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Abstract
This study aims to improve our understanding of the response of precipitation to forcings by
proposing a physically-based equation that resolves simulated precipitation based on the
atmospheric energy budget. The equation considers the balance between latent heat release by
precipitation and the sum of the slow response by tropospheric temperature changes and the fast
response by abrupt radiative forcing (RF) changes. The equation is tuned with three parameters for
each climate model and then adequately reproduces time-varying precipitation. By decomposing
the equation, we highlight the slow response as the largest contributor to forcing-driven responses
and uncertainty sizes in simulations. The second largest one to uncertainty is the fast-RF response
from aerosols or greenhouse gases (GHG), depending on the low or highest Coupled Model
Intercomparison Projection 6 future scenarios. The likely range of precipitation change at specific
warming levels under GHG removal (GGR) and solar radiation management (SRM) mitigation
plans is evaluated by a simple model optimizing the relationship between temperature and
decomposed contributions from multi-simulations under three scenarios. The results indicate that
GGR has more severe effects from aerosols than GHG for a 1.5 K warming, resulting in
0.91%–1.62% increases in precipitation. In contrast, SRM pathways project much drier conditions
than GGR results due to the tropospheric cooling and remaining anthropogenic radiative heating.
Overall, the proposed physically-based equation, the decomposition analysis, and our simple
model provide valuable insights into the uncertainties under different forcings and mitigation
pathways, highlighting the importance of slow and fast responses to human-induced forcings in
shaping future precipitation changes.

1. Introduction

Precipitation is a fundamental component of the
Earth’s climate system, responsible for regulating the
distribution of water and energy across the atmo-
sphere, oceans, and land (Bengtsson 2010, Gleeson
et al 2020). Within the hydrological cycle, liquid
water evaporates from the ground and remains in
the atmosphere as water vapor. It forms clouds and
eventually returns to the surface as precipitation.

This process involves the exchange of energy, with
evaporation absorbing the surrounding energy from
the surface and condensation releasing it into the
atmosphere. Water vapor acts as both a forcing
(Kondratev 1972) and a response to the external
forcings due to its temperature-dependent rela-
tionship with the Clausius-Clapeyron relationship
(Held and Soden 2006). Changes in this hydro-
logical cycle have critical impacts on extreme cli-
mate risks (Paik et al 2020), water resources for
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human use (Kundzewicz and Döll 2009), agricultural
production (Hirabayashi et al 2013), and ecosystems
(Walther et al 2002).

Previous studies have examined the precipit-
ation variation by analyzing the general circula-
tion model (GCM) involved in the Coupled Model
Intercomparison Projection (CMIP). Globally aver-
aged outputs of GCMs are examined to generalize the
precipitation response to the forcings. Without for-
cing variations, this precipitation can be controlled
by the temperature, known as hydrological sensitiv-
ity (HS), showing 2–3%/K (Allen and Ingram 2002,
Pendergas 2020). Unlike the counterfactual condi-
tions of HS, the world perpetually interacts with
external forcings, and the atmospheric energy bal-
ance is perturbed and adjusted even on a short-term
scale. The actual changes in precipitation are affected
by HS and instantaneous radiative forcing (RF). The
forcing-driven changes in precipitation are diverse
depending on the types of GCMs and amount of
external forcings (Fläschner et al 2016, Samset et al
2016).

After the Paris Agreement, global warming mit-
igation is promised. The mitigation plans must be
determined based on the latest scientific understand-
ing of forcing-driven impacts on possible approaches,
like GHG removal (GGR) or solar radiation manage-
ment (SRM). Some previous studies examined the
precipitation change under GGR or SRM pathways.
For examples, Sanderson et al (2017) used a single
GCM to achieve a 1.5 and 2.0 K stable climate at the
end of the 21st century under GGR methods, show-
ingmore increase in precipitation under warmer con-
ditions. Laakso et al (2020) used two GCMs under
GGR and SRM approaches, showing much drier con-
ditions in SRM relative to GGR. However, high com-
putational resources for simulations limit GCMnum-
bers to explore the difference between GGR and SRM
and hinder the robustness of their findings.

A reduced-complexity emulator for precipitation
is the countermeasure to investigate possible changes
under the given forcing conditions. Only a few stud-
ies examined the time-varying precipitation with a
numerical equation. Shine et al (2015) proposed a
conceptual model based on the impulse response
functions but their parameters are theoretical val-
ues. Richardson et al (2018) considered the CO2 and
non-CO2 together, but their parameters are estim-
ated in averaged sense from limited numbers of
GCMs. MacMartin et al (2018) developed an integ-
rated equation but only considered theCO2 and SRM.
Laakso et al (2020) proposed an equation that cap-
tured the GGR and SRM in two GCMs, but its non-
CO2 part is empirical. Yeh et al (2021) introduced
the integrated time-varying equation in a simplified
form. However, the equation is designed for a single
GCM and only applicable to CO2-forcing conditions.
Given the wide range of uncertainty in precipitation

among GCMs, there is a need to improve the time-
varying numerical equation to capture the diverse
characteristics of multiple GCMs and include phys-
ically missed fast responses driven by RF of non-CO2

GHG and aerosols.
This study suggests an equation that resolves the

global mean precipitation change at given forcing
conditions. This equation physically explains the pre-
cipitation variation and quantifies the uncertainty
sources. Finally, we evaluate reliable ranges of pre-
cipitation changes with a model based on the stat-
istically optimized functions and compare the dif-
ferences between GGR and SRM approaches. This
paper is structured as follows. Section 2 describes
model and analysis methods, including the defini-
tion of the equation resolving precipitation responses,
three parameters indicatingmodel sensitivity, and the
uncertainty among GCMs. Results are provided in
section 3 for evaluating our equation, quantifying the
size of contributions to the precipitation variations
and uncertainty among GCMs, and estimating the
likely ranges of precipitation change undermitigation
pathways. Section 4 gives a summary and discussion.

2. Data andmethods

2.1. Data
To check the universal application of our equation, we
mainly focus on climate experiments shared by many
GCMs.We use simulations participating in the CMIP
Phase 6 (CMIP6) project on the condition that GCMs
integrate all four experiments: piControl, abrupt-
4xCO2, 1pctCO2, and historical. We have 55 GCMs
and describe their details in table S1. We also exam-
ine 14 GCMs having hist-GHG, hist-nat and hist-
aer simulations to assess the precipitation responses
under each group of climate forcing. For future ana-
lysis, we select 40 GCMs having all simulations under
the three Shared Socioeconomic Pathways (SSP) scen-
arios (table S1). For the reference values of con-
centration and effective RF of scenarios, we use the
single protocol dataset of the Reduced Complexity
Model Intercomparison Project (RCMIP, Nicholls
et al 2020). Additionally, CMIP6 GCM having SSP1-
1.9 or SRM simulations (G6solar) are examined to
validate our findings (table S1). SSP1-1.9 is the ambi-
tious mitigation scenario comparable to the 1.5 K
warming levels (e.g. Kriegler et al 2018). G6solar scen-
ario controls the solar constant to reduce the SSP5-
8.5 scenarios to reach the global warming levels of
SSP2-4.5 (Visioni et al 2021, 2023). Notably, we cal-
culate the individual model results and then average
them for themulti-model ensemble (MME)mean. To
test any bias due to dependency among GCM mem-
bers (Abramowitltz et al 2019), we quantify themodel
dependency effects (check details in figure S1). All
possible MME candidates proved insignificant differ-
ences. Therefore, our results are globally averaged,
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including ocean and land areas, and MME covers all
available GCMs.

2.2. Precipitation equation
We build a physically based equation to emulate pre-
cipitation variation. Here, the emulation implies the
computed precipitation according to the equation.
Allen and Ingram (2002) introduced the straight-
forward concept of precipitation change with atmo-
spheric energy variation. The hydrological response
is balanced not by the thermodynamic responses
of moisture but by the availability of atmospheric
energy. The energy budget equation of the tropo-
sphere in the transient phase can bewritten as follows:

∆P≈ α ·∆T+(∆RC+ k · Fs)/L. (1)

α is HS parameter, and∆T is the changes in sur-
face temperature. This first term (α·∆T) illustrates
radiative cooling due to tropospheric warming, called
HS effects or slow response (SLOW). RC is another
radiative cooling from tropospheric RF, independ-
ent of temperature changes. FS is the net heat flux
into the oceans in the transient, and this transient
energy imbalance is scaled by model-dependent K.
L is approximately 1 W·m−2 for a 1% precipitation
increase. This second term represents the RF response
in changing forcing conditions, known as the fast
response (FAST). Yeh et al (2021) further simplify
equation (1):

∆P≈ α ·∆T− (β/L) ·∆FCO2 (2)

∆FCO2 ≈ 5.35 · ln(C/C0) . (3)

The term (∆RC + k·FS)/L in equation (1) is
replaced by−(β/L)·∆FCO2 , implying the fraction (β)
of CO2 RF (∆FCO2), and this can be simplified by
using equation (3) of Myhre et al (1998) explain-
ing RF as the expression of CO2 concentration (C)
change relative to the base level of it (C0). This num-
ber explains the fraction of CO2 RF that reheats the
atmosphere, also known as the fast CO2 response
(FASTCO2), eventually inhibiting latent heat releases.
Although Allen and Ingram (2002) and Yeh et al
(2021) explainedwell the precipitation changes under
the transient forcing conditions, those equations only
explain the precipitation changes driven by CO2.

First, our study expands equation (2) to reflect the
GHG effects beyond Yeh et al (2021) approach.

∆P≈ α ·∆T− (β/L) ·∆FGHG. (4)

Equation (4) shares most of the terms in
equation (2) except for the atmospheric RF amount
(∆F). Although the previous study follows Myhre
et al (1998), here we chose the approach of Etminan
et al (2016) because they proved a better perform-
ance than Myhre et al (1998). The atmospheric

RF equations for the first three major components
of GHGs: CO2 (∆FCO2), CH4 (∆FCH4), and N2O
(∆FN2O) are

∆FCO2 ≈ [5.36+ f∗C (C, N)] × ln(C/C0) (5)

∆FCH4 ≈ [0.043+ f∗M (M, N)]×
(√

M−
√
M0

)
(6)

∆FN2O ≈ [0.117+ f∗N (C, N, M)]×
(√

N−
√
N0

)
.

(7)

Those expressions (equations (5)–(7)) are adop-
ted from Etminan et al (2016) and written in concise
format. Please note that M and N indicate the con-
centration of CH4 and N2O, and M0 and N0 show
their base climate level. For the time-varying func-
tions of concentration in the left term (fC

∗
, fM

∗
, and

fN
∗
), we describe their full expression in table S2.

Consequently, the total sum of atmospheric RF from
GHG components (∆FGHG) is

∆FGHG ≈∆FCO2 +∆FCH4 +∆FN2O. (8)

In equation (8), ∆FGHG is explained mainly by
three dominant components. Since other well-mixed
GHG components may have effects in the recent
decade (1950–2020), we check their potential effects
by adopting the Priestley-Center data (Smith 2020),
which evaluated various effective RF of CMIP6 sim-
ulations. As the effective RF values are likely around
RF values (Lee et al 2021), we test the effects of other
well-mixed GHG by adding their effective RF val-
ues as the RF on equation (8). Eventually, we rep-
resent the GHG RF by simply equation (8) because
emulations of hist-GHG perform better without their
effects (figure S2(E)).

After reflecting on the fast response of GHG
(FASTGHG) to equation (4), we introduce a new
term to reflect the effects of aerosols. Since
aerosols-induced shortwave impacts change tropo-
spheric temperature and they are reflected in SLOW
by definition, we only consider the RF response to the
precipitation independent of the temperature vari-
ation (FASTAerosols). FASTAerosols is comparable to the
net amount of longwave radiation in the atmosphere
and sensible heat flux from the atmosphere to the
surface (e.g. Zhou and Savijärvi 2014, Richardson
et al 2016, Myhre et al 2018, Zhang et al 2021). Thus,
equation (4) is now updated:

∆P≈ α ·∆T− (β/L) ·∆FGHG+(γ/L) ·∆FAerosols.
(9)

The FASTAerosols, (γ/L)·∆FAerosols, is expressed by
the scaled coefficient parameter (γ) multiplied by
the RF in the third term (∆FAerosols). We adopt
the evaluated effective RF values (Smith 2020) to
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account for ∆FAerosols. Since model estimated long-
wave radiation amount caused by aerosols are highly
uncertain for both aerosol-radiation interactions and
aerosol-cloud interactions (Zelinka et al 2014, Smith
et al 2020, 2021), here we introduce the model-
dependent parameter γ indicating the residual atmo-
spheric remained RF scaled from the effective RF
values (e.g. Lee et al 2021). Positive γ implies a fur-
ther decrease in precipitation under the rising aero-
sols concentration.

2.3. Three parameters of models
Three parameters illustrate the model sensitivity to
the temperature and RF of GHG and aerosols. The
parameter α is estimated by the regression slope
between temperature and precipitation from the sim-
ulation of abrupt-4xCO2 (figure S2(A)), excluding
the first 20 years to escape unresolved feedback effects
fromabrupt changing of forcing (Andrews et al 2015).
The parameter β is measured from 1pctCO2 by the
scale factor based on equation (2) (figure S2(B)). For
the parameter γ, we first test the direct measurement
from 14 GCMs with hist-aer simulations. After that,
we estimate the γ indirectly from all forcing simula-
tions by relocating equation (9) (FASTAerosols ≈ ∆P
− SLOW − FASTGHG). Since forcing conditions
are unlike abrupt-4xCO2, we use the entire periods
of simulations to estimate parameters β and γ to
acquire stability under the transient forcing condi-
tions (Rugenstein et al 2020). We confirm the indis-
tinctive differences between MME mean results of
direct and indirect γ (figure S2(F)). Since we also find
a significant correlation between them (r = 0.80), all
of our main results use the indirect γ, having more
GCM numbers.

2.4. Quantification of uncertainty sources
Since precipitation change uncertainty over the globe
and the majority of sub-regions is dominantly driven
by the model uncertainty rather than internal variab-
ility or scenario uncertainty (e.g. Hawkins and Sutton
2011, Nguyen et al 2018, Lehner et al 2020), this study
focuses on the model uncertainty which is measured
by the variance (Var) utilizing the mean function (E
in equation (10)).

Var(∆P) = E
(
∆P2

)
− [E(∆P)]2. (10)

Arithmetically, the uncertainty size can be decom-
posed by three different terms having four variables.
Please note that we use the single timeseries of RF
(Etminan et al 2016), and effective RF (Smith 2020)
for all GCMs. First, we simplified equation (9) as
below:

∆P≈ a · b+ c+ d. (11)

The letters a, b, c, and d indicate eachmodel’s vari-
ables of HS parameter α, temperature changes (∆T),

FASTGHG, and FASTAerosols. With this equation (11),
model uncertainty can be written by

Var(∆P) = Var(ab)+Var(c)+Var(d)+ 2 ·Cov(ab, c)

+ 2 ·Cov(ab,d)+ 2 ·Cov(c,d) . (12)

Equation (12) explains the model uncertainty
by the sum of variance (SV) from a single variable
(main effect) and covariance (Cov) from multiple
variables (Interactions). The first termVar(ab) can be
decomposed.

Cov
(
a2,b2

)
+Var(a) ·Var(b)+Var(a) · E(b)2

+Var(b) · E(a)2 −Cov(a,b)2 − 2 ·Cov(a,b) · E(a) · E(b) .
(13)

In equation (13), the size of Var(a)·Var(b) has a
negligible contribution (figure S3). When we exclude
the Cov, all the contributors to the uncertainty are
always positive and additive. Therefore, we can calcu-
late the percentage uncertainty from these main vari-
ables (e.g. Hawkins and Sutton 2009, 2011, Yip et al
2011, Lehner et al 2020, Lee et al 2023).

Var(∆P) = SV+ Interactions (14)

SV= Var(a) · [E(b)]2 +Var(b) · [E(a)]2 +Var(c)+Var(d) .

(15)

Eventually, equation (15) quantifies the contribu-
tions from various components. From left to right,
the uncertainties in HS parameter (SLOWα), in tem-
perature (SLOW ∆T), FASTGHG (sum of FASTCO2 ,
FASTCH4, and FASTN2O,), and FASTAerosols, respect-
ively. Check figure S3 for the quantified size details.

3. Results

3.1. Evaluation for physically based equation
Forcing-driven changes in precipitation are illus-
trated in figure 1. Given the proliferated CO2

conditions, as the temperature rises, precipitation
increases (figures 1(A) and (B)). The atmospheric
radiative cooling caused by tropospheric warming
in equation (9) explains the precipitation variation
under equilibrium responses after quadrupling CO2

concentration (figure 1(A)). This SLOW response
also explains volcanic eruption responses injecting
sulfate aerosols to the atmosphere (figure S2(D)).
However, SLOW represents the overestimation rel-
ative to the simulation of 1pctCO2 and historical
(figures 1(B) and (C)). The gap between simulation
and SLOW is mostly transient RF effects (FAST),
inhibiting a room for latent heat release result-
ing decrease in precipitation. It is noteworthy that
equation (9) can capture both MME mean responses
and the spread of ensemble members, proving the
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Figure 1. Global averaged annual mean precipitation changes relative to the first twenty years (1–20 years of abrupt-4xCO2 and
1pctCO2, and 1850–1869 years of historical). (A)–(C) The ensemble distribution of simulations (solid lines) and emulations
(dashed lines) are shown vertically together after applying smoothing by kernel density estimation for every twenty years of
chunks. Horizontally drawn solid and dashed lines represent the ensemble-averaged results of simulations and emulations. (D)
Scatter plot between simulations and emulations of 55 GCMs for 165 historical years (1850–2014). Black and two grey diagonal
lines indicate one-to-one reference and±0.5% error ranges in emulations, respectively. The results of emulations are categorized
as three: (A)–(D) only temperature effects (SLOW, red), (B)–(D) only atmospheric radiative effects (FASTCO2 ), or
FASTGHG + FASTAerosols, orange), and (B)–(D) the sum of these effects (SLOW+FASTCO2 or SLOW+ FASTGHG + FASTAerosols,
blue).

validity of our equation to capture precipitation vari-
ation (figures 1 and S2). To check the likely ranges
of computation error between emulation and simu-
lation, we draw the one-to-one scatter plot and reaf-
firm that error size is mainly within ±0.5% when all
components are considered (figure 1(D)). We con-
firm emulations usually have the size of error less than
0.1% in climate sense (figure S4).

3.2. Contributions to forcing-driven precipitation
change
Our equation can decompose the precipitation vari-
ation into two components: SLOW and FAST. FAST
is divided into RF types (CO2, CH4, N2O, and aero-
sols). We investigate their contributions to the MME
mean and uncertainty in rainfall change (figure 2).
Changes in the precipitation of simulations are
reproduced reasonably by emulations (figures 1(C)
and 2(A)). Our decomposition reveals that a tre-
mendous amount of precipitation increases due
to global warming is offset by RF in the atmo-
sphere coupled with the anthropogenic components
(figure 2(A)). The size of uncertainty among GCMs
increases with time (figures 1(C) and 2(B)) as the
increase in the variance of simulated temperature
(figure S3(A)). In the last 20 years of historical
periods (1995–2014), MME mean of simulations

expect a 0.45% increase, andMME variance is around
0.95%2. As MME mean is about half size of MME
standard deviation, about 36% GCMs show neg-
ative changes (figure S4), suggesting a noticeable
disagreement in precipitation trend under the his-
torical experiment. The total variance is compar-
able to SV (figures 2(B) and S3(A)). We decompose
SV with equation (15) (section 2.4) and manifest
the quantified contributions from each component
(figure 2(C)). The driving contributor is the temper-
ature (SLOW ∆T), taking more than half of SV. The
second largest contributor is FASTAerosols, reflecting
the largest spread among parameters (table S3).

Similarly, we apply this equation to under-
stand the precipitation changes under SSP scenarios
(figure 3). These future results validate the reliability
in our equaiton becausemost SSP emulations have an
error size of less than 1% without updating any para-
meters (figure S5). Precipitation change are mainly
driven by SLOW and offset by FASTCO2 following the
results of the historical period (figure 2(A)). Contrary
to the historical case, the FASTAerosols increase precip-
itation due to the decrease in aerosols concentration
in all future scenarios (figures 3(A)–(C)). The size
of SV in the late 21st Century (2081–2100) is 1.76,
2.47, and 6.99%2 for SSP1-2.6, SSP2-4.5, and SSP5-
8.5, emphasizing the larger uncertainty for the more
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Figure 2. (A) Time-varying precipitation amount (%) relative to 1850–1869 years and its decomposed contribution from SLOW,
FASTGHG (sum of FASTCO2, FASTCH4, and FASTN2O), and FASTAerosols with colors. The MME mean results of 55 simulations
(open circles) and emulations (solid black line: sum of SLOW, FASTGHG, and FASTAerosols) are shown together. (B) Time-varying
size of uncertainty (%2) among emulations, decomposed by various components. The difference between the variance of
precipitation and the sum of single variable effects (Sum of Variance, SV) are shown by arrows for every five years. This size
represents the uncertainty from interactions between multiple variables (Cov, see equation (12) in section 2.4). (C) The relative
uncertainty contribution size from components to SV is illustrated (Single variable effects/SV∗100).

Figure 3. Same as figure 2, except for the future changes in precipitation relative to 2001–2020 years of 40 simulations and
emulations under three SSP scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5).

severe warming scenarios. Accordingly, SV primar-
ily originates from SLOW (at leasts 80% for all SSP
scenarios), highlighting noticeable model disagree-
ment on the effects of global warming. While the
size of uncertainty in FASTAerosols is noticeable for
the low-emission scenario, SSP1-2.6 (figure 3(D)), it
is not vital for the high-emission scenario, SSP5-8.5,
because the FASTCO2 is much larger than FASTAerosols

(figure 3(F)). This characteristic is also reflected in the
fraction of uncertainty (figures 3(G)–(I)).

3.3. Precipitation change at global warming
mitigation pathways
Since the temperature change is the vital contrib-
utor to the mean response and uncertainty (figures 2
and 3), here we assess the statistically estimated
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Figure 4. (A)–(C) Scatter plot between temperature changes and decomposed precipitation change (circle for each emulation) in
20 years (2081–2100) under three SSP scenarios (blue: SSP1-2.6, green: SSP2-4.5, and red: SSP5-8.5) relative to 20 years
(2001–2020). Three different contributions and statistically fitted functions for them are shown for (A) temperature-driven
radiative cooling, slow response (∆T effect), and instantaneous radiative forcing effects driven by (B) GHG (GHG Radiative
Effect) and (C) aerosols (Aerosols Radiative Effect). The optimized temperature-dependent functions are established from 120
samples (40 GCMs× 3 SSPs). The likely ranges of parameter slope (dotted lines, 0.5 and 99.5th percentile values) are estimated
by the bootstrapping method. (D) The prediction for precipitation change from a simple model, combining three functions and
slopes in (A)–(C). For the global warming level in 2081–2100, we reflect the observed warming level in the recent 20 years, 1.0 K
(https://globalwarmingindex.org/), to the relative changes in temperature shown in (A)–(C). An asterisk denotes each result of
the GCM simulation. The reversed triangles represent the MME mean of simulations under the corresponding scenarios. Solid
lines and shading area indicate the best estimation and 99% confidence interval ranges, respectively, conditional on the specific
warming levels under the GGR. As a validation of this simple model, SSP1-1.9 and SRM simulations are shown together (cyan:
SSP1-1.9, 14 GCMs and brown: SRM, 6 GCMs), and their simulations are remarked with black outlines. The diagonal dotted line
represents the best estimation conditional on the specific warming levels under SRM by considering their GCMmembers. For
SSP5-8.5, the reversed triangle with outline indicates MME mean under SSP5-8.5 after selecting GCMmembers of SRM. (A)–(D)
The relative warming levels in 20 years of the late 21st Century are illustrated by vertical lines with colors (+0.5,+1.0,+1.5,
+2.0,+2.5, and+3.0 K, respectively).

ranges of precipitation changes conditional on the
different global warming levels (figure 4). First, we
built a function (y = slope×∆Texponent) finding the
best relationship between decomposed equation (9)
and global warming levels. We found the optim-
ized parameters (slope and exponent) fitting with
120 samples (40 GCMs × 3 SSP scenarios) for
SLOW, FASTGHG, and FASTAerosols components at
the late 21st century. The optimized functions are
2.53×∆T1.0, −0.69×∆T1.1, and 0.26 ×∆T−0.2 for
SLOW, FASTGHG, and FASTAerosols, respectively. The
ranges of the likely mean of emulations at specific
warming levels can be measured statistically from a
simple model, which is the sum of these functions.
We obtain a 99% confidence interval (99% CI) from
bootstrapping samples of alternative slope in each
function with a half size of GCMmembers.

First, the estimated changes in precipitation
caused by temperature, SLOW (figure 4(A)), are sim-
ilar to the averaged parameter of 55 GCMs, 2.55%/K
(table S3). Different GHG amount in three scenarios
and small spread in parameter β (table S3) makes

a statically sturdy relationship (r = −0.80) between
global warming levels and FASTGHG (figure 4(B)),
illustrating the possible relationship between GHG
RF amount and global warming levels. While, for the
RF effects of aerosols, the estimated function is nearly
constant due to the negligible differences in aerosols’
effective RF of three scenarios and the sizeable inter-
model spread in parameter γ (table S3). As a res-
ult, the function for the radiative effect of aerosols is
much more sensitive to the member of models rather
than global warming levels (r=−0.10).

Finally, this simplemodel predicts changes in pre-
cipitation under specific warming conditions under
GGR and SRM (figure 4(D)). We reflect the observed
anthropogenic warming level of 1.0 K in 2001–
2020 (https://globalwarmingindex.org, Haustein et al
2017) to the relative warming levels in late 21st
Century. All 120 simulations are positioned around
the simplemodel. For validation, we compare 14 sim-
ulations of SSP1-1.9 which are not involved in optim-
izing functions but are located around the predic-
tion of the simple model. About GGR, the reversed
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contribution sign between FASTGHG and FASTAerosols

implies that aerosols would affect more than GHG
in the specific range of temperatures (figures 4(B)
and (C)). We compute this particular global warm-
ing level with the negative FASTGHG offsetting the
positive FASTAerosols, resulting in no combined FAST
contribution, which is about 1.5 K. Thus, the mit-
igation pathways below 1.5 K are more likely to be
influenced by RF of aerosols thanGHG.We also com-
pare the estimated results of GGR and SRM together.
Here, to calculate SRM prediction, we first select six
GCMs having SRM experiments (table S1) and find
their MME mean changes in temperature and pre-
cipitation under SSP5-8.5. Then we draw the lines
crossing this MME mean only driven by the SLOW.
This simple prediction is well around the SRM simu-
lations, affirming drier conditions in SRM than GGR
due to remaining atmospheric GHG radiative effects
(MacMartin et al 2018, Laakso et al 2020, Visioni et al
2021, 2023).

Under the global warming mitigation plans of
GGR according to the Paris Agreement (1.5 K or
2.0 K), our simple model predicts a precipitation
increase of about 0.91 ∼ 1.62%, or 1.80 ∼ 2.39%
(99% CI). All predictions from 1.1 to 4.0 K are sum-
marized in table S4. Our simple model with optim-
ized functions highlights that SRM effectively cools
global warming but accompanies severe drought than
GGR approaches. To check the robustness of our
optimized functions, we examined the effects of dif-
ferent based periods on optimizing functions (table
S5). We confirmed that each term of function is
mostly invariant. However, watchfulness is required
for the base periods after 2020 because aerosols and
GHG emissions are heterogeneous in SSP scenarios
(Lund et al 2019, Meinshausen et al 2020, Smith et al
2021), affecting statistical optimization.

4. Summary and discussion

This study introduces a physically based equation
to examine changes in global mean precipita-
tion under various scenarios having different
mitigation pathways. The latent heat release by
precipitation is balanced by SLOW and FAST, repres-
enting the temperature-dependent and temperature-
independent change, respectively. After finding the
three parameters of each GCM, the equation can cap-
ture both themean and the spread of simulations. The
decomposition of equation reveals that a tremend-
ous amount of precipitation increase due to global
warming is offset by RF in the atmosphere coupled
with anthropogenic forcings. Since most uncertainty
is derived from the disagreement in global warm-
ing levels, this study proposes a simple model pre-
dicting precipitation change based on the relation-
ship between each term of our equation and global

warming levels. This simple model reveals that the
size of aerosols’ RF is critical for precipitation change
around 1.5 K. Based on the physically based char-
acteristics of GGR and SRM, we compare the results
from different mitigation approaches, and our simple
model physically proves the drier conditions in SRM
than the GGR.

Our results are broadly consistent with previ-
ous studies analyzing the global mean precipitation
changes under future scenarios of CMIP Phase 5
(Caesar et al 2013, Hegerl et al 2015), CMIP6 (Tebaldi
et al 2021), and SRM (MacMartin et al 2018, Laakso
et al 2020, Visioni et al 2021, 2023). A simple model
uncovers the nonlinearity in precipitation increase
to global warming levels originating from FASTGHG

corresponding to the results of various GCM experi-
ments (e.g. Mitchel et al 2016, Salzmann 2016, Li et al
2019). This simple equation can explain the higher
slope of total precipitation response conditional on
total temperature change for low-emission than high-
emission scenarios (Hegerl et al 2015). The most
considerable fraction of precipitation uncertainty is
from the disagreement in global warming levels, sup-
porting the findings of Fläschner et al (2016). HS in
CMIP6 has less bias than it in CMIP5, possessing bias
in cloud interaction (Watanabe et al 2018), accord-
ing to the anti-correlated relationship between equi-
librium climate sensitivity and HS (Watanabe et al
2018, Pendergrass 2020, Ribes et al 2021). We expect
a simple climate model (e.g. Smith et al 2018) can
employ our equation, and this employment enables
the prevision of precipitation variations under vari-
ous future scenarios, much more effectively than
complex climate models. These theoretical foresights
can impress policymakers, such as the importance of
redeeming a pledge to implement mitigation path-
ways aimed at the Paris Agreement.

Nonetheless, caveats remain in our study. First,
our emulations cannot reproduce the precipitation
variation on annual and decadal scales (figure S3).
Reflection of the natural variability to the emula-
tions will diminish the errors (e.g. Lenssen et al
2020). Second, our parameters are concisely defined
but have further uncertainty sources that should be
explored, such as ocean warming patterns effects (e.g.
Zhang et al 2023), different characteristics in aerosols’
sub-component (Richardson et al 2018, Zhang et al
2021), andmodel structure or component effects (e.g.
Qian et al 2018, Tett et al 2022). Third, the simple
prediction model for GGR is statistically designed
with assumptions on linear-like forcing conditions
between SSP scenarios. Our following study will
examine dynamical climate model simulations under
the adaptive emission scenarios (Terhaar et al 2022)
to check the validity of the statistical assumption. The
next goal of our equation is to resolve the mathemat-
ization of different responses over land and ocean.
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