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Abstract 

Energy is one of the important building blocks of any economy and the 

sustainability of its supply is crucial. Renewable energy sources are being 

explored with the objective of harnessing their potential to address demand 

shortages and provide sustainable clean energy. Biofuels, as one of these 

renewables, continue to expand and their share in global energy consumption 

continues to increase. Apart from lower net carbon emissions compared to 

fossil fuels and their role as transitional fuel sources in global shift towards 

renewable energy, biofuels offer other benefits such as increasing the volume 

of liquid fuels, improving air quality, expanding trade, import substitution and 

energy diversification. Therefore, there are strong environmental and 

economic arguments for the Nigerian Government to embark on deployment 

of renewable energy, including biofuels. Despite abundant biomass resources, 

biofuel programmes have not been fully operationalised in the country, partly 

because biofuels vary in their favourability profiles which depend on local 

conditions and practices, as well as spatial conflicts between land designed for 

energy production and other land uses such as agriculture or nature reserves. 

Consequently, there is a need for robust and detailed approaches to this 

location-related problem. Although Spatial Multi-criteria Analysis (SMCA) as a 

support tool has been applied to biofuel production analysis, accounting for 

multiple stakeholder opinions has been one of the major challenges. In Nigeria, 

there have been few attempts to apply spatial analysis to locational problems 

related to biofuel production. In addition, these studies are limited in terms of 

scope, were based on feedstock other than energy crops, and provided 

superficial analysis of suitability of the identified sites. The goal of this thesis 

was to show how to improve the robustness and transparency of spatial 

analysis in Nigeria through answering some spatial questions about biofuel 

production, which extends our knowledge of GIS and is relevant to practice. 

Robustness implies detailed exploration of the required environmental criteria 

and incorporation of the expert decisions on the criteria preferences. This work 

transparently demonstrates detailed application of the combined geospatial 

and multi-criteria methods to make the academic contribution transferable. The 

technical goal of the work was to conduct spatial optimisation for biofuel 
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production in the country through detailed assessment of environmental 

criteria, modelling land suitability for cultivating sweet sorghum, sugarcane, 

cassava, oil palm and jatropha as biofuel crops in Nigeria and modelling 

optimal sites for biofuel processing and/or blending. This will provide support 

for spatial decisions regarding establishing biofuel processing plants or 

expanding the existing ones. Analytical Hierarchy Process (pairwise 

comparison) was adopted as the multi-criteria analysis method due to its 

robustness regarding stakeholder inclusion. Weighted overlay was adopted as 

method of land suitability modelling and supply area modelling was adopted 

as the method of site optimisation. The analysis showed that northcentral geo-

political zone of Nigeria has the largest areas of land that is very suitable for 

cultivating sugarcane, cassava, oil palm and jatropha, while northeast has the 

largest areas of land that is very suitable for cultivating sweet sorghum. Based 

on these, three sizes of service area were considered assuming worst, 

average and highest crop yields scenarios to optimise processing/blending 

sites. Existing petroleum depots were considered as the candidate sites. Ilorin 

petroleum depot was found to be the most optimal location for 

processing/blending biofuel in Nigeria based on all the crop yields scenarios, 

within 300 km service area. However, assuming worst case yields scenario 

within 100 km service area, Maiduguri depot was found to be the best location 

for sweet sorghum and sugarcane biofuel processing/blending, but Yola depot 

was suggested as replacement for sugarcane. Ibadan was found to be the best 

for oil palm and jatropha, but Ikot Abasi depot was suggested as replacement 

for oil palm. Aba was found to be the best for cassava, but Makurdi was 

suggested as replacement. This work had demonstrated how robust 

integration of GIS tools with MCDM techniques could improve the 

effectiveness of spatial decision-making process regarding positioning biofuel 

production in developing countries like Nigeria. It is therefore concluded that 

this work will serve as a point of reference for state-of-the-art application of 

spatial multi-criteria evaluation analysis, not only for the biofuel industry, but 

also for other sectors of environmental management such as river basin 

management, land use or settlement planning. The tendency of a biofuel 

programme in Nigeria to succeed would greatly be enhanced by adopting 
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sustainability strategies along its value chain through climate smart agriculture, 

designing and/or adopting a suitable feedstock supply model, effective land 

use management, realigning policy objectives, enforcing policy directives and 

balancing between strong and weak sustainability strategies. This will create 

a conducive environment for stimulating biofuel programme, delivering energy 

source diversification, economic growth and sustainable development for 

Nigeria.  
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1 Chapter One – General Background 

1.1 Introduction 

Energy is one of the crucial building blocks of any economy and the 

sustainability of its supply is critical. The sustainability of an energy source 

has been conceptualised as a function of its economic viability, 

replenishment, environmental friendliness and social acceptability (Abas et 

al., 2015; Grigoroudis et al., 2019). Since the industrial revolution, humanity’s 

use of energy has relied on fossil fuels and 86% of today’s global primary 

energy comes from fossil fuels (Abas et al., 2015). This reliance on fossil 

fuels has resulted directly in the climate crisis through unsustainable 

processes of producing, supplying and utilizing energy. Recent increases in 

average global temperatures raise concern about future projected warming, 

which is estimated to range between 2.6° – 4.8°C in the period of 2081 – 

2100 relative to 1986 – 2005 global mean surface temperatures (IPCC 2013). 

Recent IPCC report showed that global surface temperature was higher in 

2001 – 2020 decades than that of 1850 – 1900 by 0.95° to 1.20°C (IPCC 

2021). The report estimated that the temperature will be higher over 2081 – 

2100 by 1.0°C to 1.8°C under very low GHG emissions but will be much 

higher by 3.3°C to 5.7°C under very high GHG emissions scenario, 

compared to 1850 – 1900.  

Scientists have argued that in order to maintain planetary stability and the 

safety of humanity, rapid, transformative change towards decarbonisation is 

necessary (Revill and Harris 2017; Rockström et al., 2017). The target 

involves pursuing an effort to limit global temperature increase to 1.5°C 

above pre-industrial levels. To achieve this, there is a need for detailed 

accountability by specific sectors and activities, and setting sectoral targets 

(Nachmany and Mangan 2018). Emissions were suggested to have peaked 

by 2020 at the latest (Revill and Harris 2017), though it might have long been 

understood that the peaking time depends on whether negative emissions 

could be achieved in the long term (van Vuuren and Riahi 2011). There is 

high confidence that transient climate response to cumulative CO2 emission 

(TCRE) remains constant and global CO2 emissions remain net positive 

under all illustrative scenarios over 1850 – 2050 time period (IPCC 2021). 
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The creation of science based targets (SBTs) which guide setting emission 

targets in line with Paris Agreements might encourage targets 

implementation though the targets need to be presented in a comparable 

way to avoid imbalance between time-integrated aggregate SBTs and global 

allowable emissions (Bjørn et al., 2021).   

Historical trends and model-based projections showed that there is no 

empirical evidence supporting the notion that absolute decoupling from 

resource use can be attained globally with continued economic growth. Thus, 

alternative strategies should be explored because, even under optimistic 

policy plans, absolute decarbonisation is unlikely to be achieved at a rate 

enough to confine global warming to 1.5°C or 2°C (Hickel and Kallis 2020). 

Thus, renewable energy sources are being explored with the objective of 

harnessing their potential to address demand shortages and provide 

sustainable clean energy while encouraging infrastructure development as 

stipulated in the Kyoto directive towards global decarbonisation (Mohammed 

et al., 2013). This is evident in, for example, the national and multi-national 

climate change commitments called for in the Paris Agreement, such as 

Nationally Determined Contributions (NDCs).  

However, while necessary, this decarbonisation is difficult because energy 

demand is projected to continue to rise. Further, renewable technologies can 

be expensive, require wholesale energy system reorganisation, and 

themselves depend on fossil fuels as, for example, in manufacture of solar 

panels (Abas et al., 2015).  

Biofuels (fuels produced from living materials) have been proposed as a 

transitionary solution to the dilemma, whereby they permit energy to keep 

being produced from burning hydrocarbons, but can dramatically reduce CO2 

emission compared to fossil fuels. In this way, biofuels have potential to help 

achieve some of the Sustainable Development Goals (SDGs). For example, 

goal seven focusses on ensuring affordable and clean energy through 

efficient use of energy and investing in clean energy to protect environment. 

Goal 13 emphasises actions to combat climate change and its impacts by 

limiting the global mean temperature to 2°C above the pre-industrial levels. 
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Apart from the potential to reduce net carbon emissions, biofuels offer other 

benefits such as increasing the supply of liquid fuels, improving air quality, 

expanding trade through biofuel markets, import substitution and energy 

diversification (Mandil and Shihab-Eldin 2010). Fossil fuels have been linked 

to poor air quality and in many countries alternative biofuels synthesised from 

plant materials have gone some way to improve air quality by deploying fuels 

that release lower carbon (Yaliwal et al., 2014), while simulteneously meeting 

increased demand for transport fuels, which is mostly liquid, and meeting 

climate change targets desired by governments. In-country production of 

biofuels saves in import revenues, improves balance of trade, diversifies the 

energy mix and the economy. These benefits of biofuels motivate many 

national energy systems to adopt different carbon dioxide policies and 

reduction targets (Vidal-Amaro et al., 2015), planning several forms of 

renewable energy utilization and energy efficiency measures (MoP 2015). 

Some target total replacement of the fossil fuels, while others focus on 

different balances between fossil and renewable energies.  

As can be seen in their Nationally Determined Contributions (NDCs) to 

climate change mitigation, many countries’ climate change strategies have 

some bias towards the energy sector (Nachmany and Mangan 2018), though 

other sectors such as land use, land use change, forestry and agriculture are 

also being considered. In this context, biofuels have received much attention, 

especially for transport fuels. For example, the US Renewable Fuel 

Standards (RFS), published in 2011, targets production of 36 billion gallons 

of biofuels by 2022, and there was a report that in 2016 corn ethanol 

production reached 15 billion gallons (Sharma et al., 2017). The country now 

targets 15% biofuel blend mandate by 2030 and 30% by 2050 for 

transportation fuels (Kennedy 2020).  

The European Union has set a target of 10% of its transport fuel to be 

renewable by 2020 (Höhn et al., 2014), and a significant contribution to 

towards this would come from biomass (Voets et al., 2013). Recent data 

showed that this target had reached 8.1% in 2018 (EEA 2019). Germany and 

France have aimed an 80-95% and 60% reduction in Green House Gases 
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(GHGs) by 2050 and 2040, respectively (Abas et al., 2015). The 2011 white 

paper set an objective for decarbonising transport fuels in aviation and 

shipping to reach 40% by 2050. Though advanced biofuels are expected to 

form the vast majority of the total biofuel volume by 2050 in the EU, it is 

projected that overall, biofuels will contribute more than 17% of the 

sustainable alternative fuels by that time (Chiaramonti et al., 2021).   

Notwithstanding debates about hidden or unintended impacts of biofuels 

such as hikes in food prices, food security and land conversion (discussed 

further below), several countries have recorded significant growth in the 

industry. Biofuels face challenges such as uncertainties (especially crude oil 

price uncertainties), political risks and financial challenges. Also, the 

technological obstacles to commercialising advanced biofuels have proven to 

be greater than envisioned. However, the biofuel industry continues to 

expand and its share in the global energy consumption continues to increase. 

Ethanol has grown into a large global market. Shell reported use of 9.5 billion 

litres of biofuels in the petrol sold worldwide in 2018 (Shell 2020). Biodiesel is 

less established though supported by policies and incentives, partly because 

of the nature of supply that is specific to feedstock that are based on oil crop; 

yields are very low compared to starch/sugar crops. Some of the 

determinants of the volume and the direction of the biofuel trade are policies, 

tariffs, crop yields, feedstock availability and within country biofuel supply and 

demand (Ebadian et al., 2019).  

The current major players in liquid biofuels production and trade are the US, 

the EU and Brazil. Biofuel production has grown steadily in the US reaching 

16.6 billion gallons in 2016 from 14.1 billion gallons in 2012 (EPA 2018). 

However, the production increase was relatively slow recently likely due to 

limited sales of E10 (gasoline with 10% ethanol blend). The US biodiesel 

production also reached a record high of 1.56 billion gallons per annum. 

According to the US Department of Agriculture (USDA), ethanol fuel 

production from September 2018 to August 2019 was over 16.929 billion 

gallons (approximately 64 billion litres). Biodiesel production for the same 



6 

 

period was put at more than 1.724 billion gallons (approximately 6.5 billion 

litres).  

Biofuels have continued to increase in production and consumption 

elsewhere, often at rates faster than the USA. According to the European 

Environment Agency (EEA), renewable energy is growing as a share of the 

total amount of energy used by the transport sector. Most of this has been 

from biofuels that meet sustainability criteria since 2011 when the average 

share was 4%. Across the 28 member states, the average renewable energy 

share, relative to overall energy use in transport, grew to 7.4% in 2017 and 

increased to 8.1% in 2018. Sweden’s and Finland’s share of renewables in 

transport energy was 32.1% and 18.8%, respectively in 2017 (EEA 2019). In 

2018, a target was set that required all EU member states to raise the share 

of renewable energy in their energy consumption in roads and rail to 14% by 

2030. Advanced biofuels and biogas must be at least 1% by 2025 and 3.5% 

by 2030.  

The Government of Brazil authorized the increase in sugarcane-derived 

ethanol blend from 25 – 27% in March 2015, while the biofuel industry 

advocated for increase in biodiesel blend from 7 to 10% (Barros 2015). The 

USDA estimated Brazil’s ethanol and biodiesel production for 2019 at 34.45 

and 5.8 billion litres, respectively. This is up 4% and 8% from the 2018 

production, respectively (Barros 2019). The operation of biofuel programme 

in Brazil is based on three main instruments: the annual carbon intensity 

reduction targets, biofuel certification by efficiency in reducing GHGs 

emissions and the decarbonisation credits. In China, the government cut 

incentives for grain-based biofuels, yet different provinces adopt blend 

mandates ranging from 2.1% to 10%. The focus in China is towards non-

grain biofuels such as sweet sorghum and cassava (Anderson-Sprecher and 

Ji 2015). This global trend shows that biofuel production and use continue to 

grow despite all the debates. Thus, it is proper to encourage a similar trend in 

Nigeria as biofuel remains the sustainable and promising option for the 

country due to biomass potential (Oloruntoba and Adekanye 2019).  
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1.2 Appraising biofuel debates 

1.2.1 Introduction 

Although biofuels, as one of the important renewable energy components, 

have received significant attention and are being promoted especially for 

transport (heavy duty, aviation and marine), a number of issues associated 

with its production and use have been highlighted that offer a word of caution 

against its proliferation. Some of these issues relates to the real contribution 

of biofuels to GHGs reduction, impacts on food security, biodiversity and 

conservation, land use change and sustainability. However, a number of 

interconnected factors determine whether production and use of biofuels will 

have a positive or negative impact on the environment (Gasparatos et al., 

2011), including crop type, geographical settings, and socio-economic and 

political context.  

1.2.2 Greenhouse gas reduction 

Biofuels have been proposed as one of the transitional liquid fuels that can 

contribute to climate change mitigation. Although biofuels’ real contribution to 

climate change mitigation has been argued, biofuels release fewer GHGs in 

to the atmosphere (Bouet et al., 2010). A Life Cycle Analysis (LCA) of 

biofuels by the Swiss Federal Institute of Material Science and Technology 

revealed that 21 out of the 26 biofuels studied reduced net GHGs emissions 

by more than 30% compared to fossil fuels (Zah et al., 2007). The study 

considered five main emission components including infrastructure, 

cultivation, production, transport and operation. Sweet sorghum and 

sugarcane ethanol were found to have total GHGs emission reductions 

above 50%, while oil palm was found to be above 30%.  

The contribution of biofuels to GHGs emissions reduction is currently not 

valued economically due to the absence of a specific carbon market through 

which biofuels’ environmental benefits could be recognised and remuneration 

for this recognition could be formalised (Barros 2019). Formalising this 

remuneration could allow accelerated carbon mitigation gains since 

bioenergy is still the largest renewable energy source globally, contributing 
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9% of the global renewable electricity and 96% of the global renewable heat 

(WBA 2019).  

One of the strategies employed to ameliorate the environmental concerns of 

fossil fuels and reduce GHGs emission is blending biofuels with petroleum as 

a transport fuel. Complete replacement of fossil fuels with biofuels may not 

be feasible in the short-term and may lead to unsustainable land use change 

in the long-run. Using a blend is advantagious since it negates the challenges 

of supply and issues of limited storage life while reducing carbon monoxide 

and particulates. According to the International Energy Agency (IEA 2017), 

the estimated bioenergy’s 20% cumulative carbon savings by 2060 would be 

difficult to be replaced and thus must be produced and used sustainably. 

However, it was argued that there is emerging evidence that using an ethanol 

and petroleum blend will have some deleterious impacts through an increase 

in atmospheric ethanol and carcinogenic acetaldehyde in the atmosphere as 

a result of photolytic oxidation with knock-on increases in ozone and nitrous 

oxide emissions (Dunmore et al., 2016). These aldehydes affects human 

health, play important role in photochemical smog formation and formation of 

tropospheric ozone (Santana et al., 2017). An experiment at the European 

Commission Joint Research Centre, Italy linked the increase in these 

compounds to temperature where percentage increase in formaldehyde, 

acetaldehyde and ethanol was observed to be 0%, 280% and 40%, 

respectively between 23°C and – 7°C (Suarez-Bertoa et al., 2015).  

Though the US Environmental Protection Agency’s report to Congress in 

2011 concluded that use of ethanol increases these compounds in the air 

(EPA 2011), the National Research Council’s review of the report for the 

Congress concluded that the EPA’s draft needed substantial revision (US-

NRC 2011). In addition, it was reported that there is a potential source of 

error in the prediction of the aldehydes due to the high uncertainty in the 

biogenic emissions that photochemically react to produce the volatile organic 

compounds (Luecken et al., 2012). Also an analysis of the socioeconomic 

costs of these compounds in Oslo showed that the costs are expected to be 
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significantly lower than the combined benefits of the reduced emissions of 

the target compounds such as carbon dioxide and nitrogen dioxide 

(Sundseth et al., 2015) which were found to have decreased by almost 6% 

and 30 – 55% respectively, at E85 relative to E10 – E15 (Suarez-Bertoa et 

al., 2015). The real reduction could have been more apparent if the relative 

was with 100% fossil fuels. Thus, this shows that though biofuels may not 

eliminate emissions completely, they can provide significant contributions to 

reducing it. 

An experiment in the US to calculate the potential impacts of sweet sorghum 

based ethanol production found that a decentralized system (all the 

processing steps take place on farm except dehydration), resulted in reduced 

GHGs emissions and use of non-renewable energy by 39% and 27% 

respectively, as compared to corn (Olukoya et al., 2015). This proportional 

reduction would be even greater compared with emissions from fossil fuels. 

Sugarcane ethanol is believed to provide impressive reduction in GHGs 

emission from transport sector. The introduction of Brazilian ethanol (largely 

sugarcane based) into automobiles, is believed to have resulted in the 

reduction of tailpipe GHGs emissions from 50g Km-1 in 1980 to 5.8g Km-1 in 

1995 (Ullah et al., 2015). It was shown that in Nigeria, with a production of 

4.64 to 14.53 million tonnes of bioethanol, carbon dioxide savings of 1.87 to 

5.89 million tonnes could be realised (Ogundari et al., 2012). Results of an 

appraisal of a proposed establishment of 10,000 micro scale cassava based 

biorefineries in the country for cooking fuel showed that the project will, 

among other benefits, reduce indoor pollution (Ohimain 2012). 

Countries seek to provide hedges against the volatile conventional oil prices 

through exploiting cheaper plant oil and as well cut their GHGs emissions. Oil 

palm is believed to provide higher potentials to achieving that because oil 

from other plants are of no quantitative industrial significance and many pre-

processing stages are required for extraction and purification of oil before 

processing into biodiesel (Hayyan et al., 2014a). Aviation biofuels produced 

by deoxygenation and carbon chain cracking of plant oils are receiving 

market attention of the aviation industry (Cheng et al., 2014; Shahinuzzaman 



10 

 

et al., 2017; Wise et al., 2017). Biojet fuel, which has already been used in 

some regular flights (Neuling and Kaltschmitt 2018), is said to result in up to 

89% reduction in GHGs emission as compared to petroleum fuel, although 

emissions due to land use change were not included in the analysis (Han et 

al., 2013). This reduction is said to further be enhanced if the carbon capture 

and storage is implemented in the conversion process to produce biojet fuel 

(Wise et al., 2017).  

Jatropha oil is said to burn flames that are devoid of smoke (Orwa et al., 

2009). A study on Jatropha production systems in Burkina Faso found that all 

the pathways considered in the research reduced GHGs emission by 68 to 

89% and saved energy by 65 to 90% as compared to conventional diesel 

(Baumert et al., 2018). Jatropha performance as a fuel showed that except 

for NOx which increased from 5.58% to 25.97%, all other measured 

emissions such as PM, CO, HC, and CO2 decreased by 50 to 72.73%, 50 to 

73%, 45 to 67% and 50 to 80%, respectively (Thapa et al., 2018). Akogwu et 

al., (2018), reported from their analysis that the amount of CO emitted by 

petroleum diesel was twice the amount emitted by the jatropha biodiesel.  

There are indications that policies are being strengthened to increase biofuel 

consumption and adoption to realise the long-term decarbonisation of heavy 

transport especially the aviation and marine transport. According to the 

proposals adopted by the International Civil Aviation Organisation (ICAO), 

carbon offsetting will be voluntary from 2020 to 2027 and mandatory 

afterwards. The goal of the offset is to cover an estimated 65% emissions 

growth above 2020 levels in the voluntary phase and 80% from 2027 to 2035 

(Revill and Harris 2017). The authors suggested that access to biofuels 

should be prioritised for aviation industry ahead of other sectors because it 

currently has no alternative pathway to reach zero emissions. This priority 

should also be focused on the marine industry. This is because, it is 

projected, under business as usual, that the share of the marine sector in the 

global emissions will double by 2050 from the current estimate of 1.5% of 

global human-induced emissions (Revill and Harris 2017). For road and rail 
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transport, there is already mass production of electric vehicles and 

locomotives which, despite challenges, are expected to continue to expand.  

1.2.3 Food versus fuel 

There are arguments that deployment of crop-based biofuels will lead to 

hikes in food prices and negetively impact food security. This concern was 

heightened by the 2008/2009 coincidence of drastic increses in global biofuel 

production and the hike in a food prices. Yet, subsequent analysis showed 

that biofuel was only one contributory factor among many including rising 

energy prices and market speculations (Baffes and Haniotis 2010). The 

infuence of biofuel on food prices depends on the choice of feedstock and 

the technology employed. Thus, this issue can best be appraised based on 

each potential feedstock.  

The food versus fuel conflict claimed to be caused by the colossal stress 

exerted by corn and other bioenergy crops on food markets can be palliated 

by using sweet sorghum as feedstock (Ahmad Dar et al., 2017). Sweet 

sorghum is an annual and C4 (more efficient in photosynthesis) energy plant 

that can avoid conflict with food growing priority because it does not compete 

with food and feed unlike grain sorghum that is used as staple (Olugbemi and 

Ababyomi 2016). Also, sorghum demand for human consumption is 

dwindling due to availability of other cereals such as rice, and in Nigeria, 

sweet sorghum has not seen significant commercial utilisation (Nasidi et al., 

2010). As such, use of this crop for biofuel will, in any instances. provide 

income for local communities without compromising food availability.  

It may be argued that the syrup from sweet sorghum should be used for 

sugar production instead of biofuel. Indeed, sugar production could be 

another sector for sweet sorghum human consumption. However, attempts to 

develop a sweet sorghum sugar industry have not been successful because 

of certain limitations that make its sugar more expensive than that of 

sugarcane (Tew et al., 2008; Sipos et al., 2009; Elbassam 2010). Analysis 

was conducted for economic trade-offs of using sweet sorghum for ethanol 

and sugar in northern China (Gnansounou et al., 2005). The results showed 

that producing ethanol from bagasse (the remaining fibrous matter after 
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syrup is extracted) was more favourable than burning it for power though the 

relative merit of producing ethanol or sugar from the juice was highly 

sensitive to sugar price in the country. This means sweet sorghum sugar is 

only produced at higher sugar prices. Thus, in addition to edible syrup 

industry, bioethanol could be another great avenue for sweet sorghum 

market expansion. 

One solution to conflict between biofuel and food production is to apply crop 

rotation techniques. For example, a study in Central America (Cutz et al., 

2013) found that with 5% of the croplands in the region, sorghum could 

supply around 10% of the region’s electricity demand and that a sustainable 

ethanol programme could be maintained during the sugarcane off season 

period. This has the possibility to expand feedstock supply and increase 

ethanol production since the crop can be handled by the sugarcane 

traditional harvesting and processing systems (Kim and Day 2011).  

Sugarcane is the main crop used for sugar production.  

However, it was reported that sugarcane biofuel can be competitive with 

petroleum at $70 per barrel (Hira 2011). The prices of Brent Crude, OPEC 

Basket, Bonny Light and West Texas Index (WTI) were $82.39, $80.65, 

$80.34 and $79.35 per barrel, respectively on the 10th of October 2021, at 

7:07 am British Summer Time (OilPrice 2021). While prices for sugar for 

human consumption is higher than ethanol production from Sugarcane syrup, 

the huge bagasse from the sugar industry is a good source of raw materials 

for second generation biofuels. This shows how biofuel production can 

represent a value-add for existing food crops, without compromising food 

outputs.  

Cassava is increasingly being used in the animal feed and other chemical 

industries as raw material, serving as one of the major cash crops in Nigeria 

(FAO and IFAD 2005) thereby providing income to rural farmers. A survey of 

major cassava producing areas in Nigeria showed that about 50% of the crop 

produced is sold for cash and about 40% of the produce is consumed as food 

(Wossen et al., 2017). About one-third of the participants in the survey 

reported that cassava accounts for 75% of their income. This indicates 

greater proportion of the crop being used for non-food purposes. Also, there 
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are issues with regards to the use of the crop as a major source of food. 

These include such limitations as presence of toxic cyanogenic glucosides 

though it is reduced through processing, low protein content and short 

postharvest shelf life (Egbe et al., 1995). Cassava has been associated with 

diabetes mellitus, cancer, iodine deficiency and neurological syndrome 

though, the association was not established as causal (Oluwole et al., 2007). 

Thus, cassava should be used more for non-food industrial applications such 

as biofuel, while healthier staples such as maize should replace food use of 

the crop. 

In similar way to sugarcane, the waste generated from cassava can be used 

to process biofuels without compromising food production or requiring 

additional land. In Nigeria, an estimated one billion litres of ethanol could be 

produced from seven million tonnes of cassava peels (Figure 1.1) generated 

annually (Anyanwu et al., 2015). This non-food biomass, the amount of which 

could reach about 14 million tonnes (Lawal 2017), cause serious 

environmental pollution (Moshi et al., 2015) but can serve as a good source 

of biofuel raw materials for both 1st and 2nd generation technologies as well 

as integrated systems (Ozoegwu et al., 2017). Therefore, the crop could be a 

major source of both food and fuel at the same time.  

 

Figure 1.1: Heap of Cassava Peels   Source: Lawal, (2017) 
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However, this will depend on the economics of collating the biomass to the 

processing plant and the comparative value of the cassava peels for livestock 

and fish feeds. Cassava peels are processed into high quality, low cost 

animal feed (Lawal 2017). It is also believed to possess adequate calories for 

Tilapia fish though it is considered as low grade livestock feed compared to 

Maize due to its low protein content and high cyanogenic glucoside (Ubalua 

and Ezeronye 2008). 

Though some 77% of oil palm uses were reported to be for food, the non-

food uses continue to expand including the production of oleochemicals 

(chemicals derived from vegetable oils or animal fats) and biodiesel, both of 

which increased the demand for the oil and making oil palm overtook 

soybean as the dominant vegetable oil globally (Lai et al., 2012; Corley and 

Tinker 2016). While the annual change in food use of oil palm was said to 

average 7%, the change in industrial use was reported to be expanding at an 

average rate of about 18% annually since 2000/2001 (Panapanaan et al., 

2009). The second largest producer in the world, Malaysia, was estimated to 

have a 200% demand increase in non-food use of oil palm compared to a 

projected 50% demand increase for the crop’s food use by 2035 (Gan and Li 

2014). This shows that the country’s industrial need for oil palm at the time 

will be four times more than food need for the crop. With a blend mandate of 

7% (7% biodiesel and 93% petroleum diesel), the country was reported to 

have consumed 279 million litres in 2016 and a goal was set to scale it up to 

15% in 2020 (Wahab 2017). A 10% blend have been fully implemented in 

2019 (Yusoff et al., 2020).  

Depending on the fossil fuel prices, the food use of palm oil may offer higher 

prices than biodiesel. However, as with sugarcane and cassava, the non-

edible palm oil by-products such as sludge and olein may offer more ethical 

sources of biodiesel production without compromising food production (Girish 

2018). Large palm oil mills produces non edible oils such as Low Grade 

Crude Palm Oil (LGCPO) and Acidic Crude Palm Oil (ACPO) which are 

highly acidic but can offer lower biodiesel production costs (Hayyan et al., 

2013; Hayyan et al., 2014b). LGCPO is said to be similar to ACPO except 
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that the former is of lower quality due to unflavoured impurities and higher 

moisture content (Hayyan et al., 2014a). While recent research established 

that only 10% of the oil palm on-farm biomass is converted to edible oil 

(Zahan and Kano 2018), it was estimated that as much as 73% olein could 

be produced from the overall palm oil refining (Herjanto and Widana 2016). 

Thus, these provide large potential feedstock from non-edible palm oil by-

products. Biodiesel mass production from olein is feasible in Nigeria (Ishola 

et al., 2020).  

Though edible varieties may exist in places like Mexico, jatropha is a non-

edible crop. Therefore, jatropha does not have direct impact on food security 

or prices except where crop lands are converted to its cultivation. In a global 

study of Jatropha projects, 70% of the projects were found to be practicing 

some form of intercropping, supporting food production rather than conflicting 

with it (GEXSI 2008). Due to its toxicity, jatropha may not also be in conflict 

with animal feeds because the by-product of the oil processing, the press 

cake, is unsuitable for animals but can be used as manure or fuel (CABI 

2018). 

1.2.4 Land use change and ecosystem services 

The work of Searchinger et al., (2008) on indirect land use change emissions 

estimated that corn ethanol actually increases emissions relative to gasoline 

due to the carbon released when land is cleared for corn. However, several 

analyses were published after this work showing results with much lower 

indirect emissions, suggesting exaggeration in the previous studies because 

of their reliance on simulation due to the lack of empirical data on biofuel 

value chain at the time (Hertel and Tyner 2013). Studies from around the 

world have shown that biofuel crops provide ecosystem services such as fuel 

and climate regulation, but can compromise other services such as food and 

freshwater (Gasparatos et al., 2011). The authors accounted for the evidence 

from diverse academic disciplines and contextualised it on the ecosystem 

services framework familiarised by the Millennium Ecosystem Assessment. 

The study provided a critical review of the drivers, impacts and trade-offs of 

biofuel production and use.  
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As part of its uses, jatropha has been promoted as suitable for realising some 

ecological and environmental benefits such as soil carbon sequestration, 

phytoremediation, reduction of environmental pollutants and soil erosion 

control as well as other socio-economic benefits such as establishment of 

jatropha-based companies and employment generation (Pandey et al., 

2012). However, it is important to recognise that the ecosystem service 

benefits (such as carbon sequestration), impacts of biofuels (such as indirect 

land use change) and the nature of the trade-offs differ according to the crop 

type, original land use and plantation management practice. 

Land conversion issues (both from crop lands and forests) are minimal with 

respect to jatropha cultivation. In the global study of jatropha projects cited in 

the previous subsection, only 1.2%, 0.3% and 5% of the areas planted with 

jatropha were reported to have been crop lands, primary forests and 

secondary forests respectively, 5 years before the start of the projects 

(GEXSI 2008). In Ethiopia, jatropha plantations established to rehabilitate 

degraded forest lands were found to have sequestered 6.94 tonnes of carbon 

per hectare (Cha-1) considering both above and below ground stocks. While 

those in live fences were found to have sequestered 178.56 tonnes Cha-1 for 

both above and below ground stocks (Yirdaw et al., 2013).  

In Botswana, using a Life Cycle Assessment (LCA) for all activities involved 

in jatropha cultivation in frost and drought prone areas, it was found that the 

crop’s emission and absorption are 17 and 21 tonnes of carbon dioxide 

equivalent per hectare (CO2eq. ha-1), respectively, presenting a 4 tonnes 

surplus of absorption over a period of 4 years (Ishimoto et al., 2018). Thus, 

for rehabilitation of degraded lands, jatropha plantations may turn a source of 

carbon emission (e.g. deforested land) to a carbon sink. Indeed, adoption of 

jatropha for biodiesel production may enhance reforestation or afforestation 

in deforested or desert prone areas and may increase economic growth while 

supporting environmental regeneration (Faufu et al., 2014). In this regards 

and based on a pilot project in Mozambique, recommendation was given that 

development of jatropha plantation should be on grasslands with low 

biodiversity value and trees (Smit et al., 2018).  
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Life Cycle Assessment of different jatropha production systems indicated that 

decentralised production of straight vegetable oil (SVO) using feedstock from 

hedgerow and intercropping shows less land conversion (Eijck et al., 2013) 

and seems to be the most promising option (Baumert et al., 2018). In Nigeria, 

pre-exploited agricultural lands were recommended for feedstock production 

(Galadima et al., 2011). On a more extreme view, a conclusion was made 

that the most promising option for jatropha biofuel to sustainably contribute to 

GHGs reduction is producing feedstock on marginal lands with reduced use 

of artificial fertilisers and pesticides (Eijck et al., 2010). Sweet sorghum was 

reviewed to be suitable for environmental phytoremediation (Sathya et al., 

2016). The authors reported that a short study indicated that the crop could 

accumulate heavy metals more than the threshold (100 mg Kg-1) set for 

hyperaccumulators and that phytoremediation with sorghum can recover soil 

function. However, factors for successful agriculture should be considered for 

successful phytoremediation.  

The trade-off relationships between biofuel production on one hand and land 

use change and ecosystem services on the other hand requires appropriate 

and location specific strategies to protect the social, economic and physical 

environments from negative consequences. A study on Nigeria’s villages 

found that land use diversity in the rural areas vary across agroecological 

zones with more diversity in the Guinea Savannah and Humid Forest and 

comprising of cultivated, unused, forests, floodplains, residential and 

woodlands (Zhang et al., 2016). The study which was based on the 

participants’ knowledge of their local geography found that unused lands (not 

under cultivation) in the village areas were most common in the Humid Forest 

(36.5%) and Guinea Savannah (22.7%) with as little as 0.9% in the Sudan 

Savannah (Zhang et al., 2016). While the villagers reported 5 years increase 

in cultivated lands in the Humid Forests and Guinea Savannah, residential 

areas were reported to have increased at the expense of cultivated lands in 

the Sudan Savannah.  

It is evident from the above that while some degree of land use change is, in 

most cases, inevitable even without biofuel industry, quantifying biofuel-
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induced changes may involve significant uncertainties. Researchers continue 

to update and refine the models for estimating the degree to which the biofuel 

industry is responsible for land use changes, and reducing these 

uncertainties and improving these models has been limited (Hertel and Tyner 

2013; EPA 2018). The study on the Nigerian village dwellers observed 

remarkable awareness for provisioning ecosystem services such as crops, 

biofuel (wood-fuel), wildlife, natural medicine and freshwater, stressing the 

importance of these services to the rural Nigeria (Zhang et al., 2016). 

However, villagers’ awareness of the regulating and supporting services such 

as pollination, soil formation, nutrients cycling and regulation of pests and 

diseases was remarkably low. Studies have shown that the use of perennial 

feedstock for biofuel can improve soil quality relative to existing conditions 

and reduce sedimentation and nutrients runoff, while increased use of 

effective conservation practices can provide protection for pollinator habitat, 

all of which enhance ecosystem services (EPA 2018).  

1.2.5 Biodiversity conservation and environmental protection 

Land use trade-offs continue to be a central issue around biofuel 

development (Acheampong et al., 2017). For example, many countries are 

simultaneously seeking to increase forest cover on one hand and agricultural 

productivity on the other (Vongvisouk et al., 2016). This is typical of Nigeria 

where such programmes as the Great Green Wall (NAGGW 2021) are aimed 

at combating desertification through afforestation, while other programmes 

such as the Anchor Borrowers (CBN 2016) were aimed at increasing 

agricultural productivity.  

Tensions between biodiversity conservation and productive outcomes have 

led to the debate on the concepts of “Land Sharing”, which refers to multi-

functional landscapes that serve both conservation and agricultural purposes 

(shared functions on temporal bases), and “Land Sparing”, which promotes 

spatial separation between larger tracts of protected forest or wilderness and 

more intensive agriculture (Vongvisouk et al., 2016). The debate has 

eventually led to a widespread acceptance among conservationists that both 

paradigms have a role to play depending on the context (Mertz and Mertens 
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2017). Therefore, it may be essential to assess the appropriateness of either 

land sharing or sparing based on the context or exploring the possibility of 

concurrent application of both the concepts in the policy formulation and 

execution. World Wide Fund for Nature (WWF) in collaboration with other 

organisations developed a methodology for identifying Responsible 

Cultivation Areas (RCA) which refers to areas and/or models for bioenergy 

feedstock cultivation with minimal indirect effects (Smit et al., 2018). The area 

must be used environmentally and socially responsible to cultivate feedstock 

and the cultivation should not cause unwanted indirect effects. 

1.2.6 Multi-dimensional sustainability assessment 

Because the viability of biofuel production depends largely on availability of 

feedstock, its sustainability will hinge on the sustainability of the feedstock 

production and supply. Sustainability is a function of economic viability, social 

acceptability, environmental friendliness and technological appropriateness 

(FAO 2014). Each of these dimensions is complex, nuanced, and there are 

potential trade-offs in both values and outcomes. As such, it is difficult to 

ascertain definitively whether or not a particular biofuel crop or plantation is 

indeed ‘sustainable’. For example, economically, biofuels must be priced 

below fossil fuels for them to displace fossil fuels via market-based 

mechanisms. Biofuel production should not induce hikes in food prices for it 

to be socially acceptable and the energy balance should at least be neutral 

for it to be environment friendly.  

The sustainability challenges of biofuels differ according to crop type. 

Research efforts are going on around the world for economic, environmental 

and technological optimisation of ethanol production from sweet sorghum. 

Sweet sorghum varieties are being bred and selected to achieve human 

food, animal feed and bioenergy as was reported in Guatemala (Cifuentes et 

al., 2014). To improve ethanol yield from stalk juice, choosing the right variety 

and suitable cultivation location is crucial (Nasidi et al., 2013). Intercropping 

is an agronomic practice believed to have some production benefits. In India, 

intercropping in sugarcane was found to have reduced weed growth by 60%, 

provided extra income to farmers and increased the effectiveness of land 
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utilisation (Gujja et al., 2009). Similarly, in Nigeria growth and biomass 

production of weed were supressed by intercropping sugarcane with 

soybeans and sesame (Ndarubu et al., 2000).  

Though zero tillage was practiced by many cassava farmers in the mid-

western Nigeria, conventional ridge tillage farming system was found to have 

produced 46% higher yields and thus, was recommended (Odjugo 2008; 

FAO 2013). Research and development especially for yield improvement will 

help cushion the issues associated with land use change (Agboola and 

Agboola 2011). It was recommended that vertical integration of cassava 

ethanol production by on-farm processing is a good strategy that could 

increase economic viability by significantly reducing the bulk transportation 

cost of cassava tubers. This will also shield farmers from tubers’ market price 

fluctuations and thus improve their income stability (Ogbonna and Okoli 

2013).  

Climate change, ecological degradation and ethical issues such as food use 

are among the heated debates on sustainability of oil palm production, 

especially for biofuel industry, the global demand for which is increasing 

(Panapanaan et al., 2009). Many countries were reported to have already 

been using biodiesel in motor vehicles (Karavina et al., 2011). It is important 

to optimise oil palm production while minimising the negative impacts on 

people and the environment for the industry to be sustainable (Rival and 

Levang 2014). A social and environmental study in Indonesia highlighted 

periodic water scarcity which severely impacted livelihoods and widen social 

polarization (Merten et al., 2016). The critical sustainability issues as far as 

jatropha biofuel production is concerned involve land use change, initial 

carbon debt, fertilisers and pesticides use, energy use in transportation, 

energy use at the processing stage, nitrogen emissions and use of by-

products (Eijck et al., 2010). 

As demonstrated above, if measures could be taken to eliminate or minimise 

the concerns about biofuel’s production and use, they could be an 

economically viable and environmentally friendly solution to some of the 
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world’s future energy needs. It is observed, in the foregoing biofuel debate 

appraisal, that blanket association of these issues might not be fair to all 

forms of biofuels. Some of the biofuels are less associated with of some 

these issues compared to others. Thus, this might be one of the answers to 

why biofuel industry continues to grow despite the talk-up issues. 

Expanding biofuel production in Nigeria will contribute to the achievement of 

the SDG 7 (affordable and clean energy) by increasing clean share of the 

energy mix and SDG 13 (combating climate change and its impacts) by 

contributing to the reduction in carbon dioxide emissions through clean 

cooking fuel, implementation of blending policy for transport fuel as well as 

green electricity. In the context of the need for a global green energy 

transition, Nigeria must subscribe to this cleaner energy future, especially 

considering its population size, its current dependence on fossil fuel 

resources, and thus its contribution to the global carbon emissions.   

1.3 Study area 

Nigeria is located in West Africa between Latitudes 4°N and 14°N and 

between Longitude 2°E and 15°E. The country is bordered by Cameroon and 

Chad to the east, Benin and Niger Republics to the west, Niger Republic to 

the north and Atlantic Ocean to the south (figure 1.2).  

Figure 1.2: Study area 
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The total surface area of the country is around 92 million hectares. The relief 

is generally plains throughout the country but broken up by hills and plateaus 

such as the north central highlands, the western highlands and the eastern 

highlands. The pricipal rivers in the country are the Niger and the Benue 

making the major drainage basins of the country together with Chad basin 

and the Gulf of Guinea basin. Generally, the major soil types consist of loess 

– most common in the northern region – together with laterite in areas with 

marked dry season. The forest soils are more common in the south which 

contains a greater supply of humus from the vegetation. Hydromorphic and 

organic soils are found along the floodplains and coastal areas commonly 

underlained by sedementary rocks.  

The climate is determined by the major airmasses that prevail in the country 

throughout the year, namely the Tropical Continental Airmass (the dry 

Northeast Trade Wind) and the Tropical Maritime Airmass (the moisture 

laden Southwesterly Airmass). The convergence zone between the two 

airmasses (the inter-tropical convergence zone, ITCZ) shifts towards Atlantic 

Ocean making most of the country experience a dry season as the dry wind 

covers the country. In contrast, the moisture laden airmass covers the whole 

country as the ITCZ shifts to the north during the rainy season (figure 1.3). 

The length of the rainy season ranges from about 10 months in the south to 

about 4 months in the extreme north. Thus, the annual rainfall amount 

decreases progressively northwards from more than 3000 mm to less than 

500 mm per annum. Temperature also varies temporally and spatially. The 

range between coldest and hottest months can be between 18° and more 

than 42°C. 
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Figure 1.3: Nigeria’s Climate seasonality as influenced by two major airmasses 

 

 

Figure 1.4 shows the distribution of ecological zones or vegetation types (in 

addition to the location of agricultural research institutions) in the country. It 

changes from humid forest in the south to quasi-desert sahelian savannah in 

the northern fringes. This spatial distribution of landscape and habitats might 

have played the largest role in determining the nature of the farming systems 

in the country, with tree cropping most common in the south and pastoral 

agriculture in the north east (figure 1.5). The humid forest zone and southern 

parts of the derived sannah zone are capable of supporting large plantation 

crops such as oil palm, cocoa and coffee. The middle belt zones such as the 

derived savannah and southern guinea savannah are highly favourable 

zones for tuber crops such cassava, yams, cocoyam and potatoes. Northern 

guinea savannah and sudan savannah are good for grains such as sorghum, 

maize, millet and rice. In Nigeria, small-scale farmers have long recognised 

considerable potential of vegetables as income-generating crops and as 

dietary supplements. Thus it was reported that the farmers would seldom 

adopt any intercropping technology that exclude vegetables (Olasantan 

1992). 
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Figure 1.5: Farming Systems in Nigeria   Source: (Dada et al., 2008) 

Figure 1.4: Distribution of Ecological Zones in Nigeria 
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In 2021, Nigeria’s population is estimated to be 212.64 million (WPR 2021) 

with an annual growth rate of 3.2% and over 41% under the age of 15 (NBS 

2018). This suggests that in a few decades, the country’s population will 

largely be youthful, supporting labour availability, production and 

consumption of goods and services. On the other hand, it also poses a 

challenge for unemployment if new job opportunities aren’t created for the 

increasing labour force. Agriculture remains the main bedrock of Nigeria’s 

economy regardless of the oil exports. It employs 36.5% of the entire labour 

force and contributes 21% of the GDP (FAO 2018c). This shows that the 

agricultural sector offers significant potential for broadening job opportunities 

in the country. The sector is very broad consisting food, feeds, fibre, forage 

and fuel subsectors. Thus, one area for future job creation is developing and 

expanding the biofuel industry. Globally, the bioenergy supply chain is the 

second largest renewable energy sector, consisting of 3.2 million jobs in 

2018 (WBA 2019) and increasing to 3.58 million jobs in 2019 (WBA 2020).  

1.4 Nigeria’s carbon emissions 

Nigeria has substantial fossil fuel energy resources comprising crude oil, 

natural gas, tar sands, coal and lignite (Ohimain 2013). Proven stocks 

comprise of 37.5 billion barrels of crude oil (2.2% of global reserves) and 5.2 

trillion m3 of natural gas (2.7% of global reserves) (BP 2018). Despite this, 

Nigeria is still unable to meet its energy needs (Osunmuyiwa and Kalfagianni 

2017). In 2017, crude oil production increased to 1,988,000 barrels a day with 

almost all of the daily production exported. Nigeria has limited refining 

capacity with its 4 refineries processing only 67,000 barrels per day (BP 

2018); considerably less than their estimated combined installed capacity of 

445,000 barrels per day (PwC 2017). Currently, all the refineries have been 

closed for total rehabilitation. Therefore, the country still relies on foreign 

imports for refined products (gasoline, diesel, kerosene and Liquefied 

Petroleum Gas) to meet domestic energy demand (Ohimain 2012). Though 

refining activities in Nigeria have dwindled over the decades, oil and gas 

sector produces substantial emissions throughout its value chain from 

exploration to end use of the refined products. For example, a Life Cycle 
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Assessment (LCA) of Self-Generated Electricity (SGE) in Nigeria was 

conducted. The results showed that based on estimate of diesel electric 

generators in the country, 389 million Tonnes of CO2eq. per year is 

contributed to global emissions, placing the country among the top 20 GHGs 

emitting countries in the world (Somorin et al., 2017). 

Because in-country production of biofuels saves in imports, improves balance 

of trade and offers an opportunity for diversification, the Nigerian government 

has developed a focus on biofuels (Anyaoku 2007). Secondly, Nigeria is 

signatory to the Paris climate agreement that requires countries to commit to 

cutting down their carbon emissions. Thus, 31 million Tonnes reduction in 

carbon emissions annually through renewable energy by 2030 has been 

approved to be part of the Intended Nationally Determined Contribution 

(INDC) (MoE 2015). Biomass use is part of this renewables deployment to 

promote efficient use of agricultural residues, municipal waste, animal and 

human wastes and energy crops as bioenergy sources (MoP 2015). In 

addition, the biofuel industry can provide jobs for the country’s large and 

growing youth population. A move towards biofuel expansion would appear 

to attract public support as well. A public opinion survey about impacts of 

bioenergy industry in Nigeria showed that 97.3% of the sample expressed 

optimism for revenue generation to government, investments, job creation, 

energy access for rural areas and environmental sustainability (Galadima et 

al., 2011).  

Based on the discussed global trend (subsection 1.1) and local 

commitments, there are strong environmental and economic arguments for 

the Nigerian Government to embark on deployment of renewable energy, 

including biofuels. According to Shell (2020), “biofuels and renewables are 

keynote energies for meeting mobility demands of the 21st century without 

creating rampant CO2 emissions”. According to the United Nations, 40 – 60% 

of the people in Nigeria will live in the cities by 2030 (UN 2021). Therefore, 

adjusting the energy mix will be crucial to living sustainably and protecting 

the environment.  
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In a time of rapid economic & population growth and the need to transform 

energy systems for a sustainable climate future, difficult decisions must be 

made related to land use change and financial investment. As such, it is 

essential that decision-making is grounded in appropriate evidence. Issues 

that are relevant include how policy decisions are translated into land use 

change, the reliability and utility of data, and how different social, economic 

and environmental priorities might be integrated. As such there is need for 

appropriate and location–specific applied research that can inform 

appropriate policies, and ensure environmental, economic and social 

sustainability of various biofuel programmes.  

1.5 Defining the Problem 

The previous subsection provided some information on Nigeria’s energy 

resources, some partial estimate of the country’s GHGs contributions and 

some strategies the country pursue to make its energy system less dirty. This 

subsection gives a historical background on how those strategies are being 

translated into policies and programmes with particular reference to the 

estimated biofuel demand and production in the country. The Nigerian 

Government initiated commercial bioethanol production in 1972 (Nasidi et al., 

2010). Three decades after, biofuel had hardly expanded largely due to a 

continuously underperforming agricultural sector because of the 

government’s neglect of the agricultural sector triggered by the oil boom of 

the 1970s (Michael 2017). However, the focus was renewed in 2005 when 

the Nigerian National Petroleum Corporation (NNPC) directed its Renewable 

Energy Division (RED) to pioneer development of the biofuel industry in the 

country. One of the primary aims was to link the oil and gas sector with 

agricultural sector through commercial production of biofuels from selected 

energy crops as blend stock for petroleum fuels (NNPC 2015). This, was 

envisaged, would contribute to reviving the agricultural sector, create jobs 

and diversify the economy. 

Although some researchers evaluated Nigeria’s biofuel programme in 2012, 

concluded that the progress was “unsatisfactory” (Ishola et al., 2013) and the 

development process was very slow due to regime change (Ohimain 2013), a 



28 

 

huge potential still exists for the industry to be developed (Abila 2010). 

Biofuel programmes have made significant progress in some countries. For 

example, despite the inevitable challenges in its biofuel programmes, India 

attained increase in ethanol production from 1.5b litres (2002) to 2.7b litres 

(2013) and set a 20% blend mandate by 2017 (Purohit and Dhar 2015), now 

targeted to be achieved by 2030 (Pavlenko and Searle 2019). Also, some 

development and adoption of biofuels had progressed since the launch of the 

Nigeria Biofuel Policy in 2007 (Abila 2012). In April, 2016, the Nigerian 

National Petroleum Corporation (NNPC) called for strategic investors to fund 

and operate a variety of projects developed under automotive biofuel industry 

programme (Okere 2016). As a demonstration, the NNPC showed 

commitments to start the proposed sugarcane – ethanol project in Agasha-

Guma, Benue State (NNPC 2016). The capacity of the project for fuel ethanol 

is put at 84 million litres per year and consists of a sugarcane feedstock 

plantation on a 20,000 ha of land (Nnodim 2017).  

According to the National Biofuel Policy (2007), it was estimated that the 

Nigeria’s demand for ethanol and biodiesel could be 2 billion and 900 million 

litres by 2020 respectively, with E10/B20 policies (a blend of 90% petroleum 

fuel and 10% ethanol / 80% petroleum diesel and 20% biodiesel). According 

to Agboola et al., (2011), the actual ethanol target was more than 1.27 billion 

litres of ethanol for blending. Based on Nigeria’s daily diesel consumption, 

blending 20% of biodiesel will require 2.4 million litres daily, aggregating to 

876 million litres annually (Agbota 2017). The Department of Petroleum 

Resources (DPR) reported that the conservative estimated daily consumption 

of petroleum product is 35, 12 and 8 million litres for PMS (petrol), AGO 

(diesel) and DPK (kerosene), respectively (DPR 2018). Somorin et al., 

(2017), concluded that the climate change contribution from self-generated 

electricity could be reduced in Nigeria by 76% if the fossil diesel is displaced 

using 100% Jatropha biodiesel provided combined cycle power plants are 

adopted for embedded power generation. Such a switch in fuel source would 

substantially increase local demand for biodiesel in the country. The largest 

Mobile Telecommunication Company in Nigeria – MTN – was reported to 
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have been using 5% of its fuel for generator sets from Jatropha oil 

(Yammama 2009). 

While agriculture is the main employer of the populace, crude oil is the main 

source of foreign exchange earnings in the country. Thus, commercial 

expansion of biofuel production is one of the prospective avenues to be 

exploited and could represent an important sustainable development 

pathway for the country. Production of biofuels creates opportunities for 

future development of agricultural sector in Nigeria. Assessment of 

agricultural residues in the country shows that considering other competing 

uses, 21.2 million tonnes of field residues are available for bioenergy 

production (Iye and Bilsborrow 2013). However, commercialisation of 

cellulosic ethanol was said to be facing technical and economic challenges 

as seen in the US where the yearly cellulosic ethanol production target could 

not be achieved, but the target from conventional feedstock (Maize) was 

achieved (Sharma et al., 2017). Most of the bioenergy industry successes 

recorded around the world are based on bioenergy crops; Maize (US), 

Sugarcane (Brazil), Sweet sorghum and Cassava (China), Oil palm 

(Malaysia) and Jatropha (India).  

Energy experts have advised  the Nigerian Government to exploit various 

sources of energy generation to diversify its energy supply base, particularly 

through increasing renewable sources (Oyedepo 2014). This would 

contribute to reducing carbon emission and support energy security. These 

renewable sources include hydro, solar, wind, geothermal and biomass. As a 

country with vast agricultural land and largely agrarian population, Nigeria 

has the potential to generate significant amounts of energy (fuel and power) 

from  agricultural crops and their residues. It was estimated that Nigeria’s 

potential for biomass generation could be 49.97 million tonnes of oil 

equivalent (MTOE) annually and that the feasibility and significance of both 

bioenergy and solar power are site specific for the country’s sustainable 

development (Giwa et al., 2017).  
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Sweet sorghum, Sugarcane and Cassava are among the major crops 

selected for the bioethanol industry in the country (Nasidi et al., 2010). Oil 

palm (Balogun 2015) and Jatropha (Diop et al., 2013) are among the crops 

chosen for development of a biodiesel industry. While identification of these 

crops is crucial for the industry, also crucial is identification of where these 

crops could most optimally be cultivated. Indeed, a viable, sustainable and 

ethical biofuel strategy requires explicit consideration of competing spatial 

priorities such as alternative land uses (e.g food production, infrastructure, 

biodiversity) and biophysical conditions that underpin crop success (e.g. 

rainfall, soil, elevation). Effective policies must incorporate this kind of spatial 

information. The following subsection provides some background on the 

need for solving this problem in Africa and how spatial analysis is used in 

solving this locational problem.  

1.6 Approaches to spatial decision making 

Despite abundant biomass resources, lack of good understanding and 

application of key biofuel economics concepts is identified as a major barrier 

to its commercialisation in Africa (Amigun et al., 2006). This problem 

continues to exist, especially in West Africa, partly because biofuels vary in 

their favourability profiles which depend on local conditions and practices, as 

well as the potential conflict between agricultural and energy systems (Araújo 

et al., 2017). Among the important concepts for understanding and evaluating 

biofuel systems are the land use efficiency and economics (UNCTD 2008). 

Feedstock availability, usage and inefficient production strategy constitute the 

major factors limiting biofuel production (Chiara and Fabrizio 2009). Land use 

efficiency is said to be the most relevant parameter in the food vs fuel crops 

discussions (Koppen et al., 2009).  

According to the Nigeria Biofuel Policy (2007), one of the responsibilities of 

the Ministry of Agriculture is to support land acquisition and utilisation 

strategies by biofuel companies. According to Eboh et al., (2004), only 44% 

of the cultivable land in Nigeria was said to be under cultivation. However, it 

could be argued that there are other land uses such as grazing, recreation 

and reserves. The extent of the arable lands have fluctuated over the 
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decades. According to FAO 2015 estimates, Nigeria’s arable lands stands at 

34 million ha, 6.5 million ha permanent crops and 30.3 million ha meadows 

and pasture lands (FAOSTAT 2018). It was estimated that 2% of the arable 

land will be required to meet biofuel targets stipulated in the biofuel policy 

(NNPC, 2012). As part of this requirement, 100,000 – 200,000 ha of land will 

be required to meet demand for biodiesel in the country (Adam 2018).  

Major factors for feedstock (raw materials used to process biofuel) adoption 

include the history of pricing, abundance and available quantity, production 

pattern and trend, haulage and storage options in the potential processing 

and production site (Toyin n. d.). A report suggested that feedstock supply 

comprises 75% of the total biodiesel production cost (Ghazali 2015). The 

impact of biofuel production and policies on food security, as mentioned in 

subsection 1.2.3, is shaped by the choice of the preferred feedstock and 

technology and there is not likely a one-fit-for-all approach but multiple 

approaches with different crops, production models, fuels and logistics (Das 

2017). A study in Nigeria found significant impact of both feedstock yields 

and cultivation location on biofuel production, plant size and the per unit 

biofuel production cost (Amigun et al., 2006). While attainment of the highest 

possible yields is a function of the feedstock variety and ecology, optimal 

cultivation site is a function of ecology and distance to processing plant. 

Ecological requirements of the crops are, therefore, crucial considerations for 

both increasing yields and making informed decisions on cultivation sites. 

Assessment of a set of locations for a particular land use is usually complex 

due to trade-offs among the ecological, economic and socio-political factors 

which involve conflicting spatial and non-spatial criteria that play varying 

degrees of importance. This spatial decision-making process is usually 

approached through a process that combines multiple criteria based on a 

decision rule that focuses on achieving the central objective which structure 

the criteria prioritisation. GIS-based multi-criteria decision analysis (GIS-

MCDA) is one of the most common and favourable tools used to determine 

suitable sites for human activities such as housing development or industrial 

estate (Villacreses et al., 2017; Jelokhani-Niaraki et al., 2018). This model 
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also has shown to be a useful tool for sustainability assessment in project 

planning (Boggia et al., 2018). Spatial decisions are based on the evaluation 

of the properties of the multiple geographical entities and relationships that 

are quantitatively or qualitatively measurable (Drobne and Lisec 2009).  

Overlay functions in GIS environment combine multiple criteria that represent 

the geographical entities that determine a particular spatial goal. Weighted 

overlay tools support incorporation of criteria weights. Basic GIS-based multi-

criteria analysis can use fairly arbitrary criteria weightings that may reflect the 

views of limited number of people, usually the researchers. However, criteria 

weightings need to reflect the collective opinions of multiple stakeholders 

regarding the role of each criterion in achieving the spatial goal. Multi-criteria 

Decision Making (MCDM) methods complements GIS analysis by providing a 

systematic way of incorporating criteria weightings from multiple 

stakeholders. These methods have grown in both number and applications 

and received great deal of attention from practitioners and researchers 

(Zyoud and Fuchs-Hanusch 2017). They are generally important methods in 

management sciences and research operations, and they are more important 

in spatial analysis because spatial decisions are multi-criteria in nature.  

MCDM provides a structure for managing arguments on recognising the 

factors of a decision problem, ordering the components into a hierarchical 

construct, discerning the connection among the constituents of the problem 

and stimulating communication among the participants (Malczewski 2006). 

The factors which form the decision criteria vary in terms of the influence they 

exert on the decision. Generating weights for the criteria is an important step 

in most multi-criteria methods (Behzadian et al., 2010) and several 

techniques (e.g. TOPSIS, ELECTRE, PROMETHEE) have been developed 

to handle that. These techniques though fuzzy in their nature, provide 

realistic estimates and help in capturing the fuzziness in the minds of the 

people making judgement about the importance of the variables (Suganthi et 

al., 2015). Though selecting an appropriate multi-criteria analysis method 

depends heavily on the project or the case study, Analytical Hierarchy 

Process (AHP) was found to be the best when pre-selected methods were 
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compared against selection criteria, particularly because of its procedure for 

multi-stakeholder inclusion (Kurka and Blackwood 2013).  

AHP is a multi-criteria analyis method developed by Saaty (1980) based on 

three principles namely; decomposition, comparative judgement and 

sysnthesis of priorities (Malczewski 1999). Decomposition entails 

breakingdown of the decision problem into hierarchy. Comparative 

judgement requires pairwise assessment of the elements within a given level 

of the hierarchical structure with respect to their parent element in the next-

higher level. Synthesis of priorities refers to constructing a global set of 

priorities for the alternatives. The essence of AHP is to construct a matrix 

expressing the relative values of a set of attributes (Coyle 2004).   

AHP was developed initially to provide a simpler way of handling complex 

problems and due to its power and simplicity, it has received widespread 

acceptance and usage (Meng et al., 2011). A review of the state of 

application of multi-criteria analysis to sustainable hydropower generation 

over 15 years (2000 – 2015) showed that AHP was mostly the technical 

feature of the applications (Vassoney et al., 2017). AHP applications 

increased exponetially during 2005 – 2009 covering such areas as 

manufacturing, environmental management, agriculture, power/energy, 

tranportation, construction, health care, education, logistics, e-business, IT, 

telecommunication, banking/finance, urban management, defence, 

government, marketing, tourism, mining, archaeology and research (Sipahi 

and Timor 2010).  

Malczewski (2006), conducted a survey of the literature and found over 300 

articles published in refreed journals which applied GIS-MCDM approaches 

from 1990 to 2004. Only about 9.4% (34 publications) applied AHP as the 

criteria weighting method.  Malczewski (2004), also opined that this 

contributed in shifting GIS from being a mere database for data storage and 

manipulation to a more complex decision support tool for many applications 

related to site suitability. Table 1.1 shows some applications of this nature for 

various disciplines. Of the total 29 publications, 16 indicated how the criteria 



34 

 

weighting was done (11 of which were AHP, approximately 38%) though with 

varying degrees of detail. In two of the publications, sensitivity analysis was 

used instead of weighting the criteria. Some researchers decided to use 

mere rating/ranking, while seven of the publications did not show how the 

relative importance of the criteria was handled. The current trend in spatial 

multicriteria analysis is to ensure that the assessment of the criteria weights 

is explicit such that incorporation of the relevant expertise and stakeholders 

is tranparent and detailed.  

Spatial decision making as a support tool has widely been applied to biofuel 

production analysis and according to De Meyer et al., (2014), it had risen 

exponentially. Batidzirai et al., (2012), reported that the application varies 

depending on the feedstock considered. According to De Meyer et al., 

(2014), the application also depends on the technique employed. While 

Farahani et al., (2010), suggested that the application varies based on the 

variables examined. It could also be reasonable to suggest that the 

applications could depend on the spatial and temporal contexts within which 

the studies were conducted. Batidzirai et al., (2012) observed that many of 

the studies in this context are deficient in covering all the basic elements 

needed in an ideal assessment and that there is an apparent disparity in the 

level of parametric details and methodological transparency among the 

studies. In order to help users identify methods or models that meet certain 

requirements, De Meyer et al., (2014) conducted a review of these methods 

and classified them into three based on the mathematical optimisation 

methodology, the decision level and/or decision variables and the objective 

optimised.  

Table 1.2 shows various applications of these methods in the area of spatial 

decision making related to biofuels. It shows the methodological nature of the 

application, the techniques used in criteria weighting, the number of criteria 

considered and what could be deficient in the studies. Of the 10 publications 

presented in the table, only three were found to explicitly describe how the 

weights were assigned to the criteria. Most of these studies, thus, focus more 

on GIS overlay of the criteria maps with limited consideration of the influence 
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of each of the criteria on the decision objective. In fact, in some studies, it is 

difficult to grasp what the criteria actually are in the biomass assessment. As 

described by Malczewski (2004), focussing on the power of GIS (in 

combining maps) can lead to oversimplification of the complexity of the 

processes involved in land use planning problems, since there is greater 

emphasis placed on the ‘facts’ (quantitative spatial data) rather than the 

process of how ‘facts’ are derived or analysed.  

It is essential that the weights of each variable are carefully assessed and 

transparently reported, since this process plays important role in identifying 

possible disagreements, resolving them and determining the degree of their 

implications for the final decision (Malczewski 1999). These weights should 

be interpreted as measures of relative importance rather than measures of 

absolute importance of each variable. This literature exploration indicates 

how spatial optimisation continued to be active and relevant in every aspect 

of environmental analysis through the decades. In the present study, multi-

criteria spatial analysis, specifically using AHP, is employed in the context of 

spatial decision-making for biofuels because of the multiple strength outlined 

above. Yet this study contributes to this field of research by explicitly 

attending to the process of determining and applying algorithmic weights to 

variables, thereby bringing together best-practice GIS methodologies with 

real-world applicability. 
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Table 1.1: Examples of GIS-MCDM methods to various application areas 

S/N Application Methodology Criteria Weighting 

Technique 

Author(s) 

1 Habitat suitability MCE-GIS HERO Store and Kangas (2001) 

2 Housing land use suitability MCDA-GIS ELECTRE-TRI Joerin et al., (2001) 

3 Siting land fill MCDA-GIS AHP Sumathi et al., (2008) 

GIS-MCDA AHP Gorsevski et al., (2012) 

4 Site selection for hydropower MCE-GIS Rating Rojanamon et al., (2009) 

MCE-GIS - Bódis et al., (2014) 

5 Urban infrastructure planning GIS-MCDM MCPUIS Coutinho-Rodrigues et al., (2011) 

6 Site selection for wind farm GIS-SMCA - van Haaren and Fthenakis (2011) 

MCE-GIS - Satkin et al., (2014) 

GIS-MCDM - Al-Yahyai and Charabi (2015) 

PGIS Ranking Mekonnen and Gorsevski (2015) 

SDSS Assumed equal Kazak et al., (2017) 

7 Assessing tidal power potential MCE-GIS Assumed equal Defne et al., (2011) 

8 Sites for irrigated agriculture MCE-GIS - Ismail et al., (2012) 

9 

 

Site evaluation for solar farm/plant GIS-MCDM AHP Sánchez-Lozano et al., (2013) 

GIS-MCDM AHP Uyan (2013) 

GIS-MCDM - Sabo et al., (2016) 

MCE-GIS - Szabó et al., (2017) 
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GIS-MCDM AHP Zoghi et al., (2017) 

10 Landslide susceptibility mapping GIS-MCE AHP Feizizadeh et al., (2014) 

11 Optimising ideal location for Agave in the 

US 

GIS-MCE Sensitivity analysis 

instead 

Lewis et al., (2015) 

12 Land suitability for Rubber cultivation GIS-MCDM AHP Bedawi et al., (2017) 

13 Land suitability for cultivating arable crops GIS-Fuzzy set AHP Kahsay et al., (2018) 

GIS-MCDA AHP Suhairi et al., (2018) 

GIS-MCDM Analytical Network 

Process (ANP) 

Yohannes and Soromessa (2018) 

14 Land suitability for rainfed farming GIS-MCDM AHP Kazemi and Akinci (2018) 

15 Land suitability for construction MCDA-GIS AHP Ristić et al., (2018) 

16 Assessing flood susceptible areas  GIS-MCDA Sensitivity analysis 

instead 

Tang et al., (2018) 

17 Land suitability for crop rotation GIS AHP Singha et al., (2020) 
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Table 1.2: Example of biofuel research which applied GIS-MCDM methods and their identified deficiencies   

S/N Application Methodology Number 
of 
criteria 
used 

Criteria 
weighting 
Technique 

Author(s) Remarks 

1 Biomass potential 
for power 
generation 

GIS-DSS 14 - Voivontas et 
al., (2001) 

A 4-staged analysis that considered 
certain criteria at each stage. 
Neither criteria weighting nor 
sensitivity analysis was explicit in 
the work. 

GIS-MCE 8 - Shi et al., 
(2008) 

A 2-stage analysis that estimated 
biomass using satellite imagery and 
then optimised sites based on 
transport cost (distance). Sensitivity 
analysis would have given an idea 
on which of the variables played 
greater role in determining biomass 
amounts estimates. 

 12 - Voets et al., 
(2013) 

Weighting the criteria for the 
transport model would have 
improved it or sensitivity analysis 
would have shown which of the 
variables is more important in the 
model. 

GIS-MCDM 12 F-DEMATEL Jeong and 
Ramírez-
Gómez 
(2018) 

Detailed description of criteria 
weighting. Attempt was also made 
to test the model stability using 
sensitivity analysis.  
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2 Assessment of 
biodiesel impacts 
on land use 
change 

GIS-MCE 8 - Yui and Yeh 
(2013) 

What is obvious from this work with 
respect to what the researchers 
called weighting is, creating 
suitability levels within each criterion 
rather than assigning weights to 
reflect the importance of each 
criterion over others.   

3 Potential of 
marginal lands for 
biofuel production 

GIS-MCE 14 - Boruff et al., 
(2015) 

The approach was additive with 
criteria being added in stages and 
neither initial between-criteria 
weighting was clear nor sensitivity 
analysis was conducted.  

4 Sites allocation for 
biofuel production. 

Regression  12 - Zhang et al., 
(2017) 

The weighting technique is not 
clear, if actually was performed. 

5 Spatial 
optimisation of 
conversion 
facilities for 
agricultural 
residues 

GIS-MCDM 8 AHP Morato et al., 
(2019) 

The weighting process was explicitly 
explained in detail. 

6 Examine available 
and accessible 
biomass for 
biorefinery 

GIS-MCE 5 for 
biomass 
estimate 

- Zheng and 
Qiu (2020) 

The weighting of the criteria 
assessing the biomass potential at 
stage one could not be found. 

7 Suitable location 
for Paulownia 
cultivation 

GIS-MCDM 14 DEA Abbasi et al., 
(2020) 

Data Enveloping Analysis (DEA) 
was employed in this work for 
weighting the criteria.  
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1.7 Research Gap 

In the context of policies supporting the expansion of biofuel production, 

there is a need for knowledge of where these biofuel crops should be 

positioned. The typical methodological approach to this kind of spatial 

analysis is to combine multiple criteria maps through a decision rule. 

Determining the optimal spatial location of biofuel crops requires information 

on what environmental conditions are associated with the crop viability and 

success. In lieu of published literature on the comparative suitability of 

various crop types under different conditions, it is essential to engage 

knowledgeable experts to provide this information. This is where most of 

these analyses are usually deficient as shown in Table 1.2. Thus, spatial 

analysis requires a collection of literature to identify the environmental criteria 

that influence crop feasibility combined with more information from 

stakeholders regarding the importance of each of these criteria in the location 

decision-making (biofuel crops cultivation sites in the context of this 

research). Examples of the works that applied spatial multi-criteria analysis 

on a global scale are identified by Oakleaf et al., (2019). A review of a 

collection of these kinds of works was conducted in the US (Lewis and Kelly 

2014). More specific works of this nature were presented in Table 1.2 with 

their deficiencies, essentially absence of stakeholder’s involvement.  

In Nigeria, there has been a small number of attempts to apply standard 

spatial analysis methods to locational problems related to biofuel production. 

However, these are limited, for example interms of spatial scope as in Buhari 

(2014), or based on feedstock other than crops as in Chukwuma et al., 

(2016). Ayoade (2017), applied spatial analysis to identify suitable locations 

for rice cultivation in Oyo State of Nigeria. The work was restricted in terms of 

spatial scope and rice is not one of the identified biofuel crops in Nigeria, 

even though rice husk is being touted for biodiesel production. More 

importantly, these existing studies did not include expert participation, relying 

instead on coarse assumptions. Some studies have attempted to calculate 

total biomass production potential in the country with little or no spatial 
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consideration, for example Galadima et al., (2011), Ben-Iwo et al., (2016) and 

Giwa et al., (2017).  

These country-wide studies provided limited details with respect to the 

suitability of the sites identified for biofuel production. For example, the sites 

suitable for the crops were linked to the ecological zones of the country (Ben-

Iwo et al., 2016), which is too generalised to permit real economic and 

environmental decision-making that requires a finer grain of analysis. For 

example, an ecological zone identified as ‘best’ for a particular crop will in 

fact have a variety of soil conditions that may not universally suit its growth. 

There is a need, therefore, for research that provides greater spatial 

precision and robustness. Indeed, Dell’Ovo et al., (2018), opined that multi-

criteria decision problems are typically ill-structured and thus, tried to improve 

the transparency and robustness of the process for locating healthcare 

facilities in Italy.  

The researcher, as an MSc student in 2014, conducted spatial analysis to 

optimise sites for biofuel production in Nigeria considering sweet sorghum, 

sugarcane and jatropha. The dissertation was published as a book (Shehu 

2017) and part of the dissertation was also published as a journal article 

(Shehu and Williams 2020). However, due to the time and resource 

constraints, the work was very limited with respect to involvement of 

stakeholders such as the crop experts, consideration of the required 

environmental variables such as insolation, as well as detailed consideration 

of the restrictions such as crop areas. The MSc research was exploratory 

and identified that there was a key challenge which is being addressed in this 

thesis, namely, how to conduct a site optimality analysis in a form that is 

applicable in the real world and engages a range of stakeholders. The first 

recommendation in the MSc research was that there was need for 

improvement of both the suitability and optimality models presented in the 

dissertation. The analysis could be improved in terms of robustness and 

transparency.  
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In the present study, therefore, the previous work was extended to 

demonstrate how the robustness and transparency of applying spatial 

analysis could be increased and was also extended to include two other 

biofuel crops – cassava and oil palm – which were not analysed in the MSc 

work. Robustness, in this respect, is conceptualised as comprising of three 

aspects. 1) detailed consideration of all the environmental and socio-

economic variables, 2) involvement of the feedstock (crops) experts in the 

spatial analysis and 3) the employment of the standard techniques such as 

Analytical Hierarchy Process (AHP).  

All these three aspects together form the methodological component of the 

research gap in this work. The gap has four components, namely empirical, 

spatial, methodological and policy. The empirical component relates to how 

biofuel crops suitability is related to environmental, social, physical and 

economic variables. The methodological component relates to how 

geographical information systems and social-scientific techniques might be 

integrated to derive this knowledge. In this respect, it is demonstrated in this 

work how the challenges of developing and applying spatial multicriteria 

analysis could be fathomed and approached in a structured way. The spatial 

component relates to where biofuel crops and processing facilities might be 

located for spatial optimisation. Finally, the policy component relates to what 

spatial decisions should be made for the future of biofuel production in 

Nigeria. All the four elements are covered in this thesis. 

This research attempts to fill this multi-component gap by providing more 

robust methodological contribution to spatial analysis for detailed crop-based 

bioenergy land suitability modelling in Nigeria. The resultant maps from these 

models are a crucial component of spatial decision-making regarding crop-

based bioenergy production. It requires expertise for each of the biofuel 

crops to be able to judge which of the evaluation criteria have higher 

preference compared to the others. The subjectivity of this experts’ 

participation is handled by application of AHP.  
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1.8 Research questions, aim and objectives 

This research will focus on GIS and AHP based modelling and estimation of 

biofuel potential and will address the following questions: 

1. What are the ecological requirements for the selected biofuel 

crops’ optimal growth? 

2. How do various biofuel crops differ in their potential contribution to 

biofuel production under a range of environmental conditions?  

3. How does combining AHP and GIS-MCDM improve biofuel crops 

land suitability modelling in Nigeria? 

4. Where are the physically available lands for biofuel crops located 

in the country and how  suitable are they for the identified biofuel 

crops? 

5. How much land is physically available for biofuel crops cultivation 

without conflicting with food crop cultivation and conservation 

sites? 

6. Where should biofuel refineries be optimally sited among the 

existing petroleum depots in Nigeria based on the suitable areas 

for biofuel crops?   

7. What policy recommendations should be considered to support 

and enable appropriate biofuel production in Nigeria? 

To answer these questions, the following research objectives will be pursued: 

i. Produce a synopsis of the identified biofuel crops. 

ii. Conduct a requirements analysis to determine the ecological 

requirements of the identified crops. 

iii. Conduct expert group discussion for detailed and standard 

implementation of Analytical Hierarchy Process (AHP) for criteria 

weights. 

iv. Develop a model for suitable cultivation lands for each of the identified 

crops using Spatial Multi-Criteria Analysis (SMCA). 

v. Map the cultivation lands and their suitability levels for the identified 

biofuel crops in Nigeria. 
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vi. Identify and develop a model to eliminate physical constraints to 

biofuel crops cultivation.  

vii. Develop a site optimality model using service area modelling for 

biofuel processing facilities based on transport cost (distance). 

viii. Determine the appropriate scale for the identified sites based on 

feedstock amount, and determine the most efficient number of biofuel 

production facilities in Nigeria. 

ix. Investigate and discuss the most appropriate technology to be 

employed in the production system. 

x. Investigate and discuss strategies for sustainable biofuel crops 

cultivation and strategies for sustainable biofuel processing in Nigeria. 

The key novelty of the work is thus combining Spatial Multi-Criteria Analysis 

(SMCA) with Analytical Hierarchy Process (AHP) that involves expert 

participation to develop a more robust and transparent workflow for modelling 

optimal sites, the results of which provide a guide for location decisions 

related to crop-based biofuel production in Nigeria. None of the above 

research questions were formulated in the previous MSc work. Also, the 

previous work did not engage with the complexity and challenges of spatial 

multicriteria analysis as a spatial decision support tool. The current work 

attempts to demonstrate how these challenges are approached, substantially 

contributing to knowledge in application of spatial analysis.There were five 

objectives in the previous work, compared to ten objectives in the current 

work. Though the first objective in the MSc research was identifying and 

eliminating constraints, the constraints identified were very limited. For 

example, agricultural areas were not identified and eliminated and there were 

only nine reserved areas identified and eliminated. In the current research, 

comprehensive analysis was conducted to indentify and eliminate agricultral 

areas and comprehensive data on protected areas was downloaded from the 

World Database on Protected Areas comprising 988 polygons.  

Objective two in the MSc research dealt with mapping suitable areas for 

cultivating three biofuel crops (sweet sorghum, sugarcane and jatropha). 

However, 11 environmental criteria were used, unlike 14 criteria in the 
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current work. Also, the rainfall data used for the current work is more 

comprehensive with 90 sample points than the one used for the MSc work 

that had 44 sample points. The same weights were applied to all the three 

crops in the previous MSc work without involvement of the crops experts, 

unlike in the current work where separate weights were generated for each of 

the five crops through involvement of the crops experts. The soil data used 

for the MSc work consists of 28 categories, unlike the more detailed one 

used for the current work consisting of 51 categories. 

Objective three in the previous work dealt with optimal sites for biofuel 

processing facilities. However, a single scenario was used for both distance 

and crop yields, unlike in the current work where three scenarios were used 

for both distance and crop yields parameters to provide a wide range of 

outputs that can allow for possible application to varied local contexts. 

Objective four and five in the previous work dealt with brief discussion on 

strategies for sustainable crop production and biofuel processing. In the 

current work, lengthy discussion is provided and extends to include such 

topics as reselient thinking and policy realignment. From the foregoing, it is 

clear there are some similarity in these objectives, but they have been 

achieved in the current work in a different and extended way. Table 1.3 maps 

the relationships between the current research gap, research questions, the 

objectives as well as the chapter that deals with each of the objectives.  
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Table 1.3: Thesis structure 

S/N Research Gaps Research Questions Objectives Thesis 
Chapter(s) 

1 An empirical 
component: how is 
biofuel crop suitability 
related to 
environmental, social, 
physical and economic 
variables? 

1. What are the ecological 
requirements for the 
selected biofuel crops’ 
optimal growth? 

2. How do various biofuel 
crops differ in their 
potential contribution to 
biofuel production under a 
range of environmental 
conditions?  

5. How much land is 
physically available for 
biofuel crops cultivation 
without conflicting with 
food crop cultivation and 
conservation sites? 

i. Produce a synopsis on the identified 
biofuel crops. 

Chapter 
two 

ii. Conduct a requirements analysis to 
determine the ecological 
requirements of the identified crops 
based on which the criteria will be 
determined. 

Chapter 
two 

vi. Identify and develop a model to 
eliminate physical constraints to 
biofuel crops cultivation. 

Chapter 
five 

2 A methodological 
component: how might 
geographical 
information systems 
and social-scientific 
techniques be 
integrated for spatial 
optimisation?  

3. How does combining AHP 
and GIS-MCDM improve 
biofuel crops land 
suitability modelling in 
Nigeria?  
 
 

 

iii. Conduct expert group discussion for 
detailed and standard 
implementation of Analytical 
Hierarchy Process (AHP) for criteria 
weights.  

Chapter 
three 

iv. Develop a model for suitable 
cultivation lands for each of the 
identified crops using Spatial Multi-
Criteria Analysis (SMCA).  

Chapter 
four 

3 A spatial component: 
where might biofuel 
crops be located as 

4. Where are the physically 
available lands for biofuel 
crops located in the 

v. Map the cultivation lands and their 
suitability levels for the identified 
biofuel crops in Nigeria.  

Chapter 
four 
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evidence based spatial 
decision? 

country and how  suitable 
are they for the identified 
biofuel crops?   

6. Where should biofuel 
refinery be optimally sited 
among the existing 
petroleum depots in 
Nigeria based on the 
suitable areas for biofuel 
crops? 

 

vii. Develop a site optimality model 
using service area modelling for 
biofuel processing faclities’ sites 
based on transport cost (distance).   

Chapter 
six 

viii. Determine the appropriate scale for 
the identified sites based on 
feedstock amount and determine 
most efficient number of biofuel 
production facilities in Nigeria based 
on the identified ethanol and 
biodiesel crops.  

Chapter 
six 

4 A policy component: 
what strategic policy 
recommendations 
should be adopted for 
the future of biofuel 
production in Nigeria? 

7. What policy 
recommendations should 
be considered to support 
and enable appropriate 
biofuel production in 
Nigeria?   

ix. Investigate and discuss the most 
appropriate technology to be 
employed in the production system.  

Chapter 
seven 

x. Investigate and discuss strategies 
for sustainable biofuel crops 
cultivation and strategies for 
sustainable biofuel processing in 
Nigeria.   

Chapter 
seven 
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1.9 General methodological overview and thesis structure  

The sequential analytical structure of this thesis means that results from 

earlier chapters are regularly used as input for later chapters. As such, no 

traditional ‘methodology’ chapter is included. Instead, an overview of the 

methods employed is provided in Figure 1.6. Detailed descriptions of 

methodological approaches are provided within each subsequent chapter, as 

they relate to the nature of the analysis contained therein.  

In chapter two, the environmental requirements for optimum growth and 

development of selected biofuel crops are identified via thorough literature 

review. The optimum values for these requirements are then presented with 

respect to each of the crops. These environmental requirements (e.g. soil 

characteristics, climatic parameters) form the criteria for subsequent GIS-

based multi-criteria decision making (GIS-MCDM), with the inclusion of each 

predictor variable into the analysis depending on the relevance of the 

criterion and the availability of data.  

Chapter three focusses on expert consultation regarding the relative 

importance of each environmental criterion with respect to suitable land for 

cultivating each crop. Analytical Hierarchy Process (AHP) is used to 

determine criteria weights which can be used in subsequent spatial analysis. 

Chapter four utilises the established criteria weights to provide framework for 

modelling land suitability which involves developing suitability index levels, 

creating and executing models, and mapping the suitable areas for each of 

the five biofuel crops and their suitability levels. To factor in the restricted 

areas in this suitability analysis, constraints analysis and elimination is dealt 

with separately in chapter five. 

Chapter six then reports on site optimality analysis for biofuel processing 

plants using Supply Area Modelling (SAM).  

Chapter seven includes a general discussion of the analyses and related 

applications and future direction, while chapter eight present conclusions 

from the thesis.  
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Figure 1.6: Structural flow of the methodology 
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Chapter Two – Biofuel Crops Requirements Analysis 
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2 Chapter Two – Biofuel Crops Requirements Analysis 

2.1 Introduction 

In chapter one, it was mentioned that the feasibility and significance of biofuel 

is site specific and that sweet sorghum, sugarcane, cassava, jatropha and oil 

palm have been identified in Nigeria as the focus energy crops for biofuel 

industry in the country. It was also shown that environmental and socio-

economic variables are crucial to both crops’ yield improvement and 

selection of suitable cultivation sites. This chapter provides an overview on 

the identified biofuel crops as appropriate feedstock for the biofuel industry. 

Sweet sorghum, sugarcane and cassava are the starch crops for ethanol 

production, while oil palm and jatropha are the oil crops for biodiesel 

production. The chapter then presents literature analysis conducted to 

determine the ecological requirements of these crops as the basis for 

modelling suitable lands for cultivating the crops. This provides the basis for 

this work to identify the criteria to be considered in applying the multi-criteria 

method and identify optimum values for analysing where the biofuel crops 

could suitably be positioned.    

2.2 Biofuel crops 

2.2.1 Ethanol crops 

2.2.1.1 Sweet sorghum 

Sorghum is the fifth most important cereal crop in the world (Cifuentes et al., 

2014). USA, Nigeria and India are the three largest producers of the crop in 

the world (Elbehri et al., 2013; Mundia et al., 2019). It is one of the oldest 

cultivated crops in the history and it is believed to originate from Africa 

(Khawaja et al., 2014). Sorghum exhibits extensive phenotypic diversity, the 

patterns and the identity of which have been assessed using various 

taxonomic characteristics (Upadhyaya et al., 2017). They (ibid) analysed the 

passport and characterization data of 1,206 Nigerian Sorghum Landraces to 

assess their status and diversity and to identify their geographical and 

taxonomical gaps. A total of 118 geographical gaps (districts) were identified 

in Nigeria. Maximum diversity was also observed in the Nigerian collection for 

both qualitative and quantitative traits. Sorghum is classified as grain, forage 
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or sweet sorghums (Almodares and Hadi 2009). Grain sorghum is usually 

used as staple food for human consumption, Forage sorghum for animal 

feeds and Sweet sorghum for edible syrup as well as bioethanol (Cifuentes et 

al., 2014). 

Sweet sorghum is similar to grain sorghum except that it accumulates high 

fermentable sugars in the thick juicy stalk and can be used for various 

purposes such as food, fodder, fibre and fuel and due to these, the crop is 

tagged ‘smart crop’ (Rao et al., 2011; Cifuentes et al., 2014; Khawaja et al., 

2014). Sweet sorghum (figure 2.1) has a sugar rich stalk, almost similar to 

sugarcane, making it a special purpose crop with all its components usable, 

unlike most of the crops (Reddy et al., 2005; Sarvani 2015). The crop is 

recently gaining popularity and is being promoted as the major feedstock for 

commercial bioethanol production (Olugbemi and Ababyomi 2016). 

 

 
Figure 2.1: Sweet sorghum 
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Cultivation of the crop was suggested to be encouraged due to the fact that it 

can be used for the production of food, first and second generation biofuels, 

as well as fertilizers, although the crop’s sustainability was said to be not well 

envisaged (Koppen et al., 2009). However, the crop’s sustainability concern 

prompted Food and Agriculture Organisation (FAO) to commission an 

investigation into the environmental impacts of different sweet sorghum 

production systems. One of the results shows that even if the grains and 

syrup were used as food, conversion related energy and greenhouse gas 

expenditure can be compensated by producing second generation bioethanol 

from bagasse (the remaining fibrous material after extracting the juice), 

although the balances would be more favourable if electricity is produced 

from the bagasse. Due to these comparative advantages, sweet sorghum 

appeals to the biofuel industry and is selected as one of the major agricultural 

crops for bioethanol production in Nigeria. 

2.2.1.2 Sugarcane 

 

Sugarcane is a strongly growing C4 crop with wide range of tropical and 

subtropical climates, soils and cultural adaptability and is cultivated in over 

100 countries spread between 37°N and 31°S (Meyer et al., 2011). The crop’s 

production cycle lasts for 5 – 6 years with 4 – 5 harvests, although with 

Figure 2.2: Industrial Sugarcane       Source: Field work 
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irrigation and improved varieties the cycle can be extended to over 30 

harvests as is the case with some growers in Swaziland (Meyer et al., 2011). 

For several decades after its establishment, Savannah Sugar Company (now 

Dangote Sugar Company) at Numan, Adamawa State, Nigeria had grown 

many Sugarcane varieties in its estate but in 1995, 70% of the cane area was 

covered by a single variety – B47419 – (Kawuyo and Wada 2004).  

Sugarcane breeding and variety improvement are continuous programmes at 

the National Cereal Research Institute (NCRI), Badeggi which has the 

mandate for the crop’s improvement in Nigeria (Gana 2017). The aim of the 

breeding programme is to collect and maintain local and exotic sugarcane 

accessions (unique sets of identifiable sample of seeds representing a 

cultivar preserved in a storage) in the field Genebanks at Badeggi and 

Edozhigi. There are 235 germplasm comprised of 188 exotic and 40 local 

genotypes. The remaining are NCRI releases (NCS 001, NCS 002, NCS 003, 

NCS 005, NCS 007 and NCS 008). The objective of the varietal improvement 

is to develop good quality, high yielding, diseases and pest resistant varieties 

of sugarcane for Nigeria sugar Industry as well as for local chewing cane 

farmers through hybridization and selection.  

 

 

 

 

 

 

 

 

 

Figure 2.3: Chewing Sugarcane 
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Industrial and soft (chewing) sugarcanes are the two major types of the crop 

grown in the country (Wayagari et al., 2003). Industrial sugarcane (figure 2.2) 

has relatively higher brix (total of soluble solids) percentage, less water 

content, thinner and harder stem and thicker nodes (Ahmed et al., 2014). 

Chewing sugarcane (figure 2.3) is usually soft with high water and less 

sucrose content.  

Sugarcane ethanol have high production efficiency and relatively lower costs 

(Zuurbier and Voore 2008) as shown by the Brazilian system where the costs 

continue to fall over three decades. The breakdown of the sugarcane 

production costs indicated that though all subsectors contributed to the total 

reducing costs, the main driving force was the increase in yield (van den Wall 

Bake et al., 2009). Also, the industrial costs were mainly reduced by the 

expanding ethanol plants scales. These might suggest the reasons for 

choosing sugarcane as one of the agricultural crops for ethanol industry in 

Nigeria (NNPC 2015). However, the major raw material used in Nigeria for 

sugar production is sugarcane. Also, it is an established fact that the relative 

higher requirement for water is an economic disadvantage of sugarcane 

production though this is minimised through efficient irrigation systems.   

2.2.1.3 Cassava 

 

 

 

 

 

 

 

 Figure 2.4: Cassava farm (Sanyinna)   Source: Field work 
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Cassava (Figure 2.4) is a perennial root crop, mainly propagated through 

stem cuttings and can be planted and harvested all year round making it 

more preferable than other seasonal crops (FAO and IFAD 2005; Ohimain 

2012). It is one of the earliest domesticated crops (Adeoti 2010) and widely 

cultivated in the tropics between latitudes 30° north and 30° south over a 

range of climates, soils and altitudes (Anyanwu et al., 2015). The crop is 

believed to have originated from the Central Brazilian Cerrado vegetation 

zone (Hillocks et al., 2002), came to Africa in the 16th century (Ugwu and 

Nweke 1996; Hillocks et al., 2002; Adeoti 2010; Ikeh et al., 2012) and spread 

in west Africa in the 20th century (Hillocks et al., 2002). It is said to be more 

productive within latitudes 15° north and south (DPP 2010) within which the 

entire Nigeria’s territorial borders are located.  

By production of more than 59 million tonnes in 2019 (FAOSTAT 2021), 

cassava is the largest crop in Nigeria by production quantity. It is also the 

most important food crop by value and significant part of the produce is 

consumed locally (Asante-Pock 2013), about 90% (Agboola and Agboola 

2011). Apart from its ability to support non-stop factory operation as a non-

seasonal crop (Ohimain 2012), cassava roots can be stored in the ground for 

months (FAO and IFAD 2005). The crop is comparatively more resistant to 

drought, pest and diseases, as well as more tolerant to low soil fertility (FAO 

and IFAD 2005). These comparative advantages might form some of the 

reasons why Nigerian Biofuel Project considered cassava as one of the 

feedstock sources (Adeoti 2010; Agboola and Agboola 2011; Ogundari et al., 

2012; Ohimain 2012; Ogbonna and Okoli 2013; Dick 2014; Anyanwu et al., 

2015; Ozoegwu et al., 2017).  

There were efforts in Nigeria to breed cassava for high yield, pest and 

diseases resistance, early maturity and good product quality (FAO and IFAD 

2005). It was reported that the rate of adoption of improved cassava varieties 

among farmers is about 60% at country level and the major varietal traits 

preferred by about 70% of the farmers were high quality garri (a form of 

coarse grain flour), high root yield, big root size, high market demand and 

early maturity (Wossen et al., 2017).  
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In Africa, many cassava varieties exist but the crop is generally classified into 

Bitter and Sweet cassava (DPP 2010; Wangpor et al., 2017). The 

hydrocyanic content which determines the bitterness is not stable; it may 

depend on the environmental conditions because a sweet variety from 

certain zone may become Bitter variety in another (CIAT 1984). Generally, 

cultivars with <100 mg Kg-1 of fresh weight are classified as ‘sweet’, while 

those with 100 – 500 mg Kg-1 are classified as ‘bitter’ (Hillocks et al., 2002). 

Through research, many cassava varieties were developed and are available 

for cultivation in Nigeria (Anyanwu et al., 2015). The number of Nigerian 

cassava accessions (collated cultivars) held by the Centro Internacional de 

Agricultura Tropica (CIAT, Colombia), National Root Crops  Research 

Institute (NRCRI, Nigeria) and the International Institute of Tropical 

Agriculture (IITA, Nigeria) were put at 19, 435 and 2861, respectively 

(Hillocks et al., 2002). With the latest update in July, 2021, data view on the 

Genesys of the IITA website, showed that there are almost 4,000 accessions 

of cassava (Manihot Esculenta) in Nigeria (IITA 2021). 

2.2.2 Biodiesel crops 

2.2.2.1 Oil palm 

Though there are divergent views as to where oil palm originated, a majority 

of opinions support the claim that it originated from West Africa, specifically 

from Nigeria (Panapanaan et al., 2009; Elbassam 2010; Lai et al., 2012; 

Corley and Tinker 2016). One of the evidences to this view was the presence 

of fossil pollen similar or identical to that of African Oil palm (E. guineensis) in 

Miocene strata dating back to 15 million years BP (Before Present: 1950 

when the calibration curve was established for radiocarbon dating). Though 

the main concentrated zone lies between 3°N and 7°S, the distribution of 

African Oil palm occurs within the African continent from 16°N in Senegal to 

15°S in Congo to as far south as 21°S on the west coast of Madagascar (Lai 

et al., 2012; Corley and Tinker 2016).  

Oil palm (figure 2.5) is generally classified in to three – Dura, Tenera and 

Pisifera (Lai et al., 2012). Dura has thin mesocarp, thick endocarp (shell) and 

generally large kernels. Tenera has thick mesocarp, thin endocarp and 
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reasonably sized kernels. While Pisifera is shell-less (does not have 

endocarp) but has thick mesocarp with very little oil content and small 

kernels. Due to their more flavour characteristics and better fluid properties, 

Dura types have consumers’ preference over Tenera and thus are favoured 

in palm groves (Lai et al., 2012).  

 

 

 

 

 

 

 

Palm groves have long played significant role in the economy of the West 

Africa region, initially for domestic market, then export with European 

merchants from the 16th century and by 19th century, the trade substituted the 

slave trade (Lai et al., 2012). Some of the initial uses include the use of palm 

oil for cooking, tapping palm for palm wine, medicinal purposes, the use of 

fronds for thatching and fencing and harvesting edible palm hearts. The 

exported oil was also initially used in industrial manufacture of such goods as 

soap and candles as well as antioxidants. It was estimated that 80%, 19% 

and 1% are the global use of palm oil for food, oleochemicals and biofuels, 

respectively though it seemed to be attractive option for meeting global 

biodiesel demand, the influence of which is believed will contribute to 

doubling the oil palm production by 2030 (Bicalho et al., 2016). The crop is 

used as a source of feedstock for biodiesel production, not only for 

agricultural machinery but for road transportation. 

Figure 2.5: Oil palm nurseries (NIFOR, Benin)  Source: Field work 
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Oil palm is said to be the crop with highest potential for biodiesel production 

globally (Castiblanco et al., 2013). The crop is said to give 3 to 8 more oil ha-1 

than the traditional oil crops such as groundnut and soybeans, and although 

its commercial yields are said to decrease after 30 years of age, the crop can 

live up to 200 years (Verheye 2010; Wahid et al., 2015). It supplies 20% of 

the world’s vegetable oils (Tao et al., 2018). Oil palm is believed to provide 

higher potentials for providing hedges against the volatile conventional oil 

prices (Hayyan et al., 2014a) and considered to be highly efficient in terms of 

oil production and energy balance because the fruit yields range from 10 to 

30 tonnes ha-1 depending on location and agricultural practices 

(NaanDanJain 2013). Thus, biodiesel is believed to have the potential to 

become the largest component of growth in vegetable oils as seen in 2004 

when the EU became second largest importer of palm oil, almost exclusively 

due its use as fuel, though largely for electricity generation (Panapanaan et 

al., 2009). For these and other reasons it is likely that the crop is attractive 

and appropriate for biodiesel production in Nigeria. 

2.2.2.2 Jatropha 

Jatropha (figure 2.6) is a drought resistant perennial (2 to 3 years gestation 

period) crop that can be grown on lands with limited water supply and has a 

productive life of 40 to 50 years (Elbehri et al., 2013; Laviola et al., 2017). 

The crop is said to start bearing fruit within 9 months and reach commercial 

productivity within 3 years (Islam et al., 2011). While some scholars believe 

that the crop originate from South/central America (Orwa et al., 2009; Achten 

et al., 2014), others opined that it could have its provenance in 

Gondwanaland, but most of them held that the crop was spread by the 

Portuguese Seafarers to Africa and Asia (ETB 2007; Grass 2009; Jimu et al., 

2009). The distribution of the crop is said to be highly successful in the 

tropics, it is adapted to arid and semi-arid areas as well as seasonally dry 

areas such as grassland-savannah, thorn forest scrub and it is very tolerant 

and thrives under wide range of climatic and edaphic conditions (Orwa et al., 

2009).  
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That jatropha will not produce good yields in poor soils is a fact that cannot 

be denied (JA 2009) but the crop can help improve soil condition and the 

yields can increase after few years of establishment. Due to its inherent 

toxicity for many species, jatropha may have little issues with pests and 

diseases (FF 2006), but when cultivated in higher densities the situation 

changes, though the diseases and pests are less detrimental and are of low 

economic importance (JA 2009). 

With a comparatively short gestation period and with a 42% potential oil, the 

crop forms a good source for biodiesel (Deeb n. d.) though, some scholars 

claim that it could best be used profitably for indigenous production of 

cosmetics, particularly soap (Warra 2012). Pure plant oils (PPOs) can also 

be used in agriculture to power irrigation pumps and generators (Achten et 

al., 2007). This makes this segment of energy use to be carbon neutral 

because any emissions from plant oil is from biogenic, unlike from fossils 

which are considered to be anthropogenic (Somorin and Kolios 2017).  

These comparative advantages make jatropha attractive to be identified as 

appropriate crop for biodiesel in the world. Jatropha found in Nigeria are of 

the wild species (Yammama 2009), but compared to other woody species, 

the crop is said to be suitable for quick and efficient domestication (Achten et 

al., 2014). The crop is recommended as a good feedstock for biodiesel 

Figure 2.6: Jatropha Plantation (IAR, Zaria)       Source: Field Work 
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production in Nigeria (Aransiola et al., 2012a), tropical and subtropical 

developing countries (Thapa et al., 2018) and in the southern Italian region of 

Calabria (De Rossi et al., 2016). However, the positive characteristics that 

lead to promotion of the crop may not necessarily be attributable to all the 

accessions (Jongschaap et al., 2007).  

Jatropha is said to be cross-pollinated and has significant genetic variability 

in many characters (Pandey et al., 2012) though, low level of variation was 

observed in landraces from several African countries and elsewhere in the 

world (Achten et al., 2014; Ribeiro et al., 2017). Thus, selecting genotypes 

with wider environmental adaptation may be more promising (Montes and 

Melchinger 2016) because estimated oil content were found to be dependent 

on phenotypic variation and site of the candidate trees (Achten et al., 2014) 

as well as several other important traits (Laviola et al., 2017).  

Land requirement, whether for food-based or biofuel-based crop production, 

needs optimisation to maximize productivity and minimize negative impacts. 

Crucial consideration would, therefore, be ecological requirement of the crop 

and appropriately improved varieties. While this section had touched on the 

varietal diversities of the crops, the following section explored the ecological 

requirements of the crops. 

2.3 Ecological requirements 

2.3.1 Introduction 

After examining the biofuel crops in the previous section, this section 

explores the literature to collate information regarding the crops’ ecological 

requirements. Ecology in this context refers to climatic elements (rainfall, 

relative humidity, insolation, temperature and length of daylight), edaphic 

factors (soil and soil pH) and geomorphological variables (elevation, slope 

and aspect). Every crop has its ecological requirements for optimum growth 

and development. In other words, environmental characteristics play varying 

degree of roles at different phases of plants’ growth from germination to 

maturity (gestations) and these vary from crop to crop. Though some of the 

biofuel crops may have certain degrees of adaptability to varied ecology, their 
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productivity could be maximised by optimising the environmental parameters 

that are ideal for the crops. Losses could also be minimised in similar ways. 

Optimising the criteria entails maximising benefits or minimising losses for a 

specific land use (Beek and KJ 1978).  

The following subsections present biofuel crops’ requirements for these 

ecological parameters. In addition, the extent to which freight transport plays 

great role in determining the cost and the CO2 savings of biofuel suggests 

that land transport modes (rail and road) be factored in this spatial 

optimisation. Presence and sufficiency of transport system are important 

factors to be considered (FAO 2007). Settlements also offer such services as 

labour supply, indicating the need for their proximity to feedstock production 

sites. Some crops at certain locations may require irrigation. Thus, the 

proximity of the cultivation sites to surface water bodies would be crucial in 

this case. 

2.3.2 Aspect 

Aspect (orientation of the slope) plays important role in microclimate of a site. 

Thus, its effect is indirect and may not always differ on its influence from crop 

to crop. However, crops with higher solar radiation favourability may prefer 

slope orientations that do receive higher insolation. In the northern 

hemisphere, south facing slopes may receive six times more solar radiation 

than north facing slopes (Auslander et al., 2003). Nigeria lies in the northern 

hemisphere (4°N to 14°N), south facing slopes might generally be expected to 

receive higher insolation than north facing slopes though, some exceptions 

may occur due to local microhabitat or local deviations from general 

landscape pattern. 

2.3.3 Elevation 

Incident sunlight increases with altitude, thus for many hours of the day at 

high altitudes, solar radiation may be well above saturation level for 

photosynthesis of C3 plants but providing greater photosynthetic 

opportunities for C4 plants like sweet sorghum (Gale 2004). However, in most 

cases temperature decreases with altitude in the troposphere and when there 
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is less than the average lapse rate of the ambient temperature, there could 

be a potential transpiration increase. Sorghum can be found at elevations 

ranging from mean sea level to 1,500 m, though cold tolerant varieties are 

grown at elevations between 1,600 and 2,500 m in Mexico (Srinivasa Rao et 

al., 2013). The altitude for growing sugarcane ranges from sea level to 1,000 

m (Ridge 2013) or a little above 1000 m (Duong 2007).  

Though highest cassava production is expected at tropical lowlands, below 

150 m asl, varieties exist that can grow at altitudes above 1,500 m asl (DPP 

2010; USDA n. d.), especially near the equator where it can be found at 

about 2000 m asl (CIAT 2011). But the crop grows better below 1,500 m 

(Kouakou et al., 2016). The altitude for the crop range from sea level to 2,300 

m asl (Hillocks et al., 2002). However, the field should  not be in low-lying 

and flood-prone areas (DPP 2010). A research in Nigeria and Tanzania – the 

largest cassava producers in Africa – linked altitude with cyanogenic 

compound in the crop (Oluwole et al., 2007). The mean levels were found to 

be 162 mg HCN (hydrogen cyanide) eqKg-1 for cassava planted on areas 

<100 m above sea level as compared to 70 mg HCN eqKg-1 for those on 

areas >100 m above sea level. In Nigeria, a research found that only 2% of 

the sampled cassava fields lie 800 m asl and above, notwithstanding the 

sampling bias towards cassava producing areas (Ugwu and Nweke 1996).  

Oil palms are found to be surviving at altitudes as high as 1,700 m asl 

though, the densest, semi-natural populations are generally confined at or 

below 500 m asl (Elbassam 2010; Lai et al., 2012) and thrive best between 

300 and 400 m asl (Verheye 2010; Corley and Tinker 2016). While the West 

African Oil palm belt was observed to be within 400 m asl, the drier East and 

Southeast Africa have occurrence of the crop only within 1,000 m asl near 

lakes or water courses with reasonable rainfall, but observed at 1,300 m asl 

on Mount Cameroon (Verheye 2010). Though Jatropha can be grown at any 

altitude (Laviola et al., 2017), the mainly recommended altitude is in the 

range of 0 to 500 m asl (Orwa et al., 2009; FAO 2010; Islam et al., 2011; 

Pandey et al., 2012; Vera Castillo et al., 2014) up to 1,200 m (Deeb n. d.) 

and 1,800 m (Achten et al., 2008; Martin and Gunter 2013) in some areas.   
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2.3.4 Insolation 

Solar radiation is one of the crucial climate elements that influence plants 

growth and development (Campillo et al., 2012). The radiation intercepted by 

the plants brings the light energy for photosynthetic processes together with 

water and carbon dioxide. Radiation Use Efficiency (RUE) of sweet sorghum 

is high at about 1.3 to 1.7 g MJ-1 (Srinivasa Rao et al., 2013) and can remain 

fairly constant throughout the growing season (Ceotto et al., 2013). High light 

intensity promotes tillering in sugarcane and growth increases with insolation 

intensity of 18 to 36 MJm-2 (Duong 2007). Reduction of 78% insolation was 

found to significantly reduce tuber and leaf growth in younger cassava plants 

by 86% and 47%, respectively (Fukai et al., 1984). The researchers also 

found that 32% insolation reduction decreased crop growth rate by half of the 

control regardless of the crop growth stage.  

For oil palm, the ideal solar radiation requirements is put at 15 MJm-2 per day 

(Stenek and Connell 2011; Corley and Tinker 2016). In Malaysia, a 

theoretical model was used to deduced that a radiation change from 6.23 to 

5.69 GJm-2year-1 led to oil palm yields loss of 2.6 tonnes of Fresh Fruit Bunch 

(FFB) ha-1year-1 (Corley and Tinker 2016). Adult Jatropha leaves are said to 

adapt to high radiation intensities (Jongschaap et al., 2007) and are unsuited 

to growing under shade (FAO 2010). 

2.3.5 Photoperiodism 

The amounts of daylight and darkness in 24 hours daily cycle is called 

photoperiod and this influences plants growth and development depending 

on the plant type, time of the year and the location (Jackson 2009). Sweet 

sorghum is a short-day plant with 10 to 11 hours optimum photoperiod during 

flower initiation and a range of 10 to 14 hours (Turhollow et al., 2010; 

Srinivasa Rao et al., 2013). The number of days from sowing to panicle 

initiation (vegetative phase) in sorghum is affected by photoperiod and 

temperature (Ellis et al., 1997). Short days and cloudy days adversely affect 

sugarcane while high light intensity and longer days promote tillering. Growth 

increases with 10 to 14 daylight hours (Duong 2007).  
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Cassava roots development may not be limited by photoperiodism in the 

tropics as the day length in the region are very small, ranging from 10 to 12 

hours. But experiments where day lengths were artificially adjusted shows 

that 12 hours may be optimal for the crop though, with probable varietal 

differences (Hillocks et al., 2002). Generally, shorter days promote storage 

roots development, while longer days promote growth of shoots and 

decrease storage roots development (Hillocks et al., 2002). Thus, more than 

12 hours day light can cause low roots yield, while flowering is enhanced by 

short day periods (DPP 2010). Cassava needs large amounts of Sunshine 

with an optimum of 5 to 6 hours per day (Elbassam 2010; Corley and Tinker 

2016).  

Though oil palm is a typical of rainforest, it rarely regenerate under dense 

forest due to lack of sunshine (Verheye 2010). The crop is called light-loving 

crop with an ideal sunshine duration of at least 5 hour per day in all months 

and 7 hours per day in some months (Kee 1972; Verheye 2010; Stenek and 

Connell 2011; Corley and Tinker 2016). Yields are directly related to 

sunshine as 1,000 and 2,250 hrs per annum could give potential yields of 

17.6 and 30 tonnes per year, respectively (Verheye 2010). Jatropha is 

reported to be not sensitive to day length (Orwa et al., 2009; FAO 2010). 

2.3.6 Rainfall/water 

Sweet sorghum can tolerate the two extremes of water stress – dry spells 

and water logging (Ahmad Dar et al., 2017). Under the former, it can resume 

growth at the receipt of water. And it can grow under flood conditions unlike 

maize that can die immediately. Unless the soil can hold much water, rainfall 

of 500 to 600 mm is best for sweet sorghum if ideally distributed across the 

growing season (Reddy et al., 2012). Though the crop can survive supply of 

less than 300 mm up to 100 days, it grows well in areas receiving rainfall of 

more than 700 mm and typically it needs between 500 and 1,000 mm to 

achieve good yields while optimum rainfall amounts range from 550 to 800 

mm (Rao et al., 2009; Srinivasa Rao et al., 2013).  
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In the case of sugarcane fields, water requirements refers to the total 

amounts needed to successfully cultivate the crop and is usually met through 

rainfall, irrigation and groundwater where it is within the reach of the roots 

(Shrivastava et al., 2011). Where irrigation is not practiced (completely rain-

fed), it requires a minimum of 1,500 mm (Verheye n. d.) or even 2,000 mm 

per year (NETAFIM 2014). Other different ranges were also found to span 

between 1,250 and 2,500 (Chandrasekaran et al., 2010) or 1,500 and 2,500 

mm (Oleivera and Ramos 2015). Depending on climate condition and the 

crop’s gestation period, sugarcane’s seasonal water requirement ranges from 

1,100 to 1,500 mm (Duong 2007) with daily evapotranspiration rate of 4 to 7 

mm (NaanDanJain 2013). The crop requires a minimum of 600mm (ETB 

2007).  

Most sugarcane cropping systems in Sub-Saharan African countries rely on 

irrigation. In Nigeria, abrupt cessation of rainfall during the growing season 

hinders increased sugarcane production and thus necessitates irrigation 

(Ishaq and Olaoye 2009). In addition, efficient supply of water to the field is 

crucial to saving production costs. For sugarcane farm, bulk water supply 

usually costs 19% and 4% for total capital and operating expenditures, 

respectively (NETAFIM 2014). However, these vary depending on the 

distance of the water source from the field, type of the source (surface or 

underground) and the nature of the topography between the field and the 

source. 

Cassava is a valuable crop in areas with rainfall uncertainties (availability and 

distribution) and can be grown in areas with as low rainfall as 500 mm and as 

high as 5,000 mm (DPP 2010; USDA n. d.). Though the crop is found in 

areas with rainfall amounts between <600 and >1,500 mm, adequate is 

considered to be between 1,000 and 2,000 mm per year (Hillocks et al., 

2002). It grows better in regions with rainfall between 1,000 and 1,500 mm 

per year (Kouakou et al., 2016). Though the crop is drought tolerant with a 

two to three months dormancy period, it produces higher yields if it is 

regularly watered and the soil is not left completely dried (DPP 2010). An 

experiment in Nigeria shows that with 730 mm effective rainfall, rain-fed plots 
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produced less than 5 tonnes ha-1. While plots supplemented with 100% 

rainfall drip irrigation produced 28.1 tonnes ha-1 of roots yields (FAO 2013).  

In another experiment, total water use of 1,491.57 and 1,701.13 mm were 

recorded for 100% available water cassava drip irrigation in the 2006/07 and 

2007/08 cropping season, respectively. While 729.00 and 651.13 mm were 

recorded for 0% irrigation in the same seasons, respectively. The total dry 

matter obtained in the two seasons, respectively, were 49.12 and 37.62 

tonnes ha-1 for 100% irrigation and 7.12 and 5.92 tonnes ha-1 for the 0% 

irrigation (Odubanjo et al., 2011). Available soil moisture, which is in most 

cases associated with precipitation, is said to influence the crop yields more 

than any other single factor (Aiyelari et al., 2002). Drier areas with 400 mm of 

rainfall were also reported to support cassava growth, but in Thailand, 

maximum roots yields were correlated with 1,700 mm during 4th to 11th 

months after planting (FAO 2013). 

Rainfall or water availability seems to be the major climatic factor affecting 

the distribution of oil palm (Kee 1972; Lai et al., 2012; Corley and Tinker 

2016). It was observed that the West African Oil palm belt is limited to 1,200 

mm of rainfall per annum and an area around Accra, Ghana was also 

observed to have absence of oil palm estates due to what was described as 

low rainfall of 650 mm per annum (Verheye 2010). In addition, the crop 

cannot tolerate droughts longer than 3 months and the annual rainfall should 

be in the range of 1,500 to 3,000 mm per annum (Elbassam 2010).  

Over 4,500 mm per annum was observed to support production on Mount 

Cameroon where the rains concentrate in the afternoon heavy downpours 

with enough sunlight hours in between (Verheye 2010). In areas of summer 

rainfall and winter drought where the crop is adapted, drought should not be 

more than 3 months (Verheye 2010) though this may not markedly reduce 

the crop’s health but bunch production is reduced (Kee 1972). Rainfall 

regime is believed to influence mill activity where it can support continuous 

operation in areas without deficit, while in areas of irregular rainfall pattern, 
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the mills are forced to slow down production in some parts of the year 

(Verheye 2010). 

Together with soil, rainfall amounts and distribution are the major ecological 

factors limiting jatropha yields (Concenco et al., 2014). Optimum annual 

rainfall ranges from 1,000 to 1,500 mm (Jongschaap et al., 2007; Elbehri et 

al., 2013) though in some areas lower optimum amounts of 600 mm was 

given (Deeb n. d.). Though the crop is said to survive with annual rainfall of 

400 mm, for production purposes it requires 900 to 1,200 mm (Maes et al., 

2009; FAO 2010) evenly distributed within the year, otherwise irrigation 

would be needed (Grass 2009). Mean annual rainfall is in the range of 300 to 

1,000 mm or more (Orwa et al., 2009) and the upper limit can reach up to 

2,000 mm (CABI 2018) though it was found to occur naturally in areas with 

up to 3,121 mm (Achten et al., 2014) and above 4,000 mm (Jongschaap et 

al., 2007).  

Jatropha can be found in areas with as low rainfall as 250 mm (Pandey et al., 

2012) and can withstand up to two years of drought after which it grow again 

with rain, while 1,500 mm was reported under irrigation especially in the first 

year for proper establishment of the plant (Deeb n. d.). Its water consumption 

rate is put at 6 litres per week throughout the growing season (Giwa et al., 

2018). This irrigation amounts was also reported in India to be the optimum 

and that under rainfall, oil content is better in the range of 600 to 1,300 mm 

(Kumar et al., 2011). However, irrigation is reported to be less meaningful 

both socially and financially after first 3 months and that the crop can survive 

200 mm and grows well with 600 mm annual rainfall (JA 2009). But the plant 

is said to produce better annual seed yields with irrigation than without 

irrigation (Phiwngam et al., 2016). 

2.3.7 Relative humidity 

Relative humidity (RH) affects many physiological and morphological 

processes displayed by plants (Rodrigues et al., 2016) and this can be 

directly or indirectly. It reduces plant productivity when it is too much high (air 

is saturated) by reducing transpiration activities which aid translocation of 
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nutrients in the plants. High humidity of >90% together with temperature 

range of 25 to 35°C are favourable for infections and mold development 

(Reddy et al., 2012). When RH is too low, plants close stomatal openings to 

reduce water loss which results in less photosynthetic activity and thus, 

slowed growth. On the other hand, high humidity together with high 

temperature increases rate of organic matter decomposition (Peer 2010) 

which increases humus content and thus fertility of the soil. Rate of 

photosynthesis is accelerated by RH range of 75% – 85% though, this 

depends on the environmental changes (Rodrigues et al., 2016). On a trade-

off note, high humidity is associated with unfavourable fungi development 

(Peer 2010; Rathore et al., 2015).  

Relative humidity for Sweet sorghum ranges from 15% to 50% (Rao et al., 

2009; Srinivasa Rao et al., 2013). Sugarcane is one of the C4 crops that 

thrives in high humidity areas (Chandrasekaran et al., 2010). The most 

conducive relative humidity for grand growth range from 80 to 85% though, 

during ripening phase 45 to 65% is favourable together with limited water 

supply (Duong 2007). For proper growth, cassava requires a fair degree of 

relative humidity as it absorbs moisture from the unsaturated air layer like 

many other plants. According to Cock et al. (1985), leaf photosynthesis and 

air humidity were positively and significantly related though both misted and 

unmisted experimental fields were irrigated. The highest photosynthetic rate, 

which resulted in higher root yields, were observed when relative humidity 

was between 70% and 80% (El-Sharkawy 2007).  

In a field experiment to examine the relationship between the increase in the 

height of cassava growth rates and agro-climatic parameters in Ilorin, 

Nigeria, the highest rate of increases in cassava plant growth was recorded 

in June when the relative humidity was 85% though, cassava flowering 

occurs at the beginning of dry season when the relative humidity falls below 

70% (Yahaya et al., 2016). Field trials in Indonesia showed that relative 

humidity is partly positively associated with oil palm yields (Tao et al., 2017). 

Throughout the year, relative humidity should be above 75% (Verheye 2010). 

Preferably, It should be greater than 80% and 3 consecutive months of less 



70 

 

than 50% may not be suitable for the crop due to stomatal opening restriction 

which highly reduce CO2 intake (Stenek and Connell 2011).  

Jatropha is said to be able to survive almost entirely with air humidity; without 

rainfall (ETB 2007). Its seeds germination may take less than 10 days if the 

RH is right and temperature is greater than 25°C (Öhman 2011) and the 

higher the humidity, the faster the rooting (Peer 2010). High humidity created 

the special condition in Cape Verde which support growth of the crop in 

areas with only 250 mm rainfall (DB n. d.). Jatropha was planted in areas 

with an average daily RH ranging from 20% to 48% (Niu et al., 2012) and 

30% to 80% (Sapeta et al., 2013). The crop growth was found to be higher 

under high RH (80%) condition compared to low RH (40%) condition 

irrespective of different treatments of sodium and potassium ions (Rodrigues 

et al., 2016). In a 12 weeks experiment on sowed jatropha seedlings during 

rainy season in Kano, Nigeria, the lowest RH recorded was about 45% and 

the highest was about 75% both of which were recorded in the shade 

experiment though, seedlings nurtured in the sun showed faster growth than 

those in the shade (Adamu et al., 2017).  

2.3.8 Slope 

Interacting processes across a typical soil catena influence plant growth and 

development at specific landscape positions and thus, the spatial and 

temporal variations of these processes need to be understood to optimise 

crop placements at the fields scale (Thelemann et al., 2010). Soil loss 

increases with slope gradient up to 40% at which point it decreases with 

slope gradient up to 50% (Kapolka and Dollhopf 2010). In Indonesia, slope 

that are <8% are suitable for sweet sorghum (Nurjaya et al., 2013). Gentle to 

moderate slopes are suitable for sugarcane cultivation though, smaller 

plantations may occupy marginal slopes depending on rainfall/water 

availability (James 2004). However, sheet and gully erosions are frequent in 

areas of torrential rainfall especially with steeper slopes.  

Sugarcane is usually cultivated in rows, the typical gradient of which is rarely 

steeper than 2.0 to 2.5%, except on very short rows (James 2004). Furrow 
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irrigation system is said to be suitable for land surfaces with less than 3% 

slopes (Qureshi et al., 2001). Difficulty might be experienced on slopes 

greater than 12.0% with higher soil erosion potential (Ridge 2013). Cassava 

was reported to have been cultivated on slopes as high as 35% and 85% at 

some extreme in Southern Mindanao, Philippines. However, massive soil 

losses are associated with slope cultivation such that 1%, 5% and 15% 

slopes are said to cause soil loss to the tune of 3, 87 and 221 tonnes ha-1 per 

year, respectively (Proud and Viloria 2004). The recommendation was, 

therefore, that cassava cultivation should only be supported on flat fields and 

valley bottoms or where terraces ranging from 0% to 3% have been formed 

(Proud and Viloria 2004). Cassava field was also recommended not to have 

slopes higher than 8% and it was recommended to make the field across the 

slope or slightly inclined to the contours in order to minimize soil erosion 

(DPP 2010).  

Oil palm fields should be flat (Stenek and Connell 2011) where possible or 

undulating because steep slopes increase soil erosion and costs of 

production (Verheye 2010). Paramanthan (2000) classified slopes into five 

categories based on its limiting effects on oil palm cultivation. These are non-

limiting (0 to 4%), minor limitation (4 to 12%), moderate limitation (12 to 

23%), serious limitation (23 to 38%) and very severe limitation (>38%). The 

best slopes for the crop are those less than 23% (Corley and Tinker 2016). It 

was also reported that the crop can be grown on slopes with 38% inclination, 

but extensive areas should not have slopes greater than 29% to avoid 

excessive management costs, harvesting problems and extensive erosion 

(Kee 1972).  

Slope is one of the physical factors affecting the adoption of jatropha in 

Nigeria (Mas'ud 2016). Though the crop can grow on sloping lands (Deeb n. 

d.), intercropping with crops that help soil conservation was recommended on 

sloping fields to further reduce rate of erosion (Phiwngam et al., 2016) and/or 

the rows should be along the contours to minimize erosion (Peer 2010). On 

the other hand, where the soil is heavy, sloping field is desired to increase 

drainage (Peer 2010). But it is recommended that slope should not exceed 
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30% (Borman 2011). An analysis in China classified slopes for jatropha into 3 

– less than or equal to 15° (26.8%) as suitable, 15° to 25° as moderate and 

above 25° (55.55%) as unsuitable (Wu et al., 2009), above which was 

excluded in another research in the same country (Zhuang et al., 2011). 

Optimal slope is given as 3° (7%) to 10° (22%) (Borman 2011). 

2.3.9 Soil 

Soil is the medium for plant root development, nutrients and moisture supply 

and as the support for the stem/stalk erection. Soils vary spatially (vertically 

and horizontally) and the effects of these variation on different land uses are 

well appreciated (Olaniyan and Ogunkunle 2007). In 1991, Nigeria’s Federal 

Department of Agricultural Land Resources (FDALR) identified five orders of 

the USDA’s soil taxonomy from the country’s soil system (Essoka and 

Essoka 2014). These are Alfisols, Inceptisols, Vertisols, Ultisols and Entisols. 

Among these, the best soils for sorghum are said to be Alfisols (red) or 

Vertisols (black clay loamy) with 6.5 to 7.5 pH, organic matter >0.6%, depth 

>80 cm, bulk density <1.4 gcc (gram per cubic centimetre) and water holding 

capacity >50% field capacity (Rao et al., 2009).  

Sugarcane can successfully be grown on diverse soils (Elbehri et al., 2013; 

Ridge 2013), ranging from sandy to clay-loams and heavy clays (Duong 

2007) and therefore, does not require any specific soil types. However, the 

crop grows well on good soils with relatively less management requirements 

but not on poor soils where higher conservation and management practices 

are necessary (Meyer et al., 2011). This is because sugarcane is a heavy 

nutrients consumer (NaanDanJain 2013), thus soil replenishment may be 

needed to maintain sugarcane productivity. In Nigeria, sugarcane varieties 

cultivated on vertisols comparatively presented higher yields than those 

cultivated on alluvial soils (Kawuyo and Wada 2004). 

Though cassava does not have much requirements for soil, its yields depend 

to some extent on soil condition (FAO 2013). The crop gives good yields on 

loamy soils with medium soil fertility and good drainage, but grows poorly on 

waterlogged, clayey and stony soils which should be avoided (Abass et al., 
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2014; Kouakou et al., 2016; Adekunle et al., n. d.). On heavy soils, cassava 

can be killed by one day waterlogging (CIAT 2011). It is frequently cultivated 

on leached oxisols, ultisols and alfisols as well as some patches of 

inceptisols and entisols (CIAT 2011). Well drained, deep, loamy soils were 

recommended for cassava in Nigeria though, if loamy is not available, sandy 

and clayey soil must be appropriately managed (ICS-Nigeria and IITA n. d.). 

On very rich soils, cassava may produce leaves and stems at the expense of 

tubers (DPP 2010).  

Oil palm requires deep soils and especially at juvenile stage. The crop cannot 

withstand permanent flooding but can thrive well in areas of fluctuating water 

table and lateral flow and these areas are found to be amongst high yielding 

(Elbassam 2010; Verheye 2010; Lai et al., 2012; Corley and Tinker 2016). 

For best planting, soil is described to be flat, deep, uncompacted alluvial clay 

with high and balanced nutrient elements (Stenek and Connell 2011). 

Though Olivin (1986) gave five grading levels for soils suitable for oil palm 

cultivation, he generally described its good soil as having little gravel, 

reasonable drainage with enough exchangeable cations and good level of 

organic matter (Corley and Tinker 2016). Some of the soil types reported to 

be unfit for oil palm are saline, poorly drained, acid sulphate, leached, deep 

sandy, volcanic ash, lateritic and highly sloppy or hilly soils (Kee 1972; Corley 

and Tinker 2016). Physical soil properties such as depth, texture and 

structure largely determine the suitability of soil for oil palm production (Kee 

1972) with structure and soil moisture said to be more important than 

nutrients as far as the crop is concerned (Verheye 2010). 

Jatropha is reported to tolerate free or impeded drainage, alkaline or neutral 

reactions, light or medium texture and possess some special tolerances for 

infertile, saline, shallow and sodic soils (CABI 2018). Though jatropha has 

less rigid requirements for soil, seed yields of 2 to 5 tonnes ha-1 per year 

were believed to be attained on fertile soils and high inputs as compared to 1 

to 2.5 tonnes ha-1 per year on degraded lands and low inputs amounts 

(Elbehri et al., 2013). Thus the plant can only provide commercially viable 

yields if sufficient amounts of nutrients are available (Wahl et al., 2012). Soil 
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of the optimum areas should be free-draining sands and loams with no risk of 

waterlogging (Orwa et al., 2009; FAO 2010; Elbehri et al., 2013; Deeb n. d.). 

Because sandy soils are usually poor in nutrients, sandy clay loams was 

given as the best soil texture for jatropha (Rashad 2013). In India, jatropha 

withstand very poor soils and saline conditions and its highest oil contents 

were found to be obtained in sandy, well drained soils (Kumar et al., 2011). 

Heavy soils restrict roots development (Orwa et al., 2009). 

2.3.10 Soil pH 

Soil pH influences solubility of many nutrients where acidic increases 

solubility while basic increases insolubility (Peer 2010). This, therefore, 

affects the availability of nutrients to plants and the rate at which the plants 

take up the nutrients. Hayward and Berstein (1958), reported that sweet 

sorghum can tolerate pH levels of 5.5 to 8.5 (Elbassam 2010). Suitable soil 

pH for sugarcane ranges from 5.0 to 8.5, though the optimum hovers around 

6.5 (NaanDanJain 2013). It was reported that there are varieties that can 

tolerate pH levels as low as 4.2 and as high as 8.6 (James 2004). Cassava 

yields are usually not affected by low soil pH until it reaches below 4.2 (FAO 

2013) and can tolerate wide range of 4 to 8 pH (USDA n. d.). However, Islam 

(1979), reported that cassava had optimum growth at pH 5.5 to 7.0 but top 

growth declined markedly above 7.5 to 8.0 (CIAT 2011). If provided with 

correct fertilizers, oil palm can thrive at soil pH 4, but the optimum range 

between 5.5 to 7 (Elbassam 2010) or 5.6 to 6.0 (Stenek and Connell 2011). 

The maximum soil fertility for jatropha is said to be at pH range of 6.0 to 7.0 

(Peer 2010). Wider ranges were given as 5.5 to 8.0 (Rashad 2013) and 6.0 

to 8.0/8.5 (FAO 2010), not exceeding 9 and the crop might require addition of 

Calcium and Magnesium fertilizations on very acidic soils (Achten et al., 

2008; Pandey et al., 2012).   

2.3.11 Temperature 

Temperature plays important role in plant growth and development. Plants 

differ in their cardinal, optimum, lethal minimum, lethal maximum as well as 

failure point temperatures (Luo 2011). Plants’ resuscitation is possible within 

cardinal but not at lethal temperatures. Temperature is also shown to have 
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promote or discourage pests and pathogen attacks on plants (Jiang et al., 

2017). Sweet sorghum can tolerate temperature range of between 12° and 

37°C and with an optimum of 32° to 34°C for growth and photosynthesis 

(Srinivasa Rao et al., 2013; Khawaja et al., 2014). The minimum ranges from 

7° to 10°C for germination and 15°C for growth (El Bassam, 2010). However, 

planting should occur when the temperature reaches 18°C at 5.1 to 10.2 cm 

depth (Turhollow et al., 2010). 

The optimum temperature for sugarcane range from 26°C to 32°C 

(Chandrasekaran et al., 2010). Germination requires a base temperature of 

12°C (Duong 2007), it slows down below 18°C and fails at temperatures 

below 11°C though, varieties differ in their temperature sensitivities (Ridge 

2013). The optimum for sprouting ranges from 28°C to 30°C and for tillering 

and grand growth, it hovers around 30°C (Duong 2007). But germination of 

stem cuttings requires a range of 32°C to 38°C, while temperature above 

38°C reduces photosynthetic activity, increase transpiration and the spread of 

red not disease is higher. Bull (2000), reported that pathogens are more likely 

to cause the death of setts (cane cuttings) at temperatures below 18°C. If the 

mean daily temperature falls below 24°C, stalk elongation during grand 

growth phase could be affected but elongation rates increases as it climbs 

above (Ridge 2013).  

Temperature is important to cassava such that all growth stops at 10°C and 

requires warm humid climates where temperature averages between 25°C 

and 29°C (DPP 2010; Yahaya et al., 2016; USDA n. d.) or between 23°C and 

25°C (Kouakou et al., 2016). Though it can tolerate 16°C to 39°C and 

photosynthesis reaches its maximum at 30°C to 40°C, the crop’s behaviour 

indicates that its growth is favourable under mean annual temperatures 

ranging from 25°C to 29°C (Hillocks et al., 2002).  

Oil palm yields are low in cool conditions and requires mean temperatures 

between 24°C and 28°C though, palms grown at high elevations or beyond 

latitudes 15° North and South may be growing with mean temperatures of 

less than 20°C (Elbassam 2010; Corley and Tinker 2016). Growth of 
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seedlings was found to be best at 25°C in a controlled experiment and only 

43% and 14% growth was recorded at 20°C and 17.5°C, respectively while at 

15°C growth is halted (Kee 1972; Verheye 2010; Stenek and Connell 2011; 

Corley and Tinker 2016). The ideal maximum temperature should rage 

between 29°C and 33°C, while the ideal minimum should be between 21°C 

and 24°C and the site should be devoid of extreme temperatures and wind 

(Kee 1972; Verheye 2010; Corley and Tinker 2016; Kamil and Omar 2016). 

Though it was reported that stomata begins to close at 32°C, a couple of 

researches have shown that the optimum rate of photosynthesis occurs at 

33°C and can remain constant up to 38°C provided stomatal closure did not 

occur due to difference in the leaf and air temperatures (Corley and Tinker 

2016). 

Optimum temperature for jatropha ranges from 20°C to 28°C (Orwa et al., 

2009; FAO 2010; Elbehri et al., 2013). In an attempt to define jatropha 

climate in its area of natural occurrence as compared to that of its plantations 

sampled world-wide, 95% of the specimens were found to grew in areas with 

average minimum temperature of the coldest month above 10.5°C and the 

mean annual temperature range was 19.3°C to 27.2°C though, 11% of the 

plantations were found in areas with minimum temperatures below 7°C (Maes 

et al., 2009). It was also reported that mean annual temperature ranges 

between 11°C and 28°C (CABI 2018) or 25°C to 35°C (Thapa et al., 2018). A 

wider range of 15°C to 40°C was also reported and that the crop is altered 

more by lower temperatures than by altitude or length of daylight (Pandey et 

al., 2012). 

2.3.12 Nearness to railways 

The cost of feedstock haulage is said to be higher than the cost of 

transporting the products (Searcy et al., 2007). Thus, in-bound movement of 

feedstock to the processing refinery is a crucial consideration in biofuel 

production. As a variable in this context, nearness here refers to the 

closeness of the feedstock production sites to the railway lines. Railways are 

said to be capable of boosting both market potential and utilisation of 

biomass because it offers less energy use and less cost per tonne moved as 
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compared to roads (Bonilla and Whittaker 2009). Depending on the nature of 

the research, spatial analysis for biofuel supply chain mostly assumes 

feedstock source or biorefinery to be within the shortest possible distance of 

railway lines (Ng et al., 2018) because it is budget friendly for long distances 

and moving bulk amounts (Aboytes-Ojeda et al., 2019).  

Transportation by railways is suitable for haulage of large feedstock 

quantities in areas with railway networks (WBA 2018). However, for short 

distances, biomass transportation by rail is not cost effective due to its 

relative high fixed costs (Lin et al., 2016). The impact of the high fixed cost 

diminishes with distance, making this mode of transport ideal for long hauls 

(Searcy et al., 2007). Though the nearness between the transport network 

(rail and road) and the farm is based on Euclidean distance, the freight 

movement is assumed to be along the actual network. This improves the GIS 

modelling of the reality in planning feedstock movement from the farms to the 

processing plants (Mohd Idris et al., 2018).    

2.3.13 Nearness to roads 

As seen in the previous subsection, it is more cost effective to move 

feedstock or products on roads than railways within relatively shorter 

distances because of its high variable cost. Road transport is said to be the 

most important freight mode because it can provide within farm connectivity 

(in large farms), provides greater accessibility to farms and in most cases 

where railways are used, feedstock collated in farms must be brought by 

roads to the nearest railway station (Zandi Atashbar et al., 2018). Apart from 

distance, other items believed to influence freight movement are biomass 

moisture content, dry matter loss, bulk density, delivered energy content, 

drying rate, storage location and period, payload constraints, yields of the 

land, vehicle size and warehousing and spatial distribution of the biorefinery 

(Bonilla and Whittaker 2009).  

In general, where pre-treatment technologies does not exist or are inefficient 

and the spatial distribution of the feedstock is dispersed, the local transport 

costs tend to be higher (Bravo et al., 2012). Thus, for individual processing 
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facility, there is need for location-specific analysis through application of 

geospatial tools and transport road infrastructure (Golecha and Gan 2016). 

The network pattern may affect transport tortuosity factor which is the ratio of 

the actual Manhattan distance to the Euclidean distance (Voets et al., 2013). 

Local conditions of the road infrastructure may also influence emission due to 

freight. In Finland, a study that evaluated, among other things, the effect of 

road network condition on GHGs emissions of supplying biomass to 

Rovaniemi and Mikkeli found that the emissions were 31% larger in 

Rovaniemi supply chain than Mikkeli even though the transport distances 

were 22% larger. The researchers opined that this disproportionate emission 

was due to the quality and density of the road network which is poorer in 

Rovaniemi than in the Mikkeli region (Jäppinen et al., 2011). Therefore, 

optimising logistics over roads network plays significant role in biofuel 

production and making the business more efficient and profitable (Alam et al., 

2012)  

2.3.14 Nearness to settlements 

Because the processing facilities would need to be sited as much near to the 

settlements as possible, the feedstock cultivation site would need to be as 

much close to the settlements as possible to minimise haulage costs and 

carbon footprints as seen in the two previous subsections. Human 

settlements are said to only be rationally planned if done within the 

framework of good understanding of the potentialities of the surrounding 

region, not only for managing population flow, but also designing its 

economic role, particularly siting industries and residential areas which not 

only satisfy economic requirements but also minimise environmental 

disruption (Ramachandran 1980). In fact, it is said that settlements’ 

sustainability has economic dimension which if failed, social, historical and 

environmental dimensions would need governance arrangements to lead to 

revitalisation and continued use (Minnery 2012). Developed countries like UK 

have long realised the benefits of boosting growth through nurturing clusters 

and connectivity across cities and their vicinities to make them capable of 

developing and attracting successful businesses (BEIS 2017).  
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It is believed that as a general guideline, processing facilities placed in 

remote areas would have 10% higher operating costs than those sited near 

populated areas due to such reasons as accessibility, labour and need for 

higher salaries to attract workers to remote areas (Searcy et al., 2007). The 

same could also be said for the farms that produce the feedstock for the 

processing facilities. Farms are characterised with economic activities and 

thus requires labour supply and other services. According to King (2020 ed.), 

the benefits of placing economic activities within and around cities are 

highlighted under capitalism and even in countries where this system of 

economy is denounced, cities remained the leading hubs for economic 

activities. Economists refers to this as agglomeration economics, comprising 

such benefits as being close to suppliers or markets, mutual relations with 

other industries, easier access to such services as banking, insurance, 

utilities and enjoying access to labour, market and other amenities (King 

2020).  

2.3.15 Nearness to surface water 

Water is not usually available at the sites where and the time when it is most 

needed (Winter et al., 1998). Surface water bodies are highly significant in 

crop cultivation especially for the crops that require irrigation such as 

sugarcane for improved productivity (Sultana and Kumar 2012). Section 2.3.6 

had discussed extensively the water requirements of the biofuel crops. 

Realisation of this importance led to the suggestion in the UK that in places 

without surface water bodies, systems should be installed to harvest and 

store the increased winter rainfall to balance farms summer supply and 

demand (Benn 2008). This could be applied to Nigeria where the heavy 

downpours during the peak of the rainy season could be captured to balance 

dry season shortages. Where surface water exists, such as rivers and lakes, 

they provide important source of water for human life and industrial purpose 

(Jiang et al., 2020). Apart from irrigation, which is one of the main human 

uses, surface water could provide a means of freight movement and power 

generation (Munagala 2017). Though there may be possibility of drawing 

water from underground, only proximity to surface water bodies is factored in 
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this work due to complexity that may ensue if underground water is 

considered considering the spatial scope of the study area (Morato et al., 

2019).  

2.3.16 Summary  

This chapter covered two important topics; overview on the selected crops in 

Nigeria showing some of their advantages over others as biofuel crops and 

some detailed information on the requirements of the crops showing how 

important these requirements may be for their growth and development as 

well as some reference to the ideal values for these requirements. Table 2.1 

shows some of the optimal values for the crops. This list of 14 requirements 

for siting a feedstock cultivating farm though not exhaustive, provides strong 

basis for almost all the spatial variables that need to be considered for this 

purpose.  

Looking at what the literature suggests as the optimum requirement 

(considered in this work as most suitable), it is obvious the crops differ in 

terms of favourability for these environmental variables. While some favour 

higher values of the data range, others favour lower values. For example, 

while sweet sorghum is favoured best by rainfall of 500 to 1000 mm per 

annum, oil palm is favoured best by a range of 1800 to 2500 mm. Some 

crops have narrower range of optimal requirement than others. For example, 

while sugarcane requires an optimal soil pH of 6.5, what is optimal soil pH for 

jatropha range from 6.0 to 8.0. Sweet sorghum has the narrowest range of 

optimal temperature, while jatropha has the widest range. Cassava has the 

narrowest range of optimal elevation, while sweet sorghum has the widest. 

This variability in environmental requirements confirm the statement in 

section 1.6 that biofuels (which are crop – based in this research context), 

vary in their favourability profiles and these fine details need to be captured in 

order to provide meaningful analysis that can serve as a useful support for 

spatial decisions. It is not obvious from the literature cited in this chapter for 

the proximity variables (nearness to water, settlements, roads and rails) 

whether they are more important for some crops than others. This suggests 
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the need for incorporating expert knowledge to determine this. Except for 

surface water, under which sugarcane was mentioned due to its often 

requirement for irrigation, these geographical entities (proximity variables) 

are generally important for all the crops. Next chapter deals with creating the 

criteria maps and analysing the criteria weights, generating information 

regarding the importance of each criterion for a crop relative to other criteria. 

A discussion about comparing the crops in terms of these variables is added 

in subsection 3.4.5 based on the expert judgement.  

One very important aspect not considered in this list is the energy supply. 

Powering on-farm operations such as irrigation, planting, harvesting or 

ploughing usually uses liquid fuels most of which come from fossil fuels in 

Nigeria (Mkpadi 1987). This would offset some emission savings that could 

be realised from deploying biofuels. Potential energy alternative sources for 

rural agriculture were identified in the country as biomass, wind, solar, and 

small hydropower (Onyema 2010). Other operations such as on-farm storage 

may be powered with electricity from the grid which might be generated from 

hydro or natural gas sources. However, with gross inadequacy of electricity 

supply in Nigeria (Ezennaya et al., 2014), and to ensure at least emission 

neutrality of biofuels, powering feedstock production would be more 

appropriate if it is based on decentralised, renewable-source-based energy 

system which was shown to offer considerable advantages over the 

conventional grid system in terms of such benefits as protecting the 

environment, cleaner economy, energy efficiency, security and reliability 

(Oyedepo et al., 2018). Thus, the assumption here is that powering farm 

operations would be from off-grid, renewable-source-based system such as 

biomass or solar panels. Also, because the existing NNPC petroleum depots 

are considered to be the potential biofuel processing sites, the depots are 

assumed to have an existing power connection.  
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Table 2.1: Summary of criteria and parameter values for the biofuel crops 

Criteria Sweet 
sorghum 

Sugarcane Cassava Oil palm Jatropha 

Water/Rainfall 
(mm) 

500 – 1,000 

(Rao et al., 
2009; Reddy 
et al., 2012; 
Srinivasa 
Rao et al., 
2013) 

1,500 

(Chandrasekar
an et al., 2010; 
Oleivera and 
Ramos 2015) 

1,000 – 2,000 

(Hillocks et al., 
2002; Odubanjo 
et al., 2011; 
Kouakou et al., 
2016) 

1,800 – 2,500 

(Kee 1972; Verheye 
2010; Stenek and 
Connell 2011; Corley 
and Tinker 2016; 
Kamil and Omar 
2016)  

600 – 1,500  

(Jongschaap et al., 2007; JA 
2009; Elbehri et al., 2013; 
Deeb n. d.) 

Soil (Type) Vertisols, 
Alfisols 

(Rao et al., 
2009) 

Vertisols 

(Kawuyo and 
Wada 2004; 
Ridge 2013) 

Loamy Soils 

(Abass et al., 
2014; Kouakou 
et al., 2016; 
Adekunle et al., 
n. d.) 

Deep, Alluvial Clays 

(Elbassam 2010; 
Verheye 2010; 
Stenek and Connell 
2011; Lai et al., 2012; 
Corley and Tinker 
2016) 

Free drained sandy clay 
loams 

(Orwa et al., 2009; FAO 2010; 
Elbehri et al., 2013; Deeb n. 
d.) 

Soil pH 6.5 – 7.5 

(Rao et al., 
2009) 

6.5 

(NaanDanJain 
2013) 

5.5 – 7.0 

(CIAT 2011) 

5.6 – 6.0  

(Stenek and Connell 
2011) 

6.0 – 8.0 

(Achten et al., 2008; FAO 
2010; Peer 2010; Pandey et 
al., 2012) 

Temperature 
(°C) 

32 – 34 

(Srinivasa 
Rao et al., 
2013; 
Khawaja et 
al., 2014) 

26 – 32 

(Duong 2007; 
Chandrasekar
an et al., 2010)  

23 – 29 

(DPP 2010; 
Yahaya et al., 
2016; USDA n. 
d.) (Hillocks et 
al., 2002; 

25 – 32  

(Kee 1972; Verheye 
2010; Stenek and 
Connell 2011; Corley 
and Tinker 2016; 
Kamil and Omar 
2016) 

20 – 28  

(Orwa et al., 2009; FAO 2010; 
Elbehri et al., 2013) 
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Kouakou et al., 
2016) 

Relative 
Humidity (%) 

50 

(Rao et al., 
2009; 
Srinivasa 
Rao et al., 
2013) 

65 – 80 

(Duong 2007)  

70 – 85 

(El-Sharkawy 
2007)  

75 – 85 

(Stenek and Connell 
2011; Tao et al., 
2017)  

75 – 85 

(Rodrigues et al., 2016)  

Elevation (m 
asl) 

0 – 1500 

(Srinivasa 
Rao et al., 
2013) 

< 1000 

(Ridge 2013) 

150 

(DPP 2010; 
USDA n. d.) 

300 – 500 

 (Elbassam 2010; 
Verheye 2010; Lai et 
al., 2012; Corley and 
Tinker 2016) 

0 – 500  

(Orwa et al., 2009; FAO 2010; 
Islam et al., 2011; Pandey et 
al., 2012; Vera Castillo et al., 
2014) 

Slope (%) < 8 

(Nurjaya et 
al., 2013) 

< 2.5 

(James 2004) 

8 

(DPP 2010) 

0 – 4 

(Corley and Tinker 
2016)  

7 – 22 

(Borman 2011) 

Aspect 
(Bearing) 

140° – 230° 140° – 230° 140° – 230° 140° – 230° 140° – 230° 

Surface water 
proximity (km) 
(Sultana and 
Kumar 2012) 

0 – 5  0 – 5  0 – 5  0 – 5  0 – 5  

Road proximity 
(km) 
(Zandi 
Atashbar et al., 
2018) 

0 – 5  0 – 5  0 – 5  0 – 5  0 – 5  

Settlement 
proximity (km) 
(King 2020) 

0 – 15  0 – 15  0 – 15  0 – 15  0 – 15  



84 

 

Chapter Three – Criteria Maps and Weights 

  



85 

 

3 Chapter Three – Criteria Maps and Weights  

3.1 Introduction 

An overview of the methodology was presented in section 1.9. The current 

chapter is dedicated to production of maps for the criteria identified in the 

previous chapter. These criteria maps will serve as the inputs for the models 

that follows in the subsequent chapter. This chapter also presents the details 

regarding implementation of the AHP that was briefly discussed in section 

1.9.  

3.2 Data identification and acquisition  

3.2.1 Data identification 

The local geography and infrastructure (roads, power, water) availability are 

crucial in determining biorefinery location together with other important 

factors such as labour and tax incentives (Efroymson et al., 2016; Sharma et 

al., 2017). Land available and suitable for this purpose is determined by 

ecological factors such as climate, topography, soil and water, and socio-

economic factors such as labour, legal reserves, markets, investment and 

policies (Zhang et al., 2017). Relevant ecological requirements of biofuel 

crops were identified via literature investigation, as presented in the previous 

chapter. These requirements formed the criteria for the land suitability 

modelling. Once key criteria were identified, data on their distribution 

throughout Nigeria were gathered from different sources as described in the 

following subsections.  

3.2.2 Data acquisition 

Table 3.1 summarises the identified datasets to be used at this stage and the 

sources. 20 years of meteorological data (1993-2012) was procured in 2014 

from Nigerian Meteorological Agency (NiMet) for the purpose of the MSc 

research project mentioned in section 1.7. The data includes rainfall, 

temperature and relative humidity. An attempt was made to update the data 

with an additional 4 years of data (2013-2016) from the NiMet. However, this 

was not possible due to prohibitive cost. Further, the dataset contained 

substantial errors as the weather stations are not spatially randomly 
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distributed and there was insufficient number of samples (only 44 points for 

the whole Nigeria which is more than 900,000 km2). This error is more 

apparent in the rainfall data. It was deemed necessary to explore other 

sources. This is because it is a common knowledge that rainfall and soil 

factors are the major ecological variables for plants growth and development, 

and this was proven as shown by the weights generated (table 3.4) in section 

3.4.5. Also, there is wide spatial variation for annual rainfall in Nigeria with 

less than 500 mm in the north and around 3000 mm in the south, suggesting 

the need for using dataset that has lower levels of errors. Thus, Gaisma 

(Latvian word which means light used as the website name) data for rainfall, 

insolation and length of daylight were extracted. It is a global meteorological 

data sourced from the NASA Langley Research Centre (Atmospheric 

Science Data Centre - https://asdc.larc.nasa.gov/) and a published high 

resolution dataset of the surface climate over global land areas (New et al., 

2002). The Gaisma data is scaled down to a number of spatially randomly 

distributed towns for each country (https://www.gaisma.com/en/dir/ng-

country.html) and is obtained as point dataset (90 points for Nigeria). 

Temperature and Relative Humidity were sourced from the Nigerian 

Meteorological Agency (NiMet) as points dataset obtained from 44 

meteorological stations spread across Nigeria.   

Table 3.1: Data Description and Sources 

S/N Data Description/Attribute Source 

1 Agro-meteorology1 Rainfall, Insolation and 

Sunshine Duration 

Gaisma 

2 Agro-meteorology2 Temperature Maximum and 

Relative Humidity 

NiMet 

3 DEM  Elevation, Slope and Aspect USGS (SRTM) 

4 Soil pH Point Data NPFS 

5 Soil Soil Map (categorical) OSGoF 

6 Water Bodies Areas and lines Open Street Map 

7 Road Network lines Open Street Map 

8 Rail Lines lines Open Street Map 

9 National, States and LGAs 

Boundaries 

Polygons Open Street Map 

10 Settlements  Points Open Street Map 

https://asdc.larc.nasa.gov/
https://www.gaisma.com/en/dir/ng-country.html
https://www.gaisma.com/en/dir/ng-country.html
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Shuttle Radar Topography Mission (SRTM) was downloaded from the US 

Geological Survey website (EarthExplorer) for elevation, slope and aspect 

datasets. It is the global elevation data freely available with relatively high 

spatial resolution (30m) and covering the whole Nigeria. SRTM is the most 

widespread used source of digital elevation models (DEMs) in geosciences 

(Chen et al., 2020). This wide spread acceptance of the data might be due to 

the mission’s success in achieving its goal of an absolute vertical accuracy 

within 16 metres (with 90% confidence) based on ground validation through 

various studies using global positioning system (Mukul et al., 2015). There 

was a study that reported even much greater absolute vertical accuracy of 

6.87 metres for the 30 metres SRTM elevation data (Elkhrachy 2018). In 

Lagos, Nigeria, the SRTM’s absolute vertical accuracy was also found to be 

much higher than the reported SRTM specification (Olusina and Okolie 

2018).  

Soil map was obtained from the Office of the Surveyor General of the 

Federation (OSGoF). It was converted to raster on a 30 m spatial resolution. 

This was the same source from which the soil data obtained for the MSc 

work in 2014 was obtained. When compared, it seemed the current data is 

more detailed in terms of describing the soil categories. The soil data was 

obtained as shapefile with long categorical class description but did not come 

with any accompanying document. However, an online search revealed that 

the origin of the soil map was field survey by the Soil Survey Division of the 

Federal Department of Agricultural Land Resources (FDALR) based on 

which the map was produced at a scale of 1:1,000,000 

(https://esdac.jrc.ec.europa.eu/ESDB_Archive/EuDASM/Africa/lists/y5_cng.ht

m) and published in 1990. Other alternative soil data sources sought were 

the FAO Harmonised World Soil Database (https://www.fao.org/soils-

portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-

v12/en/) and the ISRIC World Soil Information 

(https://www.isric.org/explore/soilgrids).  

https://esdac.jrc.ec.europa.eu/ESDB_Archive/EuDASM/Africa/lists/y5_cng.htm
https://esdac.jrc.ec.europa.eu/ESDB_Archive/EuDASM/Africa/lists/y5_cng.htm
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.isric.org/explore/soilgrids
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While the former is based on 30 arc second raster, the later is based on 250 

metres grid cells. The class description for both of these two dataset was 

considered more generic and would make it difficult to match with the 

description of favoured soils mined for each of the crops from the literature 

compared to the data used in the study. For example, a category description 

‘deep, poorly drained soils; sandy clay loam to sandy clay subsoil’ is more 

detailed description than the term ‘acrisols’ and would be easier to be 

matched with the mined literature that sugest a favoured soil for a crop 

should be deep, free drained and loamy sand. Data on soil pH was obtained 

from the Office for the National Programme on Food Security (NPFS).  

Other datsets were extracted from the OpenStreetMap (OSM) for surface 

water bodies, roads, railway lines, settlements and boundaries for local 

government areas (LGAs), states and national territories. As at the time of 

this work, there was no other source for these particular datasets available 

for use in this work than OSM. OSM emphasises local knowledge and the 

contributors use aerial imagery, GPS and low-technology field maps to verify 

that the product is accurate and up to date. Because of the frequency of the 

product update, it was made sure that the latest version of the product was 

downloaded as at the time of data preprocessing (November, 2019). Though 

it is a product of Volunteered Geographic Information (VGI), OSM was 

described as one of the most successful VGI-based mapping projects (Yuan 

et al., 2018). The quality of the product is continousely being improved since 

inception. OSM have been reported to have compared favourably with other 

sources of spatial data in terms of quality (Mooney and Minghini 2017). Also, 

the spatial resolution based on which the current analysis was conducted is 

30 metres. Thus, the OSM data would be expected to be correct within this 

resolution. After six years of its launch starting in London, information from 

OSM was reported to be fairly accurate within about six metres of the 

position recorded by the UK’s Ordnance Survey Map (Haklay 2010). Though 

this may not be the same for Nigeria, we believe OSM would be useful for 

this work within 30 metres accuracy. 
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3.3 Data pre-processing 

When combining maps of various spatial resolutions, the most coarse 

resolution must be adopted (Malczewski 1999). This is because resampling 

from fine resolution to coarse resolution is expected to be less in introducing 

errors than resampling from coarse to fine resolution. In this work, the 

satellite imagery acquired with coarser spatial resolution are SRTM, from 

which elevation, slope and aspect criteria were derived, and Landsat 8 (OLI), 

one of the two datasets with which land cover mapping was performed. Both 

were acquired with 30 metre spatial resolution. Though climate and soil data 

would be coarser than 30 metre spatial resolution from their origin, the two 

were obtained as points and categorical datasets, respectively. Both were 

rasterised to 30 metres spatial resolution, using the elevation dataset as the 

snap raster to match both datasets to the satellite imagery as described in 

Burrough and McDonnell (1998). Thus, the common spatial resolution 

adopted in this analysis is 30 metres. This implies that each of the map pixels 

represent an area of 900 square metres. This is about one-tenth of a hectare. 

On average, Nigeria’s small family farmers own a half of a hectare of land 

(FAO 2018c). Thus, it is believed that the adopted spatial resolution is 

appropriate for this analysis since one of the fundamental objectives of the 

analysis is to identify lands suitable for cultivating the biofuel crops. This 

adopted spatial resolution would allow for within-farm area descrimination 

even within small holder farms. 

Though it is generally understood that no data is perfect, the problem of 

spatial data quality is more pronounced in areas with relatively sparse spatial 

data. Because the study area (Nigeria) is one of the data-sparse areas of the 

world, balancing between data availability and quality is one of the 

challenges of conducting spatial analysis that aim to produce meaningful 

outputs. As presented in the following subsections, attempt was made to 

ensure each data is as much complete, accurate and precise as possible. 

Where available, selection was made of the data source that is believed to 

provide relatively closer representation of the real world (relatively better 

accuracy). For example, rainfall data was sourced from a global database 
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because it provides higher amounts of sample points (90 random locations) 

and thus might have less accuracy problem by providing better 

representation of rainfall distribution for the study area than the NiMet data 

that is based on 44 sample locations. As mentioned in the previous 

paragraph, 30 metre spatial resolution was adopted for the analysis and this 

would allow for relatively higher precision in the datasets. For example, fine 

spatial resolution is expected to provide more precise spatial variation 

especially for variables with narrow data range such as soil pH. It is however 

noted here that based on the adopted spatial resolution, the research is 

being presented at a spatial precision higher than the spatial accuracy of 

some underlying spatial data such as the several climate and soil layers. This 

was due to the problem of trade-off between data availability and quality as 

mentioned earlier.          

3.3.1 Pre-processing meteorological data 

The data sample points from Gaisma were tested for spatial randomness 

(figure 3.1) and then interpolated to create raster dataset covering the whole 

country. Interpolation is the process for predicting the value of attributes at 

unsampled sites from measurements made at point locations within the same 

area or region (Burrough and McDonnell 1998). One of the situations in 

which interpolation is necessary is where the data measurements do not 

cover the entire domain of interest. It is thus applied to create a surface that 

covers the domain. 
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Figure 3.1: Assessing the Randomness of the GAISMA Data Points 

The interpolation algorithm applied in this work was the IDW of the 

Geostatistical Analyst toolbox of the ArcMap. IDW is Inverse Distance 

Weighted tool that use certain number of sample points’ values (known) to 

predict other (unknown) values based on the distances of the sampled points 

to the predicted point. The tool parameters used here were standard search 

neighbourhood, 3 minimum points, 5 maximum points and 4 sectors for 

ellipse shifting. Default was used for the other parameters such as power (2), 

major and minor semiaxis, angle (0) and weight (blank; computed from a 

function of distance between the selected neighbouring samples to the point 

being predicted).  

The choice of low number of 3 to 5 values of known points and the default 

power of 2 is to make sure the interpolated values are more localised (closer 

to reality) and that the interpolated values are not excessively smoothed out. 

This created a continuous surface that looks smoothed (figure 3.5). However, 

the trend of the surface shows similar pattern to what was shown in figure 1.3 

where study area was described. Rainfall in Nigeria progressively decreases 

from south to north. The surface was manually classified into 5 classes to 

improve visual understanding of the spatial distribution. It is obvious from 

figure 3.5 that the amounts of annual rainfall decrease progressively 
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northwards. Though IDW always produces smoother surfaces than the 

underline reality, it seemed to produce the most natural looking surfaces but 

would require to be checked using a separate, independently sourced data 

set (Burrough and McDonnell 1998).   

IDW method combines the idea of proximity and gradual change of the trend 

surface assuming that some unknown attribute value at a point is a distance 

weighted average of the values within a neighbourhood of the point. The 

problem of this method is lack of an in-built means of assessing the quality of 

the prediction which can only be done by taking extra samples (Burrough and 

McDonnell 1998). The method also restricts the prediction to the range of 

values of the sample points; if the sample do not capture the extreme highs 

and lows, those extreme values are smoothed. To assess the performance of 

the IDW tool and the data accuracy, a different set of rainfall data sample 

was obtained from International Water Management Institute (IWMI) and the 

two sample points datasets (figure 3.2) were correlated. The correlation 

showed almost perfect direct relationship (figure 3.3) though correlation is 

limited in the sense that it does not reflect the unit of measurement and is not 

useful where the relationship is non-linear. The same process was applied to 

Insolation (figure 3.5) and Length of Daylight (figure 3.5) datasets.  
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Figure 3.2: Gaisma random sample and the IWMI random sample for assessment of the 

IDW performance 

 

Figure 3.3: Correlation Between Gaisma and IWMI Datasets to Assess Performance of the 

IDW Tool 

Insolation decreases progressively southwards. The actual sunshine hours 

are highly varied spatially and temporally though with small range (about 11.5 

– about 12.5 hours). For the scope of this work that considered the whole 
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country as study area, variations of minutes may be negligible and using a 

single date data may consist higher fallacy than using annual average. Thus, 

average daylight hours was used and it is about 12 hours throughout the 

country. It may be argued here that this criterion may not be needed to be 

included because there is no spatial variation as would be used in the model. 

However, as shown in subsection 3.4.5 (table 3.4), the weight of influence of 

this criterion is high compared to several other criteria for all the biofuel 

crops. This criterion weighed the third highest for sweet sorghum, the fourth 

highest for oil palm and the fifth highest for sugarcane, cassava and jatropha 

among the 14 criteria. Due to rank reversal problem (Malczewski 1999), all 

options must be considered because the preferred alternative may change 

with introduction of new predictor(s). In other words, because alternatives are 

directly or indirectly related to the decision criteria, inclusion or exclusion of a 

decision criteria would affect choice of the model for the best alternative. 

Since the whole country is assigned the same value for sunshine duration, 

the whole country therefore would be assigned the same suitability class for 

this particular predictor. 

The data from NiMet was used to create rasters for Relative Humidity (figure 

3.5) and Temperature Maximum (figure 3.5) using the same procedure as for 

the Gaisma data. However, the tool parameters used here are standard 

search neighbourhood, 2 minimum points, 3 maximum points and 4 sectors 

for ellipse shifting. Fewer search points were used for the NiMet samples 

because there were fewer sample points than in Gaisma data. Default was 

used for the other parameters. Relative humidity data from IWMI was 

correlated with the raster created from NiMet data also to check for accuracy 

and IDW performance. The correlation showed near perfect direct relation 

(figure 3.4).  
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Figure 3.4: Correlation between NiMet and IWMI Datasets as a form of Accuracy 

Assessment 

Though there was a record low temperature of 0°C on the northern hilltops, 

the average monthly temperature of the coldest month at the coldest location 

in Nigeria does not fall below 10°C. Thus, the prevailing minimum 

temperature in Nigeria does not extend to failure limit for all the biofuel crops 

considered in this work. In the doldrum, maximum temperature may exert 

more influence than minimum temperature, though at some high-altitude 

areas, the weather may prevail temperate characteristics. This is why only 

maximum temperature was used instead of both the maximum and minimum 

or the average of both. The same interpolation process was applied as 

above. 
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Figure 3.5: Pre-processed meteorological data 

 

3.3.2 Pre-processing geomorphological data 

Geomorphological data here refers to soil, soil pH, elevation, slope and 

aspect. Soil pH data was obtained as a point data in Excel format. It was thus 

tested for spatial randomness (figure 3.6) and then IDW algorithm was used 

to create raster covering the whole country (figure 3.7). There was not much 
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pre-processing for the soil data (figure 3.7). The detail descriptions of the soil 

types are presented in appendix I. 

 

Figure 3.6: Assessment of Randomness for the Soil pH Data Points 

The preliminary Shuttle Radar Topography Mission (SRTM) products consist 

of voids due to the impacts of the sensing device properties and the 

interactions with the surface features. Although the providers used 

interpolation algorithms and multi-source data fusion to fill these voids, this 

data cleaning process introduces new errors into the data (Zhang et al., 

2016). 101 SRTM tiles covering Nigeria were mosaicked in Erdas-Imagine. 

Digital Elevation Model (DEM) was thus prepared for the whole Country 

(figure 3.7). By inspection, the minimum value was found to be 1 metre, thus, 

it was believed there were no extreme low values that would need to be 

masked.  
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Figure 3.7: Pre-processed geomorphological datasets 

On the other hand, because the highest altitude in Nigeria is 2,419 metres 

above sea level, any values above this figure was filtered using ArcMap 

filtering syntax. To further ensure any value in the DEM is 2,419 or below, 

raster calculator was used with a conditional statement to mask other values 
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to NoData. Some published works are available that tested the accuracy of 

SRTM DEM using field experiments, for example Zhang et al., (2016). Slope 

(figure 3.7) and aspect (figure 3.7) were derived from the DEM using the 

default ArcMap tools. 

3.3.3 Pre-processing other data (creating distances) 

Distance of an infrastructure or certain services play some important roles in 

determining where a biofuel crop cultivation could be sited. Settlements could 

provide labour; surface water may serve as a source of irrigation; and 

closeness to roads and rail networks may provide some transport cost 

savings. This has been discussed in detail in chapter two. Euclidean 

distances were thus created from 564 cities and towns, important surface 

water bodies, roads and rail lines (figure 3.8).  

 

Figure 3.8: Other datasets (Euclidean distances) 
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Though there was no means of confirming the percentage coverage, efforts 

were exerted to ensure that the 564 settlement points cover all the cities, 

towns and main villages. Thus, populated areas are assumed to have been 

largely captured. As mentioned in section 3.2.2, the data was obtained from 

OpenStreetMap and each record is classified based on the size (population). 

In other words, there is a field that described each record as either city, town 

or village. 

3.4 Criteria weighting 

3.4.1 Introduction 

The factors involved in land acquisition especially for industrial-scale use are 

complex in nature. The factors are usually large in number, multi-faceted and 

may do trade-off depending on the intended use. They involve socio-

economic, techno-scientific, socio-poiltical and environmental considerations. 

While some factors trade for others for example low fertility soil trading for 

best rainfall amounts, some are not substitutable for example a game 

reserve. Some are unpredictable and thus cannot be modelled 

notwithstanding the details considered, for example environmental shocks. 

Apart from the amounts of details needed to be considered in the analysis, 

the spatial scope of the area being analysed could also increase this 

complexity (Aly et al., 2017). Therefore, site selection represent a strategic 

decision (Sharma et al., 2017) because success or otherwise of an industry 

depends on its location to a greater extent (Gurder and Yilmaz 2012; Sharma 

et al., 2015). But how to select sites for biofuel facilities is still crucial decision 

in order to provide balance for bioenergy crops cultivation, biofuel 

processing, energy consumption and environmental conservation (Zhang et 

al., 2017). This dimensionality can be approached using Geographical 

Information System (GIS) and Remote Rensing (RS) technologies that are 

effective decision support tools and often applied in conjunction with other 

mathematical techniques such as Analytical Hierarchy Process (AHP) for 

Multi-Criteria Decision Making (MCDM) (Sharma et al., 2017).  
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Most researchers who used these techniques in the past applied geospatial 

modelling to determine suitable locations for bioenergy facilities, while others 

use integrated techniques where mathematical modelling and geospatial 

techniques were combined (Sharma et al., 2017). Several of these works 

have been cited in section 1.6 and it was shown that AHP scored the best 

when three MCDA methods were assessed based on 23 criteria of selecting 

methods (Kurka and Blackwood 2013). AHP scored high in its ability to deal 

with uncertainty, its multi-stackholder inclusion and its tranparency and 

communication. It, however, scored medium in user friendliness and 

flexibility.    

3.4.2 Analytical Hierarchy Process (AHP) 

As discussed in the last paragraph of section 1.6 (chapter one), the power of 

GIS in combining maps oversimplifies the complexity of the processes 

involved in land use plannning problems. This is a GIS limitation in the sense 

that it leads users to focussing on individual facts rather than the right 

combination of facts and value judgements. This limitation is overcomed by 

intergrating it with MCDM (Malczewski 2004). Among the most widely applied 

MCDM techniques are AHP and Technique for Ordered Preference by 

Similarity to Ideal Solution (TOPSIS). A bibliographic analysis of data 

harvested from Scopus Database showed that GIS is one of the major areas 

that dominate AHP application and will continnue to be active (Zyoud and 

Fuchs-Hanusch 2017).  

AHP method had been applied in two distinctive ways in the GIS industry. 

Generating criteria weights, ranking the attribute maps and assigning weights 

to the attribute maps before combining the maps to determine best 

alternative (Malczewski 2004). Or aggregating the priorities for all levels of 

the hierarchy structure including the level representing the alternatives and 

then order the alternatives to determine the highest ranked alternative 

(Jankowski and Richard 1994). When it is possible to apply pairwise 

comparison of alternatives, the former is particularly important in solving 

problems involving large number of alternatives (Malczewski 2006) and this 

was adopted in this work. AHP provides some level of objective mathematics 
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to deal with inevitable subjectivity and personal preferences of individual or 

group making the decision (Saaty and Vargas 2012). This subjectivity is 

usually high and associated with directly eliciting criteria weights (Zyoud and 

Fuchs-Hanusch 2017).  

AHP’s advantage of reducing complex decisions to Pairwise Comparison 

could be exploited to reduce this subjectivity. It is a robust way that transform 

criteria preference judgements from qualitative scale to a quantitative scale 

(Afolayan et al., 2020). It has a system of checking the consistency of the 

decision thereby detecting inconsistent judgements and reducing bias in the 

decision analysis (Coyle 2004; Alami Merrouni et al., 2018). This consistency 

verification is one of the great strengths of AHP and acts as feedback for 

decision makers to review and evaluate their judgements (Zyoud and Fuchs-

Hanusch 2017). A drawback with this technique is its estimate of the 

reciprocals of the importance preference between criteria which some 

scholars consider to be reasonable, while others are not happy with it (Coyle 

2004). The question is whether the reciprocals actually represent the actual 

inverse relationship. Another issue is that the end values of the comparison 

change if the scale change, but that does not matter since the value simply 

says that something is better than the other in meeting some objective (Coyle 

2004). The initial comparison matrix is genetrated through individual or group 

expert judgement on the criteria preferences (Drobne and Lisec 2009).  

As discussed extensively in section 1.7, the need for the knowledge of where 

to position biofuel feedstock could not be overemphasised in the context of 

biofuel expansion. Spatial multi-criteria positioning process has been helpful 

in this context and applied in various contexts. With regards to Nigeria, the 

few published research found to have been conducted in Nigeria lack explicit 

application of AHP with its requirements for expert participation in spatial 

decision making that concerns criteria value judgements. The attempts were 

either deficient in terms of scope, relevance to biofuel expansion or more 

importantly, lack explicit participation of experts in criteria preference 

judgement. As discussed in section 1.7 also, the researcher made similar 

attempt during an MSc programme. However, the work could only be 
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considered as a pilot attemt due to time constraints and resources. The work 

though published as a book and a journal article could not involve experts for 

the criteria judgement which is necessary for effective application of AHP. 

While the MSc work showed the possibility of conducting spatial analysis for 

crop-based biofuel context at a country level despite the challenges such as 

data availability for the study area, the current PhD work demonstrates how 

the identified challenges of conducting spatial analysis could be approached 

through a more robust procedure.  

In the current work, an attempt was made to increase the robustness of the 

process in the context of Nigeria. This robustness refers to detailed 

consideration of all the relevant parameters, explicit participation of the 

feedstock experts and transparent application of the AHP. Also, a recent 

publication shows the necessisity of incorporating a feedback mechanism to 

ensure that the expert judgement conforms with the standard consistency 

(Afolayan et al., 2020). In this research, Stakeholders’ (a group of experts 

engaged by the researchers) judgement and the feedback mechanism were 

adopted. Because this level of analysis is based on agricultural crops, the 

experts on these crops would be more appropriate to make the judgements. 

Agricultural research institutions in Nigeria that have the research mandate 

on the five identified biofuel crops were selected for visitation to explore the 

experts judgements.  

3.4.3 The AHP hierarchical structure 

One of the advantages of AHP over the other MCDM techniques is its ability 

to decompose multi-criteria problem into its essential components, facilitating 

rational comparison among the design alternatives underpinned by the 

conflicting criteria (Nesticò and Somma 2019). The overall goal in this work is 

to find optimal sites for processing biofuel based on agricultural crops. This is 

decomposed into hierarchical order with objectives, subobjectives and 

alternatives. The goal stand at the height of the hierarchy (figure 3.9). 

Objectives followed such that very suitable areas are identified for cultivating 

the crops, crop yields are determined based on literature and adopted, 

distance threshold are defined and the feedstock amounts are aggregated. 
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Subobjectives represent the level at which meteorological, geomorphological 

and distance criteria (C1, C2, C3, C4, …, C14) were aggregated to assess land 

suitability for the crop cultivation. Suitability here is a function of suitable 

rainfall for the crops, suitable soil, temperature as well as the rest of the 

predicting variables.  

Getting most out of each of these forms a part objective that contribute to 

achieving the main objective of identifying suitable lands and determining 

how suitable it is. The alternatives (A1, A2, A3, A4, …, A23) represent the 

NNPC petroleum depots spread across Nigeria and adopted in this research 

as the potential candidate sites for processing biofuel and blending with 

petroleum fuels in the country (section 6.2). 

 

Figure 3.9: GIS-MCDM hierarchical structure 
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3.4.4 Experts group discussion 

According to Zhang et al., (2015), the AHP’s dependence on subjective 

assignment of relative importance between criteria could be handled through 

a procedure comprising four ways. 1) Utilising objective and scientific data to 

derive the pairwise comparison matrix where data is available. 2) Involve 

scientists and related persons (the authors might mean other relevant 

stakeholders) in estimating the relative importance of the criteria. 3) Pay 

particular attention to the consistency ratio. 4) Conduct validation tests in 

future studies to confirm the results.  

In this work, organisations with expertise on crop performance in Nigeria 

were selected for these consultations. These were 1) Institute for Agricultural 

Research (IAR) located in Zaria, Kaduna State. It has national research 

mandate on several crops including sorghum and jatropha. 2) National 

Cereal Research Institute (NCRI) located in Badeggi, Niger State. It has the 

national research mandate on cereal crops and Sugarcane. 3) National Root 

Crops Research Institute (NRCRI) located in Umudike, Abia State. It has the 

national research mandate on root crops including cassava. 4) Nigerian 

Institute for Oil palm Research (NIFOR) located in Benin City, Edo State. It 

has national research mandate on Oil palm and other palm trees. These 

institutions are most appropriate to be selected for consultations with respect 

to expertise and experiences related to research on these crops.  

Though spatial decision-making problems usually involve several interest 

groups and/or decision-makers, it is obvious that the nature of this work 

assumes homogeneity within the group to some extent such that there are 

more convergent judgements than there are divergent. This does not entail 

absolute homogeneity; the experts would be expected to differ in their area of 

specialisation, their experience and perspective. It has been observed that 

individuals who collaborate on a project and agree on pairwise comparison 

matrix of criteria usually hold different perspectives on the system (Ivanco et 

al., 2017). These disparities are believed to have effect on the resultant 

criteria weights. It was observed that though AHP has been thoroughly 
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researched and applied, it still shows some limitations with regards to user 

profile disparities (Ivanco et al., 2017).  

However, AHP applied in a group mode is said to provide for a much more 

informed opinion by allowing a structured debate focused on specific and 

relevant points (Malczewski 1999). At each of the institutions, a group was 

formed constituting of experts on crop production, agronomy, soil science, 

plant pathology and agricultural economics. There was a minimum of five 

participants for each of the crops. In addition to these, for jatropha there was 

a PhD candidate who was working on agronomic improvement of jatropha for 

biodiesel production at the institute and the jatropha plantation manager of 

the institute who participated in the discussion. With regards to time spent at 

each sitting, this was not recorded. Consequently, an estimated range is 

provided. The shortest time was approximately two hours for sweet sorghum 

and the longest was about four hours for cassava. However, the researcher 

spent whole day at each of the institutions because the field work involved 

visiting a farm at each of the institutions and gathering some secondary 

materials like publications of the institutions.  

The participants discussed and deliberated, during the sitting, on each pair of 

the criteria until a consensus was reached on the value to be assigned for the 

relative importance of one criterion over the other based on the scale 

developed by Saaty (1980) as shown in table 3.2. The relative importance 

here refers to preference of the crop for the variable with regards to its 

growth and development which is the main determinant of the crop’s 

productivity (yields) as discussed in subsection 2.3.1. In other words, which 

among a pair of criteria variables plays greater role in supporting the crop to 

achieve higher yields.  
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Table 3.2: Saaty’s (1980) Preference Scale 

Intensity of Importance Definition 

1 Equal importance 

2 Equal to moderate importance 

3 Moderate importance 

4 Moderate to strong importance 

5 Strong importance 

6 Strong to very strong importance 

7 Very strong importance 

8 Very strong to extreme importance 

9 Extreme importance 

 

In the case of this work, the group members making the judgement discuss, 

deliberate and then agree on the values to be assigned which represent the 

group preferences with respect to the criteria as described in Malczewski 

(1999). This is based on the principle of Pairwise Comparison technique of 

the AHP which is an effective way of generating meaningful judgement 

figures where empirical observation is either not available or impossible. 

Ranking, rating, pairwise comparison and trade-off analysis are the four AHP 

techniques of assessing criteria weights. It is suggested that if accuracy and 

theoretical foundation are the main determinant of choosing a technique, 

pairwise comparison and trade-off analysis are more appropriate 

(Malczewski 1999). Pairwise Comparison is more trustworthy, easier to be 

used and be understood and can be applied to variables that are based on 

ratio response scale.  

A template was produced and presented to the experts. The template 

comprised of a table (table 3.3) used as the pairwise comparison matrix table 

and a question is posed as, for example, how does aspect compare to 

elevation in terms of importance for sugarcane. In other words, which of the 

variables plays greater role in supporting sugarcane achieve higher yields? 

Using the above scale of 1 – 9, the experts compared the intensity of 

importance of each criterion in the row over the other criterion in the column. 

Thus, the upper right diagonal halve of the matrix table is filled (Malczewski 

1999). The researcher sat together with the experts, set the question and 

listened to the experts deliberate. The researcher could not recall having 
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difficulty in getting the expert to understand what the matrix is doing; all of 

them seemed to have at least some idea about the technique.   

The advantages of the criterion are compared to that of the other as regards 

the cultivation of the considered crop. For example, while discussing the 

importance of the settlements it was observed that they provide sources for 

domestic market, labour supply, security and social amenities. Relative 

humidity regulates excessive evaporation. The importance of each criterion 

over each of the remaining criteria is judged and the value of the intensity is 

inserted by the researcher in the unshaded-empty boxes along the row.  
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Table 3.3: Pairwise Comparison Matrix Table 
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Aspect (N/S/E/W) 1              

Elevation (m)  1             

Insolation (MJm-2)   1            

Nearness to Railways (m)    1           

Nearness to Roads (m)     1          

Nearness to Settlements (m)      1         

Nearness to surface water 

bodies (m) 

      1        

Rainfall (mm)        1       

Relative Humidity (%)         1      

Slope (%)          1     

Soil           1    

Soil pH            1   

Sunshine Duration (hrs)             1  

Temperature (0C)              1 
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Figure 3.10: Pairwise Comparison Matrix (Cassava) 
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The diagonal boxes represent the comparison of each criterion to itself, 

therefore, these boxes are filled with values representing equal importance. 

Where the criterion in the row is agreed to be less important than the 

criterion in the column, an inverse value of the intensity of importance is 

inserted in the box (e.g 1/3 is the inverse of 3). That means the degree of the 

‘less importance’ has to be based on the same Saaty’s scale. Is it moderate 

less importance, strong less importance, very strong less importance, 

extreme less importance or any of the intermediate levels? All the shaded 

boxes are filled with the reciprocal values. 

3.4.5 Pairwise Comparison Matrix analysis 

Five Matrix tables were filled, one each for the five biofuel crops, at the 

expert group meeting during the visits. As an example, figure 3.10 shows the 

matrix table for cassava. Other tables are presented as appendix II. Microsoft 

Excel was used to calculate through the steps involved in generating the 

weights and calculating the consistency ratio (CR) as described in 

(Malczewski 1999). These steps include filling the lower part of the matrix to 

complete the table, normalising the matrix and calculating the weight for each 

of the criteria. Checking for the consistency involves calculating the weight 

sum vector. Then consistency vector, the sum of which gives lambda that is 

divided by the number of the criteria to get Consistency Index (CI).  

CI is divided by Random Index (RI) to determine the Consistency Ratio. RI is 

given in a table developed by Saaty (1980) and adapted by (Malczewski 

1999). Its value depends on the number of the criteria. It is 1.57 in this case 

as there are 14 criteria in the analysis. The standard is that CR must be less 

than 0.1 for the matrix to produce acceptable criteria weights. Thus, the 

matrix tables were adjusted, in consultation with the experts, depending on 

the distance of the ratio from the set limit. Both the initial ratios (CR) and the 

ratios obtained after the adjustments (≈CR) were given in table 3.4. 
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Table 3.4: Criteria Weights for the Biofuel Crops 

 

It was agreed during the expert group meeting with the experts that these 

adjustments would be inevitable to achieve the required consistency and thus 

the adjustments would be sent to them as a feedback mechanism and for 

their perusal. Copies of the excel spread sheet used in calculating the 

weights and the consistency ratios were sent to the experts with the 

recommended adjustment such that they can see the consistencies changing 

in real time as they adjust the matrix table. This guided them in ensuring that 

the adjustment is within the required consistency if they feel the need to 

further readjust the matrix. Each excel document for each of the crops was 

sent to the head of each team who also serves as the crop production expert 

in the institute. The person then consulted with the other expert that were 

S/
N 

Criteria Sweet 
sorghum 

Sugarcane Cassava Oil 
Palm 

Jatropha 

1 Aspect 1 1 1 1 1 

2 Elevation 1 2 2 5 1 

3 Insolation 2 13 2 3 15 

4 Nearness to 
Railways  

4 1 2 1 5 

5 Nearness to 
Roads 

6 5 16 4 5 

6 Nearness to 
Settlements  

7 5 16 3 5 

7 Nearness to 
Surface 
Water  

5 14 4 6 5 

8 Rainfall 20 14 19 23 17 

9 Relative 
humidity 

4 6 5 3 17 

10 Slope 2 5 2 9 1 

11 Soil 19 14 18 13 3 

12 Soil pH 8 6 4 12 1 

13 Sunshine 
Duration 

11 7 5 11 8 

14 Temperature 10 7 4 6 16 

 Total 100 100 100 100 100 
CR (initial) 0.141133 0.15 0.108958 0.1655

92 
0.286499
4 

≈CR 
(adjusted) 

0.0734 0.0598 0.0713 0.0733 0.0529 
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involved in the initial group discussion. The experts perused the 

recommended adjustments that are within the required consistency ratio and 

they did not object the adjustments.  

These criteria weights that were based on the adjusted matrix were then 

confirmed as the established criteria weights to be assigned to the criteria 

maps as an important aspect of the land suitability analysis for each of the 

biofuel crops. It is obvious from the table that jatropha has clearly distinct 

pattern of criteria weights especially looking at soil, relative humidity and 

temperature for which the crop has very much higher weights than other 

crops. This might be connected to the fact that jatropha can live entirely on 

relative humidity without rainfall as reported in subsection 2.3.7. The same 

pattern could be seen in insolation except that sugarcane also compare 

closely to jatropha in this criteria variable. Insolation and temperature 

seemed to influence jatropha more than any of the other crops and this is in 

line with what was reported from the literature (subsections 2.3.4 and 2.3.11) 

that jatropha is affected by low temperatures and is not suited for growing 

under shade.  

Oil palm shares the same characteristic of love for insolation and it is 

relatively being influenced by elevation higher than the other crops. Proximity 

to roads and settlements received more than twice weights for cassava than 

the weights received by these criteria variables for the other crops. Cassava 

is a bulky crop, therefore, cultivating it close to roads and settlements will 

save costs and energy in conveying the produce as discussed in subsections 

2.3.13-14. Not unexpectedly, proximity to surface water received more than 

double weights for sugarcane than for the other crops because sugarcane 

most often require irrigation to produce better yields. Sweet sorghum and oil 

palm seemed to be influenced more by soil and rainfall, respectively than any 

of the other crops. These comparison shows in some way how the biofuel 

crops vary in their favourability profiles. Chapter four deals with modelling 

and estimating suitable lands for the crop’s cultivation. 
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3.5 Discussion 

The results presented in table 3.4 shows how the criteria importance 

compares for each of the crops in modelling cultivation sites. Looking at all 

the crops together, not unexpectedly, rainfall turned out to be the most 

important criteria for each of the crops though with varied weights. Aspect 

seemed to be the least important criteria in all the crops and showing similar 

weights for all the crops. Looking at each of the crops, the result suggests 

that most of the criteria show weight similarity with at least one other criteria, 

with greater similarity in sugarcane and greater weights variability in sweet 

sorghum.  

It is worthy of note here that the actual weights values were in fractions with 

many decimal places. These decimal numbers would not be accepted by the 

GIS environment and thus, were approximated to the nearest whole 

numbers. The approximation was monitored closely to ensure it did not 

change the ranking of the weights, assuming the alternative choice is 

sensitive to the ranking of the criteria weights. Though the goal of sensitivity 

analysis is to show how changes in the criteria weights lead to changes in the 

alternatives, sensitivity analysis is said to be not enough to base conclusions 

about the reliability of the multi-criteria decision methods. It is necessary to 

check the consistency of the result based on the measurement units of the 

criteria and the formulation of the criteria (Pamucar et al., 2017). Availability 

of this mechanism for consistency check is one of the strengths that AHP 

has, as discussed at several points earlier.  

Although a review of the MCDM tools observed that all of the methods tend 

to favour the same alternatives (Huang et al., 2011), for decades, AHP tends 

to enjoy more confidence of researchers because it is the most used MCDM 

methods (Aly et al., 2017). AHP possess a crucial advantage over other 

techniques such as TOPSIS and ELECTRE because, due to its hierarchical 

structure, it allows complex problems to be broken and be dissected with 

greater detail at each level. AHP is thus more effective where criteria and 

sub-criteria exist in a multi-criteria analysis (Nesticò and Somma 2019). AHP 

offers a mechanism whereby subjective elicitation of criteria preferences by 
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individual or group of experts can be captured and processed in such a way 

to permit their integration with other quantitative spatial datasets, allowing for 

more robust spatial decision-making (Saaty and Vargas 2012). This 

subjectivity of criteria weights elicitation is usually high, especially where the 

elicitation is direct (Zyoud and Fuchs-Hanusch 2017).  

As mentioned in subsection 3.4.2, checking the consistency of the pairwise 

comparison is one of the great strenghts of the AHP. Where the consistency 

ratio is above the threshold, the initial pairwise comparison matrix assessed 

by the experts must be revisited. However, to keep the iteration of this revisit 

to single round or utmost twice, a recommendation could be given to the 

experts with regards to the adjustment of the matrix values within which the 

required consistency ratio could be achieved. The experts would assess the 

recommendations and adjust their initial judgement to a new set of 

comparison of criteria importance. These would then be aggregated again. 

Then the criteria weights are established. 

In addition to AHP’s subjective assignment of relative importance between 

two criteria, it was said that it ignores the criteria interdependence (Li et al., 

2012). An improved version of AHP called Analytical Network Process (ANP) 

was developed to handle AHP’s deficiency in handling the criteria 

interdependency and was expected to gain popularity afterwards. The ANP 

modification is said to allow representation of the identified relationships 

between intangible assets and the strategic goal (Akpoti et al., 2019). 

However, ANP was concluded to be less preferred due to its deficiencies 

regarding its complexities, user friendliness, transparency and, more 

importantly, multi-stakeholders involvement (Kurka and Blackwood 2013). 

Though some scholars recommended use of Principal Component Analysis 

(PCA) to identify criteria that are highly correlated and reduce criteria 

redundancy, Zhang et al., (2015) applied this on climate and soil criteria but 

found it not helpful, probably because PCA requires existence of strong 

correlation. In the context the current work, the correlation could be 

negligible.  
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AHP was also criticised of showing rank reversal when exact replica or a 

copy of an alternative was introduced (Belton and Gear 1983). However, the 

same effect was said to have been found in other decision making 

approaches such as TOPSIS, Simple Additive Weighting (SAW) and Borda-

Kendal and might be normal phenomenon (Wang and Luo 2009).  When 

compared with DELTA and PROMETHEE, AHP scored best based on 23 

criteria for selecting MCDM methods (Kurka and Blackwood 2013). AHP is 

said to be an effective and superior method for criteria weighting in a 

systematic and logical way (Zhang et al., 2015).  

The application of the AHP in this work was done as much transparent and 

detailed as possible unlike in many applications where the details are very 

low and more opaque than transparent. Huang et al., (2011), assessed more 

than 300 published articles and reported that though they did not classify the 

articles based on quality and sophistication of the analysis, some articles 

were obviously very superficial, while others were deep and detailed. Figure 

3.12 shows visually how the criteria compare between the crops. Obviously, 

rainfall and soil take larger share of the weights in all the crops except 

jatropha for which rainfall compare closely to relative humidity than any other 

criteria. Apart from aspect, elevation seems to play lowest role except for oil 

palm, for which elevation has higher weight than six other criteria. Nearness 

to railways also has low weights probably not only because there are few 

railway lines in Nigeria, but also because use of the existing railways as 

means of transportation is still very low in Nigeria.  
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Figure 3.11: Comparing criteria weights among the biofuel crops 
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Chapter Four – Land suitability Models 
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4 Chapter Four – Land suitability Models 

4.1 Introduction 

As discussed in chapter one, the overall technical goal of this research work 

is to optimise locations for processing biofuels in Nigeria through robust 

application of multi-criteria evaluation. Representing the decision problem 

about the suitable location of biofuel crops requires consideration of a large 

number of criteria, as alluded in subsection 3.5. However, conversely, 

restricting the model to a small number of criteria may lead to 

oversimplification of the decision problem. Thus, a balance must be struck 

between these two tendencies to ensure the criteria selection is underpinned 

by a reasonable mechanism (Malczewski 1999).  

It should be noted here that two forms of evaluation criteria are usually used 

in spatial decision making (Abudeif et al., 2015). Factors (suitability criteria) 

directly support selection of the land for the intended purpose or indirectly 

contribute to the achievement of the objective. Constraints (restricting 

criteria) prohibits the selection of the particular land for the intended purpose 

or indirectly restrict attainment of the objective. It was suggested that if 

factors do trade-off (as does the suitability criteria in this context) and do not 

trade-off (as the constraints do not in this context), they should be considered 

separately in two stages analysis (Drobne and Lisec 2009). The factors 

should first be aggregated using multi-criteria techniques, then the result 

should be used as a new factor to analyse the constraints. This chapter deals 

with the former, while chapter 5 deals with the later. 

Discussion was given in length in chapter two about the criteria required to 

be considered for identifying suitable lands for cultivating the biofuel crops in 

Nigeria. In chapter three, datasets determined and acquired based on these 

criteria were presented and pre-processed. The AHP application was also 

presented in chapter three showing the procedures followed to determine the 

weight of influence for each of the evaluation criteria. As a requirement for 

multi-criteria analysis, the values contained in each criterion indicator must 

be transferable to a common unit because the scales on which the criteria 

are measured vary (Malczewski 1999). This chapter deals with 
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implementation of the land suitability model, defined in the previous chapters, 

and shows how the criteria values and the maps were standardised to a 

common scale as prerequisite for the execution of the model for each of the 

five biofuel crops. The modelling here involves combining all the 14 criteria 

maps, each assigned its criteria weight generated in the previous chapter. A 

model was developed for each of the five biofuel crops. The results of the 

models were also presented. 

4.2 Suitability class levels (standardising criteria scores) 

As seen in chapter three, the fundmental objective to achieving the goal of 

positioning biofuel processing is identifying areas that are ‘very suitable’ for 

cultivating the biofuel crops that serves as the feedstock. These levels of 

suitability are determined by combining expert assessments of the 

importance of environmental determinants for crop growth. To achieve this, 

quantitative scales of assessment are needed to quantify the contribution of 

different environmental variables and indicate suitability (Malczewski 1999). 

According to Voogd (1982), enough quantitative information should be 

available for formulating an indicator where direct quantitative determination 

approach is followed. Also, the author suggests that where it is possible that 

different result (e.g. crop suitability) may be obtained from using different 

choices of variables for the same indicator (e.g environmental variable), an 

ordinal interpretation of the result should be adopted. In other words, the 

quantitative values are aggregated into a ranked indicator values that are 

further analysed. This is called direct qualitative determination. This concept 

is based on fuzzy set theory which can facilitate standardising criteria for use 

in multi-criteria analysis (Malczewski 1999).  

The traditional (crisp) sets allow only binary membership functions; all the 

members match the class attribute and the boundaries are sharp (Burrough 

and McDonnell 1998). For example, these sets only allow that there is rainfall 

at a given location or there is not (i.e true or false, conventionally called 

boolean operation). However, fuzzy sets allow for possibility of partial 

membership. For example, it allows for all possible conditions from total 

absence of rainfall to availability of extremely heavy rainfall. To define what 
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is, or what is not moderate rainfall requires not strict allocation to an exactly 

defined class; a qualitative judgement that by implication allows for partial 

membership suffice (Burrough and McDonnell 1998). A fuzzy set, defined on 

the domain of real numbers called fuzzy numbers, can be manipulated in the 

same manner as can be done on crisp numbers. These standard fuzzy 

numbers, also called standard membership functions provide basis for 

defining linguistic variables. In other  words, a linguistic variable takes fuzzy 

variable as its values (Zadeh 1975). This is based on the extension principle  

which is a principle that makes it possible to extend functions from subsets 

into subsets and/or extend functions from sets into real numbers (Gerla and 

Scarpati 1998). 

Linguistic variables, in this context, are usually defined by relative terms such 

as best, better, very good, good, and so on. Assignment of these linguitistic 

terms is done in terms of a base value which is defined by real numbers 

within a specific range, for example as in high rainfall, moderate elevation or 

low distance (Malczewski 1999). Aly et al., (2017), used a scale of four 

classes described by four linguistic terms as ‘most suitable’, ‘suitable’, 

‘moderately suitable’ and ‘least suitable’. It could be argued that the second 

class ‘suitable’ is not appropriately described in the study; a question may be 

asked how different it is from the first or the third class interms of suitability. 

Similarly, Ayoade (2017), used four classes defined by the terms ‘very 

suitable’, ‘suitable’, ‘moderate’ and ‘fairly moderate’.  

The use of the determiners (most, less and least) or the adverbs (very and 

moderately) to qualify the adjective ‘suitable’ for each of the classes in 

descending order of suitability is considered best to ensure absence of 

ambiguity between the terms describing the classes. El Baroudy (2016), used 

four land quality classes – ‘high quality’, ‘moderate quality’, ‘low quality’ and 

‘very low quality’. Ayehu and Atnafu (2015), also used four suitability class 

levels with such linguistic terms as ‘highly suitable’, ‘moderately suitable’, 

‘marginally suitable’ and ‘not suitable’ though there was no explanation as to 

how and why these classes were adopted. Attempt was made in this work to 
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use unambigous linguistic terms for the class categories and detailed 

explanation was given on how the classes were created.  

Several numerical approximation systems were proposed for systematically 

converting linguistic terms to their corresponding fuzzy numbers and it was 

recommended that a minimum of two linguistic terms is required for this 

purpose, though it can be extended to a larger odd number and can also be 

with intermediate even numbers (Malczewski 1999). Five linguistic terms 

were adopted in this work to form five classes. Five classes might provide 

better quantitative differences between classes, avoiding the limitation of 

generalisation in case of few classes, and the limitation of stretching data 

ranges as in the case of higher number of classes.  

Although this reclassification creates in a new constructed scale called 

“subjective scale” because it is usually based on personal judgement 

(Malczewski 1999), the optimal criteria values in the current study were 

determined from published field experiments. The references were presented 

in section 2.3 in detail with all the citations for each of the biofuel crops. 

These optimal values were considered the best alternative and thus were 

classified as the most suitable. Also, when converting the linguistic terms 

used in these empirical studies, the terms “best”, “optimal”, “most 

appropriate” or “most favourable” ranges were interpreted as the ‘most 

suitable’ for a particular crop.  

The other descending classes were extracted by grouping similar 

observations based on the assumption that a shift from the optimal values 

implies decreasing suitability of the criteria values for cultivating each of the 

biofuel crops. A number of methods are used in this kind of data manipulation 

including natural breaks, quantile and equal intervals. Equal intervals may 

provide a better index differential between classes. It can show relative 

differentials in data value (Malczewski 1999) and tends to provide best 

display (Milic et al., 2019). It is best applied on data ranges that are not 

skewed but spread across the breath of the data range and does not have 

large outliers. As presented in the previous chapter, the data pre-processing 
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involved checking for and filtering outliers where they were found. Thus, the 

prepared data would be appropriate for the use of equal interval. Also, as 

mentioned in the next section, all the datasets are continuous in reality. Thus, 

using a continuous measurement such as interval scale could be best 

because observations can be placed at any position along the data range. 

Equal interval may work best to group observations of similar numerical 

values unlike quantile method that may separate location of similar values. 

Equal interval would also work better where a set of datasets are compared 

by providing the same classification scheme across all the datasets unlike 

natural breaks that creates unique scheme for each dataset, making 

comparison impossible. Equal interval may also work better than standard 

deviation due to the need for handling the opposing direction of the data 

ranges.   

Attempts were made to use equal intervals to form other classes in 

descending order (even though the real numbers defining the classes may 

either be decreasing or increasing) based on the data ranges. This 

transformation implies linear progression with regards to the relationship 

between the means objectives (for example favourable rainfall or soil pH) and 

the alternatives (different potential land areas). This linearity assumption 

suggests that desirability or otherwise of an additional unit of a variable is 

constant within the range of the variable (Malczewski 1999). For example, 

the assumption means that the effect of adding (or subtracting) 100 mm of 

rainfall is the same regardless of whether the addition (or subtraction) is to 

(or from) 500 or 1000 mm. Also, since the entities, the attributes of which the 

datasets represent, are all continuous in the real world, an interval scale of 

measurement would be more appropriate. Because it is a continuous 

measurement, equal interval can measure differences between different 

levels of an attribute though not in absolute terms (Malczewski 1999). Since 

the measure is relative not absolute, the linearity relationship with the 

outcome would also be expected to be relative rather than absolute. 

However, it provides possibility for ordering attributes into classes that would 

predict an ordered group of alternatives.  
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The exceptions to use of equal interval were where it is impossible (for 

example in the case of soil types). These exceptions are actually few. The 

principle aims to provide an appropriate representation of the meaning of the 

linguistic terms. Therefore, ‘Most suitable’ was coded as 1, denoting the most 

optimal value within the variable range as suggested by the literature. ‘Very 

suitable’ was coded as 2, repesenting the closest range to the most suitable, 

‘moderately suitable’ was coded as 3, ‘less suitable’ as 4, and ‘least suitable’ 

as 5. These are presented in table 4.1 (sweet sorghum). Other tables are 

presented in appendix III for sugarcane, cassava, oil palm and jatropha. 

Each of the 14 criteria presented in chapter three, with the data ranges as 

mentioned above, was transformed into the 5 classes for all the biofuel crops. 

Due to the length of the descriptions in the soil data attribute table, a number 

code (1 - 56) was used to identify and ease handling of the soil categories. 

The soil categories do not represent rankings; rather, they state the soil 

properties, the importance of which depends on the crop type. For each of 

the crops, literature was the basis for identifying major soil suitability 

characteristics which were then compared with the soil properties 

descriptions to assign suitability class to each of the categories.  

For example, literature suggests that sweet sorghum is best produced on 

loam or sandy silt loam and that deep soils are preferred with moderate 

drainage. Sweet sorghum will produce low yields with poor quality on clay-

like or shallow soils. It is thus identified that ‘most suitable’ soil for sweet 

sorghum should be 1) deep, 2) have moderate drainage, 3) be loam, sandy 

or silt loam and 4) must not be clay or shallow. Any soil that met all these four 

characteristics was assigned ‘most suitable’ soil for sweet sorghum. The 

categories that met three of the characteristics, were assigned ‘very suitable’. 

Those that met two of the characteristics, were assigned ‘moderately 

suitable’ and those that met only one were assigned ‘less suitable’. Those 

that did not meet any of the characteristics, were assigned the ‘least suitable’ 

because literature suggests that the crop can survive on poor soil.  
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Table 4.1: Suitability class levels for sweet sorghum based on the criteria indicators 

S/N Criteria (Suitable) Most (1) Very (2)  Moderately (3) Less (4) Least 

1 Soil 6, 8, 11-13, 17, 

23, 27, 36, 41-43, 

45-49, 51-53 & 

55. 

9, 10, 15-16, 

18-20, 22, 24-

26, 29, 37-38, 

40, 44 & 50. 

3, 5, 14, 21, 28, 

30, 32-35 & 54. 

4, 7, 31 & 39. 1, 2 & 

56. 

2 Soil pH 6.5 – 7.5 6.0 – 6.5 

7.5-8 

5.5 – 6.0 

8.0-8.5 

5.0 – 5.5 

 

Others 

3 Rainfall/Water (mm)  700-1000 600-700 

1000-1500 

500-600 

1500-2000 

400-500 

2000-2500 

Others 

4 Temperature (°C) 

-Maximum 

30 – 33 33-35 

28-30 

35-36 

26-28 

36-37 

24-26 

Others 

5 Relative Humidity (%) 45 – 55 35-45 

55-65 

25-35 

65-75 

15-25 

75-85 

Others 

6 Elevation (m asl) 0 – 1000 1000 – 1300 1300 – 1600                                                                               1600 – 1900 Others 

7 Slope (%) <3% 3 – 5% 5 – 8% 8 – 35% Others 

8 Aspect in direction 

(Bearing in degrees) 

S, SSE & SSW 

(157.5 – 205.5) &  

Flat (-1) 

SE & ESE  

(112.5 – 157.5) 

SW & WSW 

(202.5 – 247.5) 

E & ENE  

(67.5 – 112.5)  

W & WNW 

(247.5 – 292.5) 

NE & NNE  

(22.5 – 67.5) 

NW, NNW 

(292.5 – 337.5) 

N  

(0 – 22.5 

& 337.5 

– 360) 

9 Insolation 6.0 – 6.4 5.7 – 6.0 5.3 – 5.7 4.9 – 5.3 4.5 – 4.9 

10 Sunshine (hday-1) All - - - - 

11 Nearness to water (Km) 0 – 5 5 – 10 10 – 20 20 – 40 Others 

12 Nearness to roads (Km) 0 – 5 5 – 10 10 – 20 20 – 40 Others 

13 Nearness to settlements (Km) 0 – 15 15 – 30 30 – 45 45 – 60 Others 

14 Nearness to railways (Km) 0 – 50 50 – 100 100 – 150 150 – 200 Others 
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Equal intervals were used for assigning the descending linguistic values in 

the case of the other criteria variables. However, the last class (least 

suitable), may be narrower or wider than the rest of the suitability classes 

depending on the size of the values remaining for the class. The remaining 

variable values are assigned to the ‘least suitable’ class after all the four 

classes. As mentioned in chapter three, average sunshine duration was used 

throughout the country and as the literature reported this value as highly 

favourable for all the biofuel crops, the entire study area was classified as 

‘most suitable’. Even though this means sunshine duration will not present 

spatial variation, not including it will lead to inflating the criteria weights of the 

other variables especially for crops that highly require sunshine for their 

growth such as oil palm. Also, including the criteria in the analysis ensures 

this methodology is transferable to other study areas where there is 

considerable spatial variation in sunshine.  

4.3 Standardising criteria maps 

After going through the process of identifying, securing and refining the data 

for the criteria and generating the criteria weights, it was necessary to 

standardise all the datasets that represent the criteria to a scale that allow all 

the criteria to be analysed simulteneously in the GIS environment. While the 

degree to which an alternative meets certain criterion in a multi-criteria 

evaluation depends on the scores of the criterion, these criteria values are 

usually mutually incomparable because they are recorded in different units 

(Voogd 1982).  

Rainfall is measured in millimetres, soil is categorical, temperature is in 

degree Celsius, relative humidity and slope are measured in percentages, 

elevation and distances are measured in metres, soil pH is a measure of 

relative acidity or alkalinity on a scale of 0 to 14, bearing is the unit for aspect 

ranging from 0° to 360° and the length of daylight is measured in hours. While 

insolation is measured in kilowatt-hour per metre square per day, the 

radiation use of plants is measured in megajoule per metre square. 
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According to the data acquired and processed, soil pH in Nigeria ranges from 

4.0 to 8.2. Altitude range from sea level to 2,419 metres. Slope ranges from 

0% to 100%, while relative humidity ranges from 35% to 91% according to 

the acquired and processed datasets. The data also shows a mean annual 

maximum temperature range of 22 to 37° Celsius and annual rainfall range of 

419 to 2,730 millimetres. The length of daylight ranges from 11.5 to 12.5 

hours, while insolation ranges from 4.2 to 6.4 kilowatt-hour per square metre 

per day.   

Looking at these varied scales, it is obvious that only soil is qualitative and 

nominal in nature. The rest are quantitative in nature, but some are 

measured on interval scale such as aspect, soil pH and temperature (degree 

Celsius), while others are measured on ratio scale such as elevation, 

insolation, length of daylight, rainfall, relative humidity, slope (percentage) 

and the distances. Further, the direction of the criterion values differs 

between variables. Some higher scores may imply best case for the 

objective, while in some, it is the low values that favours best alternative.  

For example, the higher the insolation of a given area, the more suitable it is 

for cultivating the crops, at least considering the data range for Nigeria. On 

the other hand, the lower the distance value to surface water, the more 

suitable the land is for crop cultivation especially for crops that require 

irrigation such as sugarcane. In this work, these opposing directions do not 

apply to some of the criteria. Neither the highest value nor the lowest value 

indicates the best alternative for rainfall criteria. The rainfall criterion is a 

vector, and the best case is indicated by a particular range above the lowest 

and below the highest values. Soil is nominal and the relative importance of a 

category over the other depend on the crop in question. The purpose of 

pointing these out is to show the need for all these criteria to be transformed 

into a common scale to make it possible to combine all the data for the 

suitability classes at the same time. All standardised scores should have the 

same direction (Voogd 1982). This standardisation allows for a 

dimensionless score to be assigned to different measurement units for 

aggregation and comparison (Dell’Ovo et al., 2018).  
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Fuzzy logic can be used to represent indeterminate boundaries and, as in the 

case of this study, to handle uncertainty of hard class membership. As seen 

in section 4.2, direct qualitative determination is based on fuzzy sets which, 

in the context of GIS databases, can be used to represent geographical 

entities with imprecisely defined boundaries as fuzzy objects or regions. One 

interpretation of the fuzzy region is given as the concentration of some 

attributes associated with an entity at a particular point (Malczewski 1999). It 

could also be interpreted as the degree to which that point is inside or part of 

an entity. This provides important utility for spatial decision analysis and other 

GIS-based operations.  

An organised GIS system usually consists of a set of datasets or thematic 

maps (known as map layers) describing a single characteristic of each point 

or location within an area. Representation of the real world in a GIS system 

can be done through either cell-based (raster) or object-based (vector) 

model. Raster models are structured as an array or grid cells, often referred 

to as pixels. These models are able to represent a large range of computable 

spatial objects (Worboys 1995). A single cell may represent a point, a 

sequence of neighbouring cells may represent an arc and a collection of 

continuous cells may represent a connected area. Vector models are entities 

represented by strings of coordinates; a point is one coordinate, a number of 

connected coordinates along an arc represent a line, while a chain of 

connected coordinates linking back to starting point or a set of coordinates at 

a polygon’s corners represent an area (Malczewski 1999).  

Practically, a pragmatic decision on choosing the data model to be adopted 

should be based on the aim of the user of the database (Burrough and 

McDonnell 1998). Though it is computationally inefficient, an important 

advantage of raster models is that they make it possible to represent 

continuously varying data. On the other hand, though vector models are 

efficient computationally, their major disadvantage is that they are unsuitable 

for continuous surfaces (Malczewski 1999). Therefore, where map layers 

describe continuous (field) geographical entities, a raster-based data model 

may be more appropriate. This was adopted in this work because all the 14 
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criteria entities are continuous in space including the soil dataset that comes 

as categorical. They do not have crisp boundaries in the real world. The 

implementation of the reclassified attribute values as in table 4.1 to reclassify 

map layers was based on the comparisons operation (equal to, greater than, 

less than, …) which can be combined to perform ranged classification 

(Malczewski 1999).  

Criteria maps were created displaying spatial distribution of suitability levels 

of each of the criteria for each of the biofuel crops. Each of these criteria 

maps was presented and discussed in chapter three (section 3.3). In this 

section, reclassification tool of the ArcMap was used for the transformation to 

classes of suitability. It is worth noting here that the reclassification was 

based on the thematic attributes of the data layers though the distances 

might be seen as being reclassified based on the connectivity/proximity 

operation (nearness or proximity of a location to the entities). This means, a 

cell value indicates its suitability for a crop with respect to a theme at its 

location in a thematic map. While the cell value indicates its proximity to a 

location with respect to an entity at that location on a proximity map.  

The reclassified maps show the suitability index as in figure 4.1 for sweet 

sorghum. Other reclassified maps were presented in appendix IV for 

sugarcane, cassava, oil palm and jatropha, respectively. Except for 

sugarcane and jatropha that show some similarity in pattern in terms of 

elevation favourability, all the crops seemed to show great disparity for this 

criterion. Aspect was standardised in similar way for all the crops because 

the slope orientation influences all the crops in similar way as seen in chapter 

two. The same also applies to the spatial distances with slight difference for 

sweet sorghum in terms of surface water and proximity to roads due to its 

comparatively less requirement for water and the extent to which it is widely 

being cultivated in the country.  
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Figure 4.1: Reclassified criteria suitability maps for sweet sorghum 
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Except for oil palm, relative humidity seems to favour more than half of the 

country for all the crops, with large area classed as either most suitable or 

very suitable. A similar result was found for rainfall, insolation and 

temperature for all crops. A similar pattern could also be seen with regards to 

soil pH, though, some deviations are obvious on cassava and jatropha maps. 

Large parts of the soil categories seem to favour all the crops as either most 

or very suitable except for oil palm for which most of the soil categories are 

either moderate or less suitable. Some similarity in favourability is also 

obvious for slope distribution though it shows more influence on oil palm than 

sugarcane. As mentioned in the previous subsection, the average sunshine 

duration of about 12 hours in Nigeria favours all the biofuel crops except 

jatropha which was reported in chapter two as being not sensitive to 

sunshine duration (section 2.3.5).  

4.4 Biofuel crops land suitability models and results 

One of the FAO’s fundamental principles for land evaluation is that land 

suitability should be assessed and classified based on the specified kind of 

uses because different uses have different requirements (FAO 2007). For 

example, in this work, the specific land use target is cultivating the identified 

biofuel crops on one hand, and ensuring the restricted areas are avoided on 

the other hand. As seen in the previous subsections, all the criteria map 

layers were standardised to the adopted suitability scale of five levels 

described by the five linguistic terms (most suitable, very suitable, moderately 

suitable, less suitable and least suitable).  

The next process involves combining all the criteria maps through an overlay 

operation. The outputs of the previous processing (map layers) would be the 

inputs to the overlay operation. This overlay procedure requires that all the 

map layers are on a common grid reference. These maps can only overlay if 

georeferenced to a common coordinate system. In this analysis, UTM (WGS 

1984) was used as the common coordinate system. Though the UTM zones 

divide Nigeria in to three (zone 31N, 32N and 33N), zone 32N was adopted 

being the central zone since all the three cannot be used at the same time 

and the whole country is covered by this analysis. Zone 31N or 33N would be 
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more appropriate if the analysis is restricted to western or eastern part of the 

country, respectively.  

The overlay procedure generates an output layer as a function of more than 

one input layers. As seen earlier, the input layers were derived from the 

identified criteria. The term criterion is a generating term that connotes both 

attributes (which are properties of geographical entities or phenomena for 

example ‘favourable rainfall’) and objectives (which indicates the direction of 

improvement of one or more attributes for example ‘high crop yield’). 

Attributes form the means available to decision makers for formulating and 

achieving their objectives based on the fact that there is one-to-one 

relationship between an objective and its underlined attributes (Malczewski 

1999). Thus, the alternatives are defined explicitly in Multi-attribute Decision 

Making (MADM) and implicitly in Multi-objective Decision Making (MODM). 

This is a crucial distinction in Multi-criteria Decision Making (MCDM) 

implemented in a GIS environment. It is usually impossible to implement 

MODM in a GIS environment. This is because GIS have a very limited 

capability for comparing alternatives and producing desired output where 

alternatives are defined implicitly by a causal relationship rather than 

explicitly by the attributes. Standard GIS systems are sufficient for most 

MADM decision rules such that the decision variables can be assigned to the 

spatial entities modelled in a GIS database. Because the analysis in this 

section is raster based, each pixel is an alternative and the attributes 

(decision variables) are assigned to each of the rasters.  

Addditive decision rules are the best and most widely applied methods of 

MADM (Malczewski 1999). Analytical Hierarchy Process (AHP) is one of the 

three methods of the additive decision rule. AHP has been discussed and 

presented in chapter three where the criteria weights were generated. These 

weights are called decision alternative scores and serves as ratings of the 

effectiveness of each alternative in achieving the objective. They indicate the 

importance of each factor as compared to all other factors and they control 

how these factors compensate for each other (Drobne and Lisec 2009). 
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These weights are assigned to the map layers (each pixel receive a 

weighting) in the GIS operation called weighted overlay (WO).  

WO Function is a GIS tool developed based on the concept of Weighted 

Linear Combination (WLC) and was extended to Ordered Weighted Average 

(OWA). The function was extended to handle the limitation of the WLC with 

regards to the absence of real threshold that could allow definitive allocation 

of areas (Drobne and Lisec 2009). OWA was suggested as the solution 

based on set theory and application of fuzzy measures. Due to the degree by 

which weights are evenly distributed across all positions in OWA operations, 

trade-offs between conflicting criteria are allowed and implies global 

evaluation of alternative decisions that takes a middle position between the 

worst and the best ratings. It averages the pessimistic and optimistic 

decisions by providing intermediate solutions that for example allows a poor 

performance of an alternative with regards to a criterion to be compensated 

by a higher performance in another criterion though there is a continuous 

control over the degree of the compensation. It is weighted sum with ordered 

evaluation criteria that allow for direct control over the levels of trade-offs 

among the criteria (Malczewski 1999). This means compensation among 

criteria is only allowed according to the order; one criterion at a particular 

level of the order cannot compensate for other criteria at a different level of 

the order. 

It was shown in section 4.3 how the concept of fuzzy sets was used to 

reclassify and order the values of each of the map layers in descending order 

of suitability classes. WO provides fewer risks in suitability analysis as 

compared to Boolean Operation (BO) which eliminates any candidate that did 

not score highly in any of the decision criteria (Abudeif et al., 2015), as 

alluded in section 4.2. WO function in the GIS environment can only accept 

weights but cannot generate them, making the role of AHP crucial. The 

overlay function multiplies the weights by the standardised attribute scores 

(map layers) and the products are added to obtain the overall score for each 

of the alternative. In other words, the suitability index maps were combined 
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with the weights generated in the previous chapter to model and assess land 

suitability for sweet sorghum (figure 4.2).  

For each of the criteria maps, first order (denoted as ‘1’) represents the first 

and most preferred alternative class. The second order (denoted as ‘2’) 

represents the second alternative class. The third, fourth and fifth orders 

(denoted as ‘3’, ‘4’ and ‘5’) represent the third, fourth and fifth alternative 

classes, respectively. These 14 reclassified raster datasets were imported 

into the overlay tool and each was given its percentage influence as in table 

3.4 summing up to 100%. The evaluation scale chosen was ‘1 to 5 by 1’. 

Because the raster datasets were already classified with field values 1 to 5, 

the scale values were assigned such that they correspond to the field values. 

Similar models were also developed for all the four other crops (appendix V). 

The land suitability index for each of the crops were presented in maps as 

shown in figure 4.3. According to Beek and KJ (1978), the suitability class 

expresses the degree of a given type of land for a specific use that the best 

results are the ones that are in agreement with the criteria for optimal use. 
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Figure 4.2: Land suitability model for cultivating Sweet sorghum in Nigeria 
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Figure 4.3: Land suitability maps for cultivating biofuel crops in Nigeria
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4.5 Results and discussions 

The generation of land suitability maps (figure 4.3) represents objective five 

of this thesis. Land suitability classification is defined as “an appraisal and 

grouping, or the process of appraisal and grouping of specific type of land in 

terms of their absolute or relative suitability for a specific kind of use” (FAO 

1976). Though efforts were exerted in getting enough quantitative information 

for the adopted qualitative scale, it should be stressed at this level of the 

analysis that the suitability classes are rather relative; are not absolute (clear-

cut) and are only valid for the study area and based on the available data. 

Looking at the maps in figure 4.3, it is obvious that the models classified 

large parts of the country as ‘very suitable’ for cultivating all the crops. While 

very little areas were found to be ‘most suitable’ for some crops, no part of 

the country was identified as ‘least suitable’ for any of the crops. Thus, it 

could be inferred that large part of Nigeria is ‘very suitable’ for the cultivation 

of all the five biofuel crops. This conclusion would provide an important basis 

for the optimisation analysis that comes in chapter six.  

The maps show that the model recognised sweet sorghum with the largest 

extent of areas identified as ‘most suitable’ in the country. It could be inferred 

that there is convergence of favourable variables for the crop in those areas. 

Some few areas identified as ‘most suitable’ are also apparent on cassava, 

sugarcane and oil palm maps. Lots of areas were identified as ‘moderately 

suitable’ especially for oil palm and Jatropha both of which show some 

similar spatial pattern. Except perhaps for cassava, areas identified as ‘less 

suitable’ are not easily obvious from the maps. At this point, objective six 

have been achieved and table 4.2 shows the land proportions of the 

suitability classes for each of the crops. Comparing figure 4.3 to figure 4.4, it 

is obvious that this work provided greater details regarding potential areas for 

cultivating biofuel crops in Nigeria than what is available in the public domain. 
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Table 4.2: Percentage Nigeria lands suitability for biofuel crops cultivation 

Class Linguistic 
Term 

Sweet 
sorghum 

Sugarcane Cassava Oil 
palm 

Jatropha 

1 Most 
suitable 

10.36 0.69 3.77 0.14 0 

2 Very 
suitable 

84.18 87.49 74.40 70.56 71.60 

3 Moderately 
suitable 

5.47 11.82 21.60 29.31 28.40 

4 Less 
suitable 

0 0.000064 0.23 0.00029 0 

5 Least 
suitable 

0 0 0 0 0 

 

 

Figure 4.4: Very low detail map of biofuel feedstock in Nigeria          Source: (NNPC 2012) 

Though the researcher could not obtain detail information about how figure 

4.4 was produced and on what basis, it obvious that the map follows the 

vegetation zones of the country rather than the actual individual crop’s 

ecological favourability. Oil palm is assigned to the mangrove and freshwater 

swamp forest zones, cassava to the tropical rainforest, sugarcane to the 
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derived and guinea savannah and jatropha to the sudano-sahelian savannah. 

Some explanations could be decerned from the information the map is 

communicating. For example, because oil palm require high amounts of 

rainfall, it is expected to do well in the Niger Delta where highest amount of 

rainfall is received in the country. Also, because jatropha has high tolerance 

to drought, it may perform well in tolerating the sudano-sahelian harsh 

environment. However, the map lack information with regards to suitability of 

the other biofuel crops in the respective assigned zones. For example, it may 

implicitly communicate the wrong information that jatropha may not do well in 

the Niger Delta or that cassava may not do well in the sudano-sahelian 

vegetation.  

While figure 4.4 grouped states, following ecological pattern of the country, to 

show potential areas for the crops, this research provided more details by 

analysing the suitability levels of the areas. Further detail would be provided 

on this in chapter five after the restricted areas are identified and eliminated. 

Before eliminating restricted areas, it could be seen in table 4.2 that more 

than 84% and 87% of Nigeria’s land is classified as ‘very suitable’ for 

cultivation of sweet sorghum and sugarcane, respectively. Also, for cassava, 

oil palm and jatropha, more than 70% of the study area is classified as ‘very 

suitable’ for each of the crops. Less than 0.25% is classified as ‘Less 

suitable’ for any of the crops. It was alluded in section 3.5 that sensitivity 

analysis may not be an absolute basis for drawing conclusions about 

reliability of multi-criteria decision methods and that in the case of applying 

pairwise comparison technique, what is necessary is ensuring the results are 

based on a consistent comparison. However, sensitivity analysis may provide 

some insights into how sensitive the results might be to the changes in the 

criteria weights. Some of the approaches to sensitivity analysis include 

assigning equal weights to all the criteria, setting one or more criteria weights 

to zero or altering the criteria weights using a defined interval, one at a time 

(Höfer et al., 2016). In this work, equal weights were used to conduct the 

sensitivity analysis. Figure 4.5 (full extent) and 4.6 (zoomed in) show the 

comparison between the results for each of the crops. 
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Figure 4.5: Maps showing sensitivity of the land suitability index to changes in criteria weights 
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Figure 4.6: Sensitivity shown in some zoomed part of the country
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It is obvious from figure 4.5 that even though both the two results show 

similar patterns, there are significant differences between the two. Taking 

each pair of the maps for each of the biofuel crops, it is easily decernible that 

the results are sensitive to changes in the criteria weights. As explained by 

the text on the figure, equal weights of 7 were assigned to each of the 14 

criteria. This sums up to 98. The GIS tool for this operation requires that the 

total weights add up to 100. Thus, because rainfall and soil are the major 

factors for plants’ growth and development, the two were assigned a weight 

of 8 each. Similar to the AHP generated weights, the model output from 

these equal weights did not classify any part of the country as least suitable 

for cultivating any of the five biofuel crops. However, for jatropha, some small 

parts of the country were classified as Most suitable using these equal 

weights, unlike the AHP weighted model which did not identified any part of 

the country as most suitable for the crop. Also, areas identified as most 

suitable for cassava, almost disappeared in the sensitivity analysis results 

(table 4.3). 

Table 4.3: Land suitability proportion using equal criteria weights 

Class Linguistic 

Term 

Sweet 

sorghum 

Sugarcane Cassava Oil palm Jatropha 

1 Most 

suitable 

5.60 0.60 0.04 0.0065 0.19 

2 Very 

suitable 

88.30 93.05 84.98 78.47 95.50 

3 Moderately 

suitable 

6.04 6.89 14.96 21.47 4.31 

4 Less 

suitable 

0 0.000033 0.009329 0.054644 0 

5 Least 

suitable 

0 0 0 0 0 

 

Comparing table 4.2 with table 4.3, it could be concluded that the application 

of AHP had improved the land suitability modelling because the results are 

sensitive to changes in the criteria weights. Table 4.4 shows the proportional 

change in land suitability for each class, based on each of the biofuel crops. 

‘Very suitable’ class increased for all the crops. While ‘Most suitable’ class 
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decreased for all the crops except jatropha, ‘Moderately suitable’ class 

decreased for all the crops except sweet sorghum. ‘Less suitable’ class 

decreased for both sugarcane and cassava, unlike sweet sorghum for which 

it had increased.   

Table 4.4: Percentage change (sensitivity) in land suitability proportions 

Class Linguistic 

Term 

Sweet 

sorghum 

Sugarcane Cassava Oil palm Jatropha 

1 Most 

suitable 

-4.76 -0.09 -3.73 -0.1335 +0.19 

2 Very 

suitable 

+4.12 +5.56 +10.58 +7.91 +23.90 

3 Moderately 

suitable 

+0.57 -4.93 -6.64 -7.84 -24.09 

4 Less 

suitable 

0 -0.000031 -0.220671 +0.054354 0 

5 Least 

suitable 

0 0 0 0 0 

 

The use of MCDM approach had been shown to be very useful in increasing 

the effectiveness of GIS as a tool that assists in supporting spatial decision 

making. Huang et al., (2011), noted that the differences in the choice of 

MCDA approaches may be based more on familiarity and available 

opportunity than on their comparable merits. While the isssue of familiarity 

could be takled through extended literature exploration on the methods, the 

issue of available opportunity may be difficult to be addresed. Lengthy 

discussion was given in chapter three on the reasons for choosing AHP as 

the method for criteria weighting in this work. It was mentioned there that 

AHP is a superior method of criteria weighting in a systematic and logical 

way.  

In this chapter, only the favourability factors were considered in determining 

the suitability of the land for the biofuel crops cultivation in Nigeria. The 

intended land use may have some strong spatial implications that may lead 

to various adverse effects on the landscape such as pollution (air, water and 

noise), land degradation and biodiversity disturbance. These effects caused 
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by sub-optimal siting of some land uses were said to have induced an 

increasing gap against the social acceptance of these land uses on both local 

and global scales (Höfer et al., 2016). The following chapter is dedicated to 

identifying and eliminating restricted areas to determine areas that could 

potentially be used for biofuel crops cultivation in the country. 
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Chapter Five – Constraints Modelling 
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5 Chapter Five – Constraints Modelling 

5.1 Introduction 

In the previous chapter, analysis was presented that combined all the factors 

that support cultivation of crops for biofuel feedstock in Nigeria. As discussed 

in section 4.5, these factors form one category of the evaluation 

considerations for spatial analysis. The other category of considerations 

forms the evaluation constraints such as agricultural and protected areas. As 

indicated in section 4.1, factors that do allow for compromise should be 

aggregated first before analysing factors that do not. In other words, factors 

that can compromise between one another should be analysed together 

before factoring in the factors that cannot allow for trade-off. This provides an 

overview of the overall land potential suitability before incorporating 

restricting factors. Also, the restrictions may change, for example, due to 

change in regulations, or what is considered restriction may change in itself. 

Therefore, it is more useful to start with all the possible land areas and then 

eliminate the restricted areas.  

This chapter is dedicated to analysing these constraints and the process of 

their elimination. In other words, these areas that are restricted or that may 

not be used for biofuel crop cultivation would be identified and a model would 

be developed for their elimination. The result would be combined with the 

result of the land suitability model to provide more detailed discussion on the 

potential areas that may be available for cultivating biofuel crops in Nigeria. 

In chapter two (section 2.2), an overview was provided of the crops deemed 

appropriate for biofuel production in Nigeria. In chapter seven, discussions 

will be provided on strategies to make biofuel production in the country 

feasible and sustainable.  

5.2 Identifying restricted areas 

The basis for identifying the constraints were the principles put forward as a 

standard by Roundtable on Sustainable Biomaterials (RSB) as contained in 

their published document (RSB guide to the RSB standard). RSB is a global, 

multi-stakeholder independent organisation that drives the development of a 

new world bio-economy through sustainability solutions, certification, 
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innovation, and collaborative partnerships (RSB 2017). Because it was not 

possible to obtain all the data needed to incorporate all the 12 RSB 

principles, only those for which data is available were considered in the 

elimination modelling.  

Table 5.1 shows the RSB principles indicating for which data was available. It 

might be observed that most of the principles are non-spatial; they are not 

directly related to locating the land in and of itself but related to management 

strategies or compliance with regulatory guidelines. Principle 6 (local food 

security) requires that human rights to adequate food and improved food 

security are ensured. One of the basic means of ensuring these is making 

sure that the existing food crop areas are not converted to feedstock 

production because this will have direct impact on the supply and indirect 

effect on the price of food stuff. Thus, compliance with principle 6 is 

represented in this work as avoiding currently cultivated agricultural areas. 

Section 5.3 deals with identifying existing agricultural areas in Nigeria. 

Table 5.1: Roundtable on Sustainable Biomaterials (RSB) principles 

S/N Principle Data 

1 Legality Non spatial 

2 Planning, Monitoring and Continuous Improvement  Non spatial 

3 Greenhouse Gas Emission Not available 

4 Human and Labour Rights Non spatial 

5 Rural and Social Development Non spatial 

6 Local Food Security Available 

7 Conservation Available 

8 Soil (maintenance and reversing degradation) Available 

9 Water (right) Available 

10 Air (quality) Not available 

11 Use of Technology, Inputs and Management of 

Waste 

Non spatial 

12 Land rights Non spatial 

 

The World Database on Protected Areas was explored as the source for data 

to identify other protected areas including reserves and conservation areas. 

This covers RSB principle 7 which requires avoidance of negative impacts on 

biodiversity, ecosystem and conservation values. Since the 2010 COP10 in 
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Aichi, Japan, parties established national targets to contribute to the 

achievement of the targets set at the conference. The Aichi target 17 

(https://www.cbd.int/sp/targets/) required that by 2015 each party has 

developed, adopted as a policy instrument and has commenced 

implementing an effective, participatory and updated national biodiversity 

strategy and action plan. Target 5 required that the rate of loss of all natural 

habitats, including forests, is at least halved by 2020 and where feasible 

brought to zero, and degradation and fragmentation is significantly reduced. 

However, in a press release, the United Nations showed that despite 

encouraging progress in several areas, the natural world is suffering badly 

and getting worse (UN 2020).  

There is likelihood that these global targets will be renegotiated at COP15 in 

October, 2021, with some suggestions that parties increase the coverage of 

their protected areas to 30%. However, this will have profound consequences 

for land use. Schleicher et al., (2019), analysed the ambitious proposal of 

protecting half the earth and found that at least one billion people live in the 

areas that would be protected if this proposal is implemented within all 

ecoregions. Implementing this will cause huge human displacement and 

thus, the authors recommended that the framework should apply more 

holistic and interdisciplinary approaches that take into account social and 

economic implications across all scales. This will also greatly affect land 

availability for biofuel crops cultivation. 

The Nigeria’s revised National Policy on the Environment (FME 2016) 

reported that an estimated 0.4% and 8.5% of the plant species (more than 

5000 recorded) are threatened and endangered, respectively. Similarly, 

0.14% and 0.22% of the animals and insect species (22,090) are threatened 

and endangered, respectively. This clearly shows that there are more 

endangered than threatened species of both plants and animals. Thus, the 

focus of the Nigeria’s national policy on the environment, among other 

strategies, was on encouraging sustainable use of farmlands, forests and 

wetlands outside protected areas (5.7% of the landmass) while promoting in-

situ (within protected areas) and ex-situ biodiversity conservation. It is, 

https://www.cbd.int/sp/targets/
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therefore, necessary to identify these protected areas as much as possible to 

make sure they are avoided. With only 5.7% of Nigeria’s landmass protected, 

the country is far below the global target though there could be lots of unused 

areas that could be added to the protected area system without hampering 

existing land uses.  

RSB Principle 8 requires maintenance of soil health and/or practices to 

reverse soil degradation. Though this could be approached through farming 

practices, in this work, severe erosion sites were avoided as part of spatial 

compliance to this principle. The Nigeria’s national environment policy 

reported that in the south-eastern states of the country, gullies and areas 

exposed to erosion increased from about 1.33% (1,021 km2) in 1976 to about 

3.7% (2,820 km2) in 2006. The policy indicated that particular attention would 

be given to erosion-prone areas in formulation and enforcement of regulation 

for soil and water conservation.  

Major surface water bodies were also identified, and this covers principle 9 of 

the RSB. Aichi target 11 requires that by 2020 17% terrestrial and inland 

water and 10% of coastal and marine areas are conserved through 

connected systems of protected areas and other effective area-based 

conservation measures. The Nigeria’s environment policy focus, among other 

things, on promoting sustainable use of freshwater, wetland (estimated to 

cover about 13 million hectares) and groundwater (the annual recharge of 

which is estimated at about 9.5 trillion litres) resources and conservation of 

vulnerable river and lake ecosystems in particular and biodiversity in general.  

Section 5.4 of this chapter deals with combining all these identified 

constraints in a model to eliminate them, making sure these areas were not 

identified as potential for biofuel feedstock cultivation. The last chapter of the 

thesis will provide recommendations that will cover considerations for the 

other principles which could not be included in the elimination modelling due 

to the nature of the principle or data unavailability as mentioned earlier. 
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5.3 Land cover mapping 

5.3.1 Background  

As mentioned in the previous section, part of the compliance with RSB 

principle 6 is ensuring that the existing food crop areas are not converted to 

biofuel feedstock production. The spatial analysis must, therefore, aim to 

avoid identifying existing agricultural areas as suitable for biofuel crops 

cultivation. Identifying these lands is very crucial in this regard and could be 

achieved through exploring land cover maps of the study area. At the initial 

stage of this research, the most recent land cover map covering Nigeria that 

was available to the researcher was the one developed by CILSS and 

published in 2016 as a series of three maps showing land changes from 

1975 to 2000 and to 2013. The map was produced at regional scale (for the 

whole West Africa) and the most recent of the maps was based on 2013 

datasets. In addition, the spatial resolution of the map is 500 metres which 

could be regarded as too coarse to provide useful details of several land 

covers such as water bodies and the many agricultural land parcels, the 

identification of which forms a crucial aspect of this research. 

At a later stage of the work, the attention of the researcher was drawn to the 

recent global land cover produced by the European Space Agency (ESA) 

based on Sentinel data products and published in October, 2017. The map 

was produced using a 12 months (December, 2015 to December, 2016) 

Sentinel 2A imagery at a fine spatial resolution of 20 m (ESA 2017). 

However, country specific assessment of the map showed that it has very 

low overall accuracy in many countries especially in West Africa where the 

47% accuracy in Ivory Coast was attributed to fragmented land cover which 

makes it a difficult country to map with remote sensing (Lesiv et al., 2019). 

Most West African countries including Nigeria share similar pattern of land 

cover system. Though Sentinel 2 data shows great potential for land 

management applications, it faces challenges such as mismatch with 

Landsat 8 OLI, differences in spatial resolution and lack of thermal bands 

(Phiri et al., 2020).  
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Especially of particular interest to this work, assessment of the ESA Africa 

land cover map shows that there is massive overestimation of croplands 

which were mapped with low user’s and producer’s accuracies and the 

highest confusion is between croplands and grasslands (Lesiv et al., 2017). 

Using this map in this work would mean eliminating massively overestimated 

agricultural area. Also, the map has a continental scale (Africa) and thus 

might not be ideal to depict regional environment and its heterogeneity 

(Schulz et al., 2021). Dozens of global and continental land cover maps have 

been produced but their use is limited, partly, due to their being produced 

independently and for specific point in time, lacking coherency and continuity 

(Costa et al., 2018). Nabil et al., (2020) examined most recent and available 

cropland maps for Africa to assess factors impacting the spatial 

discrepancies of remote sensing-based cropland products. They reported 

that all the maps have accuracies below 65% and they identified land cover 

richness as the main contributor to these spatial disagreements over Africa, 

among other factors such as high frequency of cloud cover, fragmented field 

sizes and elevation complexities. They, therefore, encouraged use of multi-

classification approach and incorporation of multi sensor to improve cropland 

mapping processes.   

Therefore, it was thought that it would be better to explore the possibility of 

producing a land cover map focussing on agricultural areas, using recent 

datasets and at a fine spatial resolution. This might be the best option despite 

the challenges of satellite imagery classification, especially considering the 

spatial variability in Nigeria’s ecology as discussed in section 1.3. Attempt 

was made to combine both optical and radar imagery. Though traditional 

imagery classifiers were adopted in order to keep the process simple and 

faster, a new procedure was developed for combining different classification 

outputs to improve classification accuracy. 

5.3.2 Methodology 

Over the decades, many satellite imagery classification methods have been 

developed as well as several classifiers. Classifiers are set of software 

algorithms or packages used in discriminating spectral patterns within an 
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image to enable grouping of image segments with similar patterns into 

classes. In a particular classification method, a combination of classifiers may 

be used to achieve a particular purpose (Lillesand et al., 2008). Classification 

is the procedure that generally involves acquiring the satellite imagery, pre-

processing, classification and accuracy assessment. Accuracy of the maps is 

the most important aspect of the process but is affected by all the other 

aspects. Combining different remotely sensed data in mapping land cover 

was shown to increase classification accuracy (Chen et al., 2017; Sekertekin 

et al., 2017). Specifically, combining optical with radar data was shown to 

have made it possible to map land covers in areas that present many 

challenges due to structural complexities (Ianninia et al., 2013; Haas and Ban 

2017; Baumann et al., 2018; Whyte et al., 2018; Yang et al., 2018).  

Because there is no single ‘right’ manner in which to approach image 

classification, choice of approach depends upon the nature of the data, the 

software available and the intended application (Lillesand et al., 2008). It is 

an unrealisable dream for the remote sensing experts to attain totally 

automatic image classification in land cover mapping (Sun et al., 2016) and 

the major issue is said to be classifier selection (Heydari and Mountrakis 

2018). Many factors such as spatial resolution of the imagery, the source of 

the imagery, the classification system and software availability are some of 

the necessary considerations when selecting a classifier (Lu and Weng 

2007). Despite a large number of publications on methods and classifiers, 

classification still remains a challenging task in remote sensing (Shivakumar 

and Rajashekararadhya 2018). However, to improve accuracy, some 

researchers applied a combination of classifiers and/or a combination of 

methods (Petropoulos et al., 2010; Petropoulos et al., 2013). 

Some of the most widely used classifiers in satellite imagery classification 

and which were reported to have produced outputs with impressive 

accuracies are Random Forest (RF) and Support Vector Machine (SVM) 

though, in land cover classification, RF compared better than SVM in terms 

of the required user-defined parameters and ease of defining the parameters 

(Pal 2005). RF has been a popular classifier in remote sensing community 
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due its classification accuracy and has been used in many different 

applications based on different imagery sources (Belgiu and Drăguţ 2016). 

An improved version of the RF was developed and reported to have shown 

an increased accuracy of about 6% over standard RF (Izquierdo-Verdiguier 

and Zurita-Milla 2020). SVMs were reported to be appealing to the remote 

sensing community due to their ability to perform well with limited number of 

training samples (a common remote sensing challenge) though, they suffer 

from the issue of parameter assignment that can significantly affect the 

results (Mountrakis et al., 2011). Deep Learning Techniques were integrated 

with SVM to improve its performance on classifying hyperspectral imagery 

(Okwuashi and Ndehedehe 2020). 

Initially, the intention was to adopt RF classifier in this segment of the 

research work. However, both RF and SVMs were shown to have suffer from 

correlation bias though this can be corrected using related methods for group 

selection based on feature clustering (Toloşi and Lengauer 2011). To 

improve both the stability and accuracy of these modern methods, several 

bootstrap subsets of the training sample are selected and aggregated as 

stable solution in a procedure called ‘ensemble feature selection’ (Gregorutti 

et al., 2017). SVM was reported to be highly time consuming in training the 

classifier, difficult to understand, highly depends on user-defined parameters 

and difficult in determining the optimal parameters (Muthu and Ranjani 2020). 

Therefore, it is obvious that though these classifiers are powerful, using them 

would require much more time than could be apportioned for this segment of 

the research. The software available for the researcher at the time of this 

analysis was Erdas-Imagine. None of these classifiers is available in this 

software. Using RF would require learning some coding software such as R 

and SVM would require use of ENVI.  

There was not enough time to learn and use these powerful software 

packages. The main aim of this land cover mapping is to identify agricultural 

areas which is only one of several constraint areas that need to be identified 

and eliminated though surface water and settlements would also be extracted 

from the mapping output. In addition, traditional classifiers, which are 
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available in Erdas-Imagine, are still being used for satellite imagery 

classification. In an assessment of four traditional classifiers such as 

Maximum Likelihood Classifier (MLC), Minimum Distance Classifier (MDC), 

Spectral Angle Mapper (SAM) and Spectral Correlation Mapper (SCM), 

Sharma et al., (2018) found that MLC and SAM performed better than others, 

in terms of accuracy, when applied to Landsat datasets. A recent article 

showed, in a particular application, that SAM and MLC could even perform 

better than SVM, with SAM yielding 92% overall accuracy in an independent 

field verification (Mafanya et al., 2022). The two algorithms were used to 

investigate land use change in the Middle East and North African region 

(Riad et al., 2020). SAM was used to identify individual trees in the Matang 

Mangrove Forest Reserve of Malaysia (Zulfa et al., 2021). MLC was reported 

to have performed better than Artificial Neural Network (ANN) in labelling 

rock units (Shebl and Csámer 2021) and the algorithm was used to 

investigate land use/land cover change in Sierra Leon, located in West Africa 

(Tarawally et al., 2019). 

As discussed in the next subsection, optical and radar data were combined to 

perform this analysis due to the structural nature of the study area. However, 

it was observed that there are certain issues that limits wider use of this kind 

of data combination (Schulte to Bühne and Pettorelli 2018). These include 

lack of contextual understanding of the need for the combination or lack of 

reporting the reasons for the data selection, lack of capacity in terms of 

hardware and skills and data accessibility. In the current research, though 

there was a limit to which software the researcher could use in the analysis, 

both optical and radar datasets were accessible for the study area. The 

researcher gained some understanding of both the optical and radar data 

from previous courses on advanced image processing. Due to seasonal 

variability in Nigeria, especially in the southern part of the country, cloud 

cover makes sole use of optical data for land cover mapping extremely 

difficult. Therefore, combining the optical data with the radar data could result 

in better land cover mapping of the area with relatively higher accuracy than 

using optical data alone, though with careful temporal consideration. August 
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SAR data was found to have increased per-pixel classification accuracy by 

5% (Ban 2003). 

The method and the classifier used may affect achievement of higher 

classification accuracy through data combination. For arid and semi-arid 

areas, it was shown that Random Forest performed better (85%) with pixel-

based analysis of fused data than SVM (81.46%), while the RF performed 

worst with object-based analysis (70.2%) (Wang et al., 2016). Fused optical 

and radar data was also shown to have significantly improved classification 

accuracy (84.9%) compared to optical (75.5%) or radar (64.2%) data alone, 

and multiple files composite (75.5%) as well (Hong et al., 2014). However, 

maintaining spectral fidelity is a challenge in using fused multi-source 

imagery for land cover classification which underscores the importance of 

carefully selecting appropriate fusion method for a particular application (Lu 

et al., 2011). Furthermore, it was suggested that the best strategy would be 

to fuse more useful extractions of both optical and radar data for the 

particular application rather than absolute best extractions (Lisini et al., 

2011). For topographical mapping applications, VIR and SAR combinations 

are used (Pohl and Van Genderen 1998).  

Due to their complexity, open-ended difficulties and their consequences on 

their outputs, simple image fusion techniques are recommended not to be 

used for real world applications (Kaur et al., 2021). For example, though 

Principal Component Analysis have good spatial advantage, it degrades 

image spectral integrity. It is their major drawback that they cause spectral 

distortions (Thomas et al., 2008). In this respect, band stacking may perform 

better to preserve spectral integrity of the imagery. Band stacking was found 

to have produced higher classification accuracies than PCA band fusions 

when SVM and MLC were applied on multiple band combinations at seven 

different spatial resolutions (Luo et al., 2016). In the current analysis, band 

stacking was adopted as presented in subsection 5.3.4.3. 

Two supervised traditional classifiers were chosen to be used in the current 

analysis. These are Maximum Likelihood Classifier (MLC) and Spectral Angle 
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Mapper (SAM). SAM is based on the estimation of the spectral similarity in 

the feature space. The signatures of the endmember (known or reference 

pixel) and image (unknown pixel) is described by a vector, starting at the 

coordinate system’s origin, while the length of the vector indicates reflection 

intensity (figure 5.1). Thus, the difference between spectra is described by 

the angle; it is the angle that is assessed not the length of the vector. The n-

dimensionality equals the number of bands (Hasan et al., 2016). Apart from 

being easy and fast approach, SAM has relative robustness against 

illumination differences and offers possibility for comparison between image 

and lab spectra. However, some physiological changes may not be detected 

due to insensitivity to illumination. Some attempts were made to improve the 

performance of the basic SAM classifier (Luc Bertels et al., 2005; Zhang and 

Li 2014).  

 

Figure 5.1: Depiction of Spectral Angle Mapper (Hamza et al., 2016) 

MLC is based on K-dimensional normal distribution and the class 

membership is based on the highest probability density. The discriminator is 

the isolines with equal probability density between the respective classes. 

The probability density function is calculated on the basis of mean vector and 

covariance matrix. As a parametric method, MLC is relatively simple to apply. 

Using a small set of statistical parameters, parametric methods prove to be 

advantageous for classification with simple formulation and fast 

computational ability and are even more useful when probability distributions 
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are valid, though its assumption of normal distribution is a drawback 

(Chakraborty et al., 2017). These two algorithms were implemented on 

several band combinations and assessed for the final classification. Figure 

5.2 depicts the classification process. 

Figure 5.2: Land cover mapping procedure. Touches or arrow indicate progression 
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In summary, the classification schema consists of acquiring the datasets, 

pre-processing, extraction of VV and VH radar bands, extraction of Red and 

NIR of the optical bands, driving the optical and radar vegetation indices, 

stacking the bands, spectral classification, initial supervised classification (8 

classes), accuracy assessment, eleven band combinations, 16 sub-classes, 

22 classification outputs, selection of seven classification outputs with the 

highest class accuracies, combining the seven outputs for each of the 

classes, recoding the fuzzy outputs into binary maps using a threshold, 

combining the binary maps using a conditional statement, correction for 

obvious errors, accuracy assessment within the Erdas-Imagine and accuracy 

assessment using excel spreadsheet, final land cover map. 

5.3.3 Data and pre-processing 

Acquiring the data was a challenging task due to the spatial extent and 

ecological complexity of the country. While the seasons are clearly defined 

(dry and wet) in the northern two-third of the country with seasonal length 

ranging from four to eight months, the dry season in the coastal areas is 

more or less two months. Thus, obtaining usable optical satellite imagery 

covering the country was tedious due to cloud cover. Most of the tiles, 

especially for the southern region, have unacceptable level of cloud cover. 

Thus, radar data was combined with optical data for the mapping analysis. 

The European Space Agency’s (ESA) radar product (sentinel 1) was used. 

Attempt was made to use the ESA’s optical product (Sentinel 2) but that was 

not possible. At the time of obtaining the imagery, the available scenes at the 

ESA science data website were not found to cover Nigeria for the period of 

August 2018 and the available ones contain unacceptable amounts of cloud 

cover. Also, though the Sentinel-2 Global Mosaic service of the Copernicus 

Global Land Service provides surface reflectance products, the algorithms 

used to produce these products were said to have relied upon Sentinel-2 L2A 

data which is prone to such errors as confusion between clouds and high 

reflectance built-up areas (Corbane et al., 2020). Thus, Landsat 8 OLI was 

used instead of Sentinel 2. Forty-nine Landsat 8 tiles were obtained as 

surface reflectance imagery. 
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It is possible at any part of the rainy and most part of the dry seasons that the 

farmlands can be identified through photo interpretation techniques such as 

shape of the field, tone, texture, pattern and association. Thus, avoiding 

cloud cover was the most important criteria for choosing which Landsat 

scene to be used. Thus, not all the 2018 scenes were found to be usable 

(table 5.2). However, an attempt was made to ensure that almost all the 

scenes coincided with the same period of the year (November). Although 

rainfall stops in many parts of the north in November, the main harvesting 

time for rainy season crops is between October and January. Thus, many 

crops are expected to be in the field in November. Because radar is not 

affected by cloud cover, imagery sensed during the peak of the rainy season 

(August) were acquired. Thirty-eight Sentinel-1 tiles were downloaded from 

the ESA Science data website (table 5.3). These were calibrated, speckle 

filtered (Lee Filter), geometrically corrected (ellipsoid – Range Doppler) using 

the Sentinel Toolbox – the SNAP (Filipponi 2019). Each of the imagery was 

then exported to Erdas Imagine. 

 

Table 5.2: Optical (Landsat 8 OLI) Data 

 

 

 

 

 

 

 

 

 

Sensing date 2018 33 scenes 

2017 7 scenes 

2016  4 scenes 

2015 5 scenes 

Sensor Landsat 8 OLI 

Orbit mode Descending (Day time) 

Processing 

level 

At surface reflectance 

Bands VIS - NIR 

Cloud cover 0% 17 scenes 

 < 10% 27 scenes 

 < 20% 5 scenes 

Spatial 

Resolution 

30 metres 
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 Table 5.3: Radar (Sentinel-1) Data 

       

 

 

 

 

 

 

Both the radar and the optical datasets were mosaicked and a subset of each 

was clipped using Nigeria’s international boundary (figures 5.3). It is obvious 

from tables 5.2 and 5.3 that the two datasets have different spatial 

resolutions. Landsat 8 is 30 metres, while Sentinel 1 is 10 metres. This 

analysis was conducted using 30 metres spatial resolutions. Sentinel 1 was 

captured as 20 by 5 metres pixels but supplied as 10 metres. This is 

understandable because two pixels of 20 by 5 metres equal 20 by 10 metres 

(which could be resampled into two pixels of 10 by 10 metres). Therefore, the 

Sentinel 1 data was resampled from 10 metres to 30 metres as part of the 

pre-processing in the Sentinel toolbox. As mentioned in the previous 

subsection, combining both radar and optical data is believed to improve land 

cover mapping accuracy (Steinhausen et al., 2018; Whyte et al., 2018). Two 

bands were extracted from each of the optical and radar datasets. Red and 

Near Infrared (NIR) bands from the optical data and VV and VH polarizations 

from the radar data.  

Sensing date August, 2018 

Orbit mode Ascending  

Satellite S1A 

Product type Ground Range 

Detected 

(GRD) 

Polarization  VV+VH 

Sensor mode Interferometry 

Wide (IW) 

Spatial 

Resolution 

20 X 5 metres 

(10 metres) 
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Figure 5.3: Subset of the mosaicked Landsat 8 tiles (left) and Sentinel-1 imagery (right) 

 

Then, Normalised Difference Vegetation index (NDVI) which is derived from 

the Red and NIR bands of the optical data was derived (figure 5.4). NDVI has 

widely been applied in studies of terrestrial vegetation. A model called ‘Dual 

Polarization SAR Vegetation Index (DPSVI)’ was published in 2018 and was 

developed for extracting vegetation index based on the system and target 

parameters of the Synthetic Aperture Radar (SAR) system (Periasamy 2018). 

DPSVI was also derived (figure 5.4). Scatter plot (figure 5.5) and correlation 

coefficient of ≈ 0.43 showed substantial positive correlation between the 

NDVI and the DPSVI.  

 

Figure 5.4: NDVI from the optical bands (left) and DPSVI from the VV and VH radar bands 

(right) 
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Figure 5.5: Correlation between NDVI and DPSVI 

Presenting this NDVI-DPSVI correlation serve as a validation of the DPSVI 

model as used by the developer of the model (Periasamy 2018), assuming 

NDVI does well in areas with less cloud problem. The reason for using both 

the optical and radar vegetation index in the mapping analysis is the 

expectation that the radar vegetation index may work better in the southern 

region of the country where the rainy season is temporally very wide; up to 

10 months as mentioned earlier.  

It is obvious from the scatter plot that DPSVI showed some very high values 

of more than 0.9 where NDVI showed less than 0.6 and this is expected to be 

in areas with very high vegetation cover which is more common in the 

southern part of the country. For example, in the sample points used for the 

scatter plot, a point with FID 30, located in the southern part of the country 

showed approximately 0.85 for DPSVI and 0.54 for NDVI. A look at Google 

Earth showed that this point is located in the Cross River National Park, an 

evergreen area in the Cross River State of the southern region. This 

suggests that DPSVI is more accurate for this point.  

The scatter plot, also, showed that there are more high values in the DPSVI 

with corresponding low values in the NDVI than vice versa. However, with 

clear sky in most part of the year in the northern part of the country, NDVI 

may perform better than DPSVI. For example, a point with FID 46, located in 
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Kaduna State in the north, showed a value of approximately 0.28 for DPSVI 

and 0.55 for NDVI. A look at this location on the Google Earth showed that it 

is an area of short tree cover with some scattered tall trees. Therefore, NDVI 

values could be closer to reality than DPSVI for this point. Therefore, both the 

NDVI and the DPSVI would be useful in the mapping analysis. All the 3 

optical bands and the 3 radar bands were stacked into a single image, 

respectively (figures 5.6). 

 

  

Figure 5.6: The 3 optical (left) and 3 radar (right) bands 

 

5.3.4 Classification 

5.3.4.1 Spectral classes 

After stacking the radar bands, the optical bands and the combined bands, 

unsupervised classifications were executed on each of the stack to observe 

the spectral distribution and exploit the possibility of extracting usable spectra 

for the target information classes. Both ISODATA and K-Means algorithms 

within Erdas Imagine were used. A closer look at the map produced using 

both the radar and optical bands (VV, VH, Red, NIR, NDVI and DPSVI) 

(figure 5.6) showed that though some features such as water bodies (class 

2), settlements (class 5) and some forest reserves (class 7) could be 

identified even at the full extent of the study area, these spectral classes may 

not successfully be used for information classification due to high 

misclassification. Bare grounds were merged into the same class with water 
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bodies, settlements merged with agriculture and more importantly for this 

research, agriculture was merged into the same class with uncultivated areas 

such as grasslands and sparse woodlands.  

Because the mapping analysis would be using limited number of land cover 

classes, eight classes were applied for the combined radar and optical data 

as shown in figure 5.6. Few classes for automated clustering of the pixels 

may limit the ability of the algorithm to adequately provide meaningful 

groupings of the pixels. Thus, the misclassification may be due to limited 

number of the classes rather than the spectral pattern within the data. The 

output showed that without training the classification algorithm, the algorithm 

may not successfully separate many of the clearly different land covers. It 

also shows that there is need for systematic handling of the classifier training 

to achieve usable supervised classification. 

 

Figure 5.7: Unsupervised Classification produced from both the radar and optical data using 

ISODATA in the Erdas-Imagine Software 

5.3.4.2 Training Sample 

At the initial stage of this research work, a plan was made to create random 

points, conduct a field visit to those random points and collect feature 

information that would be used for training the classifiers and also for 
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accuracy assessment. Points were iteratively generated in ArcMap, making 

sure that they are randomly distributed. Random in this context refers to the 

spatial distribution of the sample points. Though complete randomization 

entails locating each point individually (which might be tedious) and may lead 

to bias among the classes (Burrough and McDonnell 1998), random pattern 

suggests absence of interaction between the points, providing equal chance 

for each location to be selected as part of the sample points. A stratified 

sampling is used to reduce the bias in allocating the points among the 

classes. Several trials failed to produce random points until when a minimum 

distance limit of 15 km was used. Therefore, 400 points were generated 

using a convex hull of the map of Nigeria as the extent limit and the points 

were clipped for the target states to remove the points that fall outside the 

map of Nigeria and, as well, those that fall into the states not selected.  

The output dataset produced 351 points and the pattern analysis showed that 

the points does not appear to be significantly different than random. These 

351 points were supposed to comprise the training points and the accuracy 

assessment points. Each of the points needs to be classified as either 

training point or accuracy assessment point right at the data collection stage 

for easy identification during the analysis. The points were divided into two; 

176 points for analysis (training) and the pattern analysis showed that they 

were still random. However, the remaining points were not found to be 

random. Thus, 200 new random points were created and the same 

procedure was followed. The result produced 173 random points. The two 

datasets were displayed in ArcMap to visually check if there is any overlap of 

points (figure 5.8). Near analysis was also executed to spatially confirm there 

is no training point that overlaps with any accuracy assessment point. The 

report showed that the two closest points are approximately 3,424 meters 

apart. If the closest distance is more than 3 km, it shows that even with a 

spatial resolution and/or accuracy of 1 km there is no overlap of any pair of 

points between the two datasets. 

As part of the field work discussed in section 3.4.4, a plan was made to 

collect feature information about these points in Nigeria. The sample 
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collection was planned to be caried out by hired surveyors from the 1st of July 

to 11th of August, 2018, but due to logistics hurdles, the work extended to 

September. Appendix VII presents the budget submitted to the funding body 

for the field work. An attempt was made to visit all of these points. However, 

some of these points could not be accessed mostly due to physical 

challenges. A typical example was a point in Sokoto State (northwest) which 

could not be reached due to a bridge broken by flood water. There were 

other challenges such as security. It was agreed that for any point that could 

not be reached, the closest reachable location to that point should be 

observed and its feature information be captured instead. This was possible 

because there is a minimum 15 km distance between any two points within 

each of the datasets and there is more than 3 km distance between any point 

in the training points and any point in the accuracy assessment points, as 

seen above. Within a maximum of 3 km of any of the points, it is expected 

that a substitute location could be obtained.  

 

Figure 5.8: Random analysis (training) and accuracy assessment points 
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Out of the 176 training sample points planned to be visited, 92 were visited 

by the two sets of surveyors, both using Garmin GPS (GPSMAP 78sc) with 

±3 metres horizontal and vertical accuracies. Another 33 were captured by 

the researcher during the field work discussed in subsection 3.3.4 and used 

an android app (Simple GPS) which averages 12 satellites with ±16 metres 

accuracy. It is obvious the 125-points information collected out of the 176 

planned to be visited (51 could not be visited due to logistics and security 

issues) would be too small sample size for the study area. Appendix VIII 

provides the longitudes, latitudes and feature information of the sample 

points. At least for the purpose of this analysis in which the focus is on 

identifying cultivated areas, it is possible these limited field sample could be 

complemented using other acceptable sources of spatial information that can 

be used to train and validate classifiers such as Open Street Map (Schultz et 

al., 2017) and Google Earth (Olofsson et al., 2013; Chen et al., 2017; Ali et 

al., 2018; Steinhausen et al., 2018).  

Open Street Map (OSM) data (figure 5.9) was explored in order to improve 

the quality of the sample points with other locations not visited. It was 

ensured that the sample information from OSM, as merged with the field 

information, was random. Also, because the focus of this analysis is to 

identify land areas under cultivation, a limited number of classes was used 

with more emphasis on cultivated and uncultivated lands. Though there is a 

focus on a particular category of land cover, using conventional supervised 

classification techniques require that the classifier is trained for all the 

identifiable classes that occur in the study to avoid commissioning other 

classes into the classes of interest (Foody et al., 2006).  
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Figure 5.9: Spatial distribution of the training samples 

 

Attaining all these – covering the study area as much as possible, making the 

sample as representative as possible and making the sample spatially 

random – proved challenging due to the nature and extent of the study area 

which spans more than 923,000 square kilometres. Thus, the high-resolution 

Google Earth Image was incorporated in addition to the limited field data and 

the OSM data to train the classifiers and conduct the accuracy assessment. 

Because Google Earth is mostly based on optical satellite imagery, its 

interpretation was based on photo interpretation techniques, such as 

association, size and shape, as mentioned in subsection 5.3.3. This improves 

the understanding of whether a field is cultivated or uncultivated. Shape may 

not do well in areas where farms have been abandoned for long period due 

to security challenges or other reasons. Table 5.4 shows the class 

distribution of the training sample data. It is important to make it clear here 

that the subclasses were developed later after the initial classifications 

showed low accuracies, as explained in the next subsection. 
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Table 5.4: Class distribution of the training sample 

S/N Subclass Field 
data 
(Points) 

OSM 
(Polygon
s) 

Google 
Earth 
Polygons 
(Areas of 
Interest) 

Subclas
s total 

Total 
training data 

1 Intensive 
agriculture 

10 14 7 31  

 

Agriculture 
124 

2 Irrigation 
agriculture 

Nil 6 4 10 

3 Seasonal 
agriculture 

31 14 13 58 

4 Wetland 
agriculture 

9 15 1 25 

5 Bare ground 4 2 5 11 Bare ground 
11 

6 Dense 
forest 

4 19 9 32  
Forest 
70 7 Sparse 

forest 
16 9 10 35 

8 Mangrove 
forest 

Nil Nil 3 3 

9 Settlement 4 5 8 17 Settlement 
17 

10 Dense 
shrub 

16 Nil 13 29 Shrub 
49 

11 Sparse 
shrub 

14 Nil 6 20 

12 Deep water Nil 4 5 9  
Water 
40 

13 Seasonal 
water 

2 8 4 14 

14 Turbid water Nil 10 7 17 

15 Dense 
woodland 

8 Nil 16 24  
Woodland 
42 16 Sparse 

woodland 
7 Nil 11 18 

 Total 125 106 122 353 353 

 

OSM data description helps in identifying the type of the land cover existing 

in the selected sample location without physical visit to the locations. For 

example, the term ‘farm’, ‘orchard’ or ‘plantation’ indicates that the area is 

cultivated, while the term ‘forest’ or ‘scrub’ indicates uncultivated areas. 

Forest may be protected or unprotected, thus, the other dataset from World 

database on Protected Areas would help in identifying protected forest areas 

later in the modelling analysis that eliminates restricted areas. Figure 5.10 
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shows the spatial and class distribution of the field and OSM derived 

samples. Areas of Interest from Google Earth were used directly in Erdas-

Imagine. Because it is possible to show historical images in the Google Earth 

and there is a slider for viewing the historical images, the 2018 imagery were 

used in the extraction of the sample data from the software except where a 

location could not be found in 2018 image, 2017 or 2019 was used if 

available for the location of interest. Otherwise, other locations were explored 

for which an image is found in one of these three years. The time scale of 

these sources is assumed not to render the data unusable for the analysis. 

 

 

It could be seen from table 5.4 that 353 samples were used in training the 

classification algorithms. More than 35% of the samples were from field 

surveys, while approximately 30% and 35% were extracted from the OSM 

and Google Earth, respectively. The last column in the table shows the 

distribution of the samples among the main classes. The class distribution is 

stratified with agriculture class (cultivated area) taking more than 35% of the 

sample. Shrub and woodland (uncultivated areas expected to be potential for 

Figure 5.10: Spatial and class distribution of the training samples 
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biofuel crops) were allocated approximately 26% of the samples. Areas of 

interest (AoIs) were created from OSM polygons, directly by linking and 

synchronising view between Erdas-Imagine and Google Earth and around 

the field collected sample points. Though the researcher could not remember 

to record the number of pixels per AoI, efforts were put to ensure that the 

AoIs consists of pure pixels and that boundaries with other land cover 

categories were avoided even for the OSM polygons because a polygon may 

be impure in terms of the reference classification (Olofsson et al., 2014). 

Google Earth was helpful as a control in ensuring pure pixels were extracted 

as the AoIs. 

Though there is no generally agreed required minimum number of training 

sample that is sufficient for training satellite imagery classifiers, studies show 

that overall accuracy increases with increasing sample sizes (Huang et al., 

2002). However, a downward trend is possible at certain maximum size of 

the sample size, as shown in a pixel-based, high spatial resolution image 

classification (Doma et al., 2015). Though there have been suggestions that 

the minimum number of sample per category should be 50 to 100, 

determination of sample sizes has primarily relied on expert knowledge and 

conditional assumptions (Ren et al., 2019). The central problem is that 

different allocation of the sample favour different objectives such as whether 

the main aim is to raise user’s accuracy, overall accuracy or area estimation 

(Stehman 2012). The necessary trade-off to obtaining large sample sizes is 

affordability which is usually prohibitive (Olofsson et al., 2014). Increasing 

sample size and periodicity raises costs to unaffordable level (Costa et al., 

2018), but tailoring focus on a class of interest may drastically reduce 

requirement for large sample size (Foody et al., 2006). The field work in this 

research has been constrained by logistics, time and security situation in 

some locations in Nigeria, leading to small sample size for training classifiers 

and accuracy assessment. However, cultivated (Agriculture) and expected 

usable uncultivated (woodland and shrub) areas were allocated more than 

60% of the training sample.  
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5.3.4.3 Information classification 

The bands were stacked in the order shown in table 5.5. Traditional 

classifiers – Maximum likelihood classifier (MLC) and Spectral Angle Mapper 

(SAM) – were employed. Based on the available training data, with a focus 

on cultivated and uncultivated lands as well as the assistance of Google 

Earth, a system of eight classes was developed iteratively. These include the 

seven classes in table 5.6 and ‘Mangrove Forest’ which was later merged 

with other forest subclasses. An initial information classification was 

executed, and all were assessed to have very low classification accuracies. 

Unfortunately, all of those initial classification outputs were discarded except 

two maps presented in figure 5.11.  

 

Table 5.5: Stacked six bands 

 

 

 

 

 

Band 1 2 3 4 5 6 

Number in the stack Red VV VH DPSVI NDVI NIR 

Figure 5.11: Initial classifications 
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The initial classifications as shown in figure 5.11 showed very low 

clasification accuracies such that the outputs could not be used as inputs for 

any further spatial analysis and thus, the researcher discarded all of the 

outputs and could not keep the detail records of these output. Though some 

classes such as croplands, forest, water and settlements were classified 

correctly in few locations, these classes were highly misclassified with other 

classes (figure 5.11). For example, large extent of uncultivated areas, 

including forests and shrubs were classified as settlements on both the 

classification outputs. Almost all the surface water bodies on the MLC output 

were classified as settlements. Large vegetated area was classified as bare 

ground.  

These misclassifications could be attributed to the issues discussed in 

subsection 5.3.2 regarding the nature of the datasets, the choice of the 

classifier and the manner in which the classification was executed. As 

discussed in subsection 5.3.2, traditional classifiers such as MLC and SAM 

usually produce low classification accuracy, thus, more advanced classifiers 

such as deep learning algorithms would have produced better outputs. 

However, there was not software and enough time to learn and apply those 

advanced algorithms as at the time of the analysis. Also, these advanced 

algoritms have their own issues too as discussed in subsection 5.3.2. In 

addition, as discussed earllier, the complex ecological nature of the study 

area would have played significant role in confusing the classifiers. Though 

all the optical scenes were ensured to be of the same period of the year 

(November), it is obvious from the initial classifications that there are 

artefacts resulting from those scenes outside 2018 as presented in table 5.2.  

Further, the surface behaviour with electromagnetic spectrum differs 

depending on the nature of the surface for example the population of the 

plant, its height, type of the underlying soil and several other factors. 

Surfaces also behave differently with backscatter in the case of the radar 

data depending on the roughness or smoothness of the surface. Therefore, 

the same type of plant cover may show different spectral signature at 

different locations or times of the year, though it is possible that in some 
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areas mean spectral separability remain the same with wider spatial scope 

(Verhulp and Van Niekerk 2016). A decision was made to explore a means of 

raising the accuracy of the maps by painstakingly executing the classifiers 

and combining the maps through employing a fuzzy concept. The initial 

classifications were discarded. It was thus agreed that different band 

combinations be made and to observe their performances with the classifiers. 

Finally, 16 classes were created with four classes representing agriculture, 

three for water bodies, two each for forests, woodlands and shrubs. One 

class each for mangrove, bare ground and settlements (table 5.6). The 

rationale for creating subclasses for most of the classes was to account for 

within-class differences. For example, wetland agriculture may not have 

exact spectral signature with seasonal agriculture. Reflectance from turbid 

water will not be exactly the same as the one from clean water. If this is 

captured in training the classifier, misclassification will greatly be reduced. 

Thus, Google Earth was linked and synchronised to Erdas-Imagine in the 

process of creating the subclasses.  

Table 5.6: The information classes 

S/N Initial subclasses Final class groupings 

1 Intensive agriculture  

Agriculture 2 Irrigation agriculture 

3 Seasonal agriculture 

4 Wetland agriculture 

5 Bare ground Bare ground 

6 Dense forest  

Forest 7 Sparse forest 

8 Mangrove forest 

9 Settlement Settlement 

10 Dense shrub  

Shrub 11 Sparse shrub 

12 Deep water  

Water 13 Seasonal water 

14 Turbid water 

15 Dense woodland  

Woodland 16 Sparse woodland 
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As mentioned in section 5.2, agriculture in this analysis refers to currently 

cultivated land areas without differentiating between food crops and cash 

crops. Intensive agriculture refers to areas of dense farmlands where the 

underlying soil is highly exploited with more than one crop cycle as a result of 

relatively longer rainy season unlike seasonal agriculture which support only 

one crop cycle and would have dryer underlying soil and less green cover 

due to less dense farm population. Wetland agriculture may be cultivated 

throughout the year and have highest moisture-laden underlying soils. It 

doesn’t usually have organised pattern of farm arrangement but have 

association with large surface water bodies unlike irrigation agriculture which 

usually have organised farm structure with visible irrigation infrastructure and 

less moist soil due to controlled water management. All these variations will 

affect the nature of spectral reflectance such that areas with higher soil 

moisture will absorb more radiation in some regions of the spectrum than 

areas with less soil moisture. Other factors such as plant height and canopy 

or irrigation will affect the reflected albedo.  

It is perhaps necessary to differentiate between woodland and forests. While 

forests represent large areas of closed canopy, including the evergreen and 

short period deciduous tree vegetations, woodland areas are open, drier and 

often dispersed tree populations characterised with varying degrees of grass 

growth (MacGregor 1937). The reflection of the electromagnetic spectrum 

(EMS) and the backscatter will depend on interference due to tree denseness 

or sparseness, the height and canopy of the trees and interference of the 

open spaces where there are grass growth or open ground. Bare ground may 

have the highest reflectance or longest range of backscatter compared to the 

surrounding areas depending on the nature of surface (colour, roughness). 

Similarly, the backscatter from short, woody plants in shrub areas differ from 

tall woodland areas and the interference of the open soil on the reflectance 

would be higher in sparsely populated shrub areas than densely populated 

shrub areas. 

Deep water in the context of this analysis refers to very large surface water 

expected to be less disturbed and thus clean. Due to the nature of their 

reflectance, these have been used for dark object subtraction in surface 
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reflectance correction of optical satellite imagery. Turbid water bodies are 

disturbed, usually thicker due to dirt and reflect higher albedo in some 

regions of EMS than deep water. Seasonal water may be clean or dirty 

depending on location and associated features, only that there is high 

interference of surface soil or nearby plant cover in their reflectance due to 

narrowness of their channels or surface. Backscatter from wide surface water 

would differ from narrow surface water especially in areas with undulating 

topography.    

Eleven different band combinations were produced (table 5.7) and both the 

MLC and SAM algorithms were executed producing 22 different land cover 

classifications. However, two of the outputs were discarded and their detail 

record was not kept. Band combination number seven as in table 5.7 was the 

one that was lost as indicated in the table. Band combination may improve 

classification accuracy such that some combinations could produce maps 

with higher accuracy than others. The classes were recorded such that all the 

4 agriculture classes were merged into one. The same was applied to the 

water, forest, woodland and shrub classes and the total number of the 

classes became 8 – agriculture, bare ground, forest, mangrove, settlement, 

shrub, water and woodland. Mangrove was later merged with forest and thus, 

the accuracy assessment data was adjusted to reflect seven classes.  

Table 5.7: Different band combinations for classification. *denotes the band 
combination that was lost. 

 

 

 

 

 

 

 

S/N Band combinations S/N Band combinations 

1 NDVI, DPSVI 7 VV, DPSVI, NIR* 

2 NDVI, DPSVI, NIR 8 VV, VH 

3 NDVI, DPSVI, VV 9 VV, VH, DPSVI 

4 Red, NIR, NDVI 10 All the 6 bands 

5 Red, NIR, NDVI, 

DPSVI 

11 All the 6 bands except 

VH. 

6 VV, VH, DPSVI, NDVI   
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Accuracy assessment was conducted on 20 of the classifications. The same 

method, as was described for the training sample in the previous subsection, 

was employed to select a random accuracy assessment sample. However, a 

stratified sampling was further used to increase the number of samples for 

some classes deemed to have less representation. 372 locations consisting 

of field data, OSM polygons and Google Earth AoIs were generated in total 

and their spatial distribution is shown in figure 5.12. Pure pixels at or near the 

centroids of the polygons and AoIs were extracted from the OSM and Google 

Earth as points representing the polygons. This sample size is small for the 

study area, but the researcher could not go beyond this size due to logistics 

and time constraints, as discussed in the previous subsection. However, 

when it is possible that the analysis can focus on a certain class or few 

classes, the allocation could be stratified with a bias towards the focused 

classes (Olofsson et al., 2014) and this will reduce size required of the 

sample for the assessment (Foody et al., 2006).  

 

 

Figure 5.12: Spatial distribution of the accuracy assessment points 
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The distribution of the sample among the classes was based on the relative 

importance of the classes. Agriculture, shrubs, forests and woodlands were 

allocated 137, 75, 57 and 53, respectively. Location information for the 

accuracy assessment points is presented in appendix IX. Identifying 

cultivated areas (Agriculture) and potentially usable uncultivated areas (shrub 

and woodland) forms the main focus of the analysis. Approximately, 

cultivated and uncultivated area classes were allocated 37% and 34% of the 

sample, respectively. It was recommended that the number of samples for 

each category might be adjusted based on the relative importance of that 

category for a particular application (Lillesand et al., 2008) and this may be 

based on ‘Neyman Optimal Allocation’ (Stehman 2012). This also reduces 

the requirement for large sample, as discussed in the previous subsection. 

Moreover, it was shown that increase in training/testing data does not 

necessarily increase classification accuracy (Gopal et al., 1999). The 

stratified accuracy assessment points were assessed for spatial randomness.  

The overall accuracies for the 20 classifications range from approximately 

28% to approximately 50% before correcting for obvious errors as 

determined within the processing software. However, the individual class 

accuracies range from approximately 0% to 100% as shown in appendix X. 

Thus, the user’s and producer’s accuracies were observed for each class in 

each of the 20 classifications. For each class, seven classifications with the 

highest accuracies (four user’s and three producer’s) were chosen and 

combined. User’s accuracy is more important in this context because the aim 

is to correctly identify cultivated areas. The combination was achieved using 

binary and overlay operations. Each of the seven selected output maps were 

converted into binary map with 1 representing the class and 0 representing 

other classes. For each class, these seven binary maps were combined 

using overlay operations, producing a single map for each class with pixel 

values ranging from 0 to 7. An example is depicted in figure 5.13. 
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Figure 5.13: Example of combination procedure for each class map 
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The output maps in figure 5.13 represent the various classifications with very 

low accuracy. Based on the fuzzy membership concept, the pixel values in 

each of the combined output for each class represent class membership of 

each pixel for that class (figure 5.14). The larger the value of a pixel, the 

larger the number of the selected output maps in which the pixel is classified 

as that class, the higher the probability that the pixel belongs to that land 

cover class. Though most methods, such as fuzzy k-means, use a range 0 to 

1 to assign grades of membership (Burrough and McDonnell 1998), in this 

work the membership grades are functions of the number of the selected 

output maps in which the pixel is classified as that class. Thus, a grading of 0 

to 7 was used.  

 

 

Figure 5.14: Combined seven classifications for each class 

 

The fuzzy set theory was originally developed by Zadeh (1965) who defined 

fuzzy set as a class of objects with a continuum of grades of membership. 

One of the advantages of fuzzy membership is that it allows for the use of 

natural language (for example, ‘near’) to describe uncertainty (Huisman and 

de By 2009). Among the earliest reasons for adopting fuzzy concept in 

satellite imagery classification was the issue of mixed pixels during the 1980s 
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and 1990s when the methods were almost entirely per-pixel based (Li et al., 

2014). Fuzzy clustering is one of the most widely used application of fuzzy 

concept in remote sensing and is said to be the approach that retains more 

information from the original image than the hard clustering methods such as 

K-Means and ISODATA (Zhong et al., 2014).  

The fuzzy maps were recoded into binary again and combined using 

conditional statement (figure 15). With the aid of Google Earth image and 

other secondary information such FAO statistics, a threshold was set for 

each class map and all were converted into binary maps (0s and 1s) where 1 

represent pixels for the class and 0 represent pixels not for the class (table 

5.8). For example, values from 3 to 7 were recorded into 1 and 0 to 2 were 

recoded into 0 for the agriculture class map. Values 6 to 7 were recoded into 

1 and 0 to 5 into 0 for the settlement class map. This threshold was 

pragmatically set based on the assumed coverage of the classes in the 

country. For Woodland and Mangrove, there is no pixel that is classified as 

such in all the seven selected output maps. The highest value for a pixel in 

these two classes is six. 

 

Table 5.8: Thresholds used in converting fuzzy class maps into binary maps. 
*Fuzzy class maps with 6 as the highest value. 

Class Number 

code 

Class values 

coded to 1 

Class values 

coded to 0 

Colour code 

Agriculture 1 3 to 7 0 to 2  

Shrub 2 4 to 7  0 to 3  

Woodland 3 4 to 6* 0 to 3  

Water 4 3 to 7  0 to 2  

Bare ground 5 4 to 7  0 to 3  

Forest 6 3 to 7 0 to 2  

Settlement 7 6 to 7 0 to 5  

Mangrove 8 5 to 6* 0 to 4  
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The conditional statement is given below as coded in the Erdas-Imagine 

raster calculator.  

Con[(agriculture==1)1, (shrub==1)2, (woodland==1)3, (water==1)4, 

(bareground==1)5, (forest==1)6, (settlement==1)7, (mangrove==1)8, 0] 

The statement looks at agriculture class first, then shrub and in that order. 

Where agriculture is 1, it is assigned 1, else if shrub is 1, it is assigned 2, else 

Figure 5.15: Procedure for combining the fuzzy class maps into land cover map 
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if woodland is 1, it is assigned 3 and so forth. This was to ensure conflict 

between classes for any pixel is removed. The limitation of this is that some 

classes are given priority over others. For example, for any pixel to be 

assigned ‘woodland’, agriculture and shrub must hold 0 for that pixel. Pixels 

which did not fulfil any of the combining conditions hold 0 as the value 

instead of any of the values for the classes. The proportion of pixels not 

classified is approximately 33% based on pixel counts and this might be due 

to the pragmatic threshold used in converting the fuzzy class maps to binary 

class maps. With the aid of the Google Earth image, areas with large extent 

of pixels having 0 were filled using the ‘fill’ tool in Erdas (figure 5.16). Since it 

is possible to link and synchronize views between Erdas-Imagine and Google 

Earth, it was possible to see those areas with large extent of 0-value pixels 

and pure among these pixels were filled with the relevant class value.  

 

 

Figure 5.16: Filled Output Map. The filling process was repeated several times. The image 

was saved after the first few filling operations. 

These unclassified pixels are obvious on figure 5.16 (dark areas). There are 

scattered classified pixels within the dark areas but are not obvious from 

figure 5.16 due to the zooming extent of the map. Thus, filtering could be 
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ideal and was employed to filter the unclassified pixels where they are not 

many or are not connected extensively. The filter size used was 7x7 to allow 

for some obtainable pixel values in the moving filtering window at any 

instance. Where large cluster of pixels exist such that the filter holds 0-value 

pixels in all its squares, fill tool was necessary and was used to correct this. 

With photo interpretation techniques, Google Earth helped in identifying the 

land cover in those 0-value (dark) areas since it is possible to link views 

between Erdas and Google Earth. Thus, the remaining pixels were filtered 

using the Thematic Neighbourhood tool (7x7 majority filter) producing the 

final land cover map for Nigeria (figure 5.17). During this filtering process, 

where obvious errors were discovered, they were corrected to the 

appropriate classes. Correction for obvious errors is inevitable in satellite 

imagery classification. 

 

Figure 5.17: The final land cover map 

This combination procedure applied to satellite imagery classification is 

novel. It was not found in any other work, but solely conceptualised and 

developed in this work. The idea, in summary, was to produce multiple band 

combinations, apply multiple classifiers on each combination, select a 

number of outputs with highest class accuracies for each class, combine the 
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outputs into one map for each class, convert the combined class map to 

binary and then combine all the binary class maps into a single map 

consisting of all the classes. 

5.4 Results 

5.4.1 Accuracy assessment 

The filling and the neighbourhood tools were iteratively applied and the 

accuracy is assessed at each round. This was continued until some 

reasonable accuracies were attained for each class considering both the 

producers and users’ accuracies. For the Agriculture class, the producer’s 

accuracy reached 85.92%, while the users accuracy reached 96.83% and the 

Kappa coefficient reached 0.9487. Users’ accuracies are more important as 

the figures are measures of error of commission that indicate the probability 

that a pixel classified into a class actually represents that category on the 

ground (Lillesand et al., 2008). The producer’s accuracies indicate how well 

the training set pixels of a class were classified. The overall accuracy 

reached 88.2%, while the overall Kappa coefficient reached 0.8466 (table 

5.8). Kappa indicates the extent to which percentage correct values of the 

error matrix is due to true agreement as compared to chance agreement 

between the reference (observed) data and the classified data. 

Table 5.9: Results of the accuracy assessment for the final map 

S/N Class Producers 
Accuracies 

Users 
Accuracies 

Kappa 

1 Agriculture 85.92% 96.83% 0.9487 

2 Bare 
grounds 

100.00% 100.00% 1 

3 Forests 86.11% 78.48% 0.7333 

4 Settlements 92.86% 92.86% 0.9258 

5 Shrubs 89.04% 98.48% 0.9812 

6 Water 70.59% 100.00% 1 

7 Woodlands 100.00% 69.57% 0.6507 

 Overall 88.2% 0.8466 

 

Table 5.8 shows the accuracy values as they were obtained from the 

processing software. Though accuracy assessment is the most common 

means of assessing classification performance (Lu and Weng 2007), it is 
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critical that the approaches for the accuracy assessment are robust and 

transparent to ensure the integrity of the classification result (Olofsson et al., 

2014). The robustness and transparency suggest implementation of the 

recommended good practice in the accuracy assessment.  

The good practice ensures that the sampling design achieves the priority 

objectives of the accuracy, the respond design (the design for assessing the 

output of the analysis) is based on the reference data and that the analysis is 

consistent with sampling design and respond design protocol. It was shown 

in subsection 5.3.4.3 that stratified random sampling design was used in 

developing the accuracy assessment sample. Based on the error matrix 

generated in the processing software and the reference data, the accuracy 

was reassessed outside the processing software using Microsoft Excel and 

the overall accuracy dropped to approximately 82% (table 5.9). The accuracy 

dropped by about 6%, bringing it below the widely used target of 85% which 

may often be unfair, commonly being rather harsh and misleading (Foody 

2008). On the other hand, this decreased accuracy values led to reduced 

tendency of committing error for cultivated land by about 5% (compare users’ 

accuracy for Agriculture in tables 5.8 and 5.9).  

 

 

 

Table 5.10: Classification accuracies as calculated in Excel 

S/N Class Producers 
acc. 

Users acc. Com. error Omission 
error 

1 Agriculture 0.8686 0.9154 0.0846 0.1314 

2 Bare ground 0.8333 1 0 0.1667 

3 Forest 0.8382 0.76 0.24 0.1618 

4 Shrubs 0.6933 0.9123 0.0877 0.3067 

5 Settlement 0.9286 0.9286 0.0714 0.0714 

6 Water 0.6316 1 0 0.3684 

7 Woodland 0.8868 0.5949 0.4050 0.1132 

~Overall 0.82 
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5.4.2 Methodological insights  

This mapping workflow provided a new way of combining multiple satellite 

imagery classification outputs for improving the classification accuracy. The 

new workflow is flexible in such a way that it can be applied to any 

combination of the imagery classifiers and can be applied for both small and 

large geographic scales. Though the complexity may be higher where 

complex classifying algorithms are used, the workflow in itself is not complex. 

However, on large scale analysis, the workflow may be labour intensive as it 

requires that classes are treated individually at the first step towards 

combining different classifications. Also, the workflow is information 

dependent in a way that there may be unclassified pixels at the end that 

would need to be filled though, this is normal for imagery classification 

because it always requires correction for obvious errors.  

Notwithstanding the caveats, it could be concluded that this new way of 

combining different satellite imagery classifications can improve classification 

accuracy especially if synthesis of optical and radar data and different band 

combinations are explored. This workflow could further be enhanced by 

applying Principal Component Analysis (PCA) which aggregates most 

important information in the spectral bands thereby reducing data 

redundancy. This may provide a basis for conducting a weighted 

classification using the derived components. However, use of PCAs requires 

caution because they cause spectral distortions (Thomas et al., 2008). Also, 

spectral separability could be employed to examine the ability of spectral 

bands in detecting and discriminating land cover types (Huang et al., 2016). 

This is applied to parametric classifiers such as Maximum Likelihood 

Classifier and can improve the performance of imagery classifier. Jefferies 

Matusita was combined with Spectral Angle Mapper to develop a new 

algorithm for spectral matching which was found to have produced higher 

classification accuracies than the separate algorithms (Padma and Sanjeevi 

2014). Employing this could improve the performance of the new workflow.  

An assessment could be executed on the classification outputs to determine 

which of the band combinations produced best overall results. In this work, 
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the focus was on the individual classes in selecting the best results. As 

presented in appendix X, the band combination that produced highest overall 

accuracy (approximately 50% before correcting for obvious errors) is the 

optical bands + radar vegetation index (Red, NIR, NDVI and DPSVI) 

classified using maximum likelihood. It has the highest user accuracy (56%) 

for agriculture. The combined two radar bands (VV and VH) classified using 

spectral angle mapper has the second highest overall accuracy 

(approximately 39%) but has the highest producer accuracy for agriculture 

class (68%). These show that though there is no clear pattern as regards the 

performance of the band combinations with the classifiers from the output 

maps, MLC performed better than SAM mostly in combinations which have 

more optical bands than radar band. SAM performed better mostly in 

combinations where there are more radar data than optical bands.  

Despite low accuracies in all the classification outputs, it could be noticed in 

appendix X that of the 20 outputs maps, seven in which there is combination 

of the optical and radar bands have higher accuracies than all the four 

combinations in which only optical or radar bands were combined. It has 

been found that adding SAR bands to optical bands increases classification 

accuracies (Whyte et al., 2018) due to the complementarity of the two types 

of remote sensing data (Joshi et al., 2016) and the results seen in this thesis 

support this. For example, while optical data is limited in identifying scattered 

woody vegetation, radar sensor have great capabilities in responding to 

scattered woody plants (Baumann et al., 2018).  

It could also be useful to determine how much conflicts were there between 

classes at the stage of combining the individual classes into single map. 

Although the estimated distribution pattern of the classes in the real world 

was the basis for assigning the threshold with which the fuzzy classes were 

converted into binary classes, it would be more reasonable to use the class 

proportions as determined by the reference sample (accuracy assessment 

sample) to apply the threshold. These could not be implemented due to 

impacts of the pandemic and because this mapping analysis is only a small 

part of the whole research work.  
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5.4.3 Cultivated area estimate 

The areas were calculated for each class (table 5.10) based on the initial 

results of the accuracy assessment (table 5.8). Nigeria’s total surface area is 

put at 92,376,800 hectares (CILSS 2016). Comparing this with the total in 

table 5.10 showed that there is a difference of 1,547,699 hectares missing 

from the analysis. This may be due to some unclassified pixels. In other 

words, the filtering process could not capture some pixels perhaps due to the 

absence of classified pixels in their reference filtering window. As mentioned 

in subsection 5.3.4.3, the filter used in the filtering process is the majority 

filter with 7X7 squares. Thus, in calculating the value of a pixel, if all the 

squares in the filter holds 0, then that pixel will still be assigned 0. This 

means that though filtering process was executed, there is possibility that 

unclassified pixels exist in the land cover map. However, the result showed 

that about 34.6 million hectares were cultivated in Nigeria during the 2018 

rainy season.     

Table 5.11: Calculated areas for each class 

 

 

 

 

 

 

 

It was reported that of the Nigeria’s total surface area, 82 million hectares is 

arable (assumed in this work to mean cultivable) out of which about 32-34 

million is cultivated (Akomo 2018). Another 2016 report by Pricewatercoopers 

cited an article that put the estimate of the cultivated land area at 34 million 

hectares (PwC 2017). Based on table 5.8, Agriculture omission and 

commission errors are approximately 14% and 3%, respectively. This means, 

though about 14% of the cultivated areas could not be identified by the 

S/N Class Area (Hectares) 

1 Agriculture 34,584,731 

2 Bare grounds 682,070 

3 Forests 33,061,378 

4 Settlements 1,386,721 

5 Shrubs 9,361,478 

6 Water 772,992 

7 Woodlands 10,979,731 

Total 90, 829,101 
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analysis, about 3% of the pixels classified as agriculture might actually not be 

agriculture on the ground. In other words, about 1.1 million hectares might 

not be agriculture in reality, though were classified as such. The confusion 

matrix suggests that some of these pixels misclassified as agriculture are 

actually shrubs (6%), woodlands (38%) and forest (56%). This means about 

66,000, 418,000, and 616,000 hectares classified as agriculture might 

actually be shrub, woodland and forest, respectively. Thus, these wild 

vegetations appear to the software as cultivated areas. 

On the other hand, according to the accuracies as calculated in Excel (table 

5.10), producer’s and user’s accuracies for agriculture are approximately 

87% and 92%, respectively. In other words, though about 13% of the 

cultivated areas could not be identified, about 8% of the classified pixels for 

agriculture may not be cultivated land on the ground. Thus, the commission 

error (8%) suggests that about 2.8 million hectares of the identified 

agriculture is probably not agriculture.  

Considering the proportion of the cultivated lands that could not be identified 

by the analysis, it could be concluded that there is an estimated 41 million 

hectares of land cultivated in Nigeria during the 2018 rainy season. Of this, 

about 35 million was identified by the analysis. The analysis has produced 

some results that could be considered as close to reality, at least for the 

agricultural land parcels, the identification of which is the focus of the 

analysis. Overall, this may be considered to have shown that huge areas of 

unutilised arable land exist in Nigeria considering that there are more than 9 

million hectares of shrub lands and about 11 million hectares of woodlands in 

the country (table 5.10). It is assumed that if not all, large part of the shrub 

and woodland would be potential for agriculture considering that more than 

80 million hectares of Nigeria’s land is said to be arable.  

According to the CILSS published map of 2016 produced with 2013 datasets, 

rainfed agriculture accounted for 38 million hectares, covering over 40% of 

the country’s territorial area (CILSS 2016). This compared less with the 41 

million hectares estimated by the current mapping analysis to have been 

cultivated in the 2018 rainy season. The current 2018 map suggested there 
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are estimated 3 million more cultivated areas than estimated by the CILSS 

2013 map. As explained in subsection 5.3.1, due to its coarse spatial 

resolution, regional scope and relatively older datasets, the current map 

might provide more useful details with regards to identifying cultivated areas 

due to its finer spatial resolution, more recent dataset and relatively smaller 

spatial scope. The researcher could not find country specific assessment of 

the ESA 2016 global land cover map for Nigeria. However, as mentioned in 

subsection 5.3.1, the accuracy of the map for some West African countries, 

as assessed by Lesiv et al., (2019), compared less with the current 2018 

map as produced from the current work. Thus, it is believed that the mapping 

analysis conducted in this work provided more useful detail for identifying 

cultivated areas in Nigeria that would need to be eliminated.  

 

5.5 Constraints masking 

Agricultural areas, surface water bodies and major settlements were 

extracted from the land cover map produced in the previous section. As 

discussed in section 5.2. Datasets for the other constraints were obtained 

from secondary sources. All the constraints datasets were merged together 

into a single map. Figure 5.18 shows the spatial distribution of the constraint 

areas, while figure 5.19 shows a comparative area coverage of each 

constraint as well as the amounts of areas potentially physically available for 

biofuel crops cultivation in the country. It also showed that there is more than 

40 million hectares of land that could potentially be used for biofuel crops 

cultivation in Nigeria (coloured green). 
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Figure 5.18: Map of the restricted areas in Nigeria that cannot be used for biofuel crops 

cultivation 

 

Figure 5.19: Amounts of the potential areas in comparison with individual constraint areas 
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Figure 5.20 shows the result of overlaying the suitable land for each crop on 

the potentially available lands. Potentially available here means not part of 

the restricted areas. Thus, the potential areas are assigned suitability classes 

based on the land suitability modelling conducted in chapter four. The table 

on the figure is the result for cassava showing areas that are most, very, 

moderate or less suitable for cassava cultivation in Nigeria. Figure 5.21 

shows the areas in hectares for all the crops considering the whole country. 

Considering the proportions of Nigeria’s land areas identified as suitable for 

cultivating each of the crops, table 5.12 shows the proportions of land areas 

that are potentially available for cultivating the crops after masking the 

restricted areas.   

 

 

Figure 5.20: Maps showing varied suitability of the potential areas for each of the crops 
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Figure 5.21: Amounts of land areas suitable for cultivating each of the crops in Nigeria 

 

Table 5.12: Approximate proportions of Nigeria's land area potentially 
suitable and available for cultivating biofuel crops 

Suitability Sweet 

sorghum 

Sugarcane Cassava Oil palm Jatropha 

Most 

suitable 

3.32 0.25 2.00 0.06 0 

Very 

Suitable 

42.35 42.69 36.04 33.93 34.50 

Moderately 

suitable 

3.51 6.25 11.10 15.20 14.70 

Less 

suitable 

0 0 0.04 0.0003 0 

 

Comparing the above table with table 4.2 in chapter four, it could be seen 

that huge amounts of land areas have been masked as restricted, denoting 

that those masked areas would not be available for biofuel crops cultivation 

in Nigeria. For example, while table 4.2 shows 10.36% of Nigeria’s land 

areas could be most suitable for cultivating sweet sorghum in the country, 

table 5.12 shows that only about 3.32% could be available. In other words, 

0 10 20 30 40 50

Sweet sorghum

Sugarcane

Cassava

Oil palm

Jatropha

Millions Hectares

Biofuel Crops Land Suitability in Nigeria

Restricted Less Suitable Moderately Suitable Very Suitable Most Suitable
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7.04% of Nigeria’s land areas that would have been most suitable for 

cultivating sweet sorghum is restricted and would not be available for this 

purpose. Also, of the 87.49% (table 4.2) of Nigeria’s land areas that is very 

suitable for cultivating sugarcane, only about 42.69 would potentially be 

available; 44.8% is restricted. Only 11.10% is potentially available for 

cultivating cassava out of the 21.60% that is moderately suitable; 10.5% is 

restricted. All the land areas identified as less suitable for cultivating 

sugarcane are not available. While approximately all areas identified as less 

suitable for cultivating oil palm are available. Less than half the land areas 

(71.6% as in table 4.2) identified as very suitable for cultivating jatropha could 

be available; 37.1% is restricted (table 5.13). As could be understood from 

table 5.13, for each of the crops, about half of the land areas classified as 

very suitable for cultivation is restricted. However, this suitability class has 

the largest area potentially available for cultivating each of the crops as 

shown in table 5.12. 

 

Table 5.13: Approximate proportions of Nigeria's land areas masked by the 
constraints per crop suitability class 

Suitability Sweet 

sorghum 

Sugarcane Cassava Oil palm Jatropha 

Most 

suitable 

7.04 0.44 1.77 0.08 0 

Very 

Suitable 

41.83 44.80 38.36 36.63 37.10 

Moderately 

suitable 

1.96 5.57 10.50 14.11 13.70 

Less 

suitable 

0 0.000064 0.19 0 0 

 

The availability of the potential areas was further analysed scaling down to 

the country's six geopolitical zones. Figures 5.22 and 5.23 showed the spatial 

distribution and area distribution by zone, respectively.  
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Figure 5.22: Zonal Distribution of Potential Areas by geo-political zone in Nigeria 

 

 

As discussed in section 5.2, not all data was available to identify and 

eliminate all the restricted areas. An attempt was made to obtain data on 

grazing areas, cultural sites and other major commercial land uses but this 

Figure 5.23: Amounts of Potential Areas in Each Geo-political Zone 
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was not achieved. Thus, not all of the 40 million hectares identified as 

physically potential for biofuel crop cultivation would realistically be available. 

However, it is obvious from figure 5.23 that some amount of land is physically 

available for biofuel crops cultivation in each of the six geo-political zones of 

Nigeria and these amounts could be in millions of hectares considering the 

country. This physical availability was further analysed to determine within 

zone distribution. Figure 5.24 shows spatial distribution of the suitability 

classes for each crop within each geo-political zone.   

 

 

Figure 5.24: Maps showing land suitability for each of the crops within each zone 

 

Figures 5.25 to 29 show these distributions by area vis a vis the restricted 

areas. As mentioned earlier, 'Very Suitable' seemed to have larger coverage 

though there are variations from crop to crop and from zone to zone. Ideally 

this variation should consider state level rather than zonal level because land 

governance is vested on the state governors and the rules may differ based 

on states. However, because there are 37 of these smaller regions, the work 

will be lengthy if each state is analysed. 
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Figure 5.25: Comparison of land suitability between the zones for Sweet sorghum cultivation 

 

 

Figure 5.26: Comparison of land suitability between the zone for Sugarcane cultivation 
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Figure 5.27: Comparison of land suitability between the zone for Cassava cultivation 

 

 

Figure 5.28: Comparison of land suitability between the zone for Oil palm cultivation 
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Figure 5.29: Comparison of land suitability between the zone for Jatropha cultivation 

 

5.6 Discussion and conclusions 

In this chapter, research questions 4 and 5 have been addressed, namely; 

• How much land is physically available in Nigeria for biofuel crops 

cultivation without conflict with food crops cultivation? 

• Where are these physically available lands located in the Country and 

how suitable are they for the identified biofuel crops cultivation? 

The analysis showed that there are approximately 41 million hectares that 

potentially could be explored for biofuel crops cultivation. Of this, table 5.14 

shows how much area could be available for this purpose in each of the 

country’s geo-political zones. Presently, most of these areas are covered by 

shrubs (more than 9 million hectares) and woodland (more 10 million 

hectares). Though there are caveats as mentioned earlier, based on these 

results, it is safe to believe a few millions of hectares of lands could actually 

be realistically available for biofuel feedstock cultivation without conflict with 

food crops cultivation. According to the National Biofuel Policy, 2% of the 

arable land will be required for the biofuel project (NNPC, 2012). As 

mentioned in subsection 5.3.6, about 82 million hectare of Nigeria’s 

landmass is arable (Akomo 2018). This means about 1,640,000 ha of arable 
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land would be required for the project. Thus, there could be more than 

enough available land to support this project. 

 

Table 5.14: Estimates of the potential areas by geo-political zone in sq.km 

Zone 

Total Area 
(sq.km) 

Restricted 
Areas 
(sq.km) 

Potential 
Areas 
(sq.km) 

Proportion of 
the Potential 
Areas 

Northwest 214045.67 143023.67 70992.83 33% 

Northeast 280106.79 133593.85 146423.01 52% 

Northcentral 226504.48 110281.58 116203.68 51% 

Southwest 77866.21 34425.54 43428.33 55% 

South-south 84551.01 29990.46 54519.78 64% 

Southeast 28658.79 13358.87 15299.93 53% 

Total 
(Nigeria) 

 
911732.96 464673.97 446867.57 

 
49% 

 

It could be argued that this zonal distribution follows the sizes of the zones 

such that the zone with the largest area extent (Northeast) has the largest 

share and the zone with the smallest area extent (Southeast) has the 

smallest share. Looking at figure 5.23, it could be seen that though northeast 

is the largest in size, there are more restricted areas in the northwest than 

any other zone. This is also true comparing south-south and southwest. 

Deeper look at crop suitability reveals more variability. Figure 5.21 of course 

showed that for all the crops, largest area was identified as ‘very suitable’ 

compared to the other suitability classes. However, looking at the zones, 

there are more very suitable areas for sweet sorghum in the northeast than 

any other zone (figure 5.25).  

For all the other crops, there are more very suitable areas in the North central 

than any other zone (figures 5.26 to 5.29). Also, this zone has less restricted 

areas compared to northwest and northeast looking at all the crops. Though 

Southwest is only second to the smallest in terms of area, the areas 

classified as ‘very suitable’ for cassava in the zone is almost the same as in 

the Northeast zone which is the largest zone in terms of area (figure 5.27). 

The same could be said considering jatropha, comparing Northwest and 

Southwest (figure 5.29) though Northwest is the 3rd in terms of size. Very 

suitable area for oil palm is even larger in the Southwest than in the 
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Northeast (figure 5.28). There is also more ‘very suitable’ area for sugarcane 

in the Southwest than in the Northwest (figure 5.26). Therefore, this suitability 

distribution is not entirely dependent on the sizes of the zones. This suitability 

distribution provides guidance with regard to spatial decision for establishing 

biofuel feedstock production sites in the country. 

In this chapter, research questions 4 and 5 were addressed and objective 6, 

which deals with mapping crop lands was achieved. It could be concluded at 

this stage that Northcentral zone of Nigeria presents largest land areas that 

are ‘very suitable’ for the cultivation of all the five biofuel crops except sweet 

sorghum for which Northeast present largest area that is ‘very suitable’ for its 

cultivation. In general, it could be concluded from this analysis that there 

could be more than required hectares of land in Nigeria that could realistically 

be put to biofuel crops cultivation without conflict with food crops cultivation. 

The following chapter will focus on optimising sites for locating biofuel 

processing plants based on the suitable areas identified. Because for all the 

crops, the suitability category identified with the largest coverage is ‘very 

suitable’, this class will be used. However, it may be reasonable to include 

‘most suitable’ areas for the crops that have some areas identified in that 

category. 
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Chapter Six – Site Optimality Modelling 
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6 Chapter Six – Site Optimality Modelling 

6.1 Introduction 

This chapter focuses on optimising sites for biofuel processing and/or 

blending in Nigeria, using the locations of the existing petroleum depots as 

the basis for the analysis. As discussed in section 1.6, feedstock availability 

constitutes the major factor limiting biofuel production because it takes about 

three quarters of the production costs and thus, forms the major 

consideration in deciding a processing location. Because agricultural crops 

are considered in this work as the feedstock, areas that are ‘very suitable’ for 

cultivating each of the biofuel crops, as determined in the previous chapter, 

were considered as the potential sources of feedstock. Areas identified as 

‘most suitable’ were also considered.  

As discussed in section 3.4.3, the major considerations for optimality 

modelling are the suitable lands, the crop yields, a distance threshold and the 

potential amounts of the feedstock, in relation to each of the processing 

plants. The suitable lands were determined through land suitability modelling 

in chapter four. Areas that are not only unsuitable but also restricted or 

considered restricted were then removed as outlined in chapter five. 

However, this was limited to those restricted areas for which data was 

available. Crop yields were determined from the literature and three yields 

scenarios were adopted. Due to transport costs, the distance that can be 

covered to supply feedstock to the processing site depends on the production 

scale of the plant. Thus, a three-distance threshold was adopted because at 

the time of this work, there is no information regarding the scale of operation 

of the processing plants. Therefore, the work focused more on assessing the 

potentiality of the proposed processing sites and then determined their 

potential capacities. 

6.2 Optimal sites modelling 

6.2.1 Methodology 

The two major approaches to applying mathematical models in solving 

spatial problems are optimisation, the output of which is broadly a 
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prescription of strategy, and simulation which is broadly descriptive. As a 

normative approach, optimisation seeks to find the best (maximum or 

minimum) solution to a well-defined management problem (Malczewski 

1999). In the context of biofuel production, optimality analysis looks at the 

relationships between feedstock and processing plant and aims to find an 

optimal location to minimise costs (Shi et al., 2008). Though experts in spatial 

analysis classify spatial operations into attribute, distance/location and 

topological operations (Burrough and McDonnell 1998), usually a particular 

spatial analysis would involve all the three. For example, while ‘feedstock’ is 

a qualitative attribute that described the entity being considered, the location 

of the farm on which the feedstock was cultivated defines whether the 

feedstock is within or beyond the viable supply distance from the potential 

processing location.  

The farms might be connected to potential processing location by a 

topological network such as roads or other lines of communications or the 

two might be direct neighbours (contiguous). One of the most widely applied 

spatial decision models is network optimisation which consists of nodes 

(points of supply, demand and transhipment for resources) and arcs (the flow 

paths for the resources). It optimises a function of the flow of resources 

between nodes with the objective of determining the best allocation of 

resources among the nodes, subject to resource availability and flow 

restriction along the arcs. While converting some linear programming 

problems to network flow problems might not be feasible or might be too 

abstract, network flow models improve solution times over standard linear 

programming models and make problems more intuitive to users of the 

models through graphical representation of the network (Malczewski 1999). 

Location-allocation and Supply Area Modelling (SAM) are usually the two 

broad techniques used in optimising locations for biomass processing plants. 

Transportation of feedstock is usually in two stages – from the production 

location to an aggregation point and from the aggregation point to the 

processing plant (Dharmadhikari and Farahmand 2019). In the context of 

Origin-Destination (OD) analysis, location-allocation has its origin at the 
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feedstock producing locations. It identifies the closest collation point 

feedstock producers take their produce to without distance limit. The 

destination is the collection point (this may be the collation point or the 

processing plant itself). Thus location-allocation is applied where the 

objective is to aggregate all the usable biomass in a given area to a 

processing plant without transportation limit. This has been applied in various 

studies with different contexts around the world, for example Sultana and 

Kumar (2012), Buzai (2013), Voets et al., (2013), Sahoo et al., (2016), Aremu 

and Vijay (2016) Kim et al., (2018), Sahoo et al., (2018), Dharmadhikari and 

Farahmand (2019), Chukwuma (2019), Abdelkarim (2019), and Rahman et 

al., (2021).  

SAM puts a threshold beyond which biomass cannot viably be transported to 

the processing plant due to transport costs, making it more practical, in this 

context, compared to location-allocation, because transport costs account for 

a large part of the overall biofuel costs as discussed in subsections 2.3.12 to 

13. Supply Area Modelling was adopted in this work. The origin is the 

processing plant in this context, while the destination is the feedstock 

production points. An area is created around a candidate site based on the 

distance threshold.  

SAM has also been applied in various context around the world for example 

O'Neill (1995), Horner and Murray (2004), Swapan et al., (2006), Murad 

(2007), Shi et al., (2008), Rentizelas et al., (2009), Ocalir et al., (2010), 

Zhang et al., (2011), Hashemi Beni et al., (2012), Doi et al., (2013), Höhn et 

al., (2014), Higgs et al., (2015), Brahma et al., (2016), Gonzales and Searcy 

(2017), Sánchez-García et al., (2017), Calovi and Seghieri (2018), 

Laasasenaho et al., (2019) and Nguyen et al., (2020). The assumption in this 

research is that feedstock transportation is along the road network of the 

country. Though there is apparent commitment on the part of the government 

for railway revival and expansion, the road network is far more extensive and 

provides wider reach to most part of the country. Roads are thus adopted as 

the connecting path between the feedstock cultivating farms and the potential 

processing locations.  
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6.2.2 Supply Area Models  

Five models were developed and executed to determine locations that are 

optimal for processing and/or blending biofuel, one model each for a crop. 

Figure 6.1 shows the model for sweet sorghum. The remaining four models 

can be found in appendix VI. As alluded to in section 3.4.3, there are four 

important components based on which the model was executed, as 

explained in the introduction (section 6.1). The feedstock cultivation areas, 

the crop yields, the distance threshold and the estimated feedstock amounts. 

The system of biomass assessment depends on the type of feedstock 

considered in the analysis. For example, using municipal waste, 

Laasasenaho et al., (2019) obtained secondary data from the municipal 

authority responsible for waste collection. Sánchez-García et al., (2017), 

estimated wood fuel from the crown and barks of Eucalyptus, Gonzales and 

Searcy (2017), estimated herbaceous biomass yield from the US National 

Land Cover Data (NLCD), Brahma et al., (2016), estimated domestic waste 

(food and animal droppings) using household level survey and Shi et al., 

(2008) estimated usable biomass using the land use data produced from 

1998 Landsat TM. Where agricultural crops are considered as the feedstock, 

crop yields are used as the basis for biomass estimation (Nurjaya et al., 

2013; Enciso et al., 2015; Lewis et al., 2015). Thus, literature was explored to 

extract information regarding field observed yield estimates for each of the 

crops considered in the work. Table 6.1 shows the crop yields that were 

found reported in the literature.
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Figure 6.1: Supply Area Model (SAM) in ArcMap modeller 
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Table 6.1: Crop yields as mined from the literature 

Crop Yields (Tonnes ha-1) Reference 

Sweet 
sorghum 

8.6  Tang et al., (2018b) 

27   

37  Nasidi et al., (2015) 

42.15  Cifuentes et al., (2014) 

46 and 92  Nasidi et al., (2010) 

Sugarcane 15.4  Knoema (2018) 

21.6 (FAO average 1997-
2016) 

FAOSTAT (2021) 

60  Gana (2017) 

70  Nasidi et al., (2010) 

Cassava 11  Abdoulaye et al., (2014) 

15  Agboola and Agboola 
(2011) 

30 (average of locally 
improved varieties) 

Adekunle et al., (n. d.) 

Oil palm 2.6 (average 1997-2016) FAOSTAT (2021) 

20  NIFOR (2018) 

30  Verheye (2010) 

Jatropha 2 (Minimum recommended) Somorin and Kolios 
(2017) 

6  Wahl et al., (2012) 

12.5  Hagman and Nerentorp 
(2011); Vera Castillo et 
al., (2014) 

 

Based on these yields, three-yield scenarios were adopted to compare worst-

case, average case and best-case scenarios. The worst case represents 

attainable yields under minimum required ecological conditions and 

agronomic practices. The average case is assumed to be attainable under 

good ecological conditions and agronomic practices. The best-case scenario 

is only attainable under the most favourable ecological conditions and best 

agronomic practices. The values used in this work were 27, 37 and 42 tonnes 

ha-1 (sweet sorghum), 15.4, 21.6 and 60 tonnes ha-1 (sugarcane), 11, 15, and 

30 tonnes ha-1 (cassava), 2.6, 20 and 30 tonnes ha-1 (oil palm) and 2, 6 and 

12.5 tonnes ha-1 (jatropha). The ‘most suitable’ and ‘very suitable’ classes 

were extracted from the suitability map. This was resampled from its original 

30 metre to a resolution of 100 metre. By resampling the raster to 100 

metres, each pixel represents a hectare of land. A field was added to 

calculate the crop yields for each of the three scenarios. The yields are 



210 

 

measures of weights of fresh stalks (sweet sorghum and sugarcane), fresh 

tubers (cassava), Fresh Fruit Bunches (oil palm, except for FAO average 

which is based on Oil Palm Fruit) and seed yields (jatropha).  

The feedstock is aggregated first at the farm level before being transported to 

a storage site or collection centre. Where the scope allows, this can be 

captured in the optimisation model as could be found in Voets et al., (2013) 

who used farm parcels’ centroids as the aggregation centres. However, 

where the scope is larger, different methods are used in these kinds of 

analysis for identifying or designating a collection centre within a defined 

geographic area. Centroids of a collection of villages (Brahma et al., 2016) or 

centroids of counties (Gonzales and Searcy 2017) were used for this 

purpose. Shi et al., (2008), used intersections of two or more road lines as 

the aggregation points. In the context of the current work which considers the 

whole country as the study area, using road junctions may not be suitable for 

all locations in the country. It was deemed better to leave this open for 

localised assessment after a processing plant site is decided. Therefore, 

Local Government Areas (LGAs) administrative boundaries were used as the 

feedstock mapping unit and their centroids were assumed to be the initial 

feedstock collation centres.  

There are 774 LGAs in Nigeria. Thus, all the potential feedstock within an 

LGA were aggregated to the centroid (figure 6.2). Though in reality feedstock 

collation may cross borders, this work assumed that all the feedstock within 

each LGA is collated to the centroid of the LGA. Depending on the nature of 

the supply chain and the feedstock type, these could serve as storage 

centres and some initial feedstock processing may occur before being 

transported to the processing plant. Because biofuel feedstocks are usually 

distributed at very wide extent of areas needing for collation and storage 

facilities, existence of logistics facilities is very crucial in deciding where to 

site a processing plant. The consideration is whether it is more practical to 

process the biofuel near the raw materials and transport the product to the 

demand or process near the demand while transporting the raw materials 

(Höhn et al., 2014). Establishing new processing sites entails land use 



211 

 

change that may lead to unwanted environmental consequences. It also 

requires huge capital investments, depending on the scale.   

 

Figure 6.2: Potential Feedstock aggregated to centroids of LGAs 
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In Nigeria, using the existing petroleum refineries for processing and blending 

biofuel will incur huge transport costs for conveying the feedstock because, 

except for one located in Kaduna state in the north, all the refineries are 

located in the Niger Delta, while the biofuel feedstock could be sourced from 

around the country, as clearly shown on figure 6.2, though with some areas 

having more potentials than others. Also, these refineries will require upgrade 

to make them capable of handling biofuel processing and storage.  

On the other hand, petroleum depots are relatively more dispersed around 

the country, making them more appropriate for optimising transport costs. 

The depots will require upgrading to handle biofuel processing, storage and 

blending, but would be expected to require much less capital for the upgrade 

compared to the refineries. It was reported that biofuel handling facilities 

were installed at two of these depots (Ohimain 2013). The depots are also 

located near cities and major towns, thus having good access to settlements 

services. Though the depots may require area expansion, they are sites 

already dedicated to oil and gas services. Thus, they may have less impact 

regarding land use change compared to opening a new site. The existence of 

the petroleum pipelines connecting all the depots and the petroleum 

refineries makes them appropriate for processing biofuel and blending with 

the refined petrol that can be pumped from the refineries. Refined petroleum 

is usually pumped to the depots through the pipelines for distribution. This 

positioned them as good sites for blending with biofuel before loading on 

trucks for retail distribution. 

In this work, existing petroleum depots were considered to be the candidate 

sites for processing and blending biofuel. According to the Department of 

Petroleum Resources (DPR), there are 124 petroleum depots in Nigeria 

(DPR 2021) and are all clustered in 24 locations around the country. 

Independent marketers and major marketers owned 79 and 23 of the depots, 

respectively. The Nigerian National Petroleum Corporation (NNPC) owned 22 

of the depots. Because all the depots are located in 24 locations, these 

locations were used in this work to represent all the depots. One of the 

locations (Abuja) was left out because of its position as the capital of the 
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country and there is another depot (Suleja) nearby. Thus, a network dataset 

was created from the road dataset and service areas were created around 

the depots using three distance thresholds of 100, 200 and 300 km (Figure 

6.3).   

 

Figure 6.3: Locations of petroleum depots in Nigeria 

 

As mentioned in the previous paragraph, because there was no information 

regarding the scale of operation for the proposed processing site, it may not 

be possible to know the exact distances required to be covered in supplying 

enough feedstock to the proposed processing sites. A previous work of the 

same nature could not be found for the study area to be used as a reference. 

However, the unit cost of biofuel processing decreases with increasing plant 

size, unlike fossil fuels processing plants (Wright and Brown 2007). 

Considering the size of the study area, the extent of the roads network, the 

distribution of the potential feedstock and potential processing sites, it is 

possible that some feedstock could be supplied within 1 km and from 1000 
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km of the processing sites. Limiting the supply area would exclude many 

potential locations, supply limited amounts of feedstock and thus support 

small scale of operation for the processing plant. On the other hand, 

extending the supply area to a very large distance entails very high cost of 

transporting the feedstock because of the variable nature of the road 

transport.  

The three distance scenarios considered in this work would not be very 

narrow to be too exclusive of many areas and would be wide enough not to 

limit the scale of operation of the proposed processing plants. Because the 

relative efficiency of bioconversion depends on the chemistry of the 

feedstock (Iye and Bilsborrow 2013), it may not be appropriate to assume a 

uniform minimum scale of operation for the proposed processing facilities. 

With these varied distance scenarios, a number of varied scales are 

expected to be identified for each of the proposed facility sites, providing 

wider range of options for decision making that may be more practical within 

the contexts of the local realities of the proposed sites, serving as a back-

room assessment of the result of the analysis. 

The three distance thresholds will provide insight into how much potentiality 

each of the candidate site could have within the threshold and whether 

optimality of these locations could change with different sizes of service 

areas. All the potential feedstock within each of the service areas were 

aggregated to the depots (the candidate sites) for each of the crops. The 

software was instructed not to overlap the service areas to make sure each 

of the feedstock collation centres supplies only one depot. However, the 

implication of using this road dataset is that areas where there is no road 

connectivity due to absence of road or areas where the dataset did not cover 

or places where bridges are not captured in the data would be excluded in 

the analysis. This will limit the extent of the service area zones as could be 

seen in some places like Makurdi where the northern side is completely 

omitted for the Makurdi depot (Figure 6.3). Some of the collation centres that 

fall in the 300 km service area of Jos depot would have made it to 100 km 

service area of Makurdi depot. This could be assessed for more localised 
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decision as to which processing site a collation centre in this area could best 

service.    

 

6.3 Biofuels estimate and Optimal Biofuel Processing Sites (results) 

As explained in the previous subsection, the assessment of the potential 

biofuel feedstock within a service area of a potential biofuel processing 

location was based on the potential land availability for cultivating the biofuel 

crops within the service area and the crop yields information mined from the 

literature. Therefore, the figures for the potential feedstock amounts are 

highly exaggerated because, practically, not all of these lands will be 

available for biofuel crop cultivation in particular, or agriculture in general. In 

other words, the model assumes all the land that is physically available is put 

to the biofuel crop cultivation. Also, the following results emphasize the 

worst-case scenario for each of the crops with different service areas 

because the final result for site optimisation will be the same for all the yields 

scenarios but will differ with different service areas.  

Though the varied yield values provide more information about biofuel 

potential for each of the candidate processing sites, of more concern for this 

work is that the values provide a basis for comparing the locations in order to 

determine which have higher potential for hosting a biofuel processing and/or 

blending service. This has been discussed for each crop in the following 

subsections. More focus was given to 100 km service areas because 

choosing an optimised site with less transport distance may be best for both 

costs saving and reducing emissions due to transport.  

6.3.1 Sweet sorghum 

It is obvious from figure 6.2 that there is high potential for sweet sorghum 

production all over Nigeria. Almost every LGA shows higher amounts of 

potential sweet sorghum feedstock than for any other crop considered in this 

work. This is not unexpected because, as mentioned in subsection 2.2.1.1, 

Nigeria is the second largest producer of sorghum in the world. In section 

4.5, it was shown that 10.36% and 84.18% of the land that may be physically 

available in Nigeria is most suitable and very suitable for cultivating sweet 
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sorghum, respectively. It may be good to have an idea on the land estimate 

that is potentially available for cultivating sweet sorghum within each supply 

area. Looking at figure 6.4, there may be about 1.5 million hectares of land 

within 100 km of Maiduguri depot that may be used for cultivating sweet 

sorghum. More than 1 million hectares may be available within 100 km of 

Ibadan and Gombe depots and about 1 million hectares may be available 

within 100 km of Suleja and Aba depots. There is more than 100% increase 

in potential land availability within 200 km of these 5 depots except Aba. 

While Ilorin is only the 12th in terms of potential land availability within 100 

km, it is the 1st with more than 6 million hectares within 300 km service area.  

 

Figure 6.4: Potential land availability for cultivating sweet sorghum 

The data show that there could be more sweet sorghum feedstock supplies 

within 100 km of Maiduguri depot than any other depot. This is followed by 

Ibadan, Gombe, Suleja and Aba (figure 6.5). While the figure shows that 

Maiduguri depot could be supplied with more than 40 million tonnes of 

feedstock within 100 km service area, it shows that the other 4 depots could 

be supplied with more than 25 million tonnes within 100 km service area. 

Within 200 km service area, Maiduguri could still have the highest feedstock 

supplies with more than 121 million tonnes, followed by Ibadan and Gombe 

depots both with more than 80 Million tonnes of potential feedstock supplies. 
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However, Maiduguri became third after Ilorin and Gombe when 300 km 

service area was applied.  

Ethanol (biofuel) estimation was based on the potential feedstock supplies 

within the service areas. Several empirical studies have reported ethanol 

yield estimates for sweet sorghum feedstock around the world. These reports 

show that ethanol yields from sweet sorghum feedstock can range from 

1,000 to about 15,000 litres ha-1 (table 6.2) depending on the location and of 

course the processing technology. 

 

Figure 6.5: Potential sweet sorghum feedstock supply   

 

Table 6.2: Ethanol yields from sweet sorghum feedstock as reported in the 

literature 

S/N Ethanol yield (litres per hectare per 
crop cycle)  

Reference 

1 1,000 (Mexico) Packer and Rooney (2014) 

2 2,465 (Guatemala) Cifuentes et al., (2014) 

3 2,062 (Kano, Nigeria) and 2,595 
(Kaduna, Nigeria) 

Nasidi et al., (2013) 

4 3000 (Iran) Almodares and Hadi (2009) 

5 13,600 (Brazil) Barcelos et al., (2016) 

6 10,000 (may be possible) Elbassam (2010) 

7 14, 913 (China) Tang et al., (2018b) 
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An empirical research shows that 31.29 litres of ethanol per tonne could be 

extracted from sweet sorghum feedstock in Nigeria (Nasidi et al., 2010). This 

was adopted as the basis for estimating biofuel potential within service areas 

of the petroleum depots in Nigeria. Maiduguri showed highest potential within 

100 km with more than 1.2 billion litres of potential biofuel (figure 6.6). This 

was followed by Ibadan, Gombe, Suleja and Aba each with more than 800 

million litres of potential biofuel. Similarly, within 200 km service area, 

Maiduguri shows highest potential with more than 3.7 billion litres of potential 

biofuel, followed by Ibadan, Gombe, Ore, Ilorin, Suleja and Enugu, all with 

more 2 billion litres of potential biofuels. However, with 300 km service area, 

the depot with the highest potential is Ilorin followed by Gombe, both with 

more than 5 billion litres of potential biofuel. Maiduguri became third with 

more than 4.8 billion. It seemed Maiduguri depot is the most optimal location 

for processing and blending sweet sorghum biofuel based on this analysis.  

 

Figure 6.6: Potential sweet sorghum biofuel amounts for each of the petroleum depots 
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From this analysis, Maiduguri petroleum depot seems to be the best location 

for processing and blending biofuels from ethanol crops. Generally, this is not 

surprising because Maiduguri is in the north where the savannah vegetation 

and wider climate seasonality support arable crops such as sweet sorghum 

and sugarcane. Maiduguri is the capital of Borno State which is one the 

major sorghum producing states in Nigeria and where 55% of the farmers are 

said to be growing sorghum (Ajeigbe et al., 2020).  

Sorghum is said to be grown mostly in Borno, Adamawa and Yobe States 

and Nigeria would have been the largest sorghum producer in the world if not 

for the crisis in the northeast where these states are located (Izuaka 2021). 

Therefore, the authorities would need to work more on the security of the 

region to explore this huge potential for sorghum production in general and 

sweet sorghum, in particular. As shown earlier in this subsection, there could 

be more than 1.5 million hectares of land within 100 km of Maiduguri 

petroleum depot that potentially can support processing of more than 1.2 

billion litres of biofuel from sweet sorghum feedstock at the depot. In 2018, 

20% of the total sorghum produced was bought by industries in Nigeria 

(Akinyoade et al., 2020). 

6.3.2 Sugarcane 

Though less when compared to sweet sorghum, figure 6.2 shows widespread 

sugarcane production potential all over Nigeria. This might indicate that 

although Nigeria is not one of the major sugarcane producers in the world, 

most parts of the country ecologically support the cultivation of the crop. As 

shown in subsection 4.5 about 0.69% and 87.49% of the potentially available 

land areas in Nigeria are most suitable and very suitable for cultivating 

sugarcane, respectively. Figure 6.7 shows that more than 1.3 million 

hectares of land could be available for cultivating sugarcane within 100 km 

service area of Maiduguri depot. Followed by Ibadan depot with more than 1 

million hectares within 100 km service area. Gombe and Suleja could have 

almost 0.9 million hectares, while Aba and Ore could have more than 0.7 

million hectares. Similarly, Maiduguri and Ibadan may have the largest land 

areas for cultivating sugarcane within 200 km service area with more than 4 
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and 3 million hectares, respectively. These are followed by Ore, Ilorin and 

Gombe with more than 2.9, 2.8 and 2.7 million hectares, respectively. 

However, with 300 km service area, Maiduguri became third with more than 

5.09 million hectares after Ilorin with more than 6 million and Gombe with 

more than 5.33 million hectares.  

 

 

Figure 6.7: Potential land availability for cultivating sugarcane 

 

Maiduguri, as expected, shows more sugarcane feedstock potential both 

within 100 and 200 km supply area with more than 20 and 63 million tonnes, 

respectively (figure 6.8). Ibadan depot followed in both the cases with more 

than 16 and 46 million tonnes, respectively. Gombe, Suleja and Aba followed 

with more than 13.5, 13.4 and 11.6 million tonnes, respectively within 100 km 

service area. Within 200 km service area, Ore, Ilorin and Gombe followed 

with more 45.7, 44.2 and 41.5 million tonnes of sugarcane feedstock, 

respectively. Within 300 km service area, Ilorin showed highest feedstock 

potential with more than 93 million tonnes, followed by Gombe and Maiduguri 

with more than 82 and 78 million tonnes, respectively. 

Ethanol (biofuel) yields from sugarcane feedstock have been reported based 

on empirical studies or estimates (table 6.3). The lowest ethanol yield 

reported based on feedstock weight in Nigeria was adopted as the basis for 
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the sugarcane biofuel estimate. As shown in the table, Nasidi et al., (2010), 

reported that sugarcane in Nigeria yielded 8.25 litres of ethanol per tonne of 

feedstock. This was calculated for each of the petroleum depots in the 

country. 

 

Figure 6.8: Potential sugarcane feedstock supply 

 

Table 6.3: Ethanol yields from sugarcane feedstock as reported in the 

literature 

S/N Ethanol yield (litres 
per Tonne) 

Ethanol yield 
(litres ha-1) 

Reference 

1 70 (Europe) 4550 Rajagopal et al., 
(2007) 

2  7000 (Brazil) Zuurbier and Voore 
(2008) 

3 8.25 (Nigeria)  Nasidi et al., (2010) 

4 79.59 (Brazil)  Escaramboni et al., 
(2018) 

 

Maiduguri and Ibadan showed highest biofuel potential with more than 166 

and 133 million litres, respectively within 100 km service area (figure 6.9). 

The value 0.38 on the legend indicates the volume of biofuel represented by 

the tallest bar in the legend. This value is in billions as indicated in the legend 

and its length and that of the other yellow and blue bars indicates the 
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potential volume of biofuel for each of the sites. Gombe and Suleja followed, 

both with more than 11 million litres. Similarly, within 200 km service area, 

Maiduguri depot possess highest potential with more than 525 million litres. It 

is followed by Ibadan, Ore, Ilorin, Gombe and Suleja with more than 381, 

377, 364, 343 and 332 million litres of potential biofuel, respectively. 

However, with extended service area of 300 km, Ilorin shows highest biofuel 

production potential with more than 769 million litres. It is followed by Gombe 

and Maiduguri with 677 and 647 million litres, respectively. Ore, Benin and 

Minna showed more than 566, 518 and 515 million litres, respectively. Based 

on this analysis, Maiduguri depot could also be the most optimal site for 

processing and blending sugarcane biofuels in Nigeria. 

 

 

Figure 6.9: Potential sugarcane biofuel amounts for each of the petroleum depots 

 

Northeast is also a region with high sugarcane potential. Large scale 

cultivation of the crop is said to be feasible in most of the northern states in 
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areas where there is enough water for irrigation (Sulaiman et al., 2015). 

Though Borno State is not among the largest producers of the crop, the 

neighbouring Adamawa State is among the major producing states 

(Boluwade 2021) and houses the largest sugar mill in the country (Gourichon 

2013). The sugar company is located around 300 km from Maiduguri by road. 

The company lies less than 100 km from Yola petroleum depot. Yola depots 

ranked only the 9th in terms of biofuel potentiality within 100 and 300 km 

service area from this analysis and ranked number 13th within 200 km service 

area. This points to the availability of more potential land areas around 

Maiduguri depot than Yola depot. The presence of this sugar company in this 

area may support the view from this work that the area has great potential for 

sugarcane-based biofuel production. Perhaps, edge effects might have 

contributed to downscaling the potentiality of Yola depot in the analysis. 

However, this analysis is restricted to Nigeria and cannot cross over to the 

neighbouring Cameroon though it is possible, in reality, that feedstock could 

be sourced from across the international boundary. 

According to the National Sugar Development Council, sugar production was 

estimated at 38,597, consumption at 1,401,891 and importation at 1,363,294 

tonnes in 2019 (NSDC 2021). The importation cost was estimated to be more 

than 382 million US dollars during the year. This shows huge room for local 

expansion of sugar production providing large markets for sugarcane 

producers. It was mentioned in subsections 1.2.3 and 2.2.1.2 that industrial 

production of sugarcane in Nigeria is mainly for sugar production and these 

annual sugar statistics show that there is still a need for large sugarcane 

production to supply the sugar industry in the country. The National Sugar 

Master Plan mandates all the sugar millers to implement backward 

integration by including sugarcane cultivation in their supply chain and, as a 

policy, must source at least 40% of their total cane demand from out-growers’ 

farms around their estates.  

Though this analysis identified Maiduguri as the best location for sugarcane-

based biofuel production and blending, sweet sorghum might be more 

appropriate for the location. Thus, it is suggested that Yola or Ilorin be 
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considered for sugarcane. Because of its closeness to Maiduguri (the 

location optimised by the model for sugarcane) and because of the existence 

of the sugar milling company within its 100 km, Yola might be an alternative. 

This analysis estimated that there could be more than 576,000 hectares of 

land within 100 km of Yola petroleum depot that could potentially be use for 

sugarcane expansion. Also, Yola is the capital of Adamawa State which 

neighbours Taraba State that is among the top five sugarcane producing 

states (Igwenagu 2020). Ilorin, the capital of Kwara State, showed highest 

potential for biofuel production based on all the five crops within 300 km. 

Also, there are existing sugar companies in Bacita (Kwara State) and Sunti 

(Niger State) the location of both of which is nearer to Ilorin than Minna 

(capital of Niger State). There could also be more than 511,000 hectares of 

land potentially available for sugarcane expansion within 100 km of the Ilorin 

petroleum depot.  

6.3.3 Cassava 

Figure 6.2 shows widespread cassava production potential in Nigeria though 

relatively less than sweet sorghum and sugarcane. As mentioned in section 

2.2.1.3, the crop is the largest in the country by production quantity. The 

2019 global production data shows that Nigeria is the largest producer of the 

crop in the world (https://www.tridge.com/intelligences/mandioca/production). 

As shown in subsection 4.5, 3.77% and 74.4% of the lands potentially 

available in Nigeria are most suitable and very suitable, respectively, for 

cultivating cassava.  

Figure 6.10 shows that there could be more than 1.1 million hectares of lands 

for cultivating cassava within 100 km service area of Aba depot, followed by 

Ibadan with more than 1 million hectares, potentially available for cultivating 

cassava. Also, within 100 km of Suleja and Gombe depots, there could be 

about 0.9 million hectares. With 200 km service areas, Ibadan and Ore could 

have the largest amount of land with more than 3 million hectares potentially 

available for cultivating cassava. Followed by Ilorin, Enugu, Suleja, Gombe, 

Benin, and Minna with more than 2.88, 2.80, 2.61, 2.27, 2.21 and 2.14 

hectares, respectively. Ilorin shows largest amounts of potential land 

availability for cultivating cassava within 300 km service area with more than 

https://www.tridge.com/intelligences/mandioca/production
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6 million hectares. This is followed by Ore, Enugu, Benin, and Gombe with 

more than 4.62, 4.49, 4.49, and 4.09, million hectares respectively.    

 

 

Figure 6.10: Potential land availability for cultivating cassava 

 

As expected, Aba petroleum depot showed the highest potential for cassava 

feedstock supply within 100 km supply area with about 12.5 million tonnes, 

followed by Ibadan with more than 11.6 million tonnes of potential cassava 

feedstock. Suleja and Gombe could also be supplied with about 10 million 

tonnes of cassava feedstock (figure 6.11). Within 200 km service area, 

Ibadan could have the largest cassava feedstock supplies with more than 33 

million tonnes of potential cassava feedstock, followed by Ore, also with 

about 33 million tonnes. Ilorin and Enugu followed with 31 and 30 million 

tonnes of potential cassava feedstock, respectively. Extending the service 

area to 300 km showed that Ilorin could have the largest cassava feedstock 

supplies with more than 66.99 million tonnes of potential cassava feedstock 

supplies. Ore, Enugu and Benin followed with about 5 million tonnes. 
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Figure 6.11: Potential cassava feedstock supply 

Elbehri et al., (2013), reported that literature shows that ethanol (biofuel) 

yields from cassava feedstocks can range from 3,705 to 6,313 litres ha-1. A 

lower yield of 2,400 litres ha-1 was also reported by Marx and Y. (2013). 

Different values were also reported based on feedstock weight instead of 

hectarage (table 6.4). The yield value of 137 litres per tonne (based on 

feedstock weight) looks similar to 2,400 litres ha-1 (based on land yields) and 

agrees more with the reported average cassava feedstock yield in Nigeria 

(15 tonnes ha-1) as reported by Agboola and Agboola (2011). Thus, 137 litres 

per tonne was adopted as the basis for estimating ethanol potential from 

cassava feedstock. 

 

Table 6.4: Ethanol yields from cassava feedstock as reported in the literature 

S/N Yield (litres per tonnes) References 

1 93.57 – 263.94 (cassava bagasse) Escaramboni et al., (2018) 

2 150 (fresh roots) Kuiper et al., (2007) 

3 333 (cassava chips) Kuiper et al., (2007) 

4 530 (unpeeled roots) Marx and Y. (2013) 

5 100 (Nigeria) Agboola et al., (2011) 

6 137 (Nigeria) Naylor et al., (2007) 
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Aba petroleum depot shows highest potential for cassava biofuel within 100 

km service area with more than 1.7 billion litres (figure 6.12). This is followed 

by Ibadan, Suleja, Gombe and Ore with more than 1.59, 1.37, 1.33 and 1.06 

billion litres of potential biofuel within 100 km service area. Within 200 km 

service area, Ibadan depot shows highest biofuel potential with more than 

4.55 billion litres, followed by Ore, Ilorin and Enugu with 4.53, 4.34 and 4.22 

billion litres of potential biofuel. Extending the service area to 300 km 

revealed that Ilorin has the highest potential for cassava biofuel with more 

than 9 billion litres. Ore, Enugu, Benin and Gombe followed with 6.966, 

6.774, 6.770 and 6.174 billion litres of potential cassava biofuel. Ibadan 

depot, which has the second highest potential within 100 km and highest 

within 200 km service areas, seemed to be the most optimised site for 

processing and blending cassava biofuel in Nigeria.   

 

Figure 6.12: Potential cassava biofuel amounts for each of the petroleum depots 

This work identified Aba (Abia State) as the optimised location for cassava-

based biofuel production in Nigeria within 100 km service area. Within 200 

and 300 km service areas, Ibadan (Oyo State) and Ilorin (Kwara State) 

represent optimal site for this, respectively. None of these states is listed 
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among the top cassava producing states in the country. In 2020, Benue, 

Kogi, Ondo, Imo and Rivers States were the five largest producing states 

(NAERLS 2020). Makurdi which is the capital of Benue State, ranked 21st out 

of the 23 petroleum depots for cassava-based biofuel potentiality within 100 

km service area though the state is the largest cassava producer in the 

country. It ranked 13th and 17th within 200 and 300 km service areas, 

respectively. The main explanation for this is that existing farmlands were 

eliminated in the constraints modelling in the previous chapter. This means 

that all the cassava production from the farms accurately captured as 

constraints cannot factor in the potentiality estimate. The estimate was based 

on potentially non-cultivated and available lands. This was necessary due to 

food-vs-fuel debate under which biofuel programmes are being accused of 

converting food crop land to biofuel crops cultivation. The constraints 

elimination model did not differentiate between food and cash crop lands but 

considered all the cultivated areas as constraints.  

In subsection 1.2.3, where food-vs-fuel debate was appraised, it was 

mentioned that a survey in the cassava producing areas of Nigeria showed 

that about 50% of the cassava is sold for cash and about 40% is consumed 

(Wossen et al., 2017). The health issues of consuming cassava were also 

discussed in that subsection. The advantage of expanding crop production in 

areas where the crop is already established is that there may not be change 

in the livelihood of the locals. This may also ease engagement of the 

feedstock suppliers because of their experience and familiarity with the crop. 

Thus, while this analysis suggests Aba, Ibadan or Ilorin as the optimal sites 

for cassava-based biofuel production and blending due to the availability of 

uncultivated land, the existing cassava production data suggests that 

Makurdi could be a good consideration too. This analysis showed that 

Makurdi petroleum depot could be supplied with enough feedstock to process 

200 million litres, 2.4 billion litres and 3.3 billion litres of cassava-based 

biofuel within 100, 200 and 300 km service areas, respectively. This showed 

that there is enough potential to process and blend cassava-based biofuel at 

Makurdi depot even within 100 km service area. Figure 6.10 showed that 
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there could be more than 138,000 hectares of lands potentially available for 

cultivating cassava within 100 km of the Makurdi depot, indicating room for 

expansion in addition to the current cassava production in the state. 

6.3.4 Oil palm 

Figure 6.2 indicates the possibility of cultivating oil palm in many parts of 

Nigeria with higher potentiality along the central longitudinal stretch of the 

country. As discussed in subsection 2.2.2.1, oil palm is believed to have 

highest potential for biodiesel and has high oil production and energy balance 

potential. It was mentioned in subsection 1.2.3 that the non-food uses of oil 

palm continue to expand, with Malaysia as an example of a country targeting 

a 200% increase in its non-food use of the crop by 2035.  

As shown in subsection 4.5, 0.14% and 70.56% of the potential available 

land in Nigeria is most suitable and very suitable for cultivating oil palm in 

Nigeria, respectively. Figure 6.13 shows that within 100 km of Ibadan service 

area there could be more than 1 million hectares of land that could be used 

for cultivating oil palm. This is followed by Suleja, Aba and Ore with more 

than 0.9, 0.8 and 0.7 million hectares. Within 200 km service area, Ibadan 

still showed highest potential land availability with more than 3 million 

hectares, followed by Ore, Ilorin and Suleja, all with almost 3 million hectares. 

Within 300 km service area, Ilorin showed highest potential for land 

availability with more than 6 million hectares, followed by Ore, Benin and 

Minna, all with more than 4 million hectares.  

Ibadan petroleum depots shows highest feedstock supply potential within 100 

km with more than 2.7 million tonnes, followed by Suleja and Aba with more 

than 2.5 and 2.3 million tonnes, respectively (figure 6.14). The highest 

potential feedstock supply within 200 km is also around Ibadan depot with 

more than 7.8 million tonnes, followed by Ore, Ilorin, Suleja and Enugu with 

7.7, 7.5, 7.2 and 7.1 million tonnes. Ilorin showed about 16 million tonnes 

potential for oil palm feedstock within 300 km service area, followed by Ore, 

Benin and Minna, all with more than 11 million tonnes.  
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Figure 6.13: Potential land availability for cultivating oil palm 

 

 

Figure 6.14: Potential oil palm feedstock supply 

Biodiesel is extracted from various oil palm products such as Crude Palm Oil 

(CPO), Refined Palm Oil (RPO), Sludge Palm Oil (SPO) and palm olein. 

Various proportions of oil were reported to have been extracted from oil palm 

feedstock (fresh fruit bunches) including 96% (Hayyan et al., 2014b) and 81 

to 95.3% (Kareem et al., 2017). Zahan and Kano (2018) reported 5 tonnes of 
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oil ha-1, while Ohimain and Izah (2014) reported a range of 63.4 to 77.1 litres 

of CPO per tonne of FFB, both in Nigeria. Various biodiesel output 

proportions were reported depending on the oil palm resource and 

processing technology used (table 6.5).   

Table 6.5: Proportion of biodiesel derived from oil palm products 

S/N Biodiesel (%)  Resource used Reference 

1 62.5 Palm olein Ishola et al., (2020) 

2 82.8 Crude palm oil Kansedo et al., (2009) 

3 88.15 Crude palm oil Endut et al., (2017) 

4 88.67 Low grade crude palm 
oil 

Hayyan et al., (2014a) 

5 92.7 Refined palm oil Chen et al., (2014) 

6 93±2.2 Refined palm oil Suryaputra et al., (2013) 

7 95.3 Crude palm oil Kareem et al., (2017) 

8 95.61 Crude palm oil Margaretha et al., (2012) 

9 98.8 Palm olein Boey et al., (2009) 

 

Though edible oils may offer higher biodiesel yields, food security issues may 

offset this advantage, but the non-edible palm oil by-products such as sludge 

and olein may offer more ethical sources of biodiesel production (Girish 

2018). According to Zahan and Kano (2018), research established that only 

10% of the oil palm on-farm biomass is converted to edible oil. Herjanto and 

Widana (2016), estimated that as much as 73% olein could be produced from 

the overall palm oil refining. Palm olein is said to be in abundance in Nigeria 

and could be a sustainable bioresource for mass production of biodiesel in 

the country (Ishola et al., 2020).  

It is assumed in this work that biodiesel production from oil palm in Nigeria is 

based on palm olein. Thus, 63.4 litres of CPO per tonne of FFB (Ohimain and 

Izah 2014) is adopted as oil yield, 73% (Herjanto and Widana 2016) is 

adopted as the proportion of olein production from CPO and 62.5% (Ishola et 

al., 2020) is adopted as the proportion of biodiesel production from olein. 

Based on these, table 6.6 shows the estimates of olein supply potential within 

service areas of the petroleum depots. The table shows that Ibadan, Suleja 

and Aba depots could have more than 127, 116 and 106 million litres of olein 

within 100 km service area. Ibadan could also have the highest supply of 
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olein within 200 km service area with more than 363 million litres but followed 

by Ore and Ilorin with more than 360 and 347 million litres of olein, 

respectively. With 300 km service area, Ilorin shows highest olein supply 

potential with 737 million litres, followed by Ore and Benin with more than 

553 and 534 million litres of potential olein supply.    

Table 6.6: Potential olein production from oil palm feedstock suppliable within 

service areas of petroleum depots 

S/N Petroleum 
depots 

100 Km service 
area (Million 
litres) 

200 Km service 
area (Million 
litres) 

300 Km 
service area 
(Million litres) 

1 Ibadan 127.57 363.71 475.39 

2 Suleja 116.08 337.79 467.03 

3 Aba 106.52 171.70 268.79 

4 Ore 85.13 360.47 553.46 

5 Gombe 73.94 216.36 362.70 

6 Enugu 73.63 332.48 498.50 

7 Gusau 73.35 223.52 348.67 

8 Sagamu 72.16 208.02 365.43 

9 Ilorin 61.61 347.67 737.27 

10 Port 
Harcourt 58.64 144.46 192.19 

11 Benin 57.37 263.09 534.07 

12 Minna 50.66 281.70 515.35 

13 Yola 37.81 116.12 237.83 

14 Kaduna 37.56 223.76 452.85 

15 Ikot Abasi 33.42 126.87 161.64 

16 Jos 33.21 137.47 386.98 

17 Warri 31.34 117.41 280.23 

18 Kano 19.98 78.75 160.67 

19 Satellite 16.68 132.04  

20 Makurdi 13.84 194.49 264.06 

21 Atlas Cove 7.78 110.68 204.14 

22 Maiduguri 4.01 21.14 43.29 

23 Calabar 0.38 0 0 

 

Biodiesel production potential follows this distribution with Ibadan showing 

the highest biodiesel potential of almost 80 million litres within 100 km service 

area (figure 6.15). Suleja and Aba followed with more than 72 and 66 million 

litres of potential biodiesel production. Within 200 km service area, Ibadan, 

Ore and Ilorin may have feedstock supply amounts to support processing of 

more than 227, 225 and 217 million litres of biodiesel. Ilorin depot shows 460 
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million litres of potential biodiesel within 300 km service area, followed by Ore 

and Benin with more than 345 and 333 million litres of potential biodiesel. 

Ibadan petroleum depot seemed to be the optimal site for processing and 

blending oil palm biodiesel in Nigeria. 

 

Figure 6.15: Potential olein biodiesel amounts for each of the petroleum depots 

 

This work identified Ibadan petroleum depot as the optimal location for oil 

palm-based biofuel processing and blending, within 100 and 200 km service 

areas. This is not surprising because Ibadan (capital of Oyo State) is in the 

south where forest vegetation and longer rainy season support tree crops 

such as oil palm. However, Oyo State is not among the usually listed oil palm 

producing states in Nigeria. Niger Delta states are the major oil palm 

producing states which are said to account for 57% (about 1.5 to 1.8 million 

hectares in 2008) of the oil palm area in Nigeria (PIND 2011). This may be 

connected to the high amounts of annual rainfall in the area as presented in 

section 3.3 because rainfall/water is the major factor that determines oil palm 

distribution as discussed in subsection 2.3.6.  
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Cross River and Akwa Ibom States are the largest oil palm producing states 

with an estimated more than 295,000 and 280,000 hectares of combined 

estate plantations, wild groves and small and medium holders. Because the 

analysis avoided existing farmlands as constraints however, the oil palm 

production in the states was not captured in the potential estimate. Therefore, 

Calabar (the capital of Cross River State) and Ikot Abasi (a town in Akwa 

Ibom State) petroleum depots ranked the 15th and the 23rd, respectively, in 

terms of their potential for processing oil palm-based biofuel within 100 km 

service area despite being the largest oil palm producers.  

While Ibadan presented the highest potential for oil palm-based biofuel 

processing due to the potential availability of uncultivated land for cultivating 

oil palm, the analysis showed that these two largest oil palm producing states 

could have more than 227,000 (Ikot Abasi) and 3,000 (Calabar) hectares of 

uncultivated lands within 100 km service area for expanding oil palm 

cultivation leading to the potential of processing more than 20 and 0.2 million 

litres of biofuel, respectively. As discussed in subsection 6.3.4, this work 

assumed production of oil palm-based biofuel from the olein rather than the 

edible oil. Thus, availability of large quantities of olein is expected in areas of 

large oil palm production and processing.  

In Cross River, Creel Oil is a processing centre reported to be operating on 

240 tonnes per day capacity (NAERLS 2020). Because they are neighbours, 

the two largest oil palm producing states may combine to present greater 

potential for processing and blending olein-based biodiesel in Nigeria. Ikot 

Abasi, Port Harcourt and Aba petroleum depots are located within 100 km of 

each other and Calabar is located within 150 km of Aba and Ikot Abasi 

petroleum depots. Therefore, with these depots located in the region and the 

potential availability of olein in this region, this region presents greatest 

potential for processing and blending olein-based biodiesel in Nigeria. 

However, Ibadan may be best option when large expanse of land is need for 

expanding oil palm production in the country. 
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6.3.5 Jatropha  

It could be understood from figure 6.2 that it is possible to cultivate jatropha 

in many parts of Nigeria with some locations showing higher potentiality than 

others. As discussed in subsection 2.2.2.2, jatropha in Nigeria is wild 

species, but it is more suitable for quick and efficient domestication 

compared to other woody species. As discussed in subsection 1.2, jatropha 

is a promising crop for emission reduction and carbon sequestration. It was 

shown in subsection 4.5 that 71.6% of the land that may physically be 

available in Nigeria is very suitable for cultivating jatropha. Figure 6.16 shows 

that there could be more than 1 million hectares of land that could be used 

for cultivating jatropha within 100 km of Ibadan service area. This is followed 

by Suleja and Gombe with more than 0.97 and 0.82 million hectares, 

respectively. Within 200 km service area, Ibadan still shows highest potential 

land availability with more than 3 million hectares, followed by Ore, Ilorin and 

Suleja with more than 2.97, 2.88 and 2.86 million hectares, respectively. 

Ilorin petroleum depot showed highest availability of potential land within 300 

km service area with more than 6 million hectares. Ore, Minna, Gombe and 

Benin followed with more than 4.5, 4.3, 4.2 and 4.1 million hectares of 

potential land, respectively. 

 

Figure 6.16: Potential land availability for cultivating jatropha 
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As expected, Ibadan shows highest jatropha feedstock supply potential within 

100 km service area with more than 2 million tonnes (figure 6.17). It is 

followed by Suleja, Gombe and Ore with more than 1.9, 1.6 and 1.4 million 

tonnes, respectively. Ibadan also has the highest potentials for feedstock 

supply within 200 km service area with more than 6 million tonnes of jatropha 

feedstock, followed by Ore, Ilorin and Suleja with more than 5.95, 5.77 and 

5.72 million tonnes, respectively. Within 300 km service area, Ilorin could be 

supplied with more than 12 million tonnes of jatropha feedstock, followed by 

Ore, Minna, Gombe and Benin with more than 9.1, 8.6, 8.5 and 8.3 million 

tonnes, respectively.    

 

Figure 6.17: Potential jatropha feedstock supply 

 

According to FAO (2010), 4 to 5.5 kg of jatropha seeds can produce one litre 

of oil. Several proportions of oil extracted from jatropha seeds were reported 

in the literature (table 6.7). Ibrahim and Bugaje (2018), concluded from their 

analysis that it is too expensive to use jatropha biodiesel in Nigeria because 

of seeds costs and low yields. They extracted 2.33 litres of oil from 21.3 kg of 

3 years old seeds, 8.6 litres from 66.67 kg of dried seeds (age unknown) and 

5.7 litres from 30 kg of fresh seeds. However, as could be seen in table 6.7, 

Akogwu et al., (2018), extracted 1 litre of oil from 3 kg of Nigerian jatropha 

seeds. This could be translated to 333 litres of oil per tonne. It is clear from 
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table 6.7 that higher oil proportions were extracted from Nigerian jatropha 

seeds, showing more viability than suggested by Ibrahim and Bugaje (2018). 

Table 6.7: Jatropha oil yields as reported in the literature 

S/N Oil yields Country Reference 

1 2,200 litres ha-1 Sub-
Saharan 
Africa 

ETB (2007) 

2 40% (seeds weight) Nigeria Warra et al., (2012) 

3 1 litre 3kg-1 of seeds Nigeria Akogwu et al., (2018) 

4 1 litre 5kg-1, 8kg-1 and 
9kg-1 of seeds 

Nigeria Ibrahim and Bugaje (2018) 

5 52.2% (seeds weight) Nigeria Aransiola et al., (2012a) 

6 47.25% (seeds weight) Nigeria Akintayo (2004) 

7 49.1% (seeds weight) Cuba Martín Medina et al., (2010) 

8 63.16% (seeds weight) Malaysia Akbar et al., (2009) 

9 61% and 80% (seeds 
weight) 

Nigeria Belewu et al., (2010) 

 

Oil extraction from jatropha seeds is said to depend on the extraction method 

applied. Warra (2012), reported that 60 to 65% of oil can be extracted using 

manual press, and 75 to 80% oil can be extracted using a mechanical press. 

Belewu et al., (2010), reported 61% oil extraction using mechanical methods 

and 80% oil using chemical methods. Sambo and Salihi (2008), mentioned 

that it is possible to achieve 3000 litres of oil ha-1 from jatropha seeds. To 

estimate potential oil within service areas, this work assumed extraction of 1 

litre of oil per 5kg (200 litres per tonne) of jatropha seeds and 2,200 litres per 

hectare. This was calculated for each of the petroleum depots based on each 

of the service areas (table 6.8). Similarly, several biodiesel yields were 

reported to have been obtained from jatropha oil (table 6.9). A low biodiesel 

yield or proportion (87%) reported for Nigerian seeds was adopted for 

estimating biodiesel potential within service areas of the petroleum depots 

(figure 6.18). 
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Table 6.8: Potential oil from jatropha feedstock suppliable within service 

areas of petroleum depots 

S/N Petroleum 
depots 

100 Km service 
area (Million 
litres) 

200 Km service 
area (Million 
litres) 

300 Km service 
area (million 
litres) 

1 Ibadan 424.1848 1208.46 1578.7192 

2 Suleja 390.0788 1144.596 1584.1512 

3 Gombe 329.1836 982.5536 1707.7124 

4 Ore 282.3912 1191.572 1830.2944 

5 Gusau 255.1888 661.7316 1017.9152 

6 Yola 240.8236 680.8156 1288.576 

7 Sagamu 239.8528 691.6536 1214.5328 

8 Enugu 224.3816 924.2268 1251.1848 

9 Ilorin 204.7268 1155.1888 2441.674 

10 Benin 183.676 863.2008 1666.9076 

11 Minna 168.7676 958.7968 1736.5524 

12 Jos 136.648 586.8912 1502.3896 

13 Kaduna 126.1108 759.4416 1524.5656 

14 Aba 117.6548 295.708 581.8888 

15 Warri 93.9668 378.8596 911.4576 

16 Maiduguri 71.3668 239.1564 364.976 

17 Kano 63.7908 292.0892 612.5248 

18 Satellite 55.4308 438.9368 0 

19 Makurdi 45.5068 576.1344 757.3812 

20 Atlas Cove 25.8652 367.9112 678.77 

21 Port 
Harcourt 17.1156 203.1848 359.964 

22 Ikot Abasi 5.8916 151.8104 262.19 

23 Calabar 0 0 0 

 

Table 6.9: Biodiesel yields from jatropha oil as reported in the literature 

S/N Biodiesel yields (% 
of oil) 

Country References 

1 93.03 Nigeria (Betiku et al., 2014) 

2 94 and 96 Egypt (Kamel et al., 2018) 

3 87 Nigeria (Aransiola et al., 2012a) 

4 86.6 Nigeria (Aransiola et al., 2012b) 

5 90.8 Mexico (Torres-Rodríguez et al., 2016) 

6 93 India (Choudhury and Srivastava 
2014) 

7 90 Nigeria (Folaranmi 2012) 

8 100  Nigeria (Akogwu et al., 2018) 
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Similar to oil yields, Ibadan and Suleja showed the highest potential biodiesel 

production by the petroleum depots within 100 km service area with more 

than 369 and 339 million litres, respectively. Gombe, Ore, Gusau, Yola and 

Sagamu followed with more than 286, 245, 222, 209 and 208 million litres, 

respectively. Ibadan still shows the highest biodiesel potential within 200 km 

service area with more than 1.051 billion litres but was followed by Ore and 

Ilorin with more than 1.036 and 1.005 billion litres, respectively. Extending the 

service areas to 300 km showed that Ilorin has highest biodiesel potential 

with more than 2.124 billion litres, followed by Ore and Minna with more than 

1.59 and 1.51 billion litres, respectively. 

 

 

Figure 6.18: Potential jatropha biodiesel for each of the petroleum depots 

This work identified Ibadan petroleum depot as the optimised location for 

jatropha-based biofuel processing and blending in Nigeria. Jatropha is also a 

woody perennial crop, making forest climes favourable for the crop. Ibadan is 

in the southwest of Nigeria where Adepoju and Oloyede (2018), found that 

jatropha has a competitive advantage though incentive policies need to be 
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enhanced to make the cultivation profitable. Because it is relatively a new 

crop, only getting much attention in the last two to three decades, production 

information on jatropha is scarce in Nigeria. A few published works, however, 

reported jatropha cultivation activities in such areas as Kano State (Yahuza 

et al., 2020) and Benue State (J.A.C et al., 2016). Some jatropha plantations 

were visited as part of the field work in Zaria (Kaduna State) and Ilorin 

(Kwara State).  

Activities for promoting jatropha in Nigeria are said to date back to 1998 

(Yammama 2009). By 2011, about 7,500 hectares of land was covered with 

the crop in the country (Wahl et al., 2012) and later in the decade the 

jatropha growers association reported planting about 100,000 hectares 

(Adam 2018). It was not possible to obtain any documented information 

regarding distribution of jatropha production volumes in Nigeria. Therefore, 

since Ibadan petroleum depot showed the highest potential for jatropha-

based biofuel production within both 100 and 200 km service areas, this 

location seemed to be the best for this purpose. The analysis showed that 

there could be more than 1 and 3 million hectares of land for cultivating 

jatropha within 100 and 200 km service areas of the Ibadan petroleum depot, 

respectively, for farmers to expand their production. The jatropha farmers 

association in Ibadan (Oyo State) is one of the foremost jatropha-based 

farmers association in Nigeria with 106 members (Olowoake et al., 2018). 

The farmers group, assuming they are experienced in jatropha cultivation, 

increases the potentiality of Ibadan for Jatropha-based biofuel processing 

and blending. 

6.4 Summary 

This chapter discussed biofuel potentials based on feedstock supply 

potentials within service areas threshold of 100, 200 and 300 km around the 

petroleum depot locations in Nigeria. The petroleum depots that showed the 

highest potential for processing and blending biofuels based on sweet 

sorghum, sugarcane, cassava, oil palm and jatropha within 100 km service 

area are Maiduguri, Maiduguri, Aba, Ibadan and Ibadan, respectively. Within 

200 km service areas, Maiduguri, Maiduguri, Ibadan, Ibadan and Ibadan 



241 

 

showed highest biofuel potential for sweet sorghum, sugarcane, cassava, oil 

palm and jatropha, respectively. Extending the service areas to 300 km, Ilorin 

showed highest potential for biofuel processing and blending based on all the 

five crops. This showed that depending on the scale of operation, the optimal 

site for processing biofuel base on agricultural crops may change. For 

example, according to these results, while it may be best to site cassava-

based biofuel processing plant in Aba if the feedstock can only be supplied 

within 100 km, Ibadan may be the best if the supply can extent to 200 km. 

However, Ilorin may be the best if the supply can extend to 300 km. When 

considering sweet sorghum, sugarcane, cassava, oil palm and jatropha in 

conjunction with their production data, results show that Maiduguri (Borno 

State), Yola (Adamawa), Makurdi (Benue State), Ikot Abasi (Akwa Ibom 

State) and Ibadan (Oyo State) petroleum depots are the optimal sites for 

processing and blending these biofuels, respectively (figure 6.19). 

 

Figure 6.19: Optimised locations for processing and blending biofuels in Nigeria 
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It is obvious from figure 6.19 that there is emphasis on the crop production 

data with some deviation from the result of the analysis in making conclusion 

about the optimal sites for processing biofuel based on each of the crops. 

The main reason for this is the understanding that the land cover mapping 

conducted in chapter five to identify and eliminate agricultural areas did not 

differentiate between food crops and other non-food crops. All cultivated 

areas were considered in the elimination process and this would include 

existing land areas dedicated to biofuel crops cultivation such as sweet 

sorghum and jatropha. Therefore, since assessment of the land potential was 

based on land availability for cultivating the crop, areas with larger potential 

areas would show greater potentiality than areas with smaller potential areas 

even if the particular crop is being cultivated in the area. As would be 

discussed in the next chapter (subsection 7.2.1), these are some of the local 

factors that may play important role in making decision regarding choice of 

the site for processing biofuel from among the optimised sites. This is 

because the results from this analysis are not perfect as discussed in 

subsection 7.2.2.  

 

6.5 Conclusion 

Based on feedstock supply potentiality, it could be concluded that within 100 

km service areas, Maiduguri depot is the optimal location for processing 

sweet sorghum and sugarcane-based biofuel. While Aba is the optimal 

location for cassava, Ibadan is the optimal location for both oil palm and 

jatropha. Alternative locations could also be considered depending on local 

conditions, the scale of operation and other important consideration such as 

the need for the petroleum depots to be upgraded for handling biofuels. 

These results provided an informed guidance for making spatial decision 

regarding crop-based biofuel processing and blending sites in Nigeria. Some 

discussion is provided in chapter seven about the implication of this analysis. 
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Chapter Seven – Discussions 
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7 Chapter Seven – Discussion 

7.1 Summary of key findings 

In this research, an attempt was made to explore locational criteria in order to 

conduct spatial optimisation for biofuel production in Nigeria considering five 

agricultural crops as biofuel feedstock. Chapter one covered an overview of 

the need for biofuels as part of the transitional energy sources, the debates 

about biofuel as well as its global production trends. An overview was also 

given in the chapter on Nigeria’s energy sector and emissions to 

contextualise the research gaps, questions and objectives which were 

handled in the subsequent chapters. There were 10 research objectives 

mapped onto seven research questions that were derived from four research 

gaps related to four themes – empirical, methodological, spatial and policy. 

Though these components are actually interwoven, the following subsections 

give an overview of the contribution of the thesis to these four areas.      

7.1.1 Empirical contribution.  

There were three research questions in this component from which the 

research objectives were derived. The first research question was: “what are 

the ecological requirements for the selected biofuel crops’ optimal growth?” 

The objective was to conduct a requirements analysis to determine the 

ecological requirements of the identified crops from which the land suitability 

criteria were derived. This is related to research question two namely “how 

do various biofuel crops differ in their potential contribution to biofuel 

production under a range of environmental conditions?” The objective here 

was to write a synopsis on the identified biofuel crops.  

Chapter two attempted to achieve these two objectives and answer the two 

research questions. An overview was given on each of the five crops to show 

how each differ in terms of production, other uses than biofuel and some 

advantages each may have for use as biofuel feedstock. In section 1.2, the 

discussion on biofuel debates had also touched on these differences 

between the identified crops with regards to their use as biofuel crops. 

Extensive literature analysis was presented in chapter two regarding 
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ecological requirements of the identified biofuel crops. In total, 14 criteria 

were identified including those related to distance such as roads. Optimal 

values required by each of the crops were mined from the literature and 

served as the basis for analysing how these crops differ with respect to land 

suitability for cultivation.  

It was found empirically that the crops differ regarding how much contribution 

each can hypothetically provide in terms of land, given the suitability criteria. 

There are more than 38.5, 38.2, 32.5, 31.1 and 30.6 million hectares of land 

that is very suitable for sugarcane, sweet sorghum, cassava, jatropha and oil 

palm, respectively. While there was no area identified as less suitable for 

sweet sorghum, sugarcane and jatropha, it was only for jatropha that no area 

was identified as most suitable. Oil palm has the highest amount of land 

identified as moderately suitable with more than 13.7 million hectares. For 

jatropha, cassava, sugarcane and sweet sorghum, 13.2, 10.0, 5.6 and 3.1 

million hectares of land were identified as moderately suitable, respectively. 

While this level of detail is not obtainable in other studies, it may not be 

surprising that the values for sugarcane and sweet sorghum are close 

considering the observable similarity of the optimum criteria values between 

the two crops, as well as their physiological similarities. Though cassava is 

also an ethanol crop, it differed from the other ethanol crops by showing 

about 6 million hectares less land areas that are very suitable for cultivating 

the crop, reflecting its difference in physiology and thus its requirements for 

the environmental variables. This, therefore, suggests the importance of 

being careful and systematic about establishing appropriate criteria given the 

sensitivity the results showed to changes in criteria weights.   

The fifth question also falls under the empirical component and reads; “how 

much land is physically available for biofuel crops cultivation without conflict 

with food crops cultivation and conservation sites?” The objective was to 

identify and develop a model to eliminate physical constraints to biofuel crops 

cultivation. This objective was achieved in chapter five. It was found 

empirically that an estimated 41 million hectares of land was cultivated during 

the 2018 rainy season. This was identified as a constraint to land availability 
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for cultivating biofuel crops based on the assumption that existing food 

production would be conserved and existing protected areas would be 

avoided. However, the analysis looked at all the cultivated areas without 

discrimination between food crops and cash crops. The implication of this is 

that the areas currently under biofuel crop cultivation were recognised by the 

analysis as constraints, therefore weighing down the potential of the areas for 

biofuel production. About 82 million hectares of Nigeria’s land is said to be 

arable and according to the country’s biofuel policy only 2% percent of the 

arable land is required for the programme. Therefore, this analysis showed 

that there is much more than needed land for the programme without conflict 

with food production.  

This work provided data that can be explored to further determine how much 

of the land is available within each state or even local government area for 

the programme. These identified areas could further be explored to conduct 

empirical research to determine their productivity for each of the crops under 

various agronomic practices. It is empirically found that more than 40 million 

hectares of land could be explored in Nigeria to cultivate feedstock crops for 

biofuel production in the country. These areas comprised of more than 10 

million hectares of woodland and more than nine million hectares of shrub 

land. Others might be unprotected forest areas. However, this finding could 

suggest that the demand for land from the biofuel programme could be 

attained without touching open forest areas and would not compromise 

ambitions to expand protected areas in the future. In fact, these identified 

potentially available areas could be explored to determine their 

appropriateness for expanding protected areas in Nigeria.  

7.1.2 Methodological contribution 

There was one research question under this component: “how does 

combining AHP and GIS-MCDM improve biofuel crop land suitability 

modelling in Nigeria?” There were two objectives, to conduct expert group 

discussion for detailed and standard implementation of AHP for generating 

criteria weights and to develop a model for suitable cultivation lands for each 

of the identified crops using multi-criteria analysis. The former was handled in 
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chapter three, while the later was handled in chapter four. Chapter three 

provided detailed participatory criteria preference assessment, which is 

usually absent or often implicit in most spatial multi-criteria analysis.  

Experts on each of the crops were consulted through group discussion for 

the purpose of assigning the criteria weights. Their judgements were 

assessed for consistency compliance which necessitated consulting them for 

the second time to reassess their judgement. Final weights were generated 

and the required consistency ratio was achieved for each of the crops. In 

chapter four, a model was developed for each of the five crops to assess 

land suitability for cultivation. Sensitivity analysis showed that the results 

were very sensitive to changes in criteria weights, emphasising the 

importance of developing a careful and systematic approach to establishing 

the weights which was provided by AHP in support of spatial multi-criteria 

analysis and as a support for spatial decision-making process. 

In the context of the complexity of environmental assessments due to the 

conflicting or compromising nature of the parameters needed to be 

considered (section 1.6), it was found that GIS-based multi-criteria analysis 

(GIS-MCA) also known as Spatial Multi-criteria Analysis (SMCA) provides a 

useful pivot to approach this as a multi-criteria spatial decision support 

system (MC-SDSS). Notwithstanding the caveats, the land suitability analysis 

in chapter four, constraints analysis in chapter five and the optimisation 

modelling in chapter six, combined, showed how GIS-MCA methods serve as 

useful support for the spatial decision-making process. Though the 

application in this work relates to the biofuel industry, it was shown in section 

1.6 that the method has been applied to many contexts such as housing or 

habitat suitability planning, urban infrastructure planning, hazards mapping, 

agriculture planning or monitoring and other renewable energy sectors such 

as hydro-power or solar energy planning. The diversity of these applications 

is said to drive continued expansion of these applications into foreseeable 

future, enabled by progress in geospatial technology and data availability 

(Malczewski and Jankowski 2020). 
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From a methodological perspective, it was found that application of Analytical 

Hierarchy Process (AHP), as a technique for sourcing knowledge of experts, 

improves the results of land suitability modelling as compared to techniques 

that does not incorporate this knowledge. This is shown in chapter four by the 

sensitivity analysis. Equal weights assigned to the environmental criteria 

produced results that deviated substantially from the results obtained using 

the experts’ judgements. In other words, without the experts’ opinions 

regarding criteria weights, the result might contain high inaccuracies, or at 

least not based on the available knowledge. The experts with their various 

specialisations could make better judgement through consensus.  

As an example, in this work the experts that participated in the focus group 

discussion for cassava include the director of cassava research in the 

Institute, the plant pathologist, the soil scientist and the institute’s business 

development manager. They discussed and sometimes delibrated over the 

appropriate judgement at any instance of comparing a pair of criteria. These 

structured debates allowed focus on specific points and the consensus 

represent the group preferences, providing better way of generating 

meaningful judgement compared to an arbitrary judgement from a single 

expert or by the analyst who does not have the required expertise for making 

the judgement. As done in this work, bringing the experts to a single sitting 

provides the best way of handling the fuzziness of human decision making as 

their different judgements are synthesised instantly in a systematic fashion. 

This eliminates the subjectivity that may arise when the analyst tries to 

reconcile different judgements obtained from different experts at different 

instances. Other environmental management scenarios such urban 

infrastructure planning could also benefit from this structured way of involving 

stakeholders for effective decision-making. 

Another methodological contribution of this work is the novel map output 

combination procedure conceptualised and demonstrated in chapter five. It 

involves producing multiple band combinations by integrating optical and 

radar data bands, executing multiple classifiers, extracting classifications 

outputs with higher class accuracies and combining the outputs with the aim 
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of improving satellite imagery classification accuracy. What makes this 

procedure novel is the manner in which the outputs were combined. It 

involves mainly two stages. The outputs are converted into binary and then 

fuzzy class maps in stage one. Then the fuzzy class maps are converted into 

binary and then combined into a single land cover map in stage two. This 

particular procedure has never been found to have been conceived or 

implemented in any previous work.  

7.1.3 Spatial contribution 

There were two research questions under this component. The first question 

reads; “where are the physically available land areas for biofuel crops located 

in the country and how suitable are they for the identified biofuel crops?” The 

objective deals with mapping the land areas and their suitability levels for the 

identified biofuel crops in Nigeria. Land suitability levels were determined in 

chapter four and the potential availability was determined in chapter five. 

Based on geopolitical zones of the country, about 64%, 55%, 53%, 52%, 

51% and 33% of the south-south, southwest, southeast, northeast, 

northcentral and northwest are potentially available for biofuel crops 

cultivation, respectively. These zones are groups of neighbouring states that 

do not have constitutional backing or formal administrative structure but are 

usually used for regional analysis.  

The results also showed that more than 10 million hectares could be very 

suitable for all the five considered biofuel crops in the northcentral zone. 

While more than seven million hectares are very suitable for cassava and 

jatropha in the northeast, more than 11 million and more than 12 million 

hectares are very suitable for sweet sorghum and sugarcane, respectively. 

Also, more than five million hectares are very suitable for oil palm in the 

zone. While about six million hectares were found to be very suitable for 

sweet sorghum, sugarcane and cassava in the northwest, less than five 

million hectares were found to be very suitable for oil palm and jatropha in 

the zone. It was found that more than four million hectares could be very 

suitable for all the crops in the southwest except cassava for which less than 

four million hectares were found to be very suitable. Less than four million 
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hectares were found to be very suitable for all the crops in the south-south 

except jatropha for which a little more than two million hectares were found to 

be very suitable. In the southeast, more than one million hectares could be 

very suitable for cultivating all the five crops. 

In summary, the northcentral geopolitical zone of Nigeria may have the 

largest amount of land that is ‘very suitable’ for cultivating sugarcane, 

cassava, oil palm and jatropha. While the northeast may have the largest 

amounts of land that is ‘very suitable’ for cultivating sweet sorghum. This 

work provided more details regarding land suitability for cultivating selected 

crops as feedstock for a biofuel programme in Nigeria. It has gone beyond 

attributing land suitability for a biofuel crop to vegetation zones, as done in 

some previous studies (section 1.7) but estimated how much of the land is 

most suitable, very suitable and moderately suitable and where these varying 

land suitability levels could be obtained.  

The second research question under this component reads: where should 

biofuel refineries be optimally sited among the existing petroleum depots in 

Nigeria based on the suitable areas for biofuel crops? The first objective 

deals with site optimality modelling for biofuel processing facilities based on 

transport cost (distance along road network). This was conducted in chapter 

six. The results showed that Maiduguri petroleum depot might be the most 

optimal site for processing and blending biofuel based on sweet sorghum and 

sugarcane. However, either Yola or Ilorin petroleum depot was suggested as 

the best possible alternative for sugarcane-based biofuel processing and 

blending. Both the two alternative depots have more than 500,000 hectares 

of land potentially available for sugarcane expansion and there is presence of 

sugar milling companies within 100 km of their locations. The results also 

showed Ibadan petroleum depot as the most optimal for biofuel processing 

and blending based on cassava, oil palm and jatropha. However, Makurdi 

and Ikot Abasi petroleum depots were suggested for cassava and oil palm, 

respectively. Makurdi is the capital of the largest cassava producing state in 

Nigeria, while Ikot Abasi depot is located approximately at the centre of the 

largest oil palm producing states in the country. 
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The second objective was to determine potential operation scales for the 

identified processing sites and determine the most efficient number of biofuel 

production facilities in Nigeria based on the identified biofuel crops. In most 

processes of establishing new processing companies or expanding existing 

ones the scale of operation is predetermined. Thus, the question is which site 

would have the capacity to support the predetermined operational scale. On 

the other hand, a site might already be identified and thus the question would 

be what operation capacity the site potentially allows for optimal operation. 

The current study provided a range of options.  

Based on potential feedstock availability within certain supply area 

thresholds, potential operation scales were determined for each of the sites. 

This was part of the results in chapter six. For sweet sorghum, the scale 

ranges from 0.77 million litres at Calabar depot (within 100 km service area) 

to 5.13 billion litres at Ilorin depot (within 300 km service area). For 

sugarcane, the scale ranges from 0.21 million litres at Calabar depot (within 

100 km service area) to 0.77 billion litres at Ilorin (within 300 km service 

area). For cassava, the scale ranges from 36 million litres at Calabar depot 

(within 100 km service area) to 9.17 billion litres at Ilorin (within 300 km 

service area). For oil palm, the scale ranges from 236 thousand litres at 

Calabar depot (within 100 km service area) to 460 million litres at Ilorin depot 

(within 300 km service area). For jatropha, the scale ranges from 5.12 million 

litres at Ikot Abasi depot (within 100 km service area) to 2.124 billion litres at 

Ilorin depot (within 300 km service area).  

The efficient number of processing facilities for the country would depend on 

the amount of biofuel required to meet the demand for the blending policy. In 

section 1.5, it was mentioned that Nigeria’s daily consumption of petrol 

(PMS) and diesel (AGO) culminates into annual demand for over 1.27 billion 

litres of ethanol and over 876 million litres of biodiesel to implement the 

blending policy. From this analysis, it is clear that several of the petroleum 

depots showed potentiality to process these amounts of biofuel to meet the 

policy targets.  
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Considering sweet sorghum only (assuming sugarcane is only used for sugar 

production, while ethanol from cassava is used for other industrial 

applications), a combination of Maiduguri and Gombe showed a potential 

capacity of more than 2 billion litres of ethanol within 100 km supply area for 

blending with petrol. Maiduguri alone, showed potential capacity of about 3.8 

and 4.8 billion litres of ethanol if the feedstock could be supplied within 200 

and 300 km, respectively. Therefore, Maiduguri alone can potentially supply 

all the needed ethanol for blending, but would require support from Gombe 

depot if feedstock supply is restricted to 100 km.  

With regard to biodiesel, combination of a number of depots would be 

required to supply enough amounts for blending with petroleum diesel. 

Assuming biodiesel is produced only from olein (the oil palm by-product), this 

analysis showed that restricting feedstock supply to 100 km would not allow 

for enough biodiesel processing to meet the blending target even if all the 

depots (considered) are used to their full potentials. Their total potential is 

about 745.4 million litres of biodiesel. However, if the feedstock supply area 

is extended to 200 km, combination of Ibadan, Ore, Ilorin, Suleja and Enugu 

would potentially process more than 1 billion litres of biodiesel for blending 

with petroleum diesel. Ilorin, Ore and Benin also showed the potential to 

process more than 1 billion litres of biodiesel if the feedstock supply area 

could extend to 300 km. Therefore, while three or five depots may potentially 

process enough biodiesel for blending with 300 km or 200 km feedstock 

supply distance, respectively, all the depots may not potentially process 

enough within only 100 km. With jatropha as the feedstock, the feedstock 

potentials within 100 km service area showed that Ibadan, Suleja and Gombe 

could process enough biodiesel for the country’s demand. With 200 km 

service area, Ibadan alone showed the potential to process all the needed 

biodiesel to meet the demand.  

This work has provided estimates for scale of operation for each of the 

candidate processing sites, suggested options for a combination of sites to 

meet the demand for biofuel blending policy and this illustrates how the 

approach adopted allowed a better granularity and more detail of spatial 
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analysis than is typically done. Most studies would stop at analysing land 

capability for feedstock cultivation as could be found in Boruff et al., (2015) 

and Zhang et al., (2017). The estimates from the current study provide the 

Nigerian government, the state governments and the private investors with 

data that could be used as an input in formulating policies and executing 

practical business solutions related to biofuel. Therefore, it could not be 

emphasised enough that the analysis from which the data and the 

recommendations are derived is underpinned by a detailed, transparent and 

systematic set of workflows. 

7.1.4 Policy contribution 

There was one research question under this component. It reads; “what 

policy recommendations should be considered to support and enable 

appropriate biofuel production in Nigeria?” Two objectives were derived from 

this. The first deals with investigating literature to discuss the most 

appropriate technologies for biofuel production systems – feedstock 

cultivation and biofuel processing. The second objective deals with 

investigating literature and other secondary sources to discuss strategies for 

a sustainable biofuel industry in Nigeria – optimal decisions and resilient 

thinking. This covers sustainable feedstock cultivation and sustainable biofuel 

processing. Discussion around these aspects is the main focus of this 

chapter and is discussed in section 7.2 as the policy recommendations from 

this work. 

7.2 General discussion 

To support spatial decisions that have policy implications, it is really 

important to develop detailed, systematic and transparent workflows. In the 

following subsections, broader discussions are provided as reflections on the 

work done in this research and other related themes. Though there may be 

overlap, these themes relate to the different components of the contributions 

as discussed in the previous section. Feedstock supply chain design 

(subsection 7.2.1) relates to some aspect of the empirical contribution. The 

land availability for feedstock cultivation and the nature of the feedstock 

would have great influence on the design of the feedstock supply chain. 
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Discussion around strength and challenges of spatial decision-making and 

the role of people (subsections 7.2.2 and 7.2.3) relates to the methodological 

contribution. Complexity in biofuel production and sustainability of biofuel 

industry (subsections 7.2.4 and 7.2.5) relate to the spatial contribution. The 

relationships between the location and a particular biofuel feedstock are 

crucial in adopting strategies for the sustainability of the industry. Resilient 

thinking in biofuel production (subsection 7.2.6) relates to the policy 

contribution. Strategies that make the biofuel industry resilient would ensure 

not only its success but also its long-term sustainability.    

7.2.1 Strength and Challenges for spatial decision-making 

Progress in geospatial technologies and data availability enabled continued 

expansion of the application of spatial multi-criterial analysis (SMCA) in many 

environmental analyses. The exponential expansion of these applications 

might indicate that these applications are useful though, as cited in 

subsection 1.6, some studies lack the required details regarding criteria 

preferences and/or managing uncertainties. According to Malczewski and 

Jankowski (2020), a majority of these applications are said to be implicit, 

meaning that the methods are premised on the implicit assumption that the 

model parameters and the result of the GIS-MCA do not vary as a function of 

geographical space. Thus, the growing awareness of this deficiency partly 

led to a paradigm shift in GIS-MCA to improve the implicit practices that were 

prevalent. Though the whole process is highly iterative to allow for learning to 

take place and improve the model, building an SMCA system was divided 

into five steps through which eight key challenges in designing SMCAs were 

identified (Ferretti and Montibeller 2016). The steps include designing, 

structuring standardisation function, partial performance and analysis of 

results and recommendations.  

Ferretti and Montibeller (2016) identified key challenges in designing and 

applying GIS-MCA methods and suggested meta (most effective technique 

available) choices. The key challenges are associated with the meta-choices 

confronting developers and users of the SMCAs (Ferretti and Montibeller 

2016). The authors suggested that there is a need for increased awareness 
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regarding available choices in designing and implementing these SMCAs; 

better understanding of the alternatives for each of these choices based on 

recent development in the literature; and clearer appraisal about the inherent 

trade-offs between advantages and disadvantages of each alternative. The 

challenges include participation (e.g. who and how to participate), designing 

objectives (e.g. how the objectives are defined), spatial standardisation (e.g. 

who provide and the information how for spatial standardisation), partial 

performance (e.g. how to deal with sustainability concerns and how to elicit 

criteria weights) and analysis of results and recommendations (e.g. how to 

efficiently perform spatial sensitivity analysis). Thus, there is a push towards 

spatially explicit spatial multi-criteria analysis through developing new 

approaches for structuring spatial problems, combining spatial and 

preference information, estimating model parameters, defining context and 

scales, handling uncertainties, supporting decision making and visualisation 

of problems and solutions (Malczewski and Jankowski 2020). 

Addressing these challenges in developing an SMCA support system may 

explain how implicit or explicit the system would be. This work addressed 

these challenges to make the analysis as explicit as possible. The cutting 

edge trend or emerging paradigm has been spatially explicit 

conceptualisation of the multi-criteria problem with a focus towards analysis 

with geographically varying outcomes and local multi-criteria analysis 

(Malczewski and Jankowski 2020).  

This work applied cutting edge best practice science to provide spatial 

optimisation for biofuel production in Nigeria based on agricultural crops. It 

considered the details needed, especially regarding land suitability for the 

agricultural crops, to conduct a meta-analysis as a support for spatial 

decision-making regarding biofuel production in Nigeria. These details could 

not be found in publicly available literature being explicitly implemented in the 

context of Nigeria and there was little found elsewhere as seen in the 

previous paragraphs. These meta-analyses could be explored for application 

to other non-biofuel spatial contexts in Nigeria and elsewhere. They may 

provide strong support for agricultural land planning, river basin 
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management, grazing route planning, transport planning, pipelines projects, 

urban and rural planning, housing development as well as business planning. 

SMCA is powerful in the sense that it measures not only the geographical 

entities that forms the criteria to be considered, but also measures the 

relationships between the entities, as discussed in subsection 1.6 and 3.5. 

The following paragraphs discuss how these challenges of developing 

SMCAs were addressed in the current work. 

The first challenge deals with who should participate and how. As discussed 

in section 3.4.4, because this analysis considered agricultural crops as the 

biofuel feedstock, experts on these crops, working in the research institutions 

with national research mandate on these crops were selected for gathering 

experts’ opinions regarding criteria priorities for each of the crops. The 

experts participated through a focus group discussion for each of the crops at 

each of the institutions where the group sat at the same time interacted and 

agreed on priority judgement. The scope and resources available for this 

work would not allow for involvement of other important stakeholders such as 

farmers, biofuel processors, local authority and non-governmental 

organisations. Nevertheless, the work offers a good example of how 

stakeholders can be factored into projects like this.  

The second challenge deals with the appropriate method. As discussed in 

subsection 3.4.2, pairwise comparison technique of the Analytical Hierarchy 

Process (AHP) was adopted as the best method considering its advantages 

(subsection 3.4.4) and the limited time and resources available for this work. 

The third challenge deals with sources of defining criteria objectives and 

ensuring only the fundamental objectives are included. The meta-choice 

adopted was expert-based sources (literature) which has the possibility of 

taking into account the most well-documented and up-to-date scientific 

evidence and has opportunity to provide objectives which reflect best 

available knowledge. Chapter two was dedicated towards this and detailed 

discussion was provided on how each of the means objectives (e.g., best 

soil, optimal rainfall or minimal distance from surface water) relate to the 

fundamental objective (suitable land for cultivating a crop).  
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The fourth challenge relates to the availability of spatial data. For the 

compromising criteria (rainfall, soil, distance to roads), the sources and pre-

processing of the datasets were provided in chapter three. Chapter five was 

dedicated to identifying, obtaining data for and removing non-compromising 

criteria (e.g., cultivated areas, protected areas). The fifth challenge deals with 

the spatial standardisation function. In section 4.2, a lengthy discussion was 

provided on how the criteria scores were standardised and that the basis for 

this standardisation was published empirical experiments which might be 

more reliable than expert interviews. It was suggested that scientific evidence 

should be given priority over expert opinions which should only be sought for 

where there is insufficient empirical evidence (Herman and Raybould 2014). 

The suitability classes that resulted from the criteria standardisation in this 

work were therefore based on scientific evidence which provided practical 

standards especially where there were multiple empirical results showing 

similar values or range of values.  

The sixth challenge covers handling sustainability concerns; whether the 

criteria should be assessed using weak or strong sustainability approaches. 

A weak sustainability approach allows substitutability between man-made 

capital and natural capital, while strong does not allow such substitutability. In 

this work, factors that allow for compromise such as rainfall, and soil were 

treated separately (chapter four) from those that do not allow for compromise 

such as protected forests (chapter five). Eliminating non-compromising 

criteria from the analysis may reflect a strong sustainability perspective.  

The seventh challenge pertains to how to elicit criteria weights from 

experts/public. It was mentioned that AHP was adopted as the method and 

an expert/focus group workshop was used as the means for assessing 

criteria weights. The weights were based on experts’ opinion not the 

pragmatic judgement of the analyst. Some reflection on AHP were provided 

in subsection 7.1.2 and a lengthy discussion could be found in section 3.5.  

The eighth challenge have to do with how to efficiently perform sensitivity 

analysis. In section 4.5, a sensitivity analysis was conducted showing 

considerable change in land suitability as a response to change in criteria 
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weights. Maps were presented to visualise the sensitivities due the criteria 

weights change as recommended in Feick and Hall (2004). In modelling site 

optimality (chapter six), three distance scenarios were applied to serve as a 

back-room analysis showing how optimality changes with changing supply 

area distance giving wider room for comparing alternative solutions. 

Despite considering the required details for SMCA especially in land 

suitability analysis, this work has not provided a perfect solution to this spatial 

problem. The attempt made here was to strike a balance between the best 

use of computer optimisation and the reality of its application. The analysis 

tried to avoid providing an unworkable precision. For example, in the supply 

area modelling, centroids of the LGAs were used as the proposed feedstock 

collation (or storage) centres rather than giving a precise location due to the 

reality that local decision-making structures would be expected to differ 

locally and capturing this diversity may not be possible in this work 

considering its spatial scope. The complexity of this degree of precision is 

often missing in SMCAs. Therefore, it is suggested here that matching 

scientific evidence with the reality of decision context is an important area 

that should be expanded as part of the changing paradigm towards explicit 

spatial multi-criteria analysis.  

From the foregoing, it is obvious that best practice science was applied within 

the limited resources and time to conduct this research. This could be one of 

the strengths of this work in the context of Nigeria’s biofuel analysis and may 

be replicated in other land use planning contexts in Nigeria. This could be 

explored for use in spatial decision-making processes related to other spatial 

problems such as flooding (e.g. planning channel diversion or identifying 

suitable rainwater harvesting sites). Thus, this work could serve as a 

reference for state-of-the-art application GIS-MCA in the Nigerian context 

and other parts of the world where application of these methods is still at 

rudimentary stage.  
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7.2.2 Feedstock supply chain design. 

As discussed in subsection 6.2.2, one of the major assumptions in this work 

was that processing and blending of biofuel with petroleum fuel is sited at the 

existing petroleum depots rather than identifying new sites. Thus, the 

assessment looked at feedstock supply potential within certain distances of 

the depots. This is similar to Voets et al., (2013), in the sense that there were 

predetermined sites to be optimised. As discussed in the previous chapter, 

this approach is suitable in the context of this analysis because of the spatial 

distribution of the depots and wide extent of the areas that could be used for 

feedstock cultivation. However, depending on the nature of the supply chain 

design, there may be need for storage sites to serve as collation centres for 

feedstock.  

Though it was assumed that these storage centres are sited at local 

government area (LGA) level, prescribing a precise location was avoided 

considering that local governing structures may differ among the LGAs in 

Nigeria. Land governance is statutorily vested on the state governors who 

are assisted in this regard by the chairpersons of the local councils. 

Therefore, the decision on a precise collation site should be made in 

collaboration with state government, assisted or represented by the local 

authority. The best this analysis could suggest was the feedstock potential by 

LGAs to shape focus on where to source feedstock from for biofuel 

processing. This was the rationale behind arbitrarily using LGA centroids as 

the collation centres in the supply area modelling. 

As discussed earlier, the major challenge of using petroleum depots for 

processing and blending biofuels could be the need for capital investment to 

upgrade the depots for biofuel services. Additionally, the petroleum facilities 

have aged, with some of it existing for more than four decades. However, this 

may not pose an insurmountable challenge because, as reported in section 

6.2.2, two of the depots have been upgraded with facilities to handle biofuels. 

In 2020, the Nigerian National Petroleum Corporation (NNPC), invited 

interested companies to bid for its contracts to be awarded for rehabilitation 

and/or construction of pipelines and upgrade of the depots described to have 
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aged over the years, giving rise to frequent failures, consequential 

operational downtimes, high maintenance costs and revenue losses. It was 

reported that 70% of the pipelines linking the depots have exceeded their life 

span (Okafor 2017). Though it was not clear in the contract advert document 

whether the rehabilitation considered installation of biofuel handling facilities, 

12 of the petroleum depots were identified for rehabilitation. It was reported 

that the project had moved one step where 96 companies indicated interest 

to participate in the build, operate and transfer (BOT) financing model 

(Adaramola 2021). This indicates the corporation’s commitment to investing 

in its infrastructure and may be a pointer that upgrading the depots with 

biofuel facilities may not be an insoluble challenge. 

Due to the limitations discussed above and in the previous subsection, the 

results of this work would require further refinement for practical application 

as support for spatial decision-making regarding placing biofuel processing 

plants in Nigeria. For example, upon deciding to fucus on Maiduguri depot or 

Ibadan depot for processing sweet sorghum biofuel or jatropha biofuel, 

respectively, a more localised assessment of the supply area would need to 

be conducted to identify most optimal locations for placing the feedstock 

collation centres as could be allowed by the socio-economic and political 

structures of the localities. This may involve conducting a panoramic study of 

the focused local area, selecting potential sites and assessing the sites 

through field surveys.  

7.2.3 The role of people in spatial decision-making 

As discussed in section 1.7, because multi-criteria analysis involves criteria 

prioritisation, stakeholders’ participation is crucial. This is because criteria 

prioritisation depends on the objective which differs among stakeholders. 

Prioritisation may also depend on the geographical or conceptual context of 

the analysis. To translate the dimensionality of the decision-making into a 

practical procedure, Renn et al., (1993) grouped stakeholders into three 

categories based on the knowledge they represent: those that represent 

common sense and personal experience; those that represent technical 

expertise; and those that represent social interest and advocacy.  
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Stakeholder participation is cost- and time-intensive and can sometime lead 

to stalling decision process (Ferretti and Montibeller 2016). Therefore, the 

best practice is to identify who and how can participate given the context, 

time and resources for an analysis. By the nature of this work which sought 

to assess biofuel production potential based on agricultural crops in Nigeria, 

stakeholders’ involvement was restricted to only the category that 

represented technical expertise for two reasons. First, there was no time and 

resources to cover all the stakeholders such as farmers, biofuel processors, 

crop trade dealers, community leaders and environmental regulators. 

Secondly, this study focused on developing a model rather than 

implementing solutions and thus, the results and the recommendations have 

the overall caveat that they were not based on the ideal situation but were 

based on simulation that the data and the methods could allow.  

Because this study covered the whole country, only stakeholders of focused 

localities should then be involved in further localised evaluations of identified 

potential processing sites. In subsection 3.4.4, details were presented of how 

the experts were determined and involved in assessing the criteria priorities. 

This further makes this work stand out as similar details of this nature could 

not be found in public domain with regards to crop-based biofuel analysis in 

Nigeria. In fact, there was relatively little or implicit mention of this 

stakeholders’ participation in many similar projects in other countries as cited 

in section 1.6.  

According to Gregory and Wellman (2001), it is wiser to incorporate 

stakeholder values, good science and economic valuation directly into the 

design of project or programme alternatives in order to increase its probability 

of receiving broad-based approval and success in achieving its set goals. 

However, because stakeholders’ involvement is costly, time consuming as 

mentioned in the previous paragraph, it is necessary to identify the relevant 

stakeholders through stakeholder analysis. It is neither everyone who has an 

interest in acting nor whoever should act is necessarily a stakeholder (Dente 

2014). Thus, stakeholder analysis might help in identifying and selecting 

relevant stakeholders necessarily needed to be involved.  
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The identified stakeholders could be involved through online or physical 

interactions. Online methods may provide wider and asynchronous 

involvement of both experts and general public, but it limits interaction 

between the participants and the analyst and advantage of face-to-face 

group decision-making (Ferretti and Montibeller 2016). Physical interaction 

may enable facilitated modelling and promote interaction among participants, 

but it may limit the number of people that may be involved and may be costly 

and time consuming. In this work, the identified stakeholders were met 

physically through group discussion. The experience of factoring in 

stakeholders and use of AHP technique to handle their views in a systematic 

way suggests that this should be an important element of such decision-

making framework not just for biofuels in Nigeria but in other contexts 

elsewhere.  

7.2.4 Complexity in biofuel production 

Though this work considered only agricultural crops as the feedstock source 

for biofuel in Nigeria, it is obvious from the analysis that biofuels are complex 

and therefore spatial decisions regarding them would be influenced by this 

complexity. Lengthy discussion was provided in section 1.2 showing how the 

debate about biofuels takes different patterns depending on what is 

considered as feedstock. In the subsequent chapters, it was shown how 

different crop requirements and characteristics lead to varying priority 

judgements by the experts resulting in varying spatial outcomes. Cultivating, 

collecting, packaging and transporting feedstock is complex. Thus, designing 

a supply chain for biofuel would vary with the varying feedstock. While some 

of these crops can be used for food, feed and fuel such as sweet sorghum, 

some are neither edible nor useable for animal feeds such as jatropha. While 

the same raw material from some crops used for biofuel is used for other 

important uses such as sugar from sugarcane syrup, which may indicate an 

important opportunity cost and may cause ethical concerns, other crops 

provide more ethical raw material and may have lower opportunity cost. For 

example, while edible oil from oil palm can solely be used for human 
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consumption, abundant olein would be available for biofuel from the same oil 

palm.  

Many technologies for fermentation, gasification, etc. have been developed 

for processing different feedstocks. These complexities would 

understandably affect how spatial decisions would be made. The decision 

should attempt balance among economic, environmental and social goals of 

a biofuel programme. This also indicates how important it would be to 

manage details in conducting spatial multi-criteria analysis for biofuels. As 

discussed in section 1.7, this work attempted to improve the robustness of 

spatial analysis in the context of Nigeria. Thus, the research considered in 

great detail, all the environmental and socio-economic variables needed to 

be considered in modelling site suitability for cultivating the crops. The 

research involved people with expertise on these crops and executed best 

practice AHP application to determine the weights of the variables, albeit with 

scope to further expand the range of stakeholders. In section 4.5, it was 

shown that this work presented maps with greater detail regarding suitable 

areas for cultivating biofuel crops in Nigeria. Therefore, regardless of the 

scope, greater detail in spatial analysis allows generation of knowledge that 

should better support spatial decision making.  

Though the details considered in this work does not necessarily mean the 

resultant maps are perfect, the work demonstrated that it is important to take 

such care at each stage. For example, the crop land mapping in chapter five 

was handled in detail even though the data might not be perfect. However, at 

least, some robust analysis was offered and transparency was embraced 

throughout all the stages of the whole work which is crucial when handling 

detailed data because the results would suggest very local implication. This 

work, therefore, highlighted how spatial analysis for crop-based biofuel 

production could be improved in Nigeria. It showed the necessity of 

considering all relevant variables in spatial analysis for not only biofuel but 

also other land use planning processes such as urban, rural or industrial sites 

planning, water resources management, transport infrastructure planning and 

other social amenities planning (education, health, sport, tourism). For 
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example, establishing a new school would need to consider the 

demographics, land availability/transferability, budget size, security, 

proximity, existing schools, staff availability and the intended structure of the 

new school. Greater detail consideration of these criteria would lead to better 

understanding of the context and more informed spatial decisions.  

7.2.5 Sustainability of the biofuel industry 

Both feedstock production and biofuel processing would require spatial 

strategies that ensures both success and sustainability of the industry. While 

the desire for energy sustainability is one of the major drivers of biofuel 

adoption (Acheampong et al., 2017), the sustainability of biofuel production 

itself has been questioned (Maconachie 2019). Land access, land use 

change, food prices and real reduction in emissions are some of the issues 

centred around biofuel sustainability controversy. Some discussion about 

sustainability of the biofuel industry was presented in subsection 1.2.6 as part 

of appraising the debate about biofuels. It was shown that sustainability 

comprises of four components – economic viability, social acceptability, 

environment friendliness and technological appropriateness.  

There is growing recognition of the significance of charting new ways of 

striking the balance between maximising economic benefit and minimising 

environmental footprints (Jia et al., 2017). Through coordination by the 

United Nations, 193 countries created 17 sustainable development goals 

(SDGs) with implementation timeframe of 15 years (2016-2030). 

Acheampong et al., (2017), in their assessment of the potential of biofuels for 

contributing to achievement of SDG goal 7 (affordable and clean energy) 

opined that biofuels possess immense potential and their constant 

improvement increases the possibility of foreseeable carbon neutral energy 

future. However, there is a need for careful management of traditional 

biofuels and steady development of advanced biofuels for this to be realised. 

Also, despite information regarding favourable environmental conditions, 

there is a need to consider the sustainability credentials of the biofuel crops, 

though this is a decision process beyond the scope of this study. 
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A multi-stakeholder group of industries, NGOs, CSOs and governments 

developed a standard which is widely recognised as the most trusted and 

credible approach for growing a truly sustainable transition to a net zero 

carbon economy (RSB 2017). As discussed in section 5.2, the standard 

consists of 12 principles that contribute to not only food security, rural 

development and restoration of ecosystems, but also provide tools and 

solutions that mitigate business risks and contribute to achievement of the 

UN SDGs. The standard has four major components – legal, social, 

environmental and management. The legal component ensures legal 

compliance of biofuel projects including land and water rights. The social 

component ensures the sanctity of human and labour rights, local food 

security and rural and social development.  

The environmental component ensures the preservation of conservation 

values, soil health, water availability and quality, air pollution control and 

mitigation of climate change. The management component ensures reduction 

of risks and continuous improvement through effective management 

approaches. This standard was the basis for identifying factors that may not 

compromise, specifically, for biofuel feedstock production (section 5.2). 

Eliminating these constraints was considered crucial for biofuel sustainability. 

Because of their complexity as seen in the previous subsection, the 

measures necessary for sustainability of biofuels would be highly dependent 

on the adopted feedstock. Sustainable feedstock production and appropriate 

processing technology are fundamental to sustainable biofuel industry.  

Sweet sorghum has been a target biofuel crop (Cifuentes et al., 2014) 

because of its multiple use (food, feed, fibre and fuel) and is said to be useful 

in resolving food versus fuel conflict (Ahmad Dar et al., 2017). The strategies 

for cultivating the crop are said to depend on the objective (grain, biomass or 

both), the site conditions (moisture, temperature, soil), the available variety 

and the requirements of the preceding crop (Turhollow et al., 2010). Some 

sweet sorghum varieties that could be use in Nigeria include SWSV 2006-3, 

SPV 422, SSV2 and SW Dansadau 2007. Integrating sweet sorghum with 
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sugarcane could also be a sustainable strategy (Kim and Day 2011; Cutz et 

al., 2013; Cutz and Santana 2014).  

A decentralised sweet sorghum biofuel production system where all 

processing take place at the farm except dehydration is said to reduce 

emission and use of non-renewable energy by 39% and 27%, respectively, 

as compared to corn (Olukoya et al., 2015). Sweet sorghum was also 

reported to be useful for phytoremediation (Sathya et al., 2016). SWOT 

analysis was conducted on sweet sorghum (Rutz and Janssen 2012). The 

analysis showed that the crop has more strengths (26) than weaknesses (24) 

and more opportunities (24) than threats (19) if considered for biofuel 

production. This work has shown that with sweet sorghum alone, enough 

ethanol could be processed to meet the demand for blending with petrol. 

Though the results showed that the crop could suitably be cultivated in many 

parts of the country, selecting most appropriate variety may be necessary.  

Breeding and variety improvement of sugarcane is a continuous programme 

in Nigeria (Gana 2017). Intercropping could be one of the sustainability 

strategies for sugarcane production. Though sugarcane growth may also be 

supressed before intercrops such as benniseed, guinea corn, soybean and 

ground nut are harvested, this agronomic practice in Nigeria is said to greatly 

supress weed growth (Ndarubu et al., 2000). Similar effect was reported in 

India (Gujja et al., 2009) and Australia (Park et al., 2010). Because of the 

sugarcane demand for refine sugar in Nigeria, use of bagasse may be more 

sustainable than the sugarcane syrup. A research on the Nigerian sugarcane 

bagasse showed non-catalytic pyrolysis may produce higher biofuel yields 

than catalytic pyrolysis (Rabiu et al., 2017).  

Because cassava is said to have high seasonal independence (Ohimain 

2012) and the volume of its production in Nigeria (the country is the largest 

producer in the world), the sustainability of using the crop for biofuel may be 

strong. Nigerian varieties such as 30572 and 4(2)1425 are said to give yields 

higher than 25 tonnes ha-1 (Adekunle et al., n. d.). The amount of cassava 

peel generated in the country could be used to process more than 1 billion 
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litres of biofuel (Anyanwu et al., 2015). Running hydrolysis of cassava starch 

and cassava cellulose simultaneously and fermenting the sugars released 

from both the sugars and cellulose (Co-SSF) was recommended as the most 

cost effective technology for commercial scale cassava biofuel processing 

(Zhang et al., 2013). Other sustainability strategies include intercropping with 

such crops as maize and cowpea (Njoku et al., 2010; ICS-Nigeria and IITA n. 

d.), conventional ridge tillage (Odjugo 2008; FAO 2013), on-farm ethanol 

production (Ogbonna and Okoli 2013) and integrating microalgal cultures to 

deal with cassava processing wastewaters (de Carvalho et al., 2018). 

Selective breeding, improved cultivation practices and exploitation of 

optimum environment had all contributed to the progressive increase in oil 

palm (Lai et al., 2012). Therefore, though very suitable areas for cultivating 

the crop were mapped in this work, yields are believed to double with 

improved management, pest and disease control, improved harvesting 

methods, reduced losses from spoilage during transportation and storage 

and improved processing technologies (Verheye 2010). Rival and Levang 

(2014), suggested that some of the sustainability strategies for oil palm 

plantation development include agroforestry, patchwork development and 

ecological planning.  

Among the policy focus and strategies of the Nigeria’s revised National Policy 

on the Environment, was on encouraging sustainable use of farmlands, 

forests and wetlands outside protected areas (FME 2016). Following the 

guidelines set by the Roundtable on Sustainable Palm Oil (RSPO), a system 

of planning is implemented to prevent certain areas from being converted to 

plantations (Shehu and Clarke 2020). According to WWF et al., (2012) these 

include areas regarded as of High Conservation Value (HCV) or High Carbon 

Stocks (HCS). RSPO is a multi-stakeholder initiative launched in 2004 with 

about 10 members and was said to have reached 1500 members consisting 

of growers, processors, traders, manufacturers, banks, investors, retailers, 

government organisations, nature conservation NGOs and developmental 

(social) NGOs (WWF et al., 2012; Rival and Levang 2014).  
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In Nigeria, through research conducted over many decades, NIFOR had 

demonstrated suitable intercropping systems which allows simultaneous 

cultivation of oil palm and food crops in the early years of the palm 

establishment and with no adverse effects. Some of the crops used were 

Soybeans, Cassava, Maize and Pineapple and this provides space for food 

production on palm lands, providing some offsets of the initial investment in 

oil palm which has long gestation period (Verheye 2010). It was reported that 

a World Bank project failed in several parts of the oil palm producing areas of 

Nigeria due to the Bank’s insistence on sole crop which the small holder 

farmers refused to adopt. The Bank thus allowed for the palm/arable crops 

intercropping as a sound system for both economic and agronomic benefits 

(NIFOR 2018). Tao et al., (2017) opined that with increasing demand for oil 

palm and changing climate, optimising ecology and agricultural practices 

become highly essential to maintaining sustainable intensification of the 

crop’s production. 

Jatropha found in Nigeria is of the wild species (Yammama 2009), but the 

crop is said to be suitable for efficient domestication (Achten et al., 2014). 

The crop was used in Cape Verde for erosion control (Orwa et al., 2009). 

San Diego start-up (SGB) was able to domesticate Jatropha using molecular 

genetics and DNA sequencing and has been growing hybrid strains of the 

plant called Jatropha 2.0 from which biofuel quantities competitive with 

petroleum at $99 a barrel can be produced (Woody 2013). Genomic wide 

selection supported with recurrent selection was recommended as an 

appropriate strategy for Jatropha breeding (Laviola et al., 2017).  

Jatropha yield is said to be directly related to plant spacing (Yammama 

2009), genetics, ecological conditions, plant age, management, propagation 

method, pruning, fertilisation and irrigation (Wahl et al., 2012). Jatropha had 

long been found to be suitable for intercropping especially at the early stage 

of growth before it start bearing fruits (Elbehri et al., 2013). Shade loving 

herbal plants such as tomatoes, chilly, onions, pepper and other 

medicinal/perfume plants were suggested as appropriate intercrops (Deeb n. 

d.). Jatropha plants propagated generatively (through seeds) were believed 
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to be suitable for erosion control and mitigation (Achten et al., 2007). 

Jatropha cake calcinated or activated with potassium hydroxide is said to be 

useful as catalyst for processing biodiesel from jatropha oil (Kamel et al., 

2018).  

The central point of focus around whether sustainability measures are strong 

or weak is the substitutability between the economy and the environment or 

between natural capital and manufactured capital (Ayres et al., 1998). Strong 

sustainability perspectives hold that certain human actions entails irreversible 

consequences, while weak sustainability suggests technological innovations 

and monetary compensation for environmental degradation (Pelenc et al., 

2015). Therefore, strong sustainability encourages conservation of the 

irreplaceable stocks of natural capital for the sake of future generations, while 

weak sustainability suggests that the total value of the aggregate stock of 

capital should be at least maintained or ideally increased for future 

generation.  

The conflict between these two interpretations are said to be more evident in 

the context of centralised than decentralised systems of decision-making 

(Ayres et al., 2001). These interpretation could relate to the concept of 

resilience in the sense that strong sustainability may denotes better resilience 

than weak sustainability though, it was opined that weak sustainability is an 

illegitimate interpretation because it leads to contradiction with acknowledged 

assumption that the current state is unsustainable (Biely et al., 2018). 

However, if applied to biofuel context, these debates and interpretations 

could expand thinking and widen understanding of the complexity of 

decisions needed to achieve resilient biofuel programme.  

A review and analysis of the latest available evidence was conducted to 

provide greater clarity and understanding of the environmental impacts of 

different liquid biofuels (Jeswani et al., 2020). Their review showed that the 

LCA studies are highly situational and dependent on many factors such as 

type of feedstock, production route, data variations and methodological 

choices. This means that resilience of biofuel programme would highly 
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depend on the context (conceptual and spatial), choices or decisions made 

and the implementation strategies adopted. In other words, though the 

results from this work suggested that it is possible to adopt strong 

sustainability measures for biofuel programme in Nigeria, local contexts 

would greatly determine the validity of that suggestion. A review article has 

been published in the Journal of Renewable and Sustainable Energy 

Reviews discussing biodiesel production in Nigeria (Shehu and Clarke 2020). 

Due to the maximum words count limit for the thesis, the abstract of the 

article is attached in appendix XI because the whole article could not have 

space to be accommodated. Link to the article is also provided in the 

appendix.   

7.2.6 Resilience thinking in biofuel business 

How to approach the complexity and dynamism of the world systems is one 

of the cardinal questions related to resilience. It was already shown in the 

previous subsections how biofuel as a system is complex and how its 

sustainability differs with respect to this complexity. The complexity widens 

considering that biofuel itself, as a system, is a part of a bigger energy 

system, which is also a part of larger societal system. Changes at either 

lower or higher-level system affects other lower or larger systems and the 

degree may depend on the strength of the connection between the systems 

and subsystems. In section 3.7.1, an attempt was made to identify and model 

predictable factors that may allow for compromise and those that may not 

with respect to optimising biofuel production in Nigeria. Some factors are 

unpredictable such as shocks related to social, economic or environmental 

dynamisms. Resilience thinking is crucial to prepare a system to absorb 

these shocks. These relate to the concept of sustainability touched upon in 

the previous subsection which aims to strike a balance between efficiency in 

production based on the prevailing conditions and anticipating future trends. 

These could be optimisms such as new sustainable management 

approaches or challenges such as avoiding unwanted impact on food 

production.  
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On the other hand, resilience thinking is a way of thinking about change with 

respect to resources. It ensures that the inevitability of change (both slow and 

drastic) is recognised  and that ignoring or resisting this dynamism increases 

the vulnerability of the system, restricts opportunities and reduces the 

availability of options in the event of shocks (Walker 2006). Models designed 

for optimum efficiency may not actually promote resilience, and thus would 

require strategies that ensure their results are applied painstakingly. Though 

not as an absolute solution, in the following subheadings, strategies are 

suggested that may support a resilient biofuel programme in Nigeria, 

informed by the experiences of the current research and a synthesis of 

current literature and media reports. Because biofuel crops would differ with 

regards to these aspects, the discussions would be tailored towards one crop 

or the other. This ensures that the suggestions are in line with transparency 

in supporting spatial decisions related to biofuel development in Nigeria. 

7.2.6.1 Climate smart agriculture 

It was mentioned in section 1.5 that most of the successful and voluminous 

biofuel production around the world are based on agricultural crops. Crops 

were also adopted in Nigeria as part of the feedstock sources. Resilient 

production of these crops is therefore fundamental to the resilience of the 

biofuel industry. Suggestions were provided in chapter five of the areas that 

may be very suitable for cultivating each of the five biofuel crops considered 

in this work. Cultivation of these crops in these very suitable areas would only 

be sustainable and resilient if climate smart agriculture is adopted. Climate 

Smart Agriculture (CSA) is an innovative agricultural approach aimed at 

achieving increased agricultural productivity and income, enhancing 

adaptation and building resilience of people and agriculture systems to 

climate change, and reducing or avoiding GHG emissions (FAO 2021). Some 

of the aspects of CSA include management of land and crops to balance 

crop production and livelihood needs with priorities for adaptation and 

mitigation, conserving ecosystem services and providing services to farmers 

and land managers that enable them to manage risks and impacts of climate 

change.  



272 

 

Some CSA practices reported in the south-western Nigeria include planting 

cover crops, minimum tillage practice, soil amendments, conversion of waste 

to compost, agro-forestry, resource conservation and use of other agro-

weather related initiatives (Olorunfemi et al., 2020). It was reported that 

ActionAid was supporting programmes in Nigeria that aim to enhance climate 

resilient sustainable agriculture (OSSAP-SDGs 2017). A study in south-

eastern Nigeria showed that some constraints the farmers face in coping with 

climate change could be grouped into cultural impediments, weak 

knowledge/information, ineffective agricultural extension services and weak 

policy and institution (Chukwuone and Amaechina 2021). Liverpool-Tasie et 

al., (2020), examined climate change perceptions among economic agents 

along the maize-poultry value chain in Nigeria. They found that economic 

actors along the value chain (not only the farmers) perceive those climate 

events that have direct effects on their activities. However, very few of the 

actors believe that their economic activities have negative effects on the 

environment and contribute to climate change. This suggests the need for 

enhanced awareness among economic agents about the effects of their 

agriculture related activities to encourage adoption of climate smart practices. 

Adopting CSA in biofuel crops production will ensure resilience in feedstock 

supply.  

7.2.6.2 Feedstock supply model 

Generally, there are five feedstock supply models – pure plantation, pure out-

growers, pure farmer owned, combined plantation and out-growers and 

farmer participation. The choice of the best model or combination of models 

depends on the costs and risks involved. The best balance was suggested to 

be combination of plantation and out-growers which is more common than 

the other models (Hagman and Nerentorp 2011). Though the out-grower 

scheme is also associated with logistics costs, initial capital investment in 

plantation will be much higher. Also, smallholder systems do not cause many 

land issues as land transfer is usually not involved, unlike in plantation 

systems where incidental land rights problems arise, in some cases, even 
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where formal legal procedures seemed to have been followed in the 

acquisition process (Eijck et al., 2013).  

However, it was recommended to investigate impact of land pressure on 

vulnerable groups to ensure their access to land is not tampered with due to 

Jatropha development (Eijck et al., 2010) because Jatropha promotion may 

increase land value which may increase pressure on land due to increased 

demand (Salfrais 2010). Farmer centred models reach more people and 

have less negative impact on biodiversity than plantation models (Eijck et al., 

2010). On the other hand, pure out-growers entails less control on the 

feedstock supply and with sparsely distributed out-growers, feedstock 

collation increases production costs. And functional policy machineries must 

be put in place to protect out-growers from the impacts of lack of commitment 

to contract agreement on the part of firms and ensure market for farmers’ 

produce (Kunda-Wamuwi et al., 2017).  

Large plantations in one place increases the risks of crop failures, but the 

very much discussed invasiveness potential of biofuel plants was 

investigated in Burkina Faso and the results of the experiments failed to 

provide convincing evidence on the invasiveness of Jatropha or any 

significant negative impacts on the surrounding environment (Negussie et al., 

2014). Comparatively, out-grower schemes provide more part time seasonal 

jobs and income, while plantations create more permanent full time jobs 

(Eijck et al., 2013). Which supply model to adopt depends on the local 

context, the existing policies and the priorities of the investors. 

7.2.6.3 Carbon sequestration as part of land use management 

Plants use carbon dioxide in the photosynthetic process. Jatropha plantations 

are said to possess all the requirements for carbon credit but may create a 

negative baseline if natural forests are cleared to pave way for the 

plantations (Hagman and Nerentorp 2011). Therefore, the ‘carbon debt’ due 

to clearing forests needs to be paid off first before any earnings can be 

accounted for. A carbon debt of 34.7 tonnes C ha-1 was reported as a result 

of converting fallow land to Jatropha plantation in Mali though, converting 
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cropland did not show significant carbon loss (Degerickx et al., 2016). 

However, where food crops are replaced by Jatropha, food security may 

negatively be impacted especially where market for the Jatropha seeds is not 

present (Eijck et al., 2010).  

Sequestration rate of 2.3 tonnes C ha-1 was reported after the 4th growing 

year (Degerickx et al., 2016) which the authors attributed to adverse growing 

conditions and poor local management and considered as very low rate 

compared to other regions. Some 32 month old jatropha plants were found to 

have sequestered 13.0 tonnes C ha-1 in Malaysia (Firdaus et al., 2010). In 

Senegal, a model revealed that jatropha plantations may be valuable carbon 

sinks with a storage capacity of 5.7 kg tree-1 (Diédhiou et al., 2017). Jatropha 

carbon sequestration rate was said to be higher than that of the waste lands 

vegetation (Achten et al., 2007) and that emission was found to be 

decreased where biofuel crops are cultivated on degraded lands or former 

farmlands (Wahl et al., 2012). 

Differences in the original land use and probably plantation management 

practices might determine whether carbon sequestration will be positive or 

negative. In Ethiopia, plantations established to rehabilitate degraded forest 

lands were found to have sequestered 6.94 tonnes C ha-1 considering both 

above and below ground stocks. While those in live fences were found to 

have sequestered 178.56 tonnes C ha-1 for both above and below ground 

stocks (Yirdaw et al., 2013). In Botswana, using an LCA for all activities 

involved in jatropha cultivation in frost and drought prone areas, it was found 

that the crop’s emission and absorption are 17 and 21 tonnes of CO2eq. ha-1, 

respectively, presenting a 4 tonnes surplus of absorption over a period of 4 

years (Ishimoto et al., 2018). Thus, for rehabilitation of degraded lands, 

jatropha plantations may not present issues of carbon debt for land use 

change. Rather, it will turn a source of carbon emission (deforested land) to a 

carbon sink (Jatropha Plantation). In other words, adoption of Jatropha for 

biodiesel production will assist in decreasing deforestation and increasing 

economic growth (Faufu et al., 2014). In this regards and based on a pilot 

project in Mozambique, recommendation was given that development of 
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jatropha plantation should be on grasslands with low biodiversity value and 

trees (Smit et al., 2018).  

LCA of different jatropha production systems indicated that decentralised 

production of straight vegetable oil (SVO) using feedstock from hedgerow 

and intercropping seems to be the most promising option (Baumert et al., 

2018) showing less land conversions (Eijck et al., 2013). In Nigeria, pre-

exploited agricultural lands were recommended to be given emphasis for 

feedstock production (Galadima et al., 2011). On a more extreme view, a 

conclusion was made that the most promising option for Jatropha biofuel to 

sustainably contribute to GHGs reduction is producing feedstock on marginal 

lands with reduced use of artificial fertilisers and pesticides (Eijck et al., 

2010). In general, integrating carbon sequestration in planning biofuel 

programme would be a significant strategic thinking towards making the 

programme resilient. As mentioned earlier, the models developed in this work 

may assist in implementing an efficient biofuel system but not necessarily a 

resilient one. Therefore, policies should be formulated such that strategies 

like carbon sequestration are embedded and enforced to ensure resilience of 

the system.  

7.2.6.4 Policy objectives and institutional realignment 

Policy is identified as one of the major non technological barriers to 

successful and sustainable commercialisation of biofuels in Africa in general 

(Sekoai and Yoro 2016) and Nigeria in particular (Ohimain 2013; Balogun 

2015). This is a fundamental problem that differentiates the developed from 

developing countries in terms of harnessing this important source of energy 

(Amigun et al., 2006). The scope of this research work is limited such that 

detail review of all the biofuel-related policies in Nigeria may not be possible. 

However, the objectives of biofuel development and adoption were broadly 

classified into ecological, economic and social (Abila 2012). Reviews were 

conducted on the main Nigeria biofuel policy (Anyaoku 2007) and many gaps 

were identified and recommendations were presented (Abila 2012; Ohimain 

2013).  
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Ecological policy objectives of biofuel adoption in Nigeria constitute 

rehabilitation of the environment in the southern parts of the country through 

phytoremediation, fight against desert encroachment in the norther fringes 

through reforestation/afforestation, as well as other ecological benefits that 

can be derived from ecologically planned biofuel crops plantations such as 

biodiversity conservation, drought control and carbon sequestration. Social 

policy objectives constitute job creation, rural development through 

diversified rural livelihoods and infrastructure, increasing rural access to 

electricity, ensuring the sustainability of fuel supply as well as improving 

health quality. Economic policy objectives include provision of employment, 

diversifying energy sources, return on investment, infrastructure 

development, economic growth and inter sectoral integration.  

A biofuel programme implementation strategy is hereby recommended for 

Nigeria. Adopting the timeframe of the SDGs, a 15-year implementation 

period, 3 stage approach is hereby recommended. The purpose of this 

recommendation is to demonstrate how policy objectives and implementing 

institutions could be realigned to support a successful and resilient biofuel 

programme. The stages should be categorised into initial stage, take-off 

stage and consolidation. The 3 broad policy objectives should be given 

priority based on the stage of implementation, assuming 5 years is enough 

for reviewing achievements recorded at each stage.  

The initial stage should give priority to ecological objectives. Capturing 

environmental benefits was recommended as a practical step to develop 

Nigeria’s biofuel potential (Akande 2009). At this stage, biofuel crops should 

be developed as a means of environmental rehabilitation rather than a for-

profit business. Jatropha can serve this purpose as it can be cultivated in 

both northern and southern Nigeria. At this stage also the blend mandate 

must be very low due to expected low feedstock supply. The Take-off stage 

should then focus on economic objectives especially return on investments. It 

is expected that after 5 years of taking good care of the plantations, 

reasonable levels of yields could be achieved (Wahl et al., 2012; Deeb n. d.) 

and reasonable amounts of feedstock could be generated which might be 
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enough to seed the market and the blend mandate could be increased. 

Within these 2 stages it is expected that enough experience is accumulated 

and the farming techniques could be replicated paving the way for the third 

stage. At the consolidation stage, all the three broad objectives could be 

given certain consideration though the market forces may play greater role, 

supported and controlled by policy reviews. Both land suitability and site 

optimality models would be needed at all the stages because it is expected 

that both feedstock cultivation and biofuel processing would continue to 

expand through the stages. Recommendations on resilient biofuel industry 

would also be useful in implementing this strategy.  

Bottlenecks are typically found in developing countries when it comes to 

policy implementation especially where the policy has high sectoral 

dimensionality. Based on the recommendations in the previous paragraph, 

the Federal Ministry of Environment (FME) should spearhead the 

implementation of the first stage. As part of its revised policy on the 

environment, the Ministry is set  to establish 1500 km by 15 km of ‘green wall’ 

in the frontline states to halt the advance of the Sahara desert (FME 2016). 

This can be implemented using biodiesel crops. The Federal Ministry of 

Agriculture and Rural Development (FMA&RD) should play the role of 

providing high yielding seed varieties, technical support in such areas as 

agronomic practices and farming systems.  

Funding could be explored with a bias towards local sources such as use of 

the Ecological Fund, Central Bank of Nigeria (CBN) intervention fund, 

Federal and States Governments appropriations and the private investors 

that have long term investment portfolios. International sources such as 

International Development Partners (IDPs), green bonds and other lending 

mechanisms could also be explored. Oil and gas industry players, both public 

and private could participate at this stage as long-term investors or provide 

funding as part of their corporate social responsibility (CSR) service. The 

policy could also mandate the oil and gas players to commit certain 

percentage of their CSR to establishing plantations in their host communities.  
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Stage 2 may be more appropriate for private sector participation and NNPC 

should spearhead the implementation of this stage in two ways. The 

plantations developed from the first stage could be transferred to investors 

through business agreements. On the other hand, the ownership of the 

plantations could be retained as it is from the first stage, but a feedstock 

supply business agreement entered into between the plantation owners and 

the biodiesel processors. As discussed in section 7.3.6.2, the feedstock 

production and supply model to be adopted may depend on what is 

considered as most efficient and sustainable between the farmers and the 

processors. The consolidation stage may be characterised with expansion of 

plantations, widening the processing scales and reviewing up the blend 

mandate. This may not seem to be simple but with careful policy synthesis 

involving all the stakeholders, backed up with required commitment, the 

biofuel programme is bound to be successful and sustainable (Patrick et al., 

2013). 

7.3 Areas for further research 

From the foregoing discussions, there may be need for further research into 

how effectively scientific evidence from SMCAs could be matched with the 

reality of their implementation context. This should form part of the paradigm 

shift towards explicit SMCAs. For example, a focus on the solutions from 

SMCAs should not concentrate on only how the results of the analysis vary 

geographically but should also provide enough alternatives to allow for varied 

implementation contexts. In other words, while the explicit paradigm suggests 

that the results of SMCAs present how the results could differ from one 

geographical area to another within the study area, the SMCAs should also 

be explicit about the realities of implementing the decision recommendations. 

These realities may be multi-dimensional such that there may be 

administrative bottlenecks, cultural hinderances, social reluctances or 

political summersaults. Therefore, SMCAs results, especially for localised 

spatial scopes, should be explicit about these realities. Further research is 

thus needed on how this can best be approached. For example, how political 
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summersaults militate against designing and implementing SMCAs and what 

could be the possible solutions.   

Because there were no data for such other restricted areas as grazing 

reserves and areas reserved for cultural values, further research is needed 

within the identified potentially available areas to ascertain their true 

availability. These areas such as shrub, woodland or degraded unprotected 

forests could be explored for cultivating biofuel crops, but there may be a 

need to conduct empirical research to determine the carbon debt that will 

accumulate from using any of those types of available land areas. Exploring 

shrub land areas may be expected to have less carbon debt than woodland 

and exploring woodland may be expected to have less carbon debt than 

forest areas. The identified unprotected forest areas could further be 

investigated to determine their potential for being used in extending protected 

areas. This is especially so in the south where forest vegetation is more 

extensive. There may be degraded unprotected forests that may be available 

for biofuel crops within the identified available land areas. Furthermore, these 

results opened areas for further empirical research to determine the 

productivity of these identified land areas for each of the crops under different 

agronomic practices. There are other biofuel crops not considered in this 

work. However, this work provides the basis for conducting similar 

assessment of the other biofuel crops such as switchgrass and sugar beet.  

As discussed in subsection 7.2.3, because not all stakeholders were involved 

in this work, a further localised assessment of stakeholders would be needed 

after a location of focus is identified. For example, the relevant actors should 

be determined and their interests or power must be assessed in relation to 

the project to determined their degree of relevance and basis for their 

participation. Because it is expected that the spatial scope would be 

narrowed at this stage, the challenges for involving all the necessary 

stakeholders might be surmountable. Though optimising efficiency might 

oppose resilience measures, an assessment could be carried out to chart 

best ways to incorporate resilience in implementing the optimised solutions.   
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Chapter Eight – Conclusion 
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8 Chapter Eight – Conclusion 

This work highlighted how to improve the application of spatial multi-criteria 

analysis as a support for location-related decisions in Nigeria, particularly in 

the context of biofuel development. This was demonstrated through best 

practice application of science to simulate optimal biofuel processing sites. It 

is therefore concluded that this work will serve as a point of reference for the 

state-of-the-art application of spatial multi-criteria evaluation analysis, not 

only for the biofuel industry, but also for other sectors of environmental 

management such as river basin management, grazing route planning or 

settlement planning. One of the most important aspects of the state-of-the-art 

application is the involvement of key stakeholders. Without the input of 

experts in the study area, the resulting spatial analyses may contain high 

degrees of inaccuracy and suggested solutions may not be practically 

implementable. It is, therefore, concluded that there is great value to 

effectively factoring stakeholder perspectives into spatial decision-making of 

this kind and scale and that AHP showed great promise as a technique for 

systematic handling of these inputs.  

It is concluded from this work that biofuel crop cultivation in Nigeria could 

conveniently be expanded in to the more than 19 million hectares of either 

shrub or woodland without compromising food production or encroaching into 

protected areas. Furthermore, with less than two million hectares of land 

demand for biofuel programme in the country, there is sufficient unused land 

to meet this demand, but also to allow for additional expansion for more than 

two decades, assuming small annual land demand increase for the 

programme. This will not conflict with ambitions to expand protected areas, 

which could be tailored towards unprotected forest areas in the country. The 

criteria assessment followed a strong sustainability approach by ensuring all 

non-compromising variables for which datasets were available were treated 

as non-substitutable.  

It is concluded from this work that spatial decision-making can be enhanced 

by including more detailed criteria in SMCA, which would reflect a better 

understanding of the application context. In the case of establishing biofuel 
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crops or expanding existing biofuel production in Nigeria, time and energy 

would be saved by focussing on areas of higher suitability for a given crop. 

The specificity of the conditions in Nigeria meant that determining crop 

suitability in this setting required development of new models based on 

context-specific information, rather than extrapolating from studies in other 

settings.  

Emissions due to transporting feedstock can undermine the carbon emission 

reductions from biofuel. Therefore, minimising feedstock transport distance 

and blending at the processing site (that is eliminating transportation of the 

processed biofuels) are crucial to its carbon savings. Based on feedstock 

potential within 100 km, Maiduguri and Gombe petroleum depots were found 

to have potential to process enough biofuel to meet the bioethanol demand 

for implementation of the Nigeria’s blending policy. Within the same 

feedstock supply distance, Ibadan, Suleja and Gombe may be needed to 

process enough biodiesel for the blending policy. However, because three 

different yields scenarios and three distance scenarios were adopted, there is 

wider room for comparing optimal solutions to accommodate different local 

contexts and implementation situations. These options could also provide 

some pivots for adjustments that may be needed to accommodate greater 

range of stakeholders or handling changes in criteria weights.  

The sustainability of feedstock production, though dependent on the type of 

feedstock adopted, could be enhanced through compliance with sustainability 

guidelines developed by such organisations as RSB and RSPO. This must 

be combined with improved varietal selection, optimum environment, 

improved cultivation practices and striking a balance between the quest for 

increased agricultural productivity and environmental conservation, 

integrating principles of both land sharing and land sparing. The sustainability 

of biofuel processing would also depend on the feedstock adopted but would 

generally be enhanced through selection of environmentally and 

economically appropriate processing technologies that would allow for 

balance between economic returns and environmental conservation. 
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Overall, the long-term success of a biofuel programme in Nigeria would be 

greatly enhanced by adopting resilience thinking, exemplified by an emphasis 

on adaptability, diversity and sustainability rather than prioritising maximum 

yields and one-dimensional optimisation of biofuel production. This will 

require embracing climate smart agriculture, designing and/or adopting a 

suitable feedstock supply model, effectively managing diverse land uses and 

realigning policy objectives to work with existing environmental, social and 

economic capabilities. This will create a conducive environment for 

stimulating an effective and environmentally responsible biofuel programme, 

delivering energy source diversification, economic growth and sustainable 

development for Nigeria. 
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Appendix I: Soil dataset description 
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Appendix II: Pairwise comparison matrix tables 
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Appendix III: Classified criteria values for suitability classes 

Suitability class levels for Sugarcane based on the criteria indicators 

S/N Criteria 
(Suitable) 

Most (1) Very (2)  Moderately 
(3) 

Less (4) Least 
(5) 

1 Soil 5-7, 10, 
44-46 & 
55. 

2-4, 8-9, 12, 
15-20, 23, 25-
27, 37, 41-43, 
47-48 & 50-
53. 

1, 11, 13-
14, 22, 24, 
28-30, 32-
35, 38 & 49.  

21, 31, 
36, 40 & 
54. 

39 & 
56. 

2 Soil pH 6.0 – 7.0 5.5 – 6.0 
7.0 – 7.5 

5.0 – 5.5 
7.5 – 8.0 

4.5 – 
5.0 
8.0 – 
8.5 

Others 

3 Rainfall/Water 
(mm)  

1100 – 
1500  

900 – 1100 
1500 – 1800 

700 – 900 
1800 – 
2100 

600 – 
700 
2100 – 
2400 

Others 

4 Temperature 
(°C) 
-Maximum 

29 – 31 27 – 29 
31 – 33 

25 – 27 
33 – 35 

23 – 25 
35 – 36 

Others 

5 Relative 
Humidity (%) 

65 – 85  55 – 65  45 – 55  35 – 45  Others 

6 Elevation (m 
asl) 

0 – 500  500 – 1000 1000 – 
1500 

1500 – 
2000 

Others 

7 Slope (%) ≤ 2.5 2.5 – 5.5  5.5 – 8.5  8.5 – 12 Others 

8 Aspect in 
direction 
(Bearing in 
degrees) 

S, SSE & 
SSW 
(157.5 – 
205.5) &  
Flat (-1) 

SE & ESE  
(112.5 – 
157.5) 
SW & WSW 
(202.5 – 
247.5) 

E & ENE  
(67.5 – 
112.5)  
W & WNW 
(247.5 – 
292.5) 

NE & 
NNE  
(22.5 – 
67.5) 
NW, 
NNW 
(292.5 – 
337.5) 

N  
(0 – 
22.5 & 
337.5 
– 360) 

9 Insolation 6.0 – 6.4 5.5 – 6.0 5.0 – 5.5 4.5 – 
5.0 

Others 

10 Sunshine 
(hday-1) 

All - - - - 

11 Nearness to 
water (Km) 

0 – 5 5 – 10  10 – 15  15 – 20  Others 

12 Nearness to 
roads (Km) 

0 – 5  5 – 10  10 – 15  15 – 20  Others 

13 Nearness to 
settlements 
(Km) 

0 – 15 15 – 30 30 – 45 45 – 60 Others 

14 Nearness to 
railways (Km) 

0 – 50 50 – 100 100 – 150 150 – 
200 

Others 
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Suitability class levels for Cassava based on the criteria indicators 

 

S/N Criteria 
(Suitable) 

Most (1) Very (2) Moderately 
(3) 

Less (4) Least 
(5) 

1 Soil 8-9, 12, 17, 
19-21, 23-24, 
27, 31, 36-37, 
40-42, 47-48 
& 51-52. 

7, 11, 13, 
18, 29, 35, 
43-46, 49-
50 & 53. 

3-4, 6, 10, 
14-16, 22, 
26, 28, 30, 
34, 38-39 & 
54-55. 

1-2, 5, 
25, & 
32-33. 

56. 

2 Soil pH 5.5 – 7.0 5.0 – 5.5  
7.0 – 7.5  

4.5 – 5.0 
7.5 – 8.0 

4.2 – 
4.5 
8.0 – 
8.2 

Others 

3 Rainfall/Water 
(mm)  

1500 – 1700 1200 – 
1500  
1700 – 
2000  

900 – 1200  
2000 – 2300  

600 – 
900  
2300 – 
2600  

Others 

4 Temperature 
(°C) 
-Maximum 

27 – 30  25 – 27  
30 – 32  

23 – 25  
32 – 34  

21 – 23  
34 – 36  

Others 

5 Relative 
Humidity (%) 

70 – 80  60 – 70  
80 – 85  

50 – 60  40 – 50  Others 

6 Elevation (m 
asl) 

200 – 700  100 – 200  
700 – 
1200  

0 – 100  
1200 – 1700  

1700 – 
2200  

Others 

7 Slope (%) 0 – 1  1 – 3  3 – 5  5 – 8 Others 

8 Aspect in 
direction 
(Bearing in 
degrees) 

S, SSE & 
SSW (157.5 – 
205.5) &  
Flat (-1) 

SE & ESE  
(112.5 – 
157.5) 
SW & 
WSW 
(202.5 – 
247.5) 

E & ENE  
(67.5 – 
112.5)  
W & WNW 
(247.5 – 
292.5) 

NE & 
NNE  
(22.5 – 
67.5) 
NW, 
NNW 
(292.5 – 
337.5) 

N  
(0 – 
22.5 & 
337.5 
– 360) 

9 Insolation 6.0 – 6.4 5.5 – 6.0 5.0 – 5.5 4.5 – 
5.0 

Others 

10 Sunshine 
(hday-1) 

All - - - - 

11 Nearness to 
water (Km) 

0 – 5 5 – 10 10 – 15  15 – 20 Others 

12 Nearness to 
roads (Km) 

0 – 5 5 – 10 10 – 15 15 – 20 Others 

13 Nearness to 
settlements 
(Km) 

0 – 15 15 – 30 30 – 45 45 – 60 Others 

14 Nearness to 
railways (Km) 

0 – 50 50 – 100 100 – 150 150 – 
200 

Others 
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Suitability class levels for Oil palm based on the criteria indicators 

 

 

Suitability class levels for Oil palm based on the criteria indicators 

S/N Criteria 
(Suitable) 

Most (1) Very (2)  Moderately 
(3) 

Less (4) Least 
(5) 

1 Soil 1, 8 & 27. 9, 12-13, 
22-26, 30, 
38, 41, 47-
49 & 51-52. 

2, 7, 11, 14, 
17-21, 29, 
31, 34-37 & 
42-46. 

3-5, 15-
16, 32, 39-
40, 50, 53-
54 & 56. 

6, 10, 
28, 33 
& 55. 

2 Soil pH 5.5 – 6.0  5.2 – 5.5  
6.0 – 7.0  

4.9 – 5.2  
7.0 – 7.5 

4.5 – 4.9  
7.5 – 8.0 

Others 

3 Rainfall/Water 
(mm)  

1500 - 
2000 

1200 – 
1500  
2000 – 
2300  

900 – 1200 
2300 – 2600  

600 – 900  
2600 – 
2900  

Others 

4 Temperature 
(°C) 
-Maximum 

29 – 32  27 – 29  
32 – 34  

25 – 27  
34 – 36  

23 – 25  
36 – 38  

Others 

5 Relative 
Humidity (%) 

80 – 85  75 – 80  70 – 75  65 – 70 Others 

6 Elevation (m 
asl) 

300 – 500  200 – 300  
500 – 800  

100 – 200  
800 – 1100  

0 – 100  
1100 – 
1400  

Others 

7 Slope (%) 0 – 4  4 – 12  12 – 23  23 – 38  Others 

8 Aspect in 
direction 
(Bearing in 
degrees) 

S, SSE & 
SSW 
(157.5 – 
205.5) &  
Flat (-1) 

SE & ESE  
(112.5 – 
157.5) 
SW & 
WSW 
(202.5 – 
247.5) 

E & ENE  
(67.5 – 
112.5)  
W & WNW 
(247.5 – 
292.5) 

NE & NNE  
(22.5 – 
67.5) NW, 
NNW 
(292.5 – 
337.5) 

N  
(0 – 
22.5 & 
337.5 
– 360) 

9 Insolation 6.0 – 6.4 5.5 – 6.0 5.0 – 5.5 4.5 – 5.0 Others 

10 Sunshine 
(hday-1) 

All  - - - - 

11 Nearness to 
water (Km) 

0 – 5 5 – 10 10 – 15 15 – 20 Others 

12 Nearness to 
roads (Km) 

0 – 5 5 – 10 10 – 15 15 – 20 Others 

13 Nearness to 
settlements 
(Km) 

0 – 15 15 – 30 30 – 45 45 – 60 Others 

14 Nearness to 
railways (Km) 

0 – 50 50 – 100 100 – 150 150 – 200 Others 
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S/N Criteria 
(Suitable) 

Most (1) Very (2)  Moderately 
(3) 

Less (4) Least 
(5) 

1 Soil 8-9, 12-13, 
20-24, 26-
30, 35-38, 
41-42 & 47-
53. 

7, 17-19, 
25, 31, 34, 
40, 43-46, 
54 & 56. 

1-4, 6, 11, 
15-16, 32, 
39 & 55. 

5, 10 & 14. 33 

2 Soil pH 6.0 – 8.0  5.5 – 6.0  
8.0 – 8.5 

5.0 – 5.5 
 

4.5 – 5.0 Others 

3 Rainfall/Water 
(mm)  

900 – 1300  700 – 900  
1300 – 
1600 

500 – 700 
1600 – 
1900 

300 – 500  
1900 – 
2200 

Others 

4 Temperature 
(°C) 
-Maximum 

25 – 28  28 – 31 
23 – 25 

31 – 33 
21 – 23 

34 – 35 
 

Others 

5 Relative 
Humidity (%) 

75 – 85  65 – 75 
85 – 95  

55 – 65 45 – 55 Others 

6 Elevation (m 
asl) 

0 – 500 500 – 900 900 – 1400 1400 – 
1800 

Others 

7 Slope (%) 7 – 22 0 – 7 22 – 27 27 – 40 40 – 
55 

8 Aspect in 
direction 
(Bearing in 
degrees) 

S, SSE & 
SSW (157.5 
– 205.5) &  
Flat (-1) 

SE & ESE  
(112.5 – 
157.5) 
SW & 
WSW 
(202.5 – 
247.5) 

E & ENE  
(67.5 – 
112.5)  
W & WNW 
(247.5 – 
292.5) 

NE & NNE  
(22.5 – 
67.5) NW, 
NNW 
(292.5 – 
337.5) 

N  
(0 – 
22.5 & 
337.5 
– 360) 

9 Insolation 6.0 – 6.4 5.5 – 6.0 5.0 – 5.5 4.5 – 5.0 Others 

10 Sunshine 
(hday-1) 

All - - - - 

11 Nearness to 
water (Km) 

0 – 5 5 – 10 10 – 15  15 – 20 Others 

12 Nearness to 
roads (Km) 

0 – 5 5 – 10 10 – 15 15 – 20 Others 

13 Nearness to 
settlements 
(Km) 

0 – 15 15 – 30 30 – 45 45 – 60 Others 

14 Nearness to 
railways (Km) 

0 – 50 50 – 100 100 – 150 150 – 200 Others 
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Appendix IV: Reclassified criteria maps 

 

Figure 0.1: Reclassified criteria suitability maps for Sugarcane 

 

 

Figure 0.2: Reclassified criteria suitability maps for Cassava 
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Figure 0.3: Reclassified criteria suitability maps for Oil palm 

 

 

Figure 0.4: Reclassified criteria suitability maps for Jatropha 
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Appendix V: Land suitability models 
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Appendix VI: Site optimality models 
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Appendix VII: Expenditure for collecting information for training and accuracy assessment point  

BREAKDOWN OF THE FIELD WORK EXPENDITURE (ATTACHMENT 2) 

DAYS STATE TEAM MEMBERS TRANS 

(NGN) 

ACCOMODATION 

(NGN) 

FEEDING 

 (NGN) 

ALLOWANCE 

 

DAY 1 

SUNDAY 

1ST-07-2018 

NIGER 1. Basiru Shehu Gwandu 

2. Suleiman Abdulkadir  

3. Abdullahi Hamza A. 
4. Chukwuemeka Ofili T. 

5,000 10000 6000 10000 

 

DAY 2 

MONDAY 

2ND-07-2018 

NIGER 5000 10000 6000 10000 

DAY 3 

TUESDAY 

3RD-07-2018 

KEBBI 5000 10000 6000 10000 

DAY 4 

WEDNESDAY 

4TH-07-2018 

KEBBI 5000 10000 6000 10000 

DAY 5 

THURSDAY 

5TH-07-2018 

SOKOTO 5000 10000 6000 10000 
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DAY 6 

FRIDAY 

6TH-07-2018 

SOKOTO 5000 10000 6000 10000 

DAY 7 

SATURDAY 

7TH-07-2018 

KATSINA 5000 10000 6000 10000 

DAY 8 

SUNDAY 

8TH-07-2018 

KATSINA 5000 10000 6000 10000 

DAY 9 

MONDAY 

9TH-07-2018 

KADUNA 5000 10000 6000 10000 

DAY 10 

TUESDAY 

10TH-07-2018 

KADUNA 5000 10000 6000 10000 

DAY 11 

WEDNESDAY 

11TH-07-2018 

PLATEAU 5000 10000 6000 10000 

DAY 12 

THURSDAY 

12TH-07-2018 

PLATEAU 5000 10000 6000 10000 
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DAY 13 

FRIDAY 

13TH-07-2018 

BAUCHI 5000 10000 6000 10000 

DAY 14 

SATURDAY 

14TH-07-2018 

BAUCHI 5000 10000 6000 10000 

DAY 15 

SUNDAY 

15TH-07-2018 

KANO 5000 10000 6000 10000 

DAY 16 

MONDAY 

16TH-07-2018 

KANO 5000 10000 6000 10000 

DAY 17 

TUESDAY 

17ST-07-2018 

JIGAWA 5000 10000 6000 10000 

DAY 18 

WEDNESDAY 

18TH-07-2018 

JIGAWA 5000 10000 6000 10000 

DAY 19 

THURSDAY 

19TH-07-2018 

GOMBE 5000 10000 6000 10000 



369 

 

DAY 20 

FRIDAY 

20TH-07-2018 

GOMBE 5000 10000 6000 10000 

DAY 21 

SATURDAY 

21ST-07-2018 

ADAMAWA 5000 10000 6000 10000 

DAY 22 

SUNDAY 

22ND-07-2018 

ADAMAWA 5000 10000 6000 10000 

DAY 23 

MONDAY 

23RD-07-2018 

TARABA 5000 10000 6000 10000 

DAY 24 

TUESDAY 

24TH-07-2018 

TARABA 5000 10000 6000 10000 

DAY 25 

WEDNESDAY 

25TH-07-2018 

NASARAW

A 

5000 10000 6000 10000 

DAY 26 

THURSDAY 

26TH-07-2018 

NASARAW

A 

5000 10000 6000 10000 



370 

 

DAY 27 

FRIDAY 

27TH-07-2018 

BENUE 5000 10000 6000 10000 

DAY 28 

SATURDAY 

28TH-07-2018 

BENUE 5000 10000 6000 10000 

DAY 29 

SUNDAY 

29TH-07-2018 

CROSS 

RIVER 

5000 10000 6000 10000 

DAY 30 

MONDAY 

30TH-07-2018 

CROSS 

RIVER 

5000 10000 6000 10000 

DAY 31 

TUESDAY 

31ST-07-2018 

EBONYI 5000 10000 6000 10000 

DAY 32 

WEDNESDAY 

1ST-08-2018 

EBONYI 5000 10000 6000 10000 

DAY 33 

THURSDAY 

2ND-08-2018 

KOGI 5000 10000 6000 10000 

DAY 34 KOGI 5000 10000 6000 10000 
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FRIDAY 

3RD-08-2018 

DAY 35 

SATURDAY 

4TH-08-2018 

EDO 5000 10000 6000 10000 

DAY 36 

SUNDAY 

5TH-08-2018 

EDO 5000 10000 6000 10000 

DAY 37 

MONDAY 

6TH-08-2018 

OYO 5000 10000 6000 10000 

DAY 38 

TUESDAY 

7TH-08-2018 

OYO 5000 10000 6000 10000 

DAY 39 

WEDNESDAY 

8TH-08-2018 

KWARA 5000 10000 6000 10000 

DAY 40 

THURSDAY 

9TH-08-2018 

KWARA 5000 10000 6000 10000 

DAY 41 

FRIDAY 

FCT 5000 10000 6000 10000 
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10TH-08-2018 

DAY 42 

SATURDAY 

11TH-08-2018 

FCT 5000 10000 6000 10000 

 

 

Subtotals 

5000 X 42 

= 210,000 

10000 X 42 = 

420,000 

6000 X 42 = 

252,000 

10000 X 42 

= 420,000 

 

Total 

210,000 + 420,000 + 252,000 + 420,000  

= 1,302,000 

 

Pound Equivalent (27/04/2018) 

 

CBN Rate 

 

Parallel Market Rate 

1,302,000 / 427 

= £3,049 

1,302,000 / 500 

= £2,604 

 

Return Flight Ticket (London – Abuja using Lufthansa)  

 

£756 

 

£756 

 

Grand Total 

 

£3,805 

 

£3,360 
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Appendix VIII: Location information of the training sample 

The field information was collected during the months of July and August, 

2018. For the information extracted from OSM data and Google Earth 

images, it was ensured that the period is 2018 or 2019 and that months are 

neither later than November nor earlier than July. Rainy season crops are still 

available on farms in most parts of Nigeria between July and November. 

As discussed in subsection 5.3.4.2, the following table consists of the 125-

points information collected from the field and the 51 points that could not be 

visited, making a total of 176 points. Of the 125 points visited, 92 were visited 

by two sets of surveyors and 33 were visited by the researcher. To argument 

this limited number of sample points for training the classifiers, as detailed in 

table 5.4, 106 polygons were extracted from OpenStreetMap and converted 

to Areas of Interests in Erdas-Imagine. Additional 122 Areas of Interest were 

added directly in Erdas-Imagine using linked and synchronized view with 

Google Earth. 

FID POINT_X POINT_Y Landcover Description 

0 44912.58118 1200956.459 Agriculture Intensive agric 

1 454127.7565 532439.413 Forest Dense forest 

2 627072.5222 970451.1213 Woodland 
Dense 
woodland 

3 18416.12038 1008420.941 Agriculture Seasonal agric 

4 
-

161409.4894 958961.3882 Woodland 
Sparse 
woodland 

5 958778.5885 1354598.723 Not visited Not visited 

6 484126.5976 1123325.509 Woodland 
Sparse 
woodland 

7 599242.6313 1233819.376 Agriculture Seasonal agric 

8 877977.3548 1125082.544 Woodland 
Sparse 
woodland 

9 410925.8677 939171.3679 Agriculture Intensive agric 

10 111810.2797 1275888.922 Agriculture Wetland agric 

11 484416.6357 1341450.276 Agriculture Seasonal agric 
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12 
-

24772.59784 1209446.286 Agriculture Seasonal agric 

13 769285.2183 1174384.166 Agriculture Seasonal agric 

14 951591.5798 1179899.488 
Bare 
ground 

Open soil 
surface 

15 394284.5263 661780.4786 Woodland 
Sparse 
woodland 

16 710199.4546 853064.101 Forest Dense forest 

17 769104.5185 1269703.998 Shrub Sparse shrub 

18 751933.5349 1046696.635 Agriculture Wetland agric 

19 1054723.144 1424621.238 Not visited Not visited 

20 941035.6071 1232170.855 Not visited Not visited 

21 
-

18635.92298 1195107.666 Woodland 
Sparse 
woodland 

22 432831.5257 1299044.1 Shrub Sparse shrub 

23 172022.2098 1286710.348 Agriculture Seasonal agric 

24 343341.919 1036207.149 Not visited Not visited 

25 
-

63082.11471 1377884.178 
Bare 
ground 

Open soil 
surface 

26 178026.6191 1315412.32 Woodland 
Sparse 
woodland 

27 905884.6098 1113114.907 Shrub Sparse shrub 

28 246109.8313 1281827.029 Agriculture Seasonal agric 

29 533790.8718 911952.0151 Forest Sparse forest 

30 497475.2773 1292730.772 Shrub Dense shrub 

31 641003.9019 1045192.745 Not visited Not visited 

32 318789.3985 1078583.989 Forest Sparse forest 

33 211724.915 1189350.399 Not visited Not visited 

34 301121.1834 865915.2689 Forest Sparse forest 

35 560594.0737 1178300.447 Shrub Sparse shrub 

36 
-

41575.22484 893660.2358 Agriculture Seasonal agric 

37 409664.7135 1340784.389 Not visited Not visited 

38 829888.5232 1430727.499 Not visited Not visited 

39 145382.2874 1064984.239 Agriculture Intensive agric 
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40 373348.2757 646658.1282 Agriculture Seasonal agric 

41 79008.43379 959121.9827 Forest Sparse forest 

42 229494.7451 1277889.782 Forest Sparse forest 

43 392405.9395 730239.2751 Agriculture Seasonal agric 

44 781556.3014 881058.629 Forest Sparse forest 

45 922209.1457 1293937.22 Not visited Not visited 

46 28980.68227 894899.077 Forest Sparse forest 

47 492591.2447 787528.0503 Not visited Not visited 

48 125899.4788 1501662.878 Not visited Not visited  

49 204462.4576 1077960.096 Forest Sparse forest 

50 838235.3012 1207794.437 Shrub Sparse shrub 

51 959526.1613 1305506.941 Not visited Not visited 

52 407205.4201 1359273.585 Water Seasonal water 

53 718714.3095 1434284.719 Agriculture Seasonal agric 

54 232514.5756 943708.9242 Shrub Sparse shrub 

55 1040586.396 1414738.071 Not visited Not visited 

56 -63395.1971 1340401.473 Agriculture Seasonal agric 

57 552586.4568 990979.5276 Agriculture Intensive agric 

58 698601.3562 956514.2335 Agriculture Seasonal agric 

59 248382.3136 1354809.032 Settlement Village 

60 992121.8424 1421392.146 Not visited Not visited 

61 86251.65489 1075637.31 Shrub Dense shrub 

62 577430.8403 820711.745 Agriculture Intensive agric 

63 466724.0283 652324.3719 Forest Sparse forest 

64 665684.1468 1198968.911 Shrub Dense shrub 

65 30808.96682 931059.7915 Forest Sparse forest 

66 463131.1798 749766.5351 Not visited Not visited 

67 173945.4332 1152653.309 Agriculture Seasonal agric 

68 667448.7194 976656.7 Not visited Not visited 

69 498558.3482 1225151.933 Not visited Not visited 

70 690184.4578 879834.2124 Shrub Dense shrub 

71 114353.4448 1019410.068 Not visited Not visited 
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72 510334.7004 1015318.385 Shrub Sparse shrub 

73 1022006.495 1302539.162 Not visited Not visited 

74 691660.121 1199683.506 Agriculture Seasonal agric 

75 104082.4211 1072958.065 Settlement Town 

76 505522.2599 1198937.178 Not visited Not visited 

77 488966.3693 1260378.803 Agriculture Seasonal agric 

78 140688.3269 725251.6612 Forest Sparse forest 

79 160454.1487 763454.9143 Settlement Town 

80 116043.9065 746214.4359 Agriculture Seasonal agric 

81 
-

145504.4733 1010808.209 Not visited Not visited 

82 281091.4987 856568.555 Forest Dense forest 

83 920869.6806 1119018.404 
Bare 
ground Bare hill side 

84 660149.0221 1309257.752 Agriculture Intensive agric 

85 256209.341 932593.0834 Shrub Sparse shrub 

86 948065.4498 1277144.916 Not visited Not visited 

87 329104.6037 1308251.744 Agriculture Seasonal agric 

88 647578.3715 1226717.524 Agriculture Seasonal agric 

89 669576.2541 1446811.95 Not visited Not visited 

90 199882.4734 1286293.167 Agriculture Seasonal agric 

91 154847.5679 994397.8918 Agriculture Wetland agric 

92 756633.0376 1391588.607 Shrub Sparse shrub 

93 342277.0688 926224.7462 Shrub Dense shrub 

94 586235.7524 1210081.888 Shrub Sparse shrub 

95 397434.8397 915000.9488 Forest Sparse forest 

96 127967.3132 929275.0243 Forest Sparse forest 

97 931561.1775 1084191.452 Not visited Not visited 

98 114512.2713 709095.0588 Woodland 
Dense 
woodland 

99 805641.1259 1138531.076 Not visited Not visited 

100 652763.276 1289483.989 Shrub Sparse shrub 

101 547779.9838 710346.7049 Not visited Not visited 
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102 450604.655 911302.2923 Agriculture Seasonal agric 

103 
-

24356.57902 1245878.616 Agriculture Wetland agric 

104 235976.0841 1227945.352 Shrub Dense shrub 

105 96500.16709 1217066.264 Shrub Dense shrub 

106 395847.7121 1444727.729 Agriculture Seasonal agric 

107 832793.7405 919854.1832 Not visited Not visited 

108 1008813.074 1323689.542 Not visited Not visited 

109 75674.62454 1016528.462 Agriculture Wetland agric 

110 472792.5503 1293933.281 Agriculture Seasonal agric 

111 130094.4075 1160748.837 Shrub Dense shrub 

112 
-

98020.24045 837948.7484 Agriculture Seasonal agric 

113 515892.9321 1065411.302 Forest Sparse forest 

114 645838.6284 884175.5027 Shrub Dense shrub 

115 60044.22016 1351451.84 Agriculture Wetland agric 

116 651167.7154 978138.5851 Not visited Not visited 

117 277288.8324 1431883.537 Not visited Not visited 

118 116303.4651 1415419.229 Shrub Dense shrub 

119 15832.12206 1389837.957 Agriculture Wetland agric 

120 544372.7847 812663.4715 Not visited Not visited 

121 605677.7361 820445.2729 Not visited Not visited 

122 265817.6037 1064006.495 Shrub Dense shrub 

123 186039.9694 1117871.985 Agriculture Intensive agric 

124 174924.7528 983151.7671 Not visited Not visited 

125 1036379.973 1378729.112 Not visited Not visited  

126 -79471.7369 875190.56 Agriculture Seasonal agric 

127 733549.1418 1105275.729 Agriculture Intensive agric 

128 280531.341 951147.5879 Not visited Not visited 

129 906764.3511 1055014.955 Not visited Not visited 

130 865649.467 1194684.922 Shrub Sparse shrub 

131 691386.9241 1242680.753 Forest Dense forest 

132 827090.788 1292928.165 Agriculture Seasonal agric 
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133 
-

20096.52867 1370501.507 Shrub Dense shrub 

134 447961.2203 1332398.02 Settlement Kano City 

135 20230.91415 1247852.43 Agriculture Seasonal agric 

136 700726.0572 1356180.005 Agriculture Seasonal agric 

137 867341.8207 938903.1586 Forest Sparse forest 

138 689917.5198 779945.0271 Not visited Not visited 

139 
-

78725.04651 1147436.781 Not visited Not visited 

140 1045842.215 1396841.046 Not visited Not visited 

141 347273.2365 821618.7902 Woodland 
Dense 
woodland 

142 154929.5414 1371749.194 Water Seasonal water 

143 206462.2625 1167643.973 Shrub Sparse shrub 

144 
-

66719.90548 1302064.679 Shrub Dense shrub 

145 976712.0584 1422070.283 Not visited Not visited 

146 592774.1933 1419514.818 Agriculture Seasonal agric 

147 
-

22363.52339 1075154.013 Shrub Dense shrub 

148 411815.9252 781103.4548 Woodland 
Dense 
woodland 

149 135072.2983 1076276.674 Not visited Not visited 

150 115575.9721 1455264.584 Shrub Dense shrub 

151 349720.2231 794086.1695 Woodland 
Dense 
woodland 

152 306915.1541 935524.4995 Not visited Not visited 

153 676007.9562 1215998.227 Agriculture Seasonal agric 

154 714379.9067 909815.7839 Woodland 
Dense 
woodland 

155 1103360.174 1276163.097 Not visited Not visited 

156 397113.7356 862449.0957 Agriculture Intensive agric 

157 635197.9332 1100264.293 Not visited Not visited 

158 
-

122476.4842 1011079.222 Not visited Not visited 
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159 132959.7723 1207799.911 
Bare 
ground 

Bare hill 
surface 

160 770075.1394 1022611.686 Not visited Not visited 

161 542844.5392 1377428.168 Agriculture Wetland agric 

162 260582.6414 772099.1604 Woodland 
Dense 
woodland 

163 177776.5719 1085694.429 Shrub Sparse shrub 

164 194356.8604 1058789.943 Woodland 
Sparse 
woodland 

165 168332.414 805256.7167 Not visited Not visited 

166 685181.2138 1277609.733 Agriculture Seasonal agric 

167 531857.6619 885910.1442 Shrub Dense shrub 

168 324940.294 850493.2873 Woodland 
Dense 
woodland 

169 858741.4014 1133781.191 Not visited Not visited 

170 294166.1859 925470.5175 Not visited Not visited 

171 675829.954 1078207.927 Not visited Not visited 

172 169892.0199 668798.0965 Forest Sparse forest 

173 164693.6171 1460350.052 Not visited Not visited 

174 383000.1023 1199069.924 Agriculture Intensive agric 

175 410630.7065 1408196.032 Agriculture Wetland agric 

 

 

 

 

 

 

 

 



380 

 

Appendix IX: Location information for Accuracy 

Assessment Sample 

The accuracy assessment sample consists of field points, points extracted 

from Open Street Map polygons and points extracted from Google Earth. The 

field information was collected during the months of July and August, 2018. 

For the information extracted from OSM data and Google Earth images, it 

was ensured that the period is 2018 or 2019 and that months are neither later 

than November nor earlier than July. Rainy season crops are still available 

on farms in most parts of Nigeria between July and November.  

FID Class 
POINT_X 
(Longitudes) 

POINT_Y 
(Latitudes) 

0 Agriculture 99543.81124 1197883.809 

1 Agriculture 528689.5395 1284363.122 

2 Agriculture 754706.608 1341521.07 

3 Agriculture 429458.3597 1271152.006 

4 Agriculture 513490.2794 797497.6469 

5 Agriculture -73934.80562 1148779.64 

6 Agriculture -117870.0979 939131.644 

7 Agriculture -13052.53883 727551.0746 

8 Agriculture 896499.9307 1403776.993 

9 Agriculture 456485.0148 1279888.249 

10 Agriculture 130990.8237 1138875.272 

11 Agriculture 56830.6772 982170.9552 

12 Agriculture 1102769.483 1349521.305 

13 Agriculture 789867.4106 1228388.336 

14 Agriculture 157594.7102 996458.5875 

15 Agriculture 328125.4917 1264930.786 

16 Agriculture 526152.8602 1258499.604 

17 Agriculture 463745.5635 1253903.233 

18 Agriculture 308483.8093 818994.1547 

19 Agriculture 601303.6408 1338477.756 

20 Agriculture 833366.494 899349.2241 

21 Agriculture 536926.3281 1129857.9 

22 Agriculture -63227.29244 1037771.292 

23 Agriculture 194769.4949 697880.0419 

24 Agriculture 745318.6289 1067059.558 

25 Agriculture 354718.1756 1000327.446 

26 Agriculture 557122.6262 777633.1539 

27 Agriculture 135061.0775 1309079.249 

28 Agriculture 566098.5009 1370381.697 
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29 Agriculture 480190.5476 1275639.76 

30 Agriculture 484051.3323 876869.4694 

31 Agriculture 373394.1662 887072.5318 

32 Agriculture 265681.3613 658593.7273 

33 Agriculture 17014.57062 1405708.575 

34 Agriculture 635398.9118 1320249.481 

35 Agriculture 571265.7623 1222726.854 

36 Agriculture 358366.0456 1353018.893 

37 Agriculture 183321.8387 1377541.936 

38 Agriculture 901651.6878 1056147.134 

39 Agriculture 46513.33713 1201456.524 

40 Agriculture 437134.9 865000.1529 

41 Agriculture 360780.0515 1325616.023 

42 Agriculture 379997.2657 1258693.303 

43 Agriculture 365259.2719 1422499.753 

44 Agriculture 151051.5977 1493222.532 

45 Agriculture 214596.2284 1359898.013 

46 Agriculture 65696.34851 1071617.476 

47 Agriculture 380512.4376 1241522.296 

48 Agriculture 298443.8227 1049789.605 

49 Agriculture 495999.934 1096919.794 

50 Agriculture 726497.3821 1372048.933 

51 Agriculture 799774.5758 1375060.673 

52 Agriculture 271002.134 1345000.162 

53 Agriculture 240500.6107 1352055.742 

54 Agriculture 539107.6318 1101142.292 

55 Agriculture 701823.0677 1339627.272 

56 Agriculture 2801.422083 1154537.042 

57 Agriculture 563008.1878 1282049.278 

58 Agriculture 405948.9329 930595.2066 

59 Agriculture 480430.773 1112716.938 

60 Agriculture -43448.49259 868999.9977 

61 Agriculture 133034.4084 631285.4921 

62 Agriculture 466405.1015 1322506.101 

63 Agriculture 581913.6243 1408737.465 

64 Agriculture 11486.99615 725928.585 

65 Agriculture 100940.04 806288.3094 

66 Agriculture 214984.9101 1156719.335 

67 Agriculture 229894.4319 945300.3776 

68 Agriculture 844486.7903 1310577.299 

69 Agriculture 719763.2872 972551.1003 

70 Agriculture 376721.4426 825932.9328 

71 Agriculture 650762.6104 883083.6934 

72 Agriculture 529958.02 1397719.506 
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73 Agriculture 421700.1665 958803.8673 

74 Agriculture 57676.05692 1477676.333 

75 Agriculture 306843.688 766075.7808 

76 Agriculture 456240.0585 1342594.271 

77 Agriculture 241452.6782 1417514.12 

78 Agriculture 508245.1043 1066943.972 

79 Agriculture 111499.0408 1495765.046 

80 Agriculture 611998.7529 1362631.247 

81 Agriculture 246590.1293 1367555.238 

82 Agriculture 70024.05392 1226191.362 

83 Agriculture 705368.5744 1403564.622 

84 Agriculture 509875.8956 1194251.431 

85 Agriculture 877546.3011 958601.8487 

86 Agriculture 279878.5461 725379.9133 

87 Agriculture 2505.023891 1112272.714 

88 Agriculture 232667.1099 1026301.278 

89 Agriculture 575665.3111 842341.7003 

90 Agriculture 590019.7064 1078499.785 

91 Agriculture 575463.3792 1346122.084 

92 Agriculture 955341.5601 1318779.929 

93 Agriculture 676740.3065 1228527.564 

94 Agriculture 188752.8459 1350717.225 

95 Agriculture 199223.1014 1139872.632 

96 Agriculture 92312.90246 1116876.913 

97 Agriculture 91976.92772 1406335.133 

98 Agriculture -94846.40341 978453.9168 

99 Agriculture 621651.7792 1028860.282 

100 Agriculture 520932.4674 853992.3035 

101 Agriculture 254567.2362 605722.1445 

102 Agriculture 948165.5566 1100385.112 

103 Agriculture 142393.8739 1173101.835 

104 Agriculture 424260.7597 1429584.553 

105 Agriculture 304622.4791 1251603.396 

106 Agriculture 558356.2896 1407448.657 

107 Agriculture 21151.56945 893801.0456 

108 Agriculture 505152.4093 1040074.115 

109 Agriculture 751323.6489 1380152.627 

110 Agriculture -39177.55994 772601.4013 

111 Agriculture 175409.5121 1508199.965 

112 Agriculture 349629.5833 1150106.353 

113 Agriculture -89731.49047 1267001.641 

114 Agriculture 465579.8487 1097851.326 

115 Agriculture 448600.5412 1180157.235 

116 Agriculture 790981.2612 1126468.125 
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117 Agriculture 491410.1611 1393702.888 

118 Agriculture 972694.9387 1179068.189 

119 Agriculture -10717.20698 1420538.862 

120 Agriculture 198745.8117 956445.4999 

121 Agriculture 88585.83492 1019527.115 

122 Agriculture 241839.8631 955258.2252 

123 Agriculture 86900.46014 1421457.409 

124 Agriculture 32556.8624 1044452.117 

125 Agriculture 35602.47146 997821.8829 

126 Agriculture 511610.8034 1235589.891 

127 Agriculture 23873.50218 1423796.399 

128 Agriculture 213487.9597 1321915.487 

129 Agriculture 500730.3467 755878.0828 

130 Agriculture 837277.8472 1202062.835 

131 Agriculture 439423.1564 739919.0572 

132 Agriculture 174934.0918 628906.7324 

133 Agriculture 367293.305 919564.1759 

134 Agriculture -149806.3561 790581.9322 

135 Agriculture 798979.762 1181702.115 

136 Agriculture 352835.2919 648937.0128 

137 Bare ground 35969.59311 1384538.372 

138 Bare ground 505323.7849 848593.3588 

139 Bare ground 827403.1588 1455071.574 

140 Bare ground 822482.2832 1456386.931 

141 Bare ground 816296.5369 1454368.003 

142 Bare ground 810522.4928 1454329.731 

143 Forest 696309.134 842498.2293 

144 Forest -132079.7172 775388.3453 

145 Forest 526144.0145 1001152.796 

146 Forest 464347.9825 596625.312 

147 Forest 715365.9667 839177.5759 

148 Forest 104873.1469 833631.9041 

149 Forest 40135.70202 748025.7805 

150 Forest 804589.7446 862202.5596 

151 Forest 210159.6643 890031.3339 

152 Forest -48760.4297 925199.6144 

153 Forest 236258.6453 699699.3945 

154 Forest 71965.47471 844264.1077 

155 Forest 340092.9751 638301.3211 

156 Forest 226973.3952 550290.5084 

157 Forest -37333.00842 1015264.932 

158 Forest -64257.18553 737970.8994 

159 Forest -71537.71264 1220523.079 

160 Forest 152119.4912 736665.7684 
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161 Forest 669517.9916 1089543.026 

162 Forest 453295.3631 554494.579 

163 Forest 36640.65813 1250488.185 

164 Forest 59517.19901 829362.0448 

165 Forest 294176.7645 954127.0071 

166 Forest 208408.3157 657131.9883 

167 Forest 562650.439 1010241.706 

168 Forest 314352.3124 898038.9723 

169 Forest -74952.93858 808340.1697 

170 Forest 783342.7079 947972.9958 

171 Forest 150829.5246 818197.4749 

172 Forest 265948.776 821846.3186 

173 Forest -7621.330533 794697.1794 

174 Forest 746300.4432 907109.8049 

175 Forest 721491.7003 740462.1805 

176 Forest 291031.7587 1153318.251 

177 Forest 244506.3572 1155613.177 

178 Forest -186831.3773 923769.4631 

179 Forest -99968.99309 796808.2201 

180 Forest 308045.2025 648039.2107 

181 Forest 760871.123 809780.7431 

182 Forest 795710.5723 844363.7021 

183 Forest 490563.0836 1002392.699 

184 Forest 630086.8117 782126.2459 

185 Forest 253680.0451 986466.895 

186 Forest 388143.8476 954635.0068 

187 Forest 132460.9528 847366.6277 

188 Forest 934649.3994 1302829.997 

189 Forest -19272.10115 865094.8194 

190 Forest 763401.969 927139.8234 

191 Forest 472216.2721 654943.9553 

192 Forest 130803.9348 663544.0217 

193 Forest 341338.9077 579536.5688 

194 Forest 744002.9515 853901.1582 

195 Forest 498133.426 676722.7332 

196 Forest 227527.2691 673948.8447 

197 Forest 324340.1329 729241.016 

198 Forest 34674.10719 1330622.005 

199 Forest 88455.5633 1004228.248 

200 Mangrove 196072.0187 510971.5718 

201 Mangrove 215660.7616 610138.5508 

202 Mangrove 217257.3816 500380.2452 

203 Mangrove 155875.7648 516009.1998 

204 Mangrove 237100.5487 505553.8406 
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205 Mangrove 459879.1701 503212.2152 

206 Mangrove 118921.4565 598012.7793 

207 Mangrove 120205.4827 549137.7459 

208 Mangrove 72777.63585 625732.563 

209 Mangrove 411358.3725 544841.0961 

210 Mangrove 424888.2569 535333.3941 

211 Settlement 570600.9447 799797.7995 

212 Settlement -165874.0308 745984.7276 

213 Settlement 281259.5765 659843.9838 

214 Settlement 583372.4002 1133728.742 

215 Settlement 324656.0807 976962.1908 

216 Settlement 139829.5697 610796.0351 

217 Settlement 280262.1291 527297.4615 

218 Settlement -125042.358 795399.42 

219 Settlement 952790.9008 1312181.835 

220 Settlement 449101.5227 854616.376 

221 Settlement 91804.4938 1446920.217 

222 Settlement 592569.2171 1140336.291 

223 Settlement 360084.6415 1228829.868 

224 Settlement 172023.5737 1005414.187 

225 Shrub 859513.649 976184.1835 

226 Shrub 803581.1129 1101019.971 

227 Shrub 233182.7085 1107146.176 

228 Shrub 974589.9254 1326970.605 

229 Shrub 134484.6811 1072843.528 

230 Shrub 231387.7659 758169.9933 

231 Shrub 489350.543 849200.5989 

232 Shrub 128502.7326 1228468.885 

233 Shrub -148844.3939 974322.7106 

234 Shrub 895205.9362 1183506.034 

235 Shrub 216262.2431 1305158.532 

236 Shrub 386604.0004 749246.0831 

237 Shrub 508356.6597 1150669.348 

238 Shrub 842206.4818 1004753.027 

239 Shrub 992621.0649 1456060.277 

240 Shrub 527875.7394 1089626.373 

241 Shrub 437893.4309 821270.2505 

242 Shrub 893624.4867 1140437.27 

243 Shrub -11862.75349 1091462.55 

244 Shrub 879090.7885 1189165.648 

245 Shrub 334187.9609 1405600.6 

246 Shrub 317011.5012 1191839.682 

247 Shrub 654600.9576 1018202.646 

248 Shrub -28494.0513 1401232.45 
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249 Shrub 1007976.73 1470846.571 

250 Shrub 479160.0047 903201.4443 

251 Shrub 790727.7603 1349379.803 

252 Shrub 823869.1189 1188377.636 

253 Shrub 165163.0755 838111.5296 

254 Shrub 415094.1876 832654.8094 

255 Shrub 4556.196036 993848.4844 

256 Shrub 740641.3461 951165.6249 

257 Shrub 928971.0364 1267459.581 

258 Shrub 866993.0439 1158887.952 

259 Shrub 984219.8962 1484088.642 

260 Shrub 762236.9835 1017189.038 

261 Shrub 950752.5247 1471181.464 

262 Shrub 239062.8321 898219.743 

263 Shrub 23027.38671 1501309.112 

264 Shrub 881386.3056 1083791.215 

265 Shrub 998085.9354 1306598.142 

266 Shrub 852857.7547 1217117.998 

267 Shrub 919563.3617 1117115.824 

268 Shrub -8259.43386 1031894.092 

269 Shrub 159856.3176 1433822.112 

270 Shrub 978828.421 1391049.527 

271 Shrub 1038047.854 1256414.219 

272 Shrub 829937.3545 1428600.338 

273 Shrub 902967.8552 1286858.105 

274 Shrub 850749.2393 1354224.498 

275 Shrub 715269.2781 1022631.539 

276 Shrub 612455.1095 912003.2635 

277 Shrub 280577.7616 920897.2981 

278 Shrub 742218.7481 1276241.535 

279 Shrub -66420.89422 1388458.898 

280 Shrub 229839.7751 1078369.884 

281 Shrub 599400.6844 1121354.206 

282 Shrub 732229.1565 785399.6929 

283 Shrub 947645.3583 1248848.251 

284 Shrub 2693.579003 1277623.906 

285 Shrub 984869.8223 1361543.43 

286 Shrub 183580.4505 1329162.048 

287 Shrub -39988.84144 992234.1636 

288 Shrub 211052.8508 1067546.393 

289 Shrub 958257.2043 1068165.154 

290 Shrub 41203.31504 974361.9777 

291 Shrub -124642.1451 836447.3104 

292 Shrub 340186.5303 551043.8743 
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293 Shrub 705510.3305 924003.1796 

294 Shrub 87286.7342 1351338.701 

295 Shrub 284183.2089 1364612.138 

296 Shrub 275087.0397 1163998.975 

297 Shrub 18728.36037 1447887.951 

298 Shrub 990965.6225 1262841.785 

299 Shrub -2747.841351 1186641.412 

300 Water 89124.8041 1277918.952 

301 Water 510039.2604 935569.5674 

302 Water -119332.0146 723779.2591 

303 Water 140769.3253 985232.1057 

304 Water 832579.0445 1049081.655 

305 Water 137973.6532 614904.6194 

306 Water 349953.2291 888413.6215 

307 Water 309316.6173 1445548.222 

308 Water 334020.915 1448311.759 

309 Water 618972.3922 1312315.388 

310 Water 1046719.226 1277959.508 

311 Water 960711.4506 1431384.89 

312 Water 609745.17 1144004.949 

313 Water 54509.78037 1166689.472 

314 Water -931.78995 860872.7184 

315 Water 295787.1874 1236418.131 

316 Water 713268.429 980216.9009 

317 Water 262749.5354 732229.6163 

318 Water 317830.6613 1146776.004 

319 Woodland 488765.4563 1229503.499 

320 Woodland 541582.0373 1051693.088 

321 Woodland 63100.17132 1252390.442 

322 Woodland -10255.60033 976484.0587 

323 Woodland 253941.1409 873717.2689 

324 Woodland 6816.770166 919978.6927 

325 Woodland -63014.63642 1351698.189 

326 Woodland 289654.2829 685735.6354 

327 Woodland 261656.4049 1241593.419 

328 Woodland 2848.283778 1384532.505 

329 Woodland 357724.1453 822729.0228 

330 Woodland 353732.1359 1185373.277 

331 Woodland 152231.6199 1079525.316 

332 Woodland 385750.7742 1137524.384 

333 Woodland 870934.0471 1297942.697 

334 Woodland 548812.1536 726874.4428 

335 Woodland -168611.9762 822387.3645 

336 Woodland 563151.1341 880118.6886 
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337 Woodland -144640.3351 898642.892 

338 Woodland 101751.2717 914195.7799 

339 Woodland 476116.7304 1183938.636 

340 Woodland 469613.0899 1055663.537 

341 Woodland 225500.4135 1472006.745 

342 Woodland 573982.8938 1089858.078 

343 Woodland 113874.1614 795399 

344 Woodland 673608.0724 1368525.491 

345 Woodland 282116.2959 1287455.694 

346 Woodland 555633.2183 1039304.775 

347 Woodland 435336.6311 1161961.153 

348 Woodland 258981.8347 1080711.028 

349 Woodland 691602.4286 1446625.988 

350 Woodland 279572.2437 1196927.598 

351 Woodland 301444.5946 1093631.76 

352 Woodland 455407.6931 1018499.109 

353 Woodland -73552.70168 1084451.492 

354 Woodland 333425.6892 802802.4099 

355 Woodland 199096.635 800443.7732 

356 Woodland -113991.869 910299.3954 

357 Woodland 198306.4687 1084094.148 

358 Woodland 63856.88175 914417.8044 

359 Woodland 789203.8764 810737.7117 

360 Woodland 789577.9996 1058236.432 

361 Woodland 671663.1867 1319033.882 

362 Woodland 262280.9123 1282476.816 

363 Woodland -85336.92213 756297.5055 

364 Woodland -124843.0473 1051519.196 

365 Woodland 892484.5175 1217386.768 

366 Woodland 819989.8289 918394.8101 

367 Woodland 241598.5027 1266308.989 

368 Woodland 128028.2338 1359717.154 

369 Woodland 440694.162 999052.2235 

370 Woodland -21364.88799 939306.7844 

371 Woodland 664107.302 867858.8667 
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Appendix X: The Classification Outputs 
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Class accuracies for the classifications of the 20 different bands combinations as discussed in subsection 5.3.4.3. The seven 

classification outputs selected for combination due to relatively higher accuracies are highlighted in colours. Note; Mangrove was 

later combined with forest.    

Classification Accuracies Agriculture Bareground Forest Mangrove Settlement Shrub Water Woodland Overall Kappa 

Max_All_Bands_Ex_VH 

Producers 52.55% _ 33.33% 27.27% 42.86% 5.33% 31.58% 32.08% 

34.32% 0.1479 Users 45.00% _ 37.25% 33.33% 20.69% 30.77% 100.00% 16.50% 

Max_All_Bands 

Producers 29.93% _ 61.40% 18.18% 57.14% 9.33% 26.32% 9.43% 

27.88% 0.1337 Users 55.41% _ 23.03% 22.22% 9.41% 22.58% 100.00% 33.33% 

Max_NDVI_DPSVI 

Producers 21.17% _ 78.95% 0.00% 28.57% 8.00% 36.84% 24.53% 

28.15% 0.1258 Users 42.03% _ 30.41% 0.00% 12.50% 24.00% 100.00% 15.85% 

Max_NDVI_DPSVI_NIR 

Producers 53.28% 33.33% 1.75% 0.00% 64.29% 45.33% 42.11% 3.77% 

34.85% 0.1536 Users 45.91% 40.00% 33.33% 0.00% 12.33% 30.91% 80.00% 18.18% 

Max_NDVI_DPSVI_VV 

Producers 32.12% _ 77.19% 0.00% 50.00% 6.67% 42.11% 20.75% 

32.17% 0.1607 Users 44.44% _ 33.59% 0.00% 16.28% 50.00% 100.00% 14.10% 

Max_Red_NIR_NDVI 

Producers 21.90% 16.67% 92.98% 18.18% 42.86% 2.67% 10.53% 30.19% 

30.29% 0.1523 Users 50.00% 100.00% 31.93% 40.00% 50.00% 28.57% 100.00% 13.56% 

Max_Red_NIR_NDVI_DPSVI 

Producers 47.96% _ 77.19% 18.18% _ 22.67% 57.89% 42.64% 

49.92% 0.2361 Users 56.43% _ 50.99% 100.00% _ 42.22% 44.00% 34.81% 

Max_VV_VH_DPSVI_NDVI 

Producers 35.04% _ 64.91% 0.00% 64.29% 5.33% 42.11% 30.19% 

32.98% 0.1742 Users 50.00% _ 33.94% 0.00% 19.57% 44.44% 100.00% 15.84% 

Max_VV_VH_DPSVI 

Producers 48.69% 0.00% 24.04% 0.00% 74.29% 19.33% 21.05% 28.87% 

28.66% 0.1327 Users 49.85% 0.00% 32.22% 0.00% 22.00% 43.33% 44.44% 20.53% 

Max_VV_VH 

Producers 51.09% _ 24.56% 9.09% 35.71% 14.67% 26.32% 5.66% 

29.49% 0.1072 Users 46.05% _ 23.73% 6.67% 7.25% 35.48% 21.74% 13.64% 
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SAM_All_Bands_Ex_VH 

Producers 29.93% 0.00% 31.58% 27.27% 14.29% 18.67% 36.84% 41.51% 

28.95% 0.1203 Users 53.95% 0.00% 29.51% 37.50% 12.50% 17.50% 100.00% 18.18% 

SAM_All_Bands 

Producers 35.77% 0.00% 89.47% 9.09% 28.57% 12.00% 36.84% 16.98% 

35.12% 0.1855 Users 52.69% 0.00% 30.36% 100.00% 44.44% 23.68% 100.00% 16.98% 

SAM_NDVI_DPSVI 

Producers 24.09% 0.00% 29.30% 19.09% 24.29% 43.33% 25.79% 26.98% 

27.59% 0.118 Users 42.86% 0.00% 33.40% 15.88% 43.33% 33.58% 16.67% 26.98% 

SAM_Red_NIR_NDVI 

Producers 24.09% 50.00% 91.23% 18.18% 21.43% 10.67% 36.84% 22.64% 

32.44% 0.165 Users 45.83% 100.00% 31.52% 25.00% 60.00% 16.00% 100.00% 19.67% 

SAM_Red_NIR_NDVI_DPSVI 

Producers 37.96% _ 64.91% 9.09% 0.00% 17.33% 21.05% 30.19% 

33.24% 0.1553 Users 52.00% _ 30.33% 16.67% 0.00% 22.81% 40.00% 21.33% 

SAM_VV_VH_DPSVI 

Producers 35.04% 16.67% 17.54% 0.00% 28.57% 29.33% 42.11% 35.85% 

30.29% 0.1409 Users 52.17% 25.00% 37.04% 0.00% 23.53% 28.57% 13.11% 20.65% 

SAM_VV_VH_DPSVI_NDVI 

Producers 34.31% _ 80.70% _ 64.29% 17.11% 15.79% 0.00% 

31.90% 0.1585 Users 50.00% _ 35.94% _ 12.33% 20.97% 100.00% 0.00% 

SAM_NDVI_DPSVI_NIR 

Producers 18.25% 50.00% 89.47% _ 28.57% 30.67% 36.84% _  
30.56% 0.1474 Users 43.10% 21.43% 33.77% _ 16.00% 19.83% 100.00% _ 

SAM_VV_VH 

Producers 67.88% 50.00% 47.27% _ 50.00% 2.67% 31.58% 11.32% 

38.87% 0.1928 Users 49.21% 16.67% 30.59% _ 30.43% 18.18% 100.00% 18.18% 

SAM_NDVI_DPSVI_VV 

Producers 30.66% 50.00% 64.91% _ 28.57% 25.33% 36.84% 26.42% 

34.05% 0.1407 Users 55.26% 12.00% 33.33% _ 23.53% 24.36% 100.00% 24.56% 
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Appendix XI: Abstract of the review article published from this work  

 

Biofuel programmes are characterised with failures especially in Africa, including 

Nigeria. One of the major factors causing these failures is embarking on 

programmes that are not based on profound knowledge of the feedstock ecology. In 

Nigeria, biofuel feedstock land suitability maps that exist provided very low details 

regarding the suitability of the lands. Broadly, this research seeks to provide more 

robust workflow for producing biofuel crops land suitability maps with higher details. 

Thus, this review aims to collate information necessary for this robust spatial 

analysis. The article examines the production trends for oil palm and Jatropha as 

identified biodiesel crops in Nigeria. It then assesses the local demand for and 

processing of biodiesel and explored the ecological requirements of the crops. It also 

investigated the sustainability issues, identified some policy gaps and proffered a 

policy realignment strategy to ensure successful and sustainable biodiesel industry 

in the country. The review showed that though not without criticisms, the choice of oil 

palm and Jatropha for biodiesel production in Nigeria is appropriate. However, the 

potentials of these crops have not duly been exploited and Jatropha might have an 

edge due to the ecological advantages it presents. It is concluded here that the 

pathways to successful and sustainable biodiesel programme in Nigeria must give 

due consideration to cultivation sites optimisation based on the crops ecological 

requirements and the crops yields improvement. These must be supported by 

appropriate agronomic practices and processing technologies, informed business 

planning and policy realignment and effective policy enforcement. 

The link to the article: https://doi.org/10.1016/j.rser.2020.110383 

https://doi.org/10.1016/j.rser.2020.110383

