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Abstract 23 

Microorganisms play a role in the construction or modulation of various types of 24 

landforms. They are especially notable for forming microbially induced sedimentary 25 

structures (MISS). Such microbial structures have been considered to be amongst 26 

the most likely biosignatures that might be encountered on the Martian surface. 27 

Twenty-nine algorithms have been tested with images taken during a laboratory 28 

experiment for testing their performance in discriminating mat cracks (MISS) from 29 

abiotic mud cracks. Among the algorithms, Neural Network types produced excellent 30 

predictions with similar precision of 0.99%. Following that step, a Convolutional 31 

Neural Network (CNN) approach has been tested to see if it can conclusively detect 32 

MISS in images of rocks and sediment surfaces taken at different natural sites where 33 

present and ancient (fossil) microbial mat cracks and abiotic desiccation cracks were 34 

observed. The CNN approach showed excellent prediction of biotic and abiotic 35 

structures from the images (global precision, sensitivity and specificity: respectively 36 

0.99, 0.99 and 0.97). The key areas of interest of the machine matched well with 37 

human expertise for distinguishing biotic and abiotic forms (in their geomorphological 38 

meaning). The images indicated clear differences between the abiotic and biotic 39 

situations expressed at three embedded scales: texture (size, shape and 40 

arrangement of the grains constituting the surface of one form), form (outer shape of 41 

one form) and pattern of forms arrangement (arrangement of the forms over few 42 

square meters). The most discriminative components for biogenicity were the border 43 

of the mat cracks with their tortuous enlarged and blistered morphology more or less 44 

curved upwards, sometimes with thin laminations. In order to apply this innovative 45 

biogeomorphological approach to the images obtained by rovers on Mars, the main 46 

physical and biological sources of variation in abiotic and biotic outcomes must now 47 

be further considered. 48 

Key words: Astrobiology; Biogeomorphology; Microbially induced sediment 49 

structures; Biosignatures; Neural Network; Mars. 50 

1. Introduction 51 

Advances in the understanding of the environmental context of the earliest life on 52 

Earth, ca. 3.8 Ga ago, and of the ability of modern extremophile microorganisms to 53 

cope with extreme conditions caused by salt, acidity, temperature, pressure or 54 
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radiation, hint that the search for life beyond Earth could ultimately be successful 55 

(Landis, 2001; Cady and Noffke, 2009; Grotzinger et al., 2014; Westall et al., 2015; 56 

Ibarra and Corsetti, 2016; Cabrol, 2018; Damer and Deemer, 2019; Longo and 57 

Damer, 2020; Chacon-Baca et al., 2021). The search for past or present signatures 58 

of life on telluric planets, their moons and on asteroids is primarily focussed on 59 

turning up direct evidence for fossilized microorganisms, biologically influenced 60 

minerals, or organic chemical or stable isotopic biomarkers at the surface or in the 61 

atmosphere (Ehlmann et al., 2008; van Zuilen, 2008; Marshall et al., 2017; Huang et 62 

al., 2018; Webster et al., 2013; Limaye et al., 2018; McMahon et al., 2018; 63 

Schwieterman et al., 2018; Cockell and McMahon, 2019).  64 

Several types of microorganisms (archaea, bacteria, and eukaryota domains, e.g., 65 

protozoa, unicellular algae, and unicellular fungi) grow intimately with rock and 66 

sediment, and derive shelter, nutrients and water from them (Huang et al., 2020). 67 

They are also known to leave many kinds of detectable traces on rocks or soft 68 

sediment during mineral precipitation and transformation, weathering, erosion and 69 

deposition processes, from micro to regional scales (Naylor et al., 2002; Carter and 70 

Viles, 2005; Naylor, 2005; Viles, 2008, 2012; Noffke, 2010; Hays et al., 2017). It has 71 

been suggested that the environments of Mars during the Noachian period (4.1-72 

3.6 Ga), including primitive ocean, craters and playa lakes, volcanic aquifers, hot 73 

springs, and hydrothermal seafloors, could have been suited to the evolution of 74 

microorganisms. If this were the case then they must have affected surface and 75 

subsurface geomorphological characteristics of the planet and it is thus appropriate 76 

to search the Noachian sedimentary record of Mars for biosignatures (Naylor, 2005; 77 

Cady and Noffke, 2009; Schon et al., 2012; Noffke et al., 2013; Westall et al., 2015; 78 

Corenblit et al., 2019; Joseph et al., 2020; Rizzo, 2020; Bosak et al., 2021; Noffke, 79 

2021). 80 

The recognition of signatures of extraterrestrial life is only possible if analogous 81 

signatures can first be identified in Earth’s sedimentary record (Cady, 2001; Cady et 82 

al., 2004; McLoughlin et al., 2007; Cady and Noffke, 2009; Noffke, 2000, 2009, 2010; 83 

Baucon et al., 2017; Corenblit et al., 2019). This approach is based on reasoning via 84 

abductive inference, with the assumption that the same or equivalent 85 

biogeomorphological processes result in categories of landforms displaying similar 86 

characteristics (Gilbert, 1886; Baker, 2008; Corenblit et al., 2019). 87 
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Among the potential microbial biosignatures on Mars, microbially induced 88 

sedimentary structures (MISS) are promising candidates (Cady et al., 2004; Schieber 89 

et al., 2007; Noffke, 2010, 2021; Hickman-Lewis et al., 2022). They are sedimentary 90 

substrates that are textured and patterned by the adhesive and cohesive properties 91 

of microbial mats and biofilms (Noffke et al., 2001). They are presently widespread 92 

on Earth in several environments at the interface between water and land, including 93 

fluvial, marine, lacustrine and hypersaline settings (Stal, 2003; Thomas et al., 2013; 94 

Cuadrado and Pan, 2018; Maisano et al., 2019) and have a terrestrial fossil record 95 

that extends back for billions of years (Noffke, 2010; Carmona et al., 2012; Davies et 96 

al., 2017; Lepot, 2020; Davies and Shillito, 2021). The microbial mat communities 97 

responsible for generating MISS variably include bacteria, archaea, protozoans, 98 

algae, and fungi, and the structures formed are similarly diverse, ranging from 99 

millimetre to decimetre scales (Chacon-Baca et al., 2021) and including an array of 100 

laminar structures, microbially induced wrinkles, mat chips, palimpsest ripples, roll-up 101 

forms, gas domes and mat cracks (Eriksson et al., 2007; Porada and Bouougri, 2007; 102 

Noffke, 2010; Noffke et al., 2013; Davies et al., 2016).  103 

Rovers and orbiters are presently acquiring large sets of images of the surface of 104 

Mars (Kwan, 2021), including imagery of bedding planes that can be considered true 105 

substrates (Davies and Shillito, 2021; Mangold et al., 2021): fossilized remnants of 106 

the Martian lithic surface from the Noachian, which may once have been colonized by 107 

microbial life. The analysis of each image requires individual expertise from 108 

geobiologists and biogeomorphologists, and thus a new key challenge is accurate 109 

detection of those returned images that present the best potential of revealing biotic 110 

morphological signatures. The expertise applied to large sets of images is inevitably 111 

finite and can additionally be subjected to interpretation biases. To circumvent these 112 

human-derived pitfalls, an objective automatic high-throughput recognition procedure 113 

is desirable in order to establish first-pass classifications of images and to isolate 114 

those with the greatest potential to show morphological signatures of life. 115 

When image data have adjacency structures that can be recognised by the human 116 

brain, an Artificial Neural Network can be trained to use these structures to 117 

emphasize local relationships between areas of interest. Neural Networks are now 118 

recognized as extremely efficient in object recognition and classification on images, 119 

even of poor definition (LeCun et al., 1998; 2015, Rawat and Wang, 2017; Geirhos et 120 
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al., 2018; Shrestha and Mahmood, 2019; Zhao et al., 2019). Such techniques have 121 

been successfully used in geology and geomorphology for automatic mineral and 122 

landform recognition (Du et al., 2019; Liu et al., 2019; Li et al., 2020) and in biology 123 

for biofilm characterisation (Buetti-Dinh et al., 2019; Dimauro et al., 2020). These 124 

studies have demonstrated the potential for Neural Networks to exhibit superior 125 

performance in discrimination compared to the visual interpretation of human experts.  126 

The aim of this study is to develop and test a Neural Network for the detection of 127 

MISS-like structures on images from Earth’s sedimentary record. The method shows 128 

promise to be used to identify potential signatures of life in rock records related to 129 

ancient microbial activity on the surface of Mars. In this paper, we provide a detailed 130 

analysis based on empirical field observations of present and ancient mat cracks, 131 

complemented by a laboratory experiment, to test all the advantages and limits of 132 

Neural Network in identifying potential MISS. 133 

2. Material and Methods 134 

2.1. MISS-type: mat cracks 135 

Among the variety of MISS, mat cracks have been selected as a pilot in this study 136 

because they represent a type of modern and ancient MISS that are both widespread 137 

and most easily distinguished from their abiotic counterparts. These structures are 138 

related to microbial mats colonizing sediment surfaces in damp muddy siliciclastic 139 

depositional systems, creating an elastic surficial membrane that subsequently fails 140 

and tears in a brittle fashion as a result of shrinking during intervals of drying (Tanner, 141 

1978). Their visual aspects reflect sequences of mat growth during submersion and 142 

mat destruction under desiccation leading to more or less tick-curled and blistered 143 

crack margins (Eriksson et al., 2007; Noffke, 2010), and prolonged drying may lead 144 

to the successive development of several variable morphological characteristics 145 

(Davies et al., 2017). In contrast, desiccation of cohesive sediment that lacks an 146 

elastic surface membrane tends to form more regular polygonal cracks that are 147 

geometrically straight and do not typically exhibit blistered crack margins (Goehring 148 

et al., 2015; Li and Zhang, 2010; Noffke, 2010). 149 

Furthermore, small to large-scale polygonal cracking patterns with potential 150 

desiccation cracks have been observed by both rovers and orbiters on Mars, 151 

conclusively indicating past conditions of lake/ocean drying, but with present 152 
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uncertainty about the role of microbial involvement (Hiesinger and Head, 2000; 153 

Seibert and Kargel, 2001; Mangold, 2005; Grotzinger et al., 2005, 2014; El-Maarry et 154 

al., 2013; 2014; Edgar et al., 2018; Stein et al., 2018). 155 

Visual detection has inherent limitations as a tool to unequivocally identify life 156 

signatures in rocks. As stressed by Noffke (2021) and others (e.g., Cockell and 157 

McMahon, 2019; Westall et al., 2021), the identification of MISS-biogenicity without 158 

any ambiguity requires a multiproxy approach with information about (i) the 159 

environmental situation of a candidate structure and its association with other abiotic 160 

structures; (ii) the external macroscopic morphology (visual detection); (ii) the internal 161 

micro-forms and textures (identification using light and/or electron microscope); (iii) 162 

chemical or isotopic signals (confirmation of biotic activity). The method proposed 163 

here is devoted to automatically detect potential MISS structures that should be 164 

targeted for further analyses. 165 

2.2. Laboratory experiment 166 

In order to directly compare, under controlled conditions, the formation of 167 

desiccation cracks and their morphological particularities with and without induced 168 

biofilm, a laboratory experiment was undertaken in a ventilated greenhouse in 169 

Toulouse, France. The experiment was designed to test intra- and intergroup 170 

variability in the geomorphological response of different types of substrate texture 171 

without (control) and with a cyanobacteria biofilm (treatment). Machine learning was 172 

used on the images to establish a classification of biotic and abiotic classes with 173 

perfect knowledge about the biotic origin and the initial abiotic conditions. The 174 

objectives were (i) to test if the strictly physical and biological configurations would 175 

result in distinct and well-marked visual signatures; (ii) to confirm that visual 176 

differences between the treatments observed by the expert can be well captured by 177 

machine learning; and (iii) to compare and test the performance of a Neural Network 178 

for discriminating biotic and abiotic images and to validate its more in-depth use for 179 

the in situ analyses of present and ancient MISS from Earth.  180 

Biofilm was collected from the river bed of the Garonne River, in Toulouse, France 181 

(43°34’25’’N; 1°26’04’’E; 135 m a.s.l.), during summer low flows, and directly 182 

implanted in experimental plastic trays. Twenty-four rectangular open plastic trays of 183 

29 cm * 19 cm * 7 cm were used. For abiotic control, four trays were filled with a 184 
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30 mm sand layer (size < 4 mm) and on top a clay layer of 3 mm (smectite clay: 185 

green montmorillonite); and four trays with a layer of 40 mm of clay only. The same 186 

design was used for biotic treatment but with the implantation of a 3 mm biofilm on 187 

top (a total of eight trays). A further four trays were filled with a 30 mm sand layer 188 

only and a 2 mm biofilm at the top; another four trays were filled solely with a 2 mm 189 

biofilm. All the trays were fully submerged and then subjected to progressive 190 

evaporation and desiccation for three months (July-September) under normal 191 

conditions of temperature and sun exposure (assumed to be roughly equal to 192 

external conditions because of ventilation and the absence of a filter on the 193 

greenhouse glass); July: mean T°C = 21.7, max = 35.6, min = 13.1, sun exposure = 194 

261 h; August: mean T°C = 21.8, max = 35.5, min = 12.0, sun exposure = 219 h; 195 

September: mean T°C = 20.7, max = 33.4, min = 12.2, sun exposure = 191 h (data 196 

collected at Toulouse-Blagnac climatic station, 43°38’19’’N; 1°21’36’’E; 152 a.s.l.). 197 

The substrates remained immersed for about 2-3 weeks during July. After full 198 

desiccation in September, images were taken of each tray (one vertical image at the 199 

nadir and four oblique images at the cardinal points; a total of 120 images). A digital 200 

Canon Ixus 180 camera was used for image acquisition (colour: sRGB; 201 

resolution:180 dpi). 202 

The performance of a Neural Network in discriminating images from biotic and 203 

abiotic samples in the experiment was compared to other categories of machine 204 

learning algorithms using the Matlab (MathWorksTM) simulation environment 205 

(R2021b). All the tests of the classifiers were conducted using the machine learning 206 

toolbox (classification learner) which contains a collection of twenty-nine machine 207 

learning algorithms belonging to eight main families of classifier: Support Vector 208 

Machine (SVM); Decision Trees (DT); K-Nearest Neighbours (K-NN); Discriminant 209 

Analysis (DA); Ensemble methods; Naive Bayes; Kernel Approximation and Neural 210 

Network (Mahesh, 2020; Matlab, 2022). 211 

SVM methods use different mathematical functions to determine the boundaries 212 

between classes. SVMs are known to perform well with unstructured and semi-213 

structured data such as images, but the results are highly dependent on the kernel 214 

function used and the learning time increases greatly with the size of the dataset. The 215 

types of SVMs tested here were: Linear, Quadratic, Cubic, Fine Gaussian, Medium 216 

Gaussian and Coarse Gaussian. In Decision Trees, classes are predicted by 217 
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choosing branches of a tree from the root to the leaf nodes. DT are easy to 218 

implement and their results are easy to interpret. They are very efficient and fast for 219 

small data sets, but this time increases rapidly with the size of the data sets, making 220 

them less relevant for dealing with large volumes of data. The types of DT tested 221 

were: Fine, Medium and Coarse. K-Nearest Neighbours is based on classifying the 222 

data according to the class of its K-nearest neighbours. K-NN is easy to implement 223 

and works much faster than the other algorithms because it does not use the training 224 

dataset to learn and improve; it only stores the training dataset and learns from it 225 

when making predictions. However, it is known to be inefficient with large datasets 226 

because computing the distance between each new point and the old ones takes a 227 

lot of time. Types of K-NN that were used are: Fine, Medium, Coarse, Cosine, Cubic, 228 

and Weighted. Discriminant analysis is based on finding combinations of features 229 

that characterize or separate classes. DA is generally effective for classification into 230 

two or more classes, but this method may fail if the classes involved are highly 231 

intermingled in terms of the distribution of their descriptive parameters. Both Linear 232 

and Quadratic analyses were used. Ensemble classification uses the combination of 233 

two or more classification methods to improve their individual performance. Different 234 

types were used: Bagged Trees, Boosted Trees, Subspace Discriminant, Subspace 235 

KNN and RUSBoosted Trees. Naive Bayes classifiers are based on probabilistic 236 

classification applying Bayes’ theorem with strong (naive) assumptions of 237 

independence between features. Naive Bayes analysis is simple and easy to 238 

implement. It does not require large training datasets and works quickly, but it 239 

assumes that all features are independent, which is rarely the case in real-world 240 

settings; thus, it can lead to misclassification. Two types were available for our tests: 241 

Gaussian and Kernel. Finally, five types of Neural Network-based classifiers were 242 

tested: Narrow medium, Wide, Bilayered and Trilayered. Neural Networks have many 243 

advantages, notably that they are very efficient even with very large data sets, but 244 

they have the disadvantage of functioning for the user as a black box, giving no 245 

information on the process that led to the classification. In our case, the fact of 246 

mastering the implementation of the Neural Network and of being able to access the 247 

internal layers made it possible to partially overcome this drawback. The tested 248 

configurations correspond to Neural Networks with a reduced number of neurons in 249 

parallel for the first intermediate layers for the ‘narrow’ classifier, a higher number for 250 

the ‘medium’ one and a much higher number for the ‘wide’ network classifier. The 251 
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two-layer network offers greater flexibility by allowing the width of the first two inner 252 

layers of the network to be defined for the Bilayered classifier, and the first three 253 

layers for the Trilayered one. In our case, the parameters chosen were those 254 

proposed by default by the model, i.e., a value of 10 for the size of the first layer of 255 

the Narrow classifier, 25 for the Medium classifier and 100 for the Wide classifier. For 256 

the Bilayered classifier, the size of the first two layers was set to 10 and that of the 257 

first three layers to 10 for the Trilayered classifier. 258 

In order to increase the number of images for the classification, a data 259 

augmentation procedure was developed with the Matlab simulation environment and 260 

performed for each of the 120 initial images with a subdivision into four sub-images. 261 

Successive rotations of the original images were applied by steps of 10°. For one 262 

initial image, we obtained 1 + 4 + 35 = 40 images (i.e., 120 + 40 * 120 = 4,920 263 

images). A correct balance between the number of abiotic images (1,640) and biotic 264 

images (3,280) was obtained for training and testing.  265 

The procedure began with the labelling of images into their category (based on 266 

expert analysis). The BagOfFeatures function of Matlab was used to provide an 267 

encoding scheme representing the large collection of images using a sparse set of 268 

‘visual word’ histograms (O’Hara and Draper, 2011; Nanni and Lumini, 2013). Five 269 

hundred features were thus automatically extracted from each image to allow their 270 

classification. 271 

A default method for the training and testing was used with the following steps: the 272 

whole dataset was cut into 5 equal subgroups; the model was trained with the data of 273 

4 of the 5 subgroups, and the 5th subgroup was used for testing. The procedure was 274 

repeated five times, changing the images belonging the test group and to the 4 275 

training group each time. The purpose of the procedure was an increased training 276 

consistency. 277 

2.3. In situ images acquisition 278 

The images of present-day features were collected in back-barrier tidal flats of the 279 

coastal zone of the Mediterranean Sea, near the village of Peyriac-de-Mer, France 280 

(Fig.1; 43°05’13’’N; 2°57’33’’E; 0 m a.s.l.). The prospected back-barrier tidal flats 281 

were dominated by mud-sized (clay) siliciclastic sediments in most of the studied 282 

sites. Surfaces were colonized by biofilms, as expected in brackish-water peritidal 283 
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settings (Gerdes et al., 2000). Microbial mats of different types were observed, 284 

depending on local habitat conditions and location on the supratidal gradient of 285 

salinity. The dominant type of MISS features that were observed corresponded to 286 

large epibenthic mats that had cracked more or less under desiccation following 287 

subaerial emergence. Images were collected at different dates, hours in the day, 288 

angles and in various locations to capture a wide range of light conditions, habitat 289 

types (type of substrate, water saltiness and submersion frequency and duration) and 290 

biological (type of microbial consortium) conditions. 2,000 images of mat cracks and 291 

2,000 abiotic desiccation cracks for control were taken in different locations at various 292 

sites (Fig. 1). Each location in a study site corresponded to an area of ca. 4 m² 293 

showing a homogenous distribution and density of mat cracks or desiccation cracks . 294 

Five images were taken for each location with one vertical image at the nadir and 295 

four oblique images at the cardinal points. At each location, five images were taken 296 

for several small groups of a few forms following the same procedure with the same 297 

form at the nadir. A set of 2,000 images of ancient mat cracks (i.e., fossilised mat 298 

cracks of ca. 250 Ma) and 1,000 images of ancient desiccation cracks were collected 299 

in the Permian Salagou formation in the Lodève Basin (Michel et al., 2015), France, 300 

near the village of Octon (Fig. 1; 43°39’16’’N: 3°18’10’’E; 125 m a.s.l.). In order to 301 

confirm the biotic origin of the mat cracks three samples of fossilised cracks were 302 

collected in the field in different sites and analysed in the lab. MISS generally have 303 

specific micro-textures in thin sections and this has been recognized as a formal 304 

criterion for biogenicity (Noffke, 2009; Davies et al., 2016). The three samples were 305 

sawn vertically in order to produce views in thin cross-sections for detailed visual 306 

analyses of the rock/fossilised mat structure under a light microscope (Olympus 307 

CX40 coupled with a high-definition colour camera head DS-Fi2). The analyses of the 308 

thin cross-sections showed the occurrence of fossilised tortuous biotic filaments (Fig. 309 

2a) and dark mat layers with a fine textural fabric associated with a cyanobacteria 310 

activity (Fig. 2b). 311 

All the images were collected with a digital Canon Ixus 180 camera (colour: sRGB; 312 

resolution:180 dpi). 313 

2.4. Convolutional Neural Network procedure 314 
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To explore more deeply the performance of Neural Networks for detecting mat 315 

cracks in the field, a Convolutional Neural Network (CNN) procedure was developed 316 

and tested with the images of present and ancient mat-cracks (biotic) and desiccation 317 

cracks (abiotic) forming in back-barrier tidal flats (see Table 1 for definition of the 318 

technical words related to Artificial Intelligence). Beside the overall goal of 319 

classification accuracy, three objectives were defined to orientate the technical 320 

choices of model development: (i) quality of calibration; (ii) robustness to 321 

perturbations; (iii) ability of generalization. On the one hand, these three points 322 

depend on the technical choices of implementation among a wide variety of modern 323 

techniques. On the other hand, points (ii) and (iii) depend both on the initial 324 

construction (images in learning phase and test phase coming from different 325 

photoshoot sequences and sites, presence of artefacts such as debris or lichens on 326 

the test set) and the pretreatment of images (augmentation procedures). 327 

Both present and ancient biotic and abiotic images were used in the CNN 328 

procedure. For ancient MISS, the images most likely associated with mat cracks 329 

were used for the learning procedure. Based on this assumption, consolidated with 330 

the observations that ancient and present MISS show common features, two classes 331 

were implemented as outputs of the model: Biotic or Abiotic. First, as the images 332 

originate from different locations and were taken in different conditions with the same 333 

camera, a standardization of the radiance was carried out following Jonnalagedda et 334 

al. (2021). Second, the images were divided into tiles of 1,024 * 1,024 pixels with no 335 

particular focus on the represented forms. The procedure resulted in 54,995 images 336 

of 1,024 * 104 pixels, with 34,858 biotic images (i.e., mat cracks) and 20,137 abiotic 337 

images (desiccation cracks). Some images contained extraneous elements such as 338 

lichens, and more or less agglomerated small twigs, dust and gravels. The images 339 

with such artefacts were kept to ensure that the model is able to focus on mat cracks 340 

despite the occurrence of the other elements mentioned. This set of images was 341 

divided into three subsets: a learning subset of 38,166 images (70%), a validation 342 

subset of 11,333 images (20%), and a testing subset of 5,496 images (10%). To 343 

avoid correlations due to the fact that several images of a given mat crack were taken 344 

with different angles, no images coming from the same shooting sequence were 345 

distributed in the different subsets. By doing so, we ensured that the testing set 346 

contained images de-correlated from the images that were used in the 347 
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learning/validating phases. Classical oversampling by duplication on the minority 348 

class (Abiotic) was performed to obtain a 50/50 distribution of biotic and abiotic 349 

samples in the learning set. Subsampling was stratified to ensure that there were 350 

ancient and present biotic and abiotic images in the learning, validation and testing 351 

sets. 352 

As the number of available images was not sufficient to train a CNN from scratch, 353 

a transfer learning approach was adopted using a ResNet50 (i.e., CNN that is 50 354 

layers deep pre-trained on ImageNet; He et al., 2016). Resnet CNNs have proven 355 

their high capacities to deal with a wide variety of cases (classification, detection and 356 

localisation). ResNet50 is a good compromise between performance and 357 

computational needs (He et al., 2016). The training was done on a bottleneck block 4 358 

on the classification layer and in freezing the deepest layers. This is classical in 359 

transfer learning, considering that the deepest layers of the CNN learn to identify very 360 

primary and simple features that are common to a very wide variety of objects and 361 

high-level layers more complex forms specific to some classes of objects. 362 

The Jensen-Shannon Divergence Consistency Loss was retained as a loss 363 

function because of its demonstrated ability to improve the robustness of the training 364 

and the stability of the predictions on new inputs (Zheng et al., 2016; Hendrycks et 365 

al., 2020). Here, it was based on the binary cross-entropy with label smoothing of 0.1 366 

(Müller et al., 2019). SGD (stochastic gradient descent) with momentum algorithm 367 

was used to train the model (Qiang, 1999) with a weight decay of 0.03. For setting 368 

the learning rate, a scheduler based on the cyclical learning rates method was used. 369 

It improves the classification accuracy in fewer iterations (Smith, 2017). 370 

The training was done on 17 epochs with mini-batches of 32 images. Beyond 17 371 

epochs, the model is over-trained. Following Howard (2018), progressive learning by 372 

resizing was performed to accelerate and improve the learning phase: the network 373 

was initially trained with smaller resized images (128 pixels) and then on larger 374 

images (128, 192 and 224 pixels, respectively on 2, 5 and 10 epochs). An algorithm 375 

of random resize crop coupled to the Augmix augmentation process (Hendrycks et 376 

al., 2020) was used. As an example, a first minibatch of 32 images arrives and the 377 

images are resized to 128 + 4 pixels (or 192 + 16 or 224 + 32). Then, a ROI (region 378 

of interest) is randomly chosen (size of 0.1 to 1) on each image and interpolated to 379 

generate a 128-pixel image. Augmix (severity = 2; chain.width = 2; chain.depth = 4), 380 
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consisting of a sequence of image transformations (Hendrycks et al., 2020) was then 381 

applied to the resulting image to obtain a triplet of images: the original one and two 382 

augmented ones. The model provides as an output the most probable class for a 383 

given image associated to a probability that represents the level of confidence of 384 

correctness of the classification. In a very simple fashion, we consider that the 385 

confidence threshold for belonging to a given class is equal to 0.5. 386 

CNNs and Neural Networks, in general, are black boxes and are excellent to 387 

predict but not to explain. During the last decade, a high number of methods were 388 

developed to understand why CNNs perform so well and to visualize the features of 389 

the images that drive the model decision (Palafox et al., 2017; Noh, 2021; Mani et al., 390 

2022). In the present study, as the searched landforms are not easily distinguishable 391 

objects that develop in environments with a lot of visual artefacts, it was 392 

fundamentally important to be able to visualize what parts of the images allowed the 393 

model to classify biotic and abiotic images. Two of the mainly used visualization 394 

methods but based on very different algorithms were chosen to ensure that the 395 

visualisation results are consistent. The first approach consisted in representing on 396 

the predicted image a heat map localizing the areas with the highest weight for the 397 

model decision for one given predicted class. To do that, Grad-CAM++ was 398 

implemented, based on a weighted combination of the positive partial derivatives of 399 

the last convolutional layer feature maps with respect to a specific class score 400 

(Chattopadhyay et al., 2018). Grad-CAM++ was preferred to Grad-CAM because of 401 

its better precision and better ability to separate the different areas of importance. 402 

The other method was Score-CAM and was based on the linear combination of the  403 

feature maps weighted with the corresponding prediction (Softmax) score obtained 404 

by a forward pass of these feature maps in the CNN (Wang et al., 2020). To visualize 405 

in high definition the pixels that were considered for the decision of the model, 406 

Guided Grad-CAM++ and Guided-Score-CAM were implemented, consisting of a 407 

combination of ReLU backpropagation with respect to Grad-CAM++ or Score-CAM 408 

activation maps (Zeiler and Fergus, 2014). These guided methods allow  visualization 409 

of the detected features (gradients, forms and patterns) that are important in the 410 

prediction of a given class. 411 

Model performances were evaluated in terms of: (i) calibration quality using ECE 412 

(expected calibration error) and reliability diagrams. This is based on the idea that, for 413 
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example, given 100 predictions with a probability of 0.8 for each to belong to a class, 414 

80 will be correctly predicted (Guo et al., 2017). The diagram compares the average 415 

probability of predictions to the expected accuracy, calculated on several intervals’ 416 

bins of prediction confidence (it should be equal in the case of a perfect calibration). 417 

ECE is equal to the weighted average gap between expected accuracy and average 418 

confidence. A perfect calibration should lead to an ECE of 0; (ii) precision (ratio of 419 

good predictions); (iii) AUC (area under curve), sensitivity and specificity as it is a 420 

two-class classification. To do that, Biotic is considered here as a positive and Abiotic 421 

as a negative class. Using visualization tools, the predictions on the testing set were 422 

visually analysed to identify the features that drove the decision-making and to 423 

assess whether they corresponded to the features used by humans to do the same 424 

classification. Particular attention was given to the images with twigs, lichens, dust 425 

and gravels to ensure that these objects didn’t influence the classification, and on the 426 

misclassified images to understand the sources of errors. Finally, one important 427 

question is whether the calculated probabilities associated with the classifications can 428 

be used to assess the level of uncertainty of the presence of biotic form. To tackle 429 

this issue, we calculated the probability distributions associated with the different 430 

prediction types: true biotic, true abiotic, false biotic and false abiotic. 431 

The model and all associated procedures were developed using the language 432 

Python with the library Pytorch (v. 1.10.0). 433 

3. Results 434 

3.1. Laboratory experiment and classification of images 435 

After full desiccation, the laboratory experiment indicated well-marked differences 436 

between the sets of controls and treatments (Fig. 3). The variation of sediment 437 

texture (grain size) and organisation (arrangement and thickness of the layers) 438 

significantly affected the geometry of desiccation cracks. Controls (A, B) and 439 

treatments (C, D, E, F) showed homogenous responses among the four replicates. 440 

The final morphology of the treatments with biofilm (C, D, E, F) varied with the initial 441 

sediment structure and texture with more or less fragmented and curved mat cracks.  442 

The biotic signature was expressed at three embedded scales (Fig. 4): (i) the 443 

micro-textural aspects of the forms; (ii) the geometrical characteristics of the forms; 444 

and (iii) the arrangement of the forms. Differences between abiotic and biotic 445 
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signatures did not systematically occur at the three spatial scales and instead varied 446 

dependent on the controls and the treatments. In the treatments with sand and clay 447 

(A, C), the biotic signature was expressed congruently at the three scales; whereas in 448 

the treatments with clay (B, D), the biotic signature only occurred as a texture (Fig. 449 

5). 450 

Visual discrimination and homogeneity in the replicates were confirmed by the 451 

learning machine classifications that were found to be very coherent with human 452 

expertise (Fig. 6). Among the twenty-nine algorithms that were tested, the Neural 453 

Network types performed best and showed excellent predictions with similar 454 

precision of 0.99% (Table 2). Most of the classification errors concerned the biotic 455 

categories (Fig. 6). The rare confusions between biotic and abiotic classes were 456 

mostly related to Sand_Clay and Sand_Clay_Bio; and Clay and Clay_Bio. It is most 457 

likely similarity in form that explains the confusions.  458 

3.2. Convolutional Neural Network with present and ancient MISS 459 

The CNN classification of in situ abiotic and biotic (present and ancient) images 460 

showed excellent results (Table 3). The overall precision in the test was 99% for an 461 

AUC of 0.99. Considering the Biotic class as the positive class and Abiotic as the 462 

negative one, the model sensitivity reached 99.3% and the specificity 97.4%. In 463 

detail, the sensitivity was equal to 98.4% for the ancient mat cracks for a specificity of 464 

99.8%. This means that the model missed a few biotic images but produced only one 465 

false biotic prediction. Most of these misclassified biotic images were due to 466 

subsampled tiles coming from biotic images incorporating abiotic sub-areas. For the 467 

present-day mat cracks, the sensitivity was 99.5% with a specificity of 96.1% with few 468 

false biotic predictions (30 images representing 3.9% of abiotic images): among 469 

these 30 false biotic, 24 images belonged to the same original photograph and were 470 

characterized by the presence of mineral flocs without any cracks. That mean that 471 

such floc texture cannot by distinguished by itself from the learnt biotic structures 472 

without the occurrence of cracks on the image. 473 

Quality of calibration was checked using ECE and reliability diagram. As shown in 474 

figure 7, the gap between expected accuracy and level of confidence was very small 475 

with an ECE of 0.06. This denotes a good quality of calibration of the model. 476 
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Moreover, the majority of correct predictions showed a level of confidence above 0.8, 477 

which can be used to assess the level of uncertainty of the presence of biotic 478 

structure in the images. More precisely, figure 8 shows the distribution of probabilities 479 

associated with each type of prediction. It appears that good predictions were 480 

associated with a peak of probability greater than 0.9, and a majority of values above 481 

0.8, with a good separation with false prediction curves. Indeed, false predictions 482 

were associated with probabilities mainly lower than 0.7 except the false biotic 483 

predictions curve that showed a bimodal distribution with the highest peak above 0.9. 484 

But this peak was exclusively associated with the 24 images coming from the same 485 

original image we evoked before. Removing these images make the distribution 486 

unimodal with values lower than 0.65. Figure 8 shows that a biotic or an abiotic 487 

prediction with a probability lower than 0.8 can be suspected to be erroneous but the 488 

level of uncertainty of correctness is very low when the probability is greater than 0.9. 489 

In a more general way, the value of probability associated to the biotic class 490 

predictions (equal to 1-probability of being abiotic) showed a good potential to be 491 

used to assess the probability for a given image to contain MISS signatures. 492 

To ensure that good performances were related to the mapping of relevant 493 

features, a visual examination of the activation mappings (GradCAM++ and 494 

ScoreCAM) was processed to identify the features underlying the model decisions. 495 

First, the two visualization methods consistently led to highlighting the same 496 

activation areas and providing the same high-definition representation of the 497 

discriminative features. Second, the detailed visual examination of the classification 498 

outputs image by image for the four modalities (i.e., present and ancient Biotic and 499 

Abiotic; examples provided in Fig. 9) showed that the most discriminative 500 

components for biogenicity were the border of the mat cracks with their tortuous 501 

enlarged and blistered morphology more or less curved upwards, sometimes with 502 

thin laminations (Fig. 9a, c). Centimetre circular or oval rips and mat chips (for a 503 

detailed description see Noffke, 2010) with rounded edges were also discriminative 504 

forms targeted by the model. The model did not focus on the more homogenous 505 

inner surface of the mat cracks, nor on the complicated artefacts caused by biotic 506 

features related to small twigs, lichens and small shells (tested on one image). The 507 

most discriminative components for the abiotic images were the straight narrow 508 

desiccation cracks with smooth shapes and the one with a regular slight curvature. 509 
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The most angular edges with T, Y or a cross pattern were very discriminant (Fig. 9b, 510 

d). Both the largest cracks and the inner fold of the desiccation cracks were not 511 

discriminative. 512 

In addition, as images coming from different photoshoot sequences were carefully 513 

separated between the learning and test sets and as the images were homogenised 514 

and augmented, the presence of hidden features in the images other than their 515 

visible content (hidden correlations between images coming from the same shoot 516 

sequence) were excluded. 517 

4. Discussion 518 

4.1. Convolutional Neural Network: a tool for the automatic detection of 519 

MISS-like structures 520 

Overall, the results showed that Neural Networks, and in particular CNN, are 521 

robust and very promising for establishing high-throughput automatic classification of 522 

images which are most likely to show structures with a biotic signature, such as 523 

MISS-like structures. The detailed visual examination of the classification outputs 524 

image by image showed that the key areas of interest of the model corresponded to 525 

those used by human expertise to discriminate biotic and abiotic forms, i.e., the 526 

borders of the cracks.  527 

The expert analysis image by image of the few false positive and negative outputs 528 

revealed three error sources. (i) Certain types of MISS structures that were observed 529 

in the field differed from the mat crack features that were dominantly used in this 530 

study. These structures were marginally used in the learning procedure. In such a 531 

case, when thin biofilms occurred in low densities on an image, they were not 532 

detected and the image was classified as abiotic. This result points to the importance 533 

of using the largest possible set of images of the wider possible range of MISS-types 534 

with various density in the learning procedure. (ii) The images were subsampled for 535 

the testing with a focus on one form or a detail of a form. In certain cases, 536 

subsamples originating from one image that was classified as biotic by the expert 537 

were (correctly) identified as an image showing an abiotic sample. This points to 538 

potential issues when subsampling images that were previously identified as biotic. 539 

Labelling for the learning procedure should be done after subsampling. (iii) In certain 540 

cases, fortuitous convergent patterns between abiotic and biotic features occurred 541 
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leading to false-positive or negative outputs. False positives were related mostly to a 542 

combination of factors including local agglomeration of sands, small gravel, lichens 543 

and shade effects mimicking the biotic morphology of a mat crack border or a mat 544 

chip. False negatives occurred in cases where mat cracks presented linear and 545 

narrow cracks very similar to those produced under abiotic conditions. Overall, these 546 

observations suggest that the learning and testing procedures should also be 547 

performed with a large set of complicated images. Tricky images with abiotic 548 

components mimicking biotic signatures should also be used for testing the 549 

performance of the machine. The combination with the learning procedure should 550 

increase the robustness and fineness of the recognition procedure. However, it 551 

should be noted that the presence of false negatives or false positives was extremely 552 

rare. That shows the efficiency and the robustness of the CNN classification. 553 

The field and laboratory observations of present and ancient mat cracks showed 554 

that signatures of microorganisms in sediment can be well marked and congruently 555 

occur at three embedded scales: texture (i.e., the size, shape and arrangement of the 556 

grains constituting the surface), form (i.e., the outer shape of an individual form) and 557 

pattern or arrangement of forms (i.e., arrangement of the forms over a few square 558 

meters). In the CNN procedure, the borders of the forms were the most 559 

discriminative. However, the discriminative objects are dependent on the resolution 560 

scale that is used. In this study, forms at the centimetre scale were focused upon 561 

without using macro-resolution providing information about the millimetre micro-562 

textural aspects of the form nor to the spatial pattern of forms arrangement at meter 563 

scale. We stress that the CNN procedure is applicable at the three different spatial 564 

scales that were identified here as relevant interdependent indicators. Consequently, 565 

each of the three scales should be used in the CNN procedure for the algorithm to 566 

detect on an image a characteristic signature of microorganism activity potentially 567 

expressed in the micro-texture, the form and/or the pattern of forms arrangement. All 568 

the necessary equipment for producing large sets of images from micro- to landscape 569 

scales from the surface of Mars is available on the rovers and orbiters (Edgett et al., 570 

2003; Bibring et al., 2005; Josset et al., 2017; Vago et al., 2017; Farley et al., 2020; 571 

Bell et al., 2021; Bhardwaj et al., 2021; Wiens et al., 2021). 572 

4.2. Inherent limits in dissociating biotic and abiotic signatures 573 
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This study showed that biotic signatures of microorganisms can be distinguished 574 

from abiotic signatures, potentially from micro (μm to few mm) to mesoscales with 575 

rovers (few m to tens of m), and potentially at macro-scales with orbiters (tens to 576 

hundreds of m). However, the laboratory greenhouse experiment showed that each 577 

of the treatments with the same biofilm behaved differently, highlighting the 578 

dependency of the biogeomorphological response on initial geomorphological 579 

conditions related here to the different types of sediment layers. This result, 580 

combined with the observations in the field, suggests that slight variations in 581 

physicochemical conditions (e.g., sediment texture, layer thickness and disposition, 582 

the saltiness of the water, frequency and duration of the cycles of 583 

immersions/emersions) may result in singular modulations of the texture, form and 584 

pattern of mat cracks and desiccation cracks. The modern desiccation cracks and 585 

mat cracks also exhibited several diverse features that were related to biological 586 

attributes of biofilms (e.g., strong variation in microorganism consortiums, thickness, 587 

texture, and planar extension of the biofilms) as well as attributes representative of 588 

physical-biological interaction such as the combination of mat type and sediment 589 

textures and the historic frequency and duration of aqueous submersion (Fig. 10). 590 

A further inherent limitation is that our study has concentrated on only one subset 591 

of MISS, amongst a huge diversity of ancient types that are known from Earth’s 592 

historical rock record. Each individual subset, such as the ancient desiccated MISS 593 

used in this article, encompasses a huge diversity of patterns (Fig. 11; e.g., Gerdes 594 

et al., 2000; Schieber et al., 2007; Noffke, 2010; Davies et al., 2016). CNN shows 595 

great potential for searching for the signature of life in rock, but the procedure must 596 

consider a multitude of abiotic and biotic outcomes and be aware that many of these 597 

may be unknown or not thought about, and with or without diagnostic criteria 598 

available (Davies et al., 2018). Only with such a holistic approach, and no 599 

preconceived fixation on a possible biotic origin, can the risk of false-negative and 600 

positive interpretations be mitigated.  601 

Furthermore, we stress that even with a very extensive database of abiotic and 602 

biotic images, making a formal distinction between purely abiotic structures and MISS 603 

based solely on expert visual expertise may remain challenging in certain cases. It is 604 

now recognized that biogenic forms originating from microbial activity generally are 605 

not unequivocal (McLoughlin et al., 2008; Noffke, 2009; Davies et al., 2016). 606 
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Microbes can modulate landform characteristics without creating a biogenic signature 607 

that is unequivocally distinguishable from abiotic signatures (Dietrich and Perron, 608 

2006; Corenblit et al., 2011; Davies et al., 2016), resulting in equifinality of 609 

morphology that may always be underdetermined in some instances (Davies et al., 610 

2020). Abiotic erosional and tectonic processes can also overprint primary microbial 611 

sedimentary structures (Davies and Shillito, 2021), resulting in composite fossilised 612 

patterns that are not simple to interpret and have an innately greater diversity of form.  613 

Based on the recognition of equifinality of biosignatures, Davies et al. (2016) 614 

stressed the importance of increasing our ability to identify abiotic processes that can 615 

create morphologically similar features than true MISS. The quality of expert 616 

determination of the true biotic structures on the images that are used for the learning 617 

procedure is essential. We stress the fact that the use of MISS as an analogue for 618 

the search for signatures of life in rocks on Mars thus requires, in the first instance, 619 

an increased appreciation of abiotic processes that create similar morphologies on 620 

Earth.  621 

Davies et al. (2016) pointed out that the use of morphological criteria may be done 622 

with pragmatic consideration of the set of localised circumstantial evidence in support 623 

of the expert interpretation on a case-by-case basis. The classification scheme for 624 

images should include biotic, abiotic and problematic forms. Davies et al. (2016) 625 

proposed such a classification of landform biogenicity that could be adapted for 626 

expert category assignment in the deep-learning procedures (Fig. 12): (A) known to 627 

be abiotic in origin; (B) known to be microbial in origin, (ab) where there is 628 

uncertainty, and (Ab) or (Ba) where there is uncertainty but one interpretation is 629 

favoured. Such a classification could be used in CNN procedures with large training 630 

sets of images and accurate labelling for supervised learning. The model output 631 

probabilities show good potential to assess the uncertainty of the presence of biotic 632 

signatures and this result is a way to be developed in the final objective of 633 

associating for a given image a probability to correspond to one of the five Davies’ 634 

classes. 635 

In the laboratory experiment, curved desiccation cracks occurred in the Sand_Clay 636 

abiotic control but the curved structures that developed in the biotic treatment 637 

Sand_Clay_Bio were larger (Fig. 5). Furthermore, the texture of the biotic curved 638 

cracks was granular and one of the abiotic curved cracks remained smooth. The 639 
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general pattern of arrangement of forms also varied between the abiotic control and 640 

biotic treatment with the size of the forms. These results indicate that improving our 641 

capacity to identify biotic origin in ab, Ba and Ab (Davies’ problematic categories) 642 

may depend principally on our capacity to identify and understand the key textural, 643 

geometric and paternal geomorphological parameters and the spatial scales that are 644 

affected by life from micro- to mesoscales. Formally establishing abiotic and biotic 645 

signatures on images will require the more extensive use of laboratory experiments 646 

combined with empirical observation along spatial gradients of exposure to 647 

submersion and saltiness and at various time periods during desiccation. . 648 

5. Conclusion 649 

The use of CNN to automatically detect a signature of life in rock and sediment 650 

offers great potential and needs to be fully explored and developed for targeting 651 

biogenic landforms. It should help make the first classifications of images with the 652 

best potential from large sets of Martian images. 653 

However, our experimental results and our observations in the field also 654 

highlighted all the complexity and variability of the signatures of life in rocks and 655 

sediment. Much caution needs to be taken during the image labelling procedure in 656 

order to decrease as much as possible false positive or negative outputs. The use of 657 

Earth as a biogeomorphological analogue provides good reasons to hypothesize that 658 

ancient microbial life may have given rise to a variety of biogenic landforms on Mars. 659 

The technique developed and tested with MISS in this article is aimed to be used for 660 

other kinds of biogenic landforms also. In that perspective, we propose the need for a 661 

web-based platform for a standardized database of images of the three main 662 

categories of biogenic landforms found on Earth with possible analogues on Mars in 663 

rocks, sediments and ice, i.e., biodeposition, bioweathering and bioturbation . Such a 664 

database of images would improve our capacity to detect potential 665 

biogeomorphological signatures of life in rocks on Mars and other telluric planets over 666 

the wider range of possibilities. 667 

The question if CNN procedures can reach the ability to detect extremely fine 668 

details (textures, forms or patterns) for discriminating biotic from abiotic confounding 669 

signatures remains open. The possibility that human and artificial expertise may 670 

reach an inherent limit is probable. As pointed out by Noffke (2009, 2010, 2021), the 671 
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confirmation of biotic origin in rock records requires integrative multiproxy 672 

approaches combining geomorphological, chemical and isotopic analyses . As shown 673 

by Hickman-Lewis et al. (2022), the combination of textural (visual) and chemical 674 

analyses using WATSON (imaging), SHERLOC (deep-UV Raman and fluorescence 675 

spectroscopy), and PIXL (X-ray lithochemistry) equipment’s of the Perseverance 676 

Rover is particularly promising for discriminating organic and mineral signatures 677 

within rock laminated organic-bearing samples.  678 

  679 
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Tables 967 

Table 1. Definition of technical words commonly used in Artificial Intelligence. 968 

Word Definition 

ANN or NN  

Artificial Neural Network: network of calculation nodes (neurons) 
fully or partially connected to each other to process information. It is 
inspired from biological neural system. A large number of 
architectures exists and is dedicated to address 
prediction/classification/decision problems. Learning process can be 
supervised (learning inputs are pre-classified) or unsupervised 
(learning inputs are not classified). 

AUC 

Area Under Curve: classic estimate of the predictive power of a 
model compared to a random model. It is based on the 
representation of the sensitivity curve of the model (capacity to 
predict true positives) according to its specificity (capacity to predict 
true negatives). 

Augmentation  

Technique consisting of generating new images from an initial 
dataset by introducing minor changes (e.g., rotation, flipping, 
shifting, distortion, noise) that aims to consolidate the learning 
process by introducing variations and increase the size of the 
dataset. 

CNN 

Convolutional Neural Network: particular architecture of supervised 
neural network dedicated to image processing. It is based on a 
succession of convolutional layers and normalization layers, 
connected to detect key patterns and features in an image and to 
classify it. Basically, the deepest layers detect simple and basic 
shapes (e.g., lines, curves, circles, dots) and the successive upper 
successive layers detect more and more complex patterns. It is 
widely used in image recognition and classification. 

Cross-entropy 

Cross-entropy measures the difference between the predicted 
probability of belonging to a given class and the true probability. It is 
used in classification modelling problems, especially in deep 
learning. 

ECE 

Expected Calibration Error: estimation of the accuracy of the 
calibration of a model based on the difference between the 
expected accuracy and the average probability of predictions. A 
perfect calibration leads to a null ECE. 

Epoch 
An epoch is a cycle of training during which all the data from the 
learning dataset are presented to the model. 

Grad-CAM++ 

Gradient Weighted Class Activation Map (++ is a variation of): 
mapping of activated neurons given an image and a prediction 
class. Visually represented by a heatmap, it is used to find in an 
image which areas contribute the most to the classification output. It 
is calculated as the importance of the feature maps of the output 
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layer weighted by the average gradient for the considered class and 
rescaled to the original image.  

Guided Grad-
Cam / Score-Cam 

Combination of Grad-Cam or Score-Cam activation map with 
Guided Backpropagation activation map to visualize the image 
features (fine-grained important pixels) that participates to the final 
prediction of the considered class. Guided Backpropagation is a 
gradient-based technique which computes the gradient of the target 
output with respect to the input, but gradients of ReLU functions are 
overridden so that only non-negative gradients are backpropagated. 

Loss 
Objective function of NN models that quantifies the difference 
between the predicted outcome of a model and the expected 
outcome. Here, cross-entropy is used as the loss function. 

ReLU 
Rectified Linear Unit: function of activation of neurons used in neural 
network modelling. 

ResNetxx (here 
ResNet50) 

Class of CNN with a number of layers equal to x (ResNet50=50 
layers) that was pre-trained on ImageNets database. ResNets are 
used for transfer learning. 

Score-CAM 

Gradient Weighted Class Activation Map: Alternative to Grad-CAM 
to generate mapping of activated neurons given an image and a 
prediction class. Visually represented by a heatmap, it is used to 
find in an image which areas contribute the most to the classification 
output. It is based on the linear combination of feature maps of the 
output layer scaled to the image size and weighted by their Softmax 
score obtained by passing forward into the model. 

SGD 

Stochastic Gradient Descent: method for optimizing an objective 
function of a model based on the local approximation of the actual 
gradient in iteratively using random subsets of data. The use is 
generalized in deep learning modelling as it is proved to be more 
efficient to address large datasets. 

Transfer 
Learning 

Based on the idea that the first layers of CNN detect basic forms 
and the deeper layers more complex patterns that are more specific 
to the addressed problem (e.g., to classify animal species), transfer 
learning uses CNN that were previously trained on a large number 
of images (several millions) to adapt it to a new classification 
problem: the pre-trained deepest layers (basic forms detection) are 
frozen and only the upper layers (complex patterns of basic forms) 
are trained on the new dataset. It solves the issues of dataset size 
needed to learn a CNN from scratch and of computational resources 
(energy, calculation power). 

 969 
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Table 2. Performances of the five Neural Network classification models in test. 974 

Parameter Narrow 
Neuronal 
Network 

Medium 
Neuronal 
Network 

Wide 
Neuronal 
Network 

Bilayered 
Neuronal 
Network 

Trilayered 
Neuronal 
Network 

AUC 0.99 0.99 0.99 0.99 0.99 
Precision 0.99 0.99 0.99 0.99 0.99 
True biotic 3,280 3,279 3,280 3,279 3,274 
False biotic 4 1 1 1 2 
True abiotic 1,636 1,639 1,639 1,639 1,638 
False abiotic 0 1 0 1 6 
Sensitivity 1 0.99 1 0.99 0.99 
Specificity 0.99 0.99 0.99 0.99 0.99 

 975 

Table 3. Performances of the CNN classification model in test. 976 

Parameter Global Ancient Present 
AUC 0.99 

Precision 0.99 0.99 0.99 

True biotic 4,262 749 3,513 

False biotic 31 1 30 

True abiotic 1,172 440 732 

False abiotic 31 12 19 

Sensitivity 0.99 0.98 0.99 

Specificity 0.97 0.99 0.96 
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Figure legends 978 

Fig. 1. Location map of the two study areas for image collection. Present mat cracks 979 

(MISS) and desiccation cracks (abiotic) were collected near the village of Peyriac-de-980 

Mer and ancient mat cracks and desiccation cracks near the village of Octon in the 981 

Permian (ca. 250 Ma) Salagou basin, France. The 10 cm scale applies to the four 982 

images. Photographs: D. Corenblit.  983 

Fig. 2. Analyses performed on a vertical thin cross-section of fossilised microbial mat 984 

fabrics (Salagou Permian basin, France; ca. 250 Ma) under light microscope. a) 985 

elongated segmented and tortuous biotic filaments; b) Multi-layered carbon-rich mat 986 

interlaced with coarser mineral layers and overlying a quartz-dominated layer. The 987 

organic carbon-rich biotic laminae are in dark brown and have a finer texture than the 988 

mineral layers.  989 

Fig. 3. Geomorphological patterns after full desiccation related to different control and 990 

treatment configurations. Two abiotic controls (A, B) and for biotic treatments (C, D, E, 991 

F). A: Sand_Clay; B: Clay; C: Sand_Clay_Bio; D: Clay_Bio; E: Sand_Bio; F: Bio (Bio: 992 

biofilm).  993 

Fig. 4. Three key embedded spatial scale of geomorphological expression of MISS, 994 

from left to right: micro-texture (the size, shape and arrangement of the grains 995 

constituting the surface), form (outer shape of one form) and pattern of forms 996 

arrangement (arrangement of the forms over few square meters). The laboratory 997 

experiment suggests that signatures of microorganisms in rocks may potentially 998 

occur at three embedded spatial scales and that the detection algorithm should be 999 

able to detect biotic signatures at the three scales. The 5 cm scale only applies to the 1000 

central image. 1001 

Fig. 5. Variations in desiccation cracks and mat crack features according to sediment 1002 

texture and to the presence (biotic treatment) and absence (abiotic control) of a 1003 

biofilm. The differences between abiotic and biotic signatures did not systematically 1004 

occur at the three spatial scales identified in figure 3. It varied depending on the 1005 

controls and the treatments, indicating that the detection algorithm may be capable of 1006 

identifying a biotic signature at a given spatial scale independently from another. The 1007 

beginning of bacterial colonization seen on the clay surface of B category at the end 1008 

Page 34 of 49

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Astrobiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only; Not for Distribution

35 
 

of the experiment illustrates the difficulty of keeping strictly abiotic conditions in long 1009 

standing experiments.  1010 

Fig. 6. Accuracy of the predictions and sources of error for the Wide Neural Network; 1011 

The algorithm showed here exceptionally good classifications. The successful 1012 

classifications are indicated in blue and the mis-classifications in tan; confusion 1013 

between abiotic and biotic classes are indicated in red.  1014 

Fig. 7. Assessment of the quality of calibration using reliability diagram and ECE. A 1015 

perfect calibration should lead to the alignment of the expected accuracy for each 1016 

confidence interval on the diagonal. ECE represents the average gap and should be 1017 

equal to 0 in the case of a perfect calibration. 1018 

Fig. 8. Distributions of probabilities associated with the correct and incorrect 1019 

predictions. For false biotic predictions, the second peak of the bimodal distribution 1020 

above 0.9 is exclusively related to the false predictions of images coming from the 1021 

same original image characterized by mineral flocs without cracks. Removing this 1022 

image leads to a single peak around 0.6. For a question of readability, the density 1023 

was scaled for each type (with a maximal value by class rescaled to 1). 1024 

Fig. 9. Visualisation of the interest areas of the Neural Network (GRAD-CAM++ and 1025 

Score Cam; for all cases the real sRGB image is shown at the right. (a) In the ancient 1026 

mat cracks (MISS). (b) In the ancient desiccation cracks (abiotic); the parallel lines 1027 

are fossilised ripple marks. (c) In the present mat cracks (MISS). (d) In the present 1028 

desiccation cracks (abiotic). The heatmaps show the importance of the different 1029 

areas in the final prediction of a given class (red is the most important areas) and the 1030 

grey images show fine-grained pixels patterns that participate to the prediction 1031 

(important image features). 1032 

Fig. 10. Examples (not exhaustive) of present MISS features observed in the study 1033 

sites of Peyriac-de-Mer in relation to variation in biofilm type (x axis) and desiccation 1034 

intensity (y axis). From left to right, the first column shows to the formation of tick 1035 

polygonal cracks in a succession of microbial mats developing on a sandy flat; the 1036 

second column shows the formation of thin elongated shrinkage cracks with margins 1037 

rolling up and evolving into mat curls. The last column shows a tick and resistant 1038 

microbial mat resembling a blistered ‘elephant skin’ that can be turned over locally by 1039 

the current. Photographs: D. Corenblit. 1040 
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Fig. 11. Examples (not exhaustive) of ancient desiccated MISS features preserved in 1041 

the rock record. a) Square cracks with reticulate MISS on individual plates. 1042 

Mesoproterozoic Copper Harbor Formation, Michigan, USA. b) Desiccation cracks 1043 

within sediment bearing reticulate MISS. Neoproterozoic Diabaig Formation, 1044 

Scotland. c) Detail of Arumberia fabric on desiccated plate (see McMahon et al., 1045 

2022). Neoproterozoic Synalds Formation, Shropshire, England. d) Desiccation 1046 

cracks with microbial bubbles on plates. Cambrian Port Lazo Formation, Brittany, 1047 

France. e) Sand filled cracks within sand host sediment, implying cohesion of 1048 

granular media. Ordovician Graafwater Formation, Western Cape, South Africa. f) 1049 

Desiccation cracks associated with MISS wrinkle marks and stromatolites. 1050 

Mississippian Hastings Formation, Nova Scotia, Canada. Photographs: N.S. Davies.  1051 

Fig. 12. Davies et al.’s classification of sedimentary surface on a gradient of 1052 

uncertainty (from left to right) about the biotic origin. Adapted from Davies et al. 1053 

(2016). 1054 
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Abbreviations Used 1056 

MISS = microbially induced sedimentary structures 1057 

sRGB = standard red green blue 1058 
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Figures 1060 

Figure 1 1061 

 1062 

  1063 
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Figure 2 1064 
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Figure 3 1067 
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Figure 4 1070 
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Figure 5 1073 

 1074 

  1075 

Page 42 of 49

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Astrobiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only; Not for Distribution

43 
 

Figure 6 1076 
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Figure 7 1079 
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Figure 8 1082 
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Figure 9 1085 
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Figure 10 1088 
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Figure 11 1091 
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Figure 12 1094 

 1095 

Proven Putative Possible Proven

Criteria: 
- Similarity of form to 

actual MISS
- Distribution reflecting 

hydrodynamic conditions 
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