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Introduction
Death after severe SARS-CoV-2 infection is largely related to the antiviral response and immune-mediated lung 
injury (1). Histopathologically, COVID-19 pneumonitis is associated with diffuse alveolar damage (DAD), 
fibrosis, leukocytic infiltrates, and microvascular thromboses (2–4). Features of DAD include alveolar wall 
thickening, interstitial expansion, hyaline membrane deposition, and pneumocyte hyperplasia. Researchers 
have begun to describe the transcriptomic profiles of lung pathology, although these have been largely designed 
to assess the cellular impact of SARS-CoV-2 infection (5–7). To our knowledge, later-stage severe organ pathol-
ogy is not consistently associated with high levels of infection or active viral replication (8, 9). In lung tissue 
from severe cases, the variability in the detection of SARS-CoV-2 RNA or antigen supports a model of inflam-
mation-perpetuated disease (5, 9). The immune contributors and biological pathways associated with the wide-
spread severe alveolar injury remain unclear; therefore, a greater understanding of the pathological features of  
COVID-19 would complement the growing knowledge of both tissue- and blood-based immune profiles (10).

Advanced spatial profiling techniques provide the tools to identify the distribution of  proteins and 
RNAs in situ, allowing the dissection of  biological processes (BPs) in and around specific histological 
features of  interest (11, 12). We used an advanced, multiplexed, ISH tissue-analysis platform to gener-
ate detailed transcriptomic profiles of  multiple spatially discrete areas in lung samples from 3 patients 

Severe lung damage resulting from COVID-19 involves complex interactions between diverse 
populations of immune and stromal cells. In this study, we used a spatial transcriptomics approach 
to delineate the cells, pathways, and genes present across the spectrum of histopathological 
damage in COVID-19–affected lung tissue. We applied correlation network–based approaches to 
deconvolve gene expression data from 46 areas of interest covering more than 62,000 cells within 
well-preserved lung samples from 3 patients. Despite substantial interpatient heterogeneity, we 
discovered evidence for a common immune-cell signaling circuit in areas of severe tissue that 
involves crosstalk between cytotoxic lymphocytes and pro-inflammatory macrophages. Expression 
of IFNG by cytotoxic lymphocytes was associated with induction of chemokines, including CXCL9, 
CXCL10, and CXCL11, which are known to promote the recruitment of CXCR3+ immune cells. The 
TNF superfamily members BAFF (TNFSF13B) and TRAIL (TNFSF10) were consistently upregulated 
in the areas with severe tissue damage. We used published spatial and single-cell SARS-CoV-2 data 
sets to validate our findings in the lung tissue from additional cohorts of patients with COVID-19. 
The resulting model of severe COVID-19 immune-mediated tissue pathology may inform future 
therapeutic strategies.
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with COVID-19, with a focus on the spectrum of  DAD severity. Uniquely, these tissues were obtained via 
open sampling at the point of  death, which ensured high-quality RNA analyses and avoided the caveats 
associated with late autopsies. Application of  network-based approaches allowed for deconvolution and 
visualization of  the cell types and immune-cell signaling phenotypes present in the patients’ tissues. After 
integration of  our results with those from other spatial and single-cell sequencing studies, we propose a 
cellular model for the active immune processes in the lung during severe COVID-19.

Results
Immune cell infiltration is associated with severe local tissue damage in COVID-19. The histological and immune-cell 
landscape within COVID-19 lung tissue from 3 patients with fatal disease was investigated to establish the 
extent of  intratissue variation in cellular pathology (mean specimen area, 1.78 cm2; Supplemental Table 1; 
supplemental material available online with this article; https://doi.org/10.1172/jci.insight.157837DS1). 
Each sample featured a spectrum of  DAD, from mild to severe, comprising pneumocyte hyperplasia, hya-
line membrane formation, and interstitial expansion. There was a nonuniform distribution of  immune 
infiltrates (Figure 1, A and B, Supplemental Figure 1, and Supplemental Table 2). Histological features 
beyond DAD included vacuolated macrophages, edema, vascular thrombi, and squamous metaplasia. Bulk 
detection for SARS-CoV-2 nucleocapsid (N) RNA by qPCR in patients’ lung samples showed low viral 
loads (Supplemental Table 2), and there was significant N protein within hyaline membranes and pneu-
mocytes in patient B (Supplemental Figure 2, B and D). By contrast, in patients A and C, only small areas 
of  weak viral N protein expression were detected in the alveolar space and ciliated bronchiolar epithelium 
(Supplemental Figure 2, A, C, and D). Immunofluorescent staining for CD3, CD68, and pan-cytokera-
tin (panCK) enabled the identification of  lymphocytes, macrophages, epithelial cells, and general tissue 
architecture (Figure 1B). On the basis of  this staining, we selected 46 areas of  interest (AOIs) with a broad 
range of  inflammatory features (Figure 1, B and C). DAD histopathological severity was assessed by 2 
independent pathologists, and each AOI was categorized as having either mild to moderate injury with 
some conservation of  alveolar architecture or severe injury with a loss of  alveolar structure and substan-
tial inflammation. In addition, for each AOI, we quantified the number of  CD3+ lymphocytes, CD68+ 
macrophages, and cells (by nuclear stain). The SARS-CoV-2 N protein positivity of  adjacent tissue from 
sequential sections was also recorded. AOIs with severe DAD were associated with higher numbers of  T 
cells, although CD68+ macrophage numbers were not consistently increased (Figure 1C and Supplemental 
Figure 2, G and H); however, histopathological severity was not consistently associated with higher levels 
of  RNA for the SARS-CoV-2 N protein (Supplemental Figure 2, E and F).

To profile the pathological pathways active in each AOI, we applied a multiplexed ISH approach to 
quantitate the expression of  a curated panel of  more than 1800 genes enriched in immune targets and aug-
mented with a COVID-19–specific gene set. Use of  robust quantile normalization resulted in comparable 
distributions of  gene expression and levels of  housekeeping genes across the heterogenous AOIs (Supple-
mental Figure 3). Differential expression analysis of  mild and severe DAD across all sampled AOIs (n = 16 
mild; n = 28 severe) identified 56 genes with significantly higher expression in severe pathology (Benjami-
ni–Hochberg [BH] adjusted P < 0.05; |fold change| >1.5), including those encoding chemokines (namely, 
CXCL9, CXCL10, CXCL11, CCL19, and CCL5), cytotoxic molecules (namely, GZMA, GZMB, GZMK, PRF1, 
GNLY, LYZ, NKG7, and KLRK1), complement factor (C1QB), and proteins involved in antigen processing 
and presentation (namely, CD74, HLA genes, and CTSS) (Figure 2A). Genes upregulated in the severe areas 
showed a significant overrepresentation (BH adjusted P < 0.05) of  gene ontology (GO) BP terms related to 
T cell activation and differentiation, antigen presentation, cytokine production, cytotoxicity, and response 
to IFN-γ (Figure 2B). By contrast, genes enriched in areas of  mild damage (n = 40; BH adjusted P < 0.05; 
|fold change| >1.5) had a significant overrepresentation (BH adjusted P < 0.05) of  pathways associated 
with wound healing, regeneration, and hemostasis (Figure 2B).

Network analysis implicates CD8+ T cells, mononuclear phagocytes, and active TLR, IFN, and IL-1 signaling in 
COVID-19 lung inflammation. To perform an unbiased exploration of  the cellular and phenotypic variations 
present in the set of  the profiled AOIs, we used weighted gene correlation network analysis (WGCNA) (13). 
This analysis identified 17 distinct modules of  co-expressed genes (n = 27–266 genes per module; median, 
n = 88) (Supplemental Figure 4, A–D, and Supplemental Table 4). We began a systematic characterization 
of  the identified modules by investigating their association with specific cell types. To do so, we correlated 
expression of  the module eigengenes (the representative module expression patterns) with separate cell-type 
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abundance estimates that were determined for each AOI by automatic cell-type deconvolution analyses (14) 
(Figure 3A and Supplemental Figure 5, A–D). To confirm the involvement of  specific cell types, we examined 
the correspondence of  the cell-type abundance predictions with the expression of  a curated set of  known cell-
type marker genes (Supplemental Figure 6, A and B). We generally saw a good agreement between the marker 
genes and the automatic predictions of  cell-type abundance. However, cell-deconvolution methods did not 
detect the presence of  neutrophils, despite known changes in circulating phenotype or numbers.

On closer inspection of  neutrophil-associated genes, the expression of  MPO, ELANE, and CTSG cor-
related with each other, suggesting that neutrophils may be present in some of  the AOIs (Supplemental 
Figure 5A and Supplemental Figure 6, A and B). To help resolve this discrepancy, we applied mass cytom-
etry imaging to sequential sections and examined the areas aligned with selected severe AOIs. This analysis 
revealed the presence of  a substantial number of  CD15+ neutrophils in an area of  severe damage from 
patient B, whose tissues also showed strong staining for the SARS-CoV-2 N protein. Additionally, this anal-
ysis confirmed the expected presence of  CD68+ macrophages and CD8+ T cells within severe areas, with 
only a small number of  CD4+ cells being detected (Supplemental Figure 7). Next, we identified BPs and 
pathways overrepresented among the gene members of  each WGCNA module (Figure 3B and Supplemen-
tal Table 5). On the basis of  these analyses, we named each module according to its cell-type associations 
and biological pathway enrichments.

Figure 1. A spectrum of DAD and inflammation was observed within and across COVID-19 lung biopsy specimens. Selection and annotation of areas 
of DAD in COVID-19 lung tissues for transcriptomic analysis. (A) Merged immunofluorescence (IF) images of the lung samples from patients A, B, and C 
(scale bars: 5 mm; panCK, green; DNA, blue; CD3, red; CD68, yellow). AOIs (n = 47) selected for transcript profiling are highlighted (mild to moderate, blue 
circles; severe pathology, magenta circles), of which 46 passed quality control after sequencing. Labeled areas correspond to higher magnification exam-
ples in B. (B) Representative IF images of AOIs demonstrating the morphology and immune infiltrate observed within areas of severe and mild to moder-
ate DAD. AOIs spanned, on average, 0.2 mm2 (range, 0.05–0.33 mm2) with exclusion of empty space. (C) The proportions of CD3+ and CD68+ cells of total 
nucleated cells were derived from the immunofluorescence imaging, plotted for each AOI and colored by histological severity (mild to moderate, blue; 
severe, magenta) or inclusion of bronchiolar epithelium (grey). AOIs are annotated by patient: patient A, circle; patient B, triangle, patient C, square.
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As expected for lung tissue, we found a set of  stromal modules representing (a) epithelial cells (con-
taining EPCAM), (b) type 2 pneumocytes (containing the surfactant-encoding genes SFTPB, SFTPC, and 
SFTPD), (c) fibroblasts (“fibroblast phenotype,” containing COL1A1, COL3A2, COL5A1, and THY1), and 
(d) vasculature (containing CDH5, THBD, and ENG), which all showed corresponding pathway and cell-
type associations (Figure 3, A and B, and Supplemental Figure 4B). We found 3 modules that showed a 
high correlation with the presence of  CD68+ cells (Figure 3A and Supplemental Figure 4, B and C). These 
comprised (a) an alveolar macrophage module that also displayed high expression correlation with the 
macrophage receptor MARCO and enrichment for the “phagocytosis, engulfment” GO BP; (b) a macro-
phage identity module that also showed high expression correlation with the mannose receptor MRC1 (a 
marker of  alternative M2 macrophages) and SIRPA; and (c) an antigen presentation module that showed a 
high correlation with predicted inflammatory monocyte–derived macrophage (monoMac) cell abundance 
(Figure 3B and Supplemental Figure 5, C and D) along with high expression correlation with SIGLEC1, 
C1QA, and C1QB (Supplemental Figure 4B). We also noted an IFITM2/HSP/ECM module that contained 
MERTK and PDGFRA, and a module with pathway enrichments for Apelin/mTOR signaling.

Critical COVID-19 is associated with massive lung immune-cell infiltration, and in keeping with this, 
we discovered modules of  genes with clear associations with lymphocytes and mononuclear phagocytes. 
The cytotoxicity and T cells module was associated with the GO IFN-γ production BP, the IFN responses 
module (Supplemental Figure 4C), as well as the Kyoto Encyclopedia of  Genes and Genomes (KEGG) T 
cell receptor signaling and NK-mediated cytotoxicity pathways (Figure 3B). The expression of  this mod-
ule was positively associated with predicted presence of  CD8+ cytotoxic T cells, NK cells, and activated 
DCs (Figure 3A), as well as the presence of  CD3+ cells (Supplemental Figure 4C). This module contained 
known T cell markers, including CD3D, CD3E, CD2, and CD8A, as well as genes associated with cytotox-
icity, such as PRF1 and GNLY (Supplemental Figure 4B). The antigen presentation module was associat-
ed with areas of  high CD68 expression, as indicated by immunofluorescence microscopy (Supplemental 
Figure 4C), and showed positive associations with the macrophage identity, cytotoxicity and T cells, IFN 

Figure 2. Severe alveolar damage was associated with the upregulation of immune transcripts. (A) Differential gene expression between areas of severe 
and mild to moderate damage. Colored and annotated genes have a fold-change expression greater than 1.5 and a BH adjusted P < 0.05 calculated by 
testing with linear mixed models for repeated measures to compare severity while accounting for repeated sampling of each tissue (mild vs. severe, n = 16 
and 28, respectively). (B) Selected GO BPs significantly overrepresented in genes differentially expressed between mild and severe areas of damage (BH 
corrected P < 0.05, 1-sided Fisher’s exact test). Also see Supplemental Table 3 for differentially expressed genes and all overrepresented pathways.
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response, and TLR signaling–related gene modules (Supplemental Figure 4D). The TLR signaling and 
monocytes module contained the gene encoding the classical monocyte marker CD14 along with CD163 
(Supplemental Figure 4B).

In addition, we discovered several modules that contained genes associated with innate inflammation, 
including an IFN responses module, a TLR and IL-1 signaling module, and an “IL-1 response: IL-6/IL-8” 
module, which were named according to their pathway enrichments (Figure 3B). The vasculature and IL-1 
response: IL-6/IL-8 modules contained genes associated with mature neutrophils (namely, ELANE, MME, 

Figure 3. Identification and characterization of gene modules with spatially heterogenous expression in COVID-19 lung tissue. Application of WGCNA 
to spatial transcriptomic data (n = 46) identified 17 modules of coexpressed genes (see also Supplemental Figure 3). (A) Correlation between estimat-
ed cell-type abundance (as determined by cell deconvolution; see Supplemental Table 6) and WGCNA module eigengene expression (all AOIs; positive 
Spearman’s correlation values are shown). (B) Selected GO BP, KEGG, and reactome pathways significantly overrepresented in the detected modules (BH 
adjusted P < 0.05; 1-side Fisher’s exact tests; see also Supplemental Table 5). (C) WGCNA module eigengene expression is shown for each AOI (see also 
Supplemental Table 4). Sampled AOIs are annotated with patient identity, the severity of damage, adjacent virus antigen presence, and the percentage of 
CD3+ and CD68+ cells of total nucleated cells. No severity grade was given to 2 AOIs sampling bronchiolar epithelium. Hierarchical clustering of the 46 AOIs 
by expression of the WGCNA module eigengenes identified 5 spatial groups with distinct patterns of module expression. (D) The severity of tissue damage 
was correlated to module eigengene expression separately for the AOIs from each patient (Pearson’s correlation). vRNA, viral RNA.
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MPO, and CTSG) (Supplemental Figure 4B). The vasculature module was also associated with the GO BP 
platelet degranulation pathway (Figure 3B). Finally, we found 3 modules that were associated with more 
general cellular processes. The presence of  these modules, which we termed cell cycling, chromatin remod-
eling, and hypoxic response, was indicative of  immune cell proliferation and oxygen stress.

Severe alveolar damage in COVID-19 is linked with myeloid cell antigen presentation, T cell 
cytotoxicity, and expression of the CXCL9/10/11 IFN response genes
We next sought to better understand the variation in cellular and immune phenotypes that was present across 
the tissues and sampled AOIs. To do so, we hierarchically clustered the AOIs by expression of the WGCNA 
module eigengenes. This analysis revealed 5 groups of AOIs with different transcriptional signatures and asso-
ciations with severity, patient, and cell composition (Figure 3C and Supplemental Figure 8). This clustering 
broadly split patients A and B into 2 distinct groups with differences in the cytotoxicity and T cells module 
expression, whereas sample AOIs of patient C had a consistent transcriptomic profile. Spatial groups were 
numbered from 1 to 5 according to their association with severe damage: spatial group 1 contained the lowest 
proportion of severe AOIs, and spatial group 5 consisted of only severe alveolar damage.

We performed a cellular phenotype network analysis to investigate the correlations between WGCNA 
eigengene expression (transcriptional phenotype), chemokine and cytokine expression (immune signaling), 
and the predicted cell-type abundances (cell-type identity) in each of  the 5 spatial groups (Supplemental 
Figure 9). This analysis provided evidence that severe tissue damage in these patients with COVID-19 
involved an ensemble of  interacting and proliferating immune cells in which myeloid cells such as inflam-
matory monoMac and DCs were activated by TLR-mediated signaling, expressed IL-1 and IFN-α, and pre-
sented antigen to cytotoxic lymphocytes driving the production of  IFN-γ and a specific cassette of  chemo-
kines and cytokines. This cassette included high expression of  CXCL9, CXCL10, and CXCL11, factors 
known to act via CXCR3 to promote immune cell chemotaxis, extravasation, and activation (15), as well 
as IL-32, which stimulates TNF-α and IL-6 secretion from macrophages (16), and CCL19, which acts via 
CCR7 to promote DC and central memory T cell migration (17).

Cytotoxic lymphocytes, IFN-γ signaling, myeloid cell activation, and TRAIL are associated with severe DAD and 
are reproducible features of  critical COVID-19. Next, we sought to assess the extent to which the discovered 
features of  severe DAD might represent common features of  critical COVID-19. Within AOIs from each 
of  the 3 patients, severe DAD was consistently associated with the expression of  the IFN responses, cyto-
toxicity and T cells, chromatin remodeling, antigen presentation, and TLR signaling (TLR and IL-1 signal-
ing or TLR signaling and monocytes) module eigengenes (Figure 3D and Supplemental Figure 4E). The 
IL-1 response: IL-6/IL-8 module did not show an obvious correlation with DAD severity, whereas greater 
expression of  gene modules associated with epithelial cells and vasculature was associated with the lowest 
DAD scores (Figure 3D and Supplemental Figure 4E).

To investigate commonalities and differences of  the tissue pathology of  the 3 patients in more detail, 
we repeated the cellular phenotype network analysis separately for the AOIs of  each patient. This analysis 
demonstrated that a core association among monoMacs; CD8+ T cells; the expression of  IFN-γ target 
chemokines CXCL9, CXCL10, and CXCL11; the expression of IL32; the expression of  the regulator of  
extrinsic apoptosis TRAIL (TNFSF10); and the expression of  B cell–activating factor BAFF (TNFS13B) was 
present in the lung tissues of  all 3 patients (Figure 4, A–C).

To help prioritize immune signaling factors involved in severe DAD, we ranked secreted immune signal-
ing factors (and STAT1) according to their expression level and upregulation in the severe areas. In addition 
to the aforementioned signaling molecules, the analysis also highlighted the possible involvement of  STAT1, 
CCL5, CCL18, CCL13, CCL4, CCL3, CCL21, TGFB1, CXCL12, and CXCL2 (Supplemental Figure 10).

To refine our understanding of the cellular sources of involved cytokines, we directly correlated their expres-
sion with that of specific cell-type markers. CXCL9, CXCL10, and CXCL11 showed the strongest correlation with 
CD8+ T cell marker genes, whereas STAT1, TRAIL (TNFSF10), and BAFF (TNFSF13B) also showed a strong 
association with CD74 and CD16A (FCGR3A), which are associated with nonclassical monocytes and have been 
used as markers of inflammatory monoMacs in COVID-19 (7) (Supplemental Figures 10 and 11). Cell deconvo-
lution could not identify B or plasma cell signatures, but BAFF correlated with CD19 expression across the tissue 
samples from the 3 patients, suggesting B cell involvement in sites of injury (Supplemental Figure 10).

The elevated expression of  TRAIL in regions of  severe DAD is consistent with a previous reports of  
apoptosis-pathway upregulation in alveolar areas in late-stage COVID-19 (6). The correlation of  antigen 
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presentation–related genes with DAD severity (Figure 3D, Supplemental Figure 4E, and Supplemental 
Figure 9) suggested a directed cytotoxic response, but we did not find an obvious association between 
the severity and the levels of  SARS-CoV-2 N protein or RNA (Supplemental Figure 2, E and F). This 
suggested that CD8 T/NK cell activation might be triggered by antigen-presenting cell presentation or pat-
tern recognition receptor (e.g., TLR) recognition of  viral antigens from abortive infection, of  self-antigens, 
of  damage-associated molecular patterns (DAMPs), or a combination thereof. In support of  the possible 
involvement of  DAMPs, we noted that endogenous DAMP-encoding genes such as CCL5 showed robust (if  
not necessarily upregulated) expression in areas with severe DAD.

Finally, we inspected the expression of  key genes of  interest with the mild and severe AOIs of  each 
patient. This analysis confirmed a consistent and significant elevation of  expression of  CCL19, CCL5, 
CXCL9, CXCL10, CXCL11, STAT1, TRAIL (TNFSF10), and BAFF (TNFSF13B) in the areas of  severe DAD 
in the 3 patients examined (Figure 4D). Expression of  IL32 was elevated in the severe AOIs of  2 of  the 
patients, whereas S100A8 only showed increased severity-associated expression in patient B, in whom its 
expression was likely neutrophil derived (Supplemental Figure 10).

To determine if  the IFN-γ signaling, discovered CXCL9/10/11–containing cytokine cassette, cytotoxic 
lymphocytes, TRAIL, BAFF, and endogenous DAMP expression are replicable features of  lung pathology 
in critical COVID-19, we investigated the expression of  the relevant genes in available community data 
sets. Examination of  single-cell data from bronchoalveolar lavage fluid (BALF) samples (18) confirmed an 
increase in IFNG expression in T and NK cells in patients with COVID-19 relative to healthy control tissue, 
along with increased expression of  CXCL9, CXCL10, CXCL11, and BAFF in myeloid cells and neutrophils 
(Figure 5A). We also noted a broad increase in STAT1 and TRAIL expression, along with induction of  
CCL3 and CCL4 expression in macrophages and neutrophils. The cytotoxic molecule-encoding genes GNLY 
and PRF1 were upregulated in NK and T cells and neutrophils, which were not captured in the healthy 
control tissue, constituted an additional source of  S100A8/9. The cellular sources and expression levels of  
these genes were consistent with those observed in other lung tissue single-nuclei and BALF single-cell data 
sets (Supplemental Figure 12, A and B). Inspection of  a previously published spatial data set of  alveolar 
tissue (6) (which did not discriminate between mild and severe DAD) confirmed upregulation of  STAT1, 
CXCL10, BAFF, and TRAIL in COVID-19 (Supplemental Figure 12C). Increased expression of  these genes 
in COVID-19 was also observed, albeit weakly, in a bulk analysis of  macrophages purified from BALF (Sup-
plemental Figure 12D).

Together, these previously published observations and our targeted spatial analysis suggest the existence 
of  a cellular circuit in which IFN-γ production by T and NK cells drives CXCL9/10/11 and BAFF produc-
tion by myeloid cells in COVID-19. If  such a circuit exists, we reasoned that the expression levels of  these 
cytokines should co-vary in the relevant cell types in lung tissue across individuals with COVID-19. To 
investigate this possibility, we analyzed single-nuclei data from the lung tissue of  16 SARS-CoV-2–infected 
autopsy donors who had COVID-19 (7) (Supplemental Figure 13). In keeping with the existence of  the 
proposed circuit, levels of  IFNG in per-donor T and NK nuclei pseudobulks were significantly correlated (P 
< 0.05) with the levels of  TRAIL, BAFF, and CXCL10 in the paired myeloid nuclei pseudobulks (Figure 5B).

Discussion
Within the lung, COVID-19 manifests in a wide spectrum of  DAD and fibroproliferation. The histopatho-
logical features are nonspecific, and there are no clear findings that differentiate SARS-CoV-2 from a num-
ber of  other respiratory viral infections, particularly those developing after infection with other betacoro-
naviridae such as SARS-CoV and MERS-CoV (19–24). Although much has been learned from analysis of  
blood and BALF (10, 18, 25–29), study of  tissue is needed to understand the cellular causes of  COVID-19–
associated lung damage. Further insight has been gained from single-cell and single-nuclei approaches 
(7, 30), but these approaches do not retain spatial information that is vital for deciphering the interplay 
between different cell types. Initial applications of  spatial proteomics and transcriptomics have started to 
reveal the spatial landscape of  lung damage in COVID-19 (6, 7), but molecular details of  the signaling cir-
cuits that perpetuate pathology remain to be fully elucidated.

In this study, we sought to generate new insights by applying network-based analysis approaches to the 
analysis of  rich spatial transcriptomics data generated with the Nanostring GeoMx Digital Spatial Pro-
filer (DSP) platform. To do so, we used correlation networks to integrate WGCNA module eigengenes, 
cytokine gene expression levels, and computationally predicted cell-type abundances. Use of  this flexible 
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Figure 4. Within-patient analysis of spatially associated cellular phenotypes. (A–C) The cellular phenotype network analysis diagrams show the 
correlations (Spearman’s P < 0.05) among the WGCNA module eigengene expression values, predicted cell-type abundances, and secreted cytokine 
expression for the 3 patients (see Methods for node inclusion criteria). (D) The expression of selected genes in each of the 3 patients for mild (blue) 
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and extensible cellular phenotype network analysis approach uncovered new links among the cell types, 
biological pathways, and cytokines that are associated with lung tissue damage in severe COVID-19.

We found substantial differences in the cellular and molecular pathologies of  the lung tissue sam-
pled from the 3 patients we studied. Tissue from patient A displayed a stronger signature of  type 2 pneu-
mocyte and alveolar macrophages. This patient also had the highest expression of  a gene module asso-
ciated with hypoxic response, an observation that was not unexpected given the detection of  low oxygen 
response and p53 stress pathways in the BALF of  patients critically ill with COVID-19 (31). In contrast 
with tissue from the other 2 patients, the tissue from patient B showed the strongest IFN response and 
TLR and IL-1 signaling signatures, which corresponded with immunohistochemical evidence of  high 
levels of  viral infection and the presence of  neutrophils. These findings are is consistent with the idea 
that neutrophil extracellular trap formation (or NETosis) may contribute to ongoing inflammation in 
some patients with COVID-19 (32). Finally, the samples from patient C showed a lower expression of  
IFN and hypoxic response signatures and were distinguished by elevated expression of  a vasculature-as-
sociated gene module. Despite these broad differences, our initial within-patient analysis revealed a 
shared association of  severe DAD in COVID-19 with IFN signaling, cytotoxicity and T cells, cell pro-
liferation, and antigen presentation–related genes.

To further elucidate common features of  severe COVID-19, we performed within-patient cellular phe-
notype network analysis and explored the reproducibility of  our findings using data from published sin-
gle-cell, single-nuclei, and spatial transcriptomic studies of  COVID-19–infected tissues (6, 7, 18, 25). The 
results provide the basis of  a model of  severe lung tissue damage in COVID-19 in which IFN-γ production 
by CD8+ T and NK cells (a) activates macrophages and other innate immune cells and (b) induces expres-
sion of  CXCL9/10/11 (15, 33), promoting further recruitment of  CXCR3+ immune cells (including NK 
and cytotoxic T cells) into lymphoid-rich areas (Figure 6). The presence of  cytotoxic lymphocytes and 
elevated expression of  TRAIL (TNFSF10) suggests that severe lung damage in COVID-19 may involve 
cytolysis and extrinsically regulated apoptosis. In keeping with this model, myeloid cell dysregulation is a 
hallmark of  severe or progressive COVID-19 infection (34–37), and there is strong evidence for increased 
numbers of  macrophages in COVID-19 lung tissue (6, 7, 30). An increased ratio of  CD14+HLA-DRlo 
inflammatory monocytes to tissue-resident alveolar macrophages has also been noted (18), and macro-
phage hyperactivation by persistent IFN-γ production previously has been suggested to be a possible mech-
anism in COVID-19 (38). Consistent with the proposed model, despite the well-characterized peripheral 
blood T and NK cell lymphopenia (26), numbers of  CD8+ T cells in COVID-19–infected lung tissue are 
comparable to those found in healthy individuals and higher than those found in pneumonia (6). NK cells 
are less abundant than CD8+ T cells in the lung tissue of  patients with COVID-19 but appear to show an 
increase in mild disease that is reduced to, or below, healthy levels in severe cases (6, 7, 18). Our data extend 
these observations by showing that, within the lung tissue, cytotoxic CD8+ T cells can localize to interstitial 
immune cell infiltrates with inflammatory phenotypes, likely monoMacs and neutrophils, within areas of  
severe COVID-19–associated damage. On the basis of  our transcriptomic analysis, we consider that such 
regions are also likely to contain cytotoxic NK cells, but we did not find transcriptional or immunohisto-
chemical evidence for CD4 T cell involvement.

Our model is likely to be incomplete because of  important limitations of  our work, including the 
paucity of  granulocyte detection in transcriptomic analysis, the number of  patients studied, the targeted 
panel used for the transcriptomic analysis, and the limited spatial resolution of  the GeoMx DSP plat-
form. There were notable, patient-specific gene expression profiles, suggesting different states or stages 
of  lethal COVID-19 pathology that may be associated with patient histories, differences in treatment and 
duration of  sickness that could produce tissue differences in lung and SARS-CoV-2 interactions, the com-
position and distribution of  inflammation, and the state of  regenerative responses. More large-scale stud-
ies of  COVID-19–infected lung tissue, using higher-resolution proteomic and whole-transcriptome spatial 
platforms to complement the throughput and targeted sampling that the GeoMx DSP platform affords, will 
be essential for fully deciphering the fine cellular and molecular details of  inflammation and severe tissue 
damage in this disease (39).

and severe (red) areas of alveolar damage (median, IQR, and outliers are >1.5 times the IQR from the hinge). Asterisks indicate BH adjusted P < 0.05 
and fold-change >1.5 in differential expression analysis with linear mixed models for repeated measures between mild and severe areas of damage 
(mild vs. severe, n = 16 and 28, respectively).
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Data from imaging and single-nuclei RNA-Seq studies in COVID-19 support a reduction in the pro-
portion and absolute counts of  type I and type II pneumocytes, with an expansion of  transdifferentiating 
pneumocytes associated with a damage-associated epithelial progenitor phenotype (30, 40). In our study, 
subtypes of  pneumocytes beyond epithelial cells and type II pneumocytes were not observed, but these may 
become apparent in larger spatial studies assessing the whole transcriptome. Pneumocyte gene expression 
and corresponding epithelial cells and type 2 pneumocytes signals were stronger in milder areas than in 
severe areas, although this may reflect a proportional increase in infiltrating and proliferating leukocytes or 
the loss of  lineage-specific gene expression in damaged epithelium.

A key question that arises from the proposed model is about the nature of  the upstream mechanism(s) 
by which CD8+ T and NK cells are stimulated to release IFN-γ in areas of  severe damage. In a similar 
circuit proposed by Grant et al. (25), based on the analysis of  BALF, activation of  SARS-CoV-2–reac-
tive T cells in lung alveoli was proposed to be sustained by continued SARS-CoV-2 infection of  recruited 
monoMacs. However, the fact that only 1 of  the 3 patients studied here had convincing evidence of  viral 
infection in the tissue suggests that viral antigens may not be the only trigger for cytotoxic lymphocyte 
activation in severe cases. In support of  this hypothesis, a similar observation was made in a study of  
lung tissue from fatal COVID-19 cases where “virus-independent immunopathology, rather than direct 
viral cytotoxicity” (8) was proposed to be a primary pathogenic mechanism. Additionally, it has also been 
reported that the CD8+ T cell repertoire is more diverse in BALF of  patients with severe COVID-19 than 
in that of  patients with moderate cases (18). Together, these observations suggest that in severe COVID-19, 
activation of  CD8+ T cells in lung tissue may be spatially uncoupled from, and inappropriately sustained 
after, clearance of  viral infection.

Candidate mechanisms for this process include exposure to endogenous DAMPs and/or pro-inflam-
matory cytokines. Possible endogenous DAMPs include the release of  S100A8/9 from macrophages (and/
or neutrophils) killed by cytotoxic lymphocytes or TRAIL-mediated extrinsic apoptosis if  not adequately 

Figure 5. IFN-γ production by cytotoxic lymphocytes is associated with severe tissue damage in COVID-19. (A) Analysis of the expression of genes of interest 
in a published BALF-sample, single-cell data set comprising 4 healthy donors and 6 patients with severe COVID-19 (18). (B) Spearman’s correlations between 
cytokine expression in T and NK and myeloid nuclei pseudobulks constructed from a published single-nuclei atlas of the lung tissue of SARS-CoV-2–infected 
autopsy donors with COVID-19 (n = 13) (7). mDC, myeloid dendritic cell; pDC, plasmacytoid dendritic cell; snRNA-seq, single-nucleus RNA sequencing.
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cleared by phagocytosis (41). With respect to the possible involvement of  inflammatory cytokines, we not-
ed prominent expression of  BAFF (TNFSF13B) in regions of  severe DAD, where, on the basis of  inspec-
tion of  single-cell data (18), the most likely source was the myeloid cells. BAFF can promote CD4+ T cell 
IFN-γ production and CD8+ T cell cytotoxicity in chronic obstructive pulmonary disease (42), supporting 
the concept that it may be part of  a positive feedback loop that sustains nonspecific cytotoxic lymphocyte 
activation in COVID-19. It is also likely that elevated levels of  IL-1, IL-6, and TNF may contribute to 
dysregulation of  CD8 T cells, NK cells, and macrophages as part of  the so-called cytokine storm (26, 43).

Currently deployed therapeutics such as dexamethasone and the anti–IL-6 therapy tocilizumab are effec-
tive but not curative in all patients (44). Although the cases we examined provided some evidence of a role for 
IL-6 in areas of milder damage, we did not find an obvious link between expression of this cytokine and severe 
tissue pathology. Our data suggest that therapeutic targeting of immune cell recruitment via the CXCL9– 
CXCL10–CXCL11/CXCR3 axis may be a valuable therapeutic strategy for resolution of inflammation in 
severe COVID-19, where it has become uncoupled from viral clearance. Systemic and lung tissue upregulation 
of these IFN-γ–induced cytokines in COVID-19 has been noted in many studies, and this axis has already been 
proposed by others as a therapeutic target for COVID-19 and other serious diseases, including cancer (6, 10, 
15, 18, 26, 38, 45). Less attention has been paid to BAFF, which is markedly upregulated in plasma of patients 
with COVID-19, and for which monoclonal-blocking Abs have been developed (46, 47). Although more study 
of the role of this interesting cytokine in COVID-19 is required, our data suggest it may be a valid therapeutic 
target in severe cases. In 2 of the 3 patients studied, we also noted a robust upregulation of IL32 in areas of  
severe damage, and the role of this cytokine, which has important functions in antiviral responses and can 
induce expression of pro-inflammatory cytokines, may warrant further study in COVID-19 (48).

Overall, the heterogeneity of  the tissue pathology that we observed both within and between the 
patients studied underscores a need for personalized approaches in which the choice of  therapy (or ther-
apies) is guided by careful assessment of  the stage of  disease and viral clearance. For example, although 

Figure 6. Proposed cellular model of severe tissue damage in COVID-19. 
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innate immune activation via treatments such as intranasal IFNB1-α/β (49) are likely to be important for 
patients unable to clear the virus, our model predicts that they may exacerbate nonspecific lymphocyte and 
myeloid cell activation and tissue damage in virus-free lung tissue and in patients whose condition remains 
critical after successful viral clearance. As a more general strategy, our findings strongly support the use 
of  combinatorial regimens that pair therapeutics directly targeting the virus, such as molnupiravir, remde-
sivir, ritonavir, and recombinant soluble ACE2 (50, 51), with those that can temper the dysregulated host 
immune responses that drive tissue damage.

Methods
Design. To delineate the tissue-specific immune pathology in severe COVID-19, we assessed the tran-
scriptomic profile across a spectrum of  DAD in well-preserved tissue samples obtained at the point 
of  death from 3 patients with COVID-19. Medical records of  patients were retrospectively reviewed 
(52) and 3 patients with COVID-19 were selected for in-depth analysis on the basis of  their clinical 
manifestation of  acute respiratory distress syndrome (Supplemental Table 1), typical COVID-19 his-
tology (Supplemental Table 2) with a 4–5 score on the Brescia–COVID Respiratory Severity Scale, and 
a lung-restricted presence of  SARS-CoV-2 (i.e., absent in heart, liver, and kidney biopsy specimens). 
Patients with positive bacterial culture tests at or prior to death were excluded from this study. None 
of  the patients were vaccinated against SARS-CoV-2. At least 14 AOIs from each COVID-19 tissue 
sample were selected for analysis, spanning, on average, 0.2 mm2 (range, 0.05–0.33 mm2) with exclusion 
of  empty space. Areas were selected to represent the spectrum of  alveolar injury within each tissue 
covering regions of  (a) mild to moderate injury with some conservation of  alveolar architecture and (b) 
severe injury with a loss of  alveolar structure and substantial inflammation. Selected AOIs occupied 
alveolar and interstitial spaces, except from A_16 and A_17, containing bronchiolar epithelium. The 
severity grade of  each AOI was confirmed post hoc by 2 pathologists.

Patients and tissue processing. Postmortem lung tissues were obtained through open biopsy at the point of  
death and processed as described (52). In brief, tissues were immediately fixed in neutral buffered formalin 
for less than 24 hours and then paraffin embedded. Sections (5 μm each) were cut for H&E staining, ISH, 
and DSP analysis. Six pathologists reviewed the histology and agreed on the gross histological characteris-
tics (Supplemental Table 2). RNA was extracted from 5 μm sections (n = 4–8) for quantification of  SARS-
CoV-2 N and envelope protein transcripts (Supplemental Table 2).

ISH. ISH was conducted using the RNAscope2.5 LS Reagent Red Kit, according to the manu-
facturer’s instructions, and the Leica BOND-RXm system. Deparaffinization and heat-induced epi-
tope retrieval were performed with BOND Epitope Retrieval Solution 2 (ER2; pH 9.0) for 25 minutes 
at 95°C. Hybridization for SARS-CoV-2 RNA was carried out using the RNAscope 2.5 LS Probe 
V-nCoV2019-S and checked for quality against slides treated with the positive control probe Hs-UBC 
and negative control Probe DapB. 

IHC for SARS-CoV-2 N protein. Deparaffinization and heat-induced epitope retrieval were performed 
on the Leica BOND-RXm using BOND ER2 (pH 9.0) for 30 minutes at 95°C.  Staining was conducted 
with the Bond Polymer Refine Detection kit and a rabbit anti–SARS-CoV-2 N Ab (Sinobiological; clone 
001; dilution: 1:5000), and counterstaining was with hematoxylin. Whole-slide image analysis and QuPath 
software were used to quantify virus (53). Lung tissue was distinguished from empty space by applying the 
Create thresholder function on hematoxylin-stained areas, and then virus-positive pixels were quantified 
using the detect positive staining function (downsample factor: 10; Gaussian σ: 5 μm; hematoxylin thresh-
old: 0.1 OD units; DAB threshold: 0.3 OD units).

NanoString GeoMx digital spatial profiling. This technique was carried out according to the manu-
facturer’s recommendations for GeoMx-NGS RNA BOND RX slide preparation (manual no. MAN-
10131-02). Deparaffinization, rehydration, heat-induced epitope retrieval (for 20 minutes at 100°C), 
and enzymatic digestion (1 μg/mL proteinase K for 15 minutes at 37°C) were carried on the Leica 
BOND-RX. Tissues were incubated with 10% neutral buffered formalin for 5 minutes and for 5 minutes 
with NBF Stop buffer. The tissue sections were hybridized with the oligonucleotide probe mix (Can-
cer Transcriptome Atlas and COVID-19 spike-in panel) overnight, then blocked and incubated with 
PanCK-532 (clone AE1+AE3; Novus), CD3-647 (clone UMAB54; Origene), CD68-594 (clone KP1; 
Santa Cruz Biotechnology), and DNA dye (Syto13-488 dye; Invitrogen) for 1 hour. Tissue sections were 
then loaded into the GeoMx platform and scanned for an immunofluorescent signal.
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After selection of  AOIs, UV light directed at each AOI released oligonucleotides that were collected 
and prepared for sequencing. Illumina i5 and i7 dual-indexing primers were added during PCR (4 μL of  
collected oligonucleotide per AOI) to uniquely index each AOI. AMPure XP beads (Beckman Coulter) 
were used for PCR purification. Library concentration as measured using a Qubit fluorometer (Thermo 
Fisher Scientific), and quality was assessed using a Bioanalyzer (Agilent). Sequencing was performed 
on an Illumina NextSeq 2000, and FASTQ files were processed by the NanoString DND pipeline, 
resulting in count data for each target probe in each AOI.

Analysis of  immunofluorescent images for cell counts. The number of  nuclei and the CD3+ and CD68+ cell 
counts were determined using CellProfiler software. A pipeline was designed to quantify circular objects 
within RBG files for each AOI (54). Global manual intensity thresholds were set for object identification 
of  nuclei and CD3+ cells, and CD68+ cells were identified by adapted intensity thresholds. The efficacy of  
object identification for each AOI was visually confirmed.

Quality control and preprocessing of  GeoMx transcript expression data. Quality control and initial data explo-
ration were conducted using the GeoMx DSP Analysis Suite. Sequencing quality per AOI was examined 
and an under-sequenced area (B_04) with zero deduplicated reads was excluded. Expression of  each tran-
script was measured by 5 or more probes; outlier probes (defined as when the probe geomean in all AOIs 
divided by the geomean of  all probes for a given target was <0.1, or probe failure in the Grubbs’ outlier 
test in >20% of  AOIs) were excluded, and the remaining probes were combined to generate a single (after 
biological probe quality control) expression value per gene target per AOI.

We evaluated the performance of  2 normalization strategies, upper quartile and quantile normaliza-
tion, by investigating their ability to standardize the expression distributions of  housekeeping genes, nega-
tive control probes, and the full expression distribution between the AOIs. The expression values for nega-
tive control probes were not reported, because global outliers were appended to the gene expression matrix. 
On the basis of  this assessment (and the results of  subsequent principal component analyses [PCAs]), we 
proceeded with the quantile normalized expression values. We investigated the influence of  known tech-
nical and biological factors on the variance structure of  the data set by performing PCA of  the log2(n+1) 
transformed quantile-normalized expression values. This analysis revealed that the first component in the 
data was associated with the aligned read-depth statistic. We therefore corrected the quantile normalized 
expression values for this technical factor using the Limma removeBatchEffect function.

Finally, to distinguish gene expression from background noise, we modeled the expression distribution 
of  the set of  negative probes, defining the median of  the negative probe expression values plus 2 times the 
median absolute deviations as a robust detection threshold. In total, we retained 1631 genes that passed 
this detection threshold in at least 2 AOIs. The normalized expression distributions and sample PCA plots 
obtained after normalization, aligned read-depth correction, and expression-level filtering are shown in 
Supplemental Figure 3.

Differential gene expression and overrepresentation analysis. Differential gene expression was calculated 
for each gene between areas of  mild to moderate and severe alveolar damage, using linear mixed models 
for repeated measures (dream methodology; R libraries: variancePartition, edgeR, and BiocParellel) 
designed to account for severity and aligned reads in filtered quantile-normalized data with patient 
identity as the random variable. P values were adjusted using the BH method. Overrepresentation anal-
ysis for GO BP terms was performed on genes with greater than 1.5-fold change and a FDR greater 
than 0.05 (R library: clusterProfiler; ref. 55) with the following parameters: pvalueCutoff  = 0.05 and 
qvalueCutoff  = 0.10. Redundant and duplicated pathways were removed for Figure 2B; for a full list of  
pathways, see Supplemental Table 3.

WGCNA. WGCNA was applied to the log2(n+1) transformed, quantile-normalized, aligned 
read-corrected and -filtered expression values. The parameter values were set as follows: the minimum 
fraction of  nonmissing samples for a gene to be considered good was 0.5; the minimum number of  
nonmissing samples for a gene to be considered good was 4; the minimum number of  good genes was 
4; the cut height for removing outlying samples was 100 (no samples removed); the minimum number 
of  objects on a branch to be considered a cluster was 2; network type equaled signed hybrid; soft power 
equaled 4; adjacency correlation function was bicor; adjacency distance was calculated by euclidean 
distance matrix computation; topological overlap matrix type was signed; minimum module size (num-
ber of  genes) was 10; and the dissimilarity threshold used for merging modules was 0.25. The analysis 
identified 17 distinct modules labeled with colors, plus a module of  3 unassigned genes (grey module). 
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The WGCNA analysis was performed using pipeline_wgcna.py (https://github.com/sansomlab/cornet; 
commit ID 196637b04d11682bc06670595f0ec1298a9aa1f4).

The expression patterns of  the modules were summarized by calculation of  module eigengenes using 
the WGCNA package (which defines a module’s eigengene as the first principal component of  the expres-
sion of  the module’s gene members). AOIs were hierarchically clustered by expression of  the module 
eigengenes (Pearson’s correlation distance; optimized leaf  ordering) from which 5 distinct groups were 
observed and highlighted using the R cutree function. The overrepresentation of  GO categories, KEGG 
pathways, and reactome pathways in module gene members was tested using 1-sided Fisher’s exact tests 
(https://github.com/sansomlab/gsfisher; commit ID 3ad1d79293c6891cb23575e0e080fb61c74310b1), 
using the union of  gene members from all the modules as the background gene set. Representative gene sets 
and pathways that had significant (BH adjusted P < 0.05) overrepresentations are displayed in the figures. 
WGCNA modules were further characterized by assessing the correlation of  the module eigengenes with 
(a) histological severity (Pearson’s correlation), (b) predicted cell abundances (as estimated using SpatialDe-
con; Spearman’s correlation), and (c) that of  selected genes (Spearman’s correlation; R library Hmisc).

Cell deconvolution of  GeoMx transcript expression data. Deconvolution of  cell types from the gene expres-
sion data was performed using the SpatialDecon R library (14). For this analysis, the full matrix of  quan-
tile-normalized gene counts (without correction), mean negative probe counts, and the cell profile matrix 
Lung_plus_neut were applied as input. The cell profile matrix retrieved from the package was generated 
from the Human Cell Atlas lung small conditional RNA-Seq data set and appended with neutrophil pro-
files, as described by Desai et al. (5). For correlation analyses, the abundance of  cell types is reported for 
cell types present with greater than 2 relative abundance in more than 2 AOIs. Deconvoluted cell-type 
output is shown in Supplemental Figures 5 and 6 and Figures 3 and 4.

Construction of  AOI group-correlation networks. We constructed correlation networks to investigate the 
relationship among the WGCNA modules, the estimated cell abundances (from SpatialDecon), and the 
expression levels of  immune signaling genes for each of  the 5 AOI spatial groups (R igraph library; layout 
= layout_with_dh). Nodes were scaled in size and/or color according to cell abundance, normalized gene 
expression, or WGCNA module eigengene expression. Drawn edges represent significant correlations (P 
< 0.05) and were weighted according to the value of  the correlation coefficient (Spearman’s ρ). WGCNA 
modules were included in the network if  they had a median module eigengene expression greater than zero 
within the relevant group of  AOIs. Immune signaling genes from the KEGG cytokine-cytokine receptor 
interaction pathway (hsa04060; human) were included if  they had a median expression above the expres-
sion detection threshold (as defined in the subsection Quality control and preprocessing of  GeoMx transcript 
expression data) in a given AOI group. Cell-type abundance estimates were included if  they had a median 
abundance of  more than 2 of  the given AOI group. For inclusion in the network, nodes (modules, cell 
types, and genes) had higher median values than the thresholds stated above and at least 1 positive correla-
tion to another node type.

Mass cytometry imaging. FFPE lung tissue–section slides (5 μm thick) were stained with metal-conju-
gated Abs (anti–human CD68, CD4, CD8, and CD15; Fluidigm) after antigen retrieval. Intercalator-Ir 
(Fluidigm) was used to stain DNA. Slides were ablated on the Fluidigm Hyperion Imaging System using 
CyTOF7 software (Fluidigm) and visualized using an MCD Viewer (Fluidigm). Images were processed for 
publication using FIJI (56) to despeckle and sharpen the images.

Data and material availability. The NanoString GeoMx DSP raw sequencing data, the processed expres-
sion data, and the metadata are deposited at Gene Expression Omnibus series GSE186213. RBG composite 
images of  the whole immunofluorescence-, IHC-, and H&E–stained tissue sections are available on Zenodo 
(10.5281/zenodo.7269953). Annotated scripts for the computational analysis are available from https://
github.com/sansomlab/CrossJCIInsight2022; commit ID c604c5ce069f652324e5eeade26a3e23bbfe96d9.

Statistics. Statistics were carried out as indicated in the subsections Differential gene expression and over-rep-
resentation analysis, WGCNA, Cell deconvolution of  GeoMx transcript expression data, and Construction of  AOI 
group-correlation networks.

Study approval. This study was approved by the ethics committee of  the University of  Navarra, Spain 
(approval no. 2020.192) and the Medical Sciences Interdivisional Research Ethics Committee of  the 
University of  Oxford (approval no. R76045/RE001). Tissues were stored at the John Radcliffe Hospital 
according to Human Tissue Authority regulations (License 12433).
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