive score indicates easier synthesis, while

a negative score indicates a more challenging synthesis. The magnitude of the score reflects the

molecule’s ease of synthesis, with larger positive scores indicating easier synthesis and larger

negative scores indicating more challenging synthesis.

As previously mentioned, the calculation of SYBA value is based on the Bayes theorem ex-

pressed in equation 3.2 [203]. Each compound is described by a binary fingerprint represented

as F = [f1, f2, · · · , fM ], where the length of the fingerprint is denoted by M . The binary values

fi (fragment i) in the fingerprint indicate the presence (fi = 1) or absence (fi = 0) of various

molecular building blocks or substructures in the molecule. SYBA uses this fingerprint to assign

the molecule to a class C ∈ ⟨ES,HS⟩.

p(C|F) =
p(F|C)p(C)

p(F)
(3.2)

In equation 3.2, the term p(C|F) represents the posterior probability that a compound, given

a specific set of molecular fragments F belongs to a certain class C. The likelihood denoted

as p(F|C) refers to the conditional probability that a compound from class C contains the

set of molecular fragments F. On the other hand, the marginal probabilities p(F) and p(C)

express our overall beliefs or probabilities of observing a set of molecular fragments F and the

occurrence of a molecule belonging to class C respectively.

The SYBA score is defined as the logarithm of the ratio of the posterior probabilities that the

molecule belongs to the ES and HS classes [203], as expressed in equation 3.3.

SY BA(F) = ln

(︄
p(ES|F)

p(HS|F)

)︄
(3.3)



3.4. Our Workflow 79

By applying equation 3.2, the SYBA score can be expressed as equation 3.4.

SY BA(F) = ln

(︄
p(ES)

P (HS)

)︄
+ ln

(︄
p(F)|ES
p(F|HS)

)︄
(3.4)

The SYBA score (equation 3.4) can be simplified to equation 3.5 [203].

SY BA(F) =
M∑︂
i=1

si(fi) (3.5)

The score contribution si(fi) from fragment i in equation 3.5 is expressed in equation 3.6.

si(fi) = ln

(︄
p(fi|ES)

p(fi|HS)

)︄
(3.6)

In practical applications, the SYBA score generally falls between −100 and +100, according to

the authors. However, theoretically, it can assume any value between plus and minus infinity.

It is noteworthy that the absolute value of the SYBA score does not measure the degree of

synthetic accessibility but rather the level of confidence in the prediction.

Although SYBA has not been specifically tested on TADF molecules, the method’s ability

to predict synthetic accessibility has broad applications in guiding the design and synthesis

of novel compounds. In particular, SYBA scores can be used as a useful tool to filter out

molecules that are difficult or expensive to synthesise, potentially saving time and resources in

the synthesis and characterisation process.

One advantage of using SYBA scores to screen a molecular library for TADF design is that it

can help prioritise compounds that are predicted to be easier to synthesise. This can increase

the efficiency of the synthesis and characterisation process and may lead to the discovery of

novel TADF molecules that would otherwise have been overlooked.

However, SYBA has certain limitations that merit consideration. First, the accuracy of the

SYBA model heavily relies on the quality and diversity of the training data used to estimate

the prior probabilities. Additionally, its simplified binary fingerprint representation may not

fully capture the complexities of molecular structures, potentially leading to inaccuracies. The
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model’s static nature might also hinder its adaptability to evolving synthetic methodologies.

Moreover, SYBA does not consider specific reaction pathways, overlooking critical synthetic

considerations. Rigorous validation of diverse datasets and chemical classes is necessary to

assess their specificity and generalisation capabilities. While SYBA provides valuable insights,

complementary approaches and considerations, such as quantum mechanical effects, may be

warranted to comprehensively assess the synthetic feasibility of novel compounds.

While it is important to acknowledge the limitations of using SYBA scores, this method still

offers valuable insight into the synthetic accessibility of compounds, including those with po-

tential TADF properties. Although the actual synthetic accessibility of a compound may differ

from what is predicted by SYBA, these scores can help researchers prioritise compounds that

are predicted to be easier to synthesise and save valuable time and resources in the process.

However, it is important to balance the use of SYBA scores with the consideration of other

factors, such as the potential value of compounds that may be more challenging to synthesise,

as well as their overall properties and potential.

Overall, while SYBA scores can be a useful tool for screening molecular libraries for TADF

design, it is important to use them in conjunction with other considerations and to carefully

balance the advantages and limitations of this approach. The details of the chosen threshold

value will be explained in chapter 4.

3.4.7 Force Field Geometry Optimisation

In our HTVS workflow, subsequent to filtering the molecules in previous stages, the optimi-

sation step was performed by minimising the energy of each molecule. We use MMFF94 as

discussed in section 2.10.1 (Chapter 2) with a maximum of 500 steps used to achieve a suitable

conformation for subsequent analyses. The number of optimisation steps varies depending on

factors such as the size, complexity, and initial geometry of the molecule. While 500 steps

may be sufficient to reach a local minimum energy geometry in some cases, others may require

more steps. It is important to strike a balance between accuracy and computational cost when

selecting the number of steps since increasing the number of steps can escalate computational
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costs and the time required for optimisation. Generally, 500 steps are commonly used and

a reasonable choice for geometry optimisation in molecular simulations, which produces an

acceptable approximation of the minimum energy geometry.

In the next section, we will present the parameters used for our DFT calculations in BigDFT

before moving on to the next step of the workflow.

3.4.8 BigDFT Parameters

We performed BigDFT calculations using HGH-GTH PSPs [140, 141] with NLCC [139]. For

the ground state, gas phase geometry optimisation was carried out using PBE in BigDFT,

with a maximum force threshold of 0.02 eV/Å. To ensure accurate force calculations, a smaller

grid spacing of 0.24Åwas employed for geometry optimisations, while single-point calculations

used a wavelet grid spacing of 0.26Å. The gradient convergence threshold was set to 10−5.

After the single point calculation, we calculated the HOMO-LUMO spatial overlap ΛT as a

post-processing calculation using the HOMO and LUMO wavefunctions [138] (equation 3.7).

ΛT =

∫︂
|ψHOMO(r)||ψLUMO|dr (3.7)

The parameter ΛT is calculated as the square root of the product of the overlap of solely

the HOMO and LUMO wavefunctions (ψHOMO, ψLUMO). ΛT = 0 indicates no spatial overlap

between the HOMO and LUMO, representing a CT excitation. Conversely, ΛT = 1 signifies full

spatial overlap, corresponding to a LE state. It is essential to note that ΛT does not distinguish

between singlet or triplet excitations and does not consider additional contributions in the case

of mixed excitations.

3.4.9 DFT on MMFF94 Geometry Optimised Molecules

We conducted DFT calculations on both the parent molecules and the generated molecules,

which we obtained by optimising their geometry using MMFF94. Specifically, we calculated
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the HOMO-LUMO energy gap and HOMO-LUMO density overlap ΛT , and compared these

parameters with those of the parent molecules. In Chapter 4, Section 4.6, we discuss the

details of this method and the criteria that we used to filter the molecules.

3.4.10 DFT Geometry optimisation

We optimised the geometry of molecules selected according to the criteria established in the

previous step, using DFT.

3.4.11 Frontier orbitals and Singlet-Triplet Splittings

We perform single point and ∆SCF calculations on the DFT geometry optimised molecules to

obtain the HOMO-LUMO energy gap and singlet-triplet splitting ∆EST .

3.5 Summary

In summary, we used the STONED algorithm to generate a library of molecules. This algorithm

required a SMILES string representation of the molecule as input, which was converted to

SELFIES, a newer format that allowed for point mutations. Each point mutation in SELFIES

corresponded to a single character addition, deletion, or replacement with a 33% probability for

each mutation. The canonical SELFIES representation was then converted back to SMILES.

The study investigated five TADF molecules to explore their chemical space and provide insights

towards the development of better TADF molecule designs. ECFP4 was used to calculate the

fingerprint of each molecule, and the diversity of the molecule libraries was analysed using

Tanimoto similarity. SYBA score was used to filter molecules based on easy-to-synthesise and

hard-to-synthesise.

Finally, single-point DFT calculations were performed on MMFF94-optimised structures, and
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single-point DFT calculations and ∆SCF calculations were performed on DFT-optimised struc-

tures.



Chapter 4

High Through Put Virtual Screening

Workflow Results - Part 1

4.1 Introduction

This chapter presents the results of the molecule generation process and force field optimisation

of the generated molecules utilised in our HTVS workflow. The primary objective is to create

a comprehensive and diverse molecule library to increase the chances of discovering promising

candidates. To achieve this objective, the workflow must ensure that the generated molecules

meet stringent quality standards. Designing a chemical library for TADF molecules should look

at the following key considerations:

1. Diversity: The library should contain a diverse range of compounds that represent the

chemical space of interest. This can help to ensure that the library is representative of

the chemical space and that it includes compounds with a range of different properties.

2. Relevance: The library should contain compounds that are relevant to the research area of

interest, in this case, TADF molecules, with structural and electronic properties conducive

to efficient and effective TADF emission.

84
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3. Stability: The compounds in the library should be stable under a range of conditions and

should not be prone to degradation.

4. Synthesis accessibility: The compounds in the library should be theoretically synthe-

sisable, meaning that they can be produced in the laboratory using existing chemical

synthesis techniques.

These four key considerations overlap in that they are all important factors to consider when

designing a library of TADF molecules for research purposes.

4.2 Library Generation

To generate the initial molecule library, we explored the chemical space of the parent molecules

presented in Figure 3.2 which were selected based on specific criteria discussed in Chapter 3,

Section 3.4.4. We obtained the SMILES representation of these parent molecules and used them

to guide the generation of the initial library. Table 4.1 provides the SMILES representation

of the parent molecules used in this process. As discussed in Section 3.4.1, Chapter 3, the

Table 4.1: SMILES representation of parent molecules used to generate molecule libraries.
Natoms represents the number of atoms in a molecule excluding hydrogen atoms.

Molecule Natoms SMILES
PXZ-TRZ 38 c7ccc(c6nc(c1ccccc1)nc(c5ccc(n4c2ccccc2oc3ccccc34)cc5)n6)cc7

TXO-PhCz 36 O=C6c1ccccc1S(=O)(=O)c7ccc(c2ccc4c(c2)c3ccccc3n4c5ccccc5)cc67

TXO-TPA 36 O=C5c1ccccc1S(=O)(=O)c6ccc(c4ccc(N(c2ccccc2)c3ccccc3)cc4)cc56

GOBVUP 24 Clc4ccc(c3csc(=c2scc(c1ccc(Cl)cc1)s2)s3)cc4

TUFWAS 30 c6csc(c4sc(=c3sc(c1cccs1)c(c2cccs2)s3)sc4c5cccs5)c6

STONED algorithm is capable of generating thousands of canonical molecules in a matter of

minutes [172]. However, there is a limit to the number of canonical molecules that can be

generated for a given number of molecules. To determine this limit, it is useful to estimate the

minimum number of molecules required to exhaust the chemical space and obtain canonical

molecules. This information can be used to optimise the computational resources needed for

molecule generation, by considering factors such as the size and number of parent molecules.
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Our observations (see Figure 4.1 and Table 4.2) indicate that for parent molecules with sizes

ranging from 24 to 38 atoms (excluding hydrogen atoms), generating a chemical space of ap-

proximately 104 to 105 molecules maximises the number of canonical molecules.

Figure 4.1: Relationship between total SMILES generated from parent molecules and canonical
SMILES obtained.

To ensure the reliability of our results, we conducted a verification step where we investigated

the relationship between the size of molecules and the number of canonical SMILES generated.

As illustrated in Figure 4.2 and summarised in Table 4.2, we observed a positive correlation

between the two variables. Specifically, our findings indicate that longer SMILES strings offer

more opportunities for point mutations, thereby expanding the chemical subspace and increas-

ing the likelihood of generating canonical molecules. This verification step provides a rigorous

validation of our methodology and supports the validity of our conclusions.

After generating the library of canonical SMILES, it is essential to assess its diversity to ensure

a thorough exploration of the chemical space. In the following section, we will discuss the

method used to verify the library’s diversity.
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Figure 4.2: Plot between parent molecule size (number of atoms Natoms) and canonical SMILES
obtained.

Table 4.2: Total number of SMILES from parent molecules and obtained the corresponding
canonical SMILES. The percentage of canonical SMILES obtained is calculated as the ratio of
the number of canonical SMILES to the total number of SMILES generated.

Molecule Canonical SMILES (percentage) SMILES generated
PXZ-TRZ 3769 (2.79%) 135000
TXO-PhCz 3325(2.89%) 115000
TXO-TPA 3210 (2.38%) 135000
GOBVUP 2247 (2.37%) 95000
TUFWAS 3026 (2.88%) 105000
YAFNOI 1925 (1.83%) 105000
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4.3 Molecule Library Check

The canonical molecules generated through the HTVS process should be evaluated for their

diversity, relevance, stability, synthesis ability, and predictive power, as discussed in Section 4.1.

We believe that the first and foremost requirement is to assess the diversity of the molecules, as

this can provide insight into the overall composition of the library. The relevance of the library

can then be directly evaluated based on its diversity in terms of TADF molecules.

After assessing the diversity of the generated molecules, the order in which other requirements

are checked will depend on the specific goals and applications of the study. For our work,

the stability of the molecules was the next important factor to consider. We evaluated each

molecule’s system type and determined whether it was a closed- or open-shell system. While

open-shell TADF molecules offer certain advantages such as a higher spin density resulting in

enhanced luminescence and longer excited state lifetimes, leading to potentially higher efficiency

and stability of the TADF device, closed-shell TADF molecules have their own benefits. For

instance, closed-shell TADF molecules are generally more stable and less reactive than their

open-shell counterparts, which can be advantageous for device applications that require long-

term stability. Additionally, closed-shell TADF molecules can exhibit excellent performance in

certain applications, particularly in cases where their electronic properties match well with the

device requirements.

After selecting only the closed-shell systems, the synthesis ability of those molecules was eval-

uated using SYnthetic Bayesian Accessibility (SYBA) scores (discussed in Section 3.4.6). The

chosen threshold value for the SYBA score will be detailed and explained later in this chapter.

4.3.1 Diversity and Relevance

As discussed in Chapter 3, Section 3.4.5, we chose the Tanimoto coefficient to measure and

analyse the diversity of our molecule libraries. We did not use other methods, such as molecular

descriptors, as it is not easy to identify the donor or the acceptor moiety within type-VII parent

molecules, which are highly symmetric. For control, we used the same diversity check for the
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traditional D-A TADF parent molecules, which allowed us to compare the performance of our

method with previous studies.

Other methods for diversity analysis often rely on identifying molecular substructures, such

as functional groups, that are important for biological activity or chemical properties. These

substructures can then be compared and used to assess molecular diversity. However, for highly

symmetric molecules like the type-VII parent molecules used in our study, it can be difficult

to identify specific substructures that are relevant for diversity analysis. This is because the

symmetric nature of these molecules means that they have multiple equivalent substructures

that cannot be easily distinguished.

Therefore, for our study, we chose to focus on the Tanimoto coefficient as a measure of diversity,

since it is based purely on the molecular structure and does not require the identification

of specific substructures. Furthermore, our analysis revealed that the STONED algorithm

typically generates a few molecules with significantly fewer atoms than their parent compounds,

leading to low fingerprint scores that indicate their insignificance. Nevertheless, we aimed to

incorporate molecules with low fingerprints similar in size to the parent molecule. Therefore,

we filtered the molecules based on their atom size. Including low-fingerprint molecules that are

similar in size to the parent molecule can help provide a more comprehensive representation of

the chemical space being analysed, increase sensitivity, and avoid bias. Additionally, it can lead

to a more subtle understanding of the results and provide insights into potentially interesting

relevant molecules.

Molecule size

Our analysis (Figure 4.3) showed that most of the canonical molecules generated have sizes

similar to those of the parent molecules. However, there are a few exceptions with significantly

fewer atoms than the parent molecules. These small molecules are located far from the parent

molecules in chemical space and are expected to have limited value for subsequent HTVS

analyses. Therefore, we recommend that these small molecules be excluded from the library

before the HTVS process, to ensure that the resulting hits are more likely to be structurally
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(a) PXZ-TRZ (b) TXO-PhCz

(c) TXO-TPA (d) GOBVUP

(e) TUFWAS

Figure 4.3: Molecules distribution by the number of atoms (Natoms), showing the frequency
of molecules with respect to the number of atoms they contain. The solid red vertical line
represents the threshold for excluding molecules below a certain size, while the dotted red line
indicates the size of the reference parent molecule.
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similar and chemically relevant to the parent molecules.

To determine the cut-off based on the number of atoms Natom (molecule size), we compared the

fingerprint scores and molecule size (Figure 4.4). While smaller molecules typically have lower

fingerprint scores, we also observed some molecules with similar sizes to the parent molecules

but with significantly lower fingerprint scores.

However, these molecules are still likely to be structurally similar and chemically relevant

to the parent TADF molecules due to their similar size. Therefore, we decided to filter the

molecules based solely on their number of atoms (size), using the equation 4.1, to ensure that

only molecules with a size similar to that of the parent TADF molecules are retained in the

library for subsequent HTVS analyses.

N threshold
atom = Nparent

atom − 10 (4.1)

To determine the cutoff based on the number of atoms in the molecules, we compared the

fingerprint scores and molecule sizes. As expected, smaller molecules generally had lower fin-

gerprint scores. However, we also observed that some molecules with similar or close-to-similar

sizes as the parent molecules had substantially lower fingerprint scores. These findings sug-

gest that molecule size alone cannot be relied upon to identify potential compounds for HTVS

analyses.

Therefore, we used Equation 4.1 to filter the molecules, and we chose a threshold value of

10 based on our analysis of the Tanimoto coefficient and molecule size Natom. The value of

10 was selected based on the data shown in Figure 4.4. This approach has advantages and

disadvantages. One benefit is that it eliminates small, chemically dissimilar molecules that

are unlikely to have significant value in subsequent HTVS analyses. Moreover, by requiring a

minimum size of N threshold
atom , it ensures that the library contains a diverse set of molecules with

structural similarities to the parent compounds.
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(a) PXZ-TRZ (b) TXO-PhCz

(c) TXO-TPA (d) GOBVUP

(e) TUFWAS

Figure 4.4: Molecular size and fingerprint (FP) score displayed in a scatter plot. The solid
red line denotes the established threshold for filtering out SMILES, while the dashed red line
represents the size of the parent molecules used as a reference point.
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4.3.2 Stability

The stability of molecules is a crucial consideration in the design of chemical libraries for vari-

ous applications, including TADF molecules. To examine the stability of TADF molecules, we

classified them based on their electronic configuration into two groups: open-shell and closed-

shell. Organic radicals are highly reactive molecules [210] composed of light elements such as

hydrogen (H), carbon (C), nitrogen (N), oxygen (O), and sulfur (S) that have at least one un-

paired electron in their outermost shell. This unpaired electron makes them open-shell systems

that readily participate in chemical reactions such as hydrogen abstraction, dimerisation, or

recombination, leading to a loss of the open-shell character.

Closed and Open-shell System

This observation is necessary for a molecules library in HTVS because open-shell molecules

may have different electronic and optical properties compared to closed-shell molecules, which

can affect their performance as TADF materials. Therefore, knowing the percentage or number

of open-shell molecules in the library can help in designing and selecting suitable molecules for

TADF applications.

The presence of open-shell systems in a molecule library can significantly affect the outcome of

various computational chemistry calculations downstream in an HTVS workflow. For example,

open-shell systems often require different computational methods and more sophisticated basis

sets to accurately describe their electronic structure [211, 212, 213, 214, 215], which can signif-

icantly increase the computational cost and time required for these calculations. In addition,

the presence of open-shell systems can also affect the geometry optimisation process [216], as

they may exhibit different structural characteristics compared to closed-shell systems, which

may impact the final predicted properties of the molecule. Therefore, it is important to take

into consideration the electronic configuration of the molecules in a library to ensure that ap-

propriate computational methods and basis sets are used and that accurate and reliable results

are obtained.
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(a) PXZ-TRZ (b) TXO-PhCz

(c) TXO-TPA (d) GOBVUP

(e) TUFWAS

Figure 4.5: Number of canonical molecules that are closed and open shell.
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Figure 4.5 that the majority of the molecules generated through the HTVS workflow resulted

in closed-shell species. Specifically, less than ≲ 30% of the molecules for each parent molecule

were found to be open-shell. This result may have implications for subsequent computational

steps in the HTVS workflow, particularly for geometry optimisation and DFT calculations.

The presence of unpaired electrons in open-shell systems may lead to difficulties in geometry

optimisation and convergence, as well as the additional computational expense associated with

DFT calculations. Therefore, this observation should be taken into account when selecting

molecules for further study and optimisation.

Studies have revealed the presence of stable neutral radical emitters in OLEDs [210, 217, 218].

To investigate the potential impact of open-shell molecules on the final results for our candidate

molecules, we specifically chose to include them in our study, utilising the methods we employed.

4.4 Tanimoto Coefficient

Maintaining diversity in a molecular library is essential to ensure a successful high-throughput

virtual screening (HTVS) process. After applying the N threshold
atom criteria specified in Section

4.3.1 to filter out certain molecules, we performed an analysis to assess the diversity of the

remaining molecules in the library. Specifically, we calculated the Tanimoto coefficient between

all pairs of molecules, as well as between each molecule and its parent molecule. The Tanimoto

coefficient is a measure of similarity that enabled us to evaluate the differences and similarities

between the molecules.

As discussed in chapter 3, a Tanimoto coefficient of 1 indicates an exact match between two

molecules, while a score of 0 means there is no similarity between them. A score of 0.5, therefore,

represents a moderate level of similarity, indicating that the molecules share some structural

features but are not identical. The reason why the range is commonly used as a threshold

for identifying structurally similar molecules is that it strikes a balance between including

molecules that are sufficiently similar to the parent molecule(s) and excluding those that are

too dissimilar.
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The analysis in Figure 4.6 showed that the remaining molecules in the library were diverse,

with Tanimoto coefficient ranging from 0 to 1. This indicated that the library contained a wide

range of molecules that were both structurally similar and distinct from the parent molecules.

Moreover, this range of coefficients is also compatible with the concept of molecular diversity,

where a diverse library should contain molecules that are both similar and dissimilar from the

parent molecules. By including molecules with similarity scores between 0 and 1, the library

can capture a range of structural variations that may be important for achieving the desired

activity or property in the screening process.

Including molecules with a low Tanimoto coefficient (< 0.5) can have several advantages for

designing Type-VII TADF molecules. One of these advantages is the increased likelihood of

discovering molecules with canonical structural features that may lead to improved TADF

properties. Furthermore, it can help to expand the diversity of the library, improving the

chances of finding hits during HTVS. However, this approach also has potential drawbacks.

For instance, it may increase the computational cost and time required for subsequent HTVS

analyses and may increase the likelihood of including ineffective TADF materials. Thus, it

is crucial to carefully balance the benefits and drawbacks of including molecules with lower

similarity scores to optimise the molecular library for designing Type-VII TADF molecules. As

this is the first iteration of using this method, it can be further refined by analysing the final

output of the HTVS workflow. Furthermore, Figure 4.7 shows that there was no significant

clustering of molecules in the library, indicating that the library was not biased towards any

particular structural motif.

The ability of STONED to explore chemical space was evaluated by analysing the impact

of excluding small molecules with N threshold
atom below a specified threshold. The analysis of the

remaining molecules in the library demonstrated that the exclusion of these molecules did not

significantly affect the library’s overall diversity, indicating the effectiveness of STONED in

navigating chemical space.
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(a) PXZ-TRZ (b) TXO-PhCz

(c) TXO-TPA (d) GOBVUP

(e) TUFWAS

Figure 4.6: Visualisations of the SMILES distribution, post-filtering of small and open-shell
systems, including a histogram, boxplot, and kernel density estimate (KDE) plot (blue line),
as discussed in the preceding section of this chapter.
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(a) PXZ-TRZ (b) TXO-PhCz

(c) TXO-TPA (d) GOBVUP

(e) TUFWAS

Figure 4.7: 2D similarity maps showing graphical representations of the Tanimoto coefficient
between all molecules. A high coefficient indicates that the molecule is more similar to the
parent molecule, while a low score indicates greater dissimilarity.
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4.5 Synthesis accessibility

Synthesis accessibility is an important consideration when designing a chemical library for

TADF molecules. Compounds that are theoretically synthesisable, using existing chemical syn-

thesis techniques, are preferred as they can be produced in the laboratory with ease. However,

the prediction of synthetic accessibility is not always straightforward, especially for large and

complex molecules. One method for evaluating the synthetic accessibility of a molecule is by

using the SYBA score. This section will explore the use of the SYBA score to assess the

synthesis accessibility of the TADF molecules in our library.

4.5.1 SYnthetic Bayesian Accessibility Score

As discussed in Section 3.4.6, the SYBA score [203] can be a useful tool for screening molecular

libraries for TADF design. Figure 4.8 shows that the majority of molecules in the library have

positive SYBA scores, indicating that they are relatively easy to synthesise. Additionally, most

molecules have SYBA scores of > −100 and < +100, indicating that they are practical for use

in applications, as suggested by the original paper.

In this study, we chose to filter our molecular library based on the SYBA score threshold

of ≥ −20. This was done to ensure that the molecules we select for further investigation

are likely to be experimentally accessible, as a higher SYBA score implies that a molecule is

easier to synthesise. Additionally, the SYBA score is calculated based on a number of factors,

such as bond formation and aromaticity, which are important for designing TADF molecules.

By selecting molecules with an SYBA score of ≥ −20, we aim to improve the likelihood of

identifying promising TADF materials that can be experimentally realised with reasonable

effort. The obtained value is in close proximity to the −18.6 threshold value reported in the

original paper, which was determined computationally using a test set [203].

It is noted that the parent molecule GOBVUP has an SYBA value in close proximity to zero,

albeit negative. This observation does not necessarily imply any concerns regarding the ac-

curacy of SYBA for this molecule. As a predictive measure of synthetic accessibility, a value
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(a) PXZ-TRZ (b) TXO-PhCz

(c) TXO-TPA (d) GOBVUP

(e) TUFWAS

Figure 4.8: Molecule distribution by SYnthetic Bayesian Accessibility (SYBA) score, showing
the frequency of molecules with respect to their SYBA score. The solid red line indicates the
SYBA score of the parent molecule, while the dotted red line represents the threshold of -20
for SYBA score
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close to zero suggests relative ease of synthesis, while a negative value implies higher synthetic

challenges.

The bias towards negative SYBA, as observed in figure 4.8, values observed in the molecules

generated by STONED suggest that a significant proportion of the generated molecules may

be synthetically challenging. The SYBA score is a measure of synthetic accessibility, with more

negative scores indicating lower accessibility. The reduced percentage of molecules remaining

after filtering for the type-VII family compared to the D-A family supports this interpretation,

as it implies that type-VII molecules may be more challenging to synthesise than D-A molecules.

While the observed bias towards negative SYBA values may be viewed as a limitation of

STONED, it is worth noting that the primary objective of the program is to explore chem-

ical space and identify promising compounds for further investigation. STONED does not

explicitly incorporate synthetic accessibility during molecule generation, which could explain

the observed bias. These findings suggest that STONED generate molecules that are hard-to-

synthesise. Therefore, it is necessary to complement the use of STONED with other tools, such

as SYBA, that consider synthesise accessibility and other relevant properties to fully evaluate

the program’s utility in TADF discovery.

4.6 MMFF94 Geometry optimisation

Once an initial library of molecules was generated and filtered based on the previously discussed

criteria, their geometries were optimised using the MMFF94 force field. To minimise their

energy and prepare them for further analyses (as described below), each molecule was optimised

with a maximum of 500 steps.

The number of geometry optimisation steps required for a molecule can vary depending on

several factors such as its size, complexity, and initial geometry. In some cases, 500 steps may

be sufficient to reach a local minimum energy geometry, while in other cases, more steps may

be required. However, using a higher number of steps can also increase the computational cost

and time required for the optimisation. Therefore, the choice of the number of steps should
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be based on a balance between accuracy and computational cost. In general, 500 steps is a

common and reasonable choice for geometry optimisation in molecular simulations and is often

sufficient to obtain a good approximation of the minimum energy geometry.

The table presented in 4.3 clearly demonstrates the impact of MMFF94 force field optimization

on the number of molecules considered in this study. Our findings show that some molecules,

specifically PXZ-TRZ and TXO-PhCz, experienced a significant reduction in number from the

initial library due to the inability to set up the MMFF94 force field for these compounds. This

difficulty in setting up the force field can be attributed to several factors, including the presence

of unusual chemical functionalities, large molecular size, or insufficient structural information.

Notably, all molecules without this issue were successfully optimised within 500 steps.

The STONED algorithm is a useful tool for generating initial structures, but it is not a sub-

stitute for accurate experimental or theoretical data. It is possible that some of the structures

generated by STONED were not chemically reasonable or had unusual conformations that could

not be properly optimised using the MMFF94 force field.

Overall, it is likely that both factors may have played a role in the inability to set up the

MMFF94 force field for certain molecules, and further investigation or modification of the

initial structures and force field parameters may be necessary to improve optimisation results.

Table 4.3: The number of molecules with an SYBA score of -20 or greater, along with the
number of molecules successfully optimized using MMFF94.

Parent Molecule PXZ-TRZ TXO-PhCz TXO-TPA GOBVUP TUFWAS
Filter Stage Number of Molecules
SYBA ≥ −20 1321 1581 1660 257 853
MMFF94 37 397 72 170 204

4.7 Summary and Conclusion

The aim of this part of the workflow was to generate a diverse and comprehensive library

of molecules to increase the likelihood of identifying potential TADF candidates. STONED
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software was used to generate libraries of molecules based on TADF parent molecules for further

investigation. It was observed that by generating around 104 to 105 molecules for each parent

molecule with a size ranging from 24 to 38 atoms (excluding hydrogen atoms), the number

of canonical molecules was maximised. Those canonical molecules were then filtered based on

a number of atoms using a specific threshold (equation 4.1). After analysing the number of

molecules that were closed- and open-shell, we observed that around 30% exhibited the latter

property. Based on this finding, we decided to include open-shell molecules in order to assess

their potential impact on the final results for our candidate molecule. The molecules were then

rated in terms of easy-to-synthesis (ES) and hard-to-synthesis (HS) by using the SYBA method.

Molecules with SYBA score ≥ −20 were chosen. Finally, MMFF94 geometry optimisation was

performed on the filtered molecules. The number of molecules remaining after each step of the

process is summarised in table 4.4. These findings can inform the design of future libraries of

molecules for similar areas of research.

Table 4.4: Number of SMILES at each filtering stage in the high-throughput virtual screening
workflow discussed in this chapter.

Parent Molecule PXZ-TRZ TXO-PhCz TXO-TPA GOBVUP TUFWAS
Filter Stages Number of Molecules
Total Generated 135000 115000 135000 95000 105000
Canonical SMILES 3769 3325 3210 2247 3026
N threshold

atoms 3484 2971 2814 2087 2831
SYBA ≥ −20 1321 1581 1660 257 853
MMFF94 37 397 72 170 204

There are two immediate limitations in this study. First, the MMFF94 geometry optimisation

method employed in this research may not accurately represent the conformational energies of

all molecules. Furthermore, the number of molecules was significantly reduced after undergoing

MMFF94 geometry optimisation, which was likely caused by challenges in configuring the force

field. Both STONED molecule generation and MMFF94 optimisation processes may have

played a role in the inability to establish the force field for most molecules. Therefore, to

improve optimisation results, it is necessary to explore other options, such as conducting further

mutations using STONED and using alternative force field methods.

There are several areas of future work that could be explored based on the findings of this study.
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One potential avenue for future research is to further refine the filtering criteria used in this

study to generate a more targeted and specific library of TADF molecules. This could involve

exploring different criteria for filtering molecules based on factors such as electronic properties or

structural characteristics. Additionally, future studies could focus on further characterising the

properties and potential applications of the TADF molecules identified through this workflow,

such as investigating their optical and electronic properties or exploring their potential for use in

organic light-emitting diodes (OLEDs). While the library of molecules generated by STONED

using a single mutation in the SELFIES representation was successful in identifying potential

TADF candidates, in future work, we would like to explore the use of more than one number of

mutations in the SELFIES representation to generate a more diverse and comprehensive library

of molecules for TADF research.

In conclusion, the findings of this study highlight the importance of a well-designed molecule

library for identifying promising TADF candidates. The generation of a diverse and comprehen-

sive library of molecules can increase the likelihood of identifying potential TADF candidates.

The study’s approach can be applied to other areas of research and can inform the design of

future libraries of molecules for similar areas of investigation. However, it is important to note

the limitations of the study, including the reliance on computational methods and the lack of

experimental validation. Therefore, future work should involve experimental validation of the

identified molecules, as well as the exploration of other computational methods and selection

criteria to further improve the generation of molecule libraries.



Chapter 5

High Through Put Virtual Screening

Workflow Results - Part 2

5.1 Introduction

In the previous chapter, we described and discussed the first part of our HTVS workflow, where

we generated a diverse library of molecules using the STONED software and filtered them

based on a number of criteria. In this chapter, we focus on the second part of our workflow,

which involves the use of first principle calculations, specifically DFT calculations, to study the

optimised molecules from the previous chapter at a deeper level. The aim of this chapter is to

understand why the molecules that passed the filtering criteria succeeded and to gain insights

that can inform the design of novel TADF molecules. The use of DFT calculations allows us

to investigate the electronic properties and excited-state energies of the molecules, which are

critical factors in TADF. Overall, this chapter is an important step in our efforts to identify

promising TADF molecules and contribute to the development of more efficient OLEDs.

105
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5.2 DFT on Force Field Optimised Geometry

In order to gain a deeper understanding of the potential candidate TADF molecules obtained

through the MMFF94 geometry optimisation process, further investigation is required. DFT

can provide valuable insights into the electronic structure and properties of the molecules.

In this section, we will discuss the process of running single-point DFT calculations on the

MMFF94 geometry-optimised molecules. This will allow us to obtain electronic energies and

properties such as the HOMO and LUMO energy levels, which can aid in filtering further

molecules. In addition, we also calculated HOMO-LUMO spatial overlap (ΛT ) [138].

The HOMO-LUMO energy gap is a crucial parameter in determining the electronic properties of

molecules. In particular, it is an important metric for identifying candidate molecules with the

potential for TADF, a process that can improve the efficiency of OLEDs. As a key determinant

of light absorption and emission, the HOMO-LUMO gap influences the wavelength and colour

of light emitted by the molecule, making it essential for OLED design and display technologies.

In the context of TADF, the HOMO-LUMO gap plays a pivotal role in determining the ∆EST . A

small energy gap results in a reduced energy difference between the lowest S1 and the lowest T1.

This characteristic is highly desirable for TADF materials, as it enables the efficient conversion

of triplet states to singlet states, leading to delayed fluorescence emission and improved OLED

performance. By optimising the HOMO-LUMO energy gap, the radiative recombination rate

can be enhanced and the overall emission efficiency of TADF materials, which are critical factors

in achieving high-performance OLEDs.

Beyond its impact on light emission and TADF, the HOMO-LUMO gap also influences charge

transport properties within the molecule. A narrow energy gap facilitates charge transfer and

promotes efficient movement of charge carriers, affecting the electrical conductivity and charge

mobility of the material. On the other hand, a large energy gap suggests higher chemical

stability, which can be advantageous for material durability and device lifetime.

Considering the relevance of the HOMO-LUMO gap in determining electronic and optical

properties, its precise tuning becomes crucial in designing innovative OLED materials. Through
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rational molecular design and computational modelling, molecules with an optimal HOMO-

LUMO energy gap can be identified, paving the way for the development of highly efficient

TADF emitters and the advancement of next-generation OLED technologies. The exploration

of novel materials with tailored energy gaps represents a promising avenue for enhancing the

performance and versatility of OLED devices for various applications in displays, lighting, and

optoelectronics.

One way to predict TADF properties in an HTVS workflow is to calculate the HOMO-LUMO

overlap ΛT , which is related to the probability of exciton transfer between the electron donor

and acceptor moieties of a molecule. By using this parameter as a filter in HTVS, it is possible

to narrow down the pool of candidate molecules to those with a higher likelihood of exhibiting

TADF properties, thereby reducing the number of molecules that need to be experimentally

synthesised and tested. This approach can save time and resources in the search for new TADF

molecules and can lead to the discovery of more efficient OLEDs. In type-VII TADF systems

where it is not easy to distinguish between the donor and acceptor moieties, the HOMO-LUMO

overlap integral can still be used as a metric to assess the potential for exciton transfer between

the two parts of the molecule [13], which is a key factor in TADF efficiency.

(a) (b)

Figure 5.1: Boxplots showing the distribution of (a) HOMO-LUMO energy gap and (b) HOMO-
LUMO overlap (ΛT ) values across the filtered molecule library. The black diamond represents
the value of the corresponding parent molecule.

In this section, we compare and visualise the distribution of the HOMO-LUMO energy gap (eV)

and the HOMO-LUMO overlap parameter (ΛT ) among the different molecule families in Figures

5.1a and 5.1b, respectively. The HOMO-LUMO energy gap and ΛT for the parent molecules
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were calculated based on their MMFF94-optimised geometry. It is a fair comparison to use

these values for both parent and child molecules, as they are optimised using the same method of

MMFF94 geometry optimisation. However, using DFT calculations to optimise the geometry

of the parent molecules would be unfair, as it significantly increases the computational cost

and time required for the screening process. Moreover, using MMFF94-optimised geometry for

both parent and child molecules ensures a consistent and unbiased comparison between them.

Therefore, the use of MMFF94-optimised geometry for both parent and child molecules enables

a more efficient and unbiased screening process in the HTVS approach.

Our analysis revealed an interesting pattern in the HOMO-LUMO values of parent and child

molecules (Figure 5.1a). Specifically, the HOMO-LUMO value of D-A TADF parent molecules

falls within quartile group 3 (Q3), whereas type-VII parent molecules are positioned just above

the edge of Q3, in quartile group 4 (Q4). This suggests that the HOMO-LUMO value of

the parent molecules is relatively consistent and falls within a certain range, while the child

molecules have a wider range of values. This finding may be useful in the selection of potential

TADF molecules, as it suggests that child molecules with HOMO-LUMO values falling within

the Q3 range of the parent molecules may have higher chances of exhibiting TADF behaviour.

However, other factors such as ΛT and overall chemical structure should also be taken into

consideration during the selection process.

Analysing ΛT values of the two TADF families, D-A and Type-II, in Figure 5.1b, reveals

a consistent pattern in the values of ΛT . The D-A parent molecules generally have smaller

ΛT values, with all falling within quartile group 1 (Q1) of the distribution, while the Type-

VII parent molecules have higher ΛT values, with most falling within quartile group 2 (Q2).

However, the child molecules exhibit a wider range of ΛT values. These observations can inform

the selection of potential TADF molecules, with a focus on child molecules with ΛT values falling

within the Q1 and Q2 range of their respective parent molecules, along with consideration of

other factors such as HOMO-LUMO values and overall chemical structure.

As discussed in Section 1.4.2, D-A type molecules are expected to have a small HOMO-LUMO

overlap due to their asymmetric electronic structure, which leads to a small singlet-triplet en-
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ergy gap and promotes efficient ISC. This is in contrast to Type-VII molecules, which have a

symmetric electronic structure and are expected to have a greater HOMO-LUMO overlap. As

seen in the literature, the distribution of the HOMO-LUMO overlap parameter (ΛT ) for the

D-A parent molecules in our dataset is mostly in Q1, which is consistent with the theoreti-

cal prediction. By contrast, Type-VII parent molecules generally exhibit higher values of ΛT

than those of D-A TADF and predominantly occupy Q2, which is consistent with the findings

reported in the original paper [13]. The child molecules, on the other hand, exhibit a wider

range of values for ΛT , which suggests that their electronic structures have been significantly

modified to achieve TADF properties.

In addition to the box plots, we also plotted the HOMO-LUMO gap as a function of ΛT (figure

5.2) for each molecule. Using this plot, we performed molecule filtering based on the criteria of

having a HOMO-LUMO gap and ΛT values smaller than their respective parent molecules. This

allowed us to focus on molecules with a similar or smaller HOMO-LUMO gap and ΛT value,

which are important parameters for efficient TADF performance. Thus, this plot provided a

useful tool for narrowing down the selection of potential TADF candidates for further testing.

However, we only had 3 molecules for the PXZ-TRZ family, 9 for the TXO-TPA family, and

none for the TXO-TPB family. To ensure a diverse set of compounds for further analysis, we

selected a minimum of 10 molecules for these families. The additional molecules were chosen

based on their increasing order of ΛT , while still being smaller than the parent HOMO-LUMO

value (Table 5.1).
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(a) PXZ-TRZ (b) TXO-PhCz

(c) TXO-TPA (d) GOBVUP

(e) TUFWAS

Figure 5.2: HOMO-LUMO energy gap (eV) and HOMO-LUMO overlap ΛT of molecules, with
color-coded Tanimoto coefficients. The red vertical dashed line represents the value of the
parent molecule’s ΛT and the red horizontal dashed line represents the parents HOMO-LUMO
(eV).

The process of filtering molecules based on the HOMO-LUMO gap and the overlap integral

parameter ΛT resulted in a decreased total number of molecules, as shown in Table 5.1. Further-

more, performing a single-point DFT calculation on the MMFF94 optimised geometry further

decreased the number of molecules due to convergence issues that can arise from discrepancies

between the MMFF94 force field and DFT methods. These discrepancies can lead to differ-

ences in the energy and geometry calculations, potentially causing convergence issues during

the DFT calculation.
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HTVS typically involves the rapid screening of large chemical libraries to identify potential

candidates. Due to the large number of molecules involved, it is often necessary to use com-

putationally efficient methods that can quickly filter out unlikely candidates. However, these

methods may also have limitations and discrepancies compared to more accurate but com-

putationally expensive methods like DFT. When using computationally efficient methods like

MMFF94-optimised structures for DFT calculations to calculate the HOMO-LUMO gap and

overlap integral parameters in HTVS efforts, it is important to acknowledge the potential dis-

crepancies and limitations of these methods. Such discrepancies can lead to differences in

the energy and geometry calculations, potentially causing convergence issues during the DFT

calculation.

Table 5.1: Number of molecules remaining after applying the HOMO-LUMO and density over-
lap threshold during the high-throughput virtual screening workflow.

Method PXZ-TRZ TXO-PhCz TXO-TPA GOBVUP TUFWAS
MMFF94 Optimisation 37 397 72 170 204
DFT on MMFF94 37 383 72 165 198
HL & LT 10 10 10 30 32

5.3 DFT Geometry optimisation

In this section, we present the data obtained from the geometry optimisation of the selected

molecules using the DFT method. As discussed in the previous section, we filtered the molecules

based on their HOMO-LUMO gap and ΛT values obtained from the MMFF94 calculations. All

selected molecules were then subjected to DFT geometry optimisation to obtain their optimised

geometries. We obtained the optimised geometries for all selected molecules (Table 5.2).

Table 5.2: Number of molecules remaining after DFT geometry optimisation in the high-
throughput virtual screening workflow discussed in this work.

Method PXZ-TRZ TXO-PhCz TXO-TPA GOBVUP TUFWAS
DFT Geopt. 10 10 10 30 32
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5.4 Frontier Orbitals and Singlet-Triplet Splittings

The results section presents the analysis of Frontier Orbitals (HOMO-LUMO) and singlet-

triplet splitting (∆EST ) of the DFT geometry-optimised molecules, obtained from section 5.3.

The HOMO-LUMO energy gap is a crucial factor that determines the TADF efficiency of

a molecule. A smaller HOMO-LUMO energy gap indicates a higher probability of efficient

ISC, which is desirable for TADF applications. Moreover, the singlet-triplet energy splitting

(∆EST ) plays a crucial role in determining the TADF properties of a molecule. A smaller

∆EST indicates a higher probability of achieving efficient reverse intersystem crossing (RISC)

and thus higher TADF efficiency [50]. Therefore, understanding the values of HOMO-LUMO

and ∆EST is essential to identify potential TADF molecules for practical applications. The

analysis presented in this section provides valuable insights into the TADF properties of the

selected molecules.

DFT geometry optimisation of the parent molecules was an essential step, as it provided a

necessary baseline for comparison with the child molecules. The boxplot of HOMO-LUMO

(a) (b)

Figure 5.3: Box plots showing the distribution of (a) HOMO-LUMO energy gap and (b) singlet-
triplet splitting (∆EST ) energy for the parent molecules and their derivatives. The black
diamond represents the value of the corresponding parent molecule.

values across each molecule family after DFT geometry optimisation reveals some interesting

trends. First, it is important to note that all candidate molecules, both parents and children,

were optimised with DFT. This is a positive sign and indicates that the molecules are reasonable

candidates for further investigation.
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The Figure 5.3a of HOMO-LUMO gaps after DFT geometry optimisation revealed interest-

ing trends among different molecule families. It was observed that the HOMO-LUMO gaps

for all the candidate molecules increased overall, indicating improved stability and electronic

properties after optimisation. Moreover, it was observed that different molecule families had

varying ranges of HOMO-LUMO gaps. The type-VII TADF families, including GOBVUP and

TUFWAS, exhibited a larger range of HOMO-LUMO gaps, suggesting that these families may

be promising sources for high-performance TADF materials. In contrast, the D-A TADF fam-

ilies, including PXZ-TRZ, TXO-PhCz, and TXO-TPA, had smaller ranges of HOMO-LUMO

gaps, indicating that the use of this method to generate molecules may prove less effective for

D-A type. However, the type-VII families had more candidate molecules than D-A families,

which could have contributed to the result in a wider range of HOMO-LUMO values but also

type-VII molecules generally do have a larger HOMO-LUMO gap [13]. Overall, the type-VII

TADF families, GOBVUP and TUFWAS, had a wider range of HOMO-LUMO gaps compared

to the D-A TADF families, PXZ-TRZ, TXO-PhCz, and TXO-TPA, which had smaller ranges.

The type-VII families may be a promising source for high-performance TADF materials.

Figure 5.3b shows the ∆EST of the child molecules following DFT geometry optimisation. Over-

all, the majority of child molecules have higher ∆EST values than their parent molecules. How-

ever, some child molecules in the D-A family, namely PXZ-TRZ, TXO-PhCz, and TXO-TPA,

exhibit smaller or comparable ∆EST values, despite being selected based on higher HOMO-

LUMO overlap (ΛT ). ΛT calculated on MMFF94-optimised geometry could still be a useful

indicator depending on the research question and context. For instance, when the goal is to

rapidly compare different molecules within a specific class of compounds, using the same level

of theory for all molecules could provide a consistent basis for comparison. However, as men-

tioned in the previous section, filtering molecules solely based on the HOMO-LUMO energy

gap could be feasible in terms of computational cost, as evidenced by previous studies that

have performed DFT geometry optimisation on hundreds of molecules [161, 13, 160]

Overall, the range of ∆EST values varied among different molecule families. Among the D-A

TADF families, TXO-TPA had the smallest range of ∆EST values, indicating that this method

may be less effective in generating D-A type TADF materials. On the other hand, the type-
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VII TADF families showed a wider range of ∆EST values, with some molecules lying beyond

the upper whisker of the boxplot. This suggests that these families may contain potential

candidates for high-performance TADF materials.

Figure 5.4: The singlet-triplet splitting (∆EST ) and LUMO-HOMO gap are shown using black
markers for the parent molecule and coloured markers for the candidate molecules.

Figure 5.4 does not show any clear trend between the two variables, ∆EST and HOMO-LUMO.

However, there is a cluster of molecules around the ∆EST values of the parent molecules,

indicating that the child molecules maintained some similarity to the parent molecules in terms

of their singlet-triplet splitting. This suggests that the design strategy employed to generate

the child molecules did not result in a significant change in the singlet-triplet splitting of the

molecules.

The study investigated the HOMO-LUMO gap and ∆EST of candidate molecules for TADF

materials. DFT geometry optimisation was performed for both parent and child molecules.

The boxplot of HOMO-LUMO gaps after optimisation showed that the type-VII TADF fami-

lies had a wider range of gaps compared to the D-A TADF families, indicating their potential

for high-performance TADF materials. The ∆EST of the child molecules also showed interest-

ing trends among different molecule families, with some child molecules exhibiting smaller or

comparable values despite being selected based on higher HOMO-LUMO overlap. Overall, the

study suggests that filtering molecules based on the HOMO-LUMO energy gap could be feasi-

ble in terms of computational cost and could be a useful indicator depending on the research
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question and context.

In the subsequent stage of our workflow, we focus on exploring candidate molecules that exhibit

the smallest ∆EST < 0.1 eV. This is crucial because a smaller ∆EST implies an efficient reverse

intersystem crossing (RISC), which in turn can facilitate efficient TADF. Hence, molecules

with smaller ∆EST values are more promising in exhibiting TADF behaviour. We use the

visualisation of a similarity map to analyse the structure which will be discussed next.

5.4.1 Similarity Map

To visualise the similarities and differences in structure between parent and child molecules, we

used the GetMorganFingerprint function in RDkit with a radius of 4 and a fingerprint type

of ‘bv’ (bit vector) [219, 194, 220].

The radius value chosen for fingerprint generation can impact the size of the molecular envi-

ronment considered, but its importance depends on the application and molecule complexity.

Larger radii capture more information about the molecule while smaller radii focus on the

immediate environment. A suitable radius must capture relevant features and avoid noise.

Two commonly used molecular fingerprint types are count and bit vector. Count generates a

vector that counts the occurrence of substructures in the molecule, while bit vector generates

a fixed-length vector that represents the presence or absence of each substructure. ‘bv’ vectors

are preferred in machine learning models and similarity searches due to their consistent length,

which makes them suitable for fixed-length feature sets.

The fixed-length nature of bv fingerprints is advantageous in reducing noise caused by substruc-

ture variations and ensuring the feature sets used for training and prediction are consistent.

These fingerprints can be saved in a file format and used as input for various machine learning

models and similarity search algorithms. For machine learning, bv fingerprints can be used as

input features for predictive models, while in similarity searches, they can be used to search

large databases of compounds to identify molecules with similar substructures.
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5.4.2 Candidates

In order to understand the structure-activity relationships of TADF molecules, it is important to

investigate the similarities and differences between molecules with similar electronic properties.

One approach to accomplish this is to generate similarity maps using molecular fingerprints.

Here, we focus on three candidate molecules from each TADF family with the smallest ∆EST

and analyse their structures using a similarity map approach, discussed in Section 5.4.1. This

will allow us to visually compare the structural similarities and differences between parent

and child molecules and potentially identify key substructures that contribute to their TADF

properties.

Table 5.3: Singlet-triplet energy gap (∆EST ) and HOMO-LUMO energy gap (eV) and SYn-
thetic Bayesian Accessibility (SYBA) score of the parent molecules.

Molecule HOMO-LUMO (eV) ∆EST eV SYBA
PXZ-TRZ 1.39 0.041 36.2
TXO-PhCz 1.70 0.076 27.8
TXO-TPA 1.21 0.063 49.2
GOBVUP 1.67 0.048 -2.2
TUFWAS 1.48 0.047 18.5

The naming convention of the molecules in Table 5.4 is based on their order of generation.

Specifically, the number in the name (e.g. 2086) refers to the index of the molecule in the

sequence of generated molecules. For instance, TXO-PhCz 2086 is simply the 2086th molecule

generated using this method.

When comparing the HOMO-LUMO energy and ∆EST values (Table 5.4) of the candidate

molecules with parent molecules, among the PXZ-TRZ family, PXZ-TRZ 866, PXZ-TRZ 1461,

and PXZ-TRZ 2078 exhibited a decrease in HOMO-LUMO energy compared to their parent

molecule by 0.16, 0.14, and 0.40 eV, respectively.

On the other hand, the TXO-PhCz family exhibited an increase in HOMO-LUMO energy

compared to their parent molecule, with TXO-PhCz 2424, TXO-PhCz 2086, and TXO-PhCz

1126 showing an increase of 1.13, 0.16 and 0.145 eV, respectively.

GOBVUP 2026 and GOBVUP 1527 molecules showed an increase in HOMO-LUMO energy
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by 0.85 and 0.04 eV, respectively. While GOBVUP 2149 showed a decrease in HOMO-LUMO

energy by 0.02 eV. The TUFWAS 2720 and TUFWAS 340 molecule showed a decrease in

HOMO-LUMO energy 0.06 and 0.89 eV, respectively, while TUFWAS 22 increased by 0.02

eV. Regarding ∆EST values, all molecules exhibited a decrease in ∆EST except for TUFWAS

Table 5.4: Singlet-triplet energy gap (∆EST ) and HOMO-LUMO energy gap (eV), SYnthetic
Bayesian Accessibility (SYBA) score and Tanimoto coefficient (compared to parent molecule)
of molecules chosen based on smallest ∆EST .

Molecule HOMO-LUMO (eV) ∆EST eV SYBA Tanimoto Coefficient
PXZ-TRZ 866 1.23 0.029 11.5 0.77
PXZ-TRZ 1461 1.25 0.030 -10.7 0.61
PXZ-TRZ 2078 0.98 0.031 8.2 0.77
TXO-PhCz 2424 0.57 0.052 -2.8 0.65
TXO-PhCz 2086 1.54 0.068 -7.5 0.75
TXO-PhCz 1126 1.56 0.068 12.7 0.83
TXO-TPA 1575 1.28 0.062 45.3 0.83
TXO-TPA 380 0.96 0.063 37.6 0.84
GOBVUP 2026 2.52 0.041 -3.2 0.44
GOBVUP 1527 1.71 0.045 8.4 0.64
GOBVUP 2149 1.65 0.053 7.6 0.75
TUFWAS 2720 1.43 0.046 -17.5 0.62
TUFWAS 22 1.50 0.047 9.4 0.80
TUFWAS 340 0.59 0.048 -16.1 0.66

340, GOBVUP 2149 and TXO-TPA 380, which showed a small increase in ∆EST . The largest

decrease in ∆EST was observed for TXO-PhCz 2424, which showed a decrease of 0.023 eV

compared to its parent molecule.

Based on the analysis, it can be concluded that there are notable differences in the electronic

properties of the molecules in the D-A type family (PXZ-TRZ, TXO-PhCz, TXO-TPA) and

type-VII family (GOBVUP and TUFWAS) compared to their respective parent molecules. The

PXZ-TRZ family showed a significant decrease in HOMO-LUMO energy, while the TXO-PhCz

family exhibited an increase. The GOBVUP and TUFWAS molecules showed a mix of increase

and decrease in HOMO-LUMO energy. Regarding ∆EST values, all molecules showed a small

decrease except for TUFWAS 340, GOBVUP 2149 and TXO-TPA 380, which showed a small

increase.

Using similarity maps (Figure 5.5 and 5.6) can be an effective approach for understanding
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the observed differences in electronic properties. The similarity maps provide a visual repre-

sentation of the similarities and differences in electronic distribution between the candidate

molecules and their respective parent molecules. By comparing the similarity maps of the

candidate molecules with their parent molecules, we can identify the regions where there are

differences in electronic distribution that lead to the observed differences in electronic properties

such as HOMO-LUMO energy and ∆EST .

This approach can provide valuable insights into the molecular structure and electronic prop-

erties of the candidate molecules, which can guide the design of new molecules with desirable

electronic properties. Therefore, the D-A type family (PXZ-TRZ, TXO-PhCz, TXO-TPA) and

type-VII family (GOBVUP and TUFWAS) can be fine-tuned by modifying their structures,

making them potential candidates for organic optoelectronic devices.

PXZ-TRZ 866

As depicted in Figure 5.5a, the PXZ-TRZ 866 variant exhibits a smaller HOMO-LUMO energy

gap of 1.23 eV, a smaller ∆EST of 0.029, and a smaller SYBA value of 11.5 compared to the

parent molecule (as summarised in Table 5.4). The Tanimoto coefficient of 0.77 suggests a

higher level of similarity with the parent molecule.

The smaller HOMO-LUMO energy gap in PXZ-TRZ 866 compared to the parent molecule

indicates that it may have improved charge transport properties. However, the lower SYBA

value suggests that PXZ-TRZ 866 may be less synthetically accessible than the parent molecule.

The Tanimoto coefficient indicates that there are some structural differences between PXZ-

TRZ 866 and the parent molecule. In PXZ-TRZ 866, the nitrogen-containing functional group

has a positive charge instead of a neutral charge, and the position of the oxygen-containing

functional group is different.

In summary, PXZ-TRZ 866 has a different structure compared to the parent molecule PXZ-

TRZ, with a positively charged nitrogen-containing functional group and a different position of

the oxygen-containing functional group. This results in differences in electronic and structural
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properties, including a smaller HOMO-LUMO energy gap and lower SYBA value. This is

interesting as prior research has described radical emitters that produce emission originating

from a spin doublet, rather than a singlet or triplet exciton, as previously discussed in the

literature [210, 217, 218]. Further investigation is necessary to fully understand the implications

of these differences on the properties and potential applications of the molecule.

PXZ-TRZ 1461

The candidate molecule PXZ-TRZ 1461 (Figure 5.5b) has a similar structure to the parent

molecule but with a bromine atom substituted at TRZ. The HOMO-LUMO value for PXZ-

TRZ 1461 is 1.25 eV, which is smaller than the parent molecule (1.39 eV). The ∆EST for

PXZ-TRZ 1461 is 0.030, which is also smaller than the parent molecule. The SYBA value

for PXZ-TRZ 1461 is negative (-10.66). The Tanimoto coefficient for PXZ-TRZ 1461 is 0.61

suggests a moderate level of similarity with the parent molecule

Based on these results, it can be concluded that the substitution of the hydrogen atom with

a bromine atom at TRZ of the PXZ-TRZ molecule leads to a decrease in the HOMO-LUMO

value and the ∆EST . The negative SYBA value for PXZ-TRZ 1461 suggests it is difficult to

synthesise. Therefore, if the goal is to design a molecule with similar properties to PXZ-TRZ,

substituting a hydrogen atom with a bromine atom at TRZ may not be an optimal strategy.

PXZ-TRZ 2078

PXZ-TRZ 2078 has a positively charged phosphonium group (P+) attached to one of the aryl

groups (Figure 5.5c), while PXZ-TRZ does not have any charged groups. In terms of their

electronic properties, PXZ-TRZ 2078 has a smaller HOMO-LUMO energy gap compared to

PXZ-TRZ. This indicates that PXZ-TRZ 2078 is more easily ionised compared to PXZ-TRZ.

Additionally, PXZ-TRZ 2078 has a smaller ∆EST than PXZ-TRZ, indicating that it is more

easily oxidised. However, despite the difference in their electronic properties, both molecules

have positive SYBA values.
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In terms of their Tanimoto coefficient, PXZ-TRZ 2078 has a score of 0.77, which is lower than

the Tanimoto coefficient of 0.95875264 for PXZ-TRZ 866. This indicates that PXZ-TRZ 2078

is less similar to the parent molecule PXZ-TRZ compared to PXZ-TRZ 866.

Overall, the addition of the positively charged phosphonium group to one of the aryl groups

in PXZ-TRZ 2078 introduces a significant structural difference, leading to different electronic

properties and lower similarity to the parent molecule PXZ-TRZ.

Design Strategy for Improving PXZ-TRZ

Based on the data provided, there is a design strategy that could potentially improve the TADF

properties of PXZ-TRZ:

• Modifying the aryl groups: The aryl groups attached to the pyrazine ring in PXZ-TRZ

could be modified to improve its TADF properties. For example, introducing electron-

donating or electron-withdrawing groups to the aryl groups could change the energy levels

of the molecule and possibly improve its TADF properties.

TXO-PhCz 2424

TXO-PhCz 2424 has a phosphine group (PH) (Figure 5.5d) attached to the carbazole unit,

while the parent TXO-PhCz does not have any such group.

In terms of their electronic properties, TXO-PhCz 2424 has a smaller HOMO-LUMO energy gap

compared to TXO-PhCz. This indicates that TXO-PhCz 2424 is more easily ionised compared

to TXO-PhCz. Additionally, TXO-PhCz 2424 has a smaller ∆EST than TXO-PhCz. However,

despite the difference in their electronic properties, both molecules have positive SYBA values.

Overall, the addition of the PH group to the carbazole unit in TXO-PhCz 2424 introduces a

significant structural difference, leading to different electronic properties and lower similarity

to the parent molecule TXO-PhCz. The smaller HOMO-LUMO energy gap and smaller ∆EST
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of TXO-PhCz 2424 suggest that this molecule may have better TADF properties compared to

TXO-PhCz. However, further experimental studies would be required to confirm this.

TXO-PhCz 2086

In TXO-PhCz 2086 (Figure 5.5e), one of the benzene rings attached to the thiophene ring

has been quaternised (i.e. a positively charged nitrogen atom with four organic substituents)),

resulting in a positively charged nitrogen atom in the ring. This modification may have an

effect on the molecule’s reactivity and electronic properties.

The HOMO-LUMO gap of TXO-PhCz 2086 is smaller than that of the parent molecule. The

∆EST value for TXO-PhCz 2086 is also smaller than that of the parent molecule. The SYBA

value for TXO-PhCz 2086 is negative, indicating that it may be more difficult to synthesise than

the parent molecule. The Tanimoto similarity value of 0.75 suggests a higher level of similarity

with the parent molecule, which could simplify the synthetic process, however, the SYBA value

for TXO-PhCz 2086 is negative, indicating that it may be more difficult to synthesise.

We can see that TXO-PhCz 2086 has an additional nitrogen atom that is positively charged.

This modification is expected to affect the electronic properties of the molecule, potentially

leading to changes in the HOMO-LUMO energy gap and other related properties. The HOMO-

LUMO energy gap of TXO-PhCz 2086 is slightly smaller than that of the parent molecule,

indicating the lower energy required for electron excitation.

TXO-PhCz 1126

Comparing TXO-PhCz 1126 to the parent molecule TXO-PhCz (Figure 5.5f), we see that both

HOMO-LUMO gap, ∆EST and SYBA of TXO-PhCz 1126 is lower than that of the parent

molecule. The Tanimoto value of 0.83 suggests that the two molecules still have a relatively

high degree of similarity, indicating that TXO-PhCz 1126 may still have similar properties and

potential applications as the parent molecule.
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Design Strategy for Improving TXO-PhCz

A design strategy that could potentially improve the TADF properties of TXO-PhCz:

• Modification of the acceptor moiety: In both TXO-PhCz 2086 and TXO-PhCz 1126, the

acceptor moiety has been modified by introducing electron-withdrawing groups such as

nitrogen, which can improve the TADF properties of the molecule. Therefore, further

modification of the acceptor moiety could potentially enhance the TADF properties of

TXO-PhCz.

TXO-TPA 1575

The parent molecule TXO-TPA is a donor-acceptor type organic molecule with a thiophene

core and two electron-withdrawing groups (anhydride and sulfone).

TXO-TPA 1575 is a derivative of TXO-TPA with a modified acceptor group (Figure 5.5g). It

has a similar molecular structure with a HOMO-LUMO energy gap of 1.28 eV, a DEST of

0.062 eV, and an SYBA score of 45.3. Compared to the parent molecule, the modified molecule

has a slightly larger HOMO-LUMO energy gap. The ∆EST of the modified molecule is slightly

lower than the parent molecule. The SYBA score (45.3) of the modified molecule is similar to

the parent molecule, indicating that it is easy to synthesise.

In terms of similarity, TXO-TPA 1575 has a Tanimoto coefficient of 0.83, indicating that it

shares a high degree of structural similarity with the parent molecule.

Overall, the modifications made to the acceptor group in TXO-TPA 1575 seem to have improved

the TADF properties of the parent molecule. However, further experimental investigation is

necessary to confirm the theoretical predictions.
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TXO-TPA 380

The HOMO-LUMO gap of TXO-TPA 380 (Figure 5.5h) is smaller than that in the parent

molecule, indicating that TXO-TPA 380 has a lower excitation energy requirement. The singlet-

triplet splitting (∆EST ) in TXO-TPA 380 is similar to the parent molecule. However, the SYBA

of TXO-TPA 380 is lower than that of the parent molecule yet positive value of 37.6 suggests

that it may be easy to synthesise.

Despite the differences, TXO-TPA 380 still retains some similarities to the parent molecule, as

it has a Tanimoto coefficient of 0.84.

Design Strategy for Improving TXO-TPA

Based on the comparison of TXO-TPA 1575 and TXO-TPA 380, a potential design strategy

that could improve TADF properties of TXO-TPA is:

• Introduction of electron-donating groups: The HOMO-LUMO energy gap of TXO-TPA

1575 is higher than that of TXO-TPA 380. The introduction of electron-donating groups

such as alkyl or aryl substituents on the aromatic rings may enhance the electron transport

properties and reduce the HOMO-LUMO energy gap.
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(a) PXZ-TRZ 866
∆EST = 0.029 eV
HOMO-LUMO = 1.23 eV
Tanimoto coefficient = 0.77
SYBA = 11.47

(b) PXZ-TRZ 1461
∆EST = 0.030 eV
HOMO-LUMO = 1.25 eV
Tanimoto coefficient = 0.61
SYBA = -10.66

(c) PXZ-TRZ 2078
∆EST = 0.031 eV
HOMO-LUMO = 0.98 eV
Tanimoto coefficient = 0.77
SYBA = 8.24

(d) TXO-PhCz 2424
∆EST = 0.052 eV
HOMO-LUMO = 0.57 eV
Tanimoto coefficient = 0.65
SYBA = -2.81

(e) TXO-PhCz 2086
∆EST = 0.068 eV
HOMO-LUMO = 1.54 eV
Tanimoto coefficient = 0.75
SYBA = -7.52

(f) TXO-PhCz 1126
∆EST = 0.068 eV
HOMO-LUMO = 1.56 eV
Tanimoto coefficient = 0.83
SYBA = 12.69

(g) TXO-TPA 1575
∆EST = 0.062 eV
HOMO-LUMO = 1.28 eV
Tanimoto coefficient = 0.83
SYBA = 45.33

(h) TXO-TPA 380
∆EST = 0.063 eV
HOMO-LUMO = 0.96 eV
Tanimoto coefficient = 0.84
SYBA = 37.60

Figure 5.5: Visualisation of similarity maps generated by comparing the selected TADF
molecules with the smallest ∆EST (eV) values from each D-A TADF family to their par-
ent molecules. The green colour indicates a higher similarity between the parent and child
molecules in that particular region, while the red colour indicates a lower similarity.
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(a) GOBVUP 2026
∆EST = 0.041 eV
HOMO-LUMO = 2.52 eV
Tanimoto coefficient = 0.44
SYBA = -3.23

(b) GOBVUP 1527
∆EST = 0.045 eV
HOMO-LUMO = 1.71 eV
Tanimoto coefficient = 0.64
SYBA = 8.41

(c) GOBVUP 2149
∆EST = 0.053 eV
HOMO-LUMO = 1.65 eV
Tanimoto coefficient = 0.75
SYBA = 7.58

(d) TUFWAS 2720
∆EST = 0.046 eV
HOMO-LUMO = 1.43 eV
Tanimoto coefficient = 0.62
SYBA = 37.60

(e) TUFWAS 22
∆EST = 0.047 eV
HOMO-LUMO = 1.50 eV
Tanimoto coefficient = 0.80
SYBA = 37.60

(f) TUFWAS 340
∆EST = 0.048 eV
HOMO-LUMO = 0.59 eV
Tanimoto coefficient = 0.66
SYBA = 37.60

Figure 5.6: Visualisation of the similarity maps generated using the chosen TADF molecules
with the smallest ∆EST (eV) values from each type-VII TADF family. The green colour indi-
cates a higher similarity between the parent and child molecules in that particular region, while
the red colour indicates a lower similarity.

GOBVUP 2026

The ∆EST of GOBVUP 2026 is 0.041 eV, which is smaller than that of the parent molecule.

The SYBA value of GOBVUP 2026 is -3.22, indicating that the molecule did not improve in

terms of synthesis difficulty compared to the parent molecule. However, the similarity value of

GOBVUP 2026 is 0.44, indicating a smaller degree of similarity to the parent molecule.

Overall, GOBVUP 2026 appears to have reduced ∆EST of the molecule while significantly

reducing structural similarity to the parent molecule. This suggests that introducing similar

structural modifications to the parent molecule, such as changing the core structure, maybe a
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potential design strategy to improve TADF properties.

GOBVUP 1527

In GOBVUP 1527 (Figure 5.6b), one of the 1,3-Dithiole units has been replaced with a 1,3-

Dithietane unit. The HOMO-LUMO energy gap (1.71 eV) is larger compared to the parent

molecule. The ∆EST is also slightly smaller at 0.045 eV. However, the SYBA value is positive

at 8.42, indicating that the synthesis ability has been improved over the parent molecule.

GOBVUP 2149

GOBVUP 2149 (Figure 5.6c) is a derivative of the parent molecule GOBVUP with the addition

of an iodine atom in one of the phenyl rings. In terms of electronic properties, GOBVUP 2149

has a slightly smaller HOMO-LUMO gap than its parent molecule. However, the ∆EST is

higher than the parent molecule.

In terms of accessibility, GOBVUP 2149 has improved synthesisability over the parent molecule,

as it is a positive vale of 7.6. When it comes to molecular structure, GOBVUP 2149 is very

similar to its parent molecule, with the only major difference being the presence of an iodine

atom in one of the phenyl rings.

Overall, GOBVUP 2149 appears to be a promising derivative of its parent molecule with slightly

altered electronic and improved synthesisability.

Design Strategy for Improving GOBVUP

Based on the data of GOBVUP 2026, GOBVUP 1527, and GOBVUP 2149, there is one po-

tential design strategy that could improve the TADF properties of GOBVUP:

• The TADF properties of GOBVUP 2149, which contain an iodine atom, are better than

those of GOBVUP 1527, which does not contain iodine. This suggests that incorporat-

ing heavy atoms, particularly halogen atoms, into the molecular structure could improve
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TADF properties by increasing the spin-orbit coupling and decreasing the energy differ-

ence between the singlet and triplet states [221].

TUFWAS 2720

In TUFWAS 2720 (Figure 5.6d), the thiophene rings are substituted with a mixture of sulfur-

containing and carbon-based groups.

TUFWAS 2720 has a smaller HOMO-LUMO energy gap and ∆EST value than that of the

parent molecule TUFWAS, indicating that the TADF properties of TUFWAS 2720 may be

more favourable than those of TUFWAS. However, TUFWAS 2720 is indicated to be hard-to-

synthesis as the SYBA is -17.5. It also has Tanimoto coefficient of 0.62 suggesting there is a

moderate degree of similarity with the parent.

TUFWAS 22

TUFWAS 22 (Figure 5.6e) has a fluorine atom substituted on one of the thiophenes, which

causes an increase in the HOMO-LUMO energy gap from 1.48 to 1.50 eV (parent structure

to TUFWAS 22). This suggests that the fluorine substitution weakly affects the electron-

donating ability of the molecule, likely due to the electron-withdrawing nature of the fluorine

atom. However, we observed that the ∆EST of TUFWAS 22 (0.047 eV) is similar to that of

the parent molecule TUFWAS (0.047 eV).

The SYBA value of TUFWAS 22 is 9.3 is significantly smaller than that of the parent molecule

TUFWAS (18.5), indicating that the fluorine substitution increases the synthesise difficulty

of the molecule. The Tanimoto coefficient of TUFWAS 22 is 0.80, suggesting that it has a

high degree of similarity to the parent molecule. Overall, the substitution of a fluorine atom

in TUFWAS 22 has a minimal impact on the molecule’s electronic and optical properties but

increases its synthesise difficulty.
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TUFWAS 340

TUFWAS 340 (Figure 5.6e) has a linear backbone with a vinyl group, while TUFWAS has a

more complex structure with multiple rings and sulfur atoms.

In terms of electronic properties, TUFWAS 340 has a much smaller HOMO-LUMO gap than

the parent molecule. However, the ∆EST of TUFWAS 340 is similar. The SYBA value of

TUFWAS 340 is negative which indicates that it may be difficult to synthesise. In terms of

similarity, TUFWAS 340 has a moderate similarity to the parent molecule TUFWAS, with a

value of 0.66.

Overall, while TUFWAS 340 has a lower HOMO-LUMO gap than the parent molecule TUFWAS

but similar ∆EST , indicates that it may be a good candidate for TADF. However, the nega-

tive SYBA value also suggests that it may be difficult to synthesise. On the other hand, the

parent molecule TUFWAS has a positive DEST and SYBA value, making it a potentially good

candidate for TADF.

Design Strategy for Improving TUFWAS

Based on the data of TUFWAS 2720, TUFWAS 22, and TUFWAS 340, there is one potential

design strategy that could improve the TADF properties of TUFWAS:

• The substitution of a fluorine atom in thiophene group in TUFWAS 22 has a minimal

impact on the molecule’s electronic and has the potential to decrease ∆EST , however, it

can increase synthesis difficulty.

In Zhao et al.’s paper [13], it was demonstrated that removing fluorine atoms of the bis(pentafluorophenyl)borane

group in ILUBEY significantly increased ∆EST from 0.194 eV to 0.587 eV, highlighting the

important impact of fluorine atoms on TADF properties.
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5.5 Summary and Conclusion

In this chapter, we utilised DFT calculations to assess the HOMO-LUMO energy gap and

ΛT of MMFF94 geometry-optimised molecules. These molecules were generated and screened

according to specific criteria outlined in the previous chapter. Subsequently, we narrowed

down our selection based on the parent HOMO-LUMO gap and ΛT values. However, due to

limited availability, only three molecules from the PXZ-TRZ family and none from the TXO-

TPB family were used, while nine molecules were selected from the TXO-TPA family. To

ensure diversity, we included a minimum of 10 molecules from each family and added more

molecules based on increasing ΛT order and parent HOMO-LUMO value. After performing

DFT geometry optimisation and ∆SCF calculations, we selected the top three molecules from

each family based on the lowest ∆EST values (< 0.1 eV) for structure analysis using similarity

maps. We analysed the structure of each molecule on a case-by-case basis and provided our

own design strategies for each.

In our workflow, it is essential to recognise the potential discrepancies and limitations when

utilising computationally efficient methods, such as MMFF94-optimised structures, for DFT

calculations in HTVS efforts to determine HOMO-LUMO gap and overlap integral parameters.

These limitations may cause variations in energy and geometry calculations, which may lead

to convergence issues during DFT calculations. Therefore, it is crucial to carefully evaluate the

accuracy and reliability of such methods and consider the potential impact on the overall HTVS

strategy. However, for a robust HTVS workflow filtering molecules based on the HOMO-LUMO

energy gap could be feasible in terms of computational cost and could be a useful indicator

depending on the research question and context.

Radical-based molecules have been studied in the literature for their potential application in

OLED devices [210, 217, 218], making the radical molecules we produced through our workflow,

such as PXZ-TRZ 866, PXZ-TRZ 2078, and TXO-PhCz 2086, interesting.

Our analysis of D-A molecules suggests that modifying either the donor or acceptor by increas-

ing their electron donating or withdrawing capabilities, respectively, can improve their design.
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This approach is currently being used to design D-A molecules[222].

To improve the design strategy of type-VII TADF molecules, we suggest introducing elec-

tronegative atoms such as fluorine, nitrogen, or iodine to the benzene or thiophene groups in

GOBVUP or TUFWAS, respectively. This approach is similar to the tentative design reported

in Zhao et al.’s paper [13].

Overall, our study demonstrated the utility of using DFT calculations to evaluate the HOMO-

LUMO energy gap and overlap of a diverse set of molecules designed for TADF applications.

While the limitations of using computationally efficient methods for geometry optimisation

should be acknowledged, our findings suggest that filtering molecules based on the HOMO-

LUMO energy gap can be a useful strategy in designing TADF materials. We also identified

potential modification strategies for donor-acceptor molecules and type-VII TADF molecules,

which may guide future efforts in developing high-performance TADF materials.



Chapter 6

Outlook and Conclusion

6.1 Conclusion

The goal of this study was to develop a HTVS workflow that could facilitate the discovery of

new TADF molecules, while minimising the time and costs involved in experimental screening.

To achieve this, we utilised a range of computational methods, including STONED for gener-

ating diverse molecule libraries, SYBA for scoring molecules based on their synthesis difficulty,

and DFT calculations for evaluating candidate molecules. By applying these techniques to

explore the chemical spaces of five TADF molecules, we were able to identify a set of promising

candidates for further investigation and design iteration.

Based on SYBA analysis, STONED generated molecules that were difficult to synthesise. How-

ever, SYBA score should be viewed as a confidence indicator rather than a strict guideline. Our

study demonstrated the utility and efficiency of using DFT calculations on MMFF94 optimised

structures to evaluate parameters such as the HOMO-LUMO energy gap and overlap integral

for a diverse set of TADF molecules. These calculations were used to filter molecules for further

investigation. However, we also observed that the use of computationally efficient methods such

as MMFF94-optimised structures for DFT calculations can lead to discrepancies and limitations

that must be acknowledged to prevent convergence issues.

131
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Although SMILES notation is a useful and widely used method for representing the structure

of molecules, it should be noted that it has limitations for certain types of molecules. Large or

complex molecules with multiple conformations may be challenging to represent with SMILES.

Therefore, while SMILES notation was a valuable tool in our work, it may not be suitable for

all types of molecules and structures.

Furthermore, we employed ∆SCF calculations on DFT-optimised structures and conducted

similarity map analysis to investigate potential modification strategies for parent donor-acceptor

molecules and type-VII TADF molecules. Our HTVS workflow generated molecules that led to

adjustments in the structure of parent molecules, resembling the designs proposed in previous

literature. These findings offer valuable guidance for future research aimed at designing new

TADF materials.

In conclusion, our study provides valuable insights into the use of computational methods for

TADF molecule design and the challenges associated with using these methods. The findings of

this study have important implications for the development of future TADF molecules, as they

provide a framework for reducing costs and time associated with experimental screening while

also improving the efficiency of virtual screening. Future research should focus on exploring

alternative force field methods and incorporating synthetic accessibility considerations into the

molecule generation process to overcome the limitations of the current methods.

6.2 Future Developments

The subsequent step in the design process involves exploring the chemical space while pre-

serving a specific substructure of the molecule, similar to the side-chain placement method

commonly employed in protein design. For instance, in the case of TUFWAS and GOBVUP,

the introduction of a fluorine or iodine atom to one of the thiophene groups resulted in a reduc-

tion of ∆EST . The central tetrathiafulvalene structure of the molecule is to be preserved while

mutations are introduced to other portions of the structure. It is recommended to increase the

number of mutations per SELFIES to expand the search space and potentially discover more
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effective modifications to the molecule. Whereas, in this study, we constrained the number of

mutations to one to explore the immediate chemical space from the original molecule and to

facilitate further iterations in design.

To further enhance our understanding, we can conduct a thorough comparison between the

MMFF94 and DFT optimised structures, specifically in terms of the HOMO-LUMO energy

gap and ∆EST . This information can be used to calculate errors and fine-tune values obtained

through MMFF94 geometry optimisation. Figure 6.1 shows a comparison of the HOMO-LUMO

energy gap values obtained from DFT and MMFF94 optimised structures in our workflow, but

additional data is required to confirm any trends. Future analyses can include a comparison

of HOMO-LUMO overlap (ΛT ) and ∆EST . Moreover, it may be worthwhile to explore the use

Figure 6.1: Difference in HOMO-LUMO energy gap (eV) of MMFF94 and DFT optimised
molecules.

of alternative force field optimisation methods, such as OPLS3e [154] or OpenFF [155], which

could potentially outperform MMFF94.

Additional research on different TADF molecules is encouraged, and we will evaluate their

feasibility using this workflow.
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6.3 Data Availability

All data from this thesis is available at:

https://gitlab.com/Kritam/HTVS_STONE_SYBA_DFT

https://gitlab.com/Kritam/HTVS_STONE_SYBA_DFT
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[145] Jürgen Köfinger and Gerhard Hummer. Empirical optimization of molecular simulation

force fields by bayesian inference. 94(12):245.

[146] Edward O. Pyzer-Knapp, Changwon Suh, Rafael Gómez-Bombarelli, Jorge Aguilera-
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[158] Ömer H. Omar, Marcos del Cueto, Tahereh Nematiaram, and Alessandro Troisi. High-

throughput virtual screening for organic electronics: a comparative study of alternative

strategies. J. Mater. Chem. C, 9:13557–13583, 2021.

[159] Yinan Shu and Benjamin G. Levine. Simulated evolution of fluorophores for light emitting

diodes. The Journal of Chemical Physics, 142(10):104104, 2015.
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