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Abstract

Artificial agents and in particular robots, i.e. agents with some form of embodiment, provide

nearly unlimited possibilities to support humans in their daily lives by reliably performing

hazardous, repetitive, and physically demanding tasks, removing the risk of human errors,

and providing social, mental, and physical care as needed, and around-the-clock. However,

for this, artificial agents need to be able to communicate with other agents, in particular

humans, in a natural and efficient manner, and to autonomously learn new tasks. The most

natural way for humans to tell another agent to perform a task or to explain how to perform

a task is through natural language. Therefore, artificial agents need to be able to understand

natural language, i.e. extract the meanings of words and phrases, which requires words and

phrases to be linked to their corresponding percepts through grounding.

Theoretically, groundings, i.e. connections between words and percepts, can be manually

specified, however, in practice this is not possible due to the complexity and dynamicity

of human-centered environments, like private homes or supermarkets, and the ambiguity

inherent to natural language, e.g. synonymy and homonymy. Therefore, agents need to be

able to autonomously obtain new groundings and continuously update existing groundings to

account for changes in the environment and incorporate new information obtained through

the agent’s sensors. Furthermore, the obtained groundings should be utilizable to learn new

tasks from natural language instructions.

Therefore, this thesis proposes a novel framework for simultaneous language grounding and

action learning that achieves three main objectives. First, it enables agents to continuously

ground synonymous words and phrases without requiring external support by another agent.

Second, it enables agents to utilize external support, if available, without depending on it.

Finally, it enables agents to utilize previously learned groundings to learn new tasks from

language instructions.
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1 Introduction

Robots are versatile machines that have the potential to revolutionize not only our
workplaces, but also our homes. Industrial robots employed in today’s factories al-
ready outperform humans in terms of physical strength, speed, and precision. How-
ever, these robots are deployed in carefully controlled environments and have no or
only very limited interaction with humans [42]. In contrast, service robots that are de-
signed to work in complex human-centered environments to support and interact with
a variety of other agents, such as humans, pets or other robots, are currently only used
to perform simple narrowly defined tasks, such as vacuuming the floor or cutting grass.
The main reason is that human environments are intrinsically more complex due to the
following characteristics:

• Other autonomous agents: Humans, animals, or other robots can be in the same
environment so that artificial agents need to be able to interact with them in a
natural and efficient manner, which requires artificial agents to be able to converse
in natural language. Additionally, they need to adjust their actions based on the
conversations, e.g. performing a requested task or adjusting their behavior based
on the preferences expressed by the other agents. The latter requires artificial
agents to understand the goals and needs of the other agents.

• Built for humans: Human-centered environments and the objects within are made
for the characteristics and capabilities of the human body, thus, when observing
humans perform a task, artificial agents can in most cases not just copy their ac-
tions but need to map them to the capabilities of their current embodiment1. Fur-
thermore, all actions performed by humans are optimized for the human body,
thus, agents need to be able to distinguish relevant constraints that need to be
followed to perform the task correctly from constraints introduced by the limita-
tions of the human body to optimize all actions for their own embodiment. Finally,
when modifying the environment, artificial agents should ensure that the environ-
ment remains suitable for humans, i.e. modifications of the environment should
either directly benefit the humans or at least have no negative effect for them.

1In contrast to humans, artificial agents can be placed in different embodiments or their embodiments
can be modified to extend their capabilities, e.g. by adding additional sensors or actuators to increase
the amount of obtainable perceptual information and the number of degrees of freedom, or improve
their performance, e.g. by replacing their sensors or actuators with better ones.

1



2 Chapter 1. Introduction

• Assuming common sense: Human-centered environments and the objects within
are designed assuming that the inhabitants have common sense, understand the
purpose and characteristics of the objects as well as the way they should be used.
Artificial agents need to have similar understanding capabilities to ensure that
they do not use objects inappropriately, which could otherwise cause damage to
the objects, the agents, or in the worst case other agents in the environment. For
example, an agent might throw a knife towards a human, place a baby into a
washing machine or put a pet into the microwave, when asked to give a knife to
a person, wash a child or dry a pet, respectively. The list of possible dangerous,
harmful or even deadly actions is in the end only limited by our imagination but
it provides a clear sense of the importance of incorporating common sense and
proper understanding of the effects of their actions into artificial agents.

• Dynamicity: The environment can change due to the actions of other autonomous
agents or the dynamicity of nature, such as weather or decay of materials. Un-
derstanding these changes and acting appropriately requires artificial agents to
be able to determine what or who caused the change, whether it is desired, and
whether any supportive or preventive actions should be performed in response.
Furthermore, agents should also be aware of the reactions their actions will trig-
ger before performing them, i.e. artificial agents should have models of the other
agents’ minds2.

These characteristics make it necessary for artificial agents to build and continuously
update their own models of the world so that they are able to understand the environ-
ment they operate in, especially the characteristics, needs, actions and goals of other
agents, such as humans, to reason about them to plan their actions and achieve their
goals. The world models can neither be build purely from abstract or concrete knowl-
edge but need to incorporate both so that the latter grounds the former in the physical
world. Abstract knowledge, such as common sense knowledge or knowledge found
in books or on the web, is important to enable agents to reason about the world, plan
how to achieve their goals and interact appropriately with the environment and other
agents. Interacting appropriately does not only mean to prevent physical damage or
harm but also includes following of social norms, such as empathy, and taking into
account the limitations of other agents to ensure that interactions are experienced as
efficient, natural and beneficial by the other agents. Concrete knowledge, on the other
hand, is essential to provide meaning to abstract knowledge so that artificial agents can
understand the current state of the world as perceived through their sensors, to (1) rea-
son about it and determine the actions that have the highest probability of bringing the

2Understanding the mental states of other humans is called Theory of Mind [67] and is an active research
area in psychology.
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agents closer to the state of the world they desire, (2) convert the selected actions into
actual actuator commands to execute them, and (3) to verify whether the executed ac-
tions had the desired effect and whether the agents have achieved their tasks or goals,
i.e. whether the current state of the world is the same as the desired state.
Connecting abstract and concrete knowledge is non-trivial and requires sophisticated
grounding mechanisms to link abstract concepts, which can have one or more symbolic
representations, to their CRs obtained or interpretable by the agent’s embodiment. CRs
represent sets of invariant features that are sufficient to distinguish perceptual and actu-
ator information belonging to different concepts [37] and can be obtained through any
clustering or classification algorithm. Similarly, perceptual and actuator information
can take a variety of forms like color histograms, audio signals, or force sensor readings
and motor velocity, joint positions, or desired torque, respectively. The main challenge
is to obtain a CR that is general enough to cover all possible instantiations of a concept,
while at the same time specific enough to avoid confusion with instantiations of other
similar concepts. The meaning of the term concept is still an area of active philosophical
debate (see e.g. [50, 110]) and in most grounding studies it is either used synonymous
to words or symbols, e.g. [98, 4], or it is completely avoided by directly stating that
words are grounded through CRs, e.g. [57, 51]. Since all the scenarios used in this thesis
contain synonyms or homonyms, concepts can neither be directly represented through
words nor CRs. Instead the proposed grounding framework represents them implicitly
through the connections between words and CRs, which will simplify the integration of
an explicit concept representation, in the near future, to enable the use of sophisticated
reasoning mechanisms.

This thesis introduces a novel task learning framework which (1) uses both CSL and
IL to ground language through corresponding CRs, (2) utilizes the obtained groundings
to extract goal states from natural language instructions, and (3) employs RL to learn
the actions required to achieve the desired tasks. Both employed grounding mecha-
nisms are inspired by the way children learn the meaning of words. CSL, which be-
longs to the group of slow-mapping mechanisms through which children learn most
words [14], assumes that words and CRs that refer to the same concept co-occur reli-
ably across situations [12, 90] so that they can be identified in an unsupervised manner
by looking at co-occurrence information. In contrast, IL, which is a fast-mapping mech-
anism through which children only learn a small number of words [15, 108], follows the
idea that explicit teaching of mappings as well as immediate feedback to confirm correct
and remove false mappings increases the speed at which groundings are acquired and
reduces the risk of incorrect groundings. The main disadvantage of IL based grounding
approaches is that a tutor is required, who might not always be available. Since it is
important that agents do not depend on the support of other agents, while it is at the
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same time beneficial, if they are able to utilize support when available, the grounding
framework presented in this thesis combines both mechanisms.
Additionally, the proposed framework does not require an offline training phase but
continuously updates its groundings with every encountered situation to improve the
accuracy of previously obtained groundings and to incorporate words and CRs that
have not been encountered before. This is important because it is impossible to simu-
late all theoretically possible situations and train an agent on them before deploying it
in the real world3. In contrast to most existing grounding frameworks, the proposed
framework is also able to handle both synonyms, i.e. multiple words refer to the same
concept, and homonyms, i.e. a concept has multiple CRs, which is important because
language is inherently ambiguous and many words refer to different concepts depend-
ing on the context, e.g. the word tower can refer to a high building or a computer case
and the word bridge can among other things refer to a structure providing a path over
an obstacle or the forward part of a ship from which it is navigated.
Finally, the framework has an integrated task learning mechanism that uses obtained
groundings to extract goal states from natural language descriptions which are then
provided as input to a RL algorithm to learn the correct sequence of actions to perform
the desired task. This integration is very important because the main purpose of service
robots is to perform tasks requested by humans either alone or in collaboration with
other agents and often only a verbal description of the task is available.

1.1 Research Challenges

In this dissertation, three main research challenges are investigated that are essential to
enable artificial agents to autonomously connect abstract and concrete knowledge, ex-
tract goal states from natural language descriptions, and learn how to perform a desired
task with their current embodiments. Each of the research challenges leads to one of the
main contributions described in the next section (Section 1.2) and a number of research
questions which are introduced at the beginning of each of the chapters addressing one
of the challenges and main contributions, i.e. Chapters (3, 4, and 5).

1. An agent should be capable of grounding ambiguous words in an unsupervised
and open-ended manner. Since the availability of another agent which is able and
willing to support the grounding process cannot be guaranteed and to allow the
agent to also learn from watching interactions between other agents, the learning
agent should be able to learn groundings in an unsupervised manner. Further-
more, the learning agent should be able to learn new words and CRs at any time,

3In fact, even if it would be possible to ground all currently existing concepts, it would not be sufficient
because new words as well as new concepts that require grounding appear constantly [52, 21].
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i.e. no offline training phase should be required, to be able to cope with the dy-
namic nature of human-centered environments. Finally, the learning agent should
be able to handle language ambiguity, i.e. concepts that can be referred to by mul-
tiple words that are synonymous in specific contexts, like big and large, as well as
homonymous words that can refer to multiple concepts, like apple which can refer
to a fruit as well as a company.

2. An agent should be able to utilize support provided by other agents to improve
the acquisition speed and accuracy of obtained groundings. When another agent
is trying to support the grounding process through verbal or non-verbal feed-
back, the learning agent should be able to utilize the provided support to identify
correct groundings faster and discard previously obtained incorrect groundings.
However, the agent should not depend on the support because neither its avail-
ability nor correctness can be guaranteed. The latter means that it is possible that
the information provided by another agent is incorrect, which can be due to ma-
licious intent or by accident, or that the information becomes corrupted during
the transfer to the learning agent, e.g. when the learning agent misunderstands to
which object the other agent is pointing. Therefore, the provided support should
only be used in combination with information obtained in an unsupervised man-
ner to verify the former.

3. An agent should be capable of utilizing obtained groundings to learn new tasks
from natural language instructions. Enabling an agent to learn new tasks is non-
trivial, therefore, most agents are still programmed manually, while the agents
that are capable of learning new tasks require enormous amounts of data or very
close supervision like haptic demonstrations. Yet, even with this strong support
their adaptability is very limited, while obtaining large amounts of data is not al-
ways possible or might be more expensive than programming the agent manually
for many scenarios and in the end, there is still a large number of cases the agent
is not able to handle, thereby, preventing end-user adoption. However, if an agent
would be able to learn a new task after getting only a natural language instruc-
tion, it would drastically simplify the learning process and enable untrained users
to teach the agent new tasks. Furthermore, after the agent successfully learned
the task, the natural language instructions can be utilized to explain its behavior
to other agents, which is very important to foster acceptance of the agent by un-
trained users and policy makers, when considering deployment in public places
or official functions.
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1.2 Contributions

This dissertation contains three main contributions, each addressing one of the research
challenges introduced in the previous section (Section 1.1).

1. A novel framework to ground ambiguous words in an unsupervised and open-
ended manner. In Chapter (3) this thesis introduces a novel framework to ground
words in an unsupervised and open-ended manner through their corresponding
CRs, which represent sets of invariant features sufficient to distinguish percepts
belonging to different concepts. The employed CSL algorithm allows a single
word to refer to multiple CRs to handle homonymy as well as multiple words
to refer to the same CR to handle synonymy4. The framework is evaluated for
four different scenarios, which differ based on the used sentences and percepts, to
illustrate its applicability to a variety of situations and environments.

2. A novel framework to combine unsupervised and supervised grounding. In
Chapter (4) the unsupervised grounding framework proposed in Chapter (3) is
extended to obtain new and revise existing groundings through feedback to speed
up the acquisition of new groundings and improve the accuracy of the obtained
groundings by correcting false ones. The CSL component ensures that the frame-
work still works in the absence of any support by a tutor, which is important be-
cause the availability of a supporting agent cannot be taken as granted. Further-
more, the supervised learning mechanisms have been integrated into the unsu-
pervised framework so that incorrect supervision has no major negative impact on
the acquisition speed and grounding accuracy because the correct groundings will
in that case be obtained via CSL. The extended framework is evaluated through
two different scenarios, which differ based on the used sentences and percepts.

3. A novel framework that enables simultaneous, efficient, and unsupervised task
learning and grounding. In Chapter (5) the hybrid framework proposed in Chap-
ter (4) is extended with a mechanism to utilize obtained groundings to extract the
goal of a task from a natural language description so that the task can then be
learned in an unsupervised manner through RL. If the extracted goal is incorrect,
the agent will perform a wrong task, however, if a tutor is available the learned
task can be assigned retrospectively to the concept it represents. To evaluate the
extension, a task learning simulation is introduced and combined with the two

4The framework does not represent concepts explicitly, instead they are implicitly represented through
the connections between words and CRs. Most existing grounding frameworks completely avoid lan-
guage ambiguity, i.e. synonyms and homonyms, and set words equal to concepts, while the few frame-
works, e.g. [77, 78] that consider language ambiguity use implicit concept representations similar to the
framework presented in this thesis.
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grounding scenarios used to evaluate the hybrid grounding framework in Chap-
ter (4).

The thesis is organized as follows. Chapter (2) introduces the necessary background
to understand the main contributions of this thesis and discusses existing related re-
search. In Chapter (3) a novel framework for unsupervised and open-ended grounding
is proposed and evaluated through four different human-agent interaction scenarios.
Afterwards, the framework is extended in Chapter (4) to be able to benefit from feed-
back to increase its sample efficiency without being dependent on external support.
The proposed extension is evaluated through two of the four interaction scenarios used
to evaluate the original unsupervised framework. Chapter (5) proposes an additional
extension of the grounding framework to utilize obtained groundings to extract goal
states from natural language descriptions and simultaneously learn actions to enable
natural task learning. To evaluate the extension task learning simulation is introduced
and combined with the two interaction scenarios used to evaluate the hybrid ground-
ing framework. Finally, Chapter (6) discusses and summarizes the main contributions
of this thesis and presents possible future work.



2 Background and Related Work

This chapter introduces and explains key concepts and terms that are important to un-
derstand the contributions of this thesis. Additionally, it also provides a general high-
level overview of related work, while work that is specifically related to one of the
contributions of this thesis is discussed at the beginning of the corresponding chapters,
i.e. Sections (3.2, 4.2, and 5.2).

2.1 Grounding

“Grounding” is an ambiguous term and has a variety of meanings in every day science
and philosophy as outlined below.

• Electrical Grounding refers to the connection of a circuit to a common ground,
which in most cases is the earth, to provide a common point of reference for dif-
ferent sources of electrical energy and for overcurrent protection [64].

• Grounding (Earthing) refers to the idea of connecting the human body to the elec-
trons on the earth’s surface to reduce the number of free radicals and thereby de-
crease acute and chronic inflammation, pain, and stress, while improving sleep [16]1.

• Psychological grounding refers to strategies used to cope with stress, negative
emotions and traumas by establish a relationship with the ground and with the
center of the human body [46].

• Metaphyiscal grounding refers to the idea that some entities are more fundamen-
tal than other entities and that the latter only exist when grounded through the
former [84].

• Grounding in communication is a an idea proposed by Clark and Brennan [18]
and describes the process of two or more parties establishing common ground, i.e.
mutual knowledge, beliefs and assumptions, during a conversation.

1Due to the relatively low number of scientific studies that have investigated the benefit of earthing,
there is still a lot of controversy whether the reported benefits are in fact due to earthing and not other
potentially related factors.

8
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• Symbol or language grounding refers to the idea that symbols, such as written
or spoken words and phrases, only have meaning if they are linked to the real
world [37].

The idea that all the meanings listed above have in common is the use of a reference
point or entity to provide meaning to another entity. For example, a single electrical
potential has no meaning unless there is another point with a different potential so that
the current can flow to the lower potential to decrease the difference. Similarly, psy-
chological grounding tries to cope with stress and negative emotions by regarding the
situation that caused the negative feelings from a more detached and global perspec-
tive so that the person realizes its low significance in the bigger picture of their life.
In this thesis, grounding always refers to symbol or language grounding, unless other-
wise stated, which is most related to metaphysical grounding as well as grounding in
communication and will be explained in more detail in the next section.

2.2 Language grounding

Language grounding or symbol grounding has been introduced in 1990 by Stevan Har-
nad through “The Symbol Grounding Problem” [37]. The main idea is that symbols,
e.g. words and phrases, have no meaning unless they are connected to the real world.
This connection does not need to be direct, which in fact one could argue is not even
possible, but can be indirect by connecting symbols to CRs2. Each CR represents a set
of invariant features inherent to all instantiations of a particular concept so that irrel-
evant details of specific instances are excluded. For example, the concept RED, cannot
be described by a specific RGB or CMYK value that holds true for all instances of RED,
instead it can only be described by a CR encoding the range of RGB or CMYK values
that instances of RED can have so that ideally any instance of RED will be represented by
the same CR. In practice, CRs can be obtained through different learning mechanisms
like clustering or classification algorithms as described in more detail in Section (3.3.1).
Important to note is that even the most accurate machine learning algorithm will obtain
wrong CRs for some instances because of noisy perceptual information, e.g. due to par-
tial occlusions or difficult light conditions.
However, not every symbol needs to have a direct link to a CR to be grounded in the real
world, instead it is in many cases sufficient, if it is linked to several already grounded
lower-level symbols so that the meaning of the higher-level symbol is provided by the
meaning of the grounded lower-level symbols. Important to note is that this indirect
grounding might be sufficient for some situations, while it is not for others. Let’s take

2Harnad calls them “categorical representations” that are created by reducing “iconic representations” of
inputs, which are obtained through an agent’s sensors, to a set of invariant features that are sufficient
to distinguish percepts belonging to different concepts [37].
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the concept APPLE as an example, which could be indirectly grounded through the
concepts of RED, GREEN and ROUND, if the latter three concepts have been grounded
through their corresponding CRs. This indirect grounding would help an agent to suc-
cessfully pick an instance of APPLE out of a bowl with other fruits, while it might still
confuse it with a red or green ball. Another good example, which Harnad provides
in [37], is that a system which has grounded HORSE and STRIPES would be able to iden-
tify instances of ZEBRA, if it has the abstract knowledge that instances of ZEBRA look
like instances of HORSE combined with instances of STRIPE. However, this example is
also not foolproof because there are other species that also look similar to HORSE and
STRIPE, e.g. quaggas3 and okapis.
For artificial agents, especially embodied agents like robots, language grounding is es-
sential to enable efficient and natural communication with humans and to utilize ab-
stract knowledge to interpret obtained perceptual information and guide the behavior
of the agents. Therefore, a variety of grounding mechanisms have been proposed dur-
ing the last decades employing machine learning to determine the correct links between
abstract and concrete knowledge. The proposed grounding mechanisms can be split
into two groups based on the employed learning paradigm, i.e. supervised or unsuper-
vised learning. It is important to note that supervised learning refers here also to RL
and is therefore different from the three paradigms introduced by Russell and Norvig
[79]. The main reason to let supervised learning also encompass RL is that in both cases
some form of feedback is provided, i.e. class labels or a reward signal, which is differ-
ent from unsupervised learning, where no supervision is provided and the agents try
to recognize patterns solely based on the input data.
Supervised learning based grounding approaches follow usually an IL approach (Sec-
tion 2.4) and rely therefore on the support of another agent who already knows the
correct mappings and how to efficiently support the grounding process of the learning
agent. Examples are approaches that use dialog systems to ground higher-level sym-
bols through already grounded lower-level symbols, e.g. [88], or approaches that use
language games to directly teach correct groundings [96, 97]. In most cases, the tutor is
a human, however, there is no reason an artificial agent could not act as a tutor as long
as the agent has a sufficiently large set of grounded symbols and is able to provide the
required support to the language learner.
Unsupervised approaches, which do not require support of another agent, employ usu-
ally some form of CSL (Section 2.3), which assumes that one word appears several times
together with the same perceptual feature vector so that a corresponding mapping can
be created [89, 91]. Example approaches are neural modeling fields [30, 31] or proba-
bilistic model based approaches [4, 78]. The next two sections will explain CSL and IL

3Quaggas are unfortunately extinct but they were even more similar to horses than zebras because only
their front body had stripes.
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in the context of language grounding in more detail.

2.3 Cross-Situational Learning

CSL is a mechanism for word learning that is able to handle referential uncertainty by
learning the meaning of words across multiple exposures. The basic idea, which has
been proposed among others by Pinker [65] and Fisher et al. [26], is that the context a
word is used in leads to a number of candidate meanings, i.e. mappings from words to
CRs, and that the correct meaning lies at the intersection of the sets of candidate mean-
ings. Thus, the correct mapping between a word and its corresponding CRs can only be
found through repeated co-occurrences so that the learner can select the meaning which
reliably reoccurs across situations [12, 90].
The original idea of CSL was developed to explain how humans learn words and sev-
eral experimental studies have confirmed that humans employ CSL for word learning,
if no prior knowledge of language is available. For example, Akhtar and Montague [2]
conducted a study with 24 two-, three- and four-year-olds in which the children were
presented with novel objects that differed in their shape and texture. During the exper-
iment a new artificial adjective was introduced by telling the child “This is a adjective
one”, where adjective referred to the shape or texture of the target object. Afterwards,
several other objects were shown to the child that had the same characteristic referred to
by the used adjective. The results showed that already two-year-olds are able to use CSL
to infer the meaning of initially unknown words. In a different study by Smith and Yu.
[92], 28 12-month-old and 27 14-month-old infants were presented 30 times for 4s with
pictures of two objects on a screen while the name of one of the objects was played via
a loudspeaker. During the whole experiment the eye gaze of the infants was recorded
to identify for how long they looked at each of the displayed objects and the results
showed that they looked longer at the target than the other object, thus, confirming the
successful use of CSL for word learning in infants.
Due to the results obtained in the experimental studies with infants and children, a
variety of algorithms have been proposed to simulate CSL in humans and enable artifi-
cial agents, such as robots, to learn the meaning of words by grounding them through
corresponding CRs. For example, Neural Modeling Fields Frameworks were used by
several studies [28, 29, 30, 31] to ground words through corresponding CRs by utilizing
co-occurrence information obtained across several situations. The main limitation of the
frameworks is that they require the data of all situations to be collected in advance and
provided at once to the frameworks so that they are not able to handle unseen words
or CRs. Additionally, the studies only employed relatively simple scenarios to evaluate
the frameworks using only single words as linguistic input and perfect synthetic per-
ceptual data without noise.
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A very common approach to ground words through noisy perceptual data are prob-
abilistic graphical models, which have been used by many researchers in the field to
ground a variety of modalities, e.g. spatial relations, actions, shapes, and colors, us-
ing many different experimental setups to investigate a diverse set of research ques-
tions [3, 4, 20, 44, 103, 104]. While the employed probabilistic models performed well
in the used experimental setups and were useful to answer the proposed research ques-
tions, they required an offline training phase and were therefore neither able to ground
words that were not included in the training data nor able to ground language in a con-
tinuous manner. Theoretically, the former problem can be addressed through the use of
larger datasets, however, collecting large data of realistic perceptual data with annota-
tions is non-trivial and it is in general also impossible to create a dataset that includes
all existing words with all possible meanings because language is constantly changing,
i.e. new words or meanings are created. Another limitation of the models is that they
are not able to handle synonyms, i.e. multiple words refer to the same concept4, which
is a substantial limitation because many words are synonymous in specific contexts.
Note that according to the “Principle of Contrast” no two words refer to the exact same
meaning, i.e. there are no true synonyms, and words can only be synonyms in specific
contexts [17]. For example, chocolate and sweets are usually not synonymous because
sweets has a broader meaning, however, when there is only one box of chocolate on the
table and someone asks for the chocolate or sweets the words are synonymous in that
context because they have same meaning, i.e. they refer to the same object.
There has been limited work to enable probabilistic grounding models to handle syn-
onyms, e.g. [77, 78], however, the models still required an offline training phase so that
the number of unseen synonyms they can handle is still limited by the data used for
training.
In contrast to the studies mentioned above, the framework presented in this thesis does
not require perceptual data and words to be collected in advance for offline training but
is instead able to continuously learn new groundings in an online manner allowing (at
least theoretically) its deployment in dynamic human-centered environments. Further-
more, the proposed framework has been evaluated through several scenarios that differ
based on the used linguistic and perceptual information, which illustrated that is also
able to handle synonymy and homonymy, complex sentence structures, and noisy per-
ceptual information. A more detailed analysis of related work and in depth comparison
with the unsupervised grounding component employed in the grounding framework
proposed in this thesis is provided in Section (3.2).

4A concept can be referred to by multiple words (synonyms), while one word can refer to multiple con-
cepts (homonyms). One concept can then be grounded through multiple CRs (homonyms), while it is
not possible to have synonymous concepts, i.e. multiple concepts being grounded through the same
CR. Since the framework employed in this study represents concepts only implicitly, synonyms are
words that refer to the same CR and homonyms are CRs that refer to the same word.
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2.4 Interactive Learning

IL in the area of language grounding refers to supervised approaches in which the lan-
guage learner receives support and feedback, e.g. pointing or eye gaze, from a tutor.
The latter can be a human or another artificial agent which does not only have a com-
prehensive repertoire of grounded language, i.e. words and phrases, but is also, at least
partially, aware how the language learner works so that proper support and feedback
can be provided. The main idea is that the provided support and feedback enables
the learner to identify the correct mapping between a word and its corresponding CR
instantly and without needing them to co-occur several times as is required for CSL
(Section 2.3). A well known example is the Grounded Naming Game proposed in 2001
by Steels [96], which was originally developed to study the emergence and evolution of
language but was later also used for grounding of words, e.g [93, 59].
The motivation for supervised grounding approaches is that, although children do not
need any support to learn their native language, there is evidence that active support by
their parents or other language proficient people simplifies word learning and therefore
makes children learn faster [11]. Thus, IL based approaches are, similar to CSL based
approaches, inspired by studies about how infants and young children learn words.
For example, Horst and Samuelson [39] conducted a study with 24-months old infants
investigating whether they could sufficiently learn the names of several novel objects so
that they were able to remember them after five minutes, which is a large enough delay
to require retrieval from long-term memory. The experiments conducted in the study
consisted of two main parts. First, the novel object names were taught by presenting
two familiar objects with one novel object. The results showed that the children picked
the target object on average more than 70% of the times, independent of whether the
experimenter asked for a familiar or novel object. However, when they were presented
with two previously novel objects that had been named during the first part of the ex-
periment and one novel object they did not know the name of, they only picked objects
requested by the experimenter at chance level when no feedback was provided during
the first part of the experiment. In contrast, when feedback was provided in form of
extensive labeling, i.e. after the child selected an object the experimenter held up the
correct object and pointed to it while stating its name, e.g. “Look, this is the dog!”, the
number of times the correct object was selected was around 70%. Thus, feedback in the
form of extensive labeling significantly increased the children’s word learning perfor-
mance.
In a different study, Bedford et al. [8] investigated word learning differences between 31
24-month-old infants at low and high risk for Autism Spectrum Disorder (ASD), which
is a neurodevelopmental condition leading to deficits in social communication and in-
teraction [5]. At the beginning of the experiment, the children were introduced to all
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objects used during the experiment without naming them so that the novelty of objects
had no influence on the obtained results. Afterwards, an experimenter showed several
objects to the child, while asking to select a specific one, e.g. “Can you give me the
moxi?”. Once the child had chosen one of the objects, the experimenter either provided
feedback by holding the correct object in front of the child and saying, e.g. “Yes/No,
this is the moxi. What a nice moxi!”, or just said “Thank you” without providing any
feedback [8]. Finally, after the child was allowed to play for five minutes with other
toys, the experimenter showed the child four times pairs of objects, of which only one
had been named during the experiment, to investigate whether the child remembered
which object belonged to the provided name. For two of the four target objects used
during this phase, feedback had been provided during the previous phase, while for
the other two no feedback had been provided. The results showed that providing feed-
back increased the number of words the children learned and that this increase was
larger for the children that had a lower risk for ASD.
Inspired by the studies with children, supervised or interactive grounding approaches
try to utilize the support of a tutor to obtain word-CR mappings in a sample efficient
and highly accurate manner. The main idea is that direct teaching and feedback prevent
an artificial agent from learning wrong mappings and reduce the complexity of lan-
guage grounding by limiting the number of possible mappings. For example, several
studies [55, 56, 87, 88] have used dialog systems to ground higher-level symbols through
already grounded lower-level symbols during human-robot interactions. While the sys-
tems were able to learn new groundings in a fast and robust manner, the proposed sys-
tems only work, if a sufficiently large set of grounded lower-level symbols is available.
In practice, this is difficult to obtain because it is impossible to know in advance what sit-
uations an agent will encounter after deployment in the real world and therefore which
grounded lower-level symbols need to be available. Thus, the applicability of the pre-
sented grounding approach is limited and inadequate as the main or sole grounding
mechanism, while it can be useful in combination with other grounding mechanisms
that do not require the existence of already grounding lower-level symbols and can
therefore be used to obtain them. Additionally, the systems relied on the availability of
a human tutor who was aware of the set of lower-level symbols available to the dialog
systems.
The need for a human tutor that knows the correct mappings also limits the applicabil-
ity of the Grounded Naming Game [97], which is a grounding approach that has shown
to allow artificial agents to quickly learn word-CR mappings in an interactive game like
manner. The used procedure is relatively simple, i.e. an agent gets an instruction, se-
lects the target object by pointing at it, and receives immediate feedback from a human
tutor [10, 58, 59, 93, 94, 95]. The mechanism works very well and allows faster learning
of new groundings than CSL based grounding approaches [9] because the feedback en-
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ables the agent to substantially decrease the set of possible mappings by restricting the
set of possible CRs a word can be mapped to without requiring any prior groundings.
However, many of the studies that employed the Grounded Naming Game method-
ology only used a single word or phrase referring to a specific attribute of an object,
which is completely different from real utterances used by humans that consist of many
words. For example, even the utterances used to name novel objects in word learning
studies with young children or infants are complete grammatically correct sentences,
like “Look, this is the cheem!” [39], and not just single words, like “Cheem!”. Thus, it
is not clear whether the employed mechanisms would be applicable to more realistic
natural language utterances. However, the biggest limitation is the need for another
agent that is able and willing to support the grounding process.
Due to the efficiency and simplicity of the Grounded Naming Game methodology and
the fact that it does not require any prior knowledge or previously obtained ground-
ings, the feedback mechanism employed by the hybrid grounding framework proposed
in Chapter (4) follows a similar approach. However, to circumvent the main limita-
tion of the Grounded Naming Game methodology, i.e. that new grounding can only
be obtained if an external supporting agent is available, the feedback mechanism of
the hybrid grounding framework has been integrated with the unsupervised ground-
ing mechanism proposed in Chapter (3), which also enables it to cope with incorrect
feedback. A more detailed analysis of work combining unsupervised and supervised
grounding and a detailed comparison with the approach used to combine unsupervised
and supervised grounding in the grounding framework proposed in this thesis is pro-
vided in Section (4.2).

2.5 Task Learning

The main idea of task learning is that the number of possible tasks artificial agents de-
ployed in human-centered environments would have to perform cannot be known in
advance and depends on the specific environment, e.g. private home or restaurant, as
well as the specific people who would interact with the agents, e.g. children or elderly
people. Thus, agents must be able to learn in an efficient manner how to perform pre-
viously unknown tasks and without requiring support from someone who has been
professionally trained to support the agents. The latter is important because the ma-
jority of people surrounding the agents and asking them to perform specific tasks will
have in most cases no knowledge about how the agents work and therefore how to best
teach them new tasks or efficiently support the learning of new tasks. Nevertheless,
the agents should be able to utilize support, when available, to speed up the learning
process and reduce the probability of mistakes. In general, except for tasks that only
require the retrieval of information or the execution of functions preprogrammed into
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the agents, like saying the current time or playing a song, most tasks require artificial
embodied agents5 to manipulate one or more objects, which in turn requires them to
execute a series of actions to change the state or position of the target object and poten-
tially also the positions of other objects, if they otherwise prevent the target object from
being moved to the correct position [27].
Many studies have investigated how manipulation tasks can be automatically learned
by artificial agents by determining the sequences of low-level micro-actions consti-
tuting the high-level macro-actions, i.e. the manipulation tasks. The exact format of
micro-actions can vary significantly based on the requested task, previous knowledge
of the agent, and the person that is asking the agent to perform the task. For exam-
ple, micro-actions can be represented through movements of individual joints [35, 66],
simple fine-grained movements of end effectors, or sophisticated and complex move-
ments of end effectors or body parts, which allows the use of very high-level learn-
ing mechanisms, such as precise guidance through natural language instructions [88].
Representing micro-actions through movements of the end effector, requires either that
inverse-kinematics have been implemented for the embodiment of the agent or that the
agent has learned itself how it needs to manipulate its joints to move the end effector
in the desired way. This can be seen as a form of grounding by grounding higher-level
actions, i.e. moving the end effector, through lower-level actions, i.e. moving individual
joints.
The used micro-action representation determines which learning approaches are feasi-
ble. For example, when micro-actions are represented through simple movements of
joints or end effectors, most studies employed learning through demonstration or Rein-
forcement Learning (RL) [1, 36, 66, 100]. For the former, a human tutor has to demon-
strate the desired action to the agent so that a policy can be derived from the recorded
state-action pairs [6]. The latter, on the other hand, does not require the action to be
demonstrated. Instead, it only requires a description of the goal state and discovers
through trial-and-error possible policies [101]. Since the goal in this thesis is to be able
to learn a task autonomously based on a description in natural language, RL is used be-
cause it only requires a description of the goal state instead of a detailed description of
the required micro-actions, which would be necessary to employ some form of learning
from demonstration.

5Embodied agents are agents, which are mobile so that they can move independently through the envi-
ronment and are able to manipulate objects using a gripper or artificial hand. Thus, stationary home
assistants that are currently present in many homes, do not count as embodied agents, although they
are able to interact through loudspeakers and lights with the environments.
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2.6 Reinforcement Learning

RL is a framework that allows artificial agents to learn how to act in a correct and op-
timal manner in a complex environment through the maximization of a reward sig-
nal [101]. It is inspired by how children learn without any direct form of supervision
but just by observing the impact of their actions on the environment and trying to find
the right sequence of actions to achieve a certain goal. In RL the environment is defined
as everything that is outside of the agent. Interactions between the agent and environ-
ment happen in a loop. First the agent observes the current state of the environment
and uses prior experience, i.e. observations of the effect of previously executed actions,
to select an action. Afterwards, it executes the selected action. Finally, it observes the
effect of the action by observing the new state of the environment and receives a reward
signal. This signal specifies the long-term effect of an action and is given either by the
environment or generated by the agent itself. The latter is the case, if the agent knows
its goal state and is able to calculate how much the distance to the goal changed through
the executed action. The overall goal of an RL agent is to obtain a policy, i.e. a function
that specifies which action should be taken for all possible situations. Thereby, allowing
it to maximize the cumulative reward received over time.
Typically, an RL problem is modeled as a Markov Decision Process (MDP), which can
be represented as a 4-tuple < S, A, T, R >, where S is the state space, i.e. the set of all
possible states, A is the action space, i.e. the set of all possible actions, T is the transition
probability function that describes the probability that action a in state s results in state
s
′
, and R is a function specifying the reward received when transitioning from state s

to s
′

through the execution of action a. In an MDP s
′

depends only on a and s, i.e. all
previous actions and states have no effect [68].

This chapter has introduced key concepts and terms relevant for this thesis and has
provided a general high-level overview of related work, while more detailed descrip-
tions of work specifically related to one of the contributions are provided at the begin-
ning of each contribution chapter, i.e. Sections (3.2, 4.2, and 5.2).



3 Unsupervised Open Ended Grounding of

Natural Language

3.1 Motivation

Despite more than three decades of language grounding research, existing grounding
frameworks are still very brittle and many research challenges that are fundamental to
the deployment and acceptance of embodied agents in human-centered environments
are still unsolved. This chapter focuses on challenges introduced by the dynamicity and
unpredictability of human-centered environments as well as the ambiguity of natural
language by addressing the following research questions.

1. Is it possible to detect AWs in an unsupervised and open-ended manner, i.e. with-
out requiring a tutor nor an explicit offline training phase?

2. Is it possible to ground words and phrases in an unsupervised and open-ended
manner while achieving similar or better grounding performance than existing
state-of-the-art unsupervised grounding models that require and are limited by
an offline training phase?

3. How to handle language ambiguity, like synonymy and homonymy, and enable
different CRs, e.g. due to different sensors or feature extraction algorithms, to be
assigned to the same concept in an unsupervised and open-ended manner?

To investigate above research questions, a novel CSL based unsupervised grounding
framework is proposed that allows grounding of language in an open-ended man-
ner, which is essential when considering deployment in dynamic and complex human-
centered environments as defined in Chapter (1). The presented framework is evaluated
based on its sample-efficiency and the accuracy of the obtained groundings through
four scenarios that differ in the number of encountered situations, used utterances, and
obtained percepts. Furthermore, the proposed framework is compared to a state-of-the-
art unsupervised grounding framework, which has been used in many previous studies
by different researchers.
The remainder of this chapter is structured as follows: Section (3.2) provides an overview
of work directly related to the addressed research questions. The novel grounding
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framework, the used scenarios and evaluation criteria, and the employed baseline frame-
work are described in Sections (3.3–3.5). The obtained grounding results are presented
and evaluated in Section (3.6). Finally, Section (3.7) concludes this chapter by answering
the investigated research questions, summarizing the main contributions, and outlining
both the limitations of the presented framework as well as how to overcome them.

3.2 Related Work

The motivation for unsupervised grounding approaches comes from the fact that chil-
dren are able to learn the meaning of words, i.e. ground them in the real world, without
any explicit teaching or supervision by already proficient language users, e.g. their
parents or other adults [11]. One mechanism that has been found to allow children to
ground words in an unsupervised manner and without the need for a tutor is CSL (Sec-
tion 2.3), which allows to learn the meaning of words across multiple exposures while
handling referential uncertainty. A number of experimental studies have confirmed that
humans use CSL for word learning [2, 34, 92] and a variety of algorithms have been pro-
posed to simulate CSL in humans and enable artificial agents, such as robots, to learn
the meaning of words by grounding them through corresponding CRs.
For example, Fontanari et al. [30, 31] applied a Neural Modeling Fields Framework to
a grounding scenario in which a tutor presents two objects to a learner while uttering
a word that refers to one of the objects’ shape or color so that the learner can infer the
correct word-object mappings utilizing co-occurrence information across several situa-
tions. While the framework is overall able to infer the correct word-object mappings, it
has several drawbacks. First, it requires the data of all situations to be presented at once
and is thus not able to learn in an online fashion that is required in realistic scenarios in
which unseen words or objects can occur at any time. Second, it is not clear whether the
framework can handle noisy perceptual data because the used CRs were perfect and
not created from real perceptual data. Finally, the model has only been evaluated for an
extremely simple scenario with a single modality and one word utterances.
Yu and Ballard [109] and Frank et al. [32] used a machine translation model and a
Bayesian model, respectively, to obtain a lexicon of word-object mappings by taking
into account co-occurrence information. However, the employed models were also able
to learn words when no consistent co-occurrence pattern was present by taking into ac-
count social cues, thereby, presenting a simple and indirect form of combined unsuper-
vised and supervised grounding. The used utterances were based on real interactions
between a mother and pre-verbal infant during which they were playing with different
toys. The length of the utterances varied and included often several words that did not
refer to the target object, like nouns referring to other objects, verbs, articles, or preposi-
tions, however, the utterances were in general relatively short. Additionally, the studies
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did not use the actual video recordings or corresponding video frames but a synthetic
representation of the perceptual information so that it is not clear whether the models
would be able to work with real noisy perceptual information.
Tellex et al. [103] and Dawson et al. [20] used probabilistic graphical models to ground
spatial language through corresponding CRs in an offline fashion using large corpora
of examples. The employed models performed well for sentences that only contained
words they had encountered during training but had problems when sentences con-
tained unknown words. This problem can be addressed through the use of larger
datasets, however, they are not easy to obtain because the models require detailed anno-
tations to learn from and it is impossible to create a dataset including all existing words
with all possible meanings because language is constantly changing, i.e. new words
or meanings are created. Another limitation of the models is that they are not able to
handle synonyms, i.e. multiple words refer to the same concept, which is a substantial
limitation because many words are synonymous in specific contexts.
Aly et al. [4] also used a probabilistic graphical model to ground spatial concepts and
object categories through visual cues and geometric characteristics of objects, respec-
tively. Interestingly, syntactic information in the form of Part-Of-Speech tags were also
provided to the grounding model in addition to the words of the instruction to support
the grounding process. While the model was overall able to obtain the correct ground-
ings, it required an offline training phase and was only used to ground a small number
of utterances with a relatively simple structure.
Salvi et al. [82] used a Bayesian probabilistic model to determine mappings between
words and CRs of actions, object features, and effects through a human-robot interac-
tion experiment. During the experiment the robot was executing an action while listen-
ing to a description of the performed action and its effect as provided by a human tutor,
e.g. “The robot touches the yellow box, and the box is moving.” [82]. The utterance was
converted to a bag-of-words so that multiple word occurrences were ignored. Over-
all 1270 utterances were used (five different utterances for 254 different manipulations)
containing 49 different words (including synonyms). Actions were discrete, while the
three object features, i.e. shape, color, and size, and four effects, i.e. object velocity,
robot hand velocity, relative velocity between the object and hand, and activation of the
contact sensors of the hand, were continuous. Therefore, to obtain CRs for the object
features and effects, X-means clustering [63] was used. In comparison to the previously
described grounding studies, the study by Salvi et al. [82] considered relatively complex
sentences with a relatively large number of different words as well as language ambigu-
ity in the form of synonymy. Furthermore, it also used realistic perceptual information
for the object features and effects, while it used synthetic discrete actions. However,
like the previously described studies, the employed model required and offline training
phase and is therefore not able to learn in a continuous manner required for complex
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and dynamic human-centered environments.
Roesler et al. [77] and Roesler et al. [78] explicitly investigated grounding of synony-
mous words and phrases. More specifically, Roesler et al. [77] investigated the util-
ity of different word representations for grounding of unknown synonyms, which are
words for which at least one of their synonyms have been encountered during train-
ing while the word itself was not encountered. The probabilistic graphical model used
for grounding received geometric object characteristics and action feature vectors as
perceptual input and one of four different word representations, i.e. indices, Part-Of-
Speech tags, semantic vectors obtained via Word2Vec1, or Part-Of-Speech tags and se-
mantic vectors, as linguistic input. The best grounding results were achieved when
words were represented through semantic vectors in comparison to simple symbols, e.g.
numbers, that encode no additional information. However, Roesler et al. [78] showed
that this is only the case for unknown synonyms and that for known synonyms, i.e. syn-
onymous words that have been encounted during training, representing words through
simple symbols leads to better groundings, if the semantic information contains noise.
In contrast to the frameworks proposed in previous studies, the framework proposed
in this chapter is able to continuously learn new groundings so that new words and
percepts can be introduced at any time without requiring to discard previously learned
groundings as is the case for iterative offline training from scratch. Furthermore, the
proposed framework is evaluated through four different scenarios that differ based on
their linguistic and perceptual information so that the proposed framework is evaluated
for both synthetic and realistic perceptual information as well as natural language sen-
tences of varying complexity. All employed scenarios contain synonyms, while two of
the scenarios also contain homonyms, i.e. one word refers to multiple concepts, which
was not the case for any of the scenarios used in the studies described above. Since
the proposed framework is able to continuously learn new groundings, all synonyms
are known synonyms so that it does not utilize any semantic or syntactic information
following the results and recommendations of the previous studies [77, 78].
Some of the work presented in this chapter has also in some form been published in
journals or at conferences. The first versions of the proposed framework were pub-
lished in 2018/2019 [75, 76]. The first scenario was first used in 2018 and has since
then be used in several studies to investigate different research questions and evaluate
earlier versions of both the probabilistic baseline framework [77, 78] and the proposed
framework [69, 71, 72]. Furthermore, Scenario IV and the corresponding results have
been published in 2021 [74], while the employed emotion intensity and gender detec-
tion model was already published in 2020 [7]).

1Word2Vec uses a large corpus of plain text as input and outputs a vector space, where each distinct word
is represented by a vector and the distance between two vectors corresponds to the syntactic-semantic
similarity between two corresponding words [53, 54].
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3.3 An Unsupervised Open Ended Grounding Framework

The novel grounding framework described in this section has been designed with three
main goals in mind. First, it should work without any explicit external support because
the presence of a supporting agent cannot be guaranteed. Second, it needs to perform
grounding continuously and in an open-ended manner because new concepts, words,
and CRs can be introduced at any time. Finally, it must be able to handle language
ambiguity, i.e. synonyms and homonyms, because they are omnipresent in human con-
versations. Important to note is that, although the framework does not require any form
of explicit external support, it still depends on the availability of interactions to obtain
co-occurrence information. However, the interactions do not need to be with the learn-
ing agent employing the proposed framework, but can also be between other agents
the learning agent is able to observe. Similar to other existing grounding frameworks,
the proposed framework has no explicit representation of concepts that is independent
of words and CRs. However, in contrast to most other frameworks, concepts are not
explicitly represented through words or CRs but implicitly through the connections be-
tween them.
The proposed grounding framework consists of three parts: (1) CR creation compo-
nent (Section 3.3.1), which utilizes standard clustering or classification algorithms to
determine the correct CRs for encountered percepts, (2) AW detection algorithm (Sec-
tion 3.3.2), which detects AWs in an unsupervised manner through CSL, and (3) Lan-
guage grounding component (Section 3.3.3), which uses CSL to ground non-AW words
and phrases through corresponding CRs. The individual parts of the proposed frame-
work are illustrated below and in Figure (3.1), while they are described in detail in the
following subsections.

1. Concrete representation creation component:

• Input: Percepts.

• Output: CRs.

2. AW detection component:

• Input: Natural language instructions/descriptions, CRs, previously detected
AWs, and word and CR occurrence information.

• Output: Set of AWs.

3. Language grounding component:

• Input: Natural language instructions/descriptions, CRs, and AWs.

• Output: Word to CR mappings.
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Figure 3.1: Illustration of the components of the proposed framework and the data flow
for the second scenario (Section 3.5.2). First percepts, i.e. VFH descrip-
tors, RGB mean values, and 3D spatial vectors, are extracted using the point
clouds of the objects in the current scene and the meta-data generated by
the scene extraction script (see Section 3.5.2 for details). Afterwards, corre-
sponding CRs are obtained, which are then provided as input to the AW and
language grounding components. Both components also take as input the
natural language sentence. Finally, the language grounding component out-
puts the current word-CRs mappings, which take into account the current
situation as well as all previously encountered situations.



24 Chapter 3. Unsupervised Open Ended Grounding of Natural Language

3.3.1 Concrete representation creation

CRs represent sets of invariant perceptual features obtained through an agent’s sensors
that are sufficient to distinguish percepts belonging to different concepts by excluding
irrelevant details. For illustrative purposes, let’s assume that we only consider the color
modality when looking at a red apple and a tomato. In this case, both are red, however,
it is very unlikely that the obtained RGB values or color histograms of both objects are
exactly the same. Thus, we need some mechanism that tells us reliably that these two in-
stances belong to the same concept. Any standard clustering or classification algorithm
could be used for this, i.e. take as input the perceived color percepts of both objects and
output the same symbolic label, thereby, telling us that both percepts belong to the same
concept. The symbolic label is then the CR of the concept RED, thus, by linking the CR
to RED the latter gets grounded through all possible perceptual instances of RED.
In contrast to most grounding frameworks, the proposed framework has a separate
component to obtain CRs. This has the advantage that different mechanisms, e.g. clus-
tering or classification algorithms, can be used for different modalities and it is even
possible to use multiple mechanisms in parallel for the same modality. The probabilis-
tic model used as a baseline in this chapter (Section 3.4) has no separate component
and thus relies on a specific KMeans implementation to obtain CRs in an implicit way,
which limits the baseline model in several ways as described in Sections (3.6 and 3.7).

3.3.2 Auxiliary word detection

AWs are words or phrases that only exist for grammatical or linguistic reasons and
have no corresponding CRs. Examples are articles, such as “a” or “the”, that are used
to specify definiteness or conjunctions, such as “and” or “as well as”, that are used
to join sentences, clauses, or phrases. Although AWs have no CRs they can still be
essential for the meaning of an utterance, e.g. replacing the conjunction “neither...nor”
with “both...and” reverses the meaning of the following utterance: “He neither shot the
man nor threw his body into the river.”.

The AW detection component of the proposed framework uses CSL to detect words
that do not have corresponding CRs in an unsupervised manner. Three different mech-
anisms are employed for the detection of AWs, which all improve their accuracy with
the number of encountered situations due to the use of CSL. The first employed AW
detection mechanism is also used to detect permanent mappings that can no longer be
removed once added and which are therefore different from “standard” mappings that
are re-determined every time a new situation is encountered to incorporate the corre-
sponding information. The first AW detection mechanism counts for each new situation
how often each word and CR occur. If a word occurs more than three times in a given
situation and all CRs only occur once, the word will be added to the Set of Auxiliary
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Algorithm 1 The procedure to update sets of permanent mappings (PMS) and AWs
(AWS) takes as input the lists of all words (W) and CRs (CR) of the current situation,
the current PMS and AWS, and returns updated PMS and AWS.

1: procedure UPDATE PERMANENT MAPPINGS AND AWS(W, CR, PMS, AWS)
2: FW = {}, FCR = {}
3: for w in W do
4: #w = ∑

x∈W
1w(W)

5: if #w > 1 then
6: if #w ∈ FW then
7: FW(#w) = FW(#w) ∪ {w}
8: else
9: FW = FW ∪ {#w→ {w}}

10: for cr in CR do
11: #cr = ∑

x∈CR
1cr(CR)

12: if #cr > 1 then
13: if #cr ∈ FCR then
14: FCR(#cr) = FCR(#cr) ∪ {cr}
15: else
16: FCR = FCR ∪ {#cr → {cr}}
17: for #w in FW do
18: if #w ∈ FCR ∧ |FW| = |FCR| = 1∧ |FW(#w)| = |FCR(#w)| = 1 then
19: PMSw = PMSw ∪ {FW(#w)→ FCR(#w)}
20: PMScr = PMScr ∪ {FCR(#w)→ FW(#w)}
21: else if #w /∈ FCR ∧ #w > 3 then
22: AWS = AWS ∪ FW(#w)

23: return AWS, PMS

Words (AWS). In contrast, when one word and one CR occur several times and no other
word or CR occurs multiple times, they will instead be added to the set of permanent
mappings (PMS) because it is a clear indication that the word is grounded by the CR.
An illustration of the first AW detection mechanism is provided by Algorithm ( 1).

The second mechanism (Algorithm 2) identifies AWs by comparing word and CR oc-
currences to identify words that occurred more than any CR and at least eleven2 times.
The latter is important to avoid false detections during the first situations due to limited
data. Finally, the third mechanism (Algorithm 3) detects AWs by identifying words that
have a higher standard deviation across their corresponding CR occurrences in com-
parison to the mean standard deviation across CR occurrences for all words. Currently,
there exist no mechanism to remove words from the set of AWs in case they have been
incorrectly added, thus, once a word has been identified as an AW it will forever be
considered as such. While it is theoretically possible that a word is incorrectly added

2Different thresholds have been evaluated and 11 worked well for all employed scenarios.
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Algorithm 2 The second AW detection procedure takes as input the sets of word and
CR occurrences (WO and CRO), and the set of detected AWs (AWS) and returns an
updated AWS.

1: procedure AUXILIARY WORD DETECTION(WO, CRO, AWS)
2: for w, #w in WO do
3: if #w > max(CRO) ∧ #w > 11 then
4: AWS = AWS ∪ {w}
5: return AWS

Algorithm 3 The third AW detection procedure takes as input the sets of previously
obtained word-CR pairs (WCRPS), and the set of detected AWs (AWS) and returns an
updated AWS.

1: procedure AUXILIARY WORD DETECTION(WCRPS, AWS)
2: STD = {}
3: for w in WCRPS do
4: STD = STD ∪ {w→ {σWCRPS(w)}}
5: for w in STD do
6: if STD ∧ STD(w)∗WO(w)

STD∗WO
> 11∧ STD > 14 then

7: AWS = AWS ∪ {w}
8: return AWS

to the set of AWs, the three employed detection mechanisms worked without problems
for all four employed scenarios (Section 3.5), which used different words, phrases, and
sentences.
However, when the framework is extended in Chapter (4) to benefit from supervision
provided by an external agent, there are two cases in which non-AWs are wrongly
detected as AWs, i.e. the word “cylinder” in Scenario II, when incorrect feedback is
provided and the word “push” in Scenario III, independent of the correctness of the
feedback. Thus, making AWs non-permanent will be necessary before considering de-
ployment in dynamic human-centered environments and will therefore be investigated
in future work.

3.3.3 Language grounding

The CSL based grounding component uses CSL to create mappings between non-AWs
and phrases, which are two or more words that refer together to a concept and there-
fore need to be mapped as a whole to one or more CRs that represent the perceptual
representation of the concept, and their corresponding CRs. Before the actual ground-
ing procedure, the algorithm (Algorithm 4) checks whether the words of the current
utterance are part of any of the phrases in the set of permanent phrases (PP), in which
case it removes all words that are part of the phrase p from the set of words (W) and
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Algorithm 4 The grounding procedure takes as input all words and CRs of the cur-
rent situation (W and CR), the sets of previously obtained word-CR and CR-word pairs
(WCRPS and CRWPS), the set of previously detected AWs (AWS), the set of perma-
nent phrases (PP), the sets of word and CR occurrences (WO and CRO), and the set
of permanent mappings (PMS) and returns sets of grounded words and CRs (GW and
GCR).

1: procedure GROUNDING(W, CR, WCRPS, CRWPS, AWS, PP, WO, CRO, PMS)
2: GW = {}, GCR = {}
3: for p in PP do
4: if p ∈W then // p is a sequence of at least two w in W
5: for w in p do
6: W = W \ w

7: W = W ∪ p

8: AWS, PMS = Algorithm 1(W, CR, PMS, AWS)
9: AWS = Algorithm 2(WO, CRO, AWS)

10: AWS = Algorithm 3(WCRPS, AWS)
11: for aw in AWS do
12: W = W \ aw

13: for w in W do
14: for cr in CR do
15: if w in WCRPS ∧ cr in WCRPS(w) then
16: WCRPS(w)(cr)+ = 1
17: CRWPS(cr)(w)+ = 1
18: else
19: WCRPS(w)(cr) = 1
20: CRWPS(cr)(w) = 1

21: for w in WCRPS do
22: max = 0
23: for cr in WCRPS(w) do
24: if WCRPS(w)(cr) > max then
25: crmax = cr
26: max = WCRPS(w)(cr)

27: GW(w) = GW(w) ∪ {crmax}
28: for cr in CRWPS do
29: max = 0
30: for w in CRWPS(cr) do
31: if CRWPS(cr)(w) > max then
32: wmax = w
33: max = CRWPS(cr)(w)

34: GCR(cr) = GCR(cr) ∪ {wmax}
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35: for w in PMSw do
36: GW(w) = GW(w) ∪ PMSw(w)

37: for cr in PMScr do
38: GCR(cr) = GCR(cr) ∪ PMScr(cr)

39: return GW ∪ GCR

adds instead p to W. Although the proposed framework has a component to detect
phrases in an unsupervised manner through CSL [76], it has not been used for the ex-
periments presented in this chapter to ensure a fair comparison with the baseline model
because the latter does not have any phrase detection capabilities, thus, for the pre-
sented experiments the phrases in PP were predefined.
After all phrases have been replaced, the AW detection mechanisms described in the
previous section (Section 3.3.2) are used to update the set of AWs (AWS) as well as the
set of permanent mappings (PMS) in case of Algorithm (1). Afterwards, all known AWs
are removed from the received natural language instruction (W) and a set of CRs is cre-
ated for each word (WCRPS), in which each CR is saved with a number indicating how
often it occurred together with that word. The same is also done for CRs, i.e. for each CR
a set of words is created (CRWPS). Then, the highest word-CR and CR-word pairs are
determined and saved to the sets of grounded words (GW) and grounded CRs (GCR),
respectively.
To enable the algorithm to ground synonyms and homonyms, i.e. map multiple words
to the same CR or map one word to multiple CRs, the words and CRs that were part
of the highest word-CR and CR-word pairs can be used again during all future iter-
ations. For the same reason, the algorithm also looks at both word-CR and CR-word
pairs because looking only at word-CR or CR-word pairs would prevent the algorithm
from handling synonyms or homonyms, respectively. Afterwards, the grounding algo-
rithm merges the temporary mappings in GW and GCR with the permanent mappings
in PMS. Finally, the sets of grounded words and CRs are merged so that the algorithm
returns, in the end, a single set of mappings containing both synonyms and homonyms.

3.4 Baseline: A Probabilistic Grounding Framework

A Bayesian learning framework, which identifies AWs and grounds non-AWs and phrases
through corresponding CRs, is used as a baseline in this chapter. The framework has
been chosen as a baseline because similar models have previously been employed in
a variety of scenarios by different researchers, e.g. [44, 103, 3, 77, 78]. In the frame-
work, outlined in Figure (3.2), the observed state wi represents word indices, i.e. each
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Figure 3.2: Graphical representation of the probabilistic model. Index i denotes the or-
der of words, while s1, . . . , sn denote the observed states representing the
predefined modalities.

individual word is represented by a different integer3. The observed states s1...sn rep-
resent the different modalities, e.g. shapes, colors, and actions for the first scenario
(Section 3.5.1) and emotion types, emotion intensities, and genders for the fourth sce-
nario (Section 3.5.4), that the model is able to use for grounding of words. The fact
that the available modalities need to be predefined and it is not possible to add another
modality after deployment is a strong limitation of the baseline model.
Table (3.1) provides a summary of the definitions of the learning model parameters.
The corresponding probability distributions, i.e. wi, θm,ZL1

, φs1K1
, . . ., φsnKn

, πw, πs1 , . . .,
πsn , mi, Zs1 , . . ., Zsn , and s1, . . ., sn, which characterize the different modalities in the
graphical model, are defined in Equation (3.1), where Cat denotes a categorical distri-
bution, Dir denotes a Dirichlet distribution, GIW denotes a Gaussian Inverse-Wishart
distribution, and N denotes a multivariate Gaussian distribution. For all scenarios (Sec-
tions 3.5.1 to 3.5.4) multivariate Gaussian (N) and Gaussian Inverse-Wishart (GIW) dis-
tributions are used because the perceptual data is represented by continuous data4.

3The following two example sentences, taken from the first scenario (Section 3.5.1), illustrate the repre-
sentation of words through word indices: (please, 1) (lift up, 2) (the, 3) (brown, 4) (coke, 5) and (lift up,
2) (the, 3) (brownish, 6) (lemonade, 7), where the bold numbers indicate word indices.

4For Scenario IV (Section 3.5.4) the perceptual data is first provided as input to deep neural networks to
obtain CRs, thus, theoretically the input to the graphical model would be categorical data, however, the
data is afterwards converted to one-hot encoded vectors, i.e. only one element in each vector is non-
zero (hot) to indicate which category it represents (see Figure 3.6 in Section 3.5.4 for an illustration), so
that the data provided to the graphical model is again continuous, in the end.
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Table 3.1: Definitions of the learning parameters in the graphical model (Figure 3.2).
Parameter Definition

λ Hyperparameter of the distribution πw
αs1 , . . . , αsn Hyperparameters of the distributions πs1 , . . . , πsn

mi
Modality index of each word

(modality index ∈ {Ms1 , . . . , Msn , AW})
Zs1 , . . . , Zsn Indices of percept distributions

wi Word indices
s1, . . . , sn Observed states representing the predefined modalities

γ Hyperparameter of the distribution θm,Z
βs1 , . . . , βsn Hyperparameters of the distributions φs1 , . . . , φsn

θm,Z Word distribution over modalities

The latent variables of the Bayesian learning model are inferred using the Gibbs sam-
pling algorithm [33] (Algorithm 5), which repeatedly samples from and updates the
posterior distributions (Equation 3.2). For all scenarios, distributions were sampled for
100 iterations, after which convergence had been achieved. Due to the employed infer-
ence algorithm the baseline framework requires an offline training phase and needs to
be re-trained from scratch to learn how to handle novel modalities or even previously
unseen words, which makes it unsuitable for deployment in dynamic human-centered
environments because it is impossible to predict all possible situations in advance.



wi ∼ Cat(θmi ,Zmi
)

θm,ZL1
∼ Dir(γ) , L1 = (1, . . . , L)

φs1K1
∼ GIW(βs1) , K1 = (1, . . . , Ks1)

...
φsnKn

∼ GIW(βsn) , Kn = (1, . . . , Ksn)

πw ∼ Dir(λ)
πs1 ∼ Dir(αs1)

...
πsn ∼ Dir(αsn)

mi ∼ Cat(πw)

Zs1 ∼ Cat(πs1)
...

Zsn ∼ Cat(πsn)

s1 ∼ N(φZs1
)

...
sn ∼ N(φZsn

)

(3.1)
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Algorithm 5 Inference of the model’s latent variables. The number of iterations (#iter)
was set to 100 for all scenarios.

1: procedure GIBBS SAMPLING(S1, . . . , Sn, w)
2: Initialization of θ, φs1 , . . . , φsn , πw, πs1 , . . . , πsn , Zs1 , . . . , Zsn , mi
3: for i = 1 to #iter do
4: Equation (3.2)
5: return θ, φs1 , . . . , φsn , πw, πs1 , . . . , πsn , Zs1 , . . . , Zsn , mi



φs1 ∼ P(φs1 |s1, βs1)
...

φsn ∼ P(φsn |sn, βsn)

πw ∼ P(πw|λ, m)

πs1 ∼ P(πs1 |αs1 , Zs1)
...

πsn ∼ P(πsn |αsn , Zsn)

Zs1 ∼ P(Zs1 |s1, πs1 , w)
...

Zsn ∼ P(Zsn |sn, πsn , w)

θm,Z ∼ P(θm,Z|m, Zs1 , . . . , Zsn , γ, w)

mi ∼ P(mi|θm,Z, Zs1 , . . . , Zsn , πw, wi)

(3.2)

3.5 Experiments

The proposed framework (Section 3.3) is evaluated through four different scenarios that
differ in the complexity and length of the employed utterances, the complexity and type
of the used percepts, and the number of encountered situations. In the first scenario a
human and robot are interacting in front of a tabletop (Figure 3.3) so that the robot
grounds words through the CRs of the percepts obtained through its sensors. The main
purpose of this scenario is to investigate whether the proposed framework is able to
handle percepts extracted during real world interactions and whether the framework
can learn from a relatively small number of interactions.
The second scenario consists of 1,000 human-agent interactions in a simulated environ-
ment that is based on the Compositional Language and Elementary Visual Reasoning
(CLEVR) dataset [41]. In comparison to the first scenario, the situations in the second
scenario are more complex because the employed sentences are longer, not all CRs of
a particular situation are described through the corresponding utterance, and the same
word or CR can appear several times in the same situation. Additionally, the situations
contain not only synonyms but also homonyms because every preposition word can be
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Figure 3.3: Schematic representation of the human-robot interaction in Scenario I. A
robot is placed in front of a table with one object, and a human tutor pro-
vides an instruction so that the robot executes the corresponding action.

grounded through two different CRs.
The third scenario uses also simulated human-robot interactions, however, in this case
the percepts are simple hot-encoded vectors without any noise to evaluate how the
framework performs when the obtained CRs are perfect. Furthermore, the scenario has
ten times more situations than the second scenario as well as more modalities than any
of the other scenarios. Finally, the fourth scenario investigates grounding of higher level
concepts, like emotion types and intensities. The main difference is that due to the high
complexity of the percepts the previously employed clustering algorithm could not be
used to obtain CRs of percepts, therefore, deep neural networks are instead used in Sce-
nario IV. Table (3.2) provides a brief overview of the used scenarios that highlights their
differences, while all scenarios are described in detail in the following subsections.

3.5.1 Scenario I: Sensors

The percepts used in the first scenario have been obtained during multiple interactions
between a human and HSR robot5 in front of a tabletop. During the interactions the
human places one of five objects, i.e. {BOTTLE, CUP, BOX, CAR, and BOOK} (Figure 3.4a),

5The Human Support Robot (HSR) used for the experiment in the first scenario has a cylindrical shaped
body, which can move omnidirectional, one arm with a gripper, 11 degrees of freedom, and is equipped
with stereo and wide-angle cameras, a microphone, a display screen, and a variety of different sen-
sors [106].
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Table 3.2: Overview of the used percept source, modalities, perceptual representations
and the number of encountered CRs, words, AWs, and situations for all four
employed scenarios.

Scenario Percept Source Modality Representation # CRs # Words # AWs # Situations

I
(Section 3.5.1)

Sensors
Shape VFH descriptor 5 25

2 125Color Histogram 5 10
Action Kinematic feature 5 10

II
(Section 3.5.2)

CLEVR
Shape VFH descriptor 3 12

1 1,000Color RGB means 8 16
Preposition 3D vector 4 6

III
(Section 3.5.3)

Synthetic

Shape

One-hot vector

3 12

2 10,000
Color 8 16

Preposition 9 23
Action 5 12

IV
(Section 3.5.4)

RAVDESS
Emotion type

156 audio features
(MFCC and PCM)

7 14
2 312Emotion intensity 2 4

Gender 2 4

on the table and instructs the robot to perform a manipulation action on it (Figure 3.4b).
Each interaction follows below procedure.

1. The human places an object on the table and the robot determines the object’s
geometric characteristics and color to create corresponding feature vectors (Sec-
tion 3.5.1.1).

2. An instruction, which describes how to manipulate the object, is given to the robot
by the human, e.g. “please lift up the red soda”.

3. The human teleoperates the robot to execute the action provided through the in-
struction while several kinematic characteristics are recorded and converted into
an action feature vector (Section 3.5.1.2).

A total of 125 interactions were performed to record perceptual information for all
combinations of the employed shapes, colors, and actions. Since instruction words were
selected randomly for each situation, except that words had to fit the encountered con-
cepts, their number of occurrences in the data varies, e.g. the word “coffee” only occurs
once, while the word “brown” occurs 14 times. Each sentence consists of one of the fol-
lowing structures: “action the color shape” or “please action the color shape”, where action,
color, and shape are substituted by one of their corresponding words (Table 3.3). Each ac-
tion and color can be referred to by two different synonymous words, while each shape
has five corresponding synonymous words.
Note that the used words are not actual synonyms, i.e. words that refer to the exact
same meaning, but only synonyms as references to an object or action in a particular
set of situations by referring to the purpose or content of an object instead of the object
itself, e.g. tea or coffee instead of cup. However, this is sufficient for the purpose of the ex-
periment, especially, considering that according to the “Principle of Contrast” there are
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(a) Illustration of three of the five used objects and the corresponding 3D point cloud informa-
tion: (A) car, (B) bottle, and (C) cup.

(b) Illustration of action lift up with a book as executed by the employed HSR robot in the
tabletop scene.

Figure 3.4: Illustrations of the objects and actions used in Scenario I.

no words that refer to the exact same meaning, i.e. there are no “true” synonyms [17].
In the following sections the used perceptual representations are described in more de-
tail.

3.5.1.1 3D Object Features

The object feature vectors used in the first scenario are obtained using 3D point cloud
segmentation [61]. Different segmentation approaches have been investigated in the
related literature. Edge based methods segment point clouds into regions by detecting
their boundaries, which are characterized by points with a fast intensity change [83].
These methods are fast, but also highly sensitive to noise. Region based methods de-
termine regions by combining neighbouring points that have similar properties [45].
They are less susceptible to noise, but are not good at determining exact region borders.
Attributes based methods use predefined attributes, such as point density and vertical
distribution, to cluster point clouds [24]. These methods can be very accurate and flexi-
ble, but they are often slow and the overall performance depends heavily on the quality
of attributes. Graph based methods treat point clouds as a graph, where each point rep-
resents a vertex connected via edges to neighbouring points [99]. These methods can
handle data with noise or uneven density, but they can not often be run in real-time.
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Table 3.3: Overview of all concepts used in Scenario I with their corresponding syn-
onyms and CR numbers (CR#) according to Figure (3.11). The actions are
explained in Table (3.4).

Modality Concept Synonyms CR#

Shape

BOTTLE coca cola, soda, pepsi, coke, lemonade 1
CUP latte, milk, milk tea, coffee, espresso 2
BOX candy, chocolate, confection, sweets, dark chocolate 3
CAR audi, toyota, mercedes, bmw, honda 4

BOOK harry potter, narnia, lord of the rings, dracula, frankenstein 5

Color

YELLOW yellow, yellowish 6
PINK pink, pinkish 7

BROWN brown, brownish 8
RED red, reddish 9

WHITE white, whitish 10

Action

LIFT UP lift up, raise 11
GRAB grab, take 12
PUSH push, poke 13
PULL pull, drag 14
MOVE move, shift 15

Auxiliary
Word -

the
0

please

Table 3.4: Explanations of the actions employed in Scenario I.
Concept Description
LIFT UP The object will be grabbed and lifted up.

GRAB The object will be grabbed, but not displaced.
PUSH The object will be pushed with the closed gripper without being grabbed first.
PULL The object will be grabbed and moved towards the robot.
MOVE The object will be grabbed and moved away from the robot.

Model based approaches use primitive geometric shapes in order to create clusters of
points with similar mathematical representations [85]. They are fast and can handle
outliers, however, they are inaccurate when dealing with point clouds from different
sources.
For this scenario, a model based segmentation approach is used due to its speed, reli-
ability, and the fact that no much prior knowledge about the environment is required,
such as object models and the number of regions to process [19]. The applied model
detects the major plane in the environment, which is a tabletop in the conducted ex-
periment, via the RANSAC algorithm [25], and keeps track of it in consecutive frames.
Planes that are orthogonal to the major plane and touch at least one border of the im-
age are defined as wall planes, while points that are neither part of the major nor the
wall planes are voxelized and clustered into blobs. Blobs of reasonable size, i.e. nei-
ther extremely small nor large, are treated as objects. The corresponding threshold was
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manually set after selecting the objects for the experiment and should be suitable for all
objects of similar size. Each point cloud of a segmented object is characterized through a
VFH [81] descriptor, which represents the geometry of the object taking into account the
viewpoint while ignoring scale variance and color histograms representing the color of
the object. Figure (3.4a) shows an example of the obtained 3D point cloud information.

3.5.1.2 Action Features

Action feature vectors are used to represent the dynamic characteristics of actions dur-
ing execution through teleoperation. Overall, five different characteristics, which repre-
sent possible subactions, are recorded through the sensors of the robot [106]. The used
characteristics are:

1. The distance from the actual to the lowest torso position in meters.

2. The angle of the arm flex joint in radians.

3. The angle of the wrist roll joint in radians.

4. Velocity of the base.

5. Binary state of the gripper (1: closing, 0: opening or no change).

They are then combined into the following vector:
a1

1 . . . a5
1

...
. . .

...
a1

6 . . . a5
6

 ,

where a1 represents the difference of the distances from the lowest torso position in me-
ters, while a2 and a3 represent the differences in the angles of the arm flex and wrist roll
joints in radians, respectively. The differences are calculated by subtracting the values at
the beginning of the subaction from the values at the end of the subaction. a4 represents
the mean velocity of the base (forward/backward), and a5 represents the binary gripper
state. Each action is characterized through six manually defined subactions. Therefore,
if an action consists of less than six subactions, rows with zeros are added at the end,
while the duration of a subaction is not fixed because it depends on the teleoperator.

3.5.2 Scenario II: CLEVR

The situations in the second scenario are simulated using an environment based on the
CLEVR dataset [41] by using a slightly modified version of the scene creation script
proposed by [41] so that it also extracts and saves the point clouds of the objects from
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(a) (b)

Figure 3.5: Two example scenes illustrating the used shapes and colors as well as the
variation in size, material and light conditions. The corresponding sentences
are: (a) “the red cylinder in front of the yellowish cylinder” and (b) “the red
quadrate on the left side of the reddish cylinder”.

the scene generated in Blender 6. Every situation in the simulated environment consists
of three or four objects with randomly chosen shapes, colors, materials, sizes, and po-
sitions (Figure 3.5). Additionally, every situation has different light conditions, which
adds noise to the perceived color information so that the similarity of two percepts of
the same color varies depending on the light conditions. Three different modalities are
extracted for each situation: (1) object shapes, which are represented by VFH descriptors
that were extracted from the objects’ point clouds using the Point Cloud Library7 [80]
and that encode the objects’ geometries and viewpoints, (2) object colors, which are rep-
resented by the mean RGB values of all object pixels, (3) preposition percepts, which are
represented by 3D spatial vectors that were extracted from the meta-data generated by
the scene generation script and that describe the spatial relation of the centroids of two
objects.
After all perceptual information have been obtained, a random sentence describing the
generated scene is created, which has the following structure: “the color shape preposition
the color shape”, where color, shape, and preposition are substituted by one of 12 shape, 16
color, and 6 preposition words or phrases (Table 3.5) to match the randomly selected
target and reference objects. Most of the CRs can be referred to by several synonymous
words, which are not necessarily synonyms in general but might only be synonyms
for the situations encountered in this scenario, similar to the synonyms in Scenario I
(Section 3.5.1), to investigate how well the proposed framework handles synonymous
words and phrases. Additionally, each preposition word can be grounded through two

6https://www.blender.org/
7http://pointclouds.org/

https://www.blender.org/
http://pointclouds.org/
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Table 3.5: Overview of all concepts used in Scenario II with their corresponding syn-
onyms and CR numbers (CR#) according to Figure (3.14).

Modality Concept Synonyms CR#

Shape
CUBE cube, block, hexahedron, quadrate 1

SPHERE sphere, ball, spheroid, pellet, globe, orb, globule 2
CYLINDER cylinder 3

Color

GRAY gray, grayish 4
RED red, reddish 5

BLUE blue, blueish 6
GREEN green, greenish 7
BROWN brown, brownish 8
PURPLE purple, purplish 9

CYAN cyan, greenish-blue 10
YELLOW yellow, yellowish 11

Preposition

RIGHT on the right of, on the right side of 12, 13
FRONT in front of 13, 15

BEHIND behind 12, 14
LEFT on the left of, on the left side of 14, 15

Auxiliary Word - the 0

homonymous CRs. The reason is that prepositions are not discrete because most objects
need to be moved in two dimensions to reach the position of another object, therefore, if
an object is in front of another object it is most of the time also on the left or right of that
object. In fact, for all 1,000 situations that are part of Scenario II the centroid positions
of all objects in each situation were always different in two dimensions.
Figure (3.5) illustrates this nicely because the red cylinder in Figure (3.5a) is not just in
front of the yellowish cylinder as indicated by the corresponding sentence, but also on
the right side of it. Similarly, the red quadrate in Figure (3.5b) is both on the left side of
and behind the reddish cylinder. Thus, two different CRs can be used to ground each
of the preposition words. The obtained situations are then used to simulate human-
agent interactions during which the human asks the agent to select an object based on a
natural language description. The employed interaction procedure is described below.

1. The human places three or four objects in front of the agent and the agent obtains
the corresponding shape, color and preposition percepts.

2. The human provides a natural language description of the target object, e.g. “the
red cylinder in front of the yellowish cylinder”.

3. The agent gives the obtained utterance and percepts to the employed grounding
model.
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Figure 3.6: Illustration of the employed one-hot encodings for shape percepts.

3.5.3 Scenario III: Synthetic

The previous two scenarios used realistic percepts which led to mean Adjusted Rand
Index (ARI) scores of 0.95 (SD: 0.06) and 0.82 (SD: 0.17) for the proposed8 and baseline9

framework. This shows that the clustering algorithm employed by the proposed frame-
work is performing overall better than the one used by the baseline framework, which
raises the question how much the accuracy of the clusters influences the accuracy of the
groundings obtained by the two frameworks, especially, since the proposed framework
clearly outperformed the baseline framework for both scenarios.
To remove the influence of the employed clustering algorithm, this scenario uses one-
hot encoded vectors as percepts for all modalities (Figure 3.6) so that both clustering
algorithms are able to achieve perfect clustering. Additionally, more words and modal-
ities are used and the employed natural language sentences are also longer compared
to the other two scenarios and have one of the following five structures:

• “(please) action the color shape”

• “(please) action the color shape preposition”

• “(please) action the color shape preposition the color shape”

• “(please) action the color shape preposition the color shape preposition”

• “(please) action the color shape preposition the color shape preposition the color shape”

where action, color, shape, and preposition are substituted by one of their corresponding
words (Table 3.6).
The scenario consists of overall 10,000 situations and each situation contains three or
four objects. The situations are used to simulate human-agent interactions during which
the human asks the agent to perform an action on one of the objects. In some situa-
tions the target object or target position are described in relation to another object as
illustrated by the different sentence structures listed above. The employed interaction
procedure is described below.

8The proposed framework obtained ARI scores of 0.89, 1.0, and 0.97 for the shape, color, and action
percepts in Scenario I and ARI scores of 0.85, 0.97, and 0.99 for shape, color, and preposition percepts
in Scenario II.

9The baseline framework obtained ARI scores of 0.63, 0.98, and 0.98 for the shape, color, and action
percepts in Scenario I and ARI scores of 0.63, 0.71, and 1.0 for the shape, color, and preposition percepts
in Scenario II.
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Table 3.6: Overview of all concepts used in Scenario III with their corresponding syn-
onyms and CR numbers (CR#) according to Figure (3.17).

Modality Concept Synonyms CR#

Shape
CUBE cube, block, hexahedron, quadrate 1

SPHERE sphere, ball, spheroid, pellet, globe, orb, globule 2
CYLINDER cylinder 3

Color

GRAY gray, grayish 4
RED red, reddish 5

BLUE blue, blueish 6
GREEN green, greenish 7
BROWN brown, brownish 8
PURPLE purple, purplish 9

CYAN cyan, greenish-blue 10
YELLOW yellow, yellowish 11

Preposition

LEFT
on the left of, on the left side of, to the left,

16, 17, 18
to the left side, to the left of, to the left side of

BEHIND behind, backwards, toward the rear, toward the rear of 14, 15, 16

RIGHT
on the right of, on the right side of, to the right,

12, 13, 14
to the right side, to the right of, to the right side of

FRONT in front of, forward, toward the front, toward the front of 12, 18, 19
ON on top of, above, over 20

Action

LIFT UP lift up, raise 21
GRAB grab, take 22
PUSH push, poke 23
PULL pull, drag 24
MOVE move, place, displace, put 25

Auxiliary
Word -

the
0

please

1. The human places three or four objects in front of the agent and the agent obtains
the corresponding shape, color, and preposition percepts.

2. The human provides a natural language instruction, e.g. “move the greenish hex-
ahedron on the right side of the grayish quadrate toward the rear”.

3. The agent performs the requested action and obtains the corresponding action
percept.

4. The agent provides the obtained utterance and percepts to the employed ground-
ing model.

3.5.4 Scenario IV: RAVDESS

The scenario described in this section differs significantly from the three previous sce-
narios, which were all very similar despite the use of different percepts and utterances
because the agent was always told to identify or manipulate an object. The main idea
of the scenario presented in this section is that the agent is listening to another person’s
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Table 3.7: Overview of all concepts used in Scenario IV with their corresponding syn-
onyms and CR numbers (CR#) according to Figure (3.20).

Modality Concept Synonyms CR#

Emotion Type

HAPPINESS happy, cheerful 1
SADNESS sad, sorrowful 2

ANGER angry, furious 3
NEUTRAL neutral, fine 4
SURPRISE surprised, startled 5

FEAR afraid, scared 6
DISGUST disgusted, appalled 7

Emotion Intensity
WEAK slightly, lightly 8

STRONG very, really 9

Gender
MALE he, man 10

FEMALE she, woman 11

Auxiliary word -
the

0
is

voice, while receiving at the same time a description of the emotion the observed person
is experiencing as well as the person’s gender. Thus, the agent needs to ground words
referring to different emotion types, emotion intensities, and genders through corre-
sponding CRs extracted from raw audio features. Due to the complexity of the used
audio features it is not possible to use standard clustering algorithms as for the previ-
ous three scenarios, therefore, deep neural networks are used instead (Section 3.5.4.1).
The human-agent interactions employed in the fourth scenario are simulated using The
Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) [48], which
consists of frontal face pose videos of twelve female and twelve male north American
actors and actresses, who speak and sing two lexically-matched sentences while ex-
pressing six basic emotions, i.e. happiness, surprise, fear, disgust, sadness, and anger,
plus calmness, and neutral. For the scenario described in this section only speaking
records of the six basic emotions and neutral are used. Additionally, RAVDESS pro-
vides for each emotion a binary intensity value, i.e. normal and strong, while no in-
tensity is provided for neutral. The dataset is partitioned into train and test sets by
using the videos of the first eighteen actors (nine female, nine male) for training and the
videos of the remaining six subjects (three female, three male) for testing. The training
data is used to train the deep neural networks employed for the extraction of CRs (Sec-
tion 3.5.4.1), while the test data is used to create 312 situations, i.e. for each person 8
videos per basic emotion and 4 videos for neutral.
Each sentence has the following structure: “(the) gender is (emotion intensity) emotion
type”, where gender, emotion intensity, and emotion type are replaced by one of their cor-
responding synonyms (Table 3.7). If emotion type is “neutral” or “fine”, no intensity
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percept and word are provided because being “very neutral” or “slightly neutral” does
not make sense. Additionally, if the gender is described by a noun, i.e. “woman” or
“man”, it is preceded by the article “the”.

3.5.4.1 Concrete representation extraction

CRs are extracted from the videos representing the situations of the scenario described
in this section in two steps. First, all videos are given directly, i.e. without any pre-
processing, as input to openEAR [22], which is a freely available open-source toolkit,
to extract 384 speech features10 including the minimum, maximum, and mean values
for each individual speech feature. However, only the MFCC and PCM RMS features,
i.e. 156 of the 384 obtained features, are provided to the classification models because
they produced the best classification results based on an experimental evaluation of the
available feature sets11, i.e. each feature set and different combinations of feature sets
were provided to the employed models. For the evaluation, the mean accuracies calcu-
lated across five runs for each feature set combination were compared and the model of
the best-performing run was used in this study to obtain the CRs provided as input to
the language grounding component.
Afterwards, the 156 audio features extracted by openEAR are used as input for three
different deep learning models, i.e. one for each modality, after being normalized be-
tween zero and one. For emotion type classification, the model consists of four dense
layers each followed by a dropout layer with a ratio of 0.1. The batch size and epoch
size are set to 160 and 250, respectively. Rectified Linear Unit (ReLU) is used as an ac-
tivation function in the first three dense layers, a Softmax function is used in the last
layer, and Adam is used as an optimizer [43]. The applied model obtained an accuracy
of 59.6% when classifying six basic emotions and neutral.
For emotion intensity recognition and gender recognition, the model proposed by Bagheri
et al. [7] is used (Figure 3.7) with the following parameter settings: the convolutional
layers are all 1D, have kernels of size 3 and use ReLU as activation functions to add
non-linearity. The dropout layers are used as regularizers with a ratio of 0.1. The 1D
max-pooling layers have a kernel size of four and are used to introduce sparsity in the
network parameters and to learn deep feature representations. Finally, the dense layers
are used with sigmoid activation functions to find the predicted binary distribution of

10Which features are extracted by openEAR depends on the used configuration. Three different configu-
rations, i.e. INTERSPEECH 2009, emobase and INTERSPEECH 2013, were evaluated for this study but
only the INTERSPEECH 2009 (emo-IS09) configuration [86] was used in the end because its features
led to the best classification results.

11The available feature sets are pulse code modulation (PCM) root mean square (RMS) frame energy, mel-
frequency cepstral coefficients (MFCC), PCM zero-crossing rate (ZCR), voice probability (voiceProb),
and F0. Additionally, for each of the mentioned feature sets, a corresponding set with the delta coeffi-
cients is provided [86].
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Figure 3.7: The architecture of the applied classification model for emotion intensity and
gender detection in [7].

Table 3.8: Classification accuracies for all concepts and CR numbers (CR#) according to
Figure (3.20).

Modality Concept CR# Accuracy

Emotion Type

HAPPINESS 1 50%
SADNESS 2 77.08%

ANGER 3 77.08%
NEUTRAL 4 37.5%
SURPRISE 5 62.5%

FEAR 6 52.08%
DISGUST 7 56.25%

Emotion Intensity
NORMAL 8 41.66%
STRONG 9 80.5%

Gender
MALE 10 99.35%

FEMALE 11 78.02%

the target class. The number of epochs is 250 and the batch size is set to 128. The number
of units in applied LSTM and BiLSTM networks is five. The applied model obtained an
accuracy of 89.8% for gender recognition and 73.5% for emotion intensity recognition.
Table (3.8) provides an overview of the classification accuracies for all CRs.

3.6 Results

In the following subsections the groundings obtained by both the proposed framework
(Section 3.3) and the baseline framework (Section 3.4) for all four investigated scenar-
ios (Section 3.5) are presented and evaluated. Since the same utterances and percepts
are provided in the same sequence to both frameworks, any difference in grounding
performance can only be due to the different grounding algorithms used by the frame-
works. The proposed framework receives situations one after the other as if processing
the data in real-time during the interaction, while the baseline framework requires all
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sentences and corresponding CRs of the training situations to be provided at the same
time. Therefore, two different cases are evaluated for all scenarios.
First, the case in which all situations are used for training and testing (TTS100) because
the proposed framework is able to continuously learn in an online manner so that no
separate training and testing phases are required. However, this represents an unrealis-
tic case for the baseline framework because it requires an explicit offline training phase
and it is very unlikely that all test situations have already been encountered during
training. Therefore, for the second case, only 60% of the situations are used for training
(TTS60), which is more realistic for the baseline framework, while it adds an unnec-
essary limitation to the proposed framework by deactivating its learning mechanism
for 40% of the situations. Since situations are randomly assigned to the training and
test sets, how often each word and CR occur during training and testing can vary. To
minimize the influence of the used training and test sets as well as the order in which
situations are presented to the proposed framework, ten different runs, i.e. sequences
of situations, are used for all four scenarios.
When considering the deployability of the proposed and the baseline framework, it is
important to also analyse the required computational resources. The grounding ex-
periments have been conducted on a system with Ubuntu 16.04, i7-6920HQ CPU, octa
core with 2.90 GHz each, and 32 GB RAM. However, it is important to note that both
frameworks are only utilizing a single core, thus, the same processing times would be
achieved on a system with a single core, if no other computationally expensive pro-
cesses are running at the same time.

3.6.1 Scenario I: Sensors

This section presents the results obtained for the human-robot interaction scenario de-
scribed in Section (3.5.1). The scenario serves three purposes: First, to investigate whether
the proposed framework can handle real data, i.e. data obtained with the sensors of a
robot. Second, to investigate the framework’s ability to correctly address the ambigu-
ity inherent to language by referring to every concept in the scenario with at least two
synonymous words. Finally, to investigate the sample-efficiency of the framework by
providing only a relatively small number of situations in combination with a large num-
ber of words.
Figure (3.8) shows how the mean number of correct and false mappings changes, when
the proposed grounding framework (Section 3.3) encounters the employed situations
one after the other. It shows that the number of false mappings is at first higher than the
number of correct mappings and that both increase during the first ten situations after
which the number of correct mappings is higher than the number of false mappings.
The number of correct mappings increases until all situations have been encountered,
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Figure 3.8: Mean number and standard deviation of correct and false mappings ob-
tained by the proposed model over all 125 situations of Scenario I. The dotted
part only occurs when all 125 situations are used for training (TTS100), oth-
erwise, when only 75 situations are used (TTS60), the model obtains only 43
correct mappings.

while the number of false mappings decreases simultaneously. The figure shows that
all 45 correct mappings are obtained, when all 125 situations are used for training, while
on average only 43 correct mappings are obtained, when only 60% of the situations are
used for training. In general, Figure (3.8) highlights the online grounding capability
of the model, i.e. that it updates its mappings with every new encountered situation,
as well as its transparency because it allows to check at any time through which CR a
word is grounded at that particular moment. The collected co-occurrence information
would also allow to calculate a confidence score for every mapping to understand how
likely it is that a false mapping disappears or a correct mapping persists. The described
transparency of the proposed framework can be helpful to understand and debug re-
sponses to instructions provided by a human, when the framework is used to control
an artificial agent interacting with a human, especially when the responses are incorrect
or inappropriate.
In contrast to the proposed framework, the baseline framework (Section 3.4) requires an
explicit training phase so that no corresponding figure, illustrating the number of cor-
rect and false mappings, can be created. Thus, to allow a comparison between the two
models, the mappings of the proposed model are extracted after 125 and 75 situations,
depending on the used train/test split, i.e. TTS100 and TTS60. For TTS60, it is pos-



46 Chapter 3. Unsupervised Open Ended Grounding of Natural Language

Figure 3.9: Word occurrences for all words except AWs encountered in Scenario I. The
dark blue part of the bars shows the mean number of occurrences during
training and the bright blue part the mean number of occurrences during
testing.

sible that some words never occur during training or only a limited number of times.
For example, the words coffee and sweets exist each only once in the dataset and are thus
only present during training or testing, but not both, while the words yellow, brown, take,
and push occur 14 times in the dataset and are thus encountered multiple times during
training and testing (Figure 3.9). If a word does not occur during training, the proposed
model is not able to obtain a corresponding mapping so that the word is not grounded
through any CR as shown in Figure (3.11f). How often a word is encountered during
training also affects the grounding performance of the baseline model, which is also not
able to ground the words coffee and sweets correctly, when only 60% of the situations
were used for training (Figure 3.11g).

Figure (3.10) shows that the proposed model achieves perfect grounding, when the
same situations are provided for training and testing, which confirms that it is able to
obtain all correct mappings as shown in Figure (3.8). However, if only 60% of the situ-
ations are used for training and the remaining 40% for testing, the grounding accuracy
drops for both models. For the proposed model only the accuracy for shapes decreases
to about 93.5%, while all color and action groundings as well as AWs are still correct.
For the baseline model the largest drop in accuracy is seen for shapes, from more than
95% to less than 2%. The reason might be that every shape word has 5 synonyms, thus,
if words would be equally distributed among all situations and specifically among the
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Figure 3.10: Mean grounding accuracy results and corresponding standard deviations
for both grounding models and all modalities of Scenario I as well as both
train/test splits. Additionally, the percentage of sentences for which all
words were correctly grounded is shown.

training and test sets, the decrease might not be as sharp.
The confusion matrices in Figure (3.11) show how often each word was grounded through
which modality and CR. Figures (3.11a and 3.11b) confirm that the proposed framework
was able to ground all words through the corresponding CRs when the learning mecha-
nism was enabled for all situations (TTS100). In contrast, when the learning mechanism
was only enabled for 60% of the situations (TTS60) there was light confusion for two
of the five book names, however, only for one of them, i.e. the word “narnia”, the
confusion was across modalities, while the confusion for both of them was mostly be-
tween CRs of shapes, i.e. they were partially mapped to the CR of BOX (Figures 3.11e
and 3.11f). For the baseline model, Figures (3.11c and 3.11g) show that action names are
often marked as AWs, while three of the ten color names were often seen as actions or
shapes. Interesting is also that for TTS100 shapes are usually assigned to the CRs of the
shape modality, while for TTS60 they are mostly mapped to CRs of actions or marked
as AWs. When looking at the confusion matrices for CRs it becomes clear that many
of the words which are mapped to the correct modality are mapped to the wrong CR,
thereby, illustrating how important it is to look at the exact mappings because words
must in the end be grounded through specific CRs and not just the correct correspond-
ing modalities.



48 Chapter 3. Unsupervised Open Ended Grounding of Natural Language

(a) Confusion matrix for the proposed model
and TTS100.

(b) Confusion matrix for the proposed model
and TTS100.

(c) Confusion matrix for the baseline model
and TTS100.

(d) Confusion matrix for the baseline model
and TTS100.

(e) Confusion matrix for the proposed model
and TTS60.

(f) Confusion matrix for the proposed model
and TTS60.

(g) Confusion matrix for the baseline model
and TTS60.

(h) Confusion matrix for the baseline model
and TTS60.

Figure 3.11: Confusion matrices showing how often each word of Scenario I was
grounded through which modality and CR.
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The average time it took the proposed framework to process a new situation and up-
date its mappings was 8.32ms, while the inference time was only 60.5 µs. In contrast,
one Gibbs sampling iteration of the baseline model took 23s. Since 100 iterations were
used, average training time for the baseline model was about 38.5 minutes for all 125
situations, while the inference time was on average 1.15s for each situation. This means
that it took the baseline model about 2,220 times longer than the proposed framework
to process all 125 situations, while the proposed framework was able to do inference
19,000 times faster than the baseline model. The main reason is that Gibbs sampling be-
comes very slow for high-dimensional vectors like the 308 dimensional VFH descriptors
used to represent the shapes of the objects employed in Scenario I. The timing analy-
sis shows that the proposed framework is able to update its mappings during real-time
human-agent interactions, while the baseline model is not able to update its groundings
during interactions and even the time it takes the baseline model to do inference might
be too large for dynamically changing environments.
Overall, the evaluation of the results for the first scenario shows that the proposed
framework is able to handle real world data and synonyms by learning the correct
mappings after just 125 situations, which is a sign that the framework is also relatively
sample-efficient, when considering the words and percepts used in the the first sce-
nario. Furthermore, the proposed framework outperforms the baseline based on its
AW detection and grounding accuracy as well as its ability to obtain new mappings
during interactions as illustrated by the timing analysis. Interestingly, the performance
difference is larger for TTS60, although this case is artificially harming the proposed
framework by preventing it to learn from all encountered situations. Finally, the pro-
posed framework is more transparent because mappings in the proposed framework
are represented explicitly and can be retrieved after every situation, which becomes
important when robots are interacting with humans in complex and unrestricted envi-
ronments, especially if some actions of the robots can cause harm to humans.
However, the employed scenario has also several limitations. First, the used sentences
and situations are very simple because every situation contains only a single object. Sec-
ond, every CR present in a situation has a corresponding word in the utterance, which
is not the case in the real world where an agent would usually perceive more CRs than
an utterance provided by another agent would refer to. Finally, the scenario contains
many synonyms but no homonyms, although many words can refer to multiple con-
cepts depending on the context they are used in.

3.6.2 Scenario II: CLEVR

In this section the results for the CLEVR based scenario (Section 3.5.2) are described.
The scenario is more complex and difficult than the first scenario because it has longer
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Figure 3.12: Mean number and standard deviation of correct and false mappings ob-
tained by the proposed model over all 1,000 situations of Scenario II. The
dotted part only occurs, when all situations are used for training (TTS100).

and more complex sentences, situations with several objects and therefore multiple per-
cepts for each modality, and homonyms. As a result, the CSL based grounding algo-
rithm of the proposed framework is only able to successfully ground about 28 of the 34
words included in the second scenario through their corresponding CRs. During the
first situations most created mappings are false because the algorithm has not much
data available. After around 67 situations the number of correct mappings equals for
the first time the number of false mappings (Figure 3.12). 20 situations later, i.e. after
about 88 situations, the number of correct mappings is for a brief moment one last time
smaller than the number of false mappings. After 600 situations the number of correct
mappings is 27, while after 1,000 situations it is 28. In contrast to the first scenario for
which the number of incorrect mappings was zero at the end, it is even after 1,000 situ-
ations still relatively high with 21 incorrect mappings.
Important to note is that the overall number of mappings, i.e. correct and false map-
pings combined, is 47 after 1,000 situations, which are nine mappings more than the
number of possible correct mappings12. The reason is that the proposed framework
allows all words and CRs to be part of multiple mappings to address synonymy, i.e.
multiple words are grounded through the same CR, and homonymy, i.e. one word is
grounded through multiple CRs. Nevertheless, the influence of the 21 incorrect map-

12The overall number of possible correct mappings is 38 because there are 34 words and four of them are
preposition words that can be mapped to two homonymous CRs.
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Figure 3.13: Mean grounding accuracy results and corresponding standard deviations
for both grounding models and all modalities of Scenario II as well as both
train/test splits. Additionally, the percentage of sentences for which all
words were correctly grounded is shown.

pings is only marginal in comparison to the influence of the 10 missing correct map-
pings because a missing mapping means that the agent will in general not be able to
identify the CR a word belongs to or to use the correct word for a specific CR, while an
incorrect mapping will only have an influence in specific situations where the correct
mapping cannot be applied.

Figure (3.13) confirms this because the accuracy of the shape and color groundings
obtained by the proposed framework is with more than 85% relatively high, while the
accuracy of the preposition groundings is lower with only 50% for TTS60 and about 70%
for TTS100 because the majority of the missing mappings are mappings for preposition
words. In contrast, the baseline model achieves the highest accuracy of about 90% for
prepositions, while the accuracies for shapes and colors are very low with less than 20%
and 2%, respectively. Additionally, the baseline also achieves mean accuracies for AWs
of about 95% and 70% for TTS60 and TTS100.
The reason for the large difference between the modalities becomes clear when looking
at Figures (3.14c and 3.14g), which shows that the high accuracy for prepositions and
AWs is due to the model mapping nearly all color and preposition words to preposition
CRs, while all shape words are mostly mapped to the AW “the” and only lightly to
shape CRs. The latter results in an accuracy of nearly 20% for shapes in comparison to
less than 1% for actions.
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(a) Confusion matrix for the proposed model
and TTS100.

(b) Confusion matrix for the proposed model
and TTS100.

(c) Confusion matrix for the baseline model
and TTS100.

(d) Confusion matrix for the baseline model
and TTS100.

(e) Confusion matrix for the proposed model
and TTS60.

(f) Confusion matrix for the proposed model
and TTS60.

(g) Confusion matrix for the baseline model
and TTS60.

(h) Confusion matrix for the baseline model
and TTS60.

Figure 3.14: Confusion matrices showing how often each word of Scenario II was
grounded through which modality and CR.
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Figures (3.14a and 3.14e) show that the amount of confusion for shapes and colors is
the same for TTS60 and TTS100, however, which words are incorrectly grounded and
to which degree changes in some cases. For example, for TTS60 “blue” and “blueish”
are partially grounded through shapes and prepositions in case of “blueish”, while they
are completely grounded through colors for TTS100, i.e. after all 1,000 situations have
been encountered. In case of prepositions, the confusion is higher for TTS60, which is
consistent with the accuracies shown in Figure (3.13), i.e. the accuracy for preposition
is 20% higher for TTS100. Figures (3.14b and 3.14f) show that most confusion is across
modalities independent of the number of situations used for training. More specifically,
most confusion is due to words being incorrectly grounded through CR 2 of the con-
cept SPHERE including two of the words referring to CUBE, i.e. “cube” and “quadrate”,
which are also the only cases of intra-modality confusion for TTS100. In contrast, for
TTS60 there is also light intra-modality confusion for the phrase “on the left of”.
Both the average time it took the proposed framework to process a new situation and
update its mappings, and the inference time were with 18ms and 146 µs about twice as
high as the times obtained for Scenario I, which is not surprising because Scenario II
has eight times more situations, while the CRs are very similar. In contrast, one Gibbs
sampling iteration of the baseline model took more than 5 minutes. Since 100 iterations
were used, the average training time for the baseline model was more than 9 hours
for all 1,000 situations, while the inference time was on average 3.39s for each situa-
tion. These results confirm the results obtained for the first scenario, i.e. the proposed
framework would be able to update its mappings in real-time during human-agent in-
teractions, while the baseline model requires too much time for training and inference.
Overall, the results show that the proposed framework is able to handle more complex
situations with longer and more complex sentences describing not just the target but
also a reference object and the spatial relation between the two objects, multiple ob-
jects so that not all CRs have a corresponding word in the provided natural language
descriptions, and homonyms. Furthermore, the results also show that the higher com-
plexity and difficulty of the scenario widened the performance gap between the pro-
posed framework and the baseline model both in terms of the accuracy of the obtained
groundings as well as the aquisition and inference speed.

3.6.3 Scenario III: Synthetic

The results presented in Sections (3.6.1 and 3.6.2) for the previous two scenarios show
that the proposed framework achieves more accurate groundings than the baseline
model, especially for the more complex second scenario. Since both frameworks use
different clustering algorithm to obtain CRs of percepts and the clusters obtained by the
proposed framework using DBSCAN were more accurate than the clusters obtained
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Figure 3.15: Mean number and standard deviation of correct and false mappings ob-
tained by the proposed model over all 10,000 situations of Scenario III. The
dotted part only occurs, when all situations are used for training (TTS100).
Due to the large number of situations the number of correct mappings is
the same in both cases.

by the baseline model using KMeans13, the question arises whether the difference in
clustering accuracy contributes to the difference in grounding accuracy. To investigate
this question, the scenario investigated in this section represents all percepts through
one-hot encoded vectors as described in Section (3.5.3) so that perfect CRs are obtained
independent of the employed clustering algorithm, thereby negating the influence of
CR accuracy on the grounding accuracy. Additionally, the scenario uses more complex
sentences to investigate whether the proposed framework is able to handle a set of more
realistic and diverse sentences.

The proposed framework is able to obtain about 57 of the 103 possible mappings14 af-
ter about 5,000 situations, while there are also about 11 incorrect mappings at that time
(Figure 3.15). At the beginning, the number of incorrect mappings is significantly higher
than the number of correct mappings due to the large number of words and CRs. After
about 35 situations the number of incorrect mappings reaches its peak with about 51
incorrect mappings in contrast to only 26 correct mappings. Afterwards, the number of

13The clusters obtained by DBSCAN and KMeans for all modalities of Scenarios I and II achieved mean
ARI scores of 0.95 (SD: 0.06) and 0.82 (SD: 0.17), respectively.

14There are 12, 16, 63, and 12 possible shape, color, preposition, and action mappings, respectively. The
large number of possible preposition mappings is due to the fact that four of the five preposition con-
cepts have three CRs and that the scenario also includes 23 preposition words.
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Figure 3.16: Mean grounding accuracy results and corresponding standard deviations
for both grounding models and all modalities of Scenario III as well as both
train/test splits. Additionally, the percentage of sentences for which all
words were correctly grounded is shown.

incorrect mappings decreases for about 5,000 situations to 11 incorrect mappings, while
the number of correct mappings is continuously increasing to 57 correct mappings. Af-
terwards, it decreases to 56 correct mappings over several hundred situations and stays
at that number for nearly 4,000 situations after which it briefly increases to nearly 57
correct mappings before decreasing again to this time 55 correct mappings. This change
shows how the proposed framework constantly updates its mappings based on the in-
formation in new situations.

Figure (3.16) shows that the proposed framework is able to identify all AWs and for
TTS60 ground also all action words correctly. Interestingly, for TTS100 the accuracy of
action groundings is with more than 90% lower than for TTS60, while the accuracies for
shapes and colors increase when all situations are used for training. This highlights that
more situations do not necessarily lead to more accurate groundings depending on the
quality of the situations. Independent of the number of situations used for training, the
accuracies for colors and prepositions is above 90%, while the accuracy for shapes is a
bit lower with about 75%. That there is only a minor difference in terms of grounding
accuracy between TTS60 and TTS100 is not surprising because the scenario has overall
10,000 situations so that even for TTS60 the model is encountering 6,000 situations dur-
ing training.
The same is true for the baseline model, i.e. there is only a slight increase in the ac-
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curacy for colors, prepositions, and actions when all situations are used for training,
while the accuracy for shapes lightly decreases. However, the groundings obtained by
the baseline model are in general less accurate, i.e. while the accuracies for preposi-
tions and actions are around 85%, the accuracies for shapes, colors, and AWs are below
5%. Figures (3.17c and 3.17g) illustrate that this is because the baseline model is map-
ping most shape and color words to the CRs of prepositions, while most action words
are grounded through CRs of actions. For the proposed framework the highest con-
fusion is shown for shapes, which are partially mapped to action CRs independent of
the number of situations during which the framework was allowed to update its map-
pings. There also exist some confusion for colors and prepositions. The latter only exist
for TTS100, which confirms the grounding accuracy for prepositions shown in Figure
(3.16). In general, all confusion for the proposed model is across modalities, while there
is no intra-modality confusion. Most confusion is actually with CR 23 of the concept
PUSH. Figures (3.17b and 3.17f) illustrate nicely that the proposed framework is able to
handle homonyms because all preposition words are grounded through the three cor-
rect corresponding CRs.
The average time it took the proposed framework to process a new situation was 67ms,
which is 3.7 times higher than for Scenario II, while the inference time was with 932 µs
even 6.4 times higher. In contrast, for the baseline model the times required for one
Gibbs sampling iteration and for inference were much lower than for Scenarios I and
II with about 80s and 62ms, respectively. However, the average training time for the
baseline model was with 133 minutes for all 10,000 situations still larger due to the high
number of situations. The results confirm that the proposed framework can be used in
real-time human-agent interactions, while this is not the case for the baseline model,
although for the first time the inference time is in the realm of milliseconds and would
therefore theoretically enable the baseline model to do inference during human-agent
interactions. However, the timing analyses for Scenarios I, II, and III show that the main
factor that contributes to slow sampling and inference times for the baseline model are
high dimensional CRs, which will be unavoidable when using a grounding framework
in an embodied agent, so that the baseline model will not be able to do inference in real-
time and will therefore not be useful for embodied agents deployed in human-centered
environments. In contrast, the main factor for slower situation processing and inference
times for the proposed framework are the number of modalities and the complexity of
sentences. For the latter the sentences used in Scenario III are a proper representation
for sentences in human-centered environments, while the number of modalities would
be higher but based on the current timings, even if they double they would not prevent
the usability of the framework in real world interactions.
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(a) Confusion matrix for the proposed model
and TTS100.

(b) Confusion matrix for the proposed model
and TTS100.

(c) Confusion matrix for the baseline model
and TTS100.

(d) Confusion matrix for the baseline model
and TTS100.

(e) Confusion matrix for the proposed model
and TTS60.

(f) Confusion matrix for the proposed model
and TTS60.

(g) Confusion matrix for the baseline model
and TTS60.

(h) Confusion matrix for the baseline model
and TTS60.

Figure 3.17: Confusion matrices showing how often each word of Scenario III was
grounded through which modality and CR.
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Figure 3.18: Mean number and standard deviation of correct and false mappings ob-
tained by the proposed model over all 312 situations of Scenario IV. The
continues line represents the results when the predicted CRs are used for
all modalities (PRET), while the dashed line represents the results when
perfect CRs are used for emotion types (PERT) to investigate the influence
of the CR accuracy on the grounding performance of the proposed model.
For all lines, the dotted parts only occur when all situations are used for
training (TTS100).

Overall, the results for the third scenario show that the difference in grounding accuracy
is not due to the different clustering algorithms used to create CRs but due to the differ-
ent grounding algorithms used by the proposed and baseline framework. Additionally,
the results also show that the proposed framework can handle many different modali-
ties in parallel and a variety of sentences structures including long sentences with two
preposition and three color and shape words.

3.6.4 Scenario IV: RAVDESS

For all previous scenarios the proposed framework employed clustering algorithms,
more specifically DBSCAN, to obtain CRs for all percepts in the encountered situations.
However, other learning algorithms can also be used. For the fourth scenario the per-
ceptual information is too difficult for clustering algorithms so that deep learning was
used instead, as described in Section (3.5.4.1). This is also the main motivation for this
scenario, together with the goal to illustrate that grounding is not just relevant for ob-
ject manipulation tasks but also for many other tasks, such as social interactions which
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require understanding of emotions and genders.
Figure (3.18) shows how the mean number of correct and false mappings obtained by
the proposed framework changes over all 312 situations. It shows two different cases,
which differ regarding the CRs used for emotion types, i.e. for the first case (PRET),
the predicted CRs are used, while for the second case (PERT), perfect CRs are used to
investigate the effect of the accuracy of the CRs on the grounding performance.
For PRET, represented by continuous lines, the number of correct mappings quickly in-
creases from zero to about twelve mappings for the first 20 situations, and continuous to
increase more slowly afterwards to 15 mappings, while the number of false mappings
starts with about six mappings and increases over the course of 45 situations to 15 map-
pings, after which it slowly decreases to 13 mappings. The main reason for the large
number of false mappings is that the CRs used for emotion types are highly inaccurate,
with an accuracy of 59.6%, while, at the same time, 60% of the employed words refer to
them. This assumption is confirmed when looking at PERT, represented by the dashed
line, which shows the number of correct and false mappings when perfect CRs are used
for emotion types, while the predicted ones are still used for the other two modalities,
i.e. emotion intensity and gender.
For PERT, the proposed framework obtains 17 and 20 correct mappings within the first
20 and 45 situations, respectively. If the framework is only allowed to learn during 60%
of the situations, it obtains 21 correct mappings, while it obtains one more mapping,
i.e. 22, if it continues learning for the remaining situations. In contrast, the number
of false mappings increases slightly from five to seven from the first to the second sit-
uation, stays stable for about eight situations and decreases then continuously to two
mappings after 60% of the situations have been encountered and one mapping after
all situations have been encountered. Both cases together illustrate that the proposed
grounding algorithm depends on the accuracy of the obtained CRs, however, it does not
require perfectly accurate representations because it is able to obtain all correct map-
pings for the second case, although the CRs for emotion intensities and genders only
have accuracies of 73.5% and 89.8%, respectively.

Figure (3.19) shows the accuracies for the proposed and baseline models, all modal-
ities, both test splits, and PRET as well as PERT. It shows that the proposed model
achieves a higher accuracy than the baseline model in all cases, i.e. for all modalities,
train/test splits and both CRs of emotion types, except for emotion types, when the
predicted CRs are used and all situations are encountered during training. In fact, for
genders, the proposed model achieves perfect grounding due to the high accuracy of the
corresponding CRs, i.e. 89.8%. The figure also confirms the results in Figure (3.18) that
the grounding accuracy improves with the number of encountered situations, which
seems intuitive but is not necessarily the case, as shown by the results obtained for the
baseline model, i.e. the latter obtained less accurate groundings for most modalities
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(a) Results when the predicted CRs are used for all modalities.

(b) Results when perfect CRs are used for emotion types.

Figure 3.19: Mean grounding accuracy results and corresponding standard deviations
for both grounding models, train/test splits, and all modalities of Scenario
IV. Additionally, the percentage of sentences for which all words were cor-
rectly grounded is shown.

when using all situations for training and testing due to the larger number of situations
in the test set. For the baseline model, using perfect CRs for emotion types increases the
accuracy of the groundings obtained for emotion types and genders as well as the ac-
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curacy of AWs, although the accuracy of the latter two only increases for TTS100, while
the accuracy of the emotion intensity groundings decreases independent of the number
of situations encountered during training.
Although the accuracies provide a good overview of how accurate the groundings for
each modality are, they do not provide any details about the wrong groundings or the
accuracy of the groundings obtained for individual words. Therefore, the left side of
Figure (3.20) shows the confusion matrices for all words and modalities, which illus-
trate how often each word was grounded through the different modalities and high-
light two interesting points. First, both models show a high confusion for emotion
types, i.e. all of them have non-zero probabilities to be mapped to CRs representing
emotion intensities or genders, due to the low accuracy of the corresponding CRs for
TTS60. The confusion decreases for TTS100, in which case most words converge to one
modality for the proposed model, i.e. only “happy” and “sad” are still confused as a
gender or emotion intensity, respectively. However, this does not lead to a substantial
increase in grounding accuracy for emotion types because some words, e.g., “surprise”
and “afraid”, converge to the wrong modality so that the probability to be mapped to a
CR of an emotion type decreases to zero.
The right side of Figure (3.20) shows confusion matrices of words and different CRs,
thereby allowing to investigate whether the CR a word is grounded through is cor-
rect, which might not be the case if there is a high confusion between CRs of the same
modality. The fourth column, representing the emotion type neutral, is very noticeable
in Figures (3.20b, 3.20h, and 3.20d) because both models do not map any word to it, ex-
cept for the proposed model and TTS60 (Figure 3.20b). However, even in the latter case,
the probability that the word “fine” gets mapped to it is very low because most of the
time it is mapped to the CR of the concept FEMALE (column 11). Otherwise, the results
show that, for the proposed model, the confusion is normally across modalities and not
between CRs of the same modality. In contrast, the baseline model shows strong confu-
sions between CRs of the same modality, e.g., for TTS60 “happy” and “disgusted” are
more often grounded through anger than happiness and disgust, respectively.
The average time it took the proposed framework to process a new situation and update
its mappings was 4.58ms, while the inference time was only 64.82 µs. In contrast, one
Gibbs sampling iteration of the baseline model took 655ms. Since 100 iterations were
used, the average training time for the baseline model was 65s for all 312 situations,
while the inference time was on average 7.64ms for each situation. These results con-
firm that the timings of the proposed framework are mostly influenced by the complex-
ity of the encountered utterances and the number of modalities, therefore, the timings
are very similar to the timings for Scenario I. In contrast, for the the baseline model the
timings mostly depend on the dimensionality of the employed CRs leading to timings
similar to Scenario III, which also used one-hot encoded vectors for CRs.
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(a) Confusion matrix for the proposed model
and TTS100.

(b) Confusion matrix for the proposed model
and TTS100.

(c) Confusion matrix for the baseline model
and testing TTS100.

(d) Confusion matrix for the baseline model
and TTS100.

(e) Confusion matrix for the proposed model
and TTS60.

(f) Confusion matrix for the proposed model
and TTS60.

(g) Confusion matrix for the baseline model
and TTS60.

(h) Confusion matrix for the baseline model
and TTS60.

Figure 3.20: Confusion matrices showing how often each word of Scenario IV was
grounded through which modality and CR.



Section 3.7. Discussion 63

Overall, the evaluation shows that the proposed model is able to ground higher level
concepts, like emotion types or genders, and that it can also employ non-clustering
algorithms, in this case deep neural networks, to extract CRs. Otherwise, the results
confirm the results obtained for the previous scenarios, i.e. the proposed framework
outperforms the baseline in terms of AW detection and grounding accuracy as well as
its abilities to learn continuously without requiring explicit training. The latter does not
only make it more applicable for real-world scenarios but also more transparent, be-
cause it is possible to observe how a new situation influences the obtained groundings.

3.7 Discussion

Due to the dynamicity and unpredictability of human-centered environments as well
as the ambiguity of natural language, language grounding frameworks must be able
to ground language in a continuous and open-ended manner, need to be able to cope
with synonymy and homonymy, and should not rely on external support. Therefore,
in this chapter, a novel CSL based unsupervised grounding framework was proposed
(Section 3.3). The proposed framework was evaluated through four different scenarios
(Section 3.5) that differ based on the used modalities, words, CRs, and number of situa-
tions. The obtained results showed that the framework can be used to detect AWs and
ground non-AWs and phrases through corresponding CRs in an unsupervised manner.
Furthermore, the obtained results also showed that the proposed framework is able to
outperform a state-of-the-art Bayesian learning model based on the achieved grounding
accuracy, while at the same time being able to obtain new groundings continuously and
in an open-ended manner. Due to Scenario III it is clear that the difference in grounding
accuracy is not due to the different mechanisms employed to obtain CRs. Scenario IV
also illustrates that the proposed framework is able to employ any kind of algorithm
to obtain CRs and is therefore more flexible than the probabilistic model, which always
requires the use of KMeans clustering, even if a different form of CRs had already been
obtained, e.g. for Scenario IV the class labels obtained by the employed deep neural
networks.
Finally, the results also showed that the proposed framework is able to handle the am-
biguity of language in form of synonyms and homonyms. Additionally, the timing
analysis showed that the proposed framework is able to process new situations quick
enough for real-world deployment, while the baseline model requires much more time
because it would have to re-train every time from scratch.
Overall, the results presented in this chapter show that the proposed framework can
be used to ground words in an unsupervised manner in a variety of scenarios differing
in the complexity of the encountered language as well as percepts. The main concern
is the scalability when considering that even Scenario III has only 63 words, which is
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relatively small in comparison to the number of words used by humans in normal con-
versations, but the unsupervised framework was already not able to ground all of the
words. This is especially concerning since Scenario III consisted of 10,000 situations,
which is a large number of situations in comparison to the relatively small number of
employed words and CRs, so that it can be ruled out that just providing more situations
would be helpful. Thus, in the next chapter (Chapter 4) the unsupervised grounding
framework will be extended with a mechanism to learn from feedback provided by
an external agent, to increase its sample-efficiency and the accuracy of the obtained
groundings.



4 Enhancing Unsupervised Grounding

through Optional Feedback

4.1 Motivation

Unsupervised CSL based grounding frameworks, like the one proposed and evaluated
in the previous chapter (Chapter 3), do not require any support from another agent
to successfully ground words through corresponding CRs. However, for more com-
plex and realistic scenarios, like Scenarios II and III in Chapter (3), the previously pro-
posed unsupervised framework is not able to ground all words successfully. Thus, the
question arises whether the utilization of some form of supervision, such as feedback,
could improve the accuracy and sample-efficiency of the grounding framework (see
Section 3.7 for a detailed discussion), which leads to the following research questions:

1. How to combine unsupervised and supervised grounding mechanisms to enable
an artificial autonomous agent to utilize the support provided by other agents
without depending on it?

2. Does extending the unsupervised grounding framework proposed in the previous
chapter (Chapter 3) with a mechanism to handle external support increase the
sample-efficiency of the framework and the accuracy of the obtained groundings?

3. Which type of feedback, i.e. only non-verbal feedback or verbal and non-verbal
feedback, has the most positive effect, i.e. leads to the highest sample-efficiency
and accuracy?

4. How to handle wrong feedback1 so that artificial autonomous agents still learn
the correct groundings, even if all provided support is wrong?

The rest of this chapter answers above questions by proposing a framework that com-
bines CSL and IL by extending the unsupervised grounding framework described in
the previous chapter (Chapter 3) with a mechanism to handle two different types of
support, i.e. non-verbal and verbal feedback. Section (4.2) provides an overview of

1Wrong feedback can be accidental, due to malicious intent of the supporting agent, or due to noisy or
corrupted input, e.g. the learning agent might misunderstand to which object the supporting agent is
pointing.

65
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previously proposed supervised learning models as well as previous attempts to com-
bine unsupervised and supervised grounding approaches. Afterwards, Section (4.3)
describes the proposed grounding framework. The two scenarios used to evaluate the
proposed framework, the employed evaluation criteria as well as the obtained results
are described in Sections (4.4 and 4.5). Finally, Section (4.6) concludes this chapter with
a final discussion of the research questions, a summary of the main contributions, and
an outlook towards possible future work to address observed limitations.

4.2 Related Work

The motivation for supervised grounding approaches comes from the fact that, although
infants and young children do not need any support to learn their native language, there
is evidence that active support by their parents or other language proficient people sim-
plifies word learning and therefore makes children learn faster [11, 39, 8]. Inspired by
these studies, supervised or interactive grounding approaches try to utilize the support
of a tutor to obtain word-CR mappings in a sample-efficient and highly accurate man-
ner. The main idea is that direct teaching and feedback prevents an artificial agent from
learning wrong mappings and reduces the complexity of language grounding by limit-
ing the number of possible mappings.
For example, She et al. [88] and She and Chai [87] investigated the use of a dialog sys-
tem to ground higher-level actions, like “pick up”, “grab” or “stack”, through already
grounded lower-level actions or manipulation sequences modifying the gripper of the
robot employed in their study, like “open”, “move”, or “close”. However, not only the
words referring to the modifications of the gripper state or location were assumed to be
already grounded through their corresponding actuator commands, also the colors and
shapes that the human tutor used to refer to the manipulation objects were assumed
to be already grounded. While the proposed framework was able to achieve perfect
grounding when the higher-level actions were taught step by step through the already
grounded lower-level actions, it only worked due to the strong assumption that the
groundings of both the lower-level actions and object characteristics already existed,
which cannot be assumed when deploying artificial agents in human-centered environ-
ments. Additionally, the study also made the implicit assumption that the human tutor
knows what the robot knows, i.e. which words have already been grounded and only
uses these words to teach the unknown words. Neverthless, if additional mechanisms
are available to ground the lower-level actions and object characteristics in an unsuper-
vised manner, allowing teaching of higher-level actions through a situated dialog can
help learning them faster and without mistakes.
Misra et al. [55] followed a similar approach, i.e. grounding higher-level actions through
already grounded lower-level actions. The employed system was able to successfully
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ground actions like “distribute”, “mix”, or “arrange” through lower-level actions but
relied again on the availability of grounded lower-level actions and objects, thus, being
only useful in combination with a mechanism that is able to ground lower-level actions
and object characteristics.
Cakmak et al. [13] investigated the benefit of active supervised learning over passive su-
pervised learning. In the context of grounding, active supervised learning means that
the learner can ask the tutor about the label for a specific object, while passive super-
vised learning means that the tutor decides when and in which order new groundings
are taught. In their study, 24 participants taught four concepts to a robot through natu-
ral language using a predefined grammar so that the robot was able to discard all words
except the word referring to the target object. Interestingly, the participants could also
show an object and ask for its name or provide negative examples by showing a differ-
ent object and stating a word that does not refer to it, e.g. showing a house and saying
“snowman”. The grounding mechanism did not require any groundings to work, how-
ever, indirectly only a single word was provided because all auxiliary words were al-
ready known and automatically discarded so that it is not clear whether it would work
with more realistic sentences.
Lopes and Chauhan [49] followed an interactive learning approach using an incremen-
tal one-class learning algorithm. In the conducted study, the interaction was controlled
by a human tutor who could either teach the name of an object to a robot or ask the robot
about the name of an object and if the name was incorrect, provide the correct name so
that the robot could update its mappings. The study only used a single modality repre-
senting the shape of the objects as perceptual input and single words as linguistic input,
therefore, it is not clear whether the algorithms would work for more realistic scenarios
with natural language utterances consisting of multiple words and more complex per-
ceptual input.
Bleys et al. [10] and Spranger [94] employed the Grounded Naming Game methodol-
ogy to ground single words referring to the color of objects and spatial relations, respec-
tively. In the employed experiments, two robots were interacting with each other in an
environment with two to four objects. One of the robots acted as the tutor knowing the
correct groundings, while the other robot acted as the learner trying to learn the correct
groundings from the tutor. To teach a color or spatial relation, the tutor said the name of
the color of one of the objects or described one of the objects through its spatial relation.
In response, the learner utilized previously learned groundings to determine which ob-
ject the tutor referred to and pointed to it or if it had not learned the corresponding
groundings, it randomly pointed to one of the objects. Afterwards, the tutor signaled
success or failure depending on whether the learner pointed to the correct object. In the
latter case, the tutor pointed to the correct object so that the learner knew the correct
grounding at the end of the interaction. Grounding success was evaluated based on the
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number of successful interactions. In both studies the learner relatively quickly learned
the correct groundings, leading to a high number of successfull interactions, and illus-
trating the efficiency of the Grounded Naming Game methodology. The main drawback
of the used methodology is the dependency on a supporting agent who already knows
the correct groundings, and is able and willing to support the learning agent as well as
on the correctness of the provided support, which both cannot be guaranteed.
One possibility to overcome this limitation would be to combine unsupervised and su-
pervised grounding approaches, however, so far this has not received much attention
despite the potential to combine their strengths and eliminate or at least reduce the im-
pact of their shortcomings. Nevens and Spranger [58] investigated the combination of
cross-situational and interactive learning and came to the conclusion that the more feed-
back is provided, the faster new mappings are obtained and the higher the accuracy of
the obtained mappings. While these findings, i.e. that feedback improves the accuracy
and sample-efficiency, seem reasonable and intuitive, the employed cross-situational
learning algorithm was very limited, thus, it is not clear whether feedback would have
provided the same benefit, if a more sophisticated unsupervised grounding mechanism
would have been employed.
A different study by Roesler [70] extended an unsupervised CSL based grounding frame-
work, which has achieved state-of-the-art grounding performance [72], with a mecha-
nism to learn from explicit teaching and showed that explicit teaching increases the
convergence speed towards the correct groundings. The main disadvantage of the em-
ployed supervised learning mechanism is that it requires the tutor to artificially create a
special teaching situation, which is a simplified version of the environment specifically
designed to ensure that the agent will correctly learn a specific mapping. Since finding
a tutor who is able and willing to put this amount of effort into teaching the agent is
very unlikely, the approach is not really applicable for real human-agent interactions.
Due to the fact that in both studies one of the employed mechanisms, i.e. the unsu-
pervised mechanism in [58] and the supervised mechanism in [70], were quiet limited,
the framework presented in this chapter combines two mechanisms that have previ-
ously been shown to achieve state-of-the-art grounding results individually and eval-
uates whether their combination leads to better sample-efficiency and accuracy, while
ensuring at the same time that supervision can be provided in a simple and natural
way, and is not required to learn the correct groundings. Additionally, the impact of
incorrect feedback on the grounding performance of the proposed framework is also
investigated because it cannot be assumed that the provided support is always correct,
e.g. due to noisy input or malicious intent of the supporting agent. For example, a study
conducted by Nomura et al. [62] showed that children might harm or abuse a robot out
of curiosity and not because they want to cause serious harm. Thus, it is very likely
that some people will try to trick the learning agent through incorrect support, when
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deployed in human-centered environments without any professional supervision.
The proposed framework and the results for the case when only correct feedback is pro-
vided for Scenario II have already been published in [73]. The proposed framework has
also been extended with a mechanism to learn from explicit teaching in [70], however,
due to the limitations of explicit teaching the conducted study is not included in this
chapter.

4.3 A Feedback Enhanced Unsupervised Grounding Framework

This section describes a novel grounding framework that combines unsupervised and
supervised grounding components. More specifically, it describes several extensions to
the framework proposed in Chapter (3) to enable it to learn from non-verbal and verbal
feedback by a human tutor to improve its sample-efficiency and grounding accuracy,
while simultaneously ensuring that the model does not require feedback, i.e. it is still
able to ground words through corresponding CRs when no feedback is provided, and
still works when wrong feedback is provided.
The proposed framework consists of three main parts: (1) CR creation component (Sec-
tion 4.3.1), which converts percepts to CRs utilizing a standard clustering algorithm, (2)
Unsupervised grounding component (Section 4.3.2), which detects AWs and word-CR
mappings through CSL, (3) Supervised grounding components (Section 4.3.3), which
utilize two different interactive feedback based learning mechanisms to improve the
accuracy of word-CR mappings as well as the acquisition speed. The unsupervised
grounding component is based on the unsupervised grounding framework proposed
in the previous chapter (Section 3.3) that has been shown to outperform a state-of-the
art probabilistic model based grounding approach (Sections 3.4 and 3.6). The individual
parts of the proposed novel hybrid grounding framework are illustrated below and in
Figure (4.1), while they are described in detail in the following subsections.

1. Concrete representation creation component:

• Input: Percepts.

• Output: CRs of percepts.

2. Cross-situational learning component:

• Input: Natural language instructions, CRs, previously detected AWs, and
word and CR occurrence information.

• Output: Set of AWs and word to CR mappings.

3. Interactive learning component:

• Input: Natural language instructions, CRs, AWs, and feedback information.

• Output: Word to CR mappings.
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Figure 4.1: Illustration of the components of the proposed framework and the data flow
for the second scenario (Section 3.5.2). First percepts, i.e. VFH descrip-
tors, RGB mean values, and 3D spatial vectors, are extracted using the point
clouds of the objects in the current scene and the meta-data generated by the
scene extraction script (see Section 3.5.2 for details). Afterwards, correspond-
ing CRs are obtained, which are then provided as input to the CSL and IL
components. Both components also take as input the natural language sen-
tence, while the IL component also receives as input the AWs and mappings
obtained by the CSL components as well as any feedback information avail-
able, which can be both verbal or non-verbal feedback (see Section 4.3.3 for
details). Finally, the IL component outputs the word-CRs mappings based
on both co-occurrence information and available feedback.
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4.3.1 Concrete representation creation

Since the proposed framework is an extension of the unsupervised grounding frame-
work proposed in Chapter (3) it uses the same CR creation component, which allows
great flexibility because it does not require the use of a specific clustering or classifi-
cation algorithm and leads to explicit CRs that enhance the explainability and trans-
parency of the grounding framework. A detailed explanation of the CR creation com-
ponent is provided in Section (3.3.1) of the previous chapter.

4.3.2 Cross-situational learning

The CSL component of the proposed framework consists of the same mechanisms as
the unsupervised grounding framework proposed in the previous chapter, thus, for a
detailed description of the employed unsupervised mechanisms, i.e. the unsupervised
AW detection and grounding mechanisms, please refer to the corresponding sections in
the previous chapter, i.e. Sections (3.3.2 and 3.3.3), respectively.

4.3.3 Interactive learning

The supervised or IL component is inspired by the “Naming Game” methodology [97],
but has been designed so that it smoothly integrates with the unsupervised ground-
ing component described in the previous section (Section 4.3.2). The main idea is to
allow agents to receive and utilize non-verbal and verbal feedback from a tutor, when
available, to speed up the grounding process and improve the accuracy of the obtained
groundings. The integration with the unsupervised CSL based grounding mechanism
is crucial to avoid that the agent requires feedback to learn new mappings and also to
improve its robustness to incorrect feedback. The supplied feedback can consist of two
parts: (1) pointing to the correct object, which allows the agent to identify the percepts
belonging to the target object, and (2) an utterance, which provides a short description
of the characteristics of the target object. While the first part, i.e. pointing to the correct
object, is required for the feedback mechanism to work, the second part, i.e. the utter-
ance, is optional. The feedback is used by the agent to update its mappings to increase
the probability that it identifies the target object correctly in similar situations in the
future.

Algorithm (6) provides an illustration of the two proposed feedback mechanisms.
First, the set of non-target CRs (NOCR) is calculated by subtracting the set of target ob-
ject CRs (TOCR) from the set of all object CRs (AOCR). Afterwards, word-CR and CR-
word feedback pairs are created or updated for each word in the instruction sentence
and each CR in TOCR, if no verbal feedback is available. The reason for this is that due
to the available non-verbal pointing-based feedback, it is clear which object the instruc-
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Algorithm 6 The feedback procedure takes as input the words of the instruction of the
current situation (WI) and the feedback sentence (WF), the set of all object CRs (AOCR),
the set of the target object CRs (TOCR), the set of detected AWs (AWS), and the sets of
previously obtained word-CR feedback (WCRPSF) and CR-word feedback (CRWPSF),
and returns updated WCRPSF and CRWPSF.

1: procedure FEEDBACK(WI, WF, AOCR, TOCR, AW, WCRPSF, CRWPSF)

2: FRC = 2

3: AOCR \ TOCR→ NOCR

4: if WF is ∅ then

5: for w in (WI − AW) do

6: for p in TOCR do

7: WCRPSFw,cr+ = FRC

8: CRWPSFcr,w+ = FRC

9: else

10: for w in (WF− AW) do

11: for p in TOCR do

12: WCRPSFw,cr+ = FRC

13: CRWPSFcr,w+ = FRC

14: for p in NOCR do

15: WCRPSFw,cr− = FRC

16: CRWPSFcr,w− = FRC

17: return WCRPSF, CRWPSF

tion refers to and therefore which CRs the instruction words refer to. Otherwise, i.e. if
verbal feedback is also provided, feedback pairs are created or updated using the feed-
back sentence and each CR in TOCR and NOCR. More specifically, mappings from the
words in the feedback sentence to the CRs of the target object are strengthened, while
the mappings from the feedback words to all other CRs are weakened. Thus, the feed-
back mechanism automatically takes into account verbal feedback (WF), if available, but
does not require it because otherwise the instruction words (WI) will be used instead.
When verbal-feedback is provided, the feedback mechanism does not only increase the
values of the mappings from the words in WF to the CRs in TOCR but also decreases the
values of the mappings in WF to the CRs in NOCR, thereby, following the assumption
that most of the times the other objects have not the same color and shape of the target
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Algorithm 7 High-level overview of the unsupervised grounding procedure described
by Algorithm (4) to highlight the integration of the feedback mappings (lines 5 and 8).

1: procedure GROUNDING(W, CR, WCRPS, CRWPS, AWS, PP, WO, CRO, PMS)
2: Substitute words with phrases from PP
3: Update AWS (Algorithms 1, 2, and 3) and remove AW from W
4: Update WCRPS, and CRWPS using W and CR
5: WCRPS ∪WCRPSF
6: for w in WCRPS do
7: Save highest WCRP to GW
8: CRWPS ∪ CRWPSF
9: for j = 1 to CR number do

10: Save highest CRWP to GCR
11: return GW ∪ GCR

object.
The feedback mechanism has one parameter, i.e. FRC, which represents the feedback
related change and determines how strong the influence of feedback is on the obtained
mappings. FRC was initially set to 2 to ensure that feedback is twice as important as
co-occurrence information, while ensuring that wrong feedback would not have a too
strong influence. This setting was later also experimentally verified as the best set-
ting. Feedback is integrated with the unsupervised algorithm by merging WCRPS and
WCRPSF as well as CRWPS and CRWPSF in lines 5 and 9 of Algorithm (7) so that pairs
that received positive feedback are strengthened and pairs that received negative feed-
back are weakened.

4.4 Experiments

The proposed framework (Section 4.3) is evaluated through modified versions of the
second and third scenarios presented in Section (3.5) because the other two scenarios
only contain one target object or person so that no target selection and therefore feed-
back by a tutor is possible. The employed utterances and percepts are exactly the same,
while the interaction procedure is slightly different due to the availability of support
from another agent. For all scenarios two different types of support are investigated,
i.e. non-verbal feedback and combined verbal and non-verbal feedback. Additionally,
different feedback rates as well as different amounts of wrong feedback are investigated.
The remainder of this section will explain the extended experiment procedure, while an
overview of the employed words and percepts can be found in Section (3.5) since only
the experimental procedure is different.
In all scenarios the experimental procedure is as follows:

1. A scene is generated and the agent determines the geometric characteristics and
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colors of all objects as well as their spatial relationships.

2. A description of one of the objects is provided to the agent mentioning its shape,
color and spatial relation to another object at the beginning or end of the situa-
tion, which is also described by its shape and color. For Scenario II no action is
executed, thus, the reference is always describing the position of the target object
at the beginning of the situation. In contrast, for the third scenario, the reference
can describe either the initial position of the manipulation object or the target po-
sition. For Scenario III, it is also possible that two references, i.e. the first for the
initial position and the second for the target position, are provided.

3. The agent updates its groundings and utilizes them to select (Scenario II) or ma-
nipulate (Scenario III) the target object.

4. (optional) The tutor provides non-verbal feedback by pointing to the correct object
or a combination of non-verbal and verbal feedback, e.g. “yes the red cylinder”
or “no the red cylinder”.

5. (optional) The agent updates its groundings based on the received feedback.

Steps 4 and 5 are optional because feedback is not always provided by the tutor, in
which case the supervised learning mechanism of the proposed framework will have
no effect. Two different validity cases are investigated for both scenarios and both types
of feedback. In the first case, the tutor is always providing correct feedback, while in
the second case the feedback is sometimes incorrect. There can be different reasons
for incorrect feedback including a misinterpretation by the agent of where the tutor is
pointing or the tutor is pointing to a wrong object, e.g. by accident, out of curiosity
how the agent will cope with wrong feedback, or due to malicious intent. For this
experiment, incorrect pointing-only feedback means that the tutor points to one of the
objects that are not mentioned in the utterance, while for combined pointing and verbal
feedback the tutor points to one of the non-target objects while mentioning color and
shape words that do not refer to the actual color and shape of that object.

4.5 Results

In the following subsections the groundings obtained by both the proposed framework
(Section 4.3) and the baseline framework (Section 3.3) for the two investigated scenarios
(Section 4.4) are presented and evaluated. The baseline framework is the unsupervised
grounding framework proposed in the previous chapter because it has shown to per-
form better than other state-of-the-art frameworks for the investigated scenarios. Since
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(a) Grounding results when correct pointing-
only feedback is provided.

(b) Grounding results when both correct point-
ing based and verbal feedback is provided.

Figure 4.2: Mean grounding accuracy results, corresponding standard deviations, and
percentage of sentences for which all words were correctly grounded for
both types of feedback of Scenario II, when all feedback is correct.

the same utterances and percepts are provided in the same sequence to both frame-
works, any difference in grounding performance can only be due to the use of feedback
by the proposed framework. Both frameworks receive situations one after the other as
if processing the data in real-time during the interaction because they do not require
explicit training phases, therefore, all situations are used for training and testing.
The main questions investigated are (1) Whether the proposed feedback mechanisms
improve the sample efficiency of the framework and the accuracy of the obtained ground-
ings, (2) Whether verbal feedback is important, i.e. leading to better sample efficiency
and grounding accuracy than only non-verbal feedback, and (3) Whether the proposed
feedback mechanisms lead to a decrease in grounding accuracy, if wrong feedback is
provided. All three questions are investigated for both scenarios.

4.5.1 Scenario II: CLEVR - Correct Feedback

This section presents the results obtained for Scenario II (Section 3.5.2) for both feedback
types when all provided feedback is correct, thereby, allowing the investigation of the
first two questions for Scenario II.
Figure (4.2a) shows the grounding results when only non-verbal pointing-only feed-
back is provided. It shows that pointing-only feedback has only a small mostly positive
effect on the accuracies of shape and color groundings as well as a light negative ef-
fect on preposition groundings so that number of sentences for which all words were
correctly grounded increases by about 10%. In comparison, when the tutor also pro-
vides verbal feedback, the accuracy of the obtained groundings improves visibly for all
modalities (Figure 4.2b) so that the number of correctly grounded sentences increases
from about 30% to more than 85%. This increase is mostly due to an increase in the
grounding accuracy of prepositions by more than 20%, while the accuracy of shape and
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color groundings increases only by about 10%, which could also be due to the fact that
the shape and color groundings were already more accurate, when no feedback was
provided.
The results show that both feedback types have a positive effect on the overall ground-
ing accuracy for Scenario II and that combining non-verbal and verbal feedback is es-
sential for the accuracy of preposition groundings, while it has only a limited effect on
the accuracy of shape and color groundings. The reason is that pointing-only feedback
only directly influences shape and color groundings but has also indirectly a negative
effect on preposition groundings, while verbal feedback has a direct positive effect on
the accuracy of preposition groundings.
Figure (4.3) shows how the number of correct and false mappings changes over all 1,000
situations for different feedback rates, i.e. depending on how often feedback is given.
For pointing-only feedback the final number of correct mappings, i.e. after 1,000 situ-
ations, increases by on average one and two mappings, when feedback is provided for
50% or 100% of the situations. Similarly, the number of false mappings decreases by
on average one and four mappings, when feedback is provided for 50% or 100% of the
situations (Figure 4.3a). For combined pointing and verbal feedback there is a clear dif-
ference regarding the final grounding accuracy as well as the speed correct mappings
are obtained (Figure 4.3b). For example, when no feedback is provided, it takes nearly
80 situations until the number of correct mappings is equal to the number of false map-
pings, while it only takes about 25 and 19 situations when feedback is given for 50% of
the situations or all situations, respectively. Additionally, after all 1,000 situations have
been encountered the number of correct mappings is about 10% higher if feedback is
provided on average every second situation than if no feedback is provided, followed
by another 6% increase, if feedback is provided every situation.
These results illustrate the benefit of verbal feedback in addition to pointing feedback
and the benefit of supervised grounding in addition to unsupervised grounding in
terms of both grounding accuracy and sample-efficiency. However, the results also
show that the framework does not depend on feedback and achieves decent ground-
ing results, if no feedback is provided, which is important because the availability of
feedback cannot be guaranteed. Figure (4.3) also illustrates the online learning ability
of the proposed framework, which is very important when considering deployment in
real environments that require open-ended learning because it is impossible to create a
large enough dataset that contains all possible words and CRs that an agent could en-
counter. In addition, it also shows the transparency and explainability of the framework
because at any time it is possible to check the current mappings and understand why
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(a) Pointing-only feedback.

(b) Pointing and verbal feedback.

Figure 4.3: Mean number and standard deviation of correct and false mappings over
all 1,000 situations of Scenario II, when correct feedback is provided for 0%,
50% or 100% of the situations, where FR means feedback rate.

they have been created based on the available co-occurrence information stored in WCRPS,
CRWPS, WCRPSF, and CRWPSF (Sections 4.3.2 and 4.3.3).
While the accuracies and the numbers of correct and false mappings presented in Fig-
ures (4.2 and 4.3) provide a good overview of how accurately the groundings are for
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each modality and how the number of correct and incorrect mappings changes over
time, they neither provide any details about the accuracy of the groundings obtained
for individual words nor any details about the wrong mappings. Therefore, Figure (4.4)
shows the confusion matrices for all words and modalities as well as all words and CRs
illustrating how often each word was grounded through the different modalities and
CRs, respectively. Figure (4.4a), which shows the confusion matrix for all words and
modalities, when no feedback is provided, illustrates that there is some inter-modality
confusion between shapes and colors as well as prepositions and shapes, while overall
most words are grounded through the correct modality. When pointing-only feedback
is provided for every situation the inter-modality confusion for shapes and colors de-
creases (Figure 4.4c), while for prepositions it increases slightly, which is consistent with
the accuracy results in Figure (4.2a). Most inter-modality confusion disappears when
combined verbal and pointing feedback is provided every situation (Figure 4.4e), i.e.
there is only very light inter-modality confusion for “cube”, “brownish”, “in front of”,
and “behind”.
Since grounding is not about determining the modality a word belongs to but to create
a mapping from words to corresponding CRs, it is important to also look at the confu-
sion matrices of words over different CRs. Figure (4.4b) shows the confusion matrix of
words over different CRs when no feedback is provided. The figure shows that there is
not much intra-modality confusion and that most of the inter-modality confusion is for
CR 2 because many words are incorrectly mapped to it, although all mappings except
for “on the right of”, “greenish-blue”, and “gray” are relatively weak. For the preposi-
tion words it is interesting to see that most of them are mapped to two CRs, which is
correct because all prepositions should be grounded through two homonymous CRs.
When looking at Figure (4.4c), which shows the confusion matrix for the case were
pointing-only feedback is provided for every situation, it is interesting to see that the
mappings for prepositions are less accurate and weaker. The reason for this is that
pointing-only feedback strengthens the mappings from the CRs of the target object’s
shape and color with all words of the utterance. Thus, the mappings from the preposi-
tion words to the CRs of shape and color are strengthened as well, the former even more
because there are only three different CRs for shapes in comparison to eight for colors.
However, when combined verbal and pointing feedback is provided, the confusion for
prepositions is nearly completely gone and in general there is no intra-modality and
only slight inter-modality confusion (Figure 4.4f). The large improvement for prepo-
sitions is due to the availability of the feedback sentence which ensures that only the
mappings from the color and shape words of the target object to the corresponding CRs
are strengthened. This clearly shows the importance of verbal feedback when compar-
ing it to the pointing-only feedback case, while the confusion matrices also showed that
the proposed framework is also able to achieve decent groundings, if no feedback is



Section 4.5. Results 79

(a) Confusion matrix of words over different
modalities when no feedback is provided.

(b) Confusion matrix of words over different
CRs when no feedback is provided.

(c) Confusion matrix of words over different
modalities when pointing-only feedback is
provided for every situation.

(d) Confusion matrix of words over different
CRs when pointing-only feedback is pro-
vided for every situation.

(e) Confusion matrix of words over different
modalities when combined pointing and
verbal feedback is provided for every situa-
tion.

(f) Confusion matrix of words over different
CRs when combined pointing and verbal
feedback is provided for every situation.

Figure 4.4: Confusion matrices for all ten situation sequences and three different types
of interactions, i.e. no feedback, pointing-only feedback and combined ver-
bal and pointing feedback, of Scenario II, when all feedback is correct.

available, which confirms the results presented in Section (3.6).
Overall, the results for Scenario II show that both feedback mechanisms improve the
sample-efficiency of the original framework and lead to more accurate groundings,
while the integration with the unsupervised grounding mechanism ensures that the
framework is still able to achieve decent grounding results, when no feedback is avail-
able. Furthermore, the results also show that combined verbal and pointing feedback
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provides a substantial benefit over pointing-only feedback in terms of grounding accu-
racy and sample-efficiency. Especially, for modalities that are not benefiting by pointing-
only feedback, i.e. prepositions in case of Scenario II, verbal feedback is important to
prevent the creation of incorrect mappings. The remaining question, which will be in-
vestigated in the next section (Section 4.5.2), is how robust the framework is in regard to
incorrect feedback, i.e. how does incorrect feedback affect the grounding accuracy and
sample-efficiency of the framework and how much does the effect of incorrect feedback
depend on the number of situations for which feedback is provided and the percentage
of incorrect feedback.

4.5.2 Scenario II: CLEVR - Incorrect Feedback

This section presents the results obtained for Scenario II (Section 3.5.2) for both feedback
types when part of the provided feedback is incorrect, thereby, allowing the investiga-
tion of the third question for Scenario II.
Figures (4.5a and 4.5b) show that the grounding accuracy decreases slightly when in-
correct feedback is provided for 50% of the situations in comparison to no feedback,
independent of how often feedback is provided, i.e. every situation or every second
situation. When all feedback is incorrect the accuracy decreases by more than 30% for
all modalities. For combined verbal and pointing feedback the results are overall simi-
lar, however, interestingly the overall grounding accuracy still improves slightly when
feedback is provided every situation but only 50% of it is correct. This illustrates that
the combined verbal and pointing feedback is more robust in regard to incorrect feed-
back because only when more than 50% incorrect feedback is provided every second
situation or always incorrect feedback every situation the accuracy is worse than if no
feedback is provided at all. Thus, while these results highlight the negative effect in-
correct feedback can have, they show at the same time that even if incorrect feedback
is provided every situation, the framework is still able to learn decent groundings for
most of the modalities. Important to note is also that even 25% incorrect feedback is
rather unrealistic when deploying a robot over a long time in human environments and
for this amount of incorrect feedback both types of feedback either increase the accuracy
of groundings (combined verbal and pointing feedback) or reach the same accuracy as
if no feedback would be provided (pointing-only feedback).

These findings are supported by Figure (4.6a) which shows that the number of correct
mappings still increases slightly when 25% of pointing-only feedback is incorrect, while
for 50% or more incorrect feedback the number of correct mappings after encountering
all 1,000 situations of Scenario II drops by up to 25% in comparison to the case when
no feedback is provided. For combined pointing and verbal feedback, the number of
correct mappings is higher than when no feedback is provided, even if 50% of the feed-



Section 4.5. Results 81

(a) Grounding results when pointing-only
feedback is provided for 50% of the
situations.

(b) Grounding results when pointing-only
feedback is provided for all situations.

(c) Grounding results when combined point-
ing and verbal feedback is provided for 50%
of the situations.

(d) Grounding results when combined point-
ing based and verbal feedback is provided
for all situations.

Figure 4.5: Mean grounding accuracy results, corresponding standard deviations, and
percentage of sentences for which all words were correctly grounded for Sce-
nario II for both types of feedback and different rates of correct and wrong
feedback.

back is incorrect and if feedback is provided every situation, even if 75% of the feedback
is incorrect. Thus, combined verbal and pointing feedback only has a slightly negative
effect, i.e. the number of correct mappings decreases by about 7% (2 mappings). When
feedback is provided every situation, incorrect combined verbal and pointing feedback
only has a negative effect if nearly all feedback, i.e. at least more than 75%, is incorrect,
which leads to a 20% decrease of correct mappings in comparison to the case without
feedback. These results clearly show the robustness of the grounding framework due to
the use of both unsupervised and supervised grounding mechanisms because the ma-
jority of feedback when deploying an agent in real world will be correct, which means
that feedback will have either a positive or in the worst case no effect on the number of
correct mappings.

Figure (4.7) illustrates which words, modalities, and CRs are mostly affected by incor-
rect feedback. Figures (4.7c and 4.7d) show that the highest increase in inter-modality
confusion is for colors and prepositions, while for shapes the confusion increases for



82 Chapter 4. Enhancing Unsupervised Grounding through Optional Feedback

(a) Pointing-only feedback. (b) Pointing and verbal feedback.

Figure 4.6: Mean number and standard deviation of correct mappings after encounter-
ing all 1,000 situations of Scenario II for different percentages of correct feed-
back, when feedback is provided for 50% or all of the situations, and for both
feedback types.

some words, e.g. “cylinder”, while it decreases at the same time for other words, e.g.
“cube”. Intra-modality confusion only increases for the shape words referring to the
concept of a Cube. The higher level of inter-modality confusion for color and preposition
words is due to them being grounded through CRs of shapes, which can be explained
by the fact that all words of the provided utterance are mapped to the CRs of the shape
and color of one of the non-target objects. The reason for the increase of intra-modality
confusion for shapes can be explained by the fact that there are much less shape CRs
than color CRs so that the words are still mapped to the shape CRs but often to the
wrong CR because the tutor is always pointing to one of the non-target objects.
When incorrect combined verbal and pointing feedback is provided every situation the
confusion for colors and prepositions does not increase (Figure 4.7e), which confirms
the accuracy results shown in Figure (4.5d), while the confusion for shape words in-
creases strongly. Figure (4.7e) shows that most confusion across modalities is with the
CR of the concept CYLINDER including strong intra-modality for shapes, i.e. most words
referring to the concept SPHERE are at least partially mapped to the CR of CYLINDER.
Additionally, there is strong inter-modality confusion for shapes because many of the
shape words are partially grounded through preposition CRs and the word “cylinder”
is wrongly detected as an AW for both feedback types.
The results show that the robustness of the framework in regard to incorrect feedback
depends on how much of the provided feedback is actually incorrect. For example, if
25% of the feedback is incorrect it negates the positive effect of pointing-only feedback,
while for combined verbal and pointing feedback even 50% incorrect feedback provides
still a benefit in terms of the number of correct mappings (Figure 4.6b), therefore, illus-
trating that adding verbal feedback to pointing feedback does not only increase the
benefit of the provided feedback but also makes it more robust regarding incorrect
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(a) Confusion matrix of words over different
modalities when no feedback is provided.

(b) Confusion matrix of words over different
CRs when no feedback is provided.

(c) Confusion matrix of words over different
modalities when pointing-only feedback is
provided for every situation.

(d) Confusion matrix of words over different
CRs when pointing-only feedback is pro-
vided for every situation.

(e) Confusion matrix of words over different
modalities when combined pointing and
verbal feedback is provided for every situa-
tion.

(f) Confusion matrix of words over different
CRs when combined pointing and verbal
feedback is provided for every situation.

Figure 4.7: Confusion matrices for all ten situation sequences and three different types
of interactions, i.e. no feedback, pointing-only feedback and combined ver-
bal and pointing feedback, of Scenario II, when all feedback is incorrect.

feedback.
The obtained results illustrate that the benefit of feedback outweighs the potential dam-
age caused by incorrect feedback, especially since it is very unlikely that more than 25%
of the feedback will be incorrect when an agent would interact with many different
people in a variety of situations, i.e. a few people might provide incorrect feedback by
accident or to trick the agent but they will represent much less than 25% of the people
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(a) Grounding results when correct pointing-
only feedback is provided.

(b) Grounding results when both correct point-
ing based and verbal feedback is provided.

Figure 4.8: Mean grounding accuracy results, corresponding standard deviations, and
percentage of sentences for which all words were correctly grounded for
both types of feedback of Scenario III, when all feedback is correct.

the agent would interact with.

4.5.3 Scenario III: Synthetic - Correct Feedback

This section presents the results obtained for Scenario III (Section 3.5.3) for both feed-
back types when all provided feedback is correct, thereby, allowing the investigation
of the first two questions for Scenario III, which includes more modalities, words, CRs,
and situations than Scenario II, while the used CRs are perfect due to the use of synthetic
percepts, i.e. one-hot encoded vectors (Section 3.5.3 provides a detailed description of
the scenario).

Figure (4.8a) shows the grounding results when only non-verbal pointing-only feed-
back is provided. It shows that how often feedback is provided has a strong impact on
how the accuracy of groundings is affected because pointing-only feedback increases
the accuracy of shape and color groundings, while it has a negative impact on the ac-
curacy of preposition and action groundings. The reason is, as already explained in
Section (4.5.1), that pointing-only feedback strengthens the mappings from the CRs of
the target object’s shape and color with all words of the utterance so that the map-
pings from the preposition and action words to the CRs of the target object’s shape and
color are also strengthened. Due to the fact that all shape and color words are correctly
grounded when pointing-only feedback is only provided for 50% of the situations, in-
creasing the number of situations for which feedback is provided only has a negative
effect because it decreases the accuracy for preposition and action groundings. Interest-
ingly, the percentage of sentences for which all words were correctly grounded is lower
when feedback is provided for all situations than if no feedback is provided, while pro-
viding feedback only for every second situation leads to a large increase in accuracy
from about 42% to more than 70%.
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For combined verbal and non-verbal feedback (Figure 4.8b) the accuracy of shape and
color groundings improves when feedback is provided for 50% of the situations, the ac-
curacy of actions decreases slightly, and the accuracy of prepositions does not change.
Increasing the feedback rate to 100% only has a light positive influence on the accura-
cies of the shape and preposition groundings, while the accuracies for colors and actions
stay the same. This shows that combined verbal and pointing feedback makes the influ-
ence of the feedback more robust than pointing-only feedback and has also, in contrast
to pointing-only feedback, no negative influence on the accuracy of preposition ground-
ings.
Figure (4.9) shows how the number of correct and false mappings changes over all
10,000 situations for different feedback rates, i.e. depending on how often feedback is
given. For pointing-only feedback the final number of correct mappings, i.e. after 10,000
situations, increases when feedback is provided for 50% of the situations by about 8%
but decreases by more than 16%, if pointing-only feedback is provided for all situations
(Figure 4.9a). When also verbal feedback is provided for half the situations the number
of correct mappings increases by nearly 7%, while providing combined feedback for
the remaining situations increases the number of correct mappings only by another 2%
(Figure 4.9b). Additionally, when no feedback is provided it takes nearly 260 situations
until the number of correct mappings is larger than the number of incorrect mappings,
in comparison to 94 and 36 situations, when combined feedback is provided for 50% and
100% of all situations. Thus, while more feedback has a positive effect on the accuracy
of the obtained groundings and how fast they are obtained when combined feedback
is provided, too much pointing-only feedback is harmful and can even lead to worse
groundings than no feedback. These results illustrate the benefit of verbal feedback in
addition to pointing feedback. However, the results also show that the framework does
not depend on feedback and achieves decent grounding results, if no feedback is pro-
vided, which is important because the availability of feedback cannot be guaranteed.
Important to note is also that depending on the type of feedback, more is not always
better, which will be interesting when looking at the effect of wrong feedback.
While the accuracies and numbers of correct and false mappings (Figures 4.8 and 4.9)
provide a good overview of how accurately the groundings are for each modality, they
neither provide any details about the accuracy of the groundings obtained for individ-
ual words nor any details about the wrong mappings. Therefore, Figure (4.10a) shows
the confusion matrix for all words and modalities, which illustrates how often each
word was grounded through the different modalities, when no feedback is provided.
The figure shows that most inter-modality confusion is related to shapes, colors, and
prepositions being grounded as actions, while the only inter-modality confusion for ac-
tions is for “push” being considered an AW. When pointing-only feedback is provided
for every situation the confusion for shapes and colors disappears (Figure 4.10c), while
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(a) Pointing-only feedback.

(b) Pointing and verbal feedback.

Figure 4.9: Mean number and standard deviation of correct and false mappings over all
10,000 situations of Scenario III, when correct feedback is provided for 0%,
50% or 100% of the situations, where FR means feedback rate.

the confusion for prepositions increases strongly so that more than half of the preposi-
tions words are mapped to CRs of shapes and two to CRs of actions. The action word
“push” is now also always considered as an AW, while this is only the case for four out
of ten runs when no feedback is provided.
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(a) Confusion matrix of words over different
modalities when no feedback is provided.

(b) Confusion matrix of words over different
CRs when no feedback is provided.

(c) Confusion matrix of words over different
modalities when pointing-only feedback is
provided for every situation.

(d) Confusion matrix of words over different
CRs when pointing-only feedback is pro-
vided for every situation.

(e) Confusion matrix of words over different
modalities when combined pointing and
verbal feedback is provided for every situa-
tion.

(f) Confusion matrix of words over different
CRs when combined pointing and verbal
feedback is provided for every situation.

Figure 4.10: Confusion matrices for all ten situation sequences and three different types
of interactions, i.e. no feedback, pointing-only feedback and combined ver-
bal and pointing feedback, of Scenario III, when all feedback is correct.

When combined verbal and pointing feedback is provided every situation (Figure 4.10e)
there is only light confusion for prepositions and actions, i.e. two preposition words are
grounded as actions, one action word is labeled as an AW, and there is light confusion
for three preposition words. Figure (4.10b) shows the confusion matrix of words over
different CRs when no feedback is provided. The figure shows that there is no intra-
modality confusion and that most of the inter-modality confusion is for the CR of the



88 Chapter 4. Enhancing Unsupervised Grounding through Optional Feedback

action PUSH, i.e. CR 23, because many shape and color words are incorrectly mapped to
it. The confusion matrix for pointing-only feedback (Figure 4.10c) shows also no intra-
modality confusion and only inter-modality confusion for prepositions because more
than half of the preposition words are ground through shape CRs. The same is the case
for combined verbal and pointing feedback, i.e. no intra-modality confusion and in this
case also only slight inter-modality confusion due to preposition words being incor-
rectly grounded through CR 25 of the concept MOVE (Figure 4.10f).
In general, the results obtained for Scenario III confirm the results for Scenario II pre-
sented in Section (4.5.1), i.e. both feedback mechanisms improve the grounding accu-
racy and sample-efficiency of the original unsupervised framework, while the hybrid
framework is still able to achieve decent groundings, if no feedback is provided due to
its unsupervised grounding mechanisms. Furthermore, the results for Scenario III also
confirm that combined verbal and pointing feedback achieves both better grounding
accuracy as well as sample efficiency than pointing-only feedback. In fact, the results
show that too much pointing-only feedback can even lead to worse results than when
no feedback is provided, which is not the case for Scenario II but highlights the benefit
of combined verbal and pointing feedback. The next section (Section 4.5.4) will focus
on answering the last research question regarding the robustness of the framework in
regard to incorrect feedback.

4.5.4 Scenario III: Synthetic - Incorrect Feedback

This section presents the results obtained for Scenario III (Section 3.5.3) for both feed-
back types when part of the provided feedback is incorrect to investigate the third re-
search question, i.e. how incorrect feedback affects the grounding accuracy, for Scenario
III and to verify the results obtained for Scenario II (Section 4.5.2).
Figure (4.11a) seems to indicate that even 100% incorrect pointing-only feedback pro-
vided every second situation leads still to an increase of grounding accuracy in compar-
ison to the case when no feedback is provided. This observation seems at first counter-
intuitive but becomes understandable when remembering that the pointing-only feed-
back mechanism maps all words in the utterance to the target object’s color and shape
CRs. Thus, even if the feedback is completely incorrect, it still strengthens the map-
pings from shape words to shape CRs and color words to color CRs. When combined
pointing and verbal feedback is provided the grounding accuracy increases, even if 50%
of the feedback is incorrect, independent of how often feedback is provided, i.e. every
situation or every second situation. Interestingly, the accuracy of the action groundings
increases with the percentage of incorrect feedback, while the accuracy of the shape and
color groundings decreases.
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(a) Grounding results when pointing-only
feedback is provided for 50% of the
situations.

(b) Grounding results when pointing-only
feedback is provided for all situations.

(c) Grounding results when combined point-
ing and verbal feedback is provided for 50%
of the situations.

(d) Grounding results when combined point-
ing based and verbal feedback is provided
for all situations.

Figure 4.11: Mean grounding accuracy results, corresponding standard deviations, and
percentage of sentences for which all words were correctly grounded for
Scenario III for both types of feedback and different rates of correct and
wrong feedback.

(a) Pointing-only feedback. (b) Pointing and verbal feedback.

Figure 4.12: Mean number and standard deviation of correct and false mappings over
all 10,000 situations of Scenario III for different percentages of correct feed-
back, when feedback is provided for either 50% or all of the situations.

Figure (4.12a) confirms that pointing-only feedback always increases the number of
correct mappings, if provided every second situation and always decreases the number
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of correct mappings, if provided every situation. In contrast, when combined verbal
and pointing feedback is provided, the results (Figure 4.12a) are similar to the results
for Scenario II since the number of correct mappings is higher than when no feedback is
provided, even if 50% of the feedback is incorrect, independent of how often feedback
is provided. Thus, combined verbal and pointing feedback is more robust to incorrect
feedback than pointing-only feedback.
Figure (4.13) illustrates which words, modalities, and CRs are mostly affected by in-
correct feedback. For pointing-only feedback the highest increase in inter-modality
confusion is for prepositions, which are most of the time wrongly mapped to shape
CRs, while the confusion for shapes decreases. There exist only light intra-modality
confusion for the shape word “globule”, otherwise all confusion is across modalities
(Figure 4.13d). For combined verbal and pointing feedback the highest increase in
inter-modality confusion is for shapes and colors, while the confusion for prepositions
decreases (Figure 4.13e). Colors are most of the time wrongly mapped to shape CRs,
while shapes are most of the time wrongly mapped to action CRs and sometimes also
to the CRs of prepositions. Figure (4.13f) shows that intra-modality confusion only exist
for the word “globule”, which is wrongly mapped to the CR of CYLINDER. Otherwise
most confusion is across modalities.
Overall the results show that the robustness of the framework in regard to incorrect
feedback depends on the percentage of incorrect feedback. For example, if 50% of com-
bined verbal and pointing feedback is incorrect when feedback is provided every sit-
uation it nearly negates the positive effect of the feedback. However, it is important
to note that it is very unlikely that 50% of the provided feedback is incorrect, in fact,
even 25% incorrect feedback is not very likely, if a robot is deployed in different en-
vironments and interacting with many different people. Thus, the results confirm the
results obtained for Scenario II (Section 4.5.2), that the benefit of feedback outweights
the potential damage incorrect feedback can cause.

4.6 Discussion

In this chapter a novel hybrid grounding framework was proposed (Section 4.3), which
combines state-of-the-art unsupervised and supervised grounding mechanisms to com-
bine the best of both paradigms, i.e. to achieve higher grounding accuracy and sample-
efficiency through feedback without depending on it. This was achieved by integrating
two feedback mechanisms into the unsupervised grounding framework proposed in
Chapter (3) so that the framework is able to handle both pointing-only as well as com-
bined verbal and pointing feedback. The proposed framework was evaluated through
two different scenarios (Section 4.4) that differ based on the used modalities, words,
CRs, and number of situations. The obtained results showed that both types of feed-
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(a) Confusion matrix of words over different
modalities when no feedback is provided.

(b) Confusion matrix of words over different
CRs when no feedback is provided.

(c) Confusion matrix of words over different
modalities when pointing-only feedback is
provided for every situation.

(d) Confusion matrix of words over different
CRs when pointing-only feedback is pro-
vided for every situation.

(e) Confusion matrix of words over different
modalities when combined pointing and
verbal feedback is provided for every situa-
tion.

(f) Confusion matrix of words over different
CRs when combined pointing and verbal
feedback is provided for every situation.

Figure 4.13: Confusion matrices for all ten situation sequences and three different types
of interactions, i.e. no feedback, pointing-only feedback and combined ver-
bal and pointing feedback, of Scenario III, when all feedback is incorrect.

back improve the accuracy of the obtained groundings and the sample-efficiency of
the framework without preventing the framework to achieve decent grounding results
when no feedback is available. Additionally, the results also showed that combined
verbal and pointing feedback leads to more accurate groundings and a higher sample-
efficiency than pointing-only feedback because the verbal feedback helps to make the
mappings created due to the feedback more accurate.
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Since it cannot be ensured that the provided feedback is always correct, it was also
investigated how incorrect feedback influences the grounding performance. The inves-
tigation showed that the influence of incorrect feedback depends on the percentage of
encountered incorrect feedback. For example, if 25% of pointing-only feedback is incor-
rect for the second scenario, the same grounding accuracy is achieved as if no feedback
is provided, while for combined verbal and pointing feedback even 50% incorrect feed-
back provides still a benefit in terms of the number of correct mappings. This results
illustrate that adding verbal feedback does not only improve the accuracy of the ob-
tained groundings but makes the framework also more robust in regard to incorrect
feedback. In summary this means that the benefit provided by feedback outweighs the
possible damage by incorrect feedback, especially since it is unlikely that 25% of the en-
countered feedback will be incorrect, if a robot is employed in different environments
and interacts with many different people because the majority of people will provide
correct feedback.
In future work, the integration of other support mechanisms, like explicit teaching or
demonstration, will be investigated, which might be useful to improve the grounding
accuracy for actions or the accuracy for emotion types and intensities for Scenario IV
since a user could teach or demonstrate different facial expressions and explain what
emotions they represent. Another interesting point for future work is that the current
feedback mechanisms only improve the groundings of shapes and colors, thus, it would
be useful to modify or extend them to be able to also benefit other modalities.



5 Combining Language Grounding and

Action Learning for Natural Task

Learning

5.1 Motivation

Natural human-agent interaction requires agents to not only extract the meaning from
natural language utterances but also to perform the tasks requested by humans, e.g.
bringing a glass of water to a human. Due to the dynamicity of complex human-
centered environments, it is impossible for an agent to learn all possible tasks in advance
because minor changes in the environment might require the same task to be instanti-
ated through different action sequences. Thus, agents need to learn the correct action
sequence in an online fashion and even when executing the same task again, agents
need to be able to adjust it to minor differences in the environment. Furthermore, learn-
ing must take place without explicit support from another agent because it can neither
be assumed that another agent that is willing and able to provide the necessary sup-
port is always available nor can it be taken for granted that the provided support is
appropriate and correct due to limited understanding by the other agent of how the
artificial autonomous agent works, unintentional mistakes, or malicious intent to trick
the artificial autonomous agent1, which leads to the following research questions:

1. How can the goal state of a task be automatically extracted from natural language
descriptions?

2. How can the agent ask for additional support, when it fails to extract the goal
state?

3. How can the task be learned by the agent autonomously and without supervision,
when only the goal state is known?

To answer above research questions, the grounding framework proposed in the previ-
ous chapter (Chapter 4) is extended with a RL based task learning mechanism to learn

1These are the same reasons that motivated the development of the unsupervised grounding mechanism
presented and evaluated in Chapter (3).
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tasks in an unsupervised manner using their goal states. Furthermore, a novel mech-
anism is proposed to extract goal states from natural language descriptions using pre-
viously obtained groundings. The rest of this chapter is structured as follows: Section
(5.2) provides an overview of work related to task learning and goal state extraction
from natural language. The proposed task learning and goal extraction mechanisms are
explained in Section (5.3), while the employed scenarios and evaluation criteria are de-
scribed in Section (5.4). Finally, Sections (5.5 and 5.6) present, evaluate and discuss the
obtained results in regard to the investigated research questions, summarize the main
contributions, describe limitations of the presented framework, and outline possible
future work.

5.2 Related Work

Natural Task Learning requires two main research areas: learning of object manipu-
lation tasks and grounding of actions and objects. The latter will enable the agent to
identify both the objects involved in the task and the action that should be performed,
while the former enables it to execute the requested action through corresponing actua-
tor commands.
Many studies have investigated how object manipulation tasks can be automatically
learned by robots, which usually requires a series of actions, i.e. actuator commands,
to change the state or position of a target object [27]. Manipulation tasks are high-
level macro actions that consist of sequences of low-level micro-actions, which can be
defined in many different ways, thereby determining which learning approaches are
most appropriate. For example, micro-actions can be represented through the move-
ments of individual joints [35, 66], simple fine-grained movements of end effectors, or
sophisticated and complex movements of end effectors or body parts, which allows the
use of very high-level learning mechanisms, such as precise guidance through natural
language instructions [88]. When micro-actions are represented through simple move-
ments of joints or end-effectors, most studies employed learning through demonstration
or RL [1, 36, 66, 100]. For the former, a human tutor has to demonstrate the desired task
to the agent so that a policy can be derived from the recorded state-action pairs [6]. The
latter, on the other hand, does not require the task to be demonstrated. Instead, it only
requires a description of the goal state and discovers through trial-and-error possible
policies [101].
Abdo et al. [1] proposed a method that enables robots to learn manipulation tasks, such
as placing one object on another, from kinesthetic demonstrations, i.e. the robot’s ma-
nipulator was manually moved by a human tutor to enable the robot to learn how to
move its joints to perform the target task. Although only a small number of demonstra-
tions was necessary to learn the tasks, requiring the manipulator to be directly moved
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by a human tutor might not be possible in some situations and does not allow natural
task learning as defined at the beginning of this chapter, i.e. the agent should be able to
learn how to perform a task only by utilizing information about the goal of the task and
without supervision.
Popov et al. [66] and Gudimella et al. [36] focused on learning to stack two objects onto
each other through RL, by directly controlling the joints of a robotic arm and gripper,
which led to high-dimensional action and state spaces requiring the experiments to be
conducted in simulation due to the large number of required environment transitions.
Although the employed models were able to learn the tasks based solely on the pro-
vided goal position, the studies simplified the tasks by always using the same goal
position of the manipulation object with respect to the reference object. This is under-
standable because the main focus was on how to handle the high-dimensional action
and state spaces, however, this is different from the focus of the study described in this
chapter in which the main focus is not on how to learn macro-actions from lower-level
micro-actions but how to learn and execute the correct lower-level action in repsonse
to an instruction provided in natural language. Nevertheless, the use of RL meets the
requirement to allow task learning without supervision when only the goal of the task
is known.
While the studies described above have solely focused on the learning of manipulation
tasks without considering grounding, most grounding studies that have investigated
grounding of actions did not represent actions in a way that would allow their execu-
tion. For example, Taniguchi et al. [102] represented actions through a 38-dimensional
vector that included information about the robot’s posture, tactile information of the
grapping hand, as well as the position of the hand relative to the target object. Thus, the
employed action feature vector specified the goal position of the hand, which cannot be
directly translated to actuator commands, unless a proper inverse kinematics solver ex-
ist for the employed robot. Salvi et al. [82] represented actions through simple symbols
because the employed robot had been programmed to be able to perform the actions
used in the study, which is not a realistic approach when considering that it is impossi-
ble to know in advance which tasks will be requested by another agent. Similarly, She
et al. [88], Misra et al. [55], and She and Chai [87] already assumed that the employed
robots were able to perform the lower-level actions through which the higher-level ac-
tions were grounded and did not consider learning them at the same time.
In contrast to the grounding studies mentioned above, Farkas et al. [23] proposed a
model that was able to both learn and ground three actions in an experiment conducted
using the iCub simulator [105]. The employed model consisted of three neural-network-
based modules. The first neural network was used to detect the target object based on
an input image of a tabletop scene with three objects, a 9 dimensional one-hot encoded
color vector indicating the color of each object, and a six dimensional one-hot encoded
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target vector indicating either the shape or color of the target object. The second mod-
ule was used to learn the correct action sequence based on the provided action type and
the position of the target object. Since states and actions were both continuous the Con-
tinuous Actor Critic Learning Automaton algorithm [107] was used to learn the correct
action sequence. Finally, the third neural network was used to generate a linguistic de-
scription of the executed action. The main focus of the study was on the learning of
the action, while the grounding process was only an additional component. Therefore,
neither did the accuracy of the obtained groundings have an influence on the success
of the action learning nor did the action learning have an influence on the accuracy of
the obtained groundings. The same was the case for the studies presented in [75, 76] in
which both grounding and action learning were investigated simultaneously without
directly influencing each other.
In contrast to the majority of the aforementioned studies, the work presented in this
chapter considers both grounding and action learning at the same time. Furthermore,
in contrast to the few studies that did investigate both, the grounding and action learn-
ing components of the framework proposed in this study directly influence each other.
More specifically, the obtained groundings are utilized to extract the goal states for the
action learning component from natural language instruactions, while the action learn-
ing directly guides the grounding interaction, e.g. it influences when the agent will ask
for feedback. Finally, although action learning is performed using RL, similar to [36, 66],
the employed RL algorithm is much simpler due to the use of a relatively simple sim-
ulated environment leading to much smaller state and action spaces than the ones con-
sidered in [36, 66], although the target position of the object is not fixed.
Earlier versions of the action learning scenario have been published in [75, 76].The stud-
ies also considered simultaneous action learning and grounding, however, neither did
the grounding results influence the action learning success nor did the action learning
have any impact on the grounding performance. Furthermore, the employed ground-
ing framework was an earlier version of the unsupervised grounding component of the
grounding framework used in this chapter and was therefore not able to handle feed-
back from another agent. Finally, the perceptual information in the grounding scenario
was synthetic like the perceptual information used in Scenario III (Section 5.4.2).

5.3 A Framework for Simultaneous Learning and Grounding of

Actions

This section describes a novel framework that extends the hybrid grounding framework
proposed in the previous chapter (Section 4.3) with a mechanism to learn how to exe-
cute the requested task described by the provided instruction using RL. To do this, the
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framework utilizes previously obtained groundings to extract the goal state of the re-
quested task from the provided natural language instruction. Furthermore, to increase
the chance that the agent is able to extract the goal state, the framework allows to ask the
external agent who gave the instruction for feedback regarding the determined target
object, if the learning agent was able to determine a target object, or for a hint regarding
the target object, if it was not able to determine it by itself.
Since both goal extraction and task clarification utilize previously obtained groundings,
the accuracy of the obtained groundings has a direct influence on the action learning,
while the success of the task learning has no direct influence on the grounding accuracy.
The proposed framework consists of 4 main parts: (1) Language grounding component
(Section 5.3.1), which is able to determine word-CR mappings using both CSL and IL,
(2) Goal extraction component (Section 5.3.2), which uses obtained groundings to de-
termine the goal of the requested task, (3) Task clarification component (Section 5.3.3),
which enables the agent to ask for support from the external agent, and (4) task learn-
ing component (Section 5.3.4), which uses RL to learn how to execute the requested task
using the automatically extracted goal state. The inputs and outputs of the individual
parts are highlighted below and in Figure (5.1), while they are described in detail in the
following subsections.

1. Language grounding component:

• Input: Natural language instructions, CRs, previously detected AWs, word
and CR occurrence information, feedback information.

• Output: Set of AWs and word to CR mappings.

2. Goal extraction component:

• Input: Natural language instructions, CRs, AWs, and word-CR mappings.

• Output: Goal state description.

3. Task clarification component:

• Input: Natural language instructions and AWs.

• Output: Word to CR mappings.

4. Task learning component:

• Input: Situation and goal state descriptions.

• Output: Learned task policy.

5.3.1 Language grounding

The language grounding component is the hybrid grounding framework proposed and
evaluated in the previous chapter (Chapter 4). Thus, it uses both CSL and IL to deter-
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Figure 5.1: Illustration of the components of the proposed framework and the data flow
for the second scenario (Section 3.5.2). First percepts, i.e. VFH descrip-
tors, RGB mean values, and 3D spatial vectors, are extracted using the point
clouds of the objects in the scene and the meta-data generated by the scene
extraction script (see Section 3.5.2 for details). Afterwards, corresponding
CRs are obtained, which are then provided as input to the language ground-
ing and goal extraction components. Both components also take as input the
natural language sentence. In addition, the language grounding component
also receives any available feedback information as input, while the goal ex-
traction component also receives as input the AWs and mappings obtained
by the language grounding components. Finally, the goal state description
is provided to the task learning component to learn the correct policy for the
target task.
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mine the correct mappings from words to CRs and is therefore able to utilize feedback
provided by another agent, if available, without depending on it. When and how feed-
back is triggered and used by the agent is described in Section (5.3.3), while a detailed
description of the grounding component itself is provided in Section (4.3) of the previ-
ous chapter.

5.3.2 Goal extraction

The goal extraction component tries to utilize previously obtained groundings to deter-
mine the goal state of the task requested in the current situation to provide it as input
to the task learning component (Section 5.3.4). To extract the goal from the provided
natural language instructions, the algorithm (Algorithm 8) checks for every non-AW
through which CRs it is currently grounded and whether these CRs belong to an object,
i.e. to the shape or color modality, or to the preposition modality. For this purpose, the
agent utilizes the CR-modality map (CRM) and the set of detected objects (OBJ) created
when the agent extracts the percepts from the environment of the current situation. The
important thing to note is that the agent knows to which modality and in case of shapes
and colors also which object a CR belongs, while it has no information about the modal-
ity of the words. The object that is referred to first will be selected as the target object
(OT) by the agent.
The idea behind this is that the target object is usually mentioned first in an instruc-
tion, which is the case for all instructions employed in the experiments described in this
chapter. For example, “move the green cube to the left of the red cylinder” for Scenario
II or “push the gray ball on the left side of the red cylinder in front of the green cube” for
Scenario III. Thus, if the groundings are correct, the agent will manipulate the correct
object. As a reference preposition (PRER), the agent will choose the last encountered
preposition based on the fact that if two prepositions are encountered, the first preposi-
tion would describe the initial position of the target object, while the second preposition
would describe the goal position in relation to the reference object. This again uses prior
knowledge about the structure of the employed natural language instructions2. After
all non-AWs have been processed, the reference object (OR) is determined by looking at
the number of determined prepositions and objects, i.e. Pcr and Oobj. Afterwards, the
algorithm checks whether a target object (OT) and reference preposition (PR) have been
determined and if that is the case, it provides them as well as the reference object (OR),
if available, to the task learning component (Section 5.3.4). Finally, the goal extraction

2While the utilization of prior knowledge about the structure of the instructions limits the applicability
of the employed goal extraction mechanism to scenarios with similar instructions, it is similar to the
selection or modification of a particular learning algorithm for a specific use case based on prior knowl-
edge, e.g. the parameter settings for clustering algorithms, the network structure for neural networks,
or the reward function in case of RL. Nevertheless, ways to make the goal extraction mechanism more
general will be explored in future work.
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Algorithm 8 The goal extraction procedure takes as input the words and CR of the cur-
rent situation (W and CR), the set of detected AW (AWS), the set of previously obtained
word-CR mappings (WCRPS), the set of current objects (OBJ) and prepositions (PRE),
and the CR-modality map (CRM) and returns the target object (OT), reference object
(OR), and the reference preposition (PR).

1: procedure GOAL EXTRACTION(W, CR, AWS, WCRPS, OBJ, PRE, CRM)

2: OT = {}, OR = {}, PR = {}, Oobj = {}, Pcr = {}

3: for w in W do

4: if w /∈ AWS then

5: for cr in WCRPS(w) do

6: if cr ∈ CR then

7: for m in CRM(cr) do

8: if m ∈ {shape, color} then

9: for obj in OBJ do

10: if cr = objcr(m) then

11: if OT = ∅ then

12: OT = obj

13: if obj /∈ Oobj then

14: Oobj = Oobj ∪ obj

15: else if m = preposition then

16: for pre in PRE do

17: if cr = pre then

18: Pcr = Pcr ∪ {cr}

19: if |Pcr| = 2 then

20: PR = PRE[1]

21: else if |Pcr| = 1 then

22: PR = PRE[0]

23: if |Pcr| = 2∧ |Oobj| ≥ 2 then

24: OR = Oobj[2]

25: else if |Pcr| = 1∧ |Oobj| ≥ 1 then

26: OR = Oobj[1]

27: if OT 6= ∅ ∧ PR 6= ∅ then

28: Algorithm 10(OT, OR, PR)

29: return OT, OR, PR
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component returns the determined target object (OT), reference object (OR), and refer-
ence preposition (PR) to the task clarification component (Section 5.3.3).

5.3.3 Task clarification

The task clarification component (Algorithm 9) sits above the other three components
and is used to handle situations for which the goal extraction component (Section 5.3.2)
fails to extract a goal state so that the agent is not able to learn the task without further
information from another agent. First, it calls the grounding component (Algorithm 7)
to update the set of current mappings (WCRPS and CRWPS). Afterwards, it provides
the updated mappings to the goal extraction component (Algorithm 8) to determine the
current target object (OT), reference object (OR), and the reference preposition (PR).
If the goal extraction component does not return a target object or reference preposition,
the agent asks the external agent for help, which is provided in form of combined ver-
bal and pointing feedback3 (Algorithm 6). If the target object and reference preposition
were returned, but the target object was wrong, the external agent provides also com-
bined verbal and pointing feedback (Algorithm 6). Since it is very rare that repeated
feedback will provide any benefit for the goal extraction mechanism, for each situation,
the learning agent asks at most once for help and the external agent also provides at
most once feedback, when the wrong object was manipulated.

5.3.4 Task learning

The task learning component is based on the RL component proposed by Roesler and
Nowé [76], however, different from the original component used in [76], the agent needs
to learn the correct action sequence in a single episode because trying multiple times
does not seem plausible when considering deployment in human-centered environ-
ments. Unless the agent has an accurate simulation of the world so that it can try many
times, i.e. for many episodes, in simulation to achieve the task and will only try to exe-
cute it in the real world, once it is able to do it reliable in simulation. The main challenge
for the latter approach is the accurateness of the simulation to avoid that the task exe-
cution fails in reality after succeeding consistently in simulation.
Since both the state and action space are discrete, tabular Q-learning is used to find the
optimal policy to reach the goal state as extracted from the natural language instruction.
The Q-table is initialized with zeros. Since only one episode is used per task, the agent is
not able to move the gripper or any of the objects out of the environment. The assump-

3The assumption for the experiment presented in this chapter is that the external agent will always pro-
vide support, when requested by the learning agent, and that the provided support is always correct.
However, the results in the previous chapters (Sections 3.6 and 4.5) have shown that the framework
does not require feedback and is able to learn the correct mappings over time in an unsupervised man-
ner, and that the framework is also able to cope with wrong feedback.
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Algorithm 9 The task clarification procedure takes as input all words and CRs of the
instruction of the current situation (W and CR), the sets of previously obtained word-
CR and CR-word pairs (WCRPS and CRWPS), the set of previously detected AWs
(AWS), the set of permanent phrases (PP, the sets of word and CR occurrences (WO
and CRO), the set of permanent mappings (PMS), the set of detected objects (OBJ), the
CR-modality map (CRM), and the sets of previously obtained word-CR and CR-word
feedback (WCRPSF and CRWPSF).

1: procedure TASK CLARIFICATION(W, CR, WCRPS, CRWPS, AWS, PP, WO, CRO,

PMS, OBJ, CRM, WCRPSF, CRWPSF)

2: try = 1

3: while try ≤ 3 do

4: WCRPS, CRWPS = Algorithm 7(W, CR, WCRPS, CRWPS, AWS, PP, WO,

CRO, PMS)

5: OT, OR, PR = Algorithm 8(W, CR, AWS, WCRPS, OBJ, CRM)

6: if OT == ∅ ∨ PR == ∅ then

7: Ask for support and receive verbal (WF) and pointing (TOCR) feedback

8: WCRPSF, CRWPSF = Algorithm 6(W, WF, CR, TOCR, AWS, WCRPSF,

CRWPSF)

9: else if OT not correct then

10: Receive verbal (WF) and pointing (TOCR) feedback

11: WCRPSF, CRWPSF = Algorithm 6(W, WF, CR, TOCR, AWS, WCRPSF,

CRWPSF)

12: else

13: try = 2

14: try+ = 1

tion is that the agent has some form of hard-coded safety mechanism that intervenes,
if the agent attempts an invalid action so that it will not be executed and the agent re-
ceives a reward of -1.
The observation vector provided to the agent contains the following information: (1)
the shape of the manipulation object, (2) the gripper position relative to the manipula-
tion object position, (3) the current manipulation object position relative to the current
reference object position4, and (4) gripper state, i.e. {open, closed}. Since the relative

4The reference object can be the same as the target object, if the agent is instructed to move the object
relative to its initial position.
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positions are used, the learned Q-table is applicable independent of the absolute object
or gripper positions.
The agent can execute eight different actions, which are opening or closing the two-
finger gripper, moving the gripper forwards, backwards, left or right, and lowering or
raising the gripper. Physical interactions, e.g. when the gripper is moved to a position
that is occupied by an object, are realistically simulated. This includes different be-
haviours based on the orientation of the gripper, the state of the gripper, and the shape
of the object. For example, the object will be pushed by the fingers of the gripper when
the gripper is moving to the right or left, or when the gripper is closed but not when the
fingers are open and the gripper is moving forwards or backwards. Furthermore, balls
will start rolling and will therefore move further than cubes. Thus, in the simulation,
cubes are moved by one position and balls by two positions, unless an object occupies
the second position, in which case the ball will also only be moved one position. Addi-
tionally, if the first position, to which the object is moved, is occupied by another object,
both are moved.
For exploration ε-greedy is used as described by Sutton and Barto [101] and illustrated
by lines 4-7 in Algorithm (10). The exploration rate ε is intially set to 0.4, i.e. 40% of
the times the agent will select a random action, and decreases continuously with every
situation5 by a factor of 0.9999 so that the agent will execute many exploratory actions
during the first situations but will focus more on exploiting accumulated knowledge for
later situations.
When the manipulation object is placed on its goal position, the agent will receive a
positive reward of 1. If the gripper or one of the objects is moved outside of the en-
vironment a negative reward of -1 is given. For each step a negative reward of -0.2 is
given to encourage the agent to reach the goal state with the minimum number of pos-
sible steps. Additionally, potential-based reward shaping is used to reduce the number
of suboptimal actions made and therefore the time required to learn [60]. The used
Q-learning algorithm is represented by Equation (5.1), where a and a′ are the actions
taken in states s and s′, respectively. α and γ represent the learning rate and discount
factor, which are set to a value of 0.8 and 0.95, respectively. F(s, s′) is the potential-based
reward, defined as the difference of the potential function φ over a source state s and
destination state s′ (Equation 5.2). For this study, the potential function φ is defined as
illustrated by Equation (5.3), where PR represents the reference preposition, Gpos, Opos

T ,
and Opos

R are the positions of the gripper, target object, and reference object, respectively,
while s and s′ represent the source and destination states of the current action.
An overview of the task learning procedure is provided by Algorithm (10). First, the
Q-table is initialized with zeros. Afterwards, the agent checks whether the position of

5The exploration rate is actually decreased every episode, however, since only one episode is used per
situation, it gets reduced every situation.
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Algorithm 10 The task learning procedure takes as input the target object (OT), reference
object (OR), and reference preposition (PR).

1: procedure TASK LEARNING(OT, OR, PR)

2: Initialize Q-table

3: while Opos
T (s) 6= Opos

R (s) + PR do

4: if random number < ε then

5: Execute random action

6: else

7: Execute max(Q(s, :))

8: Equation (5.1)

Q(s, a)← Q(s, a) + α[r + F(s, s′) + γ max
a′

Q(s′, a′)−Q(s, a)] (5.1)

F(s, s′) = γ ∗ φ(s′)− φ(s) (5.2)

φ(s′) =
1

‖Gpos(s′)−Opos
T (s′)‖1 + ‖O

pos
T (s′)−Opos

R (s′) + PR‖1 + 1

φ(s) =
1

‖Gpos(s)−Opos
T (s)‖1 + ‖O

pos
T (s)−Opos

R (s) + PR‖1 + 1

(5.3)

the target object is the same as the target position. If it is, the task learning proce-
dure is terminated because the goal of the task has been achieved. Otherwise, the agent
applies ε-greedy to determine whether it should exploit the previosuly learned knowl-
edge encoded in the Q-table to select an action or explore the environment by selecting
a random action. More specifically, it generates a random number between 0 and 1,
and if the number is smaller than ε it will execute a random action to explore the envi-
ronment, while otherwise, it will select the best action based on the information stored
in the Q-table. Finally, after it executed the action, it updates the Q-table according to
Equation (5.1).

5.4 Experiments

The proposed framework is evaluated through modified versions of the two scenarios
used to evaluate the hybrid grounding framework in the previous chapter (Chapter 4).
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Both scenarios are extended through a simulation of a task learning environment con-
sisting of a tabletop with several objects and a robotic gripper. The idea is that a tutor
provides an instruction from which the learning agent extracts the goal state of the re-
quested task to learn through trial-and-error the correct action sequence. The employed
experimental procedure is as follows.

1. Three or four objects are placed on a table and the agent determines the corre-
sponding shape, color, preposition, and action6 percepts.

2. A natural language instruction is given to the agent by a tutor and the agent uses
CSL to update its groundings (Section 5.3.1).

3. The agent utilizes the updated mappings to extract the goal state from the instruc-
tion (Section 5.3.2).

4. (optional) The agent asks for help, if the goal state extraction failed and tries again.
If it fails also the second time, the agent gives up and the experiment proceeds
with the next situation (Section 5.3.3).

5. If the agent succeeded in extracting the goal state from the instruction, it learns
how to reach the goal state using RL, thereby obtaining a corresponding action
sequence (Section 5.3.4).

6. (optional) If the agent manipulated the wrong object, the tutor provides feedback
about the goal state and task execution (Section 5.3.3).

7. (optional) The agent uses the feedback to improve its groundings (Section 5.3.1).

The tabletop environment is represented by a 7 × 5 × 2 array so that positions are
given as coordinates, i.e. [x, y, z]. Further details about the task learning environment
are provided in Section (5.3.4), while the modifications applied to the two scenarios are
described in detail in the following subsections.

5.4.1 Scenario II: CLEVR

The original Scenario II was slightly modified to be used in the task learning experiment
because originally the employed utterances only described the current situation, i.e. the
location of the target object, while for the task learning experiment they need to describe
the desired position of the target object. The modification was done in three steps: (1)
one of four action words, i.e. “move”, “place”, “displace”, or “put”, was appended to

6The action percepts are actually dummy percepts referring to the Q-table because for all actions the
same Q-table is used and the task learning will be executed after the mappings for the current situation
are obtained. Descriptions of the specific dummy action percepts used in the individual scenarios are
provided in Sections (5.4.1 and 5.4.2).
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Table 5.1: Overview of all concepts used in Scenario II with their corresponding syn-
onyms and CR numbers (CR#) according to Figure (5.4).

Modality Concept Synonyms CR#

Shape
CUBE cube, block, hexahedron, quadrate 1

SPHERE sphere, ball, spheroid, pellet, globe, orb, globule 2
CYLINDER cylinder 3

Color

GRAY gray, grayish 4
RED red, reddish 5

BLUE blue, blueish 6
GREEN green, greenish 7
BROWN brown, brownish 8
PURPLE purple, purplish 9

CYAN cyan, greenish-blue 10
YELLOW yellow, yellowish 11

Preposition

LEFT to the left of, to the left side of 12, 13
BEHIND behind 13, 15
FRONT in front of 12, 14
RIGHT to the right of, to the right side of 14, 15

Action MOVE move, place, displace, put 16
Auxiliary Word - the 0

each sentence, (2) the preposition words were modified to describe the desired instead
of the current position of the target object, e.g. “on the left of” was changed to “to
the right of”, and finally, (3) one action percept was added so that action words can be
grounded through it. The action percept was represented through an one-hot encoded
vector because the real percept is the Q-table containing the information how to perform
the requested task. Table (5.1) illustrates the employed concepts, synonyms, and CRs
for Scenario II.

5.4.2 Scenario III: Synthetic

In contrast to Scenario II, the third scenario already used sentences describing the de-
sired action, thus, no modification to the sentences was necessary. However, action
percepts were represented by five different one-hot encoded vectors, which seems un-
intuitive, when considering that all actions are in fact represented through the same
Q-table. Therefore, at first, four of the five percepts were removed, but later they were
re-added because it was discovered that better groundings are achieved, if the Q-table
is represented through multiple percepts (see Section 5.5.2 for an explanation why this
is the case). Table (5.2) illustrates the concepts, synonyms, and CRs used in Scenario III.
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Table 5.2: Overview of all concepts used in Scenario III with their corresponding syn-
onyms and CR numbers (CR#) according to Figure (5.7).

Modality Concept Synonyms CR#

Shape
CUBE cube, block, hexahedron, quadrate 1

SPHERE sphere, ball, spheroid, pellet, globe, orb, globule 2
CYLINDER cylinder 3

Color

GRAY gray, grayish 4
RED red, reddish 5

BLUE blue, blueish 6
GREEN green, greenish 7
BROWN brown, brownish 8
PURPLE purple, purplish 9

CYAN cyan, greenish-blue 10
YELLOW yellow, yellowish 11

Preposition

LEFT
on the left of, on the left side of, to the left

16, 17, 18
to the left side, to the left of, to the left side of

BEHIND
behind, backwards, toward the rear,

14, 15, 16
toward the rear of

RIGHT
on the right of, on the right side of, to the right

12, 13, 14
to the right side, to the right of, to the right side of

FRONT
in front of, forward, toward the front,

12, 18, 19
toward the front of

ON on top of, above, over 20

Action

LIFT UP,

lift up, raise, grab, take, push, poke,
pull, drag, move, place, displace, put

21, 22, 23,
24, 25

GRAB,
PUSH,
PULL,
MOVE

Auxiliary
Word -

the
0

please

5.5 Results

In the following subsections the groundings obtained by the task learning framework
(Section 5.3) for the two employed scenarios (Section 5.4) are presented and evaluated.
The main questions investigated are (1) Whether the proposed goal extraction mecha-
nism is able to automatically and accurately extract the goal state of the described task
from natural language instructions, (2) Whether the extracted goal state is sufficient to
learn all requested tasks, and (3) Whether the employed task learning procedure influ-
ences the accuracy of the obtained groundings. All three questions are investigated for
both scenarios.
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Figure 5.2: Mean number and standard deviation of correct and false mappings ob-
tained by the proposed model over all 1,000 situations of Scenario II for all
three investigated cases.

5.5.1 Scenario II: CLEVR

This section presents the grounding and task learning results for Scenario II (Section 5.4.1)
and investigates the three research questions proposed at the beginning of the chapter.
Figure (5.2) shows the number of correct and false mappings across all 1,000 situations
of Scenario II for three different cases: (1) the case when no feedback is provided, (2) the
case when combined verbal and pointing feedback is provided for every situation,
which represents the best case for the agent, and finally (3) the case where the agent is
also learning the task and receiving feedback, when asking for help or when the task
was executed incorrectly, thereby, simulating a more realistic way of providing feed-
back.
For the first two cases no task learning was done, thus, the results are similar to the re-
sults presented in the previous chapters for Scenario II, except that the action modality
has been added. When no feedback is provided, the framework is able to ground about
29 words correctly, while, if feedback is provided every situation or due to task learn-
ing, 35 and 34 correct mappings are obtained, respectively. This makes sense because
feedback was provided during task learning for on average 83% of all situations and
the results in Chapter (4) showed that the number of correct groundings increases with
the amount of feedback provided in case of combined verbal and pointing feedback.
The accuracy results in Figure (5.3) overall confirm this, however, it is interesting that
the accuracy for prepositions decreases, when more feedback is provided. The rea-
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Figure 5.3: Mean grounding accuracy results and corresponding standard deviations for
all modalities of Scenario II and all three investigated cases. Additionally,
the percentage of sentences for which all words were correctly grounded is
shown.

son for this is that when feedback is provided every situation, the confusion between
prepositions and actions increases (Figure 5.4), which was not the case for the results in
Chapter (4) because there are no actions in the original Scenario II. Figure (5.4) shows
that there is no intra-modality confusion, when feedback is provided and that the con-
fusion for the third case, i.e. when feedback is provided due to the task clarification
component, is only slightly higher than for the case when feedback is provided for all
situations. The goal extraction component was able to extract a goal state for 26.9% of
the situations and 88.1% of the determined target objects were correct. When the agent
was able to extract the goal state, it was always able to learn how to reach it through RL.
Overall, the results show that the proposed goal extraction mechanism is able to auto-
matically extract the goal state of the described task from the provided natural language
instructions. Especially, at the beginning, the extracted goal states are most of the time
incorrect, however, this is not surprising because the mappings used to extract the goal
state are also mostly incorrect, while during later situations the percentage of correct
goal states increases. The results also show that the extracted goal state is sufficient
for the task learning mechanism to perform the requested task as understood by the
agent. Note that the extracted goal state was not always the correct goal state, but the
RL algorithm was able to reach it anyway. Finally, the results show that the employed
task learning procedure has an influence on the accuracy of the obtained groundings
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because it determines how much feedback the agent receives.

(a) Confusion matrix for the unsupervised
framework proposed in Chapter (3).

(b) Confusion matrix for the unsupervised
framework proposed in Chapter (3).

(c) Confusion matrix for the hybrid framework
proposed in Chapter (4).

(d) Confusion matrix for the hybrid framework
proposed in Chapter (4).

(e) Confusion matrix for the task learning
framework proposed in this chapter.

(f) Confusion matrix for the task learning
framework proposed in this chapter.

Figure 5.4: Confusion matrices showing how often each word of Scenario II was
grounded through which modality and CR.

5.5.2 Scenario III: Synthetic

This section presents the grounding and task learning results for Scenario III (Section 5.4.2)
and investigates the three research questions proposed at the beginning of the chapter.
Figure (5.5) shows the number of correct and false mappings across all 10,000 situa-
tions of Scenario II for four different cases: (1) No feedback is provided, (2) Combined
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Figure 5.5: Mean number and standard deviation of correct and false mappings ob-
tained by the proposed model over all 10,000 situations of Scenario III for
all four investigated cases.

pointing and verbal feedback is provided for all situations, (3) Feedback is provided
dynamically during the task learning interactions resulting in feedback for 65.5% of all
situations and only one action percept and corresponding CR are used, and (4) Feed-
back is provided dynamically during the task learning interactions resulting in feedback
for 76.5% of all situations while five action percepts and corresponding CRs are used.
During the first situations the number of correct and false mappings increases for all
cases and the number of false mappings is much higher than the number of correct
mappings. After about twelve situations the number of false mappings starts to de-
crease for all cases, while the number of correct mappings continues to increase. This
trend continues for cases 1, 2, and 4 until the end, i.e. until all 10,000 situations have
been encountered, while for the third case, i.e. when only one action percept is used,
the number of correct and false mappings stagnates after about 200 situations so that
the number of correct mappings stays at about 38 correct mappings. Although receiv-
ing feedback for every situation lets the number of correct mappings increase faster,
after 10,000 situations the proposed task learning framework when using five action
percepts has only one correct mapping less, which is reasonable when considering that
feedback was provided for about 76.5% of all situations.
Figure (5.6) confirms that there is only a small difference between the case when feed-
back is provided for all situations or for 76.5% of the situations due to the dynamic in-
teraction during task learning. The figure also nicely illustrates the importance of using
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Figure 5.6: Mean grounding accuracy results and corresponding standard deviations for
all modalities of Scenario III and all four investigated cases. Additionally,
the percentage of sentences for which all words were correctly grounded is
shown.

more than one action percept, although all of them represent the Q-table and are there-
fore not really different percepts, because the grounding accuracy for shapes, colors,
and prepositions decreases strongly when using only one action percept. The reason is
that most words are also at least partially grounded through the CR of the single action
percept (Figure 5.7f) because it occurs in every situation while each action word only
occurs on average in every twelfth situation. Using multiple action percepts does also
not cause any harm since the action words will just be mapped to all of them equally
(Figures 5.7b, 5.7d, and 5.7h). Every time the agent was able to extract a goal state from
the natural language instruction, it was able to move the target object accordingly. The
goal extraction component was able to extract a goal state for 42.4% of the situations
and 85.3% of the determined target objects were correct.
Overall, the results show that the task learning and clarification mechanisms have no
negative impact on the groundings obtained by the framework, i.e. the accuracy of
the obtained groundings is similar to the case, when feedback is provided for all situa-
tions, while they illustrate how previously obtained groundings can be used to extract
the goal of the task automatically from language and how the agent can itself ask for
support, if required.
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(a) Confusion matrix for the unsupervised
framework proposed in Chapter (3), when
five action percepts are used.

(b) Confusion matrix for the unsupervised
framework proposed in Chapter (3), when
five action percepts are used.

(c) Confusion matrix for the hybrid framework
proposed in Chapter (4), when five action
percepts are used.

(d) Confusion matrix for the hybrid framework
proposed in Chapter (4), when five action
percepts are used.

(e) Confusion matrix for the task learning
framework proposed in this chapter, when
one action percept is used.

(f) Confusion matrix for the task learning
framework proposed in this chapter, when
one action percept is used.

(g) Confusion matrix for the task learning
framework proposed in this chapter, when
five action percepts are used.

(h) Confusion matrix for the task learning
framework proposed in this chapter, when
five action percepts are used.

Figure 5.7: Confusion matrices showing how often each word of Scenario III was
grounded through which modality and CR.
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5.6 Discussion

Natural human-agent interaction requires agents to be able to perform the tasks re-
quested by humans through natural language instructions, thus, agents do not only
need to be able to understand the instructions but also to execute them. Therefore,
this chapter proposed a framework for natural task learning, which utilized the hybrid
grounding framework proposed in the previous chapter (Chapter 4) and combined it
with mechanisms to (1) extract the goal states of the requested tasks from the corre-
sponding natural language instructions, to (2) use the goal states as guidance for an RL
algorithm to learn the tasks in a simulated grid-environment, and to (3) ask for support,
when the goal extraction failed due to incorrect or noisy groundings.
The obtained results showed that the proposed mechanism can be used to extract the
goal state from natural language instructions and that the success of the goal extrac-
tion depends on the accuracy of the obtained groundings. The results also showed that
asking for support, when the goal extraction fails, is useful because it increases the accu-
racy of the groundings, which has a direct influence on the success of the goal extraction
mechanism. Finally, the agent was able to learn the correct action sequences for all tasks
for which goal states could be extracted using RL, thereby, confirming that RL can be
used to let an agent learn a task autonomously, when only the goal state is known.
However, the task learning environment was relatively simple, thus, to learn the exe-
cution of a task in the real world a more sophisticated RL algorithm than tabular Q-
learning must be used. Furthermore, the agent was not able to extract the goal state for
about 75% of the encountered situations. While in the conducted experiment, it was no
problem to just accept the failure of the agent to extract the goal state, when an agent
would interact with real users, it would require some additional mechanisms to also be
able to determine the goal states for these situations, e.g. by asking the user for a direct
demonstration of the task. This is similar to the idea of the hybrid grounding frame-
work to utilize as much support as possible, if available, without depending on it.
Therefore, in future work, the framework will be extended to also allow learning of the
task execution from demonstration, if voluntarily provided by an external agent or pro-
vided on request from the learning agent in cases, when the goal state extraction from
natural language failed. Furthermore, it will also be investigated how to automatically
split complex tasks into subtasks to allow indirect grounding, i.e. grounding of more
complex and higher level tasks through simpler lower level tasks that the agent might
have already learned before, to simplify and speed up both the grounding as well as
task learning process. This directly leads to another important part of future work, i.e.
the explicit representation of concepts and integration of the task learning framework
with a knowledge representation to explore the utilization of abstract knowledge to
increase the sample-efficiency and accuracy of the grounding and task learning mech-
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anisms as well as support the goal extraction from natural language. Finally, it will be
interesting to investigate how to perform task learning in simulation to speed up the
learning process and prevent the execution of potentially harmful or dangerous actions
in the real world. Important for this is that the simulation is reasonably accurate so that
the policies learned in simulation are useful in the real world.



6 Conclusions and Future Work

Artificial agents have the potential to not only make our lives more easy and com-
fortable by performing repetitive and physically demanding tasks but also to become
important social partners by providing social, mental and physical care, especially for
people in society that require constant support during their daily living, like elderly
people, people with dementia, or people with disabilities. However, for this, artificial
agents need to be able to interact with humans in a natural and efficient manner, which
requires artificial agents to understand natural language because it is the main medium
humans use to communicate. However, understanding natural language is non-trivial
and requires that words and phrases are linked to the concepts they refer to and that
the concepts are grounded in the physical world by linking them to corresponding CRs
of percepts.
Since human-centered environments are complex and dynamic, grounding mechanisms
must be able to obtain new groundings and update existing groundings in a continuous
and open-ended fashion to account for changes in the environment and incorporate new
information obtained through the agents’ sensors. Additionally, natural interactions re-
quire artificial agents to be able to learn how to execute novel tasks, which they have
never performed before without offline training or detailed supervision by a human
tutor. However, agents should be able to learn from feedback or support provided by
another agent, if available, without depending on it.

6.1 Summary of Presented Research

As a step towards a future in which artificial agents are able to interact in a natural
manner with humans, this thesis introduced a novel task learning framework to enable
agents to (1) continuously ground synonymous words and phrases through homony-
mous CRs without explicit assistance by a human tutor using CSL, (2) to utilize external
support in form of verbal and pointing feedback to improve the sample-efficiency of the
grounding mechanism and the accuracy of the obtained groundings without trusting
or relying on the provided support, and (3) to utilize previously learned groundings to
extract goal states from natural language instructions to enable learning of the correct
execution of requested tasks through RL.

116
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The unsupervised CSL based grounding component of the framework (proposed in
Chapter 3) was evaluated through four different scenarios with different modalities,
words, CRs, and number of situations. The obtained results showed that the unsu-
pervised grounding component can be used to detect AWs and ground non-AWs and
phrases through corresponding CRs in an unsupervised and open-ended manner, while
outperforming a state-of-the-art Bayesian learning model based on the achieved ground-
ing accuracy, online grounding capability, and sample-efficiency. In fact, the proposed
framework is able to process new situations fast enough for real-world deployment,
while this is not feasible with the baseline model due to its need for offline training and
an overall much higher processing time. Additionally, the results also showed that the
CSL based grounding component is able to handle language ambiguity in form of syn-
onymy and homonymy.
Chapter (4) investigated whether the combination of CSL and IL through the integra-
tion of two feedback mechanisms into the unsupervised grounding framework could
be used to improve its grounding accuracy and sample-efficiency, while ensuring that
the framework still works when no or incorrect feedback is provided. The proposed
hybrid framework and the two different feedback mechanisms, i.e. combined point-
ing and verbal feedback as well as pointing-only feedback, were evaluated through
two of the four scenarios used to evaluate the unsupervised grounding component in
Chapter (3). The obtained results showed that both types of feedback improve the ac-
curacy of the obtained groundings and the sample-efficiency of the framework, while
enabling the framework to still achieve decent grounding results, when no feedback is
provided. Furthermore, the results also showed that combining verbal and pointing
feedback leads to more accurate groundings and a higher sample-efficiency than if only
pointing feedback is provided because the verbal feedback ensures that the influence of
the feedback on the obtained mappings is more accurate.
Additionally, it was also investigated how robust the framework is to incorrect feed-
back, which is important since it cannot be assumed that the provided feedback is
always correct. The results showed that the influence of incorrect feedback depends
on the percentage of encountered incorrect feedback as well as the type of the pro-
vided feedback. For example, if 25% of pointing-only feedback is incorrect, the same
grounding accuracy is achieved as if no feedback is provided for Scenario II, while for
combined verbal and pointing feedback even 50% incorrect feedback still increases the
number of correct mappings. This illustrates the benefit of combined verbal and point-
ing feedback because it does not only lead to more accurate groundings but increases
also the robustness of the framework in regard to incorrect feedback. The results also
highlight that the potential damage due to incorrect feedback is relatively limited, es-
pecially, since it is unlikely that 25% of the provided feedback is incorrect because most
people that artificial agents would interact with would provide correct feedback. Thus,
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the benefit of feedback clearly outweights the possible harm caused by incorrect feed-
back.
Empowering artificial agents to ground words and phrases through corresponding CRs
independent of the availability of external support is essential but not sufficient, when
aiming for natural and efficient human-agent interactions, because the artificial agents
need to also be able to execute any tasks requested by a human. Therefore, Chapter (5)
extended the hybrid grounding framework for natural task learning with mechanisms
(1) to extract the goal states of requested tasks from the corresponding natural language
instructions, (2) to use the goal states as guidance for an RL algorithm to learn the tasks
in a simulated grid-environment, and (3) to ask for support, when the goal extraction
failed due to incorrect or noisy groundings. The proposed natural task learning frame-
work was evaluated through slightly modified versions of the two scenarios used to
evaluate the hybrid grounding framework in Chapter (4).
The obtained results showed that the proposed mechanism can be used to extract goal
states from natural language instructions and that the success of the goal extraction
depends on the accuracy of the obtained groundings. The results also showed that ask-
ing for support in form of feedback, when the goal extraction fails, directly influences
the success of the goal extraction mechanisms because it increases the accuracy of the
obtained groundings. Finally, the agent was able to learn the correct action sequences
for all tasks for which goal states could be extracted using RL, thereby, confirming that
RL can be used to let agents learn tasks autonomously, when only their goal states are
known.
However, the proposed framework and conducted experiments have several limitations
leading to several avenues for future work, which are outlined in the next section.

6.2 Avenues for Future Work

One limitation of the results presented in Chapter (5) is that the task learning environ-
ment was represented through a small relatively simple grid-world, thus, the proposed
RL algorithm cannot be directly deployed for task learning in the real world. Instead,
to learn the execution of tasks in the real world a more sophisticated RL algorithm than
tabular Q-learning must be used because the real world is (1) a continuous space with
an infinite number of states that requires the use of function approximation, (2) stochas-
tic so that the same action can lead to many different outcomes, and (3) dynamic due
to the presence of other agents and natural forces, like wind, so that the environment
is constantly changing, even if the agent is not performing any action. For example,
enabling an artificial agent with a humanoid embodiment, i.e. not specifically designed
for the requested task, to rake leaves in a garden will be very difficult because the agent
must be able to handle a variety of tools, which is non-trivial when using tools designed
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for the dexterity of the human hand, and needs to perform many low level actions to
change the position of the leaves, which might sometimes also change independent of
the actions of the agent due to external influences like wind.
Furthermore, the agent was not able to extract the goal state for about 75% of the en-
countered situations due to inaccurate and missing groundings. In the conducted ex-
periment, this was not a problem because the agent could just give up and not perform
the tasks for which it was not able to extract the goal state. However, this would in most
cases not be a viable option when interacting with real human users who would expect
the agent to be able to learn how to execute the task and if necessary, ask for assistance,
e.g. in form of a demonstration, instead of just giving up. Thus, the framework needs
to be extended with additional mechanisms to also be able to determine the goal states
for these situations, e.g. by asking the user for a direct demonstration of the task. Im-
portant to note is that real world tasks, like raking leaves or cooking a meal, are much
more difficult because they require multiple steps, which independently by themselves
might already be non-trivial, e.g. grabbing a rake or a spoon.
Therefore, the framework will, in the future, not only be extended to allow learning of
tasks from demonstration, thereby, following the same approach as for the grounding
mechanism that it should be able to learn from support, if provided, without depending
on it, but also to enable it to automatically split complex tasks into subtasks. The latter
would have two main benefits. First, learning the execution of smaller tasks that require
shorter action sequences to be performed is faster and easier because the reward signal
will be less sparse and the risk that the agent never reaches the goal state will also be
reduced. Second, splitting large tasks into subtasks will also allow indirect grounding,
i.e. grounding of more complex and higher level tasks, like bringing a glass of water,
through simpler lower level tasks, like grabbing a glass or pouring water into a glass, that
the agent might have already learned before so that it can just perform the previously
learned subtasks to instantly execute more complex and unknown tasks.
The idea of subtasks and indirect grounding automatically leads to another important
part of future work, i.e. the explicit representation of concepts and integration of the
task learning framework with a knowledge representation to explore the utilization
of abstract knowledge to increase the sample-efficiency and accuracy of the ground-
ing and task learning mechanisms as well as support the goal extraction from natural
language. Furthermore, the use of a knowledge representation and therefore explicit
concept representation allows the agent to reason about its actions as well as the input
received via its sensors from the environment. This is crucial, when deploying an artifi-
cial embodied agent in complex human-centered environments because many tasks are
potentially dangerous and having an automatically created and continuously updated
model of the world will allow the agent to already restrict the set of actions that it will
actually try out to the most plausible and least dangerous ones. Additionally, the ex-
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plicit representation of concepts can also be utilized to benefit from the large amount of
data available in written form, e.g. on the web or in books, to not only guide task learn-
ing but also help with the automatic detection of phrases and AWs since the purely
unsupervised approaches used in this thesis and previous work are alone not sufficient,
when considering the number of words and variations in sentence structure an agent
would encountered during daily interactions with humans.
Overall, the framework proposed and evaluated in this thesis represents only a small
step towards enabling artificial agents to flexibly learn new tasks to communicate and
interact in a natural and efficient manner with humans or other agents in complex
human-centered environments. While there are many things that can be investigated
in future work as well as many possibilities to improve and extend the framework to
handle more complex scenarios and achieve better grounding and task learning results,
it is important to always keep in mind the big picture and final goal of enabling em-
bodied agents to interact with humans in a natural and efficient manner in complex
human-centered environments. Therefore, the next section will outline some of the big-
ger challenges that need to be addressed in future work.

6.3 Open Challenges

The development of frameworks and mechanisms (like the framework proposed in this
study) that can be continuously improved and extended, instead of being only useful
for one specific scenario or only used once for a specific study, is an important step to-
ward to enable embodied agents to interact efficiently and naturally with humans in
the real world. However, this also creates the danger of small incremental steps that fo-
cus not on achieving the original higher level goal but just on improving the previously
developed frameworks. Incremental progress is important and to some degree neces-
sary but only if it is moving in the right direction. Therefore, it is essential to evaluate
the framework proposed in this thesis through interactions with humans in the real
world. Initially, these interactions will not be without constraints because moving to
the real world will immediately introduce additional challenges, which illustrates that
language grounding and action learning are only two parts that are important but not
sufficient to achieve natural and efficient interactions between humans and artificial
agents. Following three important open challenges are described but there are many
more challenges which are introduced by moving to interactions in complex human-
centered environment.

1. One of the challenges introduced through unconstrained interactions in the real
world is that agents need to be able to cope with noisy language data, which has
not been considered in most grounding studies, i.e. in most grounding experi-
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ments, like the ones presented in this thesis, only the perceptual information was
noisy resulting in the use of CRs to extract the actual information from the noisy
data, while the language data is usually presented as clear data without noise.
However, this is not the case when considering deployment in the real world be-
cause most interactions with an embodied agent would be through speech and
there is a certain probability that the noise in the speech signal will lead to in-
correct conversion to text so that some words in the utterance provided to the
grounding framework are incorrectly spelled or completely incorrect. If this hap-
pens only once a while it is fine, but if the speech to text conversion mechanism is
not so accurate, it would cause substantial problems for unsupervised grounding
mechanisms because they rely on co-occurrences of words and CRs. This problem
would also occur, if humans interact in written form with the agent because it is
very likely that the typed text will contain typos and some sentences might also
not be grammatically correct.

2. Another challenge is that in daily speech many concepts are high-level and com-
plex because they do not have a specific representation in the world that can
be easily obtained with the sensors of the embodied agent. For example, how
would a FINANCIAL BANK be represented? Through its building, which might
look quiet different because some bank branches are in very old buildings, while
other branches are in recently renovated or newly build buildings or through its
logo, which might change over time? Or how should concepts like GOVERNMENT

or PRESIDENT be grounded? Especially, since there are many different govern-
ments and many different presidents of many different countries and organiza-
tions so that it is non-trivial to decide what the correct mapping should be. In
fact, the only solution is to allow a hierarchy of concepts so that the very general
concept of PRESIDENT would be grounded through the lower level concepts of
specific presidents, thereby, creating an abstract model of the world.

3. Finally, language is highly context dependent and most utterances assume that the
hearer has commonsense and a basic understanding of the situation the speaker is
in and the relationship between the speaker and hearer. Awareness of the situation
does not need to be very high level, like understanding what to do when some-
ones says “Can you give me a hand?”, which completely depends on the specific
situation, but also includes understanding of pronouns in consecutive utterances.
In the end, language is more than just a set of words or when grounded a set of
concepts or CRs. Language is a medium to transfer a specific state in the mind or
world model of one person to another person to change both their mind as well
as in most cases also the state of the environment due to the action or inaction
triggered by the transmitted information.



Glossary

Adjusted Rand Index (ARI) is a similarity measure between two clusters that has a
value close to 0.0 for random labeling and exactly 1.0 when to clusters are identi-
cal [40].

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition leading to deficits
in social communication and interaction [5].

Auxiliary Words (AW) are words or phrases that do not have CRs like articles, e.g. “a”
or “the”, and conjunctions, e.g. “and” or “as well as”. While they do not have CRs
they can still be essential for the meaning of an utterance, e.g. replacing the con-
junction “neither...nor” with “both...and” reverses the meaning of the following
utterance: “He neither shot the man nor threw his body into the river.”.

Bidirectional Long Short-Term Memory (BiLSTM) is a sequence processing model con-
sisting of one LSTM for each direction.

CMYK is a subtractive color model in which the subtractive primary colors (cyan, ma-
genta, yellow) are added together to produce a wide array of colors. Additionally,
black is used as a key plate because this produces better results than mixing cyan,
magenta, and yellow to produce black.

Compositional Language and Elementary Visual Reasoning (CLEVR) is a synthetic dataset
for visual question answering containing images of 3D-rendered objects [41].

Concrete Representations (CRs) represent sets of invariant features that are sufficient
to distinguish perceptual and actuator information belonging to different con-
cepts [37] and can be obtained through any clustering or classification algorithm.

Cross-Situational Learning (CSL) is a mechanism for word learning that is able to han-
dle referential uncertainty by learning the meaning of words across multiple ex-
posures [90] (Section 2.3).

Interactive Learning (IL) in the area of language grounding refers to supervised ap-
proaches in which the language learner receives support and feedback, e.g. point-
ing or eye gaze, from a tutor (Section 2.4).
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Long Short-Term Memory (LSTM) is an artificial neural network with feedback con-
nections that allow it to process sequences of data [38].

Markov Decision Process (MDP) is a mathematical framework for modelling deci-
sion making in discrete, stochastic, and sequential environments [47].

Perfect Emotion Types (PERT) refers to the case in Scenario IV where perfect con-
crete representations are used for emotion types to investigate the effect of the
accuracy of the concrete representations on the grounding performance.

Predicted Emotion Types (PRET) refers to the case in Scenario IV where predicted
concrete representations are used for emotion types, which is the normal case,
but different from Perfect Emotion Types (PERT) that was used to investigate the
effect of the accuracy of concrete representations on the grounding performance.

Rectified Linear Unit (ReLU) is an activation function used in deep learning that re-
turns 0, when the input is negative, and the actual value, if the input is positive.

Reinforcement Learning (RL) is a framework that allows artificial agents to learn how
to act in a correct and optimal manner in a complex environment through the
maximization of a reward signal [101] (Section 2.6).

RGB is an additive color model in which the primary colors (red, green, blue) are added
together to produce a wide array of colors.

Set of Auxiliary Words (AWS) is the set of detected auxiliary words, which is em-
ployed by the proposed framework to remove auxiliary words prior to grounding.
Section (3.3.2) describes the auxiliary word detection procedure..

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) is a
multimodal dataset of emotional speech and song consisting of vocalized lexically-
matched statements of 24 professional actors. Speech includes seven emotions, i.e.
calm, happy, sad, angry, fearful, surprise, and disgust, at two levels of emotional
intensity and neutral, while song includes five emotions, i.e. calm, happy, sad,
angry, and fearful at two levels of emotional intensity and neutral [48].

Train/Test Split 60 (TTS60) refers to the case where only 60% of situations are used
for training and the remaining 40% for testing to investigate how well models
perform for unseen situations. For models that are able to continuously learn,
it introduces an artificial and unnecessary limitation by deactivating its learning
mechanism for 40% of the encountered situations.
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Train/Test Split 100 (TTS100) refers to the case where all situations are used for train-
ing and testing to ensure that online learning models, i.e. models that are able to
learn continuously, which requires an unrealistic benefit for models that require
an explicit offline training phase.

Viewpoint Feature Histogram (VFH) is a point cloud descriptor representing the ge-
ometry of an object taking into account the viewpoint while ignoring scale vari-
ance [81].
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