
 PhD thesis

Exploring a resource allocation security protocol for secure

service migration in commercial cloud environments

Karthick, G.

Full bibliographic citation: Karthick, G. 2022. Exploring a resource allocation security

protocol for secure service migration in commercial cloud environments. PhD thesis

Middlesex University

Year: 2022

Publisher: Middlesex University Research Repository

Available online: https://repository.mdx.ac.uk/item/w0v22

Middlesex University Research Repository makes the University’s research available

electronically.

Copyright and moral rights to this work are retained by the author and/or other copyright

owners unless otherwise stated. The work is supplied on the understanding that any use

for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-

commercial, research or study without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or

medium, or extensive quotations taken from them, or their content changed in any way,

without first obtaining permission in writing from the copyright holder(s). They may not be

sold or exploited commercially in any format or medium without the prior written

permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items

including the author’s name, the title of the work, publication details where relevant

https://repository.mdx.ac.uk/item/w0v22

(place, publisher, date), pagination, and for theses or dissertations the awarding

institution, the degree type awarded, and the date of the award.

If you believe that any material held in the repository infringes copyright law, please

contact the Repository Team at Middlesex University via the following email address:

repository@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: https://libguides.mdx.ac.uk/repository

Exploring a Resource Allocation
Security Protocol for Secure

Service Migration in Commercial
Cloud Environments

Gayathri Karthick

Department of Computer Science
School of Science & Technology

Middlesex University, London

A thesis submitted for the degree of

Doctor of Philosophy

March, 2022

mailto:gk419@live.mdx.ac.uk
http://www.mdx.ac.uk/about-us/our-schools/school-of-science-and-technology/computer-science
http://www.mdx.ac.uk/about-us/our-schools/school-of-science-and-technology
http://www.mdx.ac.uk

I would like to dedicate this thesis to my loving parents, my
husband, my sister, my daughter and in memory of my

grandparents, my uncle and my brother!

Acknowledgements

First and foremost, thanks to God for giving me the strength to reach
for the stars and chase my dreams. I would like to express my sincere
appreciation and gratitude to the following people for helping me
complete this thesis.

I am grateful to Dr Glenford Mapp, my director of studies and su-
pervisor, for giving me the opportunity to work under him. We are
always surprised about his interest in research, innovative ideas, sup-
port to achieve my dreams, provided guidance at every stage of my
research. His advice and support were always helpful to do this the-
sis successfully. He gave me the freedom to work on various research
projects and to explore innovative ideas.

I would also like to thank my other academic supervisors, Dr Florian
Kammueller and Dr Mahdi Aiash for their encouragement and support
during my studies. Their reviews, comments, and observations always
gave me a much better understanding of my research topic.

I would like to express my heartfelt thanks to Terri Demetriou, the
Research Degrees Administration team, and the School of Science and
Technology for providing me with administrative support and all the
required facilities and arrangements for doing my research.

The journey would have not been possible without my husband, Mr
Karthick Kathirvel and my little cutie pie, Yathika Karthick for pro-
viding me with constant support, love, and encouragement during my
study and life. I extend my thanks to my loving parents, my in-laws,
my sister Mrs Geethu, Mr Udhay, little niece Dhakshita, my extended
family and relatives for their love, happiness on my success and sup-
port throughout my life. I also dedicate this thesis to my friends
who have always been a significant source of support in making my
journey here a memorable and pleasurable one.

Abstract

Recently, there has been a significant increase in the popularity of
cloud computing systems that offer Cloud services such as Networks,
Servers, Storage, Applications, and other available on-demand re-
sources or pay-as-you-go systems with different speeds and Qualities
of Service. These cloud computing environments share resources by
providing virtualization techniques that enable a single user to ac-
cess various Cloud Services Thus, cloud users have access to an infi-
nite computing resource, allowing them to increase or decrease their
resource consumption capacity as needed. However, an increasing
number of Commercial Cloud Services are available in the market-
place from a wide range of Cloud Service Providers (CSPs). As a
result, most CSPs must deal with dynamic resource allocation, in
which mobile services migrate from one cloud environment to another
to provide heterogeneous resources based on user requirements. A
new service framework has been proposed by Sardis about how ser-
vices can be migrated in Cloud Infrastructure. However, it does not
address security and privacy issues in the migration process. Fur-
thermore, there is still a lack of heuristic algorithms that can check
requested and available resources to allocate and deallocate before
the secure migration begins. The advent of Virtual machine technol-
ogy, for example, VMware, and container technology, such as Docker,
LXD, and Unikernels has made the migration of services possible. As
Cloud services, such as Vehicular Cloud, are now being increasingly
offered in highly mobile environments, Y-Comm, a new framework
for building future mobile systems, has developed proactive handover
to support the mobile user. Though there are many mechanisms in
place to provide support for mobile services, one way of addressing
the challenges arising because of this emerging application is to move
the computing resources closer to the end-users and find how much
computing resources should be allocated to meet the performance re-
quirements/demands. This work addresses the above challenges by
proposing the development of resource allocation security protocols
for secure service migration that allow the safe transfer of servers and

monitoring of the capacity of requested resources to different Cloud
environments. In this thesis, we propose a Resource Allocation Secu-
rity Protocol for secure service migration that allows resources to be
allocated efficiently is analyzed. In our research, we use two differ-
ent formal modelling and verification techniques to verify an abstract
protocol and validate the security properties such as secrecy, authen-
tication, and key exchange for secure service migration. The new
protocol has been verified in AVISPA and ProVerif formal verifier
and is being implemented in a new Service Management Framework
Prototype to securely manage and allocate resources in Commercial
Cloud Environments. And then, a Capability-Based Secure Service
Protocol (SSP) was developed to ensure that capability-based service
protocol proves secrecy, authentication, and authorization, and that
it can be applied to any service. A basic prototype was then devel-
oped to test these ideas using a block storage system known as the
Network Memory Service. This service was used as the backend of a
FUSE filesystem. The results show that this approach can be safely
implemented and should perform well in real environments.

Contents

Contents v

List of Figures xi

List of Tables xiii

Nomenclature xiii

1 Introduction 1
1.1 An Overview of Commercial Cloud Systems 1
1.2 An overview of Cloud services . 2

1.2.1 Cloud Advertisement in Commercial Environments 3
1.3 Vehicular Ad-hoc Networks . 3
1.4 Mobile Edge computing . 4
1.5 The evolution of mobile services 4
1.6 Resource allocation and security for the Mobile service environment 5
1.7 Secure protocol solution approach 5

1.7.1 Research Aims and Objectives 6
1.7.2 Research Question . 6
1.7.3 Thesis Outline . 7

1.7.3.1 List of Publications 8

2 Related work 10
2.1 Literature Review . 10

2.1.1 Brief Introduction . 10
2.2 Supporting Highly mobile Environments 10

2.2.1 Y-Comm Reference Framework 11
2.2.2 Cloud advertisement in Commercial Environment 12

2.3 Service Oriented Architecture (SOA) 12
2.4 Sardis Framework . 12
2.5 Mobile Edge computing . 14

v

CONTENTS

2.6 Container technology . 14
2.7 Resource allocation applied in Highly Mobile environment in Cloud 15
2.8 Research Gap . 16
2.9 Chapter Summary . 16

3 Research Methodology 17
3.1 Introduction . 17
3.2 Service Migration by containers 17

3.2.1 Investigating different migration mechanisms 18
3.2.1.1 KVM . 18
3.2.1.2 Docker . 18
3.2.1.3 LXD CRIU . 18
3.2.1.4 Unikernels KVM 18

3.2.2 Kubernetes Model . 18
3.3 VANET Clouds . 19
3.4 Experimental Testbed . 20
3.5 Use cases . 23

3.5.1 Fuse File System . 23
3.5.2 Network Memory Server 23

3.6 Formal Methods approach . 24
3.6.1 Formal Verification Method or Symbolic Models 24

3.7 Model checker tools . 25
3.8 AVISPA tool . 25

3.8.1 Architecture of AVISPA tool 26
3.9 ProVerif Tool . 28

3.9.1 Architecture of ProVerif tool 28
3.9.2 Secrecy Formalization . 29
3.9.3 Authentication Formalization 29
3.9.4 Comparison of AVISPA and ProVerif tools 29

3.10 Chapter Summary . 30

4 Resource Allocation Algorithm (RAS) for Service Migration 31
4.1 Brief Introduction . 31
4.2 Resource Allocation Algorithm (RAS) for Service Migration . . . 31
4.3 RAS Server in detail . 32
4.4 Resources in general . 33

4.4.1 CPUs . 33
4.4.2 Memory . 34
4.4.3 Networking requirements 34
4.4.4 Storage . 34

4.5 PSEUDO CODE for RAS . 35

vi

CONTENTS

4.5.1 Advertising Cloud Formulation 35
4.5.1.1 General Notations 35

4.5.2 Receiving Servers Formulation 36
4.5.2.1 General Notations 36

4.5.3 Resource Allocation Server 37
4.5.3.1 General Notations 37

4.6 Chapter Summary . 38

5 Introduction to RASP Protocol 39
5.1 Brief Introduction . 39
5.2 RASP protocol – An Overview . 39

5.2.1 The Server . 40
5.2.2 Cloud Facilities . 40
5.2.3 The Registry . 41
5.2.4 Nonces (N) and Timestamps (T) 41
5.2.5 General Notations . 41

5.3 Algorithm1 of first approach . 42
5.4 RASP Algorithm V1 . 43

5.4.1 Stage 1: Advertisement . 43
5.4.2 Stage 2: Authentication of SA and CB as well as migration

request and response . 43
5.4.3 Stage3: Migration transfer 44

5.4.3.1 Key Observations 44
5.4.4 Stage4: Update of New service location to the Registry . . 44

5.5 Evaluation of the First Attempt 46
5.5.1 HLPSL Specification . 46
5.5.2 OFMC and ATSE . 47

5.6 Rasp Algorithm V2 Second approach 48
5.6.1 Using Symmetric key . 49

5.6.1.1 General Notations 50
5.6.2 RASP for Migration between server on Cloud CA to Cloud

CB . 50
5.6.3 The RASP Protocol in detail 51
5.6.4 Stages in detail . 52

5.6.4.1 Stage 1 . 52
5.6.4.2 Stage 2 . 53
5.6.4.3 Stage 3 . 53
5.6.4.4 Stage 4 . 54

5.7 Modelling the Protocol by using ProVerif 54
5.7.1 Part1: Declarations . 54

vii

CONTENTS

5.7.2 Part1a: Modelling Constructor and Destructor for Crypto
primitives . 55
5.7.2.1 Symmetric Encryption 56
5.7.2.2 Asymmetric key Encryption 57
5.7.2.3 Session key encryption 57
5.7.2.4 Signatures . 57

5.7.3 Part2: Process macros . 57
5.7.4 Part3: main processes . 58

5.7.4.1 Evaluation of the Second Attempt 60
5.7.5 ProVerif Results . 60

5.7.5.1 Nonces are secured and not derived by the attacker 60
5.7.5.2 The session key is not derived by the attacker . . 60
5.7.5.3 Private keys of SA & CB are not derived by the

attacker . 61
5.7.5.4 Authentication SA to CB and CB to SA is true . 61

5.7.6 Query attacker () . 62
5.8 Chapter Summary . 62

6 New mechanisms to provide more security in Service Environ-
ments 63
6.1 Brief Introduction . 63
6.2 Capabilities . 63

6.2.1 Capability structure . 63
6.2.1.1 Type Field (8 bits) 64
6.2.1.2 SYS Field (4 bits) 64
6.2.1.3 Property Field (12 bits) 65
6.2.1.4 Object ID (72 bits) 65
6.2.1.5 Random Bit Field (16 bits) 65
6.2.1.6 Hash Field (16 bits) 65

6.2.2 Rules for Capabilities . 65
6.3 New Service Management Framework 66
6.4 SSP Protocol - An overview . 68

6.4.0.1 General Notations SSP Algorithm 71
6.5 ProVerif results . 73

6.5.1 Queries for Private keys 73
6.5.1.1 Queries for nonces 74
6.5.1.2 Queries for Symmetric key 74
6.5.1.3 Queries for authentication of Server event and

CMS event . 75
6.6 Chapter Summary . 75

viii

CONTENTS

7 Implementation 76
7.1 Brief Introduction . 76
7.2 Basic capability System Library (BCSL) 76
7.3 Filesystem structure . 77

7.3.1 Data blocks . 78
7.3.2 The structure of CAP FILE 78
7.3.3 inode . 79
7.3.4 RPC . 80

7.4 Normal NMS operation . 81
7.4.1 Fuxfs server . 81
7.4.2 Fuxfs client . 82
7.4.3 Make Fuxfs Multithreaded 82

7.5 SMF . 83
7.5.1 Register Service . 83
7.5.2 Register User . 83
7.5.3 Register Device . 83
7.5.4 Add Server . 83
7.5.5 Request Service . 84
7.5.6 Migrate Service . 84

7.6 Testing and Evaluation . 84
7.6.1 Docker in detail . 84
7.6.2 Docker Hub . 84
7.6.3 SMF - FUSE as a Service 84
7.6.4 Steps for FUSE Server Migration in Docker Mechanism . . 85

7.7 FUSE Server Migration in Docker - Results 85
7.7.1 Source code compilation in Command Prompt 85
7.7.2 Docker build - Fuse server 85
7.7.3 Create private repository in Docker Hub 86
7.7.4 Push a Fuse container image to Docker Hub 87
7.7.5 Run image from Docker Hub 89
7.7.6 Starting the Service Management Framework 90
7.7.7 Fuxfs server start up . 90
7.7.8 Fuxfs client start up . 91
7.7.9 Making the Super user . 91
7.7.10 Make user . 91
7.7.11 Make device . 92
7.7.12 Make service . 93
7.7.13 Add Server . 94
7.7.14 Request service . 94
7.7.15 Migrate service . 94
7.7.16 Migrate service using Docker 96

ix

CONTENTS

7.7.17 Migrate service - Container Running Status 97
7.7.18 Final results of SMF . 97

7.8 Chapter summary . 99

8 Conclusion and Future Work 100
8.1 Contribution of the Thesis . 100
8.2 Contributions to the research . 101
8.3 Contribution to the Field . 102
8.4 Conclusion and Future Work . 102

Bibliography 103

Appendix 109
.1 Docker installation . 109

x

List of Figures

1.1 Cloud Layers . 3

2.1 YComm Architecture . 11
2.2 Service Migration Framework . 13

3.1 VANET Clouds . 19
3.2 VANET Clouds - FUSE and NMS 20
3.3 Full Coverage and Overlapping Map for A41, Watford Way, Hen-

don, London . 22
3.4 Fuse Architecture with NMS . 24
3.5 Architecture of AVISPA tool . 26
3.6 Architecture of ProVerif tool . 29

4.1 Resource Allocation Table . 33

5.1 Migration from Cloud A to Cloud B 40
5.2 Migration from Cloud A to Cloud B 46
5.3 OFMC: Cloud A to Cloud B . 47
5.4 ATSE: Cloud A to Cloud B . 47
5.5 Migration from Cloud CA to Cloud CB 49
5.6 Second Attempt Migration between SA to CB 52
5.7 ProVerif - Declarations . 55
5.8 ProVerif - Constructor and Destructor for Crypto primitives . . . 56
5.9 Server SB processes . 58
5.10 Cloud CB processes . 59
5.11 Registry server . 59
5.12 Main Process Macros . 60
5.13 Second Attempt results using Proverif 61

6.1 Capability Stucture . 64
6.2 Capability Stucture . 64
6.3 Effect of introducing SMF in the client-server environment 67

xi

LIST OF FIGURES

6.4 Service Migration Prototype . 67
6.5 Secure Service Protocol . 69
6.6 SSP protocols Results . 73

7.1 Basic capability System Library (BCSL) 77
7.2 Normal NMS operation . 81
7.3 Fuxfs Multithread . 82
7.4 Fuse Server - Build . 86
7.5 Docker image for Fuse Server . 86
7.6 Docker Hub - Private repository Created 87
7.7 Docker Hub - Private repository 87
7.8 Fuse Container pushed to Docker hub 88
7.9 Fuse Container pushed to Docker hub 88
7.10 Run image from Docker Hub . 89
7.11 SMF Execution . 90
7.12 Fuxfs server start up . 91
7.13 Fuxfs client start up . 92
7.14 Making superuser . 92
7.15 Make user . 93
7.16 Make device . 93
7.17 Make service . 94
7.18 Add Server . 95
7.19 Request service . 95
7.20 Migrate service . 96
7.21 Migrate service . 96
7.22 Migrate NMS service using Docker 97
7.23 Docker Status: Fuse Container is running 98
7.24 SMF, FUSE Client and Server and Docker Status: Fuse Container

is running . 98

xii

List of Tables

5.1 General Notions . 42
5.2 General Notations . 50
5.3 Query attacker of results . 62

6.1 General Notations . 72
6.2 QUERY ATTACKER() RESULTS 74

xiii

Chapter 1

Introduction

1.1 An Overview of Commercial Cloud Systems

Cloud computing is an emerging technology and along with mobile services, is
rapidly becoming the next Internet-based enterprise platform. These cloud com-
puting environments provide on-demand network access to a shared pool of con-
figurable computing resources, (e.g. Networks, Servers, Storage, Applications),
and any other available resources that can be rapidly provisioned with minimal
management effort or extra provider interaction Cloud (2011). Clouds can be
divided into public (e.g. Gmail, Amazon Elastic Compute Cloud (EC2), IBM’s
Blue Cloud, Google AppEngine, and Microsoft Windows Azure Services Plat-
form), private (e.g., a company or school owns the resources and only members
of that entity can have access to it) and hybrid deployments. Clouds can provide
services in three different ways such as Software as a Service (SaaS), Platform
as a Service (PaaS), and Infrastructure as a Service (IaaS). In cloud computing
environments, there are two members: data owners or cloud users, and Cloud
Service Providers (CSPs). On one hand, data owners are migrating their data
to Cloud Storage platforms without buying any physical storage devices. Many
companies find that it is the best way to manage the expenditure instead of buy-
ing, installing, maintaining computational resources. This approach gives many
benefits to large enterprises and to individual users because it reduces the cost
of storage services and allows these services to be managed in a more dynamic
way. As a result, it has become a highly cost-effective way of delivering services
to end-users. On the other hand, this has made Cloud Services popular among
service providers who wish to offer processing and storage resources for various
purposes. An increasing number of Commercial Cloud Services offered by several
CSPs are available in the market and they hold massive computing resources in
their Cloud servers/data centres and provide heterogeneous types of resources
(Processors, Memory, and Network, etc.) at different prices and with the differ-

1

ent speeds and Qualities of Services (QoS). For example, the top Cloud Service
Providers including Google, Microsoft, Amazon, and Rackspace actively adver-
tising their Cloud Services. Additionally, these Providers will actively advertise
their Cloud resources to services that will use these advertisements to dynamically
migrate their servers to these Clouds. Cloud computing is, therefore, facilitating
the migration of data and services. These services are called mobile services and
will be used to support mobile users as they move around. These services can
migrate between Clouds and thus reduce the latency between the service and
mobile users, hence maintaining a good QoS for users. Additionally, the Cloud
services are built using virtualization techniques as explored in the development
of VMware and Citrix Systems. This thesis focuses more on commercial Cloud
services rather than Private Clouds, to make our efforts useful to organizations.

1.2 An overview of Cloud services

The Cloud system offers a vast range of options, from the basics of computer
storage, memory to powerful technologies such as Internet of Things (IoT) and
Artificial Intelligence (AI) as well as standard web applications over the Internet.
There are three types of Cloud services paradigms available Zhang et al. (2010).

The most widely known service is Infrastructure as a Service, where Cloud
providers offer infrastructures such as data centre frameworks, virtual servers,
storage, and networking. This is an advantage for start-up companies or
existing organisations to run the company without the need to buy physical
hardware for servers, etc.

The second type is Platform as a Service. It supplies the tools and technologies
that allow applications to be built on top of virtual servers, networks, and
storage. This service includes applications, database management, operat-
ing systems, and development tools.

The third type, Software as a service, is the most widely known and used on a
day-to-day basis, such as web-based apps, backup storage, project manage-
ment tools. SaaS therefore provide the entire suite of hardware and software
resources to run businesses and enterprises using Cloud Services.

Clouds can provide the type of services in three different ways which are presented
with examples in Figure 1.1 below.

Public cloud: As the name implies, a public Cloud implementation makes its
resources available to access via Internet. These clouds are open to everyone
who requests the services which are offered (e.g. Gmail, Examples of public

2

Figure 1.1: Cloud Layers

clouds include Amazon Elastic Compute Cloud (EC2), IBM’s Blue Cloud,
Google AppEngine and Microsoft Windows Azure Services Platform).

Private cloud: It belongs to an organization and is only accessible to that or-
ganisation for internal purposes. We refer to a private implementation as
a community Cloud if it is used by numerous organisations with the same
goal (e.g. A company or school owns the resources and only members of
that entity have access to it).

Hybrid Cloud: Hybrid Cloud is a combination of the private and public Cloud
approaches. As a result, while some data processing or storage is done on
a private Cloud, the majority is done on a public Cloud.

1.2.1 Cloud Advertisement in Commercial Environments

Cloud computing services are becoming more popular and hence their services
are actively advertised to other services. This is being implemented using bea-
con dissemination-based stations that will be deployed in busy places to send
advertisements for selling services and products to users with mobile devices (e.g.
Apple IBeacon).

1.3 Vehicular Ad-hoc Networks

Vehicular Ad-hoc Networks (VANETs) was first proposed and introduced in 2001
as car-to-car ad hoc mobile communication and networking applications, in which
networks can be built, and information can be transmitted among cars. VANET
is an example of a highly mobile environment and hence it will be investigated

3

for this research. Additionally, VANETS introduce the concept of beaconing.
This can support the Cloud service marketplace as the first point for users to
find out about different services. Due to the increase in the number of cloud
advertisements, it is difficult to find the right advertisement within the usual
timescale Hussain et al. (2012).

1.4 Mobile Edge computing

Mobile Cloud Computing integrates cloud computing with the mobile environ-
ment. For example, video streaming companies (e.g. Netflix, YouTube) and
Cloud gaming (e.g. Google stadia) require low latency and high bandwidth,
which must be guaranteed as users move around to ensure a better QoS for end-
users. Support for seamless connectivity in highly mobile environments is now
required as traditional reactive handover techniques have been found to be in-
adequate because of high speeds. The Y-Comm Framework Mapp et al. (2007)
is one of the modern architectures designed to build future mobile networks by
integrating communications, mobility, QoS, and security. The emergence of new
networks such as VANETs needs services to be closer to the mobile user as they
move around. Mobile Edge Computing (MEC) introduces a pristine environment
that allows services to be moved closer to the user, which is from a centralized
cloud to the edge of the network.

1.5 The evolution of mobile services

Service providers provide a pool of computing services to satisfy the computing
needs of multiple users via the Internet. The pooled resources are distributed
across many users based on their requests. For example, using virtualization
techniques, such as VMware, Container technologies such as LXD, Unikernels,
and Docker Pentyala (2017), orchestration technologies for containers such as
Kubernetes, checkpoint/Restore in User-space (CRIU), proper resources alloca-
tion techniques and mathematical algorithms, these Cloud Services are support-
ing a large base of users with diverse needs. Now, what is therefore needed are
proper resource allocation mechanisms to support mobile services. Furthermore, a
service-oriented architecture that supports service migration in highly mobile en-
vironments by using multifunctional edge clouds, which are used to move servers
closer to the location, is needed to migrate the services. It is important to develop
a new service-oriented architecture to maintain useful resource management and
secure service migration. Sardis proposed a reference model for service migra-
tion Sardis et al. (2013). However, this model doesn’t cover security and privacy,
which is the main concern hindering the large-scale deployment of mobile services.

4

It is crucial to provide a secure service to all users in a network and therefore, a
new security framework must be looked at in detail. This research uses a concept
of capabilities, and shows how a capability-based approach could be adopted to
provide Authentication, Authorization, and Accounting is also called “AAA” for
mobile users, applications, and devices.

1.6 Resource allocation and security for the Mo-

bile service environment

Even though these Cloud Services have already played a vital role in the comput-
ing world, it suffers from several security concerns, challenges in resource alloca-
tion, and threat issues that can inhibit the functioning of entire Cloud systems
and services. In particular, it is essential to ensure that servers do not end up
being hosted on unsafe Cloud systems that can affect mobile services, and Clouds
do not end up hosting malicious servers that can damage Cloud infrastructure
Karthick et al. (2017). Hence, there is a big challenge on the Cloud resource man-
agement and security components in mobile clients. However, these challenges
about Cloud Services are truly an opportunity to further enhance the Cloud to
make it more useful to migrate their services to safe Cloud servers. Additionally,
in these environments, resources must be quickly allocated and de-allocated as
users move around Paranthaman et al. (2019). Hence, proper resource allocation
management must be considered a key enabling mechanism to allow seamless
connectivity and to provide QoS in highly mobile environments.

1.7 Secure protocol solution approach

In order to develop a viable solution, techniques of verification must be applied
to prevent the process and a sequence of operations that ensures protection. The
Formal Methods approach is the process of verifying system behaviour on mod-
elling the security protocols and then defining the expected security properties of
security protocols using formal semantics, assertions, and applying mathematics
to the problem. It helps find ambiguity, inconsistently, incompleteness in the sys-
tem specification and to enforce the desired behaviour of the system. This thesis
considers resource allocation for service migration in Cloud environments that
helps reduce operational costs, to build a widely distributed development and de-
ployment team in organizations to access applications via the Internet, increase
scalability, performance and expand the business geographically. Therefore, de-
veloping a Resource Allocation Security Framework for highly mobile systems
would be the best option to achieve a realistic model which can be applied to

5

most service systems.

1.7.1 Research Aims and Objectives

This research addresses this issue in the context of the Service-Oriented Frame-
work described by Sardis et al. (2013). Service migration has been proposed for
many environments and is increasingly being used in Cloud infrastructure. Edge
computing using Clouds introduced to reduce delays has been growing rapidly
and enables support for mobile services in highly mobile environments such as
Vehicular Ad-hoc Network (VANETs). Most of the work focused on achieving
fairness through techniques like edge computing, service-oriented framework, and
Y-Comm Architecture Mapp et al. (2007). Though all these mechanisms are
promising developments, it is necessary to consider resource allocation and se-
cure Cloud service migration in order to develop a new system for highly mobile
environments.

� The project’s technical objectives are to develop a resource allocation
protocol that allows the migration of valid services to safe Cloud environ-
ments. This will allow services to be safely migrated closer to the users as
they move around. These suggested mechanisms will be verified by AVISPA
and the ProVerif tool.

� It is to incorporate new Capabilities and mechanisms for providing Authen-
tication, Authorization, and Accounting(AAA) to authenticate the servers
and the Cloud Systems.

� The next step is to develop a new Service Management Framework(SMF)
that can use the RASP protocol to manage the migration or replication of
the services in Cloud systems.

� All the above mechanisms will be incorporated with the RASP protocol
to form a Secure Service Protocol(SSP) that can be used to manage any
service.

� To develop a simple prototype of the system using a Basic Capability System
Library (BCSL) and Docker with the Network Memory server as a service
for migration.

1.7.2 Research Question

This thesis, therefore, looks at secure service migration and resource allocation in
future networks. The key research question that must be addressed in this the-
sis is: “How can a Resource Allocation Security Framework be used

6

for secure service migration to protest against attacks and be imple-
mented in VANET cloud environments?”

This research question will be pursued by investigating the following issues.

1. How do we design a simple and fast resource allocation system that takes
into account the resources available and the resources being used to allow
the movement of services in a highly mobile environment?

2. What type of secure resource allocation protocol should be developed to
securely migrate services from one Cloud system to another given avail-
able resources? How should we show this security protocol is correct using
cryptographic model checkers such as the AVISPA tool and ProVerif tool?

3. What new mechanisms are to be introduced to provide authentication, au-
thorization, and accounting (AAA) such that the system will also be secure
from a user and device perspective?

4. In order to test these mechanisms, we will build a basic prototype that
shows how these mechanisms can be implemented.

1.7.3 Thesis Outline

� Chapter 1: provides an introduction of Cloud computing, Cloud services,
resource allocation, research questions, as well as research aims and objec-
tives.

� Chapter 2: the related work presents background information of the exist-
ing solutions and approaches produced by researchers, scientists, and groups
on Cloud computing environments and research analysis for resource allo-
cation, attacks in service migration.

� Chapter 3: details the methods, algorithms, tools, and approaches used for
conducting this research.

� Chapter 4: details the resource allocation algorithm.

� Chapter 5: Formal modelling and verification to verify an abstract protocol
using AVISPA and ProVerif tools are presented in this chapter.

� Chapter 6: discusses the new mechanisms such as Capabilities, Service
Management Framework and SSP protocol. SSP protocol verified using the
ProVerif tool.

� Chapter 7: details the implementation of a basic prototype. Fuse/NMS is
a use case which will be used in Docker container for service migration.

7

� Chapter 8: concludes this thesis with a summary of the research, contri-
butions of this thesis, and directions for future work, to ensure continual
improvement in our research.

1.7.3.1 List of Publications

The content of this document is part of on-going research, some of which was
presented in the following publications:

1. Gayathri Karthick, Glenford Mapp, Florian Kammueller, and Mahdi Aiash.
2017. Exploring a Security Protocol for Secure Service Migration in Com-
mercial Cloud Environments. In Proceedings of International Conference
on Internet of Things, Data and Cloud Computing, Cambridge, United
Kingdom, March 2017 (ICC’17), 7 pages.
DOI: http://dx.doi.org /10.1145/3018896.3056795 Karthick et al. (2017).

2. Gayathri Karthick, Glenford Mapp, Florian Kammueller, and Mahdi Aiash.
2017. Formalization and analysis of a Resource Allocation Security Protocol
for Secure Service Migration, 2018 IEEE/ACM International Conference
on Utility and Cloud Computing Companion (UCC Companion) Karthick
et al. (2018).

3. Gayathri Karthick, Glenford Mapp, Florian Kammueller, and Mahdi Aiash.
2019. Exploring a Secure Service Migration in Commercial Cloud Envi-
ronments - The 26th Workshop on Automated Reasoning (ARW 2019),
Middlesex University, London Gayathri Karthick et al. (2019).

4. Jose Guillermo Ramirez Gil, Onyekachukwu Augustine Ezenwigbo, Gay-
athri Karthick, Dr. Glenford Mapp, Dr. Ramona Trestian. A New Service
Management Framework for Vehicular Networks. ICIN 23rd Conference
on Innovation in CLouds, Internet and Networks(ICIN2020) Ramirez et al.
(2020).

5. Onyekachukwu Augustine Ezenwigbo, Jose Guillermo Ramirez Gil, Gay-
athri Karthick, Dr. Glenford Mapp, Dr. Ramona Trestian - Providing
Reliable Network Storage in Highly Mobile Environments: Challenges and
possible Solutions. ICC2020 -IEEE International Conference on Communi-
cations Ezenwigbo et al. (2020).

6. Karthick, G, Mapp, G, Kammueller, F, Aiash, M. Modelling and verifying
a resource allocation algorithm for secure service migration for commercial
cloud systems. Computational Intelligence. 2021; 1– 18 Karthick et al.
(2021).

8

7. Vithanwattana, Nattaruedee, Karthick, Gayathri, Mapp, Glenford E. and
George, Carlisle (2021) Exploring a new security framework for future
healthcare systems. In: IEEE Global Communications Conference, 07-11
Dec 2021, Madrid, Spain [Hybrid: In-Person and Virtual] Vithanwattana
et al. (2021b).

8. Nattaruedee Vithanwattana1*, Gayathri Karthick1, Glanford Mapp1, Carlisle
George1 and Ann Samuels2-Securing Future Healthcare Environments in a
post-COVID-19 world: Moving from Frameworks to Prototypes, Springer
Nature 2021 - submitted status.

9

Chapter 2

Related work

2.1 Literature Review

2.1.1 Brief Introduction

This chapter is broken down into three parts. The first part focuses on the techni-
cal background, which introduces us to numerous technologies designed to achieve
seamless communication. Secondly, it details the related work of researchers who
investigated the resource allocation applied in a highly mobile environment in the
Cloud. Finally, the third part describes the research gap which will be the focus
of this research effort.

2.2 Supporting Highly mobile Environments

In the computing world, many systems are associated with different machines that
are geographically distributed. In the last few years, we have seen a dramatic
improvement in Cloud Computing that provides resources as a service. It is
because of the emergence of IOT devices, Big Data (e.g. flight signals), and social
networks such as Facebook and Twitter, that produce a large amount of data that
needs to be stored and migrated successfully to safe Cloud environments. Several
research efforts were carried out looking at the migration, handover, storage and
web applications for highly mobile environments but few addressed the issue of
secure service migration in Cloud Systems.

Sardis’s framework Sardis et al. (2013) and Huang et al. (2016) clearly show
that researchers are interested in service management and hosting services on
Edge Cloud servers. However, these efforts did not include looking at security in
service migration and a new security framework as highlighted in Service Man-
agement Framework Ramirez et al. (2020). This chapter presents an extensive

10

analysis of various research efforts that investigated resources in Cloud, Y-Comm
Framework, Service Management Framework, and resource allocation and secure
service migration applied in highly mobile environments.

2.2.1 Y-Comm Reference Framework

In this new environment, mobile users will demand to be always connected using
heterogeneous networking. Mobile devices will, therefore, have several wireless
interfaces including Wi-Fi, LTE, 5G, satellite and Ultra-Wideband interfaces.
These networks will seamlessly work together using vertical handover techniques.
The OSI model is no longer sufficient for dealing with connectivity in the mod-
ern era of mobile users and devices. Hence, Y-Comm is an architecture (Fig-
ure 2.1(b)) that has been designed to build future mobile networks by integrating
communications, mobility, QoS and security. It accomplishes this by dividing the
Future Internet into two frameworks: Core and Peripheral frameworks as shown
in Figure 2.1(b) Mapp et al. (2007).

Cloud Systems should able to allocate their resources without delay in order
to ensure a sustainable QoS for mobile users. Indeed, it has been suggested
that we need a modern architecture which provides communication, mobility
and QoS and security. Hence, the Y-Comm framework is considered one of the
key concepts of enhancing QoS in Vehicular Clouds. The Internet is currently
evolving. Instead of large, global, but individually-managed networks, a core
network is being deployed which is fast and getting faster with peripheral wireless
networks situated at its edges. A Core Endpoint is an entity which is at the edge
of the core network and is used to connect different types of wireless systems as
shown in Figure 2.1(a). Vertical handover techniques are used to maintain the
connection between the MN and the core network via the Core Endpoint as the
user moves around.

CORE NETWORK
QoS, Secure Connection

PERIPHERAL
WIRELESS
NETWORK

PERIPHERAL
WIRELESS
NETWORK

Core Endpoints

(a) Core and Peripheral Networks

HARDWARE PLATFORM
(BASE STATION)

NETWORK ABSTRACTION
(MOBILE NODE)

NETWORK ABSTRACTION
(BASE STATION)

HANDOVER MANAGEMENT

MOBILITY MANAGEMENT

END SYSTEM TRANSPORT

QOS LAYER

APPLICATION ENVIRONMENTS

CONFIGURATION LAYER

NETWORK MANAGEMENT

CORE TRANSPORT

NETWORK QOS LAYER

SERVICE PLATFORM

CORE NETWORKPERIPHERAL NETWORK

SAS

NTS

NAS

QBS

SECURITY LAYERS

HARDWARE PLATFORM
(MOBILE NODE)

(b) Reference Framework

Figure 2.1: YComm Architecture

The researchers of Y-Comm have made major contributions in the areas of

11

proactive handover as well as introducing new concepts in security such as Tar-
geted Security Models.

A more detailed description of Y-Comm framework is given Mapp et al. (2016).
However, it should be noted that Y-Comm supports a layer for mobile services
called the Service Platform Layer in the Core Network. This layer allows services
to be installed and managed coherently in future networks including support for
mobile services.

2.2.2 Cloud advertisement in Commercial Environment

The authors Ullah et al. (2016) attempted to address the development of a secure
commercial advertising scheme for Vehicular networks. They proposed a scheme
name called “Business discovery (BUY)” that presents the concept of the bea-
coning market using a Vehicular network. The authors Xiao et al. (2016) have
observed, that among various vehicular applications, the most promising strate-
gies involve the dissemination of commercial advertisements via car to RSU and
car to car communication.

2.3 Service Oriented Architecture (SOA)

Cloud-based services and Service-Oriented Networks can improve QoS and load
balancing on a global scale even further. In the Service Oriented Architecture
(SOA) model, heterogeneous services are invoked via their interfaces to create
more complex services such as support for Virtualization Erl (2007). Cloud com-
puting is an example of a SOA application, where many components and services
that are running on various parts of the infrastructure come together to provide
a client with a whole business solution. Network resources running on underly-
ing infrastructure can be virtualized with the use of the same service-oriented
paradigm, thereby separating the infrastructure from the network services. In
Shashwat and Kumar (2017), the authors proposed a model called the “service
identification model for service-oriented architecture” which helped to reduce the
response time of the services and find the right service within the specified time.
Service identification will be easy if we follow distributed-based functionalities for
our service.

2.4 Sardis Framework

A new service-oriented framework for mobile services was proposed by Sardis, to
support the automatic migration of services based on the amount of traffic they
generate and on what QoS their clients are receiving. To achieve this, a service

12

must be aware of its own geographical location and the locations of its clients.
Additionally, it will also require access to a global map of Cloud locations to be
used as a reference for moving itself as close as possible to its clients. To provide a
complete set of mechanisms to enable mobile services, it was necessary to develop
a new service-oriented architecture that allows services to be managed, copied,
or migrated to support mobile users. The system should also provide algorithms
that incorporate traffic management and the QoS requirements of the flow. This
new framework was proposed in Sardis et al. (2013) and has six layers as shown
in Figure 2.2, Service framework is briefly described below

Figure 2.2: Service Migration Framework

This framework is a powerful framework that can be used by all services to
migrate servers from one Cloud to another Cloud. The work of Sardis showed
that to migrate a service, it is necessary to compare the time taken to migrate
the service with the amount of time the user will be in the region concerned.
Hence, the mobility model of the user must be considered. Sardis used a simple
queuing model to represent user mobility in mobile networks. Using this service
framework, Sardis demonstrated several mechanisms to ensure the migration of
services including algorithms to determine when it is beneficial to migrate the
services looking at the time it would take to move the service to the new network.
Additionally, an analytical model was developed to analyze the increase in latency
as the mobile user moved away from the service, hence it was possible to satisfy
both requirements. However, the security aspects of migrating services using
Cloud Interoperability mechanisms fell outside the scope of his research. There
are several other aspects of the proposed system that present potential security
weaknesses. The main security concern is that of ensuring that performance

13

data for an individual client and service are exchanged in a way that prevents
impersonation or tampering.

2.5 Mobile Edge computing

Mobile cloud computing (MCC) provides a seamless connection in mobile appli-
cations and devices by integrating Cloud computing into the mobile environment
Li et al. (2016). However, the growing number of Cloud services (e.g. OneDrive,
Zoom Cloud meetings), and the realization of new services (AI, IoT, smart wear-
able devices such as fitness trackers, smart clothing, smartwatches, etc.) and
advanced services (self-driving, Augmented reality, virtual reality) include high
network load. Mobile Edge computing (MEC) is a new network architecture that
moves the computing of traffic and services from a centralized Cloud to the net-
work’s edge, bringing it closer to the mobile user. It’s now an upward paradigm
that offers endless possibilities and performance metrics such as high availability,
distributed, low latency, direct access to real-time network information, and high
bandwidth approach for user workloads. MEC improves delay-constrained of-
floading in Cloud-enabled vehicular networks. The authors in Zhang et al. (2016)
proposed a vehicular offloading framework in a Cloud-based MEC environment.
They investigated the computation offloading mechanisms and could check the
latency and resource limitations of MEC servers. This work enabled the proposal
of a computation and resource allocation. The method described by Kikuchi
et al. (2017) is a MEC-based VM migration scheme in which VM migration is
performed to reduce congestion at the edge of the network. They solved two QoS
issues: the congestion of wireless access networks and congestion of computing
resources at the edge based on network TCP throughput by considering various
network scenarios that increase network TCP throughput. Therefore, to achieve a
fast and secure service migration, we need the services at the edge of the network
between Edge Clouds.

2.6 Container technology

This section describes service migration technologies that existed from the old to
the latest. Virtualization is a computing software that allows users to use multiple
OS, programs and deploy apps on one physical computer Gao and Tang (2013).
System virtual machines provide substitutes for a real machine and provide the
functionality needed to execute the entire operating system. A hypervisor uses
native execution to share and manage hardware, allowing for multiple environ-
ments which are isolated from one another, but still exist in the same physical

14

machine. Process virtual machines are designed to execute computer programs
in a platform-independent environment.

The entire machine is virtualized down to the hardware layer, and the con-
tainer virtualizes only the software layer above the operating system level. Many
container technology mechanisms have made migration possible, such as Docker,
KVM, and Universals.

2.7 Resource allocation applied in Highly Mo-

bile environment in Cloud

As discussed in Tordsson et al. (2012), the most used service models of Clouds
are data centres, virtualization Clouds, network resources, storage, CPUs, fire-
walls, and load balancers. The major Cloud Service Providers are Amazon Web
Services (AWS), Google, and Salesforce and simultaneously, the active larger IT
firms are Microsoft, IBM, and Dell. Therefore, many Commercial Cloud Services
are public Cloud computing services. The growing challenge is how Commercial
Cloud Services can efficiently allocate resources to meet the requirement of QoS.
In Paranthaman et al. (2019), the authors proposed a new method to support
proactive resource allocation for future networks such as Vehicular Ad-hoc Net-
works. As network resources are usually shared between many users, resource
management must be a key part of communication systems to ensure that, appli-
cations and servers receive their required QoS. In Paranthaman et al. (2019), the
authors investigated how Time Before Vertical Handover (TBVH) and Network
Dwell Time (NDT) for a mobile node in any given networking topology can also
be used to aid the proactive management of resources by analyzing the contention
between mobile users for communication channels in wireless networks. The re-
search determined the times when different nodes will need to acquire and release
resources due to mobility. Though contention analysis has been used to ana-
lyze systems such as wired and wireless networks, this work greatly extends this
approach to look at mobile heterogeneous environments where different cellular
technologies may be used. The approach is particularly suited to heterogeneous
systems where many networks may be operating at the same time in the local
area. Finally, the proposed approach only uses the mobility of the node and cover-
age of the network to determine the key input parameters. These parameters can
be determined in great detail for any networking technology and so this approach
can be integrated with other analytical techniques. Authors in Paranthaman
et al. (2017) investigated a new methodology to support proactive resource al-
location in highly mobile networks for emerging future networks such as 5G by
allowing base stations to calculate the probability of contention based on the de-
mand for network resources. Additionally, the proposed approach used Markov

15

chains to model the contention and showed the results based on system perfor-
mance in terms of throughput and mean response time. However, the authors
did not consider service migration. In Hamdy et al. (2017) the authors proposed
many resource allocation strategies and their challenges in which a Cloud system
can be defined as any mechanism that aims to guarantee that physical or virtual
resources are assigned correctly to Cloud users. For example, Linear Schedul-
ing Methods, Virtual machines, Nature Inspired Optimization Methods, Gossip
Protocol Based Methods, and Priority Based Methods. To efficiently allocate
resources, Cloud computing deals with various resource allocation techniques Be-
loglazov et al. (2012) and the dynamic allocation model Bhaavan et al. (2014).
However, no strategy talked above about security in highly mobile environments.
The main challenge is how secure resource allocation can be possible in highly
mobile environments.

2.8 Research Gap

Industries are increasingly embracing Cloud computing and the fast-developing
Internet. Simultaneously, the explosive growth of information has become a big
challenge to network security as discussed in Dutta and Hammad (2020). Mean-
while, these security concerns also highlight the need for security protocols and
algorithms to ensure secure communication between the parties as highlighted in
Blanchet et al. (2016). Typically, the goal of the service providers is to generate
revenue with minimum investment and to maximize resource usage. Resources,
such as CPU, memory, storage, network, and I/O must be allocated in an appro-
priate amount according to the capacity of Cloud servers in service migration.
Hence, resource allocation algorithms must be considered a key enabling mech-
anism to allow seamless connectivity and to provide QoS in highly mobile envi-
ronments. This thesis addresses these issues by proposing a Resource Allocation
Security Framework for commercial Cloud environments.

2.9 Chapter Summary

This chapter examined the concepts around resource allocation in networks and
service including the Y-Comm Reference Framework supporting heterogeneous
networks, Cloud advertisement in Commercial Environment, and Sardis’ refer-
ence framework for service migration, MEC is a new service model that requires
service migration to provide better QoS to clients. Furthermore, it looked at
other research concerning resource allocation in the highly mobile environment.
The research gap identified was the need to provide secure service migration from
one to another Cloud server using secure resource algorithm techniques.

16

Chapter 3

Research Methodology

3.1 Introduction

This research has the aim to develop a resource allocation security protocol for
secure service migration in commercial cloud environments. It is essential to
discuss the tools and techniques we used in our research. This chapter includes
containerization, formal methods and the Middlesex VANET Testbed which are
used in this research.

3.2 Service Migration by containers

Service migration has been proposed for many environments and is increasingly
being used in Cloud environments that support virtualization. Virtualization is
forming a virtualized version of a service like a server or a network to create
multiple execution environments. This is possible because the virtual machine
paradigm allows entire virtual machines to be migrated. It improves Cloud agility,
performance, and scalability among Cloud users. However, virtual machine mi-
gration can be expensive as the entire virtual machine has to be moved. The
emergence of containers as a lightweight technology to virtualize applications has
been leading to successful systems in service migration and particularly in man-
aging applications in the Cloud. The collection of nodes is called “Clusters.”
Often, management using container-enabled clusters is essential and the orches-
tration of construction and deployment have been driven by the need for faster
service or higher QoS. There are many container technology mechanisms, which
are gaining in prominence, that have made migration possible such as Docker in
which containers house several services.

17

3.2.1 Investigating different migration mechanisms

3.2.1.1 KVM

Kernel based virtual machine (KVM) is an open source technology and needs
their own kernel instance to run while containers share the same kernel or allows
the kernel to act as an hypervisor. However, these approaches assume that the
communication architecture does not support server migration, making it difficult
to apply these mechanisms in Wide Area Networks (WANs). Whenever a user
uses remote resources there is always a chance that sensitive data may fall into
wrong hands which involves the packaging of applications. There is an interest in
this area and hence I would like to explore a Resource allocation security frame-
work for secure service migration helping organizations securely move services
and applications to the Cloud.

3.2.1.2 Docker

Docker is an open-source containerization system. It has a small and lightweight
execution environment which the packaging of applications, operating systems,
source code with its dependences, links, libraries, and versions required to run
that code in any environment.

3.2.1.3 LXD CRIU

This supports for live migration in containers. Lxd depends on LXC and it
enables virtualization with its own process and network space.

3.2.1.4 Unikernels KVM

Unikernels KVM in which the operating system is bounded and customized to
run a single main application is the next emerging specimen of this genre. From
a management point-of-view, it makes server migration simpler.

3.2.2 Kubernetes Model

Kubernetes is a portable, widely used, open-source orchestration system Medel
et al. (2016) that provides APIs for automating the deployment, scaling and man-
agement of containerized applications. It was created by Google and originally
coded in the Go programming language and is now maintained by the Cloud
Native Computing Foundation. It is compatible with several container tools, in-
cluding the Docker mechanism. Although Kubernetes has many applications, it
is limited by a lack of QoS, the use of a basic resource algorithm, and a lack of
in-depth analytical modelling.

18

3.3 VANET Clouds

Vehicular Ad-hoc Networks (VANETs) are a key part of Intelligent Transport
Systems(ITS) to provide efficient and safe communication between Vehicles and
Infrastructure (V2I) using Road Side Units (RSUs) in Figure 3.1. This includes
data exchange between high-speed vehicles and between the vehicles and the
roadside infrastructure. It provides low latency and high bandwidth therefore,
it is an ideal environment in which to test our work. In Figure 3.2 shows three

Figure 3.1: VANET Clouds

wireless access points which are called Core Endpoint can be replaced as the RSU
referring back to the live experimental test-bed conducted Paranthaman et al.
(2016). Core Endpoints are connected to the core network; therefore the services
can run from the core network and also from the Core Endpoint. With the help
of Mobile Edge Clouds, we are able to run the service at the Core Endpoint;
this is to ensure low latency. When a mobile user using the VANET as a means
of communication, and then moves from Core Endpoint A to B while using an
internet service such as video streaming, the services will be migrated from Core
Endpoint A to B. In other words, to be able to move services from point A to B
or to C, a new service layer must be dedicated to the migration of services. This
layer takes into account of mobility, security and policy aspects as well as the
throughput, bandwidth and latency. The main reason why we are looking into
VANET is because it is an example of a highly mobile environment and hence
it will be investigated for this research. This helps us to address the research
question of migrating services from one server to another in cloud environments.

19

Figure 3.2: VANET Clouds - FUSE and NMS

3.4 Experimental Testbed

The distribution of Connected and Autonomous Vehicles (CAVs) would change
the environment we live in. In general, Connected Vehicles permit us to build
an ITS by enabling strong connectivity among vehicles and the transport infras-
tructure. This is referred to as Cooperative-ITS (C- ITS). The deployment of
C-ITS will result in better traffic and road management, fewer accidents, shorter
journey times, better collision avoidance mechanisms and increased efficiency to
manage major disasters. For better understanding nowadays, the building of
new technology is a necessity; the use of testbeds and applications will give us a
better understanding of this new era. Middlesex University and the Department
for Transport (DfT) have built a Connected Vehicle Testbed that uses ITS-G5
(VANET) technology. This section provides the details of the real experimental
VANET testbed. The Connected Vehicle Testbed was built by Middlesex Univer-
sity and the DfT using ITS-G5 technology. The testbed was built on the Hendon
Campus in London and alongside the surrounding roads and then extends to
the A41 (Watford Way) behind the campus. Four RSUs which were deployed
in the MDX buildings were backhauled using the university’s gigabit Ethernet
network and the three RSUs deployed along the A41 were backhauled using LTE
with a secure Virtual Private Network (VPN) tunnel service provided by Mobius
Networks. They are now fully operational and trials have been held to fully un-
derstand the technology and concerns around its wide-scale deployment as well
as communication dynamics to attain seamless communication for this environ-

20

ment. The individual coverage ranges attained by the RSUs located along the
A41 road and RSUs located on each MDX building are shown in the coverage map
using various coloured dots in Figure 3.3. The Hendon Campus and surrounding
roads were covered by the first four (1-4) RSUs - the area covered was about 0.7
miles/1.1 km. The other (5-7) RSUs covered the A41 as the coverage was from
the between the entrance of the Great Northern Way (above the brown line) to
Hendon Central Tube Station (underneath the blue line) – with a distance of 2
miles/ 3.2 kms. As such, the total coverage of the testbed was approximately 2.7
miles/ 4.31 kms.

21

Figure 3.3: Full Coverage and Overlapping Map for A41, Watford Way, Hendon,
London

22

3.5 Use cases

3.5.1 Fuse File System

File systems play a crucial part in every operating system. It is a place where
users keep their files. The organization of the file system also plays an important
role in helping the user find files. There are many file systems that have been
developed by different programmers. Every system has its own advantages and
disadvantages. It is vital for a user to select the most suitable file system. Having
a suitable and appropriate file system enables the computer system to operate
at higher efficiency. Additionally, a file system allows the user to attach special
attributes to the file such as the ownership of the file and permissions over the
file. The most common file system that are used by end users is NTFS which is
short for New Technology File System. Some file systems have special features,
some offer better reliability and robustness and some provide quicker read and
write speeds. However, there are some file systems do not run in the kernel;
instead, they run in user-space. This provides better flexibility as the kernel is
complicated. Hence, in my research, we show that by implementing File system
in User space (FUSE) with the Network Memory Server which is discussed below,
will provide more flexibility to potential NMS users Vangoor et al. (2017).

FUSE is a software interface that provides a bridge from the user space to
the kernel. This allows the file system to be placed user space and outside of the
kernel space. According to Layton et al, the illustration in Figure 3.4 describes a
file system named hello is compiled and being executed. When hello is executed,
the FUSE mounts the “test” file system in the directory “/tmp/fuse”. Here, the
user can store his/her data using this system. All the data will be stored in the
user space directory “/tmp/fuse”. Then the user executes an “ls –l” as shown in
the top left of fig, this command goes through the glibc to the VFS in the kernel.
The VFS then goes to the FUSE module. The FUSE module will contact the
hello filesystem through the glibc and libfuse (which is the FUSE library in user
space) and asks for the result of the command. The result will then be returned
back to the FUSE module and passed through VFS and finally to the “ls –l”
command.

3.5.2 Network Memory Server

The Network Memory Server (NMS) is an example of a simple, stateless service;
it stores blocks of data from clients in its memory (RAM). Clients can create,
read, write and delete blocks of data. The NMS is primarily a storage platform
for mobile users. In this thesis, we will explore the NMS as an example of a mobile
service as discussed in Chang et al. (2017). In this research we will use the NMS

23

Figure 3.4: Fuse Architecture with NMS

as a back network store for the a FUSE file system on the mobile node. Hence, we
will build a platform in order to migrate the NMS using Docker. The applications
that we will be looking at running on the NMS are, Streaming Applications, Web
services, and Vehicular services. The FUSE architecture with the NMS is shown
in Figure 3.4.

3.6 Formal Methods approach

3.6.1 Formal Verification Method or Symbolic Models

Industries are increasingly embracing Cloud computing and the fast-developing
Internet. Simultaneously, the explosive growth of information has become a big
challenge to network security. Meanwhile, these security concerns also highlight
the need for security protocols can be used to prove their security properties or
detect unpredictable attacks and discover new vulnerabilities. Therefore, security
protocols must be defined rigorously in order to be trusted to have some degree
of assurance that these protocols fulfil their goals. Security Protocols (SP) are
known as “cryptographic protocols” when we add security mechanisms such as
encryption, decryption, authentication, hash functions, digital signatures, ses-
sion keys between them until they communicate confidentiality. For example, the
TLS protocol was believed to be secure for 13 years while the Needham-Schroeder
Public key protocol was believed to be secure for 17 years before Lowe discovered
that it had a vulnerability attack. Therefore, in practical applications, security
protocols may be unruly realize their security properties or unpredictable attack

24

and vulnerability still exist. As a result, the correctness analysis of security pro-
tocols has become an important job to detect attacks in cryptoprotocols Chen
et al. (2016)). Additionally, the goals of security protocols are ensuring secrecy,
authentication, integrity, anonymity, and establishing session keys between enti-
ties. However, in hostile environments, hostile agents are referred to as attackers,
penetrators, or intruders that are deliberately trying to undermine the protocol.

The Formal Methods approach is often called the Dolev-Yao model due to
Needham Schroeder and Dolev-Yao cryptographic primitives. Here, crypto prim-
itives are black boxes and messages are terms, modelled by functions, symbols
in an algebra of terms, possibly with equations, and facilitates automatic proofs.
Here, the attacker has full control over all communications. In formal verification
methods, the protocol is analyzed to say whether the security properties are met
or not, or a reason is given why they are not met through an analysis attack
trace. Hence, rigorous methods have been developed for verifying security proto-
cols. The formal method approach is a more effective method to find attacks on
security protocols. Some of the formal verification methods are abstract state ma-
chines, Theorem proving, model checkers AR and Devane (2010). Additionally,
the process of this method verifies system behaviour on modelling the security
protocols and then defines the expected security properties of security protocols
using formal semantics, assertions, and applying mathematics to a problem. We
typically also want to analyze these protocols, where the adversary can look at
the resources, public keys, or compute the limited set of functions such as read
or delete any messages.

3.7 Model checker tools

Model checking is a technique that relies on building a finite model of a system
which is encoded into a modelling language and checking whether the desired
property holds in the model or not by providing an attack graph Clarke and
Schlingloff (2001). Various tools are available these days to verify the security
protocols. In this report, two popular cryptographic verification tools namely
AVISPA and ProVerif are used for analysis of the protocol.

3.8 AVISPA tool

AVISPA is an automated push button tool for the Automated validation of Inter-
net security protocols and Applications(AVISPA). It makes use of High-level spec-
ification language and offers a modular, expressive formal language for expressing
security protocols and features (HLPSL). This tool combines many backend tools
that use a number of automatic analysis techniques, including attacks on the

25

input protocol and infinitely many abstraction-based sessions of verification. For
example, IKEv2 ASW and Radius-SHA256.

3.8.1 Architecture of AVISPA tool

The architecture of the AVISPA tool is depicted in Figure 3.5. The HLPSL is
an expressive, modular, role-based, formal language that combines several back-
ends that carry out various automatic analysis methods. It also allows for the
specification of protocols and their security features. We believe that no other
tool offers the same level of scope and stability while still performing well and
scaling easily. The AVISPA tool uses an automatic translator to convert the user
defined protocol/problem into an intermediate format(IF) specification. This IF
specification describes an infinite-state transition system that is readily applicable
to formal analysis for states that represent attacks on the intended properties of
the protocol Armando et al. (2005). The tool integrates with four back-end tools:

Figure 3.5: Architecture of AVISPA tool

� On the On-the-fly Model Checker(OFMC),

� the Constraint Logic-based Attack Searcher (CL-AtSe),

� SAT-based Model Checker (SATMC)

� Tree Automata-based Protocol Analyzer (TA4SP)

26

Each back end tool has its own options and components to define the formal
verification Hurtado Alegŕıa et al. (2014), Armando et al. (2005).

� OFMC: The OFMC performs protocol falsification and bounded verifi-
cation for a number of sessions by exploring transition systems by an IF
specification in a skill manner. In addition, it considers both typed and
untyped models, supports algebraic properties of Crypt operators, and im-
plements number of symbolic techniques such that they do not lose any
attacks or introduce any new ones.

� CL-AtSe: The CL-AtSe performs protocol falsification and verification
for a limited number of sessions. The protocol messages can be either
typed (For example, integer) or untyped, handles XOR operator, and an
extensions of handling algebraic properties. This tool, built in a modular
way with some powerful simplification heuristics, performs several types
of optimization thereby reducing interruptions, redundancies, inefficiencies
and unnecessary branches in the protocol symbolic executions.

� SATMC: This tool considers the typed protocol method and performs
protocol falsification as well as finite number of session verification. This
tool can be used to generate a propositional formula that encodes a finite
unrolling of the IF-described transition relation, the initial state, and the set
of states that indicate a breach in the security properties in the protocol.
The modern SAT solver is then fed the propositional formula, and any
models it uncovers are converted back into attacks. This tool also supports
for reducing redundancies .

� TA4SP: This tool performs infinite protocol verification by attempting to
guess the intruder’s knowledge through the use of regular tree languages and
rewriting. When it comes to a protocol’s secrecy properties, this tool can
determine if it is flawed or whether it is secure for any number of sessions.

The four back-end tools of the AVISP implement different analysis techniques.
There is communication between the tools, and you need to specify the protocol in
HLPSL with the properties you want to verify, then invoke the back-end tool you
require. The Dolev-Yao model specifies the exchange of messages over the network
(DY model). After the execution process, the output describes the results of the
protocol. AVISPA provides the similar set up like DY Model to test the security
protocols in an environments as if they were tested in the real world. During the
simulation step, the DY model simulates an adversarial model to identify any
security weakness in the protocols. The output is listing the common format of
Summary, Details of bounded number of sessions and the goals. The AVISPA
model checker, a widely accepted tool, provides the results of whether the security

27

protocol is SAFE or UNSAFE. If the attacker can break the proposed security
protocol, the protocol declared as ”UNSAFE”. On the other hand, the proposed
protocol runs without any security breach, the protocol declared as ”SAFE” M
(2022).

3.9 ProVerif Tool

ProVerif performs automatic symbolic protocol verification by analysing crypto-
graphic protocols. It supports a variety of equations, rewrite rules (Constructor
and destructor), and cryptographic primitives. For infinite message spaces and
an unbounded number of sessions, it can demonstrate a number of properties,
including secrecy, authentication, and process equivalences. Horn clauses and
a portion of the Pi calculus are the two types of input files that ProVerif ac-
cepts. It uses security attributes as input and does verification using a dialect,
form, or extension of the applied pi-calculus or pi-calculus with cryptography.
The applied pi calculus is a language for modelling security protocols and it is a
language for studying concurrency and process interaction (e.g. Certified Email)
Abadi and Blanchet (2005). ProVerif is capable of providing reachability prop-
erties, correspondence assertions and observational equivalences Bruno Blanchet
and Sylvestre (2021). Cryptographic protocols are concurrent programs which in-
teract by using Internet or public channels. Following the Dolev-Yao model, the
attacker can see the channels which are controlled by cryptographic mechanisms.

3.9.1 Architecture of ProVerif tool

ProVerif has a large variety of protocol structures (event and the queries, private
channels, rewrite rules, etc.) and modelling primitives used by cryptographic
protocols (encryption, decryption, digital signatures, etc.). The ProVerif internal
abstraction uses queries to verify the security properties and attempts to prove
that there is a state in which the security properties are known to the attacker
or not. If the results of the queries are “True”, then the security property cannot
be derived by the attacker. Additionally, it verifies the properties of the security
protocol to prove secrecy (strong/weak), authentication and observational equiv-
alence for an unbounded number of sessions using an unbounded message space.
Figure 3.6 depicts how to declare the syntax for specifications of protocol, process
and results.

28

Figure 3.6: Architecture of ProVerif tool

3.9.2 Secrecy Formalization

In the ProVerif tool, to verify the secrecy of the term ”Message” in the model,
the following query function helps to find the confidentiality. Before the main
procedure, the following query is added to the input file to test the confidentiality
of the word ”Message” in the model: Query attacker(Message);

3.9.3 Authentication Formalization

In protocols, the definition of the correspondence is used to capture the relation-
ships between the events, which can be expressed as Statement 2 having been
executed, then Statement 1 having been previously executed. Each of those state-
ments includes parameters, which allows a relationship between the parameters
of events to be studied. For an example from Automatic Cryptographic Protocol
Verifier book Bruno Blanchet and Sylvestre (2021), the syntax to query a basic
correspondence assertion is: ”query x1 : t1, . . . , xn : tn ; event (e(M1, . . . ,
Mj)) ==¿ event (N1, . . . , Nk)). ” The concept of ”injective correspondence”
assertions captures the one-to-one relationship and authentication between each
occurrence of the event or the number of protocol runs performed by each entity
if desired.

By creating queries that accurately test the security characteristics against an
active attacker, ProVerif verifies the security properties to achieve security goals.
ProVerif was successful in validating confidentiality, authenticity, key exchange,
forward secrecy, and weak secrecy in the context of an active Dolev-Yao adversary.

3.9.4 Comparison of AVISPA and ProVerif tools

Using the AVISPA tool, we can show that the protocol specified runs without any
security breach. However, in order to create a complete security framework for
Cloud Systems, we also need to look at verification of the cryptographic protocols.
Furthermore, AVISPA is sufficient for abstract protocols but ProVerif may help
to better model the Cloud infrastructure, into the protocol thus allowing more
extensive properties to be detailed and proved Blanchet et al. (2016). When the

29

number of executions of the protocol is not bounded, the problem is undecidable
or it does not provide whether the proposed protocol runs with attacks or securely
passed the events. Hence, there exists no automatic tool that always terminates
and solves this problem. However, ProVerif uses an abstract presentation of pro-
tocols by Horn Clauses, and it retains relational information on messages which
has better precision than AVISPA tree Automata(TA4SP) Blanchet (2013). For
example, ProVerif allows input files for XOR or Exclusive-Or algebraic properties
to verify Diffie-Hellman which OFMC and ATSE does not support Lafourcade
et al. (2009). AVISPA tool installation is an image request/link request based
installation which is sometimes unstable. ProVerif installations are standard
OCaml based development OCa (2019) which makes downloading and installing
the tool simpler. If we need help, they have a forum to give support.

Compared to AVISPA, ProVerif is a more expressive tool because it retains
relational information on messages and produces results according to that. Hence,
ProVerif allows us to better define what is being attacked and hence what needs
to be protected. ProVerif also features efficient automatic reasoning tools and
is therefore potentially able to verify specific properties such as Cloud resources
Aiash et al. (2012). In our second attempt, we used the ProVerif tool to fully
verify the interaction for secure service migration including the security such
as the services, nonces, private keys, session keys, signatures, encryption and
decryption mechanisms. For example, ProVerif is used to verify security protocols
in some fields such as Blue tooth security and E-voting systems.

3.10 Chapter Summary

This chapter gave a clear understanding of the need for security protocols, Formal
Methods and how to model the security protocols by using formal verifier tools
such as AVISPA and ProVerif for the verification of specification of protocols. To
use a more realistic model, the abstract methods have to be tested in a real-time
VANET environment. Here, we have explained Use cases of our research such as
FUSE and NMS, therefore, the FUSE file system will be using NMS technology
at the back end.

30

Chapter 4

Resource Allocation Algorithm
(RAS) for Service Migration

4.1 Brief Introduction

Resource management is crucial for delivering excellent productivity in cloud
infrastructures. In contrary to traditional infrastructures such as parallel and
distributed systems, resource management in cloud infrastructures requires man-
aging virtual machines (VMs), as all modern IaaS providers make extensive use
of virtualization. This research aims to develop a resource allocation algorithm
to check the capacity of the Cloud services before it migrates. In recent times,
people have been moving to a solid-state drive (SSD) to access operating systems
and programs.

4.2 Resource Allocation Algorithm (RAS) for

Service Migration

Cloud computing delivers on-demand services and supports the current technolo-
gies such as the Internet of things, smart home, and visualizations. Resource
allocation in Cloud is a challenging task for servers to migrate cloud services.
Currently, there is no agreed resource allocation mechanism for migrating ser-
vices in Cloud environments. Therefore, we propose a simple algorithm based on
two critical components for each Cloud System.

1. One is total resources in terms of CPU, Storage, Network and Memory etc,
which is fixed accordingly to the capacity of the system.

2. The second component is available resources which can be allocated to
migrating services.

31

Each Cloud System advertises its total and available resources to mobile services.
In order to efficiently migrate the service, the first step is to verify whether it
is feasible to migrate based on the server requirements and the second step is
to ensure that the service migration to the new Cloud System can be securely
achieved. Once the server has verified that it is feasible to migrate the service,
then RASP protocol is invoked to do the transfer. In the RASP protocol, the
Registry also contains information about the capacity and available resources
on the Cloud and thus can verify that the new Cloud System is a valid Cloud
and has the resources to host the server. In addition, according to the RASP
protocol the server running on the new Cloud, will inform the Registry that the
service migration is completed and therefore the Registry will update its Resource
Database for the previous and the new Cloud Systems.

4.3 RAS Server in detail

Each Cloud Service Provider can receive several requests for resources from their
advertisements for building complex applications with different topologies and
networking requirements.

The clouds advertise to various servers. In this scenario, we can consider
that we have the first advertising cloud CA (1AC), the second advertising cloud
CB(2AC), and the third advertising cloud CC(3AC), etc. The first advertising
Cloud CA(1AC) broadcast its resources in terms of CPU, Memory, Network, and
Storage to First Receiving Servers(1SA), Second Receiving Servers(2SA), and
Third Receiving Servers (3SA), etc. The Cloud system advertises only available
resources to the receiving servers. Let’s assume 1SA migrates the services such as
CPU, Memory, Network, and Storage to 2AC. This formulation is shown below.
The Resource Allocation Server (RAS) is a trusted party which is mainly used
for verifying the registration of the cloud and validating the registered cloud’s
capacity of the resources. It maintains the complete table of registered servers,
registered clouds and their resources as shown in Figure 4.1. It has algorithmic
operations to prove whether the cloud is valid or not and whether it has enough
resources to give the requested resources.

As stated above, Cloud providers as CP = { CA, CB, CC, CD,Cn}. Each
provider has a finite set of amount of resources to share and make available to the
requested sources. Each Provider actively advertises its resources at each round,
and executes our mathematical formulation (calculations 1, 2 and 3) to find the
optimum sharing to server and accepts requests for resources from servers.

32

Figure 4.1: Resource Allocation Table

4.4 Resources in general

4.4.1 CPUs

CPU refers to the central processing unit acting as the computer’s brain, allowing
devices to perform operations, calculations, logical comparisons through applica-
tions. The speed of the CPU is calculated by how many instructions it can be
handled per second. The AMD Opteron series and the Intel Itanium are CPUs
used in servers and computers. ARM CPUs are smaller in size, less expensive,
more efficient in handling clock speed that can reach 5.0 GHz, symmetric multi-
processing capabilities of up to 8 sockets/128 cores. ARM processors are Reduced
Instruction Set Computer (RISC) processors and are used in mobile devices like
smartphones and tablets. The Intel processor is more powerful, uses a set of
RISC-like micro-instructions, clock speed, which can reach 5.0 GHz and sym-
metric multiprocessing functionalities of up to 4 sockets/28 cores can be used in
Laptops, servers, and gaming. More powerful CPUs make the computer complete
tasks faster but may also consume more energy. This updated version of CPUs
can be used in AI and IoT.

33

4.4.2 Memory

Memory is a device or system used to store information temporarily or perma-
nently in a computer or any hardware. Having a faster memory will give you
better PC performance and faster processing speed than more memory. However,
having more memory size available allow more processes to run simultaneously
resulting in better overall performance. For example, we always set more mem-
ory sizes for VM instances. Basic Random-access memory (RAM) size is 8 GB,
which is good for basic gaming, 16 GB is suitable for OS, 32 is an ideal size for
storing and processing information. Additionally, Ram Cloud is super high-speed
storage for applications and data centres.

4.4.3 Networking requirements

Providing Quality of Service (QoS) in networks is becoming an essential process
because it helps manage network traffic, reduce packet loss, and lower network
jitter and latency. Additionally, link reliability reveals the signal strength, and
error detection helps find any impairments or mismatches with the senders and
receivers’ data. For example, services such as video on demand, online cloud
meetings, streaming media and VoIP use Quality of service. The current network
standards are 100 Mbps, 1Gbps. The higher speed network cards are available
on the market, such as ASUS XG-C100C Pci-E X4 Card with Single RJ-45 Port
– using 10Gbps networking. The missing key component in resource allocation
of networks is QoS in terms of bandwidth, latency (delay), jitter, error detection
and link reliability.

4.4.4 Storage

Network storage devices help computers connect through networks providing ac-
cess to heterogeneous clients. Before that, we used a hard disk drive (HDD)
that has a speed of 5ms to 10 milliseconds for storage and provides high stor-
age capacity and low cost. People are moving to a solid-state drive (SSD) to
access operating systems and programs in recent trends. SSD has a speed of
50-100 microseconds, faster than an HDD. Direct Memory Access (DMA) is an
advanced technology in-network that accesses the host memory directly with-
out CPU intervention. The extension of DMA is called Remote Direct Memory
Access (RDMA), does the same job and has high speed and low latency, while
transferring information from one device to another at the memory to memory
level. Suppose we need more significant memory space, in that case, a new tech-
nology called Distributed Shared Memory (DSM) provides large virtual memory,
allowing multiple processing elements to share the same location among several

34

processors. All this availability of resources means that there is a need to develop
a simple and fast resource algorithm which will allow us to decide when is the
best time to migrate a service to another Cloud platform.

4.5 PSEUDO CODE for RAS

In order to focus on this main idea, each cloud can have a set of resources due
to its hardware, in addition each Cloud is uniquely identified by a Cloud ID and
since they are Cloud services. As we know, a Commercial Cloud will have a
number of resources which it actively advertises to servers. Modelling of resource
demands, we must define what are the available resources of cloud.

4.5.1 Advertising Cloud Formulation

In Cloud formulation, let us indicate that Second Advertising Cloud (2AC) re-
sources as any resources the total amount of resources allocated at 2AC cannot
exceed Cloud’s Max resources. (MAX Cm). In stage 1 RASP protocol, 2AC
is actively advertising its cloud-based services or free resources(Free Cf) such
as CPU (Cfc), Memory (Cfm), Storage (Cfs) & Network(Cfn). 2AC has
another set of variables called allocated(ALLOC) variables which tell it all the
resources that have been already allocated: These values change as servers mi-
grate to and from 2AC. Allocated Resource of CB(ALLOC Ca) such as CPU
(Cac), Memory (Cam), Storage (Cas) & Networks(Can). Maximum Resource of
Cloud (MAX Cm) variables tell the maximum resource capacity of that Cloud
such as CPU (Cmc), Memory (Cmm), Storage (Cms) & Networks(Cmn). At
each round, each provider will use the mathematical formulation below, Step 1
from RASP protocol is as follows:

� Stage 1 1. CB → SA : Advc (CB, ResCB)

4.5.1.1 General Notations

Maximum Resource of Cloud (MAX Cm) = {Cmc,Cmm,Cms,Cmn},
Allocated Resource of Cloud (ALLOC Ca) = {Cac, Cam,Cas, Can} and
Free Resource of Cloud (FREE Cf) = {Cfc, Cfm,Cfs, Cfn}
Here, the letter “C” refers to the identity of the cloud CB, “Cf, Ca, Cm” refers
free resources, allocated and maximum resources and c,m,s and n refers to no of
CPUs, Memory, Storage and Networks respectively.

Advertising Cloud Formation in detail,

� Step 1: The resources CPU, Networks, Memory, Storage are members of
resources(r).

35

Algorithm 1 Advertising Cloud Formation

1: Resources(r) ∈ {Cpu(c), Network(n), Memory(m), and Storage(s)}
2: MAX Cm (Cmr) = {Cmc,Cmm,Cms,Cmn}
3: ALLOC Ca (Car) = {Cac, Cam,Cas, Can} &
4: FREE Cf (Cfr) = {Cfc, Cfm,Cfs, Cfn}
5: Cfr ←− Cfr ∪ Resources(r)
6: If Cfr ← (Cmr − Car) > 0 then
7: Send Adv of Cfr and wait for response;
8: else Cfr ≤ ϕ then
9: wait for Cfr > 0 ;

10: End if

� Step 2-4: 2AC′s maximum, allocated and free resources are declared.

� Step 5: Inclusion of an element r to a set of free resources.

� Step 6-7: 2AC advertising it′s resources with its identity 2AC.

� Step 8-10: If the above condition fails, 2AC needs to wait for the free
resources until its greater than 0.

4.5.2 Receiving Servers Formulation

The server is represented here as First Receiving Servers(1SA) and it receives
an advertisement request from 2AC and its free resources. A server that needs
to use a Cloud has variables that detail its requirements. If free resources of
AdvertisingCloud2AC {Cfc, Cfm,Cfs, Cfn} are larger than Receiving Server
1SA’s(SAreqr) requirements, it can forward the request to Registry (Resource
Allocation Server(RAS)). If we assume that, requested resources are of lesser ca-
pacity than free resources of AdvertisingCLoud2AC and all requested resources
must be true, then only it sends the request to RAS.

� Stage 2 2. SA → R : (SA, CB, ResCB)pkR

4.5.2.1 General Notations

Requested Resource of Server (SAreqr) = {Src, Srm, Sms, Srn} Here, the letter
“S” refers to the identity of the Receiving Server , ”reqr” refers requested resources
and c,m,s and n refers to no of CPUs, Memory, Storage and Networks respectively,

Receiving Servers Formation in detail,

� Step 1: The resources CPU, Networks, Memory, Storage are members of
resources(r).

36

Algorithm 2 Receiving Servers Formation

1: Resources(r) ∈ {Cpu(c), Network(n), Memory(m), and Storage(s)}
2: REQ Resources 1SA (SAreqr) = {Src, Srm, Sms, Srn}
3: SAreqr ←− SAreqr ∪ Req Resources
4: If SAreqr > 0 then
5: Search for Resource Migration;
6: If SAreqr ← (Cf − SAreqr) > 0 then
7: Accept Cf and sends to RAS;
8: Else ignore the request;
9: End if

� Step 2-3: 1SA′s Requested resources are declared. Inclusion of an element
Req Resources to a set of 1SA request resources.

� Step 4-5: If Requested resources are greater than 0, the cloud services
needs to find the next best fit server.

� Step 6-9: If the free resources of 2AC subtracts Requested resources, which
is greater than 0, then accept the advertisement and forward the request to
RAS server to verify the validity of resources. Else ignore the advertisement.

4.5.3 Resource Allocation Server

RAS is a trusted party that is primarily used for confirming the registration of
the cloud and certifying the registered Cloud’s capacity of the resources. Note
that the proposed algorithm will run at each provider involved in service migra-
tion to the requested servers. Once it receives the request from SA requested
resources(SAreqr), registry verifies the resources based on the below algorithm.

� Stage 2 3. R → SA: sign((CB, pkC, ResCB), pkS).

4.5.3.1 General Notations

� Resource Allocation Server (RAS),

� Registry(R).

If Registry receives the request from requested servers,
Server RAS Formation in detail,

� Step 1-2: RAS server verifies whether its a valid cloud and if Cloud re-
sources are greater than the requested resources which is not equal to 0 or

37

Algorithm 3 RAS CB

1: If Cf = Valid Cloud and RAS ← (Cf>SAreqr) ̸= 0 then
2: Accept and sends an authenticated message;
3: Else
4: Reject the request;
5: End if

not. If either condition false, then it rejects the request and updates 2AC
that its an invalid server.

� Step 2-5: If the above conditions pass, then it sends an authenticated
message to 2AC.

Algorithm 4 RAS SA

1: If SAreqr = valid server and RAS ← (Cf>SAreqr) ̸= 0 then
2: Accept and sends an authenticated message;
3: Else
4: Reject the request;
5: End if

Server RAS Formation in detail,

� Step 1-2: RAS server verifies whether it is a valid server and if Cloud
resources are greater than the requested resources which is not equalt 0 or
not. If either conditions are false, then it rejects the request and updates
1SA that its an invalid Cloud.

� Step 2-5: If the above conditions pass, then it sends an authenticated
message to 1SA.

4.6 Chapter Summary

This chapter looked at a simple resource allocation algorithm to allow the mi-
gration of servers and services to different Cloud environments to support users
as they move around. In highly mobile environments such as Vehicular environ-
ments, there is not much time in the network and, hence, we cannot run very
complex resource allocation algorithms. That is why we developed a simple re-
source allocation algorithm. This research now focuses on a resource allocation
security protocol for the safe migration of services between Cloud environments.

38

Chapter 5

Introduction to RASP Protocol

5.1 Brief Introduction

Service providers offer a pool of computer resources in order to meet the com-
puting requirements of multiple users over the Internet, Several users receive a
share of the pooled resources according to their requests. To improve the Quality
of Service, providers collaborate on the resources from the pool to assign to each
Cloud. Securing service migration in a cloud is one of the most challenging tasks;
Cloud resources are vulnerable to abuse, intercept, or data loss. So, guaranteeing
services enhance QoS and reduce the chances of losing service. Security protocols
are becoming the main topic in the networking industry and verifying them has
provided a significant development in the computer world. If traditional secu-
rity mechanisms such as encryption and decryption remain relevant for Cloud
infrastructure, they need more specific protection from new threats or attacks.
To support secure migration in Commercial Clouds, we propose the Resource
Allocation Security Protocol (RASP), an emerging standard for safe migration
over Cloud infrastructure. This research will be performed with two methodolo-
gies, i.e., Formal modelling and Real-Time Test-bed experiment. We have shown
two types of approaches. In our first approach, this RASP protocol was verified
using the AVISPA tool and proved confidentiality and authentication between
the participants. In the second approach, this protocol has been verified using
the ProVerif tool and shown confidential, authentication between the parties and
also secure session key migration.

5.2 RASP protocol – An Overview

This abstract protocol has three roles: Server SA on Cloud CA, Cloud CB, and
Registry. The below Figure 5.1 shows the outline of RASP protocol.

39

Figure 5.1: Migration from Cloud A to Cloud B

5.2.1 The Server

The Server (S) is represented by Server Identity (Server ID), a type of service
(TOS), A Public Key is denoted as PKS. Each server is identified by a unique
server identity given to the server when it registers with Certificate Authority.

5.2.2 Cloud Facilities

Cloud Servers are represented as follows: CLOUD (CA) = Cloud ID CA, Types
of Server is Cloud, a public key of Cloud CA and Available Resources. CLOUD
(CB) has its unique identity Cloud ID CB, Types of Server is Cloud, a public
key of Cloud CB, Requested Resources. A Cloud Identity uniquely identifies
each Cloud, and since they are cloud services, TOS = Cloud; PKA and PKB are
public keys for Cloud CA and Cloud CB, respectively. In addition, each Cloud
system will have resources such as CPU, Network, Memory and Storage, which
it actively advertises to servers.

40

5.2.3 The Registry

The Registry is a trusted third party that is mostly used to confirm cloud regis-
tration and the resource capacity of each cloud. All services and servers must be
registered with the Registry including the service requirements to run the service
effectively on any Cloud System. It is capable of validating any third-party ser-
vice, server, or cloud system. It is also an authority in a network used to verify
service requests and the identities of all servers in the system. The Registry runs
a Resource Allocation Algorithm that does all the mathematical calculations for
the Registry to check the total resources and available resources of advertised
Cloud Services. The Registry knows the maximum capacity of the Cloud servers
with their registered clouds and servers. When the cloud servers send a request
for migration to the advertising Cloud, the registry knows the available resources
or free resources of the advertising Cloud. The Registry approves the request
when it is a registered server and the advertising cloud has enough capacity to
provide the services. The Registry knows the requirements to run each service
on any Cloud system and therefore can also check when services are acting ma-
liciously, isolated securely, and well-resourced in cloud systems.

Additionally, the Registry knows the Service IDs and Public Keys for each
service. A public key that can be used to encrypt and decrypt messages and
digital signatures is contained in the digital certificate. The Registry’s Public
Key is represented here as PKR.

5.2.4 Nonces (N) and Timestamps (T)

Nonces are randomly generated numbers or can occur only once, which have a
negligible chance of being guessed by a third party and are used to guarantee
the transfer, ensuring that requests cannot be repaid by unauthorized personnel.
Timestamps are used for the date and time of an event recorded and explicitly
used in migration requests and responses. This allows the system to record how
long it takes for migration requests to be granted and how long it takes for
migration transfers to complete. In the protocol, timestamps are represented as
simple strings.

5.2.5 General Notations

Table 5.1 represents Algorithm 1 naming approach.

41

Notation Explanation
CA Cloud IDA or Cloud A
CB Cloud IDB or Cloud B
SA Server SA on Cloud CA
SB New service on Cloud CB
S Server ID

ToS Type of server ID
PKB/sKB public and private key pairs of Cloud B
PKS/sKS public and private key pairs of server SA
PKR /sKR public and private key pairs of the Registry

NA Nonce of SA
NB Nonce of CB

Advertisement Cloud CB resources
Req.Res Requested Resources of SA
Res Resources of CB

Migration Req /Migration Resp Request/Response for resource migration
Migration Tran migration transfer
Transfer Ack Acknowledgement of migration

Transfer Complete Service SB updates its new location to the Registry
TA Timestamps - SA sends migration request
TB Timestamps - CB sends migration response

Tcomp Total time taken for migration complete

Table 5.1: General Notions

5.3 Algorithm1 of first approach

For mobile clients to access Cloud resources and complete their tasks, a solution
is required that is constant, secure, and guarantees reliable connectivity. Servers
must not end up being hosted on insecure Cloud systems, which can affect or
delay the service transfer to mobile clients, and Clouds do not end up hosting
insecure servers that can damage Cloud infrastructure. This simulation study
addresses these issues by providing a new security protocol (RASP) for secure
service migration. In the first approach, the protocol is developed and tested
through a simulation study using the Automated Validation of Internet Security
Protocols and Applications (AVISPA) tool, which is used to analyse large-scale
Internet security protocols and applications. In the RASP protocol, the system
moves server SA from Cloud CA to Cloud CB. As we mentioned earlier, the
protocol has three entities: server SA on Cloud CA, Cloud CB, and the Registry.

42

5.4 RASP Algorithm V1

The protocol is broken into four stages to clarify the necessary operations involved
in secure migration.

5.4.1 Stage 1: Advertisement

Cloud CB advertises its resources and these advertisement are picked up by server
SA on Cloud CA. Server SA and Cloud CB do not know anything about each
other, and there is no prior communication between SA and CB. In the first step,
the server SA receives an advertisement from Cloud CB advertising its resources
(ResCB) with its identity CB.
1. CB → SA: Advertisement (Cloud IDB, TOS, Res, PKB)

5.4.2 Stage 2: Authentication of SA and CB as well as
migration request and response

Both entities, server SA and Cloud CB must be authenticated to each other.
Firstly, on receiving an advertisement from CB, SA checks the validity of Cloud
CB with the Registry in step 2. So, it sends its identity SA, Cloud CBs identity,
a type of server (ToS), the resources of Cloud CB (Res) by using the public key
of Registry. In step 3, the Registry will verify the validity of any Cloud resources.
The Registry replies to the server SA, saying that Cloud CB is a valid Cloud
and encrypts the response with the public key (PKS) of SA, ToS and signs the
response with its private key. Therefore, this digital signature ensures that the
Registry is the message’s originator. In In step 4, SA generates and sends a
fresh nonce (NA), its identity SA, ToS, Timestamps (TA), requested resources
(Req Res), and Public key of SA encrypts it using the public key of CB (PKB).
Nonces are used to protect this session between the server SA and the Cloud CB
to which the server wants to migrate. When CB receives this message in Step 5,
it decrypts it using its private key (sKB). Cloud CB verifies the request made by
SA by forwarding the requested resources of SA (ResSA), the identity of SA and
ToS, to the Registry by using the public key (pKR) of Registry. In Step 6, the
Registry replies to forward the requested resources of SA (ResSA), the identity of
SA and ToS, to the Registry by using the public key (pKR) of Registry. In Step
6, the Registry replies back to Cloud CB. It validates server SA and encrypts the
response with the public key of Cloud CB, and signs it with its private key.
2. SA→ R: Verify Identity (CloudID B, TOS, PKB, Res, Server ID, PKS) PKR
3. R → SA: Message: YES (CloudID B, TOS, PKB, Valid Res) PKS
4. SA → CB: Migration Req (Server ID, TOS, TA, Req.Res, PKS, NA) PKB

43

5. CB → R: Verify Identity (Server ID, PKS, TOS, Cloud ID B, PKB) PKR
6. R → CB: Message: Yes (Server ID, TOS, Valid Service) PKB

5.4.3 Stage3: Migration transfer

Once the parties authorized each other, Cloud CB sends a message to SA that it
can migrate to Cloud CB along with Timestamp TB, acknowledges using unique
number NA and generate a new nonce NB in step 7. In step 8, SA migrates the
requested resources with server identity, Cloud CB’s identity, nonce NB. In step
9, Cloud CB sends an acknowledgement to Server SA with its Identity, CB’s Iden-
tity, nonce NA, Completion of time calculation (Tcomp) between the transfer.
In this protocol, nonces are unique numbers used to protect the sessions between
servers and Cloud in migration. This is successfully done using an extended ap-
proach based on the Needham Schroeder protocol.
7: CB → SA: Migration Resp (Cloud ID CB, TOS= Cloud), TB, Resources
Granted, NA, NB) PKS
8: SA→ CB: Migration Tranf (Server ID, CloudID CB, Req resources, NB) PKB
9: CB→ SA: Transfer Ack (Server ID, CloudID CB, NA, Tcomp) PKS

5.4.3.1 Key Observations

In step 4, the Server generates a new nonce NA as part of the transfer request.
This is a unique number generated by the Server side. In step 7, CB generates a
new nonce NB, replies to the Server using NA (generated by SA) and NB as part
of the transfer response. In step 8, the Server authorizes the service transfer to
CB using NB. In step 9, Cloud CB signals that the transfer is completed using
NA.

5.4.4 Stage4: Update of New service location to the Reg-
istry

The new service SB is now running on Cloud CB. It informs the Registry that it
has been successfully migrated and updates the information with SA and CB’s
Identity, ToS, timestamps TA, TB, Time taken to migrate (Tcomp).
10: SB → R: Transf Comp (Server ID, CloudID B, TOS, TA, TB, Tcomp) PKR

44

Algorithm 5 Security Protocol for Migration between Server SA on Cloud CA
to Cloud CB

1: CB → SA: Advertisement (Cloud IDB, TOS, Res, PKB)
2: SA → R: Verify Identity (CloudID B, TOS, PKB, Res, Server ID, PKS)

PKR
3: R → SA: Message: YES (CloudID B, TOS, PKB, Valid Res) PKS
4: SA → CB: Migration Req (Server ID, TOS, TA, Req.Res, PKS, NA) PKB
5: CB → R: Verify Identity (Server ID, PKS, TOS, Cloud ID B, PKB) PKR
6: R → CB: Message: Yes (Server ID, TOS, Valid Service) PKB
7: CB → SA: Migration Resp (Cloud ID B, TOS= Cloud), TB, Resources

Granted, NA, NB) PKS
8: SA→ CB: Migration Tran (Server ID, CloudID B, Req resources, NB) PKB
9: CB → SA: Transfer Ack (Server ID, CloudID B, NA, Tcomp) PKS

10: SB→ R: Transf Comp (Server ID, CloudID B, TOS, TA, TB, Tcomp) PKR

� Step 1 The service on Cloud A receives advertisements from Cloud B
advertising Cloud’s B resources.

� Step 2 The Server checks the validity of Cloud B.

� Step 3 Registry authenticates Cloud B

� Step 4 The server on Cloud A sends a request to migrate to Cloud B

� Step 5 Cloud B sends a request to make sure that the server, S, is a valid
service:

� Step 6 The Registry validates Cloud B

� Step 7 Cloud B signals to The Service on Cloud A that it is OK to migrate
the service to Cloud B:

� Step 8 The Service signals to Cloud B to migrate the service:

� Step 9 Cloud B signals to the server on Cloud A that the migration is
complete: Hence, New Location: (SA→SB) The service is now started
on Cloud B.

� Step 10 The service on Cloud B signals to the Registry that the migration
has been completed:

Figure 5.2 shows the steps for Cloud to Cloud migration of services.

45

Figure 5.2: Migration from Cloud A to Cloud B

5.5 Evaluation of the First Attempt

5.5.1 HLPSL Specification

The AVISPA framework is role-based and it gives more importance to roles or
parties proposed in that protocol than exchanging information. In order to verify
the security properties of the security protocol, we had to model three roles:
Cloud CA, Cloud CB and the Registry, describing the actions of the protocol.
The roles can declare a set of local variables before the initialization of the model
checking section, this initialization section is followed by the state transition
section. HLPSL defines two composed roles: the session role and the environment
role. The HLPSL provides the security properties in GOAL section.

46

Figure 5.3: OFMC: Cloud A to Cloud B

Figure 5.4: ATSE: Cloud A to Cloud B

5.5.2 OFMC and ATSE

After completing the specification as described above, we divided the verification
process into two steps. The first step was to validate the specification using
OFMC back-end tool of AVISPA, and the second step was to use ATSE back-
end. This indicates that our protocol has reached the expected results. The first
back end tool is called OFMC. If verifies the combination of two main concepts.
In the summary section of the results shown in Figures 5.3 and 5.4 , based on the
protocol specification, it indicates that the protocol is SAFE in all communication
paths and thus cannot modify the messages, replay messages, or send any false
information between parties without authentication. The second back end tool
is called ATSE, Constraint-Logic-based Attack Searcher, also indicates that the

47

protocol is SAFE. This tool handled reducing the redundancies in the protocol
and also no protocol falsification for a bounded number of sessions. Now, both
of the protocol results SAFE from OFMC and ATSE, so the expected result
is accomplished. The protocol satisfies the security properties of secrecy and
authentication. In addition, nonces are used for replay protection and to ensure
freshness.

In this attempt, this work has demonstrated that a new security protocol for
server migration is secured between commercial Cloud environments. The sys-
tem uses a Registry which validates servers and Cloud infrastructure as well as
monitors the migration pattern of services. The protocol is safe under all circum-
stances; the present protocol critically prevents impersonation attacks either by
rogue cloud infrastructure hoping to sneer valid services or by malicious servers
wanting to inflict damage on Cloud infrastructure. In our second approach, we
will explore how this protocol can be enhanced to prevent intruder and man-in-
the-middle attacks by using ProVerif tool.

5.6 Rasp Algorithm V2 Second approach

Cloud technologies are increasingly progressing towards interoperability with other
clouds. Integrating new security components should be more powerful to se-
cure the migration. As stated previously, the main issues are fraudulent Cloud
providers that make service providers host their services on insecure Cloud facil-
ities. It results in data loss, latency and lack of service and misbehaving services
that attempt to convince Cloud providers that they are well-behaved systems
leading to mismanagement and mishandling of Cloud services. In our second
approach, the RASP protocol has been enhanced and broken into four stages,
adding a symmetric session key (is used both to encrypt and decrypt informa-
tion) to secure the transaction. In addition, all the stages of the proposed protocol
remain the same but are implemented in a different way and tested by ProVerif.
The Figure 5.5 below shows the outline of the second approach.

1. Stage1: Advertisement:
Cloud CB actively advertises its resources which is picked up by server SA
on Cloud CA.

2. Stage2: Authentication of SA and CB as well as migration request
and response:
Server SA first requests the Registry to authenticate Cloud CB and the
resources it holds. Once it receives the approval from the Registry, it sends
a migration request to Cloud CB. Cloud CB then requests the Registry to

48

Figure 5.5: Migration from Cloud CA to Cloud CB

authenticate server SA and the resources it requires. Once this is verified,
Cloud CB sends a positive migration response to server SA.

3. Stage3: Migration transfer:
Server SA sends a message to Cloud CB to begin the migration transfer.
Cloud CB begins the transfer and signals server SA when the transfer is
completed.

4. Stage4: Update of New service location to the Registry:
The new service SB is now running on Cloud CB and informs the Registry
that it has been successfully migrated.

5.6.1 Using Symmetric key

In our second attempt, all the stages of the proposed protocol remain the same
but implemented in a different way and tested by ProVerif.

49

5.6.1.1 General Notations

Table 5.2 represents Algorithm 2 - general notations.

Notation Explanation
CA Cloud A
CB Cloud B
SA Server SA on Cloud A
SB New service on Cloud B
Ksc Symmetric session key

pkC/skC public and private key pairs of Cloud B
pkS/skS public and private key pairs of server SA
pkR/skR public and private key pairs of the registry

Ns Nonce of SA
Nc Nonce of CB

Advc Advertisements
ResSA Requested Resources of SA
ResCB Resources of CB
M Reqc Request for migration
M Trfs migration transfer
M Ackc Acknowledgement of migration
sign Signature/signed by the Registry
aenc Asymmetric Encryption
enc Symmetric Encryption

Table 5.2: General Notations

5.6.2 RASP for Migration between server on Cloud CA
to Cloud CB

As we stated earlier, the Algorithm 1 and Algorithm 2 remain the same but in
Stage 3, we create a secure session key (Ksc) which is used for sessions between
server SA and Cloud CB. In addition, the same key will be used for encryption
and decryption. Server SA generates the session key (Ksc), to start the migration
request (M Reqc). By using the session key (Ksc), Cloud CB begins the transfer
(M Trfs) and signals server SA when the transfer is completed (M Ackc).
In this second attempt, Stage 1 corresponds to step 1 of the protocol; Stage
2 corresponds to steps 2-7; Stage 3 corresponds to 8-11, and finally, Stage 4
corresponds to step 12. The RASP protocol is followed in exactly the same way

50

an outlined below and Figure 5.6 shows the steps for Cloud-to-Cloud migration
of services.

� Stage 1
1. CB → SA : Advc (CB, ResCB)

� Stage 2
2. SA → R : (SA, CB, ResCB)pkR
3. R → SA : sign((CB, pkC, ResCB), pkS)
4. SA → CB : aenc ((Ns, SA , ResSA), pkC)
5. CB → R : (CB, SA , ResSA)pkR
6. R → CB : sign((SA, pkS , ResSA), pkC)
7. CB → SA : aenc((Ns, Nc, CB), pkS)

� Stage 3
8. SA → CB : aenc((Nc, Ksc), pkC)
9. CB → SA : enc ((M Reqc, SA), Ksc)
10. SA → CB : enc ((M Trfs, ResSA), Ksc)
11. CB → SA : enc ((M Ackc), Ksc)

� Stage 4
12. SB → R : aenc((SB, CB), pkR)

5.6.3 The RASP Protocol in detail

� Step 1 Server SA receives advertisements from Cloud B advertising Cloud
B′s resources with its identity CB.

� Step 2 Server SA checks the validity of Cloud CB with the Registry.

� Step 3 The Registry authenticates server SA.

� Step 4 Server SA sends a migration request to Cloud CB.

� Step 5 Cloud CB sends a request to the Registry to make sure that server
SA′s request for resources is valid.

� Step 6 The Registry replies back to Cloud CB.

� Step 7 Cloud CB sends the migration response back to server SA.

� Step 8 Server SA generates the session key (Ksc) to start the migration
request.

� Step 9 Cloud CB sends the migration initialisation request.

51

� Step 10 Server SA does the migration transfer.

� Step 11 Cloud CB sends an acknowledgement to server SA.

� Step 12 Service on Cloud B (SB) updates the Registry on its new location.

Figure 5.6: Second Attempt Migration between SA to CB

5.6.4 Stages in detail

5.6.4.1 Stage 1

Cloud CB advertises (Advc) its resources which are picked up by server SA on
Cloud A. Server SA and Cloud CB do not know anything about each other and
there is no prior communication between SA and CB. In the first step, the server
SA receives an advertisement from Cloud B advertising its resources (ResCB)
with its identity CB.
1. CB → SA : Advc (CB, ResCB)

52

5.6.4.2 Stage 2

Both entities, server SA and Cloud B, must be authenticated to each other.
Firstly, on receiving an advertisement from CB, SA checks the validity of Cloud
B with the Registry. So it sends its identity SA, Cloud B′s identity, CB, and the
resources at Cloud B (ResCB) by using the public key of Registry.The Registry
will be able to verify the validity of any Cloud resources. The Registry replies
back to server SA, saying that Cloud CB is a valid Cloud and encrypts the
response with the public key(pkS) of SA and signs the response with its private
key. Therefore, this digital signature ensures that the Registry is the originator
of the message. SA generates and sends a fresh nonce (Ns), its identity SA,
requested resources (ResSA) and encrypts it using the public key of Cloud B,
(pkC). Nonces are used to protect this session between the server SA and the
Cloud B to which the server wants to migrate. When CB receives this message,
it decrypts the message using its private key (skC). Cloud CB verifies the request
made by SA by forwarding the requested resources of SA (ResSA), the identity
of SA and its identity, CB, to the Registry by using the public key (pkR) of
Registry. The Registry replies back to Cloud CB, it validates server SA and
encrypts the response with Cloud CB′s public key and uses its private key to sign
it. Finally, Cloud B sends a message to server SA that it can migrate to Cloud
B, it acknowledges Ns and generates a new nonce, Nc.
2. SA → R : (SA, CB, ResCB)pkR

3. R → SA : sign((CB, pkC, ResCB), pkS)
4. SA → CB : (Ns, SA , ResSA), pkC
5. CB → R : (CB, SA , ResSA)pkR
6. R → CB : sign((SA, pkS , ResSA), pkC)
7. CB → SA : aenc((Ns, Nc, CB), pkS)

5.6.4.3 Stage 3

In Stage 3, server SA generates a fresh symmetric session key (Ksc), pairs it
with the nonce generated by CB (Nc), encrypts the message by using Cloud
B public key (pkC) and sends to CB. Cloud B initiates the migration request
(M Reqc), pairs it with server SA, and encrypts it using the generated symmetric
session key (Ksc). Once the migration request from CB to SA is received, SA is
able to decrypt it using the shared key (Ksc) and starts the migration transfer
(M Trfs) with the requested resource (ResSA) by using the symmetrical session
key (Ksc). Once the migration transfer is completed, CB sends an acknowledge-
ment (M Ackc), to server SA which is encrypted using Ksc.
8. SA → CB : aenc((Nc, Ksc), pkC)

53

9. CB → SA : enc ((M Reqc, SA), Ksc)
10. SA → CB : enc ((M Trfs, ResSA), Ksc)
11. CB → SA : enc ((M Ackc), Ksc)

5.6.4.4 Stage 4

In Stage 4, the service (SB) updates the Registry on its new location and hence
SA → SB.
12. SB → R : aenc((SB, CB), pkR)

5.7 Modelling the Protocol by using ProVerif

Generally, protocols themselves are described by a set of roles, each role with
an associated script or sequence of events. In ProVerif, the input language will
follow these three steps. The above protocol has been designed using a ProVerif
tool. Parties are modelled as processes, and the attackers need not be specified.
When modelling a protocol in ProVerif, there are three parts. In Part 1, the
declarations formalise the behaviour of security mechanisms or crypto primitives
in that security protocol; in Part 2, the process macros section allows the list
of sub-processes to be defined, to have sessions between server and cloud; and
finally, in Part 3, the protocol has the main process with the use of macros. This
is where the protocol analysis has begun.

5.7.1 Part1: Declarations

The process macros contain a finite set of variables, constants, types, free names
and constructor and destructor functions used to develop security mechanisms.
ProVerif declares free name “ch” of type communication channel which will be
used for public communications (e.g., Internet), free name S, C as two honest
hostnames Server SA and Cloud CB (e.g. Participants IDs, etc.). Requested
resources (Ress) and Cloud advertising resources (Resc) are declared as free name
Ress, Resc type of bit string. The keyword private excludes the names from the
attacker’s knowledge (e.g. Secret keys). The internal representation of Keys and
nonces declares as predefined type keys, nonce. For example, public and private
keys declare as type pkey, type skey and the constant is an instance for names.
For ex- ample, it uses for advertisement (Adv) as const Adv, Migration response
(MReqc), Migration Acknowledgement (MAckc) and Migration transfer (MTrfs)
. The table keyword store records, keys (table keys (host, pkey)) 5.7.

54

Figure 5.7: ProVerif - Declarations

5.7.2 Part1a: Modelling Constructor and Destructor for
Crypto primitives

The secure service migration is between Server SA (S) and Cloud CB(C) in the
resource allocation security protocol. We define the following security mecha-
nisms to our protocol. Functions are divided into two parts such as constructor
and destructor. The constructor helps build the terms. Thus, we have the con-
structor form of constructor-name (m1,m2...mn). On the other hand, destructor
functions are used to manipulate the messages (terms) in the process. Thus,
we have the destructor form of destructor-name (m1, m2...mn). Combined con-
structor and destructor functions are used to capture the relationship between
the security mechanisms. Thus, we have used the security mechanisms to cap-
ture the secrecy(confidentiality of the message), authentication (correspondence
assertions between parties), and key exchange (secure transaction to migrate the
services).

55

Figure 5.8: ProVerif - Constructor and Destructor for Crypto primitives

5.7.2.1 Symmetric Encryption

A single key is used in symmetric encryption to encode and decode the message.
The term name ”fun” refers to the constructor function, and the term ”enc” refers
to the name of the constructor, which passes through two arguments or binary
operators and type of ”bitstring”. The term ”reduc” refers to the destructor
function; it uses the same key associated with the initiator messages to decrypt
the cypher text.

� fun enc(bitstring,nonce): bitstring.

� reduc forall x: bitstring, y: nonce; dec(enc(x,y),y) = x.

56

5.7.2.2 Asymmetric key Encryption

This encryption techniques use public(pkey) and private keys(skey) to encrypt
and decrypt the messages.

� fun pk(skey): pkey.

� fun aenc(bitstring, pkey): bitstring.

� reduc forall x: bitstring, y: skey; adec(aenc(x, pk(y)),y) = x.

5.7.2.3 Session key encryption

This session key encryption is used to randomly generate an encryption key be-
tween server SA and cloud CB to do the migration transfer, and this key exists
until the session or transmission ends. It uses the same key, sometimes referred
to as Symmetric session key or symmetric key.

� fun shaenc(bitstring,key): bitstring.

� reduc forall x: bitstring, y: key; symdec(symenc(x,y),y) = x.

5.7.2.4 Signatures

Signature primitives help for verifying the authenticity of the messages.

� fun spk(sskey): spkey.

� fun sign(bitstring, sskey): bitstring.

� reduc forall m: bitstring, k: sskey; getmess(sign(m,k)) = m.

� reduc forall m: bitstring, k: sskey; checksign(sign(m,k), spk(k)) = m.

5.7.3 Part2: Process macros

The processes are defined using sub-processes, containing conditionals, let- defini-
tions and pattern matching tuples. Figure 5.9 shows a Server SA process, Cloud
CB processes 5.10, and 5.11 shows trusted party processes. It is defined by the
macro process, starting with ”let process” definitions. The term ”in ()” and ”out
()” refers to receiving and sending messages. The keyword ”new” generates a
new value in protocol sessions. Events can be inserted into the process to verify
correspondence assertions, for example, event beginCparam (hostS) and event
endSparam (S). By using cryptographic primitives, the requested resources are
successfully migrated between SA and CB.

57

Figure 5.9: Server SB processes

5.7.4 Part3: main processes

The Figure 5.12 is a main macro process used for calling let functions and running
the number of times based on the protocol sessions. The main process also has
conditionals, let definitions, and pattern matching tuples. Additionally, it has
the parallel composition of Server SA and Cloud CB, used to represent hosts
of a protocol running in parallel. The replication”!” is an infinite composition
for the unbounded sessions between them. The processes are executing multiple
times by using the following syntax: ((!processS (pkR, skS, pkC, srkey)) Parallel
(!processC(pkR, skC, pkS, crkey)) Parallel (!processR (skR, srkey, crkey))

58

Figure 5.10: Cloud CB processes

Figure 5.11: Registry server

59

Figure 5.12: Main Process Macros

5.7.4.1 Evaluation of the Second Attempt

In our second attempt, by using the symmetric session key (Ksc), the requested
service is transferred to the new location CB. As we mentioned in the first at-
tempt, nonces protect the session between server SA and Cloud CB. However, in
the second attempt, the symmetrical session key is used to do the actual transfer.
Hence, this is a more secure mechanism than using nonces for the actual data
transfer.

5.7.5 ProVerif Results

The results show that RASP can achieves the secrecy, authentication and key
exchange of the service migration mechanism. We verified Stage 2 and Stage 3
using the ProVerif tool and presented the programme’s output, which is given in
Figure 5.13 below. The security properties were specified in the input language
to check whether the property is derivable by the attacker or not Karthick et al.
(2018).
Results in Terminal:ProVerif/opam/system/bin/proverif1.98pl1
docs/Nee/CB toSA SecuirtyProtocol.pvgrep ”RES”.

5.7.5.1 Nonces are secured and not derived by the attacker

� RESULT not attacker bitstring (SNs []) is true.

� RESULT not attacker bitstring (SNc []) is true.

� RESULT not attacker bitstring (CNs []) is true.

� RESULT not attacker bitstring (CNc []) is true.

5.7.5.2 The session key is not derived by the attacker

� RESULT not attacker key (Ksc [m3 = v 1975, m1 = v 1976, hostX =
v 1977! 1 = v 1978]) is true.

60

Figure 5.13: Second Attempt results using Proverif

� RESULT not attacker bitstring (SNk []) is true.

� RESULT not attacker bitstring (CNk []) is true.

5.7.5.3 Private keys of SA & CB are not derived by the attacker

� RESULT not attacker skey (skC []) is true.

� RESULT not attacker skey (skS []) is true.

5.7.5.4 Authentication SA to CB and CB to SA is true

� RESULT inj-event (endSparam (x 4663))→ inj-event (beginSparam (x 4663))
is true.

� RESULT inj-event (endCparam (x 5762))→ inj-event (beginCparam (x 5762))
is true.

In our second attempt, by using symmetric session key (Ksc), the requested ser-
vice is transferred to the new location CB. As we mentioned in the first attempt,
nonces are used to protect the session between server SA and Cloud CB. How-
ever, in the second attempt, the symmetrical session key is used to do the actual
transfer. Hence, this is a more secure mechanism than using nonces for the actual
data transfer. Table number RASP protocol query attacker () results

61

5.7.6 Query attacker ()

Table 5.3 represents query results

Security properties Server SA event Cloud CB event
Session key TRUE TRUE
Private keys TRUE TRUE

Nonces TRUE TRUE
Event begin TRUE TRUE
Event begin TRUE TRUE

Requested resources TRUE -
Advc Resources - False

Table 5.3: Query attacker of results

5.8 Chapter Summary

In our second attempt, by using symmetric session key (Ksc), the requested ser-
vice is transferred to the new location CB. As we mentioned in the first attempt,
nonces are used to protect the session between server SA and Cloud CB. How-
ever, in the second attempt, the symmetrical session key is used to do the actual
transfer. Hence, this is a more secure mechanism than using nonces for the actual
data transfer. This research explored the development of a new resource alloca-
tion and secure service migration framework that encompasses the computing
resources to migrate in cloud environments. RASP, in turn, will use standard mi-
gration mechanisms such as Docker, KVM, LXD, and Unikernels to do the actual
migration. Hence, secure resource allocation algorithms must be deliberated as
a main galvanizing structure to provide seamless connectivity and maintain QoS
in highly mobile Environments such as VANETs.

62

Chapter 6

New mechanisms to provide more
security in Service Environments

6.1 Brief Introduction

This chapter describes new mechanisms such as the Capabilities based system
and secondly, a New Service Management Framework (SMF) for mobile clouds
or Vehicular Networks.

6.2 Capabilities

A Capability refers to an unforgeable token or a key of authority that permits
authorized users to access specific objects in a system or references an object with
associated rights. A capability is implemented as a data structure containing
two pieces of data: a unique object identification and access rights. They can
provide Role-Based Access Control (RBAC) access for users. Some capabilities
are therefore not directly assigned to users; instead, they are assigned to roles,
and roles are assigned to users. These are called role-based capabilities. The
IPv6 address space, based on a modified Location/ID split and is based on the
work of Mapp et al. (2011), enables the creation of capability ID-based system
for people, apps, and cloud infrastructure. As we know, Capabilities are used to
identify objects and their properties and thus, they must be carefully managed
and protected against being generated or altered inappropriately.

6.2.1 Capability structure

The created capability-based system is built on IPv6’s flexible approach, which
allows communication between objects using both unique ID and location as

63

a method. In particular, the object field for capabilities uses a modified IPv6
Location/ID split and is based on the work of Mapp et al. (2011). In this system
the ID is composed of an EUI which is 64-bit and an 8-bit netadmin field that
is used to manage the object. This enhances both performance and security.
Capabilities can be used to identify any object and its properties because the
capabilities cannot be forced without being detected. Therefore, they can be
directly used to refer to associated objects. As a result, capabilities must be
monitored and secured from being produced or updated without authorization.
The format of a capability-based system is shown in Figure 6.1.

Figure 6.1: Capability Stucture

6.2.1.1 Type Field (8 bits)

This field is used to specify the object capability that is currently being used.
Users, digital assets, and facilities are examples of types. The type field also has
a TIMED type, which is used to indicate a timed-based capability that is only
valid for a set amount of time beyond which the system refuses to assign any
rights to the holder. A special object type called as a Capability List (CL) has
also been designed to aid with system administration. The CL is used to the
group together a set of capabilities.

6.2.1.2 SYS Field (4 bits)

This SYS field is used to provide what is necessary to accomplish a task in
managing capabilities. The capability related fields are given by four bits. SYS
FIELD is shown in Figure 6.2.

Figure 6.2: Capability Stucture

1. The Private(P) bit is used to limit the number of persons who have access
to the capability.

2. The System bit(S) specifies whether the object in question was made by
the system, an application, or a user. This means that users or apps cannot

64

change or remove the capability that the system has created. But, the
system can remove or modify the capabilities of users and applications when
necessary.

3. The Master(M) bit refers that the capability was created by a Certificate
Authority (CA) or Registry.

4. The Change(C) bit is used to indicate if this capability can be changed.
This means that if this bit is set, the proxy capabilities can be derived from
the master capability.

6.2.1.3 Property Field (12 bits)

This Property Field is used to specify the object’s properties. The field relates to
the attributes or functions of the item that the capability represents in this field.

6.2.1.4 Object ID (72 bits)

This field is used to uniquely identify an object in the system and used a 64-bit
EIU field and an 8-bit netadmin field.

6.2.1.5 Random Bit Field (16 bits)

The random field guarantees unforgeability. This field helps identify the object
uniquely. The random bit field is generated after the type field, sys field, property
field, and object ID field are created. When proxy certificates are created, a new
random field is generated.

6.2.1.6 Hash Field (16 bits)

The hash field is used to allow the detection of the tampering of capabilities.
When a capability is created, the type field, sys field, property field, and object
ID field are first generated, followed by the random bit field. Finally, these
fields are used to generate a SHA-1 hash which is placed in the hash field of the
capability.

6.2.2 Rules for Capabilities

The capability based system is very flexible and thus, additional rules are needed
to ensure proper usage when generating.

1. When an object is created for the first time, a capability is established for
it. This is known as a master capability, and the object’s owner is marked
as the master capacity’s owner.

65

2. It is possible to create proxy capabilities from the master capability if the
change bit in the master capability is set.

3. Proxy capabilities must have a new random bit field and a new hash field.

4. Proxy capabilities cannot be created from other proxy capabilities. This
rule is necessary to prevent the creation of capabilities by unauthorised
users from gaining access to capabilities.

5. System capabilities cannot be generated or changed by users. This rule is
needed to protect key entities such as operating systems as well as access
to system services.

The system can be used to deliver the necessary security requirements for many
environments, including healthcare systems, Cloud computing systems, and the
Internet of Things (IoT). Capabilities can help secure real systems such as health-
care systems Vithanwattana et al. (2021a).

6.3 New Service Management Framework

Addressing the security challenges in real world requires a new approach to service
delivery that can consider security, deployment, replication, or service migration
issues on a regional, national, or global scale. The development of highly mo-
bile environments such as VANETs, Mobile Edge Computing, and the Internet
of Things requires several interfaces to connect seamlessly and provide mobile
users with excellent performance. Mobile Edge Computing brings the computing
capabilities closer to the edge of the network or near the end-user or server. This
service minimizes the need for data processing on remote servers, reduces latency,
and increases bandwidth. However, it is crucial to enable service migration to
support these networks, which will migrate as mobile users move around. The
new environment is shown in Figure 6.3.

Though we need a robust service architecture to cover such features, a new
service management framework for mobile clouds has been developed (Jose, 2020).
This service architecture allows services to be managed, copied, or migrated to
support mobile users as they move around.

The requirement to enable high Quality of Service (QoS), imposes the devel-
opment of a new Service Management Framework that allows services to migrate
to different locations while maintaining a good QoS for mobile users. This chapter
identifies main contributions of the research which will focus on developing the
Service Management Prototype in the proposed security framework for systems.

66

Figure 6.3: Effect of introducing SMF in the client-server environment

The new proposed implementation framework is based on the reference frame-
work developed by Sardis and has four layers. The overall structure is shown in
Figure 6.4.

Figure 6.4: Service Migration Prototype

� Application Layer (AL): This is the first layer of SMF and runs on
the mobile node and invokes the service through the Service Management

67

Layer (SManL), giving the service name, Service ID and required QoS.
When service comes to the SMF for the first time, it should have a unique
ID to be identified. The service name provides which type of service is
running, such as CPU, Memory or Storage. Finally, the Application Layer
must define QoS parameters for the required service such as delay time or
latency, bandwidth, reliability and security.

� Service Management Layer (SManL): This layer is the management
layer that administers the mobile service and is also responsible for the
service subscription and service delivery for the below layers. The service
subscription refers to Service-Level Agreement (SLA) and billing arrange-
ments. Service delivery describes how services should migrate from one
location to another. Once this layer decides that a service should be mi-
grated, it passes this information to the service migration layer (SML).

� Service Migration Layer (SML):] This service migration layer handles
the migration requested by SManL and uses a Resource Allocation Security
Protocol (RASP) for secure migration to ensure that the transfer is securely
done. SML updates SManL when the migration is completed. In turn,
RASP Karthick et al. (2018) will use standard migration mechanisms such
as Docker, KVM, LXD and Unikernels to do the actual migration.

� Service Connection Layer (SCL): This layer monitors how clients con-
nect to the services between the mobile node and the server. It reports to
the SManL when the mobile node is no longer available due to handover to
another network.

6.4 SSP Protocol - An overview

Capabilities can be used flexibly to provide AAA in many environments. Addi-
tionally, by combining capabilities, SMF and the techniques used in RASP, it is
possible to design a Secure Service Protocol (SSP) that can be used to protect
any service. In traditional computer systems, we have client-server communica-
tions. The SSP protocol has roles such as client, server, and Service Management
Framework (SMF). It has been developed to ensure that the proposed service
protocol is safe and can be applied to ANY service. The protocol is broken into
five stages to clarify the necessary operations in secure service migration. The
interaction between an application, the Service Management Framework (SMF)
and services supported by the SMF are shown in Table 6.1 and Figure 6.5. The
SSP protocol is defined in the same way that the RASP protocol as outlined in

68

Figure 6.5: Secure Service Protocol

� Stage 1: Registration of the Service with the SMF In the first step,
the Cloud Management System (CMS), which supports numerous services,
contacts the SMF to register the Service, including the list of servers, with
their public keys running the Service. In step 2, the SMF registers the
Service and returns the Service ID (SERV ID) and the Service Capability
(SERV CAP). The CMS then starts the servers implementing the Service
on different machines, passing Service ID and the Service Capability.

1. CMS → SMF: (Register Service (Service Details), (PK(SMF)))

2. SMF → CMS: (Service Registered (Service Details, SERV ID, SERV
CAP), (PK(CMS)))

� Stage 2: The Application interacts with the SMF to get a server
that implements the Service. In order to use a service, an application
must send a request to the SMF to find an appropriate server. In step 3,
the Application passes the Capability for the Device (DEV CAP) and a
Capability for the User of the Application (USER CAP), Service Name,

69

Service Version, and the Application’s public key running on the machine.
In step 4, the SMF chooses a server of that Service and contacts the server
using its public key, passing the Client’s DEV CAP, USER CAP, and IP
address. In the next step, the Chosen Server accepts the request and then
takes the service capability and generates a timed capability, which will ex-
pire in a few/60 seconds if the Application does not connect to the server.
This SERV TIME CAP is a proxy capability derived from the Service Ca-
pability. The SERV TIME CAP cannot be changed and is also a private
capability, so only that USER CAP and DEV CAP can use the capability.
The Chosen Server also passes the server’s IP address, the TCP port of the
Service, using the public key of the SMF. In the last step of Stage 2, the
SMF now returns to the Application with DEV CAP, USER CAP, timed
capability, IP address of Server, Port number of the services, and public
keys of Chosen Server, allowing the Application to connect to the server.

3. APPL→ SMF: (Request service (Service Name, Service Version, DEV
CAP, USER CAP, PK(APPL)), (PK(SMF))

4. SMF Chosen -¿Server: (Usage request (DEV CAP, USER CAP, IP
Client),(PK(SERV))).

5. Chosen Server-¿ SMF : SMF (Us- age request accepted (DEV CAP,
USER CAP, SERV TIME CAP, IP Server, Port Server), (PK(SMF)))

6. SMF→ APPL: (Request service accepted (DEV CAP, USER CAP,
SERV TIME CAP, IP Server, Port Server, PK(SERV)), (PK(APPL)))

� Stage 3: The Application sets up a secure session with the Server.
The Application sends a session start request to the Chosen Server with
DEV CAP, USER CAP, SERV ID, Nonce of NA, the public key of Server
and uses the SERV TIME CAP. Nonces are randomly generated numbers
that can be used just once to ensure that old communication cannot be
repeated/reprocessed. Nonce (NA) ensures that the session is unique on
the Application side. In Step 8, the Server replies with a session capability
(CAP SESS), DEV CAP, USER CAP, NA, NB and a session key (SESS
KEY). SESS KEY is a symmetric key that is only used once for encrypting
the details in one communication session. Nonce (NB) is used to ensure the
session is unique on the Server side.

7. APPL → Chosen Server: (Session Start Request (DEV CAP, USER
CAP, SERV ID, SERV TIME CAP, NA)), (PK(SERV)).

8. Chosen Server→ APPL : (Session Start Request Accepted DEV CAP,
USER CAP, CAP SESS, SESS KEY, NA, NB), (PK(APPL)).

70

� Stage 4: The Application gets service by using the CAP SESS
key and encrypts using the SESS KEY In Stage 4, the Application
sends a service request with CAP SESS, Nonce (NB) and uses the SESS
KEY to the Chosen Server. The Server sends CAP SESS, NA, Result in
Details and uses the SESS KEY to the Application. Here, NA is used to
ensure that the session is unique on the Application side.

9. APPL→ Chosen Server : (Service Request (CAP SESS, NB, Request
Details)(SESS KEY))

10. Chosen Server → APPL: (Service Request Done (CAP SESS, NA,
Result Details) (SESS KEY))

� Stage 5: The Application is finished and terminates the session
In Stage 5, the Application sends end requests to Chosen Server with CAP
SESS, Nonce (NB), Session End and uses the session key. The Server ter-
minates the session and then revokes the CAP SESS capability to prevent
replay attacks.

11. APPL→ Chosen Server :(Session End Request Accepted (CAP SESS,
Nonce (A), Session End)(SESS KEY)).

6.4.0.1 General Notations SSP Algorithm

71

Table 6.1: General Notations

Notations Explanation

CMS Cloud Management System

SMF Service Management Framework

APPL Applications

Chosen Server The SMF chooses a server of that service

PK(SMF)/PK(APPL)/PK(SERV) Public key of SMF/APPL/Server

SK(SMF)/SK(APPL)/SK(SERV)/ Private key of SMF/APPL/Server

SESS KEY Session key

NA and NB Nonce of NA and NB

Register Service CMS contacts to Register the Service

Service Details Servers, keys and running services.

Service Registered The SMF registers the Service

SERV ID Service ID

SERV CAP Service Capability

DEV CAP The Capability for the Device

Request service Request to an appropriate server

USER CAP User of the Application

CAP SESS User of the Application

Service Name Name of the services

Service Version Service Version

IP Client IP address of Client

SERV TIME CAP proxy capability

IP Server IP address of Server

Port Server TCP Port of Service

Usage request SMF contacts the server

Usage request accepted The Server accepts the request

Request service accepted SMF returns all the details

Session Start Request Time capability sends start request

Service request The application requests service

Service request done The application gets service

Request Details Details of APPL request.

Result Details Details of chose server result.

Session End Request The application terminates the session

Session End Req accepted Server terminates session

72

6.5 ProVerif results

The output of the query attacker() function results in ”True”, which means the
attacker cannot be able to gain the value of that security property. The tool
proves the attacker’s knowledge and also protects the secrecy of data by authen-
ticating between parties or more roles to securely transfer data and authenticated
communications for an unbounded number of sessions using unbound data. If the
outcomes of the Query Attacker () of function is “False”, the value of the security
property is accessible by the attacker. Finally, the result shows the attack trace if
any or display query attacker of TRUE or FALSE. The SSP protocol is designed
using ProVerif tool, and it results as ”safe”. In Stage 4, the application gets
service by using the capability session key and encrypts using the Session key to
the Chosen server. The query attacker of function to “Session key” (Ksappl) is
TRUE.

The private keys of Cloud Management System (CMS), Service Management
Framework (SMF), Application (Appl), Chosen Server(S) results are True. In
Stage 3 and Stage 4, Nonces are used between the chosen Server and the Appli-
cation to prevent the replay attacks. The output of Nonce is “True” from Server
sessions. The Cloud Management System (CMS) which supports a number of
services contacts the SMF to register the Service. We applied “event begin and
end function” to verify whether the sessions started before the SMF starts or not
and it results as “True”. In the same way, inj-begin and end function used to
verify from Server Sessions.

The below Figure 6.6 and Table 6.2 show that the SSP protocol is working
fine. Hence, this is a more secure mechanism for capability-based services.

Figure 6.6: SSP protocols Results

6.5.1 Queries for Private keys

Queries for Private keys of Application, Cloud Management System, Service Man-
agement Framework and Server : query attacker(sksmf); query attacker(skcms);

73

Table 6.2: QUERY ATTACKER() RESULTS

Security Properties CMF SMF SERVER APPL

Private Keys True True True True

Session Key - - True True

Nonces - - True -

Event Begin() True - - -

Event end() True - - -

inj-event begin() - - True -

inj-event-end() - - True -

query attacker(skappl); query attacker(skS);

� RESULT not attacker skey(sksmf[]) is true.

� RESULT not attacker skey(skcms[]) is true.

� RESULT not attacker skey(skappl[]) is true.

� RESULT not attacker skey(skS[]) is true.

6.5.1.1 Queries for nonces

Queries for nonce between Server and application: query attacker(SERVERNA);
attacker(SERVERNB); attacker(APPLNB); attacker(APPLNA):

� RESULT not attacker bitstring (SERVERNA[]) is true.

� RESULT not attacker bitstring (SERVERNB[]) is true.

6.5.1.2 Queries for Symmetric key

Queries for Symmetric key : query attacker(Ksappl); query attacker(SERVERk)

� RESULT not attacker key (Ksappl[m7 = v 10131,m4 = v 10132,!1 = v 10133])
is true.

� RESULT not attacker bitstring (SERVERk[[]) is true.

74

6.5.1.3 Queries for authentication of Server event and CMS event

Queries for Symmetric key : query attacker(Ksappl); query attacker(SERVERk)

� RESULT inj-event(endSERVERparam(x 24696)) →
inj-event(beginSERVERparam(x 24696)) is true.

� RESULT inj-event(endCMSparam(x 38772)) →
inj-event(beginCMSparam(x 38772)) is true.

� RESULT event(endCMSparam(x 42655)) →
event(beginCMSparam(x 42655)) is true.

6.6 Chapter Summary

So far, in this work, a new Resource Allocation Security Protocol (RASP) has
been proposed for server migration between commercial Cloud environments. In
our first attempt, using AVISPA, we showed that the protocol is safe under nor-
mal operation; the present protocol critically prevents impersonation attacks ei-
ther by rogue Cloud infrastructure hoping to sneer valid services or by malicious
servers wanting to inflict damage on Cloud Infrastructure. In our second attempt,
using ProVerif, we showed that the proposed protocol succeeds in three signifi-
cant security properties namely: secrecy, authentication of SA to CB and CB to
SA, and secure symmetric key exchange. In this chapter, we started by show-
ing the scenario diagram of Service Management Framework, Capabilities and
then discussed the SSP protocol and showed the protocol is safe using ProVerif.
This research has suggested a new Secure Service Protocol, which can be used
to protect any service, using new techniques like Capabilities (used to identify
any object and its properties) and a new Service Management Framework. The
protocol has been verified using Proverif and is being deployed on the Middlesex
VANET Testbed.

75

Chapter 7

Implementation

7.1 Brief Introduction

This chapter identifies the main contributions of the research, which will focus on
developing the Service Management Prototype in the proposed security frame-
work. In chapter 5, we showed the implementation of the RASP protocol and
messages are exchanged to ensure security. In chapter 6, we extended this concept
by adding capabilities and replacing the registries with the Service Management
Framework (SMF). In this chapter, we seek to implement a real secure service
transfer mechanism using migration techniques such as Docker, Capabilities and
Service Management Framework (SMF).

7.2 Basic capability System Library (BCSL)

To build our prototype system, we used the Basic Capability System Library
(BCSL), which is the Base Layer of the Implementation Framework, as our start-
ing point. This layer supports users, devices, and services and allows servers to
be added to the services. Each of them has its own capability, which is used to ac-
cess other objects, for example, files. Services are created and are then registered
with the Service Management Layer (SManL). Figure 6.4 in Chapter 6 discusses
clearly how SMF works. The middle layer is used for enhancement, tuning and
mapping layers or updates. The Basic Capability System Library was written
by the ALERT Team and is only a basic system that enables the creation of
users, devices, services and servers and implements them. These types are given
as CAP USER, CAP DEVICE, and CAP SERVICE as their Capability types,
respectively. The top layer is system implementation. Here, we are trying to
improve the SMF to allow it to migrate and securely replicate the services. Our
part of the work mainly focuses on how to migrate and replicate the registered

76

services securely.

Figure 7.1: Basic capability System Library (BCSL)

7.3 Filesystem structure

Since we are looking at migrating the NMS, which is being used as the backend
of the FUSE system, it is important to understand how filesystems work. In an
operating system, the filesystem structure is the most basic level of organisation.
The way an operating system organises data on storage devices affects almost
every aspect of how it interacts with its users, programmes, and security model.
The central concepts are superblock, inode, data block. Each file is represented
by an inode. Each inode has several blocks.

� Super Block: This block contains administrative information about the
partition’s filesystem such as its size, dependencies information.

77

� inode: An inode contains the entire information about a file. The file name
will be stored in the directory with the no of the inode. The inode contains
several data blocks which allow the data to be stored in a file.

� data blocks: The actual data are stored in the files on the filesystem. The
data blocks are allocated to file systems dynamically as they are required.

7.3.1 Data blocks

The below struct structure shows how blocks are allocated locally. And then,
allocated on the NMS if permanent storage is required.

struct block id
{

unsigned int l o c a l b l o ck id ; /* l o c a l b l o c k id */
unsigned int g l oba l b lock id ; /* g l o b a l b l o c k id */
struct c a p ab i l i t y raw ; /* c a p a b i l i t y b l o c k s f o r NMS*/
unsigned int s t a tu s ; /* s t a t u s o f the b l o c k on c l i e n t */
unsigned char *data ; /* the a c t ua l b u f f e r */

} ;

� BIT(0): This status shows that the blocks is in memory.

� BIT(1): This status shows that the blocks has no data.

� BIT(2): This status shows that the blocks has been modified/altered.

� BIT(3): This status shows that the blocks has been allocated globally.

7.3.2 The structure of CAP FILE

The status field for type field(8 bits) as follows:

� Typefield (8 bits): File

The sys field (4 bits) as follows:

� BIT(P): If set, this file is private → Set

� BIT(S): this file is created by the system → Set

� BIT(M): If set, this file holds a master capability → Set

� BIT(C): If set, this file capability is changeable → Set

78

The status field for Property field (12 bits) is defined as follows:

� BIT(0): If set, Read → Set

� BIT(1): Read/Write → Set

� BIT(2): Execute → Set

� BIT(3): Delete → Set

The Object Id is given as:

� BIT(0):If set, the file is a directory.

� BIT(1):If set, the file is an executable file.

� 32-bit: IP address of the device that manages the file.

� 28-bit: inode number of the file on that device

Random and Hash defined as:

� Random bit field (16 bits)

� Hash field (16 bits)

7.3.3 inode

The inode data structure keeps all the information files such as directories, files,
codes, programs and everything on the server. Linux must allocate index inode
for each file and directories in the file system.

struct ux inode {
char f i l ename [UX NAMELEN] ; /* f i l ename */
unsigned int f i l e name l en ; /* l e n g t h o f f i l e name */
struct c a p ab i l i t y raw mcap ; /* the master c a p a b i l i t y */
struct c a p ab i l i t y raw rwcap ; /* the read wr i t e c a p a b i l i t y */
struct c a p ab i l i t y raw rocap ; /* the read only c a p a b i l i t y */
struct c a p ab i l i t y raw xcap ; /* the execu te c a p a b i l i t y */
struct f i l e id f i d ; /* f i l e o b j e c t s t r u c t u r e */
int i type ;
/* type : i n h e r i t from parent : pub l i c , group , e t c */
int i o a c c e s s ; /* acces s a l l owed by o ther groups */
int i inode a c c e s s ; /*whether inode acces s i s a l l owed */
int i inode a c c e s s r e s ; /* r e s t r i c t i o n s to inode acces s */

79

struct ux d i r e c t o r y * i d i ; /* i f t he f i l e i s a d i r e c t o r y */
uint32 t i no ; /* inode number */
uint32 t i par no ; /* the parent inode */
uint32 t i s t a tu s ; /* the s t a t u s b i t s */
uint32 t i mode ; /* whether f i l e or d i r e c t o r y */
uint32 t i n l i nk ; /* number o f l i n k s to s t o rage systems */
uint32 t i atime ; /* l a s t time accessed */
uint32 t i mtime ; /* l a s t time modi f i ed */
uint32 t i ct ime ; /* t ime when s t a t u s changed */
i n t32 t i uid ; /* uid o f owner */
i n t32 t i g id ; /* group owner o f f i l e */
uint32 t i b locks ; /* the no o f b l o c k s in the f i l e */
i n t32 t b o f f s e t /* the no o f b y t e s in the l a s t b l o c k s */
i n t32 t f s i z e ; /* the s i z e o f the f i l e in b y t e s */
uint32 t i addr [UX DIRECT BLOCKS] ;
/* the b l o c k id o f the i n d i v i d u a l
b l o c k s */
struct ux inode *next ; /* inode l i s t */
struct ux inode *prev ; /* inode l i s t */

} ;

7.3.4 RPC

Remote procedure Call (RPC) protocol is a set of procedures in a filesystem. It
helps to read and write the files. This RPC allows a program on one system to
remotely execute the program at another address in a network. Additionally, the
messages between the NMS and the filesystem all use the same message format
as detailed below:

struct nms rpc {
unsigned short command ;
unsigned short r ep ly ;
unsigned int l o c a l b lock id ;
unsigned int c l n t ip address ;
unsigned int g l oba l b lock id ;
struct c a p ab i l i t y raw block
char data [1 0 2 4] ;

} ;

� unsigned short command: GET BLOCK, READ BLOCK,WRITE BLOCK,
DELETE BLOCK.

80

� unsigned short reply refers the reply to command from the NMS

� unsigned int local block id:this is the block on the client machine.

� unsigned int clnt ip address:the IP address on the client machine

� unsigned int global block id: the block on the NMS struct capability raw
block capr.

� struct capability raw block: the capability for the block on NMS

7.4 NMS working with the normal FUSE filesys-

tem

The Fuse and NMS server is implemented for storing and managing the data re-
siding in the system. As we stated already in Chapter 3, NMS provides networked
block storage. If a client moves to another network, then the NMS is migrated
to the new network to provide better performance. The Figure 7.2 shows client
”fuxfs” and server ”fuxfs server” under the normal communication.

Figure 7.2: Normal NMS operation

7.4.1 Fuxfs server

The NMS server is a simple program: so should be easy to migrate between
networks. This NMS server is working with the FUSE system. The header file
for this program is named ”fuxf.h” and executable code is in ”Fuxfs server”. To
compile and run the Fuse server.

� Compile command: gcc -o Fuxfs server Fuxfs server.c

� Run command: ./Fuxfs server 0.0.0.0

81

7.4.2 Fuxfs client

This is the client side of the Fuse code.

� Compile command: gcc -Wall fuxfsmg.c ‘pkg-config fuse –cflags –libs‘ -o
fuxfs -w -L./ libcapab.a -lpthread

� Run command: ./Fuxfs /tmp/fuse 0.0.0.0

7.4.3 Make Fuxfs Multithreaded

In order to develop the prototype, it was decided to make the client (i.e the fuxfs)
multithreaded. One thread called SMF THREAD managed the interaction with
the SMF as shown in Figure 7.3.

� Make user

� Make device

� Make service

� Add server

� Request service

� Migrate service

Figure 7.3: Fuxfs Multithread

82

7.5 SMF

The SMF was developed to manage the services, migrate and replicate the services
in a secure environment. To check the secure migration on Service Management
Framework (SMF), we developed C programs on the Ubuntu 20.04 platform, used
a private Docker repository to migrate our service and tested them in our local
environment. The SMF provides the following functions.

7.5.1 Register Service

The function allows the service to be registered with the SMF. It collects in-
formation on the service including service name, the description of service, the
version of service (i.e., 0 is the latest version), the TCP/UDP port number, and
the service capability. Once the service has been successfully registered with the
SMF, the SMF generates the global id. The local id is generated by the client.

7.5.2 Register User

This function helps the new user to be registered to the SMF. It collects informa-
tion about the user, including the first name, surname, role, rank, specialist, as
well as the capability of the user to register. Once the user has been successfully
registered with the SMF, the SMF will generate the global user ID for them. Each
device will have a unique local device ID (generated by the SMF THREAD) and
a global device ID (generated by the SMF).

7.5.3 Register Device

This register device function allows the devices to register with SMF. To register
a device including the name of a device, the first name and surname of the device
owner, and the device capability is also collected once the device is registered.
Each device will have a unique local device ID and a global device ID.

7.5.4 Add Server

This function helps the server be added to the required service. It also collects
details about the server, including the server global ID given by NMS, the server’s
name, the server location using the IPv4 address, and the maximum load of the
server.

83

7.5.5 Request Service

Once a service is registered with the SMF, the service can be requested by users
who want to use it. The Servers should provide this service to the requested
applications. This function allows an application to request service. After the
application sends a service request to SManL, SManL will provide the neces-
sary parameters for the application to contact the server that runs the requested
service.

7.5.6 Migrate Service

This function allows the services to migrate to the required servers. It also collects
details about global service ID, the global user id, and the global device id and
will set up the migration using Docker container technology. Once the migration
is successful, a successful result will be returned to the caller.

7.6 Testing and Evaluation

7.6.1 Docker in detail

Docker is a container technology, lightweight and easy to migrate applications
and services from one location to another. Docker hub or docker repository has
public, private and container repositories. This Docker hub has a collection of
docker images. In our implementation, we use Docker as a migration mechanism
to migrate the service. Please refer appendix for more details.

7.6.2 Docker Hub

In our research, we created an account in the Docker hub. Once we logged in, we
created a private repository to store our services and the computing resources to
enable migration in Cloud environments.

7.6.3 SMF - FUSE as a Service

We want to use the framework to implement microservices in vehicular environ-
ments. Microservices are faster to migrate and hence can be used to maintain
QoS in these networks. As our first use case, we will consider a FUSE file system
that is a user space file system commonly employed in Linux OS. In order to
test the Service Management Framework, Fuse service will be migrated from one
Cloud server to another. In my research, we show that by implementing a fuse
file system in Docker’s private repository and using it at a new location.

84

7.6.4 Steps for FUSE Server Migration in Docker Mech-
anism

The FUSE migration using a Docker container can be described by the following
steps.

� The Fuse server is checked whether it’s compiling and executing as expected
in the source host. As per the Dockers procedure, Now, the Fuxfs server
container is pushed successfully to the private repository. We need to write
a ”Dockerfile” within the same folder to provide instructions such as OS
name, version of the application, pathname, path location, compilation and
execution commands or all the commands a user could call on the command
line to assemble an image.

� The Fuse container’s current status is pushed to Docker’s private repository
as an image. We should ensure that we are logged into the Docker hub.

� If we should call the newly created image to run on a different location or
target machines, using the run command, you can convert the images as a
container to run on the targeted machine.

7.7 FUSE Server Migration in Docker - Results

7.7.1 Source code compilation in Command Prompt

In Command prompt, compile the Fuse server code using the code below to check
whether the source code is working. The program is called fuxfs server.c in the
fuxfs-master folder.

� gcc fuxfs server.c -o fuxfs server

� ./fuxfs server

7.7.2 Docker build - Fuse server

To run Docker, build your Docker image and check the built image is created or
not. The below Figure shows 7.4 and 7.5.

� docker build -t gayuinfy/gkprivate/fuxfs-server:v1 .

� docker images

85

Figure 7.4: Fuse Server - Build

Figure 7.5: Docker image for Fuse Server

7.7.3 Create private repository in Docker Hub

To access the Docker hub, log in with your account, click create a repository on
the first page, as we are working on a secure service migration, we have created a
private repository and named it ”gayuinfy/gkprivate”. The below Figure shows
7.6 and 7.7.

86

Figure 7.6: Docker Hub - Private repository Created

Figure 7.7: Docker Hub - Private repository

7.7.4 Push a Fuse container image to Docker Hub

To move the local image, from a local machine to Docker hub private repository,
we need to run the below command. This Figures shows the pull and run results
7.8 and 7.9.

� docker login

� docker tag 536ec667b681 gayuinfy/gkprivate:v1

87

Figure 7.8: Fuse Container pushed to Docker hub

Figure 7.9: Fuse Container pushed to Docker hub

� docker login docker.io

� docker push gayuinfy/gkprivate:v1

Now, the Fuse container is successfully pushed to the private repository. We
can pull this images to test our Docker image locally.

� docker pull gayuinfy/gkprivate:v1

� docker tag 536ec667b681 gayuinfy/gkprivate:v1

� docker login docker.io

� docker push gayuinfy/gkprivate:v1

88

7.7.5 Run image from Docker Hub

To run a Fuxfs server image inside of a Docker container, we used the docker run
command 7.10.

� docker run gayuinfy/gkprivate:v1

� docker run 536ec667b681

� docker docker ps -a

Figure 7.10: Run image from Docker Hub

89

7.7.6 Starting the Service Management Framework

The smf executable file has the functions to register service, register user, register
device, add server, request and migrate the service. It was compiled and executed
to check whether it can be able to start the framework using the below command.
Figure 7.11 shows that SMF has successfully started. Once the fuse client is
started, the SMF will show the state of ./smf connected to the client.

� Compile command: gcc -o smf smf.c

� Run command: ./smf

Figure 7.11: SMF Execution

7.7.7 Fuxfs server start up

After SMF started, the Source code of ”Fuxfs server.c” compile and executed
7.12.

� Compile command: gcc -o Fuxfs server Fuxfs server.c

� Run command: ./Fuxfs server 0.0.0.0.

90

Figure 7.12: Fuxfs server start up

7.7.8 Fuxfs client start up

After the Fuse server, the fuse client ”Fuxfs.c” compiled and executed as shown
in Figure 7.13. The SMF does not register a superuser because superusers have
to do with local machines. But you have to be a superuser to make devices, make
users, register devices, register service, add servers and migrate the service.

� Compile command : gcc -Wall fuxfsmg.c ‘pkg-config fuse –cflags –libs‘ -o
fuxfs -w -L./ libcapab.a -lpthread

� Run command: ./fuxfs /tmp/fuse 0.0.0.0

7.7.9 Making the Super user

The Super user has an administrative level access permission in the system. To
create users, the fuse client system switches into superuser mode. Figure 7.14
shows how the account has been created for super users.

7.7.10 Make user

The ”Make user” command allows users and their capabilities to create roles,
specialists, etc. Figure 7.15 shows how the user account has been created for
users and the user was also registered with SMF after being created.

91

Figure 7.13: Fuxfs client start up

Figure 7.14: Making superuser

7.7.11 Make device

The ”Make device” command allows devices and their capabilities (Dev cap) to
be created including device name, owner of the device, EUI 8 byte code. Figure
7.16 shows how the device has been created and the device was also registered
with SMF after being created.

92

Figure 7.15: Make user

Figure 7.16: Make device

7.7.12 Make service

The ”Make service” command allows services to be created including service
name, service description, binary of the service, password for the service and
make sure this information is correct by asking Yes or No for each query. The
Figure 7.17 shows how the service has been created and the service was also
registered with SMF after being created.

93

Figure 7.17: Make service

7.7.13 Add Server

The ”Add server” command allows servers to add including Server name, Server
Ip address, TCP and UDP port details and make sure this information is correct
by asking Yes or No for each query. The Figure 7.18 shows how the Server has
been added after the NMS service was found and the Server was also registered
with SMF after being created.

7.7.14 Request service

The Request service command allows a user or application to request a service
from the services registered with the SMF. The entity will be asked the name of
the service and the version number. A Request Service command will be sent
to the SMF who finds the service and returns all the details about the service
including a server that is currently running the service as well as the global id
of the service which is used to migrate the service. Figure 7.19 shows that the
NMS services was requested and that it was found on the SMF and the service
structure including the NMS global id was returned.

7.7.15 Migrate service

The ”Migrate service” command allows servers to migrate and provide informa-
tion including results, Global service id and Global Server id. The Figure 7.21
shows how the migration occurred and connected to the Server. The successfully

94

Figure 7.18: Add Server

Figure 7.19: Request service

migrated service provides the same results, Global service id and Global Server
id.

95

Figure 7.20: Migrate service

Figure 7.21: Migrate service

7.7.16 Migrate service using Docker

The ”Migrate service” uses a Docker container from one location to another to
migrate the service. Figure 7.22 shows how the migration occurs using Docker
and shows the status of the Fuse server starting in a new location.

96

Figure 7.22: Migrate NMS service using Docker

7.7.17 Migrate service - Container Running Status

To check the status of Docker running from the Docker Hub private repository,
we used the below command in a new terminal window. In SMF, we have set
it up to call the function using system() command to call Fuse docker container
using ”docker run gayuinfy/gkprivate:v2 ”. Figure 7.23 shows the Fuse running
container status from the Docker hub name and private repository.

� docker ps -a

7.7.18 Final results of SMF

The Figure 7.24 shows the Fuse running container status from Docker hub name
and private repository.

97

Figure 7.23: Docker Status: Fuse Container is running

Figure 7.24: SMF, FUSE Client and Server and Docker Status: Fuse Container
is running

98

7.8 Chapter summary

In this chapter, we proposed our implementation framework including the Basic
Capability System Library (BCSL) that was used to enhance the new Service
Management Framework (SMF) to migrate services securely. This BCSL pro-
totype was developed using the C programming language and preliminary per-
formance results were obtained. We detailed the file system structure, Cap file
structure, inode, and RPC. In order to test the system, we made the Fuxfs pro-
gram multithreaded. This enabled it to interact with the SMF. Then, we migrated
the NMS service using the Docker mechanism for secure service migration.

99

Chapter 8

Conclusion and Future Work

In this chapter, a summary of the accomplished work is presented and the major
contributions to research and the wider field are highlighted. This is followed by
conclusions derived from the work done and proposed future work for the research
is presented.

8.1 Contribution of the Thesis

The contributions of the thesis can be summarised as follows:

� Chapter 1: In this thesis, we presented the Cloud computing overview,
Cloud services, Cloud Advertisement in Commercial Environments and be-
gan by motivating the need for resource allocation applied in highly mobile
environments, such as vehicular networks. It showed the secure protocol
solution approach and key research questions that need to be addressed in
this thesis.

� Chapter 2: A critical review of related literature on several areas of the
existing solutions and approaches produced by researchers, scientists, and
groups on Cloud computing environments like supporting highly mobile
environments, Y-Comm reference framework, Cloud advertisements in a
commercial environment, Service Oriented Architecture, Sardi’s framework,
MEC, Container technologies, resource allocation applied in Highly Mobile
environment in Cloud., was presented in this chapter. In all these efforts
reviewed, no resource allocation security protocol was developed and tested
in a real-world environment for mobile users, which was the focus of this
research.

100

� Chapter 3: This chapter described the significance of tools and technologies
which have been used for conducting this research such as Service Migration
by containers, VANET Clouds, Experiment Testbed, Use cases (FUSE file
system and NMS) and formal verification tools (AVISPA and ProVerif).

� Chapter 4: A detailed analysis of the Resource Allocation Algorithm for ser-
vice migration between cloud systems and details of resources such as CPU,
Memory, networking requirements, and storage was presented. In vehicular
networks, the resource allocation algorithms need to be fast as users move
around. Hence, a simple but effective algorithm was proposed and used
in this research. This research helped focus on resource allocation security
protocols for the safe migration of services between Cloud environments.

� Chapter 5: In Chapter 5, a new Resource Allocation Security Protocol
(RASP) was proposed. We verified the abstract protocol using two types of
approaches: with AVISPA and with the ProVerif tool. In our first approach,
this RASP protocol was verified using the AVISPA tool and proved to be
safe for migration. The second approach, which uses session-based keys,
has been verified using the ProVerif tool and was shown to be more secure
to carry the service migration using session-based keys.

� Chapter 6: In this chapter, new mechanisms such as the Capabilities based
system and a New Service Management Framework (SMF) for mobile clouds
or Vehicular Networks were proposed. In addition, a Secure Service Protocol
(SSP) was introduced for secure service migration of any service. Then the
SSP protocol wa also verified using ProVerif.

� Chapter 7: In this chapter, the Implementation Framework was presented,
and several mechanisms were used, including the Basic Capability Sys-
tem Library (BCSL), NMS Normal Operation with FUSE, and the Mul-
tithreaded system that interacted with the SMF. The FUSE/NMS server
was then migrated using Docker. The result of each step was presented
in great detail and we showed that the proposed system was successfully
tested.

8.2 Contributions to the research

This thesis has provided a comprehensive analysis of resource allocation security
protocols for secure service migration that can be used to safely migrate ser-
vices in Commercial Cloud environments. The key contributions of this thesis

101

are therefore as follows: A new Resource Allocation Security Protocol (RASP)
has been proposed for the service migration between commercial Cloud environ-
ments. In our first attempt, using the AVISPA tool, we showed that the protocol
is safe under normal operation; this protocol critically prevents impersonation
attacks either by rogue Cloud infrastructure hoping to sneer valid services or
by malicious servers wanting to inflict damage on Cloud Infrastructure. In our
second attempt, using ProVerif, we showed that the proposed protocol succeeds
in three significant security properties namely: secrecy, authentication of SA to
CB and CB to SA, and secure symmetric key exchange. Furthermore, using
new mechanisms such as Capabilities and a Service Management Framework, a
Secure Service Protocol (SSP) was proposed for ANY service migration. SSP
was verified using ProVerif and shown to be safe. Finally, a viable prototype
was bult using the Basic capability System Library(BCSL) to enhance the SMF,
and a simple Network Memory Server (NMS) as part of the FUSE system was
migrated between different servers using Docker mechanisms.

8.3 Contribution to the Field

This thesis considered resource allocation for secure Service migration in Cloud
Environments that helps reduce operational costs, build a widely distributed
development and deployment platform to access applications via the Internet,
increase scalability, performance in local, national or global environments. We
believe that this work can easily integrated into current Cloud systems. This
model can be applied to most communication systems in the real world.

8.4 Conclusion and Future Work

In this research, we focused on the verification of resource allocation protocols in
the symbolic model using Applied pi-calculus. This thesis showed how the pro-
posed protocols were verified with two well-known tools: AVISPA and ProVerif.
To further validate the effort, a prototype was developed using the Basic capabil-
ity System Library (BCSL), FUSE and NMS. The migration of the NMS using
Docker mechanisms was clearly shown. We believe that this work can be fur-
ther enhanced by using new and emerging technologies, such as Software Defined
Vehicular Networking (SDVN), the Internet of things (IoT), 5G Internet, and
Blockchain.

102

Bibliography

Ocaml development-foreign function interface, 2019. URL https://v1.

realworldocaml.org/v1/en/html/foreign-function-interface.html. 30

Mart́ın Abadi and Bruno Blanchet. Analyzing security protocols with secrecy
types and logic programs. Journal of the ACM (JACM), 52(1):102–146, 2005.
28

Mahdi Aiash, Glenford Mapp, Aboubaker Lasebae, Raphael Phan, and Jonathan
Loo. A formally verified aka protocol for vertical handover in heterogeneous en-
vironments using casper/fdr. EURASIP Journal on Wireless Communications
and Networking, 2012(1):57, 2012. 30

Rizwana Shaikh AR and Satish Devane. Formal verification of payment protocol
using avispa. 2010. 25

Alessandro Armando, David Basin, Yohan Boichut, Yannick Chevalier, Luca
Compagna, Jorge Cuéllar, P Hankes Drielsma, Pierre-Cyrille Héam, Olga
Kouchnarenko, Jacopo Mantovani, et al. The avispa tool for the automated
validation of internet security protocols and applications. In International con-
ference on computer aided verification, pages 281–285. Springer, 2005. 26, 27

Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware resource
allocation heuristics for efficient management of data centers for cloud comput-
ing. Future generation computer systems, 28(5):755–768, 2012. 16

M Bhaavan, KC Gouda, and Ananda KR Kumar. Virtualization, resource al-
location and security measures in cloud computing. International Journal of
Science, Engineering and Computer Technology, 4(6):190, 2014. 16

Bruno Blanchet. Automatic verification of security protocols in the symbolic
model: The verifier proverif. In Foundations of Security Analysis and Design
VII, pages 54–87. Springer, 2013. 30

103

https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html

BIBLIOGRAPHY

Bruno Blanchet et al. Modeling and verifying security protocols with the applied
pi calculus and proverif. Foundations and Trends® in Privacy and Security, 1
(1-2):1–135, 2016. 16, 29

Vincent Cheval Bruno Blanchet, Ben Smyth and Marc Sylvestre. Automatic
cryptographic protocol verifier,user manual and tutorial. Book, November 2021.
28, 29

Jichuan Chang, Parthasarathy Ranganathan, and Kevin T Lim. Memory server,
February 21 2017. US Patent 9,575,889. 23

S. Chen, H. Fu, and H. Miao. Formal verification of security protocols using
spin. In 2016 IEEE/ACIS 15th International Conference on Computer and
Information Science (ICIS), pages 1–6, June 2016. doi: 10.1109/ICIS.2016.
7550830. 25

Edmund M. Clarke and Bernd-Holger Schlingloff. Chapter 24 - model check-
ing. In Alan Robinson and Andrei Voronkov, editors, Handbook of Au-
tomated Reasoning, Handbook of Automated Reasoning, pages 1635–1790.
North-Holland, Amsterdam, 2001. ISBN 978-0-444-50813-3. doi: https://doi.
org/10.1016/B978-044450813-3/50026-6. URL https://www.sciencedirect.

com/science/article/pii/B9780444508133500266. 25

H. Cloud. The nist definition of cloud computing. national institute of science
and technology, special publication, 800(2011), p.145. 2011. 1

Ashutosh Dutta and Eman Hammad. 5g security challenges and opportunities: A
system approach. In 2020 IEEE 3rd 5G World Forum (5GWF), pages 109–114,
2020. doi: 10.1109/5GWF49715.2020.9221122. 16

Thomas Erl. SOA principles of service design (the Prentice Hall service-oriented
computing series from Thomas Erl). Prentice Hall PTR, 2007. 12

Onyekachukwu Augustine Ezenwigbo, Jose Ramirez, Gayathri Karthick, Glenford
Mapp, and Ramona Trestian. Exploring the provision of reliable network stor-
age in highly mobile environments. In 2020 13th International Conference on
Communications (COMM), pages 255–260, 2020. doi: 10.1109/COMM48946.
2020.9142033. 8

Jipeng Gao and Gaoming Tang. Virtual machine placement strategy research. In
2013 International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery, pages 294–297. IEEE, 2013. 14

104

https://www.sciencedirect.com/science/article/pii/B9780444508133500266
https://www.sciencedirect.com/science/article/pii/B9780444508133500266

BIBLIOGRAPHY

Dr Gayathri Karthick, Florian Kammueller, Glenford Mapp, and Mahdi Aiash.
Exploring secure service migration in commercial cloud environments. In
WORKSHOP 2019, page 19, 2019. 8

Noha Hamdy, Amal Elsayed, Nahla ElHaggar, and M Mostafa-Sami. Resource
allocation strategies in cloud computing: Overview. International Journal of
Computer Applications, 975:8887, 2017. 16

Zhenqiu Huang, Kwei-Jay Lin, and Chi-Sheng Shih. Supporting edge intelligence
in service-oriented smart iot applications. In 2016 IEEE International Con-
ference on Computer and Information Technology (CIT), pages 492–499, 2016.
doi: 10.1109/CIT.2016.40. 10

Julio A Hurtado Alegŕıa, Maŕıa Cecilia Bastarrica, and Alexandre Bergel. Avispa:
a tool for analyzing software process models. Journal of software: Evolution
and Process, 26(4):434–450, 2014. 27

Rasheed Hussain, Junggab Son, Hasoo Eun, Sangjin Kim, and Heekuck Oh.
Rethinking vehicular communications: Merging vanet with cloud computing.
In 4th IEEE International Conference on Cloud Computing Technology and
Science Proceedings, pages 606–609. IEEE, 2012. 4

G. Karthick, G. Mapp, F. Kammueller, and M. Aiash. Formalization and
analysis of a resource allocation security protocol for secure service migra-
tion. In 2018 IEEE/ACM International Conference on Utility and Cloud
Computing Companion (UCC Companion), pages 207–212, Dec 2018. doi:
10.1109/UCC-Companion.2018.00058. 8, 60

Gayathri Karthick, Glenford E Mapp, Florian Kammueller, and Mahdi Aiash.
Exploring a security protocol for secure service migration in commercial cloud
environments. 2017. 5, 8

Gayathri Karthick, Glenford Mapp, Florian Kammueller, and Mahdi Aiash. Mod-
eling and verifying a resource allocation algorithm for secure service migration
for commercial cloud systems. Computational Intelligence, n/a(n/a), 2021. doi:
https://doi.org/10.1111/coin.12421. URL https://onlinelibrary.wiley.

com/doi/abs/10.1111/coin.12421. 8

Jun Kikuchi, Celimuge Wu, Yusheng Ji, and Tutomu Murase. Mobile edge com-
puting based vm migration for qos improvement. In 2017 IEEE 6th global
conference on consumer electronics (GCCE), pages 1–5. IEEE, 2017. 14

Pascal Lafourcade, Vanessa Terrade, and Sylvain Vigier. Comparison of cryp-
tographic verification tools dealing with algebraic properties. In International

105

https://onlinelibrary.wiley.com/doi/abs/10.1111/coin.12421
https://onlinelibrary.wiley.com/doi/abs/10.1111/coin.12421

BIBLIOGRAPHY

Workshop on Formal Aspects in Security and Trust, pages 173–185. Springer,
2009. 30

Hongxing Li, Guochu Shou, Yihong Hu, and Zhigang Guo. Mobile edge comput-
ing: Progress and challenges. In 2016 4th IEEE international conference on
mobile cloud computing, services, and engineering (MobileCloud), pages 83–84.
IEEE, 2016. 14

M. How avispa tool validates security protocols and applications. Web, 2022. 28

G. Mapp, F. Sardis, and J. Crowcroft. Developing an implementation framework
for the future internet using the y-comm architecture, sdn and nfv. In 2016
IEEE NetSoft Conference and Workshops (NetSoft), pages 43–47, June 2016.
doi: 10.1109/NETSOFT.2016.7502440. 12

Glenford Mapp, Mahdi Aiash, Hélio Crestana Guardia, and Jon Crowcroft. Ex-
ploring multi-homing issues in heterogeneous environments. In 2011 IEEE
Workshops of International Conference on Advanced Information Networking
and Applications, pages 690–695. IEEE, 2011. 63, 64

Glenford E Mapp, Fatema Shaikh, Jon Crowcroft, David Cottingham, and Javier
Baliosian. Y-comm: a global architecture for heterogeneous networking. 2007.
4, 6, 11

Victor Medel, Omer Rana, Jose Angel Banares, and Unai Arronategui. Modelling
performance and resource management in kubernetes. In Proceedings of the
9th International Conference on Utility and Cloud Computing, pages 257–262,
2016. 18

Vishnu Vardhan Paranthaman, Arindam Ghosh, Glenford Mapp, Victor Iniovosa,
Purav Shah, Huan X Nguyen, Orhan Gemikonakli, and Shahedur Rahman.
Building a prototype vanet testbed to explore communication dynamics in
highly mobile environments. In International Conference on Testbeds and Re-
search Infrastructures, pages 81–90. Springer, 2016. 19

Vishnu Vardhan Paranthaman, Yonal Kirsal, Glenford Mapp, Purav Shah, and
Huan X. Nguyen. Exploring a new proactive algorithm for resource manage-
ment and its application to wireless mobile environments. In 2017 IEEE 42nd
Conference on Local Computer Networks (LCN), pages 539–542, 2017. doi:
10.1109/LCN.2017.86. 15

Vishnu Vardhan Paranthaman, Yonal Kirsal, Glenford Mapp, Purav Shah, and
Huan X Nguyen. Exploiting resource contention in highly mobile environments

106

BIBLIOGRAPHY

and its application to vehicular ad-hoc networks. IEEE Transactions on Ve-
hicular Technology, 68(4):3805–3819, 2019. 5, 15

Shiva K. Pentyala. Emergency communication system with docker containers,
osm and rsync. 2017. 4

Jose Ramirez, Onyekachukwu Augustine Ezenwigbo, Gayathri Karthick, Ra-
mona Trestian, and G. Mapp. A new service management framework for
vehicular networks. In 2020 23rd Conference on Innovation in Clouds, In-
ternet and Networks and Workshops (ICIN), pages 162–164, 2020. doi:
10.1109/ICIN48450.2020.9059441. 8, 10

Fragkiskos Sardis, Glenford Mapp, Jonathan Loo, Mahdi Aiash, and Alexey
Vinel. On the investigation of cloud-based mobile media environments with
service-populating and qos-aware mechanisms. IEEE transactions on multime-
dia, 15(4):769–777, 2013. 4, 6, 10, 13

Anurag Shashwat and Deepak Kumar. A service identification model for service
oriented architecture. In 2017 3rd International Conference on Computational
Intelligence & Communication Technology (CICT), pages 1–5. IEEE, 2017. 12

Johan Tordsson, Rubén S Montero, Rafael Moreno-Vozmediano, and Ignacio M
Llorente. Cloud brokering mechanisms for optimized placement of virtual ma-
chines across multiple providers. Future generation computer systems, 28(2):
358–367, 2012. 15

Kifayat Ullah, Luz M Santos, João B Ribeiro, and Edson DS Moreira. Sadp:
A lightweight beaconing-based commercial services advertisement protocol for
vehicular ad hoc network. In International Conference on Ad-Hoc Networks
and Wireless, pages 279–293. Springer, 2016. 12

Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok. To {FUSE}
or not to {FUSE}: Performance of user-space file systems. In 15th {USENIX}
Conference on File and Storage Technologies ({FAST} 17), pages 59–72, 2017.
23

Nattaruedee Vithanwattana, Gayathri Karthick, Glenford Mapp, and Carlisle
George. Exploring a new security framework for future healthcare systems. In
2021 IEEE Globecom Workshops (GC Wkshps), pages 1–6. IEEE, 2021a. 66

Nattaruedee Vithanwattana, Gayathri Karthick, Glenford E Mapp, and Carlisle
George. Exploring a new security framework for future healthcare systems.
Conference, 2021b. 9

107

BIBLIOGRAPHY

Peipei Xiao, Yufeng Wang, Qun Jin, and Jianhua Ma. A privacy-preserving
incentive scheme for advertisement dissemination in vehicular social networks.
In 2016 IEEE Trustcom/BigDataSE/ISPA, pages 1741–1746, 2016. doi: 10.
1109/TrustCom.2016.0267. 12

Ke Zhang, Yuming Mao, Supeng Leng, Alexey Vinel, and Yan Zhang. Delay
constrained offloading for mobile edge computing in cloud-enabled vehicular
networks. In 2016 8th International Workshop on Resilient Networks Design
and Modeling (RNDM), pages 288–294. IEEE, 2016. 14

Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and
research challenges. Journal of internet services and applications, 1(1):7–18,
2010. 2

108

Appendix

.1 Docker installation

Firstly, we installed Docker on our machine by typing the below commands based
on our machine configuration. My machine configuration is Linux Ubuntu 20.04.
Once the Docker installation is completed, Docker will start automatically or by
typing the start and stop command.

� sudo apt install docker.io runc

� sudo sytemctl status Docker.

� sudo systemctl start docker

To find the versions for Docker Client and Server versions by type Docker version
and to get server permission, use chmod.

� Docker Version

� sudo chmod 666 /var/run/docker.sock

109

