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ABSTRACT

Neural demyelination and brain damage accumulated in white matter appear as hyperintense areas on T2-
weighted MRI scans in the form of lesions. Modeling binary images at the population level, where each
voxel represents the existence of a lesion, plays an important role in understanding aging and inflammatory
diseases. We propose a scalable hierarchical Bayesian spatial model, called BLESS, capable of handling
binary responses by placing continuous spike-and-slab mixture priors on spatially varying parameters and
enforcing spatial dependency on the parameter dictating the amount of sparsity within the probability
of inclusion. The use of mean-field variational inference with dynamic posterior exploration, which is an
annealing-like strategy that improves optimization, allows our method to scale to large sample sizes. Our
method also accounts for underestimation of posterior variance due to variational inference by providing
an approximate posterior sampling approach based on Bayesian bootstrap ideas and spike-and-slab priors
with random shrinkage targets. Besides accurate uncertainty quantification, this approach is capable of
producing novel cluster size based imaging statistics, such as credible intervals of cluster size, and measures
of reliability of cluster occurrence. Lastly, we validate our results via simulation studies and an application to
the UK Biobank, a large-scale lesion mapping study with a sample size of 40,000 subjects. Supplementary
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1. Introduction

Magnetic resonance imaging (MRI) is a noninvasive imaging
technique to study human brain structure and function. Accu-
mulated damages to the white matter, known as lesions, appear
as localized hypo-/ hyperintensities in MRI scans (Wardlaw
et al. 2013). The total burden of these lesions is often associated
with cognitive disorders, aging, and cerebral small vessel disease
(Wardlaw et al. 2013; Wardlaw, Valdés Herndndez, and Mufioz-
Maniega 2015). Lesion prevalence is higher for older adults
(Griffanti et al. 2018) and for individuals with cerebrovascu-
lar risk factors, such as hypertension, alcohol consumption or
smoking history (Rostrup et al. 2012). White matter lesions are
also an overall indicator of poor brain health and have been
found to triple the risk of stroke and double the risk of dementia
and death and are associated with cognitive impairment, func-
tional decline, sensory changes or motor abnormalities (Debette
and Markus 2010). Not all white matter lesions however are
attributed to aging or an increased cerebrovascular risk burden.
For example, white matter hyperintensities can also occur due
to multiple sclerosis, Alzheimer’s disease or as a result of a
stroke (Debette and Markus 2010; Prins and Scheltens 2015).
While white matter lesions due to vascular origin are a result of
chronically reduced blood flow and incomplete infarction lead-
ing to altered cerebral autoregulation, the nonvascular demyeli-
nation as seen in multiple sclerosis is caused by an autoim-
mune response against myelin proteins (Sharma and Sekhon
2021). Regardless of etiology, an important clinical feature is

the spatial location of lesions; while noting that lesions exhibit
a high level of variability, together with the size and number
of lesions, for both between and within subjects, as seen in the
binary lesion masks in Figure 1. Elderly patients tend to present
scattered lesions which later form to confluent lesions whereas
white matter lesions of nonvascular origin have a particularly
heterogeneous presentation where the disease course can result
in rapid progression or alternation between relapses and remis-
sions (Sharma and Sekhon 2021). Identifying spatial locations
in the brain where lesion incidence is associated with different
covariates (e.g., age, hypertension, cardiovascular disease) is
known as lesion mapping and is an essential tool to locate the
brain regions that are particularly vulnerable to damage from
various risk factors and inform development of interventions to
reduce incidence or severity of disease (Veldsman et al. 2020).

1.1. Mass-Univariate Methods and Other Spatial Models

The standard practice for lesion mapping is mass-univariate
(Rostrup etal. 2012). In this approach a logistic regression model
is fitted at each voxel or spatial location independently, any form
of spatial dependence among neighboring locations is ignored.
Moreover, most methods fail to address the problem of complete
separation which often occurs in logistic regression models
when the output variable separates a subject-specific predictor
variable or a combination of input features perfectly and hence
leads to infinite and biased maximume-likelihood estimates
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Figure 1. Contours of binary lesion masks from four healthy subjects from the UK Biobank with varying lesion numbers and sizes, where green outlines indicate lesions
which show the heterogeneity of lesion incidence at various 2D axial slices from the 3D lesion mask, see Section 4.2 of the supplementary materials for further detail.

(Firth 1993). This problem can be addressed with a logistic
regression approach known as Firth Regression, which using a
penalized likelihood approach and produces mean-bias reduced
parameter estimates (Firth 1993; Kosmidis, Kenne Pagui, and
Sartori 2020).

Bayesian spatial models on the other hand are capable
of accounting for the spatial dependence structure among
neighboring voxels in a single joint model. For example, Ge
et al. (2014) have developed a Bayesian spatial generalized
linear mixed model (BSGLMM) with a probit link function
where the probability of lesion presence is modeled via a linear
combination of fixed and random effects and subject-specific
covariates. BSGLMM places a spatial smoothing prior directly
on the parameters, specifically a conditional autoregressive
model prior (Besag 1974), which may induce bias due to
oversmoothing of regression coefficients. Moreover, BSGLMM
relies on sequential Markov chain Monte Carlo (MCMC)
methods for posterior computation which do not scale well to
the large sample sizes found in the UK Biobank.

The last decade of brain imaging has brought immense
insight into our understanding of the human brain. However,
these findings suffer from small and unrepresentative samples.
In addition, environmental and genetic factors that may explain
individual differences are ignored which in turn undermines
brain related findings. These limitations are being addressed
in large-scale epidemiological studies, such as the UK Biobank
or the ABCD study, by collecting data on thousands (instead
of tens) of subjects. While the main advantage of these data
sources lies in their larger sample sizes, they are also beneficial
due to their inclusion of multiple high-dimensional imaging
modalities as well as recording numerous environmental factors,
neurocognitive scores, and other clinical data. The existing
methods for brain mapping, specifically lesions, are either
simplistic, ignoring complex spatial dependency, or are not
scalable to large-scale studies.

In order to address the limitations of previous methods,
we propose a multivariate Bayesian model for lesion mapping
in large-scale epidemiological studies that (a) uses variable
selection and shrinkage priors, (b) takes into account the spatial
dependency through a parameter that controls the level of
sparsity rather than directly smoothing regression coefficients,
and (c) relies on an approximate posterior sampling method
based on Bayesian bootstrap techniques rather than MCMC, for
parameter estimation and inference. Hence, this allows us to fit
the model to thousands of subjects and appropriately account
for the spatial dependency in lesion mapping studies containing

over 50,000 voxel locations. We also want to acknowledge
that other model choices in the literature may better capture
the association between lesions and covariates (Li et al. 2021;
Zeng, Li, and Vannucci 2022; Whiteman 2022); however, we
favor a model that enables us to scale parameter estimation
and inference to large-scale epidemiological studies, see
Section 13 of the supplementary material for a detailed literature
review.

1.2. Bayesian Variable Selection

In this and the following section we will cover a short overview
on the literature of Bayesian variable selection and approximate
posterior sampling and refer readers to an in depth discussion
in Section 14 of the supplementary materials. We use Bayesian
variable selection to improve brain lesion mapping by shrink-
ing small coefficients toward zero, thus, helping with predic-
tion, interpretation and reduction of spurious associations in
high-dimensional settings. A commonly applied technique for
Bayesian variable selection is spike-and-slab regression which
aims to identify a selection of predictors within a regression
model. The original spike-and-slab mixture prior places a mix-
ture of a point mass at zero and a diffuse distribution on the coef-
ficients (Mitchell and Beauchamp 1988). George and McCulloch
(1993, 1997) have increased the computational feasibility of
spike-and-slab regressions by introducing a continuous mixture
of Gaussians formulation where the spike distribution is defined
by a normal distribution with a small variance rather than a
point mass prior. The binary latent variable, sampled from a
Bernoulli distribution with inclusion probability, determines
which mixture component a variable belongs to and enables
variable selection. Overall, the options of continuous shrinkage
priors in the literature are large, see Piironen and Vehtari (2017)
for a comparison of different methods.

The spike-and-slab regression is also able to incorporate spa-
tial information, replacing the exchangeable Bernoulli prior on
the inclusion indicator variables, with a structured spatial prior
using a vector of inclusion probabilities. Previous examples of
introducing structure within a spike-and-slab regression include
the placement of a logistic regression product prior (Stingo et al.
2010) on the latents in order to group biological information for
a genetics application, an Ising prior which incorporates struc-
tural information for a high-dimensional genomics application
(Li and Zhang 2010) or a structured spike-and-slab prior with a
spatial Gaussian process prior (Andersen, Winther, and Hansen
2014).



1.3. Approximate Posterior Inference and Sampling

The gold standard of parameter estimation and inference for
spike-and-slab regression with a continuous mixture of Gaus-
sians prior is Gibbs sampling (George and McCulloch 1993).
However, in high-dimensional regression settings as well as large
sample size scenarios other more scalable approximate methods
are required due to the intense computational burden.

Expectation propagation (EP) (Minka 2001) or variational
inference (Jordan et al. 1999) algorithms redefine the problem
of approximating densities through optimization (Blei, Kucukel-
bir, and McAuliffe 2017). Both of these methods have been
extensively studied for spike-and-slab regression problems (Car-
bonetto and Stephens 2012; Herndndez-Lobato, Hernandez-
Lobato, and Dupont 2013). The EP algorithm however, poses
several challenges as it is computationally intensive for even
moderate sample sizes, there is no guarantee of convergence,
and its poor performance for multimodal posteriors due to the
problematic need to incorporate all modes in its approximation
(Bishop 2006). Poor variational approximations can arise due
to slow convergence, a simplistic choice of variational families,
or due to underestimation of the posterior variance as the KL-
divergence tends to under-penalize thin tails (Yao et al. 2018).

In neuroimaging applications, however, we require accu-
rate uncertainty estimates and hence we use approximate pos-
terior sampling which captures the marginal posterior den-
sity more accurately than variational densities while remain-
ing to be highly scalable due to embarrassingly parallel imple-
mentations (Fong, Lyddon, and Holmes 2019). The corner-
stone of these methods lies in the Bayesian bootstrap (Rubin
1981) and the Weighted Likelihood Bootstrap (WLB) (Newton
and Raftery 1994). The WLB randomly re-weights the likeli-
hood with Dirichlet weights for the observations and maximizes
this likelihood with respect to the parameter of interest. Using
WLB, Lyddon, Walker, and Holmes (2018) and Fong, Lyddon,
and Holmes (2019) developed Bayesian nonparametric learning
(BNL) routines which use parametric models to achieve poste-
rior sampling through the optimization of randomized objective
functions.

Our focus lies on the recently introduced method by Nie and
Rockova (2022) which combines Bayesian bootstrap methods
with a new class of jittered spike-and-slab LASSO priors and
obtains samples via optimization of many independently per-
turbed datasets by re-weighting the likelihood and by jittering
the prior with a random mean shift. This procedure is equivalent
to adding pseudo-samples from a prior sampling distribution
as in the case of BNL (Fong, Lyddon, and Holmes 2019). We
argue that for high-dimensional datasets with large samples,
where memory allocation is already a computational concern,
the approach by Nie and Roc¢kova (2022) is favorable as it merely
requires storing a set of mean shift parameters compared to an
arbitrarily large number of pseudo-samples (Fong, Lyddon, and
Holmes 2019).

The remainder of this article is organized as follows. In Sec-
tion 2, we formulate a Bayesian spatial spike-and-slab regression
model with approximate posterior sampling via a Bayesian boot-
strap procedure. We then assess the quality of our method, called
BLESS, via simulation studies in Section 3 and give the results
from the UK Biobank application in Section 4. We conclude the

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION e 3

article with a discussion in Section 5 and provide further details
on the variational distributions as well as more simulation study
results in the supplementary material. Additionally, we make all
code publicly available on Github.!

2. Methods

Our model for Bayesian Lesion Estimation with a Structured
Spike-and-Slab (BLESS) prior is formulated as a Bayesian spa-
tial hierarchical generalized linear model. While we specifi-
cally focus on neuroimaging applications within this article, the
model can be applied to any form of spatial binary data on a
lattice and can equally be extended to various neuroimaging
modalities other than lesion masks.

Throughout this article we use boldface to indicate a vector
or matrix. We model the binary data y;(s;) for every subject
i=1,...,N at voxel location sj € B e R3,j =1,...,M, with
a Bernoulli random variable with lesion probability p;(s;). Due
to computational reasons, we choose to model the binary data
via a probit link function which defines the relationship between
the conditional expectation 7;(s;) and the linear combination of
input features x; containing P subject-specific covariates, spa-
tially varying parameters B(sj) and a spatially varying intercept
Bo(sj). While the data comprise an image for each subject, we
store the data as unraveled M-vectors y; for each subject or
N-vectors y(sj) for each voxel.

The Bayesian spatial generalized linear model for subject i at
location s; is specified as

i(s)Ipi(sj)] ~ Bernoulli[p;(sj)] 1)
O (pi(s) = ni(s)) = x{ B(sj) + Bo(s)), (2)

where the equations reflect the random and systematic compo-
nent, respectively and the link function is given by the cumula-
tive Gaussian density ®(-).

Furthermore, we reparameterize the Bayesian probit regres-
sion model defined in (1) and (2) exactly via the data augmenta-
tion approach by Albert and Chib (1993) by introducing latent
normal variables in (3) and (4) into the model in order to ease
the computational complexity. This approach assumes that the
probit regression has an underlying normal regression structure
on latent continuous data. These independent continuous latent

variables z;(sj) for every subject i = 1,...,N and voxel j =
1,...,M are drawn from the following normal distribution
zi(s)|ni(sp) ~ N (ni(s)), 1) (3)

where the conditional probability of y;(s;) = 1 is given by

1, Zi(Sj) > 0,

0, Zi(Sj) <0. )

Prlyi(sj) = llzi(sp)] =

2.1. Prior Specifications

We build a Bayesian hierarchical regression model by placing
a continuous version of a spike-and-slab prior on the spatially-
varying P-coefficient vector B(s;). The continuous mixture of

Vhttps://github.com/annamenacher/BLESS
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Gaussians with two different variances, consisting of the spike
and the slab distribution, is given by

Bp(s) | vp(s) ~ N(O, v1yp(s) + vo[L—p(sD])>  (5)

where y;(s;) is alatent binary indicator variable for covariate p =
1,...,Pandlocationsj = 1,...,M, vy is the spike variance and
V1 is the slab variance which determine the amount of regular-
ization. Variable selection is implemented via the latents y;(s)),
and specifically it localizes the spatial effect of each variable.
Due to the continuous spike-and-slab specification, the variance
within the spike distribution is always vo > 0 which ensures the
continuity of the spike distribution and therefore the derivation
of closed form solutions of the variational parameter updates.
The slab variance on the other hand is a set to a fixed value to
include the range of all possible values of the spatially-varying
coefficients. The combination of a small spike variance and
a large slab variance with latent indicator variables for every
covariate and location introduces a selective spatial shrinkage
property that shrinks smaller coeflicients close to zero and leaves
the large parameters unaffected.

In order to account for the spatial dependence across the
brain, we place an independent logistic regression prior with
non-exchangeable inclusion probabilities on the latent binary
indicator variables y (s;) sampled from a Bernoulli distribution,
similar to Stingo et al. (2010). The prior is non-exchangeable
because we incorporate structural information via the sparsity
parameter 0 (s;) € R? which ensures that certain voxel locations
are more likely to be included in the model than others. In the
context of brain imaging data this means that voxels that are
nearby each other probably have a similar inclusion probability.
Specifically, we model the latents y;(s;) via

¥p(sj) | 6p(sj)) ~ Bernoulli(o [6,(sj)])s (6)

where o (-) is a sigmoid function.

The hierarchical spatial regression model is completed
by placing a spatial prior on the sparsity parameter 7 =
[GT(sl), ... ,HT(SM)]: a length PM column vector. We choose
a multivariate conditional autoregressive (MCAR) prior as
a spatial prior due to computational reasons (Gelfand and
Vounatsou 2003). Alternative priors could be considered in
lieu of this type of a simple smoothing prior; however, this
would significantly increase the computational complexity of
the model at hand.

The full conditional distribution for #(s;) is given by the
following multivariate normal distribution and uses the notation
defined by Mardia (1988):

Zs,EBSj 0 (ST) ¥
, , (7)
n(s;) n(s;)

where X is a symmetric positive definite smoothing matrix. The
sum Zsreasj defines the sum over the neighborhood voxels at

[6G)16(—s),=Z7'] ~ MVN (

location sj, ds; defines the set of neighbors at location s; and n(s;)
is the cardinality of the neighborhood set. For our MRI scans we
consider only neighbors sharing a face, so therefore most of the
interior of the brain has n(sj) = 6 neighbors whereas locations
near the brain mask have n(sj) < 6.

We then describe the joint distribution over the sparsity
parameters, up to a proportionality constant, by using Brooks’s
lemma (Brook 1964) which is given by

7@1%) o expl =2 3 105) — 06HT'E16Gs) — 051
Sj"’Sj/
(8)
where the sum Zs]wsj, describes the sum over neighborhood
voxels, and s; ~ sy indicates that s; and s; are neighbors. This
joint prior distribution is improper and not identifiable accord-
ing to Besag (1986). However, the posterior of @ is proper, if there
is information in the data with respect to the sparsity parameters.
Lastly, we finish specifying the Bayesian hierarchical regression
model by placing an uninformative, conjugate Wishart prior
over the precision matrix £~ to fully specify the model with

>~ ! ~ Wishart(v, I), 9)

where the degrees of freedom are given by v = P and the scale
matrix is defined by the identity matrix I (Ge et al. 2014).

2.2. Posterior Approximation

The first element of our scalable approximate posterior sam-
pling approach is a variational approximation to the posterior
using optimization instead of MCMC sampling. Every sample
within the approach in Section 2.4 is acquired by optimizing
the posterior via variational inference. We opt for variational
inference due to the non-conjugacy in the hierarchical model
induced by specifying a logistic function around the sparsity
parameters @ in the inclusion probabilities of the spike-and-slab
priors. Local variational approximations solve this problem by
finding a bound on an individual set of variables via a first-order
Taylor approximation (Jaakkola and Jordan 2000). For general
variational inference, we then require the full joint distribution
of the Bayesian spatial regression model, consisting of the like-
lihood p(Y|X, B, By) and the joint prior p(Z, B, B¢, ¥, 0, T,
which is given by

P(Y,Z,X, B’ ﬂO’ }’,0, z—l)
= p(Y|2)p(zIX, B, Bo)p(Bo)p(Bly)p(r10)
p@OIZ " Hp(zh.

We write the entire set of model parameters as ¥ =
{Z, B,Bo 7,0, 7! } where the conditional distribution of each

model parameter ¥ is obtained as p(¥|y) = P_;'(’}:{)

an approximation to the exact posterior by first specifying
a family of densities Q over each model parameter ; and
second identifying the parameters of the candidate distribution
q(¥j) € Q that minimizes the Kullback-Leibler (KL) divergence,
given by

(10)

. We acquire

q" () = argmin KL {q(y) || p(¥jlp)}. (11)

q(¥eQ

We aim to minimize the difference between the exact posterior
p(¥jly) and the variational distribution g(/;) to find the best
approximate distribution g*(v;). However, rather than comput-
ing the KL-divergence which contains the log-marginal of the



data, a quantity that is often not computable, we optimize the
evidence lower bound (ELBO) (Blei, Kucukelbir, and McAuliffe
2017)

L@ = Bgw) [In {p(V, X, W)}] - Bgw) [In {q(®)}]. (12)
The derivation of the variational distributions and the ELBO
can be found in supplementary material in Sections 2.2 and 2.3,
respectively. The variational density gj(1;) is derived by taking
the exponentiated expected log of the complete conditional
given all the other parameters and the data which is defined by
qj(¥j) exp{IE_j[log{p(I//j|1ﬁ,j,X)}]} where the expectation is
over the fixed variational density of other variables ¥ _;, given
by [] 0 9¢ (¢). By determining the variational distributions g,
we successively update each parameter ¥, while holding the oth-
ers fixed, via mean-field coordinate ascent variational inference
(Bishop 2006). Further details on initialization and convergence
of variational inference can be found in the supplements.

2.3. Dynamic Posterior Exploration

Dynamic posterior exploration (DPE) (Rockova and George
2014), is an annealing-like strategy, which fixes the slab variance
to a large, fixed value. The procedure works by starting in a
smooth posterior landscape and aims to discover a sparse, mul-
timodal posterior by gradually decreasing the value of the spike
parameter until it approximates the spike-and-slab point mass
prior. When the starting spike variance is large, we should be able
to easily identify a small set of local optima by maximizing the
ELBO. Thereafter, the technique uses the result as a warm start
for the next optimization with a reduced spike variance which
leads to a more peaked posterior until the last value within a
range of spike variances is evaluated and a stable solution to the
optimization problem is found.

The process of dynamic posterior exploration can be split into
three parts. First, we perform parameter estimation via varia-
tional inference over a sequence of K increasing spike variances
v eV = {vél), ceo véK)}. After the initial evaluation of the
backwards DPE procedure with v(()K) < vy, every subsequent
optimization is run with a successively smaller v and initialized
with the previously estimated variational parameters as a “warm
start” solution. Second, the output of every optimization run
within the sequence of spike parameter values V is thresholded
via the posterior inclusion probabilities. The thresholding rule
for BLESS is based on the following inclusion probabilities

1, if P(yp(sj) = 1]Y, B, By, 0) > 0.5,

() = {o, if P(yp(sj) = 1Y, B, By, 8) < 05, o

In{myy=o(¥1Y,0, 1))}
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which is equivalent to the local version of the median proba-
bility model defined by Barbieri et al. (2021). Furthermore, the
determination of active versus inactive voxels based on the inclu-
sion probability P(y,(sj) = 1[y) is equivalent to thresholding
the parameter estimates ﬁ themselves where the threshold is
given by the intersection of the weighted mixture of the spike-
and-slab priors (George and McCulloch 1993; Rockova and
George 2014). For BLESS, we choose the former thresholding
rule based on the posterior inclusion probabilities considering
that thresholding the parameters B would require the calculation
of a different set of intersection points for every coeflicient due
to the non-exchangeable nature of the spatial prior within the
inclusion probability. Third, the estimated posterior with the
smallest spike variance vy within the range of parameters V is
used. We do not assert that this vy is optimal per se, but that our
annealing-like strategy obviates the need for a precise determi-
nation of vy as the estimates for the larger effects tend to stabilize
at a particular solution of variational posterior parameters.

This behavior can be validated by two types of plots. Regular-
ization plots enable the examination of the estimated coefhicients
over a sequence of spike variances. For each vy, the color of the
parameter values indicates whether or not a variable is included
in (red) or excluded from (blue) the model based on the thresh-
olded posterior probability of inclusion. Figure 2(a) illustrates
how the negligible coefficients are drawn to zero as the values
of vy decrease, while the larger parameters of the active voxels
stabilize and are unaffected by regularization. Hence, for the
plot in Figure 2(a) this occurs at a log-spike variance log(vg) <
—6 where a local optimum has been identified and any further
decrease in spike variance only leads to further shrinkage of the
negligible coefficients.

A complementary plot, especially useful when overplotting
makes the regularization plot difficult to interpret, is the log-
marginal posterior plot In{m,,—o(y1Y, 8, >~ 1)} for the latents.
The maximum value of this quantity yields the posterior closest
to approximating the point mass prior which is the goal of
backwards DPE. Since our model contains intractable integrals,
we use a variational approximation to the marginal posterior
of y under the prior of vy = 0. We use Jensen’s inequality to
bound the marginal probability integrating out the parameters
B, B and the latent variables Z via their respective variational
approximation. The other model parameters § and X! are
regarded as nuisance parameters. Specifically, the log-marginal
posterior under vy = 0 and its approximation

(14)

(15)

Y,Z,B.,,B0 7.0, 271X
=ln{///q(l,ﬂy,ﬂo)p( B,.Bo ¥y 1X,)

> Byzp, 0 [0 [PV, 2B, B0.7.0,57'1X,)]] -

Eqz, 60 [I0{a(Z. B, Bo)}].

dzdp.d
9(Z.B,.Bo) Bydbo

(16)




6 A. MENACHERET AL.

(a) Regularization Plot
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Figure 2. (a) Regularization plot (active voxel: red, inactive voxel: blue) and (b) plot of marginal posterior of y under vy = 0 over a sequence of equidistant vy € V within
log-space for the simulation study described in Section 3 for sample size N = 1000 and base rate intensity A = 3. Both plots indicate that parameter estimates have
stabilized past spike variances of log(vg) < —6 within the DPE procedure. The regularization plot also shows how negligible (blue) coefficients are progressively shrunk

toward 0 while the larger (red) coefficients remain almost unregularized.

where B, = Py, can be used to determine whether or
not the parameters identified as active have stabilized by
checking a single quantity rather than the solution path of all
parameters of the model. Figure 2(b) illustrates the marginal
In{my,=0(¥|Y,0, X~ 1)}, showing a plateau for any log-spike
variance log(vp) < —6 indicating a good approximation of the
point mass prior. The marginal plot can be used in an equivalent
manner to the regularization plot as a sanity check for visualizing
the stabilization of large effects and continued shrinkage for the
negligible coeflicients at the end of the annealing-like process.

2.4. Uncertainty Quantification via Bayesian Bootstrap -
BLESS

We use Bayesian bootstrapping techniques (Nie and Rockova
2022) to obtain approximate posterior samples. The approach
for Bayesian Bootstrap — BLESS (BB-BLESS) is 3-fold and is
described by Algorithm 1: First, weights wgb) are sampled for
every observation i = 1,...,N and bootstrap sample b =
1,...,Bfrom a Dirichlet distribution, which has been scaled by
the sample size N, in order to re-weight the likelihood follow-
ing the weighted likelihood bootstrap by Newton and Raftery
(1994). Every weight wgb) hereby perturbs the contribution of
each observation to the likelihood. Second, a prior mean shift
/L},b) (sj) is sampled for every covariate p = 1,...,P and voxel
j = 1,...,M from the spike distribution. For initialization,
the variational parameters estimated when performing DPE for
BLESS-VI (BLESS estimated via variational inference alone) at
the target spike variance value vy are used as initial values to BB-
BLESS. This prior mean shift ul(,b) (s) is then

98" () o exp {Eq@,ﬂo,y,g,zl) [In :]_[ [pi(s)12i(5))p(zi(s) | B(s))s Bo» 1)

Algorithm 1: BB-BLESS

Result: Sample of parameter estimates B from
approximate posterior distribution.

Set: vy = v(I)JP Es v large, fixed value; a: concentration
parameter; €: convergence criterion; B: number of
bootstraps

forb=1,...,Bdo

1) Sample weights w® ~ N x Dirichlet(c, . . .,a).

2) Sample mean shifts u® (sj)forallj=1,....M

from ul(,b) (sp) ~ N(0, vp).
~(b
3) Calculate /3( : by acquiring variational posterior

mean via approximating pseudo-posterior via
L variational inference.

used to center the prior for 77 (B(sj) |y (sj)) on u® (sj) instead of 0
(Nie and Rockova 2022). This combination of Bayesian boot-
strap methods and the jittering of the spike-and-slab prior allows
for approximate posterior sampling by repeatedly optimizing
the updated ELBO with respect to its variational parameters to
approximate a posterior density. The variational posteriors for
all other nuisance parameters are also refitted for every bootstrap

~(b
sample. Third, we acquire a sample ( )(sj) by optimizing the

~ (b
ELBO with respect to the spatially-varying coefficient ( )(sj).
The following is a variational approximation to the pseudo-
posterior, defined by a re-weighted likelihood and perturbed
prior:

P (17)

i=1

PBEHIRY (5), ¥ () p(Bo) p(210) pBIZ ™) p(E‘I)H } ,




where the Dirichlet weights are (ng), . W;\l;)) ~ Dir(a, ..., o)
and the jitter is drawn via the spike distribution u,(s;) ~

N (0, vp). Each bootstrap sample B(b) (sj) is acquired by taking
the marginal variational posterior mean of the pseudo-posterior
defined in (17) where the nuisance parameters are approximately
marginalized out. Note that we prefer the variational posterior
mean opposed to the maximum-a-posteriori (MAP) estimate
for each bootstrap draw due to the computational tractability of
the former. Using the MAP estimate would result in having to
use numerical optimization at each iteration as some updates do
not have a closed-form solution. We also acknowledge that while
we do not provide theoretical guarantees within this article,
we do validate our work with numerical simulations. The full
derivations of this method can be found in Section 3 of the
supplementary material.

3. Simulation Study

In this section, we first explain the process of simulating lesion
data where the ground truth is known. We perform various sim-
ulation studies to assess the performance of BLESS, estimated
via variational inference (BLESS-VI), approximate posterior
sampling (BB-BLESS) and traditional Gibbs sampling (BLESS-
Gibbs), by assessing their marginal posterior distributions and
quantities. In addition, we compare parameter estimates and
predictive performance of our method to the mass-univariate
approach, Firth regression (Firth 1993), and the Bayesian spatial
model, BSGLMM (Ge et al. 2014). For comparison, the latter
is adopted to fit a Bayesian hierarchical modeling framework,
similar to BLESS, where we add a spatially-varying intercept
Bo(sj) to match the setup of BLESS. For Firth regression, which
fits an independent probit regression model with a mean bias
reduction for every voxel location, we use the R package brglm2
(Kosmidis 2021).

The main aim of many neuroimaging studies lies in the
provision of accurate inference results. We therefore tailor the
assessment of simulation studies on the evaluation of inference
results rather than on coverage probabilities. We compare infer-
ence results by assessing true positive (TP), false positive (FP),
true negative (TN), and false negative (FN) discoveries in the
following measures: (a) sensitivity/true positive rate (TPR =
%), (b) true discovery rate (TDR = TJ—_EFP), (c) specificity/1
- false positive rate (FPR = FP&%), and (d) false discovery rate

(FDR = %). Lastly, we provide extensive simulation studies
on the performance of BLESS-VI compared to a frequentist,
mass-univariate approach as well as a Bayesian spatial model
with a simulation study addressing varying sample sizes N, base
rate intensities A, and sizes of effect within an image. Base rate
intensities hereby provide an indicator for the magnitude of
various regression coefficient effect sizes where a smaller A value
yields smaller regression coefficients.

For simulating the data, we adopt a data generating process
that is different from our model in order to guarantee a fair
comparison between the method we propose, BLESS, to the
other methods, BSGLMM and Firth regression. We therefore
use a data generating mechanism which simulates homogeneous
regions of lesions proposed by Ge et al. (2014), with intensities
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that vary over subjects, which provides us with a tool to provide
a fair comparison among the three methods evaluated. For our
study, we consider P = 2 effects in addition to an intercept, we
label sex and group (e.g., patient and control). We simulate 2-D
binary lesion masks of size 50 x 50, M = 2500, with homoge-
neous effects in each 25 x 25 quadrant. The effect of sex leads
to 4 times more lesions on the right side of an image for female
subjects compared to the baseline. The second effect of group
membership introduces an effect of 4 times more lesions within
the lower left quadrant of an image for subjects within group 2. A
Poisson random variable with base rate A determines the num-
ber of lesions. Further details and plots of the simulated data can
be found in the supplementary materials in Section 5 alongside
further sensitivity analyses, such as extending the neighborhood
definition of the MCAR prior, in Section 10, supplementary
materials. We also use a simulation framework developed by
Kindalova, Kosmidis, and Nichols (2021) to generate realistic
looking lesion masks utilizing summary statistics from Firth
regression based on UK Biobank data as truth. The results are
similar and can be found in the supplements in Section 12.

3.1. BB-BLESS Simulation Study

In this simulation study on a low base rate and sample size
scenario (N = 500, . = 1) as well as a high base rate and
sample size scenario (N = 1000, 1 = 3), we want to assess the
performance of BLESS-VI, BB-BLESS, and BLESS-Gibbs on two
scenarios with small and large regression coefficients based on
their base rate intensity A = 1 and A = 3. The posterior quanti-
ties of BLESS-VI are acquired by running a separate backwards
dynamic posterior exploration procedure for every dataset with
an equispaced spike sequence of vy = exp{—20,...,—1} of
length 15 and a slab variance of v; = 10. The method is initial-
ized with the coeflicients of Firth regression where we use the
parameter estimates and respective inference results from the
final run in the backwards DPE procedure (v = exp(—20)). We
estimate BB-BLESS by drawing B = 1000 bootstrap replicates
and Dirichlet weights with a concentration parameter « = 1.
We run the Gibbs sampler for 15,000 iterations and discard
5000 iterations as burn-in. The performance of BB-BLESS and
BLESS-Gibbs is then greatly improved by utilizing the output of
the backwards DPE procedure as parameter initialization for the
respective parameter estimation techniques.

First, we examine the marginal posterior densities of a ran-
dom active and inactive voxel. As expected, the posterior vari-
ance from BLESS estimated via variational inference is underes-
timated as the posterior distribution is very peaked around the
posterior mean (Figure 3(a) and (b)). On the other hand, the
posterior estimated via BB-BLESS aligns well with the distribu-
tion acquired via the gold standard method of Gibbs sampling.
This is further illustrated by comparing the marginal posterior
densities of all voxels within an effect image via KL-divergence
and Wasserstein distance in Figure 3(c) and (d). Both methods
show the higher quality of posterior approximation via BB-
BLESS compared to BLESS-VI when calculating the discrep-
ancy of the distributions acquired via approximate methods and
Gibbs sampling.
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Figure 3. Comparison of marginal posterior distributions for an (a) active and (b) inactive voxel between BB-BLESS, BLESS-Gibbs, and BLESS-VI where the posterior mean
is indicated via a vertical line. Overall evaluation of marginal posterior distributions for all voxels between Gibbs and BB-BLESS and BLESS-VI via (c) KL-divergence and
(d) Wasserstein distance. Comparison of posterior quantities, such as posterior mean (e)-(f) and standard deviation (g)—(h), of the parameter estimates for all voxels for
N = 1000 and 2 = 3 (lighter values indicate higher density of values). Parameters acquired via BLESS-VI exhibit similar point estimates to BB-BLESS and Gibbs but their

posterior distributions are too peaked and variances are underestimated.

Table 1. Evaluation of parameter estimates and inference results for BLESS (Gibbs, BB, VI), BSGLMM and Firth for two simulation study scenarios (N = 500, A = 1 and

N = 1000, A = 3) for the effect of sex.

N=500andA =1

N=1000andA =3

ﬁ1 Bias Variance MSE Bias Variance MSE

BLESS-Gibbs 0.0288 0.0406 0.0414 0.0060 0.0065 0.0065

BB-BLESS —0.0857 0.0171 0.0245 0.0078 0.0063 0.0064

BLESS-VI —0.1037 0.0013 0.0121 0.0027 0.0010 0.0010

BSGLMM 0.0518 0.0120 0.0147 0.0126 0.0039 0.0040

Firth —0.0182 0.0539 0.0542 —0.0027 0.0118 0.0118

tﬁl TPR TDR FPR FDR TPR TDR FPR FDR
BLESS-Gibbs 0.7319 0.9998 0.0001 0.0002 0.9999 0.9999 0.0001 0.0001
BB-BLESS 0.6263 0.9606 0.0257 0.0394 0.9999 0.9970 0.0031 0.0030
BLESS-VI 0.6263 0.9606 0.0257 0.0394 1.0000 0.9970 0.0031 0.0031
BSGLMM 0.9991 0.9004 0.1128 0.0996 1.0000 0.9027 0.1088 0.0973
Firth 0.6566 0.8953 0.0768 0.1047 1.0000 0.9637 0.0379 0.0363

NOTE: MSE of parameter estimates for BB-BLESS and BLESS-Gibbs are comparable. Inference results from thresholding posterior inclusion probabilities for BLESS-VI and test
statistics for BB-BLESS also achieve similar rates. Run time and complexity analysis can be found in supplements in Section 11.

Figure 3 illustrates that both BB-BLESS and BLESS-VI are
able to better capture the posterior mean of all voxel locations
within an image when compared to BLESS estimated via Gibbs
sampling. However, BLESS-VI severely underestimates the pos-
terior standard deviation for both active and inactive voxels.
Lastly, we compare the inference results of our method BLESS-
VI, where we use the marginal posterior probability of inclusion
as a proxy for inference, to the approximate posterior sampling
technique BB-BLESS and the gold standard of BLESS-Gibbs, for

~

which we determine activation via test statistics t = S /(TB,
for two simulation study setups. BLESS estimated via Gibbs
sampling yields high sensitivity and a very low false positive
rate for both settings in Table 1. More importantly, the inference
results for BB-BLESS and BLESS-VT are very similar, that is the
false positive rate for both BB-BLESS and BLESS- VI lies at 2.57%
for a sample size of N = 500 and base rate intensity of A = 1.
Hence, we showcase empirically that, when it comes to infer-
ence, thresholding posterior inclusion probabilities in BLESS-



VI yields similar results to the approximate posterior sampling
approach BB-BLESS which determines effect detection via test
statistics. Hence, if a researcher is uninterested in the additional
features of BB-BLESS, such as acquiring uncertainty estimates
of coeflicients or more complex imaging statistics, then the
application of BLESS-VI alone can be considered for parameter
estimation and inference, as we get empirically similar voxelwise
inference results in our simulation studies at a lower overall
computational cost for BLESS-VI compared to BB-BLESS.

3.2. BLESS-VI Simulation Study

We extend our simulation study to evaluate the performance of
BLESS-VI for a broader set of scenarios with varying sample
sizes N = {500; 1000; 5000}, base rate intensities A = {1,2, 3}
and sizes of spatial effect, where 25% (group effect) or 50%
(sex effect) of the image are active, compared to BSGLMM and
Firth regression. The true and estimated parameter estimates
are available in the supplementary materials alongside more
results from simulation studies with different spatial priors and
varying magnitudes of the slab variance. We will focus on the
effect map for the covariate sex and generate 100 datasets for
each sample size and base rate scenario to provide robustness by
averaging over the results of each dataset. The setup for BLESS-
V1 is otherwise identical to above.

The quality of parameter estimates and prediction for BLESS-
VI, BSGLMM and Firth regression are evaluated via bias, vari-
ance and mean squared error (MSE) in Table 2. BLESS-VI
exhibits comparatively low bias for the evaluation of the param-
eter estimates for the sex effect and moreover outperforms the
mass-univariate approach when comparing the quality of the
coefficients via MSE. For example, the MSE of the parameter
estimates for a small sample size N = 500 and low base
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rate intensity A = 1 is approximately 5 times larger for Firth
regression with a value of 0.0563 compared to our method
BLESS with a value of 0.0106. This showcases how BLESS ade-
quately regularizes negligible coeflicients to zero while the larger
effects are unaffected by shrinkage. The quality of the predic-
tive performance is determined by comparing the true empiri-
cal lesion rates to the estimated lesion probabilities. BLESS-VI
yields slightly better predictive results with respect to MSE, by
exhibiting less biased estimates, compared to Firth regression
for all scenarios except for the instance with low sample size and
base rate intensity (N = 500, A = 1) where Firth regression
exhibits a slightly lower MSE. This result motivates the usage
of BLESS for studies with larger sample sizes where BLESS
outperforms the mass-univariate approach.

Our simulation study enforces 50% of the voxels as active on
the right side of an image for the covariate sex. Hence, by know-
ing the true location of the effect, we can evaluate the quality of
the inference results of BLESS compared to BSGLMM and Firth
regression. Effect detection for BLESS is determined by utilizing
the latent variables y, marking voxels s; significant if Py, (s;) =
1ly) > 0.5. For BSGLMM and Firth regression we acquire test
statistics t = B/ o4 and threshold them at a significance level of
5%. We perform a multiple testing adjustment via a Benjamini-
Hochberg procedure (Benjamini and Hochberg 1995).

All methods have comparable results with respect to their
performance in parameter estimation and prediction. However,
the evaluation of the inference results in Figure 4 showcases that
the Bayesian spatial model BSGLMM has a particularly high
number of false positives and hence a very low level of specificity
compared to the other methods. BLESS’s key advantage is
therefore shown by comparable levels of sensitivity and high
values of specificity for all configurations of sample size and
base rate intensity.

Table 2. Evaluation of parameter estimates from the methods, BLESS-VI, BSGLMM and Firth Regression via bias, variance and MSE of the spatially-varying coefficients ;§1,
and the predictive performance y. Improved bias and MSE for prediction for BLESS compared to Firth regression due to selective shrinkage property of BLESS.

Parameter estimate: B1 Bias Variance MSE

N = 500 r=1 A=2 r=3 A=1 r=2 A=3 r=1 r=2 r=3
BLESS —0.0961 —0.0237 —0.0009 0.0014 0.0019 0.0020 0.0106 0.0024 0.0020
BSGLMM 0.0280 0.0129 0.0130 0.0117 0.0080 0.0067 0.0125 0.0082 0.0068
Firth 0.0068 —0.0024 0.0017 0.0562 0.0348 0.0272 0.0563 0.0348 0.0272
N = 1000 r=1 A=2 A=3 A=1 A=2 A=3 A=1 A=2 A=3
BLESS —0.0031 0.0082 0.0019 0.0010 0.0010 0.0010 0.0010 0.0011 0.0010
BSGLMM 0.0127 0.0106 0.0066 0.0063 0.0045 0.0039 0.0064 0.0046 0.0039
Firth —0.0002 0.0026 0.0005 0.0271 0.0171 0.0135 0.0271 0.0171 0.0135
N = 5000 r=1 A=2 A=3 A=1 A=2 A=3 A=1 A=2 A=3
BLESS 0.0032 0.0039 —0.0011 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
BSGLMM 0.0057 0.0054 —0.0006 0.0018 0.0014 0.0012 0.0018 0.0014 0.0012
Firth 0.0022 0.0031 —0.0023 0.0053 0.0034 0.0027 0.0053 0.0034 0.0027
Predictive performance: y Bias Variance MSE

N = 500 A=1 L=2 r=3 A=1 r=2 r=3 A=1 L=2 A=3
BLESS —0.0078 —0.0052 —0.0032 0.0011 0.0017 0.0018 0.0022 0.0031 0.0034
BSGLMM —0.0027 —0.0025 —0.0020 0.0002 0.0004 0.0007 0.0002 0.0004 0.0007
Firth 0.0170 0.0140 0.0122 0.0009 0.0016 0.0022 0.0018 0.0032 0.0043
N = 1000 A= rL=2 A= A= rL=2 A= A= A= A=
BLESS —0.0015 0.0007 —0.0013 0.0004 0.0005 0.0007 0.0008 0.0010 0.0012
BSGLMM —0.0010 —0.0018 —0.0020 0.0001 0.0002 0.0003 0.0001 0.0002 0.0003
Firth 0.0082 0.0082 0.0056 0.0005 0.0008 0.0011 0.0009 0.0016 0.0021
N = 5000 A=1 rL=2 r=3 A=1 rL=2 L=3 A=1 L=2 A=3
BLESS —0.0006 0.0000 0.0008 0.0001 0.0001 0.0001 0.0001 0.0002 0.0003
BSGLMM —0.0004 —0.0008 —0.0001 0.0000 0.0001 0.0001 0.0000 0.0001 0.0001
Firth 0.0010 0.0015 0.0020 0.0001 0.0002 0.0002 0.0002 0.0003 0.0004
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Figure 4. Evaluation of inference results from the methods, BLESS, BSGLMM and Firth Regression (FDR correction at 5%) via True Positive Rate (TPR), True Discovery Rate
(TDR), False Positive Rate (FPR) and False Discovery Rate (FDR) for parameter estimate 1. BLESS outperforms Firth regression and BSGLMM with consistently high TPRs and

low FPRs for various sample sizes and base rate intensities.

4. UK Biobank Application
4.1. Data Description and Model Estimation

Our motivating dataset is from the UK Biobank, a large-scale
biomedical database containing imaging data from predomi-
nately healthy individuals. With a target of 100,000 subjects,
there is currently imaging data available for 40,000 participants
(Miller et al. 2016). We refer the reader to Miller et al. (2016) for
a detailed description of the scanning and processing protocols.
Our goal is to map the influence of risk factors on the incidence
of matter hyperintensities to understand their potential clinical
significance and how they may contribute to neurological and
cognitive deficits. Our dataset consists of N = 38,331 subjects
for which white matter hyperintensity binary lesion masks have
been generated via the automatic lesion segmentation algo-
rithm BIANCA (Griffanti et al. 2016). The binary lesion maps
in subject space are then registered to a common 2mm MNI
template across subjects. Each 3D binary image with voxel size
2 x 2 x 2 mm?® and dimensions 91 x 109 x 91 contains a
total of 902,629 voxel locations. Our region of interest lies in the
white matter tracts of the brain and hence the total number of
voxels is restricted to M = 54,728 by masking the 3D-lesion
masks. We are interested in modeling the influence of age on
lesion incidence while accounting for the confounding variables
sex, head size scaling factor and the interaction of age and
sex. In order to ensure interpretability across studies we have
chosen confounds based on research by Alfaro-Almagro et al.
(2021) where a head size scaling factor is commonly included
to normalize brain tissue volumes for head size compared to the
MNI template. The mean age of the participants in our study
is 63.6 years (£ 7.5 years) and 53.04% of individuals are female
(20,332 women).

For model estimation, we first perform backwards dynamic
posterior exploration over vy = {exp(—10),...,exp(—3)} to
help with the optimization of the variational parameters; oth-
erwise, we fit the model identically to the simulation study
as described in the previous section. The regularization and
marginal plot for this application to the UK Biobank can be
found in the supplementary material in Section 4.3. We further
estimate BB-BLESS by acquiring B = 1500 bootstrap repli-
cates in which we re-weight the likelihood by drawing Dirichlet
weights for every subject with a concentration parameter o = 1

and perturb the prior mean of the structured spike-and-slab
prior by drawing a “jitter” from A(0,vp). We initialize the
parameters via the results from the DPE procedure and validate
the behavior of the annealing-like strategy by examining the
regularization and marginal plot. This approximate posterior
sampling method remains highly scalable as each optimization
can be performed in parallel.

4.2. Results

Figure 5 compares the raw age effect size images of our method
BLESS, estimated via (a) approximate posterior sampling and
(b) variational inference, to (c) the mass-univariate approach
Firth regression. It should be noted that we omit the comparison
to the other baseline method BSGLMM as the computation of
the Bayesian spatial model becomes infeasible due to the large
sample size of this study. We highlight how BLESS sufficiently
regularizes the negligible age coeflicients to zero while leaving
the larger effects unaffected. This is a direct consequence of the
structured spike-and-slab prior placed on the spatially-varying
coefficients. Furthermore, the spatial MCAR prior allows the
sparsity dictating parameters within the spike-and-slab prior
to borrow strength from their respective neighboring voxels.
We further illustrate this behavior by plotting the coeflicients
of the feature age of the entire 3D effect map of the brain in
the scatterplots in Figure 5. The comparison between BLESS-
VI and BB-BLESS coefficients again showcases the alignment of
posterior mean estimates between the two parameter estimation
procedures. The other scatterplots on the other hand capture
the induced shrinkage of small effects to zero via BB-BLESS and
BLESS-VI while the Firth regression parameter estimates vary
for the negligible effects and exhibit nonzero values.

For inference, we threshold the test statistics of BB-BLESS at a
significance level of 5%. In contrast, for BLESS-VI we threshold
the posterior probability of inclusion at 0.5 in order to acquire its
respective binary significance map. Hence, we exploit variable
selection as a means to conduct inference. On the other hand,
the mass-univariate approach Firth regression ignores any form
of spatial dependence and hence requires the application of a
multiple testing correction where we adjust the p-values with
a FDR correction (Benjamini and Hochberg 1995) at a signif-
icance level of 5%. The results in Figure 5 indicate a slightly
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Figure 5. Comparison of results between (a) BB-BLESS, (b) BLESS-VI, and (c) Firth Regression for a single axial slice (z = 45, third dimension of 3D image). (1) Spatially-varying
age coefficient maps. (2) Thresholded age significance maps where the threshold for BLESS-VI is determined via the probability of inclusion/exclusion P(yp (s |8, 6) > 0.5
and the threshold for BB-BLESS and Firth regression via the test statistic t = |8/64] > 1.96 (significant voxels: red, not signficant voxels: blue, FDR-correction applied

at 5%). (3) The scatterplots compare the age coefficients for all voxel locations within the 3D image (lighter values indicate higher density of values). The parameter maps
estimated via BLESS in (1a) and (1b) exhibit a larger spatial area with values close to 0 compared to Firth in (1c). The scatterplots in (3) show that BLESS regularizes small

effects almost completely to 0 compared to Firth.

larger extent of spatial activation for BB-BLESS and BLESS-VI
compared to Firth regression for a sample size of N = 2000.
For the covariate age, in the regression model estimated via Firth
regression 10,171 voxels are deemed active based on uncorrected
p-values. On the other hand, only 6278 voxels pass the FDR
adjusted threshold whereas in BB-BLESS 8385 effect locations
are detected by using the full posterior to derive test statistics
and similarly in BLESS-VT 8257 effects are detected via simply
thresholding the posterior inclusion probabilities.

4.3. Cluster Size Imaging Statistics

Cluster-extent based thresholding is the most commonly used
inference technique for statistical maps in neuroimaging stud-
ies. By proposing BB-BLESS and hence by sampling from an
approximate posterior, we are able to provide novel cluster size
based imaging statistics, such as cluster size credible intervals,
in addition to reliable uncertainty quantification of the spatially-
varying coefficients.
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Figure 6. (1) Cluster Size Inference: Top left: Raw age effect size image. Top middle: Test statistic map for age effect. Top right: Cluster size distribution for the largest cluster
detected by a cluster defining threshold of 2.3 (The solid line indicates the observed cluster size from BLESS-VI and the dashed lines signify the 95% credible interval of
clustersize.). (2) Cluster Size Mapping: Lower left, middle, right: Prevalence, posterior mean and posterior standard deviation map of cluster size, where the latter two statistics
are determined for instances where the prevalence map exceeds a probability of 50%. The prevalence map here indicates that both clusters have reliably large effects with

values close to 1.

We have shown that the raw age effect size image of the
posterior mean for BB-BLESS in Figure 5 obtained as an average
over the bootstrap replicates B (s) = % Zle ,é &) (sj) is almost
identical to BLESS-VI. From our simulation studies, we expect
the point estimates from both approximate methods to be iden-
tical. Moreover, BB-BLESS is able to capture the uncertainty of
coefficients more reliably than BLESS-VI. This is important not
only for providing uncertainty quantification at a population
level but also for evaluating the predictive performance via
posterior predictive checks and ensuring model robustness via
calibration plots (see Section 4.4 of the supplementary material).
With the latter we show that our model is well calibrated in
predictive uncertainty and hence the model performance for
BLESS does not change to a large extent when using new out-
of-sample data. The approximate posterior samples can also
be used to calculate cluster size based imaging statistics which
require test statistics in their estimation. The statistical map in
the top middle part of Figure 6, acquired by the standardiza-
tion of the raw effects t(sj)) = B (sj)/op(sj) with the posterior
standard deviation o (s;), shows that voxelwise inference based
on thresholding the posterior probabilities of inclusion from
BLESS-VTI at 0.5 is similar to thresholding test statistics at a
significance level of & = 5%.

We now highlight two novel cluster size approaches, based
on cluster size inference and cluster size mapping, that can be
calculated via BB-BLESS. In the first approach we acquire cred-

ible intervals of cluster size by utilizing the more accurate pos-
terior standard deviation estimates of BB-BLESS to standardize
the bootstrap samples. The resampled statistical maps are then
thresholded by a cluster-defining threshold of 2.3 (equivalent
to thresholding p-values at a significance level of 0.01) which
generates cluster size maps for every bootstrap replicate. We then
build a distribution of cluster size by identifying the intersection
of each bootstrap cluster with the observed one and recording
its respective cluster size. A distribution over cluster sizes for any
cluster within the brain allows us to calculate an array of statisti-
cal quantities, such as credible intervals of cluster size. In the top
right part of Figure 6, we display the cluster size distribution for
the largest cluster identified across the brain alongside its 95%
credible interval which ranges between a cluster size of 4063 and
4265 voxels and contains the observed cluster size value of 4179
voxels.

In a second cluster size mapping approach, we compute
the voxelwise posterior probability of the standardized effect
exceeding 2.3. This allows us to create a map of not just large
effect but reliably large effect voxels. Comparing the cluster map
with the occurrence map provides a measure for the reliability of
cluster occurrence at a particular location within the brain. Due
to the large spatial extent of the effect of age across the brain and
viewing the central axial slice of the 3D maps, almost all voxel
locations have a cluster prevalence close to 1. For these locations
we then report posterior mean and standard deviation of reliable



cluster size at locations where the prevalence of a cluster exceeds
50%.

To summarize, Figure 5 highlights how BLESS is able to
reduce the identification of spurious associations for high-
dimensional problems by shrinking the model’s negligible
coefficients to zero and leaving larger effects unaffected. In
the UK Biobank, where we study how age is associated with
occurrence of lesions, age has a very large effect on lesion
incidence. However, many studies require methods to identify
much subtler risk factors for lesion incidence and BLESS is
able to identify these smaller effects alike with a higher level
of specificity and sensitivity compared to the mass-univariate
approach. Our methods aid a more accurate spatial localization
of effects where we show that the effect of age on lesion incidence
predominantly covers periventricular and deep white matter
regions. Hence, our model provides us with a tool to identify
the brain regions impacted by lesion occurrence within a large
population and to determine the impact on cognitive, sensory,
or autonomic loss potentially induced by a higher lesion burden
due to increased age. In Figure 6 in the supplementary materials
we also highlight the change of lesion incidence across the
brain in 1000 out-of-sample subjects under 50 years and over
75 years old. While the lesion location is still focused around
the ventricles, the predicted lesion incidence increases greatly
with age which validates previous research findings (Kindalova,
Kosmidis, and Nichols 2021).

Moreover, we are also able to provide uncertainty estimates
of parameter maps which help in the assessment of spatial
associations at a population level, attaching risk assessments for
identified biomarkers for diseases, and enabling the acquisition
of cluster size based imaging statistics. The UK Biobank appli-
cation for analyzing the effect of age on lesion occurrence only
identifies two big clusters, which validates our expectation based
around the magnitude of the effect for age. More importantly,
BB-BLESS has the unique advantage to provide us with preva-
lence statements of cluster size quantities. A spatial map that can
aid decisions for follow-up studies, when resources are scarce
and a researcher needs to know the reliability of large effect
voxels and cluster occurrence across the brain.

5. Discussion

We have proposed a novel Bayesian spatial generalized linear
model with a structured spike-and-slab prior for the analysis of
binary lesion data. Our main contribution to the neuroimaging
community is the development of a scalable version of a Bayesian
spatial model that is able to diminish spurious associations by
shrinking negligible coefficients to zero, to increase model inter-
pretation via Bayesian variable selection and to provide a model
that is also easily extendable to other neuroimaging modalities,
such as functional MRI with a continuous response variable.
The computational tractability of our method is also facil-
itated by using a data augmentation approach for the probit
model and an analytical approximation to estimate the parame-
ters in the logistic function in the Bernoulli prior on the latents
within the spike-and-slab distribution (Albert and Chib 1993;
Jaakkola and Jordan 2000). For future work, switching the probit
link to a logit link enables the interpretation of the spatially-
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varying coeflicients via log-odds ratios. Moreover, advances in
Bayesian inference for efficient posterior estimation of logistic
regressions using Polya-Gamma latent variables circumvent the
approximation by Jaakkola and Jordan (2000) and therefore have
potential for gains in accuracy and computational efficiency
(Polson, Scott, and Windle 2013; Durante and Rigon 2019).

Lastly, we would like to address that we limit our application
of BLESS to a clinical application aiming at identifying the
association between age and lesion incidence in a large scale
population health study, the UK Biobank. However, it is a well
established finding in the analysis of white matter hyperintensi-
ties that age is one of the strongest predictors of lesion incidence
(Wardlaw et al. 2013). Therefore, the study of more subtle risk
factors for disease and the application of our cluster size based
imaging statistics poses an interesting future research direction,
as for example the further exploration of the cognitive impact
of cerebrovascular risk-related white matter lesions (Veldsman
et al. 2020).

Supplementary Materials

The supplementary materials contain derivations of the variational
inference algorithm for BLESS-VI and the approximate posterior sampling
technique for BB-BLESS, further simulation studies, additional real data
analyses and posterior predictive checks, sensitivity analyses and more
comprehensive literature reviews. The code for this work is available at
https://github.com/annamenacher/BLESS in addition to the JASA ACC
form describing the contents of our code.

Acknowledgments

We thank Sahra Ghalebikesabi, Lorenzo Pacchiardi and Edwin Fong
for valuable feedback.

Disclosure Statement

The authors do not have any conflicts of interest to declare with respect to
this work.

Funding

AM is funded by EPSRC StatML CDT (EP/S023151/1), Oxford-Radcliffe
scholarship and Novartis, TEN by the Wellcome Trust (100309/Z/12/Z)
and NIH grant 1R01DA048993, CH by The Alan Turing Institute, Health
Data Research UK, the Medical Research Council UK, the EPSRC via the
Bayes4Health grant EP/R018561/1, and Al for Science and Government
UKRI and HG by Novartis. We would also like to thank the UK Biobank
participants for their contribution to the study which was conducted under
application 34077 and 8107.

ORCID

Thomas E. Nichols (2 http://orcid.org/0000-0002-4516-5103

References

Albert, J. H., and Chib, S. (1993), “Bayesian Analysis of Binary and Poly-
chotomous Response Data,” Journal of the American Statistical Associa-
tion , 88, 669-679. [3,13]

Alfaro-Almagro, E, McCarthy, P, Afyouni, S., Andersson, J. L., Bastiani,
M., Miller, K. L., Nichols, T. E., and Smith, S. M. (2021), “Confound


https://github.com/annamenacher/BLESS
http://orcid.org/0000-0002-4516-5103

14 A. MENACHERET AL.

Modelling in UK Biobank Brain Imaging,” Neurolmage, 224, 117002.
(10]

Andersen, M. R., Winther, O., and Hansen, L. K. (2014), “Bayesian Inference
for Structured Spike and Slab Priors,” Advances in Neural Information
Processing Systems, 2, 1745-1753. [2]

Barbieri, M. M., Berger, J. O., George, E. 1., and Rockova, V. (2021), “The
Median Probability Model and Correlated Variables,” Bayesian Analysis,
16, 1085-1112. [5]

Benjamini, Y., and Hochberg, Y. (1995), “Controlling the False Discovery
Rate: A Practical and Powerful Approach to Multiple Testing,” Journal of
the Royal Statistical Society, Series B, 57, 289-300. [9,10]

Besag, J. (1974), “Spatial Interaction and the Statistical Analysis of Lattice
Systems,” Journal of the Royal Statistical Society, Series B, 36, 192-225.
(2]

(1986), “On the Statistical Analysis of Dirty Pictures,” Journal of the
Royal Statistical Society, Series B, 48, 259-302. [4]

Bishop, C. M. (2006), Pattern Recognition and Machine Learning, New York:
Springer. [3,5]

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017), “Variational Infer-
ence: A Review for Statisticians,” Journal of the American Statistical
Association, 112, 859-877. [3,5]

Brook, D. (1964), “On the Distinction between the Conditional Probability
and the Joint Probability Approaches in the Specification of Nearest-
Neighbour Systems,” Biometrika, 51, 481-483. [4]

Carbonetto, P., and Stephens, M. (2012), “Scalable Variational Inference for
Bayesian Variable Selection in Regression, and its Accuracy in Genetic
Association Studies,” Bayesian Analysis, 7, 73-108. [3]

Debette, S., and Markus, H. S. (2010), “The Clinical Importance of White
Matter Hyperintensities on Brain Magnetic Resonance Imaging: System-
atic Review and Meta-Analysis,” BM], 341, c3666. [1]

Durante, D., and Rigon, T. (2019), “Conditionally Conjugate Mean-Field
Variational Bayes for Logistic Models,” Statistical Science, 34, 472-485.
[13]

Firth, D. (1993), “Bias Reduction of Maximum Likelihood Estimates,’
Biometrika, 80, 27-38. [2,7]

Fong, E., Lyddon, S., and Holmes, C. (2019), “Scalable Nonparametric
Sampling from Multimodal Posteriors with the Posterior Bootstrap,”
Proceedings of Machine Learning Research, 97, 1952-1962. [3]

Ge, T., Miiller-Lenke, N., Bendfeldt, K., Nichols, T. E., and Johnson, T. D.
(2014), “Analysis of Multiple Sclerosis Lesions via Spatially Varying
Coefficients,” The Annals of Applied Statistics, 8, 1095-1118. [2,4,7]

Gelfand, A. E., and Vounatsou, P. (2003), “Proper Multivariate Conditional
Autoregressive Models for Spatial Data Analysis,” Biostatistics, 4, 11-15.
(4]

George, E. I, and McCulloch, R. E. (1993), “Variable Selection via Gibbs
Sampling,” Journal of the American Statistical Association, 88, 881-889.
[2,3,5]

(1997), “Approaches for Bayesian Variable Selection,” Statistica
Sinica, 7, 339-373. [2]

Griffanti, L., Zamboni, G., Khan, A., Li, L., Bonifacio, G., Sundaresan, V.,
Schulz, U. G., Kuker, W,, Battaglini, M., Rothwell, P. M., and Jenkin-
son, M. (2016), “BIANCA (Brain Intensity AbNormality Classification
Algorithm): A New Tool for Automated Segmentation of White Matter
Hyperintensities,” Neurolmage, 141, 191-205. [10]

Griffanti, L., Jenkinson, M., Suri, S., Zsoldos, E., Mahmood, A., Filippini,
N., Sexton, C. E., Topiwala, A., Allan, C., Kiviméki, M., Singh-Manoux,
A., Ebmeier, K. P, Mackay, C. E., and Zamboni, G. (2018), “Classification
and Characterization of Periventricular and Deep White Matter Hyper-
intensities on MRI: A Study in Older Adults,” NeuroImage, 170, 174-181.
(1]

Hernandez-Lobato, D., Hernandez-Lobato, ]. M., and Dupont, P. (2013),
“Generalized Spike-and-Slab Priors for Bayesian Group Feature Selec-
tion Using Expectation Propagation,” Proceedings of Machine Learning
Research, 14, 1891-1945. [3]

Jaakkola, T. S., and Jordan, M. I. (2000), “Bayesian Parameter Estimation via
Variational Methods,” Statistics and Computing, 10, 25-37. [4,13]

Jordan, M. 1., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999), “An
Introduction to Variational Methods for Graphical Models,” Machine
Learning, 37, 183-233. [3]

Kindalova, P, Kosmidis, 1., and Nichols, T. E. (2021), “Voxel-Wise and
Spatial Modelling of Binary Lesion Masks: Comparison of Methods with
a Realistic Simulation Framework,” NeuroImage, 236, 118090. [7,13]

Kosmidis, I., Kenne Pagui, E., and Sartori, N. (2020), “Mean and Median
Bias Reduction in Generalized Linear Models,” Statistics and Computing,
30, 43-59. [2]

Kosmidis, I. (2021), brglm2: Bias Reduction in Generalized Linear Models. R
package version 0.8.0. Available at https://CRAN.R-project.org/package=
brgim2. (7]

Li, F, and Zhang, N. R. (2010), “Bayesian Variable Selection in Structured
High-Dimensional Covariate Spaces with Applications in Genomics,”
Journal of the American Statistical Association, 105, 1202-1214. [2]

Li, X., Wang, L., Wang, H. J., and for the Alzheimer’s Disease Neuroimag-
ing Initiative. (2021), “Sparse Learning and Structure Identification
for Ultrahigh-Dimensional Image-on-Scalar Regression,” Journal of the
American Statistical Association, 116, 1994-2008. [2]

Lyddon, S., Walker, S., and Holmes, C. (2018), “Nonparametric Learn-
ing from Bayesian Models with Randomized Objective Functions,” in
NeurIPS 2018, pp. 2075-2085. 3]

Mardia, K. V. (1988), “Multi-Dimensional Multivariate Gaussian Markov
Random Fields with Application to Image Processing,” Journal of Multi-
variate Analysis, 24, 265-284. [4]

Miller, K., Alfaro-Almagro, E, Bangerter, N., and Thomas, D. L. (2016),
“Multimodal Population Brain Imaging in the UK Biobank Prospec-
tive Epidemiological Study,” Nature Neuroscience, 19, 1523-1536.
(10]

Minka, T. E. (2001), “Expectation Propagation for Approximate Bayesian
Inference,” DOI:10.5555/2074022.2074067. 3]

Mitchell, T. J., and Beauchamp, J. J. (1988), “Bayesian Variable Selection in
Linear Regression,” Journal of the American Statistical Association, 83,
1023-1032. [2]

Newton, M. A., and Raftery, A. E. (1994), “Approximate Bayesian Inference
with the Weighted Likelihood Bootstrap,” Journal of the Royal Statistical
Society, Series B,, 56, 3-26. [3,6]

Nie, L., and Rockova, V. (2022), “Bayesian Bootstrap Spike-and-Slab
LASSO,” Journal of the American Statistical Association, 118,2013-2028.
(3.6]

Piironen, J., and Vehtari, A. (2017), “Sparsity Information and Regulariza-
tion in the Horseshoe and Other Shrinkage Priors,” Electronic Journal of
Statistics, 11, 5018-5051. [2]

Polson, N. G., Scott, J. G., and Windle, J. (2013), “Bayesian Inference for
Logistic Models Using Pélya-Gamma Latent Variables,” Journal of the
American Statistical Association, 108, 1339-1349. [13]

Prins, N. D., and Scheltens, P. (2015), “White Matter Hyperintensities,
Cognitive Impairment and Dementia: An Update,” Nature Reviews Neu-
rology, 11, 157-165. [1]

Rockova, V., and George, E. I. (2014), “EMVS: The EM Approach to
Bayesian Variable Selection,” Journal of the American Statistical Associ-
ation, 109, 828-846. [5]

Rostrup, E., Gouw, A., Vrenken, H., van Straaten, E., Ropele, S., Pantoni, L.,
Inzitari, D., Barkhof, E.,, and Waldemar, G. (2012), “The Spatial Distribu-
tion of Age-Related White Matter Changes as a Function of Vascular Risk
Factors—Results from the LADIS Study,” Neurolmage, 60, 1597-1607.
(1]

Rubin, D. B. (1981), “The Bayesian Bootstrap,” The Annals of Statistics, 9,
130-134. [3]

Sharma, R., and Sekhon, S. (2021), White Matter Lesions, Treasure Island,
FL: StatPearls Publishing. [1]

Stingo, E. C., Chen, Y. A., Vannucci, M., Barrier, M., and Mirkes, P. E. (2010),
“A Bayesian Graphical Modeling Approach to MicroRNA Regulatory
Network Inference,” The Annals of Applied Statistics, 4, 2024-2048. [2,4]

Veldsman, M., Kindalova, P., Husain, M., Kosmidis, I., and Nichols, T. E.
(2020), “Spatial Distribution and Cognitive Impact of Cerebrovascular
Risk-Related White Matter Hyperintensities,” Neurolmage: Clinical, 28,
102405. [1,13]

Wardlaw, J., Smith, E., Biessels, G., and Cordonnier, C. (2013), “Neuroimag-
ing Standards for Research into Small Vessel Disease and Its Contribu-
tion to Ageing and Neurodegeneration,” The Lancet Neurology, 12, 822—
838. [1,13]


https://CRAN.R-project.org/package=brglm2
https://CRAN.R-project.org/package=brglm2

Wardlaw, J., Valdés Hernandez, M., and Muiioz-Maniega, S. (2015), “What
Are White Matter Hyperintensities Made Of? Relevance to Vascular
Cognitive Impairment,” Journal of the American Heart Association, 4,
e001140. [1]

Whiteman, A. (2022), “Bayesian Analysis of Neuroimage Data Using Gaus-
sian Process Priors,” available at https://deepblue.lib.umich.edu/handle/
2027.42/174640.[2]

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 15

Yao, Y., Vehtari, A., Simpson, D., and Gelman, A. (2018), “Yes, But Did It
Work?: Evaluating Variational Inference,” Proceedings of Machine Learn-
ing Research, 80, 5581-5590. [3]

Zeng, Z., Li, M., and Vannucci, M. (2022), “Bayesian Image-on-Scalar
Regression with a Spatial Global-Local Spike-and-Slab Prior;” Bayesian
Analysis, 1, 1-26. 2]


https://deepblue.lib.umich.edu/handle/2027.42/174640
https://deepblue.lib.umich.edu/handle/2027.42/174640

	Abstract
	1.  Introduction
	1.1.  Mass-Univariate Methods and Other Spatial Models
	1.2.  Bayesian Variable Selection
	1.3.  Approximate Posterior Inference and Sampling

	2.  Methods
	2.1.  Prior Specifications
	2.2.  Posterior Approximation
	2.3.  Dynamic Posterior Exploration
	2.4.  Uncertainty Quantification via Bayesian Bootstrap – BLESS

	3.  Simulation Study
	3.1.  BB-BLESS Simulation Study
	3.2.  BLESS-VI Simulation Study

	4.  UK Biobank Application
	4.1.  Data Description and Model Estimation
	4.2.  Results
	4.3.  Cluster Size Imaging Statistics

	5.  Discussion
	Supplementary Materials
	Acknowledgments
	Disclosure Statement
	Funding
	ORCID
	References


