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Abstract 18 

Statistical modelling of animal distribution has been widely applied to explain how mobile species 19 

use their habitats. The distribution and habitat use of humpback whales Megaptera novaeangliae off 20 

the eastern coast of Brazil have previously been investigated by modelling visual survey data. Here 21 

we modelled their distribution in their breeding range using individual tracking data to compare 22 

ecological inferences with those from previous models from line transect data. A Generalized 23 

Estimating Equation framework was used to model the tracking data and pseudo-absences as 24 

functions of spatial covariates. Covariates considered were latitude and longitude, sea surface 25 
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temperature (SST), current and wind speeds near the surface, distances to shelf-break and the coast, 26 

sea bottom depth and slope, and a factor variable representing “shelter”. Two modelling exercises 27 

were developed: a Habitat Use Model (HUM) and a Distribution Model (DIM). Covariates retained 28 

in the selected HUM were SST, distance to coast and shelf-break, current and wind speeds, and 29 

shelter. Covariates retained in the selected DIM were latitude/longitude, current speed, and distances 30 

to shelf-break and coast. The modelled relationships between whale occurrence and environmental 31 

covariates using tracking data were similar to those using line transect data. Distribution maps were 32 

also similar, supporting higher densities around the Abrolhos Archipelago and to its south. We 33 

showed that habitat use and distribution of this population in the area could be similarly inferred by 34 

modelling either line transect or tracking data. Using these two approaches in conjunction can 35 

strengthen the understanding of important ecological aspects of animal populations. 36 

Key words: Megaptera novaeangliae, ecology, conservation, marine mammals, population recovery.  37 
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1. INTRODUCTION 38 

 Animal distribution and habitat use result from animals exploiting resources to meet their ecological 39 

requirements, from their physiological constraints and the effects of the environment on them 40 

(Matthiopoulos & Aarts 2010). Data on where animals are distributed and how they use the 41 

environment can inform the management of human activities to avoid conflicts. In that context, 42 

distribution models are useful tools to support the identification of areas that require management 43 

(Runge et al. 2015). Because different types of data for studying species’ spatial ecology may be 44 

available, it is important to explore whether similar inferences about distribution and habitat use are 45 

obtained. Animal distribution data obtained through different methods within an area of interest 46 

could, for example, complement each other to improve the spatial extent of information available. 47 

Population distribution and habitat use can be explored using a range of data types and analytical 48 

methods, with outputs partially depending on the nature of the data used (Redfern et al. 2006; Aarts 49 

et al. 2008). Line transect sampling, for example, is designed to estimate density and abundance, and 50 

the data can be used to infer distribution and habitat use through spatial modelling methods (Miller 51 

et al. 2013, Roberts et al. 2016). In line transect surveys, animals are detected along transects and the 52 

effective search areas of those transects are estimated from detection distances using distance 53 

sampling (Buckland et al. 2001). Line transect data are therefore counts of animals detected in units 54 

of sampled space. 55 

Animal tracking data, commonly acquired using animal-borne tags, can also be used to investigate 56 

the distribution and habitat use of animals. For marine mammals, developments to improve equipment 57 

and the increasing availability of analysis tools have facilitated their application (Aarts et al. 2008, 58 

Russell et al. 2016, Jonsen 2016, Trudelle et al. 2016, Elith et al. 2020, Carter et al. 2022). In contrast 59 

to line transect surveys, for which the data are both locations where animals were detected and, 60 

crucially, where they were not, the sampling units in tracking studies are individual animals, and the 61 

data are formed by a series of observed locations of the tracked individuals. That means that the 62 
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portion of space that is sampled is only that which is visited by those animals, meaning that there is 63 

no information in the data about places that are not visited. Another important difference between the 64 

two data types is that line transect data are a snapshot of the location of animals at the time of the 65 

survey (i.e. it is cross-sectional data), while tracking data consists of a set of repeated measurements 66 

of the location of a sample of animals that have been telemetered (i.e. it is longitudinal data, on 67 

multiple individuals). Despite the above differences, the analysis of contrasting data types can provide 68 

different views of a species underlying distribution (Matthiopoulos et al. 2022)  69 

For telemetry tracking data to be useful for habitat use and distribution modelling, the design of 70 

analysis and interpretation of results must consider many potential biases (Elith et al. 2020). For 71 

example, the distribution of locations can be greatly influenced by the distribution of tag deployments, 72 

resulting in tagging location bias (Block et al. 2011). Also important is the serial autocorrelation in 73 

locations along tracks because observations are naturally space-time series (Matthiopoulos & Aarts 74 

2010). It is crucial to consider whether tracked individuals represent a small portion of the population 75 

for which inferences are intended, meaning that although the sample size of locations may appear 76 

large (i.e. many locations), sample sizes for individuals can be small (i.e. few animals). That also 77 

raises concerns regarding whether tracked animals realistically represent their population with respect 78 

to distribution and habitat use (Sequeira et al. 2019).  79 

Animal distribution and habitat use can be inferred using a presence-absence approach. However, 80 

that requires information on both where animals where present (i.e. places surveyed where animals 81 

were detected) and where animals were absent (i.e. places surveyed with no animals detected). 82 

Because of the lack of information on real absences in tracking data (e.g. Pirotta et al. 2011), “pseudo-83 

absence” locations, which represent the available habitat not-visited, are needed for presence-absence 84 

distribution modelling of tracking data (Elith et al. 2020). When using pseudo-absences, the number 85 

of absences to include in the models is controlled by the user, therefore the ratio of pseudo-absence 86 

per presence to be used must be decided. That decision should be guided by model “coefficient 87 
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stability analysis” (when alternative models with an increasing number of pseudo-absences per 88 

presence are ran to visually investigate the stability of the output coefficients; see Supporting 89 

Information S4 in Ventura et al. 2019), while ensuring that pseudo-absences have the corresponding 90 

fraction of the weight of a presence in the models (i.e. the weighted sum of presences equals the 91 

weighted sum of pseudo-absences; Barbet-Massin et al. 2012). 92 

A decision about how to define the area of inference is also required. Some studies have used a 93 

percentage of kernel density estimates to represent habitats frequently used by the animals (e.g. 94 

Pendoley et al. 2014, Mei et al. 2017, Thorne et al. 2017); that percentage is, again, user-controlled. 95 

Adopting a pre-defined area, where the distribution and habitat use of a population have already been 96 

studied using different data, can contribute to a better understanding of how those animals relate to 97 

their environment. 98 

Most humpback whale Megaptera novaeangliae populations are recovering after the end of global 99 

commercial whaling (Zerbini et al. 2019) and the population breeding in coastal waters of Brazil 100 

during winter and spring is no exception (Bortolotto et al. 2016, Wedekin et al. 2017). However, the 101 

coincident increase in human activities in Brazilian coastal waters, especially those related to oil and 102 

gas production (Bortolotto et al. 2017), means that there is a need to understand how these activities 103 

may affect distribution and habitat use to inform whether management actions may be necessary to 104 

avoid impact on the population. Distribution of this population in the area was investigated in the past 105 

using descriptive analysis (Zerbini et al. 2006, Martins et al. 2001, 2013, Castro et al. 2014, Gonçalves 106 

et al. 2018), from a difference in densities within line transect survey blocks (Andriolo et al. 2010) or 107 

for very restricted areas (Martins et al. 2001, Gonçalves et al. 2018). Analysis of line transect data to 108 

investigate the distribution of humpback whales off the coast of Brazil has shown that density was 109 

strongly related to sea temperature and bathymetric features (Bortolotto et al. 2017, Pavanato et al. 110 

2018). Telemetry data for the species in the area has been used to investigate the relative usage of 111 

protected areas (Castro et al. 2014) and movements (Zerbini et al. 2006), but not distribution. 112 
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Here we present distribution and habitat use models of telemetry tracking data of humpback whales 113 

in Brazil and compare model outputs with those from a study using line-transect survey data (i.e. 114 

Bortolotto et al. 2017). Comparing the results on distribution and habitat from different approaches 115 

can strengthen the understanding of important ecological aspects of animal populations, especially 116 

when results support each other. Therefore, management actions, such as spatial planning of natural 117 

resources exploration (e.g. oil exploration, fishing), and the need for conservation strategies for 118 

populations may be better informed. 119 

2. MATERIALS & METHODS 120 

The area of inference for modelling humpback whale distribution and habitat use in this study was 121 

determined by adapting the survey area from Bortolotto et al. (2017), originally comprising the 122 

continental shelf from 5°S to 23°S, to allow a direct comparison. The original area was restricted 123 

considering both the extent of spatial covariates available and the distribution of tagging locations. 124 

Since in a presence/pseudo-absence approach for spatial modelling the area of inference is assumed 125 

to be the habitat available for the animals (Aarts et al. 2008), and because the tagging locations were 126 

not distributed evenly within the original study area (Figure 1), the northernmost portion of the 127 

original area, originally extending north to Natal (Fig. 4 in Bortolotto Ret al. 2017), was excluded to 128 

minimize the chances of failing to meet that assumption. 129 

2.1. Data acquisition: whale tracking  130 

From 2003 to 2012, satellite-linked telemetry tags were attached to adult humpback whales along the 131 

coast of Brazil. Tagging operations occurred every year between August and December except for 132 

2004, when no tagging happened (Supplement, Table S1). Animals were tagged only in good weather 133 

conditions, calm seas, and light to moderate winds (i.e. sea state less than 4 in the Beaufort scale). 134 

Implantable (n = 108) and LIMPET (Low Impact Minimum Percutaneous Electronic Transmitter; 135 

n = 5) tags from Wildlife Computers (Redmond, WA, USA) were used. Implantable tags were 136 
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attached to the animals using a carbon fiber pole or with an Air Rocket Transmitter System (ARTS; 137 

Heide-Jørgensen et al. 2001); LIMPET tags were attached using a crossbow (Andrews et al. 2008). 138 

The targeted tag location on the animal was the base of the dorsal fin because this area is most 139 

frequently exposed when animals surface to breathe, maximizing the chances of transmitter-satellite 140 

signal linking. The tagging boat approached target animals to distances between 3 and 10 m. When 141 

the pole was used, a maximum distance of 5 m was required. Photographs of the tagged animal’s tail 142 

fluke, dorsal fin and attached tag were taken for individual identification and quality control of 143 

tagging methods. Tracking data from tagged whales were obtained via the Argos satellite system 144 

(www.argos-system.org, Collecte Localisation Satellites SA), and tags were programmed to transmit 145 

in various duty cycles (e.g. transmitting every second/other day, every four days; Supplement, Table 146 

S1), to maximize the longevity of animal tracking. Sexes were genetically identified from skin 147 

biopsies collected with crossbow and a modified dart (Dalla Rosa et al. 2008). 148 

2.2. Tracking data processing 149 

Because the present whale tracks were obtained via the Argos satellite system, which uses “Doppler-150 

based positioning” (Lopez et al. 2015), each location was estimated with an associated uncertainty. 151 

To minimize the number of unrealistic locations, a speed filter was applied to the whale tracking data, 152 

implemented with R package trip and assuming a maximum swimming speed of 12 km h-1 for 153 

humpback whales (Garrigue et al. 2010). To reduce the occurrence of long gaps between locations, 154 

for which no information was available, tracks were split into two or more if time gaps were longer 155 

than 10 days. To account for irregular time intervals and uncertainty in estimated locations, humpback 156 

whale tracks were re-estimated using a hierarchical form of a “first-Difference-Correlated-Random 157 

Walk model” (DCRW; Jonsen 2016). That model was fitted with R package bsam (Version 1.1.2; 158 

Jonsen 2016) and used to predict two locations per day (i.e. time step of 12 hours) for each track. 159 

Default bsam package model diagnostics and plots of predicted locations versus original locations 160 

were inspected to check for both model convergence and whether derived locations were aligned with 161 

http://www.argos-system.org/


 

8 

 

observed locations. Data from individuals for which the model did not converge were discarded from 162 

the analysis. A summary of the data used in the analysis is presented in Table 1 (see Supplement, 163 

Table S1, for details). The uncertainty associated with the estimated locations was not considered in 164 

the distribution and habitat use models.  165 

Because the objectives here were related to investigating distribution in the breeding area and to 166 

compare results to a previous study, derived locations beyond the limits of the survey area, in offshore 167 

waters or during migration, for example, were censored from the dataset (Figure 1) before the 168 

distribution models were built. 169 

2.3. Covariates 170 

Environmental covariate values used in presence/pseudo-absence spatial models were extracted from 171 

published datasets for the post-processed track locations. Candidate covariates considered in the 172 

models were chosen to permit comparison to a previous modelling study using line transect data from 173 

humpback whales in the same region (Bortolotto et al. 2017). Current speed close to the surface 174 

(Curr.sp) values were extracted from the OSCAR Third Degree Sea Surface Velocity dataset (ESR, 175 

2009), with resolution 0.33 × 0.33º (latitude × longitude) in 5-day intervals. Daily values for sea 176 

surface temperature (SST), with resolution 0.01 × 0.01º, were extracted from JPL MUR SST project 177 

dataset (JPL MUR MEaSUREs Project, 2010). Daily wind speed at the surface of the sea (Wind.sp) 178 

values were extracted from the Era-Interim dataset (Dee et al. 2011), with horizontal resolution 179 

0.125 × 0.125º. Depth values were extracted form ETOPO1 (Amante & Eakins 2009), for which the 180 

resolution is 0.1 × 0.1º. Slope was derived from ETOPO1. Distances from coast (Dist.coast) and from 181 

the shelf break (Dist.shelf), represented here by the 500 m depth contour, were measured with the 182 

gDistance function, rgeos R package (version 0.3-26; Bivand & Rundel 2017). To represent regions 183 

within the area where animals could be sheltered from rougher weather and colder waters, a factor 184 

covariate for “shelter” was created by combining values of SST and wind speed in six classes, defined 185 
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by quantiles of these covariates, sensu Bortolotto et al. (2017). The logarithm of depth was used in 186 

the models. 187 

Values for the dynamic covariates (i.e. Curr.sp, SST and Wind.sp) were obtained by matching the 188 

timestamps of each location with the nearest (in time and horizontal space) covariate value. 189 

2.4. Data analysis and modelling 190 

Processed track locations were considered as presences in spatial models. To provide contrasting data, 191 

pseudo-absences were generated randomly within the survey area to represent where animals could 192 

have been, assuming that the survey area was accessible to all tagged animals. To select the most 193 

appropriate ratio of presence to pseudo-absences, different scenarios (i.e. 1:1, 1:3,1:5 and 1:10) were 194 

explored to verify model “coefficients stability” (see Supporting Information S4 in Ventura et al. 195 

2019). In every model scenario, weighting was applied so the weight of pseudo-absences followed 196 

the corresponding fraction, to ensure that the number of presences was equal to the sum of the weights 197 

of the pseudo-absences. The model fitted to the data with five pseudo-absences per presence produced 198 

the same fitted coefficients as with ten, but different from smaller ratios (1:1 and 1:3), indicating that 199 

five pseudo-absences per presence was sufficient to represent the underlying background of the 200 

inference area. To match a set of five pseudo-absences to one specific presence, all locations within 201 

a set of five pseudo-absences were given the same timestamp as the corresponding presence.  202 

Covariate pairs that were strongly correlated (> 0.7), or that had high (> 10; Hair et al. 2014) variance 203 

inflation factor scores (vif function, car R package) when together in a model, were not included 204 

simultaneously in the same model. 205 

Two objectives guided the inclusion of candidate covariates in the spatial models. For the Distribution 206 

Model (DIM), the objective was to create the best distribution map as possible, so all available 207 

covariates were considered. For the Habitat Use Model (HUM), the objective was to investigate the 208 
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relationship of whale occurrence and important ecological characteristics, and all covariates but 209 

geographic position (latitude and longitude) were considered. 210 

To compare the present models with those in Bortolotto et al. (2017), latitude and longitude were not 211 

considered in the HUM. This procedure was adopted because these covariates have no logical 212 

biological interpretation for habitat use, and because they were both strongly correlated with SST. 213 

The DIM included those covariates as potential explanatory terms because its objective was to 214 

identify those features that describe most variability in whale occurrence and to generate the best 215 

predictive map for potentially informing management. The present DIM map was created to be 216 

compared to the AEM map in Bortolotto et al. (2017). 217 

Presence vs. pseudo-absence was modelled as a binomial random variable, with probability of 218 

presence a smooth function of the continuous covariates, first within a Generalized Additive Model 219 

(GAM; Wood 2017) framework and then fitting the GAM using a Generalized Estimating Equation 220 

(GEE; Hardin & Hilbe 2002) approach to account for possible autocorrelation, as detailed below. 221 

Continuous covariates were included in the models using b-splines, and a logit link function was used. 222 

Weighted regression was used, where presences were assigned a weight of 1 and pseudo-absences a 223 

weight of 0.2. Model fitting was done using software R (R Core Team, 2017), with functions specified 224 

below. 225 

For each of the DIM and HUM, covariate selection proceeded in three stages. First, the full model 226 

(i.e. model with all candidate covariates) was fitted, with the number and location of each b-spline 227 

knot selected using the Spatially Adaptive Local Smoothing Algorithm (SALSA; Walker et al. 2011), 228 

implemented with the MRSea R package (version 1.0.beta; Scott-Hayward et al. 2017). The 229 

maximum number of knots were restricted to eight for one-dimensional smoothers and to 20 for two-230 

dimensional smoothers (i.e. for geographic position), to prevent overfitting of smooth terms 231 
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(Wood 2017). Continuous covariates for which no knot was indicated as significant, at α = 0.05, were 232 

not considered in subsequent steps. 233 

In the second stage, a backwards covariate selection process was followed. The model from the first 234 

step was refitted using a GEE to accommodate residual autocorrelation. For this, the data were 235 

organized in correlation panels, with a panel for each set of presences within a track (one panel per 236 

track) and a different panel for each pseudo-absence (one panel per pseudo-absence). Using this panel 237 

structure was congruent with the assumption that model residuals within a track were correlated, but 238 

that residuals in different tracks were not, and that residuals for pseudo-absences were mutually 239 

independent. Model fitting used the geeglm function within the geepack R package (version 1.2-1; 240 

Højsgaardet al. 2006). The fitted model’s QICu score (Pan, 2001) was calculated. Then, a series of 241 

models were fitted, leaving one covariate out at a time, and QICu scores were calculated for each of 242 

these models. The model with the lowest QICu score was retained. If this model had fewer covariates 243 

than the full model, then the process was repeated to drop another covariate. This was repeated until 244 

dropping covariates did not result in any further decrease in QICu.  245 

In the third stage, the statistical significance of remaining covariates was assessed using marginal p-246 

values, via the function getPvalues from MRSea R package (Scott-Hayward et al., 2017). Any 247 

covariates that were non-significant using an α-level of 0.05 were dropped and the GEE re-fitted. 248 

For the selected DIM and HUM, model performance was verified with Receiver Operating 249 

Characteristic (ROC) curves and confusion matrices, as per Pirotta et al. (2011), using R package 250 

ROCR (version 1.0-7; Sing et al. 2009). The ROC and confusion matrix can be used to calculate 251 

percentages of false positives and false negatives expected for the model, by comparing the predicted 252 

values to the observed.  253 

For comparison to the distribution maps presented in Bortolotto et al. (2017), prediction grids 254 

(8 by 8 km cells) containing covariate values from 2008 and 2012 (the years for which distribution 255 
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models from sighting data were developed in that study) were used for predictions using the selected 256 

DIM. The contribution of each covariate in the final HUM was visualized with partial plots, with 257 

confidence intervals based on the GEE estimated uncertainty, adapting custom R code from Pirotta 258 

et al. (2011). 259 

3. RESULTS 260 

Data from 113 tags, deployed from 2003 to 2012, were available for the analysis. Model outputs from 261 

package bsam (e.g. posterior densities and model convergence plots) indicated poor model fit and/or 262 

convergence for whale tracks with less than 12 locations or less than five days of tracking. Those 263 

tracks were therefore excluded from the analysis. After filtering, interpolated locations from 87 tracks 264 

were available for investigating distribution and habitat use (Figure 1), comprising 62 tracks from 265 

females (mothers with calves), 19 from males and six from animals of unidentified sex (Table 1). 266 

Because five pseudo-absences were created per each presence (i.e. interpolated locations within the 267 

survey area; n = 3,071), 15,355 pseudo-absences were used, totaling 18,426 locations to be modelled.  268 

The final HUM model included smooth terms for current speed, SST, wind speed, coast distance and 269 

distance to the shelf-break, and the factor variable shelter (Table 2). As a result of using GEEs for 270 

dealing with autocorrelation in the data, confidence intervals for fitted relationships between the 271 

response variable and the covariates were very wide (i.e. high uncertainty), except for SST (Figure 272 

2). Depth had no statistically significant knots when the full model was fitted with SALSA and was 273 

not considered further. The fitted relationship for the SST covariate showed a clear peak around 24-274 

25ºC (Figure 2), similar to Bortolotto et al. (2017). 275 

The final DIM included latitude and longitude, current speed, and distances to coast and shelf break 276 

(Supplement, Table S4). Shelter and wind had no significant knots at the first step of covariate 277 

selection, and depth had a non-significant marginal p-value in the last step of covariate selection for 278 

the DIM (Table 2). Overall, higher probabilities of encountering whales were predicted for the region 279 
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around the Abrolhos archipelago and to the south, supporting findings from Bortolotto et al. (2017) 280 

(Figure 3). For 2008, 74.7% of the tracking data model predictions that were above the median 281 

(median = 0.44) spatially overlapped with line transect model predictions above the median 282 

(median = 4.01). For 2012, 73.7% of the tracking data model predictions that were above the median 283 

(median = 0.41) overlapped with line transect model predictions above the median (median = 5.11). 284 

However, clear differences were observed at a smaller scale: in the Abrolhos Bank region, a patch of 285 

predicted lower probability of occurrence for both 2008 and 2012 overlapped with the area presenting 286 

the highest densities from Bortolotto et al. (2017).  287 

Models performed better than random, with confusion matrices indicating 66.2% of correct 288 

predictions for the HUM, and 63.1% for the DIM, and with the area under the ROC curve (AUC), 289 

0.691 and 0.732, respectively (Table 3). 290 

4. DISCUSSION 291 

We investigated the distribution and habitat use of humpback whales off Brazil with spatial models 292 

applied to locations obtained through animal tracking and to spatial covariates. To generalize our 293 

results to other whale populations, they should be interpreted in light of several important specificities 294 

of the population studied here. For instance, the increasing abundance of this recovering population 295 

(Zerbini et al. 2019, Bortolotto et al., 2021) may have an effect on their distribution and on how they 296 

use their habitats in the area, which was not possible to evaluate here because of the nature of the 297 

individual tracking data. Also, because here we considered whales on a breeding area, the unbalance 298 

in the reproductive stage (or animal sex) in our tracked animals (see Results; Supplement Table S1) 299 

very likely prevents them from accurately representing the population in general. That is because, 300 

animals in different reproductive stages are known to use their habitat differently (Cartwright et al. 301 

2012, Derville et al. 2018). The scale of the dynamic environmental predictors (e.g., current speed, 302 

SST) and the effect of environmental variability in other systems, such as their feeding grounds, must 303 

also be considered. However, here we focus in describing mainly the differences in the 304 



 

14 

 

implementation and interpretation of modelling of either data from individual tracking or from line 305 

transect sampling.   306 

Model considerations and constraints 307 

Spatiotemporal correlation in track locations and other common issues in applying presence/absence 308 

modelling for distribution and habitat use (Aarts et al. 2008) were carefully considered in the analysis. 309 

Despite differences in the sampling unit of the tracking and survey data (individual vs. space) and 310 

statistical tools used, some of the outputs from modelling track locations in a presence/pseudo-311 

absence modelling approach support findings from distribution models fitted to line transect data 312 

(Bortolotto et al. 2017). Although the uncertainty in most of the covariate-response (telemetry data) 313 

relations fitted here was much higher (Figure 2), SST showed a clear peak around the same range of 314 

temperatures in both the present study and in the line transect modelling (Supplement, Figure S3), 315 

which probably reflects how strongly habitat use for these animals is related to temperature in their 316 

breeding grounds (see Bortolotto et al. 2017 for a discussion on the role of SST for habitat use of 317 

humpback whales). The apparent agreement between the two methods is not only reassuring for what 318 

is known about habitat use for this population, but also shows that similar, possibly complementary, 319 

conclusions can be drawn on this regardless of which of the two methods is used, given enough 320 

sample size and careful consideration of potential bias sources. However, differences such as the 321 

patch of present lower probability of whale occurrence that overlapped with the area presenting the 322 

highest densities from Bortolotto et al. (2017), need to be considered at smaller scales.  323 

It is important to note that, by creating pseudo-absences from random locations in the entire area, it 324 

was assumed that the entire survey area was available to the animals at any time (Soberón and 325 

Peterson 2005). However, this is an arbitrary decision and the available area from the animals’ 326 

perspective could be different (Aarts et al. 2008, Hazen et al. 2021). For example, an animal tagged 327 

in the vicinity of the Abrolhos archipelago (Figure 1) would take at least two days to reach the 328 
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southernmost portion of the survey area, swimming in a straight line at 12 km h-1 (i.e. the maximum 329 

travel speed [Garrigue et al. 2010] used as a criteria in the data pre-processing/filtering). 330 

The restriction of the area of inference (survey area) in comparison to that of Bortolotto et al. (2017; 331 

compare north extents of the upper and the lower panels of Figure 3) was adopted to reduce the effects 332 

of violating the area availability assumption (Hazen et al. 2021). Further restrictions could be 333 

investigated at the expense of inferring over a smaller region and considering fewer data. Another 334 

possibility to reduce issues from non-uniformly distributed tagging locations could be to truncate the 335 

first days from each track. This was not adopted here because many tracks presented relatively short 336 

periods of locations within the survey area and such truncation would eliminate a substantial amount 337 

of information from the dataset. The extent of the area of inference also has a major influence on 338 

where pseudo-absences are randomly placed to represent the background environment where animals 339 

were not observed. The restriction of the area considered in this study potentially also minimized the 340 

effects related to that issue, because areas further north from the limits of the survey area (Figure 1) 341 

were visited by only two animals (out of 113). Also, because of imbalance in the tagging locations 342 

and number of animals tagged across years (Table 1) data from all years were pooled to model 343 

distribution. Therefore, it was impossible to evaluate temporal variation in distribution and habitat 344 

use patterns. Data were assumed to be representative for the population as a whole and for the period 345 

between 2003 to 2013. Year was not considered as a covariate in the analysis and inferences presented 346 

here must be interpreted as the overall distribution pattern for that population. Investigating temporal 347 

variation in distribution could help understanding the potential expansion of population range in the 348 

breeding area (Pavanato et al. 2018), but spatiotemporally balanced data within the area of inference 349 

is needed for that. One possible option is to restrict the area of inference in ways that allow meeting 350 

the above criteria, at the expense, again, of inferring over a much-reduced area. There is evidence that 351 

this population was increasing at near the upper limit of the rate expected during the period considered 352 

here (Wedekin et al. 2017), and we suggest that the potentially resulting distributional shifts would 353 
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be better assessed with line transect data modelling (Supplement, Table S5). To investigate the 354 

potential expansion of the breeding range, however, tracking data could indicate areas used by 355 

animals that were not designed to be surveyed.   356 

  357 

The first step of covariate selection (i.e. observing “robust standard errors” from model fitting with 358 

SALSA) led to discarding of covariates that were not estimated precisely enough to be considered 359 

significant, even before the residual autocorrelation was accounted for. Because serial autocorrelation 360 

may cause non-important covariates to appear more significant (Aarts et al. 2008), GEEs permit 361 

realistic estimation of uncertainty for covariate-response relations. However, such fitted relations can 362 

be difficult to interpret (Pirotta et al. 2011), especially for those covariates with wide confidence 363 

intervals in their fitted relationships (Figure 2). The second step of covariate selection (observing the 364 

QICu scores) had been used in previous studies analyzing similar data to the present and is a 365 

reasonable way to account for the residual auto-correlation issue (Pirotta et al. 2011, Jones et al. 366 

2017). The last step of covariate selection (marginal p-values) was the final check for contribution of 367 

covariates to the models. The combination of the three criteria adopted improves the chances of only 368 

retaining important covariates related to animal distribution. Despite the above criteria, all covariates 369 

but SST presented large confidence intervals in their fitted relationships (Figure 2), precluding 370 

detailed interpretation of those results. 371 

Habitat use from humpback whale tracking data 372 

Like the model used to investigate habitat use in Bortolotto et al. (2017), latitude and longitude were 373 

not considered in the HUM. The present final HUM adds wind speed to the already identified 374 

important covariates related to habitat use of humpback whales in the area (Martins et al. 2001, 375 

Bortolotto et al. 2017, Pavanato et al. 2018). However, the combination of SST and wind speed, 376 

represented by shelter, had been already identified as important in the line transect models. Using 377 
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autoregressive models applied to line transect data, Pavanato et al. (2018) identified bathymetry and 378 

distance to the shore to be related to the occurrence of humpback whale groups in the area. Wind 379 

speed was also considered as a candidate covariate in that study, but it was not retained in that final 380 

model. In the present study, it is unclear what is the relation between wind and whale occurrence from 381 

the partial plot for that covariate (Figure 2) or from its estimated coefficients (Supplement, Table S3). 382 

Looking at the fitted coefficients for shelter (Figure 2), wind seems to be important when the water 383 

is relatively colder, which agrees well with the results found from modelling line transect data. 384 

However, present results for shelter suggest a contradicting interpretation of its importance than from 385 

the line transect data models from Bortolotto et al. (2017) which is likely due to the high uncertainty 386 

in the shelter coefficients (Figure 2). Other covariates in the final HUM include current speed and 387 

distance from the shelf and to the shore, which may be related to calf survival probabilities, protection 388 

against predators or in habitat selection for specific reproduction-related groups (Corkeron & Connor 389 

1999, Félix & Botero-Acosta 2011). Here, tracking data were used to investigate the population 390 

distribution overall, therefore sex and other individual characteristics were not incorporated in the 391 

models. The reason for not using this information was that there is no clear way to allocate sex and 392 

other individual characteristics to pseudo-absences within the GEEs framework. One option would 393 

be to fit models separately for males and females because this information is available (Supplement, 394 

Table S1). However, sex was unbalanced in the present data with most animals being females. 395 

Distribution patterns found in Bortolotto et al. (2017) and now supported here, are consistent with 396 

what could be expected for population distribution driven by female habitat selection.  397 

Alternative approaches to investigate habitat use from tracking data include inferring animal 398 

behavior, which can be related to specific biological and environmental features (McClintock et al. 399 

2015, Jonsen 2016, Roncon et al. 2018, Jonsen et al. 2019). There are also methods to study spatial 400 

distribution from tagging data which do not require creating pseudo-absences, such as point process 401 

models (Johnson et al. 2013) or by considering animal tracks in a grid over the study area as a result 402 
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of a Markov process (Whitehead & Jonsen 2013). Movement models can be used to quantify the 403 

relationship between covariates and the probability of animals being in specified behavioral states 404 

(Roncon et al. 2018, Jonsen et al. 2019), therefore, to investigate habitat use, not necessarily from a 405 

spatial perspective. In that sense, direct comparisons to line transect models (Table S5) as presented 406 

here would be more challenging. For instance, that type of models would be very useful to investigate 407 

habitat use in more dynamic systems, such humpback whale feeding grounds where whales are 408 

constantly tracking suitable foraging conditions (Bamford et al. 2022) in relation to highly dynamic 409 

ocean features (i.e. upwellings, eddies, fronts). Management implications 410 

It is certainly important to investigate the potential effect of human activities on the occurrence of 411 

whales in the area (Pavanato et al. 2018). To evaluate that, data from before the presence of such 412 

activities are needed, or drastic enough changes in the distribution or intensity of them must happen 413 

before being able to identify a redistribution, coinciding with the change in activities. However, that 414 

the two methods considered here agreed in terms of distribution and habitat use inferences, means 415 

that either could be used to informing conservation or management actions. Alternatively, a simpler 416 

analysis of overlap between whale distribution and the distribution of potential harmful human 417 

activities (Martins et al. 2013) could also contribute to such investigation. 418 

Modelling animal distribution using line transect data may have some important advantages in data 419 

collection, survey design and modelling techniques, such as being able to control the places visited 420 

in the survey design (Table S5Error! Reference source not found.). Line transect surveys also allow 421 

deriving abundance estimates when the assumptions of distance sampling are dealt with (Buckland 422 

et al. 2015). In contrast, satellite tagging of whales allows data to be collected remotely, meaning that 423 

the field work necessary for the method is restricted to that of tagging the animals. Also, the data may 424 

allow different approaches for investigating habitat use and distribution, because they include 425 

information about movement of individuals over time (Matthiopoulos & Aarts 2010). Because close 426 

proximity to the animal is required for tagging, other useful detailed information may also be 427 
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simultaneously collected. For example, it is common to collect skin and blubber biopsies during the 428 

tagging procedure. Important information such as sex, hormone levels and contaminants can be 429 

determined from those samples (Heide‐Jørgensen et al. 2006, Reisinger et al. 2014). Tagging whales 430 

is a more invasive field procedure (Alves et al. 2010, Andrews et al. 2019), but provides data that are 431 

impossible to obtain from line transect surveys only.  432 

The two methods compared here are complementary and may be used in conjunction to expand the 433 

spatiotemporal coverage of studies on distribution or habitat use, therefore providing better 434 

information to evaluate the need of, and for implementing conservation and management actions 435 

when needed. Survey efforts to investigate distribution of a population can be split between tagging 436 

some animals in one portion of the area of interest and surveying another portion, enhancing data 437 

collection while reducing logistical costs. Therefore, distribution and habitat use investigations 438 

aiming at informing conservation of large whales can be more easily and realistically implemented. 439 

440 
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Table 1. Summary of the data set (presences only) used for modelling distribution. (Max 655 

locations = maximum number of locations per track within a year). 656 

Year Tracks Locations Initial date Ending date Max locations 

2003 8 340 18-Oct 25-Dec 118 

2005 11 359 11-Oct 27-Nov 83 

2006 3 75 12-Oct 10-Nov 37 

2007 7 281 08-Sep 18-Oct 78 

2008 17 598 27-Aug 03-Nov 97 

2009 9 399 14-Sep 09-Nov 98 

2010 10 282 18-Sep 06-Nov 56 

2011 8 314 29-Sep 20-Nov 63 

2012 13 407 08-Aug 17-Dec 85 

2013* 1 16 20-Aug 27-Aug 16 

Total/Overall 87 3071 — — — 

*locations from a whale tagged in 2012, which was tracked for more than 300 days. 657 
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Table 2. Covariates retained in models for both present tracking data and for line transect data. 658 

(HUM = Habitat Use Model, DIM = Distribution Model, AEM = Abundance Estimation Model from 659 

Bortolotto et al. 2017). 660 

 Tracking data (present) Line transect data 

Covariate HUM DIM HUM AEM 

Current speed * * * * 

Depth     

Distance to shelf break * * * * 

Distance to coast * * * * 

Shelter *  * * 

Slope     

SST *  *  

Wind speed *   * 

Latitude and longitude — * — * 

 661 



 

32 

 

Table 3. Performance of models fitted to telemetry tracking data of humpback whales. (HUM = 662 

Habitat Use Model, DIM = Distribution Model, AUC = area under the ROC curve). 663 

Model  HUM DIM 

Correctly predicted  66.2% 63.1% 

AUC  0.691 0.732 

Confusion matrices  Observed Observed 

 Predicted 1 0 1 0 

 1 1871 5022 2330 6063 

 0 1200 10333 741 9292 

Total observed  3071 15355 3071 15355 

  1 0 1 0 

Percent of observed 1 60.9% 32.7% 75.9%  39.5% 

 0 39.1% 67.3% 24.1% 60.5% 

 664 
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 665 

Figure 1. Humpback whale locations used in the distribution and habitat use analysis (blue dots) and 666 

tagging locations (yellow triangles). The area of inference (black solid line) was adapted from 667 

Bortolotto et al. (2017) (grey dotted line), considering the uneven tagging locations and 668 

environmental covariates extent. 669 
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 672 

Figure 2. Fitted relationships for smooth functions of covariates in the final habitat use model (HUM). 673 

Error bars in the “Shelter” plot represent 95% normal confidence intervals. (co = cold, wa = warm, 674 
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li = light, mo = moderate, st = strong, Curr.sp = current speed, SST = sea surface temperature, 675 

Wind.sp = Wind speed, Coast.dist = distance to the coast, Shelf.dist = distance to the shelf-break). 676 
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Figure 3. Upper panel: Occurrence probability surfaces, predicted using the present distribution 679 

model (DIM) of tracking data; Lower panel: “AEM” (Abundance Estimation Model) maps adapted 680 

from Bortolotto et al. (2017), showing humpback whale density surfaces, for comparison. See 681 

Supplement, Figure S2, for uncertainty maps of present DIMs. 682 
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