
This thesis has been submitted in fulfilment of the requirements for a

postgraduate degree (e. g. PhD, MPhil, DClinPsychol) at the University of

Edinburgh. Please note the following terms and conditions of use:

This work is protected by copyright and other intellectual property rights,

which are retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or

study, without prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without

first obtaining permission in writing from the author.

The content must not be changed in any way or sold commercially in

any format or medium without the formal permission of the author.

When referring to this work, full bibliographic details including the

author, title, awarding institution and date of the thesis must be given.



Biophysical modelling of bacterial
colonisation of urinary catheters

Freya Bull

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Doctor of Philosophy
The University of Edinburgh

May 2023



Abstract

I developed the first mathematical model for the infection dynamics of a urinary

catheter. Urinary catheters are thin tubes which are inserted into the urethra to

drain the bladder. They are commonly used for patients undergoing surgery under

anaesthesia, or for elderly patients in long term care facilities. Unfortunately,

urinary catheters develop bacterial infections at rates up to 5% per catheter day,

with potential complications including catheter blockage, bladder damage, and

kidney infections. Attempts to prevent or mitigate infections have been largely

ineffective, and through mathematical modelling I seek to understand why.

The primary aim of my PhD was to uncover routes by which techniques and

approaches from physics can contribute to tackling catheter-associated urinary

tract infections (CAUTI). I have provided new clinical insight by developing

a novel population dynamics model and applying it to reveal the key factors

determining how, why, and when catheters get infected.

CAUTI are complex phenomena, involving the host physiology in the urethra

and bladder, multiple catheter surfaces, urine flow dynamics within the catheter

lumen (the inner channel), and bacterial growth and behaviour. Guided by

discussions with clinical collaborators, I considered this system (of catheter, host,

and colonising bacteria) as a set of smaller subsystems. I divided the model into

4 subsystems, in which bacteria first grow and colonise the extraluminal surface

(the outside of the catheter), before spreading into the bladder. The bacteria grow

in the urine in the bladder, and then are swept down through the catheter lumen,

where finally some adhere on the intraluminal surface. I then identified suitable

mathematical descriptions for the change in the bacterial populations. These

descriptions take the form of Fisher, logistic growth, and convection-diffusion

equations, which, using insight from clinicians, I coupled together.

I implemented this model computationally by developing code (in C++ and
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Python) to numerically solve the coupled equations, applying this to explore

the effects of varying the properties of the catheter, host, and bacteria. I found

the rate of urine production by the kidneys to be critical in determining the

outcome of bacterial infection, as it governs a transition between a high bacterial

density state in the bladder and a ‘washed-out’ state whereby bacteria may grow

on the catheter surfaces, but there is no bacteriuria (no bacterial growth in the

urine). These results are highly significant for the prevention and mitigation of

CAUTI, as they imply that increasing fluid intake may reduce the likelihood of

bacteriuria. I also discovered that the urethral length determines the timescale

over which infection may occur, giving important insight into observed gendered

differences in infection rates in short-term catheterisation. Finally, my model

suggests an avenue for future work to investigate the origin of infections, by

studying bacterial distributions across the catheter surface, and comparing with

modelled distributions to determine the initial conditions.

I interpreted the model predictions in the context of clinical data, finding new

perspectives on both in vitro and in vivo previous studies. By considering how

clinical interventions correspond to changes in model parameters, I classified

clinical interventions as postponement, mitigation, or prevention, and discussed

the contexts in which those interventions might be effective. I applied the model

to predict the outcome of a clinical trial of catheter interventions, showing that

the model provides quantitatively better fits to clinical data than previous fits

applied in the literature, and successfully qualitatively predicted trial outcomes,

including identifying an outcome (reduced incidence of bacteriuria associated with

the use of silver-alloy catheters in males) that was present in the study dataset,

but not discussed in the original study.

My work suggests physical mechanisms that explain clinical observations, demon-

strating how from basic assumptions many complex phenomena emerge. Through

the development of a population dynamics model with direct clinical implications,

I applied physics to make an important contribution to CAUTI research.
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Lay summary

Urinary catheters – thin tubes which are used to drain the bladder – are

unfortunately prone to developing infections due to bacterial colonisation. I

developed the first mathematical model for bacterial colonisation of a catheter

and applied it to reveal the key factors determining how, why, and when catheters

get infected. My model is a mathematical implementation of a clinical ‘narrative’,

describing how bacteria grow and colonise the external (extraluminal) surface of

the catheter, ascend into the bladder and grow there, then are swept down the

inside of the catheter (the lumen) by the urine flow, with some bacteria then

adhering to the internal (intraluminal) surface of the catheter.

I implemented my model computationally, numerically solving the model equa-

tions, and explored the effects of varying the properties of the catheter, patient,

and bacteria. I found that the rate of urine production by the kidneys (directly

related to the fluid intake of a patient) determines the outcome of an infection,

as when the urine rate is high, bacteria are diluted out of the bladder faster than

they can grow (wash-out). Additionally, I found that urethral length determines

the timescale over which infection may occur, as bacteria must first ascend the

catheter (up the length of the urethra) before they can grow in the bladder.

I then applied my model to reinterpret the results and data of previous work, from

both controlled laboratory experiments (in vitro) and clinical studies (in vivo).

My model was able to predict the outcome of a large clinical study of different

types of catheters, correctly identifying that antimicrobial catheters are more

effective in reducing bacteriuria (the presence of bacteria in the urine) in males

undergoing short-term (≲ 14 days) catheterisation than in females. My model

predicted that this was due to the differing urethral lengths (males have much

longer urethral lengths than females), and this prediction led to quantitatively

much better fits to the data for incidence of bacteriuria than previous models

(which did not consider urethral length).
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Chapter 1

Introduction

Urinary catheters – thin tubes which are used to drain the bladder – are commonly

used for patients with a wide range of urological1 issues, in intensive care units and

long-term care facilities [68, 95]. Bacterial colonisation of the catheter, leading to

bacteriuria (bacteria in the urine) is almost universal in long-term catheterised

patients. While asymptomatic2 bacteriuria does not require treatment, bacterial

colonisation can also lead to symptomatic catheter-associated urinary tract

infections (CAUTI) with incidence rates3 estimated at up to 0.3 – 0.7% per

catheter day [18, 82], with potential complications including catheter blockage,

bladder damage, and kidney infections. CAUTI account for up to 40% of hospital

acquired infections [48, 68, 74, 82, 105, 115, 128], with vast financial and societal

costs [31]. Despite the importance of this topic, there is limited understanding

of the role of different factors in CAUTI development [44, 48, 71, 78, 82, 99],

why some patients are plagued by recurrent CAUTI while others are hardly

troubled [42], and why some infections develop far more rapidly than others [67].

Better understanding could lead to more effective strategies to prevent or mitigate

CAUTI [25]. Bacterial colonisation of the catheter is clearly a crucial step in

CAUTI development, yet to date there have been no predictive mathematical

models for bacterial colonisation of a urinary catheter.

1urology – the study of urine [88]
2asymptomatic – occurring without symptoms [88]
3incidence rate – “the rate of new cases or events over a specified period for the population

at risk for the event” [113]. In urinary catheter studies this is typically calculated by dividing
the total recorded number of new infections in the study population by the total number of
catheter days in the study (the sum over all patients of the number of days a catheter was in
place).
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Figure 1.1 A Foley catheter. The balloon is inflated with sterile water after
insertion, holding the catheter in place. Image reproduced from
Feneley et al. (2015; [31]).

Mathematical models provide a context, and framework, through which we can

better understand observations and measurements [108]. A mathematical model

for bacterial colonisation of urinary catheters could provide new insights into the

key factors determining how, why, and when catheters get infected. Additionally,

the modelling process could highlight where gaps in the current understanding

exist, providing guidance for future investigation. In this respect, physics might

be viewed as a lens through which we can search for new insight into a clinical

phenomenon.

1.1 Urinary catheters

A urinary catheter is a tube that is used to drain urine from the bladder into a

drainage bag. Catheterisation can be intermittent (i.e., the catheter is removed

immediately after drainage), but this work focuses on longer-term catheterisation,

where the catheter is indwelling (i.e., the catheter remains in the bladder). An

indwelling catheter is inserted into the bladder through the urethra (the passage

2



Balloon

Bladder
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Urethra
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To the drainage bag
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From kidneysUreter

Figure 1.2 When a Foley catheter is placed in a patient, the catheter tubing
passes through the urethra, from the bladder, where an inflatable
balloon anchors the tip in place, and terminates in an external
drainage bag.
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connecting the bladder to the skin), or through a hole in the abdomen (suprapubic

catheter). This can occur in a hospital setting, commonly during and after

surgery, or in a long-term care setting. Catheterisation is extremely common:

over 90,000 people live with an indwelling catheter in the United Kingdom [38],

and 30 million urinary catheters are used annually in the USA [68].

In this thesis, we focus on the indwelling Foley catheter (Figure 1.1). This type

of catheter is a flexible tube that is inserted into the bladder via the urethra. The

tube contains two lumens4. Sterile water is injected into one of the lumens after

insertion, to inflate a balloon just below the catheter tip. This balloon sits within

the bladder and holds the catheter in place. The other lumen is used to drain

urine. It has holes (eyelets) close to the catheter tip (Figure 1.2) through which

urine passes from the bladder, before flowing through the lumen into a drainage

bag outside the body. Typical flow rates for urine passing through the catheter

are 1 mL min−1 [31] (controlled by the rate at which urine is made by the kidneys).

Catheter lengths range from 40 mm for women up to 160 mm, or greater, for men

(since in the men the urethra is longer than in women), with the balloon having

a volume of 10 mL [31]. Modern catheters are typically made of latex or silicone,

with external cross-sectional diameters of 4.0 – 5.3 mm (catheters are generally

sized in French gauge, where 3 Fr = 1 mm; typical catheters are sized between

12 and 16 Fr) [31]. The Foley catheter remains close to its original 1930s design,

although a closed drainage system (to reduce contamination from the drainage

bag) was successfully introduced in the 1960s [64, 111].

Hydrodynamics of a catheter

Urine flow through a Foley catheter is an example of pipe flow. The hydrodynam-

ics of flow through a pipe is well-established, with its properties being determined

by the Reynolds number [118]. The Reynolds number is the ratio of inertial forces

to viscous forces,

Re =
LUρ

µ
, (1.1)

where L is a characteristic length, U a velocity, ρ is the fluid density, and µ is

the (dynamic) viscosity. When the Reynolds number is small, Re ≪ 1, viscous

forces dominate, whereas for large values of the Reynolds number, Re ≫ 1, the

inertial forces are stronger. For flow through pipes, when the Reynolds number is

‘low’, Re < 2000, then flow is laminar. For higher Reynolds number, Re > 4000,

4lumen – an opening, passage, or canal [88]
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Figure 1.3 (a) Cross section of laminar flow within a pipe of length L and
radius R. The pressure difference driving the flow is ∆p = p1 − p2.
(b) The flow of urine through the catheter is parabolic and described
by u(r) = 2λ

πR4

(
R2 − r2

)
. Here, λ = 16.7 mm3 s−1, and R = 1 mm.

the flow becomes turbulent [118]. We can calculate the Reynolds number for a

‘typical’ catheter of radius R = 1 mm, and urine flow rate of λ = 1 mL min−1:

Re =
λ

πRν
=

1
60
10−6

π10−3 · 0.83 · 10−6
≈ 6 (1.2)

where ν = 0.83 mm2s−1 is the kinematic viscosity5 of urine at 37 ◦C [51]. Clearly,

we are in the ‘low’ Reynolds number regime, Re < 2000, for which flow is laminar.

Laminar flow is illustrated in Figure 1.3a: in this regime, fluid flows in smooth

orderly layers without eddies or mixing. At the pipe surface the no-slip boundary

condition (arising from the fluid viscosity) means that the velocity must be zero.

We can write down the velocity as a function of the radial distance from the

centre of the pipe [118]:

u(r) =
∆p

4µL

(
R2 − r2

)
, (1.3)

where ∆p = p1− p2 is the pressure differential driving the flow, µ is the viscosity,

L is the length of the pipe, R is the radius of the pipe, and r is our radial

coordinate. We can rewrite Eq. 1.3 in terms of parameters that are more easily

physically measurable, as

u(r) =
2λ

πR4

(
R2 − r2

)
(1.4)

5The kinematic viscosity is defined by ν = µ/ρ.
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where λ is the (volume) rate of fluid flow, R is the internal radius of the catheter,

and r is our radial coordinate. The rate of fluid flow is λ = ∆pπR4/8µL – for

a catheter this is equal to the rate of urine production by the kidneys, as the

pressure driving the flow arises from gravity acting on the urine that is within

the bladder.6 This results in the parabolic, Poiseuille flow profile for urine flow

within a urinary catheter that is shown in Figure 1.3b.

1.2 A clinical problem

Catheter-associated urinary tract infection (CAUTI)

Urinary catheters are prone to colonisation by bacteria. When this leads to

symptoms such as fever, pain, or inflammation, it is known as a catheter

associated urinary tract infection (CAUTI). CAUTI is unfortunately a regular

occurrence for patients with long-term indwelling catheters, with some studies

finding incidence rates of symptomatic episodes as high as 1.1 per 100 catheterised

patient-days [48] (i.e., an incidence rate of 1.1% per catheter-day). CAUTI is

also prevalent in hospital settings: in fact, CAUTI accounts for up to 40% of

hospital acquired infections [48, 68, 74, 82, 105, 115, 128]. CAUTI incurs huge

economic costs; for example, it is estimated to cost the United Kingdom between

£1.0 and £2.5 billion annually [31]. If bacterial colonisation of the bladder occurs

without clinical symptoms, it is known as asymptomatic bacteriuria (see below,

§Bacteriuria).

Despite the prevalence of CAUTI, there is still limited understanding of the role of

different factors in the development of infection [44, 48, 71, 78, 82]. Understanding

these factors and the pathways to bacterial colonisation of urinary catheters

may be a key step in reducing the impact of CAUTI [25]. Known risk factors

for CAUTI include the duration of catheterisation [48, 71, 99]; biological sex,

with prevalence of CAUTI significantly higher in female hospital patients than

males [93, 99]; and dehydration [5, 111].

6This is a result of the elasticity of the bladder. If, for example, the pressure at the catheter
drainage bag rises, (due to the bag being raised, or the bag filling) then the volume of residual
urine in the bladder will also increase (thus raising the pressure at the bladder). This will occur
until the flow of urine through the bladder is balanced, with volume flow of urine out of the
bladder equal to the volume flow in from the kidneys (λ).
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Pathogens causing CAUTI

The bacterial pathogens7 most commonly associated with CAUTI overlap

substantially with those that cause urinary tract infections more generally. With

or without a catheter, infections are primarily associated with uropathogenic8

Escherichia coli (UPEC), which is present in 75% of uncatheterised urinary

tract infections [34], and in 40 – 70% of CAUTI [82]. Other bacteria commonly

isolated from CAUTI include Klebsiella spp, Enterococcus spp, Proteus mirabilis,

and Pseudomonas aeruginosa. P. mirabilis has been the focus of attention

in the context of CAUTI because of its tendency to form crystalline biofilms

in the catheter lumen (see below, §Catheter blockage). CAUTI can also be

caused by the yeast Candida spp [82]. A notable difference between CAUTI and

uncatheterised UTI is the prevalence of polymicrobial infections, or infections that

involve more than one microbial species. Polymicrobial infections are uncommon

in uncatheterised UTI but are increasingly likely to occur with duration of

catheterisation, with up to 95% of bacteriuria in long-term catheterised patients

being polymicrobial [123].

Uropathogenic E. coli

E. coli is frequently considered as a model bacterium in microbiology and

bacterial physics [7]. Uropathogenic strains of E. coli have been found to be

present in up to 70% of CAUTI [82]. E. coli cells are rod-shaped, with dimensions

around 2.5 µm by 0.8 µm [7], and have several flagella (tail-like appendages),

each up to 20 µm in length [50] (Figure 1.4a). Uropathogenic E. coli (UPEC)

is generally associated with uncomplicated UTI, where it has been identified in

up to 90% of infections [36, 52]. The E. coli strains that cause CAUTI typically

do not possess the full set of virulence factors (bacterial traits that specifically

contribute to the strain’s ability to cause disease in the human bladder or urethra)

expressed by UPEC [52]. UPEC strains are typically very sticky (expressing

many adhesins, most commonly P fimbriae – tiny hair-like filaments on the

bacterial surface, known as pili), highly motile (due to the bacterial flagella),

resistant to the host immune system, and can easily form biofilms within the

urinary tract. Comparatively, E. coli strains associated with CAUTI are less

sticky (have a reduction in expression of P fimbriae), and may also be less

7pathogen – a microorganism that causes disease [88]
8uropathogen – a microorganism that causes disease in the urinary tract
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(a) (b)

Figure 1.4 (a) A 90 ft inflatable sculpture of an E. coli cell, as displayed in
the National Museum of Scotland. Note the rod-shape, with a long
tail-like flagella (left), and covering by smaller hair-like pili (all-
over). Image reproduced from National Museum of Scotland (E.
coli by Luke Jerram, National Museum of Scotland, 2022; [53]).
(b) E. coli cells swim with characteristic run-and-tumble dynamics,
schematised here. Figure reproduced from Cates (2012; [15]).

resistant to the host immune system [52]. E. coli cells can form intracellular

bacterial communities, whereby E. coli invades the epithelial cells9, which make

up the lining of the bladder, and colonises them [52]. These intracellular bacteria

communities protect bacteria from both the host immune response, and from

antibiotics. They may also contribute to the recurrence of infections, providing a

reservoir for reinfection [83].

The motility of E. coli plays a key role in colonisation of urinary catheters, as we

shall see later in this thesis. Motility of E. coli in vitro10 has been extensively

characterised by biophysicists. E. coli cells swim in liquid media by rotating

their (helical) flagella together [15], which generate an anisotropic11 frictional

force, propelling the cells forwards [27]. E. coli has a characteristic ‘run-and-

tumble’ style of motion (Figure 1.4b), as cells periodically reverse the direction

of some of their flagella, disrupting the rotation, and reorienting the cell to swim

in a different direction [72]. At long length- and time-scales, this run-and-tumble

motion is the statistical physics random walker [15], characterised by an active

diffusion coefficient – D ∼ 100 µm2s−1 [100]. The motility of E. coli on or near

9epithelium – the tissue forming the mucous membrane [88]
10in vitro – in laboratory conditions [88]
11anisotropy – having different properties depending on direction
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surfaces is more complicated, and in general is less well-characterised (we discuss

this further in Chapter 3). We will however discuss one phenomenon arising when

E. coli swim close to a surface within a fluid flow in §1.3.

Bacteriuria

It is important to clarify the difference between CAUTI and asymptomatic

bacteriuria. CAUTI is defined as a bacterial infection accompanied by symptoms

(inflammation, fever, pain etc), whereas bacteriuria is the presence of bacteria

within urine, which can occur without symptoms [48]. Bacteriuria is extremely

prevalent, occurring at an incidence rate of 3 – 7% per catheter day [71], and hence

long-term catheterisation almost always leads to bacteriuria [123]. In the models

we will develop in this thesis we do not include the response of the human host,

and therefore we cannot predict the presence or absence of clinical symptoms,

such as fever. Therefore, our work can predict the occurrence of bacteriuria, but

it cannot distinguish between CAUTI and asymptomatic bacteriuria.

Catheter blockage

CAUTI is not merely an unpleasant inconvenience for sufferers; it also brings risk

of serious consequences, including kidney infections, bloodstream infections and

tissue damage within the bladder [23, 36]. A common consequence of CAUTI

is blockage of the catheter (up to 50% of catheterised patients will experience

blockages [124]), which will, at best, result in urine bypassing the catheter, and

at worst can lead to the backflow of infected urine into the kidneys [34].

Catheter blockage is sometimes due to the formation of a thick biofilm by bacteria

such as P. aeruginosa [9]: in fact, when bacteria grow on catheters, many

species, including E. coli form biofilms [111]. In a biofilm, bacteria adhere to a

surface and to each other, producing extracellular polymers that form a structural

matrix [9, 25]. These biofilms are known to provide protection for bacteria from

both antimicrobial defences and host defences [9, 82], as well as reducing the

rate at which cells are dislodged by flow [58]. For the biophysicist, biofilms are

an interesting example of a non-equilibrium self-assembly process, with many

models developed to account for biofilm emergent phenomena such as quorum-

sensing (interbacterial communication via the release and detection of small signal

molecules) and antimicrobial tolerance [58]. The binding of bacterial biofilms to

9



(a) (b)

Figure 1.5 P. mirabilis mediates crystalline biofilm formation. (a) Struvite
crystals embedded in diffuse crystalline material on a silicone
catheter, following 20 days of exposure to P. mirabilis. Image
modified from Wilks et al. (Figure 4d, 2015; [124]). (b) Schematic
representation of the four stages of crystalline biofilm development
by P. mirabilis. 1. Individual cells attach to a polysaccharride-
based foundation layer. 2. A micro-crystalline sheet forms above.
3. Diffuse crystalline material accumulates. 4. Defined crystals
form, bacteria swarm on the surfaces. Figure modified from Wilks
et al. (Figure 7, 2015; [124]).
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a catheter is known to be aided by the accumulation of fibrinogen; fibrinogen is a

protein in the blood, generally mediating clotting, which is produced and released

by the body as an immune response to the catheter [34, 120].

However, the more common cause of catheter blockage is crystalline biofilms

formed by the bacterium P. mirabilis [11, 52]. P. mirabilis hydrolyses urea

(through the production of urease [83]), producing ammonia, which increases

the alkalinity of the urine, leading to precipitation of crystals of struvite and

apatite [5, 11, 52]. Wilks et al. [124] investigated the development of P. mirabilis-

mediated crystalline biofilms through high-magnification microscopy imaging

(Figure 1.5a), defining the biofilm in four components (Figure 1.5b). In earlier

work, Band et al. [5] developed a mathematical model for the chemical physics

of the aggregation and deposition of crystals on urinary catheters. Band et

al. [5] modelled the bladder as a well-mixed constant-volume reservoir, and the

catheter as a rigid channel, with small crystal particles entering the bladder from

the ureters at a constant rate and aggregating within the bladder and catheter

channel (modelled with Becker-Döring coagulation theory), with some crystals

being deposited on the catheter surface, where they permanently adhere. Band

et al. [5] modelled the urine flow through the catheter as Poiseuille, in the same

manner as we discussed previously (§1.1). Band et al. [5] did not consider the

action of bacteria within their model, and concluded that their model predicts

crystalline aggregation will be greatest in the region closest to the catheter eyelets

(i.e. the ‘top’ of the catheter; Figure 1.2) – we will see later (Figure 7.5) that

our model mirrors this prediction for bacterial deposition on the intraluminal12

catheter surface.

1.3 Bacterial colonisation of urinary catheters

Several different factors contribute to the vulnerability of catheterised patients to

CAUTI infections. The catheter surface provides a direct pathway for bacteria

to enter the body, by harbouring biofilms and providing access to the bladder.

The catheter surface is particularly vulnerable to contamination at the meatus

(the urethra-skin interface; Figure 1.2), potentially by gut bacteria. Moreover,

the presence of a foreign object (the catheter) in the urethra and bladder can

cause trauma to the tissues there, which in turn increases their susceptibility to

12intraluminal – within the lumen [88]
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infection. [30, 31, 82, 111]. The port connecting the catheter to the drainage bag

also constitutes a potential point of vulnerability to infection. Although the port

is theoretically sterile, the need to regularly replace the drainage bag exposes it to

possible contamination, particularly for catheterised patients in the community

(i.e., outside hospitals).

Catheterisation also changes the characteristics of the bladder as a site of

infection. Even in the absence of a catheter, the bladder is known to retain a

small volume of urine [43]; this is a rich growth medium13 [111] that can support

high bacterial densities: up to 108 CFU g−1 (CFU = colony forming units; an

experimental estimate for the number of viable cells in a sample), with doubling

times as fast as 30 mins for E. coli [35]. With indwelling catherisation, the volume

of this residual sump is increased due to a combination of factors including the

location of the catheter balloon and inlets, the cessation of tidal drainage (i.e.,

periodic urination) in favour of continuous drainage, and hydrostatic pressure

differentials, particularly as a result of kinks in the catheter tubing [40]. The

prevention of tidal drainage also disrupts the self-cleaning nature of the bladder

and urethra, preventing the regular flushing out of bacteria [31, 68]. It is likely

that the epithelial cells that line the bladder walls also have a role to play in

infections. Some patients experience recurrent urinary tract infections due to

persistent intracellular bacterial communities in the epithelial cells [83]; the same

mechanism could also cause recurrent CAUTI [52]. Thus, the catheter can act

as a reservoir for bacteria to spread into the bladder, but so too can the residual

urine within the bladder act as a reservoir from which the catheter can become

infected.

Upstream swimming and catheters

Biophysicists are prone to become particularly excited by the discussion of the

intraluminal ascension of swimming bacteria (a separate phenomenon to the

ascension of bacteria on the extraluminal surface that we discussed above). The

hydrodynamics of a micro-swimmer (such as a bacterial cell) can be calculated

close to a surface (such as a catheter), and often differs significantly from the

far-field hydrodynamics [109]. Hill et al. [47] demonstrated experimentally that

close to a surface E. coli consistently swims upstream. Hill et al. [47] showed that

this effect is due to the local shear rate at the surface, causing cells to pivot and

13rich (complex) growth medium – “containing ingredients whose exact chemical composition
is unknown” [89]. These media often support growth by a wide variety of bacterial strains.
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orient to point into the flow. Hill et al. [47] suggested in their conclusions that this

phenomenon of upstream swimming may be relevant to the transport of E. coli

in the upper urinary tract, or to the development of infection in catheterised

patients. Since then, many physicists have studied upstream swimming, for

example Nash et al. [80], Shen et al. [104], and Kaya and Koser [55]. In particular,

Kaya and Koser [55] directly discussed their results in the context of the Foley

catheter, estimating an upstream bacterial velocity of 20 µms−1, resulting in a

suggestion that E. coli might ascend the distance from the drainage bag to the

bladder in ∼ 5 hrs. Kaya and Koser [55] comment that this calculation neglects

the (potentially much larger) issue of backflow – the gravity driven nature of

catheter drainage means that if the drainage bag is elevated above the bladder

(as may happen overnight) then the direction of urine flow is reversed. If bacteria

are present in the drainage bag, then backflow virtually guarantees the bacteria

will eventually be present in the bladder.

In assessing this literature in the context of urinary catheters, we should note a few

things, starting with the observation that, although bacteriuria is indeed common,

it does not typically occur within ∼ 5 hrs of catheterisation, as the work of Kaya

and Koser [55] predicts, but rather over a timescale of days (around ∼ 25% of

patients are bacteriuric within 2 weeks [52]). One factor in this is likely to be

the neglect of bacterial adhesion in all work investigating upstream swimming:

recall that uropathogenic strains of E. coli are much ‘stickier’ than laboratory

strains of E. coli (§Uropathogenic E. coli), as well as the rapid formation of a

highly ‘sticky’ conditioning layer on the catheter surface following catheterisation

(§Catheter blockage). Additionally, and more significantly: since the introduction

of a closed drainage system, bacterial contamination of the drainage bag is a

comparatively rare event, so that upstream bacterial ascension from the drainage

bag is not the main pathway of infection. It has been established that around

two thirds of catheter-associated infections are in fact extraluminal, i.e., originate

from bacterial growth on the outside of the catheter [52]. Around 5% of infections

are due to contamination at the point of catheter insertion [82]. A further ∼ 5%

seem to be due to bacteria already present in the bladder, prior to catheterisation

(there is a subpopulation of people whose urine cultures are not generally aseptic –

this is frequently asymptomatic [114]). Most of the remaining infections (≲ 25%)

are attributed to bacteria infecting the drainage bag or port and then ascending

the internal (intraluminal) surface of the catheter.

Moreover, in their estimation of the upstream velocity, Kaya and Koser [55]

13



assumed an internal luminal diameter of 4.4 mm, which seems questionably large,

given that typical catheters in use have size 12 – 16 Fr, corresponding to an

external diameter of ∼ 4 mm [31]. We can calculate the shear rate for parameters

as we assumed in §1.1 instead, where the urine flow rate λ = 1 mL min−1, and the

catheter internal radius R = 1 mm. Recall Eq. 1.4, describing the urine velocity

within the catheter:

u(r) =
2λ

πR4

(
R2 − r2

)
.

The shear rate of this flow at the catheter surface is

∂u

∂r

∣∣∣∣
r=R

= − 4λ

πR3
∼ 21 s−1. (1.5)

This is very different to the shear rate estimated by Kaya and Koser [55] of

2.9 s−1, and indeed is well above the critical threshold identified by Hill et al. [47]

for upstream swimming (∼ 10 s−1). It seems likely therefore that not only is the

phenomenon of upstream swimming insignificant in considering urinary catheters

(as we discussed above), but in fact, it may not occur at all.

1.4 Clinical interventions

The addition of a closed drainage system to indwelling catheters in the 1960s was

the last successful major change to catheterisation practices [64, 111]. To date,

although there have been many proposed changes to catheter design and best

practice, there is still limited understanding of the importance of different factors

in the development of CAUTI [44, 48, 71, 78, 82].

In recent years, the use of novel materials for catheters has attracted much

attention [4, 32, 85]. Historically Foley catheters were manufactured from latex,

while many modern catheters are made of silicone [31]. Newer materials that

have been explored include silver coatings, hydrogel14 coatings and catheters

which release antimicrobials into the bladder [68]. Some research has also been

done on antibiotic coatings/impregnation with minocycline-rifampim, but this is

less promising for urinary catheters, as this is known to be much less effective

against Gram-negative bacteria (which constitute the majority of infections) [85].

None of these design changes have been found to be effective [85]. Silver coated

14hydrogel – materials with hydrophilic structure, “capable of holding large amounts of water
in their three-dimensional networks” [2]
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catheters were promising in laboratory experiments, but so far proved ineffective

in patient studies [4]. Hydrogel catheters reduce binding of fibrinogen, and reduce

irritation to host membranes, but have been found to allow swifter microorganism

migration [85] and aggregation [56]. Antimicrobial catheters are often found to

have only limited effect strength [90], often outweighed by the risk of promoting

the growth of antimicrobial resistant strains [4].

Some work also exists on novel catheter design, including a catheter that can

debond biofilms (and so remove blockages) through the application of mechanical

strain [68], and a catheter with spiralling tubing to improve drainage [40].

Much of the literature is however focused on interventions in nursing/clinical

practice [44, 48, 71, 77, 78]. One example of such an intervention is the

introduction of stop orders – “prewritten orders for the removal of urinary

catheters if specified criteria were not met” (Hooton et al, 2010, p. 640 [48]) – to

reduce unnecessary catheterisation. However, many of these types of interventions

have also proven ineffectual, or even harmful. For example, one attempt at

reducing infection, by applying the antiseptic chlorhexidine to block all routes

of infection, resulted in a major outbreak of chlorhexidine resistant, multidrug

resistant P. mirabilis [30].

1.5 Relevance of biophysical modelling

Physics has a lot to offer for modelling these phenomena [9, 108]. A previous

model for the bladder hydrodynamics of a urinary tract infection has highlighted

how the relationship between bacterial growth rate and rate of urine production

determines infection success [43]. Gordon and Riley [43] modelled a bladder that

periodically filled and emptied, with a minimum volume Vmin, a maximum volume

Vmax, and a filling rate λ. The volume of urine in the bladder is given by

V (t) = Vmin + λt, t ∈
[
0, τ =

Vmax − Vmin

λ

)
, (1.6)

where τ is the interval between micturitions15. Assuming exponential bacterial

growth, in the time between micturitions, the number of bacteria in the bladder

is

N(t) = N0 exp (rBt) , (1.7)

15micturition – urination [88]
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Figure 1.6 An establishment-extinction condition on the bacterial growth rate
for urinary tract infections. Marked are the mean growth rates
(±1 standard deviation) of clinical E. coli isolates. Shaded regions
indicate where Eq. 1.9 predicts the bacteria would fail to establish
a population in the bladder. (a) Effect of urine production rate
on the establishment condition. (b) Effect of bladder volumes on
the establishment condition. Figure modified from Gordon and
Riley (1992; [43]).

where rB is the bacterial growth rate within the bladder, and N0 is the number

of bacteria present in the residual urine at the start of the time interval. Then,

with Nk being the bacterial population in the bladder after k micturition events,

the bacterial population after the k+1th micturition event is given by

Nk+1 =
Vmin

Vmax

Nk exp (rBτ) . (1.8)

By requiring an ‘establishment criterion’ of Nk+1 > Nk – i.e., that the population

should grow in successive cycles – Gordon and Riley found a condition on the

growth rate:

rB > log

(
Vmax

Vmin

)
λ

Vmax − Vmin

. (1.9)

Gordon and Riley applied Eq. 1.9 to make predictions for the conditions

under which E. coli might colonise the urine within the bladder: low urine

production rate (dehydration; Figure 1.6a), or incomplete voiding of the bladder

(Figure 1.6b).

For our model, the angle of interest is primarily the population dynamics of an

infecting bacterial population. There are many interesting avenues of research

here. From the growth of biofilms on complex surfaces [9, 37, 58], in particular

the spatial development of biofilms colonising the surfaces of a catheter [124], to
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the effects of antibiotic treatment on bladder infections [22]. Simple models of the

dynamics of bacterial growth in the bladder exist [43] (as discussed above), but do

not consider the effect of catheterisation, while models for catheter encrustation

focus on crystalline aggregation [5], rather than bacterial growth (§Catheter
blockage). We must also consider hydrodynamics: urine flow within a catheter is

an example of laminar flow – due to its low Reynolds number [118] (§1.1), while
the problem of how bacteria behave near a surface in a flow is a topic of recent

research [27, 65, 109] (as discussed briefly in §1.3), and much is still unknown for

the growth of a biofilm subject to continuous flow [58].

1.6 Biophysical modelling of bacterial colonisation

of urinary catheters

In this thesis we present a quantitative model for the dynamics of bacterial

colonisation of a urinary catheter, which identifies parameters that are critical for

clinical outcome. Our study focuses on the indwelling Foley catheter, in which

the catheter tip sits inside the bladder, held in place by a balloon, while the

catheter tubing passes through the urethra, terminating at an external drainage

bag (Figure 1.2). We model the population dynamics of infecting bacteria as they

migrate up the catheter, proliferate in the residual sump of urine that remains in

the bladder during the period of catheterisation [30, 31, 40, 43], and travel out of

the bladder in the urine flow through the catheter lumen, where they can attach

to the inner lumen surface [48] and trigger biofilm formation that can block the

catheter [82].

Combining these processes into a unified model allows us to predict the time

course of bacterial colonisation and to identify the key parameters controlling

clinical observables such as bacterial density in the bladder and the time before

bacteriuria (bacteria in the urine) is detected, as well as the time to formation

of a luminal biofilm. These parameters include the rate of urine production by

the kidneys, the volume of residual urine in the bladder, and the length of the

urethra. We find that the rate of urine production governs a transition between

a high-density bladder state (bacteriuria) and a diluted, ‘washed out’ state with

low bacterial density. We also show how different spatial patterns of bacterial

biofilm growth are expected on the catheter depending on the initial conditions,

suggesting that it might be possible to infer the source of the colonising bacteria
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from these patterns.

Considering the model as a mapping from ‘parameter space’ to ‘outcome space’,

we identify parameters that are particularly critical in determining the outcomes

over different timescales (short-term catheterisation is typically ≲ 14 days,

while long-term catheterisation can be multiple months). By considering the

timescales and stationary states of the system, we find that clinical interventions

with the goal of preventing bacterial colonisation long-term must act on the

stationary states of the system, but that interventions that alter the dynamics

may have significant effect over shorter timescales. This leads us to classify clinical

interventions according to their actions on the model parameters, stationary

state(s), and dynamics: postponement, mitigation, or prevention. We apply

the model to find new perspectives on both in vitro and in vivo studies, and

demonstrate how the model can predict the outcomes of a clinical trial of

catheter interventions (the CATHETER trial [90]). We show that our model

provides quantitatively better fits to clinical data than models previously applied

within the literature, and identifies an outcome (reduced incidence of bacteriuria

associated with the use of silver-alloy catheters in males) that was present in the

study dataset, but not discussed in the original study.
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Part I

A mathematical model
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Chapter 2

Construction of a modelling

framework

2.1 Introduction

When building a model for bacterial colonisation of the bladder (bacterial

colonisation being a necessary but not sufficient step for the occurrence of

CAUTI), we can identify three distinct relevant spaces: the bladder, the urethra,

and the catheter itself. The bladder is an elastic volume, which under normal

circumstances steadily fills with urine (flowing in from the kidneys via the ureters)

and periodically empties (via the urethra). When catheterised the bladder does

not empty periodically, but instead contains a constant volume of urine, which is

diluted by fresh urine from the kidneys.

These three spaces do not exist in isolation, but rather are connected as one

system. The catheter is located inside the urethra, with the extraluminal surface

of the catheter in contact with the urethral lining (Figure 1.2). The tip of the

catheter is within the bladder, such that the extraluminal surface of the catheter

provides an uninterrupted connection from the bladder all the way out of the

body to the skin. Within the catheter is the lumen, through which urine flows

from the bladder into a drainage bag external to the body (recall Figure 1.1).

This forms a closed system; however, the bag must be regularly emptied, which

provides a periodic possibility for contamination of the drainage bag.

We must also consider how bacteria are introduced in our mathematical model,
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i.e., how the system becomes contaminated. As discussed in §1.3, bacterial

contamination is known to occur at several different locations within the system.

The most common origin of bacterial contamination is the interface between the

extraluminal catheter surface and skin; however, contamination of the drainage

bag, contamination of the catheter during insertion, or a pre-existing bacterial

population within the bladder are all also possible.

2.2 The model system

Figure 2.1 depicts a minimal model for bacterial colonisation of a catheter.

The model consists of four parts: the extraluminal surface of the catheter,

the bladder, the urine flow within the catheter, and the intraluminal surface

of the catheter. These are coupled such that bacterial contamination can cross

between the different parts of the system. Colonising bacteria may therefore

originate anywhere within the system, allowing for all the major infection

pathways (extraluminal, intraluminal, contamination on insertion), as well as

for an infection originating in the bladder (e.g., after a catheter is replaced).

The catheter is treated as a rigid open cylindrical tube, with rotational symmetry.

The bladder is assumed to be well-mixed with the rate of urine production

and the volume of residual urine assumed to be constant during each period

of catheterisation. All external forces on the bacterial cells are neglected, and we

assume there is no backflow from the drainage bag. We assume the catheter is

colonised by a single bacterial species and base the parameters on E. coli, which is

present in 40–70% of CAUTI [82]. This model does not account for the response

of the human host and therefore does not distinguish between asymptomatic and

symptomatic (CAUTI) infection [18] (since the key distinction is via symptoms

such as fever that arise from the host response to the infection).

2.3 Notation

Within this model we consider the bacterial population as a continuous density,

rather than as discrete countable individuals. Thus, we model the bacterial

population via surface densities and volume densities in the various parts of the

model, rather than absolute bacterial numbers (Table 2.1). It is of course always
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Bacteria grow on 
catheter surface

Bacteria grow in 
residual urine

Bacteria transported in urine 
through catheter lumen

Some bacteria deposited on
intraluminal surface, where 
they grow

Bladder

Intraluminal flow

Intraluminal surface

Extraluminal surface

Figure 2.1 Sketch of the system being modelled. Bacteria can grow and spread
as a wavefront on the external (extraluminal) surface of the catheter.
They can grow in the residual urine within the bladder, before
being transported downwards by the flow within the catheter. Some
bacteria attach to the intraluminal surface of the catheter, where they
grow and spread just as on the extraluminal surface.
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Subsystem System spatial dimensions Density type Notation

Extraluminal surface 1 surface n(x, t)

Bladder 0 volume ρ(t)

Intraluminal flow 2 volume σ(x, r, t)

Intraluminal surface 1 surface m(x, t)

Table 2.1 We model the bacterial populations in each subsystem as a density.
However, for some parts of the model we consider a surface density
of bacteria, while for other sections it is a volume density. Moreover,
the spatial dimensions differ in different parts of the model. The
various forms of bacterial density in the model are summarised here,
alongside the notation they are represented by.

possible to retrieve the absolute bacterial numbers by integrating the population

density over the relevant geometry.

Each subsystem of the model has a distinct local geometry. For example, we

can write n(x, t) as the bacterial surface density (i.e., per unit area) on the

extraluminal catheter surface, at a longitudinal distance x along the catheter,

and a time t. Here x = 0 is defined at the bladder, and t = 0 at the time of initial

contamination. Note that here we have neglected the rotational dimension, since

we have assumed the catheter to have rotational symmetry.

On the intraluminal surface, we can define a quantity m(x, t) similarly, as the

bacterial surface density on the intraluminal catheter surface. Again, x = 0 is

located at the bladder, and we neglect the rotational dimension.

For the bacterial populations within the urine, we need to consider volume

densities rather than surface densities. Therefore, we denote ρ(t) as the bacterial

volume density within the bladder, and σ(x, r, t) as the bacterial volume density in

the urine flow within the catheter lumen, where x is as defined for the intraluminal

surface, and r is the radial distance in the lumen (with r = 0 as the centre of the

lumen). This notation is summarised in Table 2.1.

2.4 Parameterisation

Since the objective of this work is to model a real clinical problem, the model

should ideally be parameterised based on literature reports of measured values
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in a clinical setting. Where this is not possible, measurements that have been

taken in a laboratory setting are used, trying where possible to match the

clinical environment. Table 2.2 lists the parameters required for this model, their

expected range in a clinical setting (based on literature), and the ‘default’ values

for them that will be assumed within the following chapters (Chapters 3 to 6).

Parameter Default value
in simulations

Justification and expected range

Urethral length L 40 mm Women: 40 mm. Men:
160 mm [31]. Choosing the shorter
length leads to shorter runtimes
for numerical simulations.

Residual urine
volume

V 50 ml =
5×104 mm3

10− 100 ml [31] but may be up to
500 ml in immobile patients [40].

Urine production
rate

λ 1 ml min−1 =
16.7 mm3s−1

Average of 1 ml min−1 [31].

Dilution rate kD 1.2 hr−1 =
3.33×10−4 s−1

Defined by kD := λ/V .

Catheter internal
radius

R 1 mm Outer diameter: 4-5 mm [31], wall
thickness is manufacturer depen-
dent, so the internal radius is likely
1-2 mm.

Bacterial surface
diffusivity

DS 10−2 µm2s−1 =
10−8 mm2s−1

This depends heavily on factors
such as surface ‘wetness’ (see
§3), so there is a high degree
of uncertainty for this parameter.
There are very few experimental
measurements in the literature,
but the ‘dry’ surface diffusivity of
P. aeruginosa has been measured
as 10−2 µm2 s−1 [41].

Bacterial bulk
diffusivity

DB 102 µm2s−1 =
10−4 mm2s−1

Parameterising a cell swimming
in a liquid medium as a ran-
dom walker: 100 µm2 s−1 for
E. coli [100]. This provides an
upper bound on estimates for the
bacterial surface diffusivity, DS, on
a ‘wet’ surface.

Table 2.2 Model parameters and values. Table continues on next page.
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Parameter Default value
in simulations

Justification and expected range

Catheter surface
bacterial growth
rate

rS 0.69 hr−1 =
1.93×10−4 s−1

This is difficult to experimentally
determine, as in vitro catheter
surface properties differ signifi-
cantly from in vivo. However, the
doubling time of E. coli on poor
growth media1 is ∼ 1 hr [10].

Bacterial growth
rate in bladder

rB 1.39 hr−1 =
3.85×10−4 s−1

Doubling time of E. coli in UTIs is
30-35 mins [35].

Catheter surface
carrying capacity

κS 109 cm−2 =
107 mm−2

Biofilms with densities of
5×109 cm−2 have been found
on catheters [111].

Bladder carrying
capacity

κB 109 ml−1 =
106 mm−3

Bacterial densities of 108 CFU g−1

have been observed for E. coli
growth in urine in the bladders of
mice [35]. And in rich LB medium2

[103], with a similar doubling time
to urine, the density of E. coli has
been measured as 109 cells mL−1.

Bacterial detach-
ment rate

kd 1.93×10−4 s−1 Assume that all new growth de-
taches: kd = rS.

Bacterial attach-
ment rate

ka 1.26×10−6 s−1 Smoluchowski diffusion rate lim-
ited constant [119]: 4πDB·1 µm.

Table 2.2 Model parameters. The values used in the model are listed together
with the expected range of values for each parameter. Within the
model standard units are taken to be mm and s, however parameters
are also given here in more physically intuitive units where applicable.

We discuss the model in depth in the following chapters. In Chapters 3 to 5 we

construct mathematical descriptions for each of the subsystems and explore their

implications for the bacterial population dynamics. Then, in Chapter 6, we couple

all the parts together, to form one unified model for the bacterial colonisation of

a urinary catheter. In Chapter 7, we perform a parameter space exploration of

the model, and interpret these results through the lens of the clinical literature.

1poor growth medium – a growth medium lacking some or all amino acids requisite for
bacterial growth, such that bacterial cells must synthesize these nutrients for growth.

2LB medium – a common (complex) growth medium used in microbiology cell culture,
containing amino acids from yeast extract.
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Finally, in Chapter 8, we apply the model to find new perspectives on both in vivo

and in vitro studies, and discuss the implications of the model for understanding

the efficacy of clinical interventions.
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Chapter 3

Modelling the extraluminal surface

3.1 Introduction

In CAUTI, the interaction between bacteria and the catheter surface is thought

to play an important role [82, 111]. It is thought that the surface provided

by the catheter assists in the transport of bacteria up the urethra into the

bladder, contributing to the much higher rate of infections in catheterised

patients compared to uncatheterised patients [52]. Different bacterial species have

different ways of ascending the catheter [54], which also depend on the surface

material [25, 32]. E. coli is able to adhere to a thin film of proteins, particularly

fibrinogen, that inevitably coats the catheter after insertion [85] (§1.2). The cells
then produce an extra-cellular matrix, within which they can reproduce in relative

safety from the host’s immune system [9].

In Figure 3.1, an example microscopy image that I obtained of bacteria colonising

the extraluminal surface of a catheter is shown. These images were taken with

epifluorescence microscopy1, and show E. coli biofilms that were allowed to

colonise a catheter for 72 hours in vitro. For full details of how this sample was

prepared and images obtained, see §A.1.3. Within this chapter, we establish

a model for bacterial colonisation of the extraluminal catheter surface and

discuss the implications of the model for predictions of both the bacterial density

distributions over the catheter surface, and the timescale of bacterial ascension of

1epifluorescence microscopy – a form of optical microscopy, whereby light at a specific
wavelength from the microscope excites fluorophores in the sample, which then emit light at a
different wavelength [88]
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(a)

(i) (ii) (iii)

(b)

Figure 3.1 Fluorescence images of E. coli biofilms grown on the extraluminal
surface of urinary catheters. (a) A 0.90×0.67 mm section of catheter
surface, imaged with a 10× objective. (b) A zoomed view of the same
section of catheter surface, imaged with a 60× objective.
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Figure 3.2 Bacteria grow and diffuse as a wavefront on the extraluminal surface.

the extraluminal catheter length (from the skin-urethra interface to the bladder).

3.2 A mathematical model

On the extraluminal surface of the catheter, bacteria grow and diffuse over the

surface, as illustrated in Figure 3.2. The rotational symmetry of the catheter

means this can be reduced to a 1-dimensional problem, parameterised only by

the longitudinal distance along the catheter, x. A simple model for this is an

FKPP equation [33, 61, 79]:

∂n

∂t
= DS

∂2n

∂x2︸ ︷︷ ︸
motility

+ rSn

(
1− n

κS

)

︸ ︷︷ ︸
growth

. (3.1)

Here n(x, t) is the bacterial surface density, DS the diffusivity of the bacteria on

the catheter surface, rS the bacterial growth rate on the catheter surface, and

κS the bacterial carrying capacity of the catheter surface (as defined in Table 2.1

and Table 2.2). We shall discuss the specific boundary conditions for Eq. 3.1 and

the numerical implementation of this equation later, in Chapter 6.

The bacterial surface density, n(x, t) has dimensions of [n] = L−2 (recall

Table 2.1). Hence, the total number of bacteria on the outside of the catheter at

a given time is given by

Nextraluminal(t) =

∫
n dS =

∫ L

0

2πRe n(x, t) dx,
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where dS is a surface element, L is the length of the catheter, and Re is the

external radius of the catheter.

The right-hand side of Eq. 3.1 is composed of two terms: a diffusive term

describing the motility of the bacteria, and a reaction term describing the growth

of the population. The form of the growth term is logistic; describing a population

which initially grows exponentially with growth rate rS but is subsequently

constrained by the environment to a maximum density of κS. Choosing to

describe the bacterial motility by a diffusive term enables the parameterisation

of the motility by a single experimentally determinable parameter: an effective

diffusion coefficient DS (since as we discussed in §1.2 we can consider a

bacterial cell as a random walker). However, it carries a significant limitation,

reducing the complexity of bacterial motility on the surface to just diffusion

and hence overlooking any more complicated behaviours, e.g. swarming – the

“rapid multicellular movement of bacteria across a surface, powered by rotating

flagella” (Henrichsen, 1972, as quoted in Kearns, 2010; [46, 57]).

We already discussed the estimated ranges for these parameters in Chapter 2.

Here it is important to highlight the large range in estimates for the bacterial

surface diffusivity. This arises in part from difficulties in experimentally assessing

bacterial motility on catheter surfaces: bacterial surface motility depends

significantly on surface ‘wetness’ [57] (that is, bacteria are typically constrained

to slow ‘twitching’ styles of motility on dry surfaces, whereas cells can often

more effectively utilise their flagella – and hence move faster – when there is

a fluid layer covering the surface), and the surface properties of the catheter

differ significantly in vitro versus in vivo [97], due at least in part to host-

catheter interactions that result in the formation of a conditioning film on the

catheter surface [34]. However, the large range is also an inevitable consequence

of the limitation discussed above, that we are describing the bacterial motility

as simple diffusion. In reality, there are enormous differences in motility from

species to species [46], but even within a single bacterial strain there can be

multiple modes of motility. For example, a population of cells growing within a

biofilm often have very limited motility, resulting in a population that spreads

primarily by growth [9] (DS ∼ 10−9 mm2s−1), while bacterial cells actively

crawling or swimming over a surface show motility that is heavily influenced by

surface ‘wetness’ [41, 57, 100] (from DS ∼ 10−8 mm2s−1 to DS ∼ 10−4 mm2s−1),

and bacteria exhibiting swarming behaviour are highly motile [57] (swarming

cells perform super-diffusion [6], with swarming colonies expanding rapidly, with
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Figure 3.3 Numerical solutions to Eq. 3.1, with an initial inoculation of
100 mm−2 at x = 0, and all parameters except DS as given in
Table 2.2. Reflecting boundary conditions (∂n/∂x = 0) were applied
at x = −100 mm and x = 140 mm, such that the region of interest
(x ∈ [0, 40 mm]) is far from the boundaries. Details of the numerical
scheme are given in §6.3.1. (a) DS = 10−4 mm2s−1. Each curve is
a snapshot of the density profile at 20 ( ), 28 ( ) and 36 ( ) hours
respectively. (b) DS = 10−8 mm2s−1. Each curve is a snapshot of
the density profile at 30 ( ), 60 ( ) and 90 ( ) days respectively.

expansion speeds2 ∼ 10−3 mms−1 [21, 46]). This vast range of potential values for

the bacterial surface diffusivity results in variability in predictions of the infection

timescale (compare Figure 3.3a and 3.3b), as well as having consequences for the

stability of a numerical implementation of Eq. 3.1 (see §A.1.2).

3.3 Existence & implications of travelling wave

solutions

Eq. 3.1 is used in our model to describe bacteria spreading up the length of the

catheter. If there is an initial inoculation at the base of the catheter (at the skin),

then the infection will spread in a wave-like manner up the catheter (Figure 3.3).

This travelling wavefront behaviour is interesting because it suggests that the

shape of the bacterial distribution on the outside of the catheter could provide

insight into the start of the infection. In particular, we would expect to see (at

2As we shall see later, a swimming bacteria as described by diffusion would have a velocity
2
√
rSDS ∼ 10−6 mms−1 (for parameter values as in Table 2.2). We might compare this with

the value ∼ 10−6 mms−1, which is the literature recorded rate of increase in colony radius of
E. coli [46].
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early times) a higher density of bacteria near the point of infection than in regions

that the infection has not yet spread to. In fact, depending on initial conditions,

there is often much more we can say about these travelling wavefronts. For

example, we can calculate the wavefront speed, and hence estimate the timescale

of bacterial ascension of the catheter.

3.3.1 Wavefront solutions to the dimensionless FKPP

equation

While Eq. 3.1 is not generally solvable, for certain initial conditions the properties

of the travelling wave solutions are known. Taking the following transform,

n→ n

κS

x→ x

√
rS
DS

t→ rSt,

(3.2)

we non-dimensionalise Eq. 3.1, giving rise to the nondimensionalised FKPP

equation:
∂n

∂t
=
∂2n

∂x2
+ n (1− n) . (3.3)

This equation has been studied extensively, particularly as regards its asymptotic

properties [79, 117]. Since this equation describes a stable state (n(x, t) = 1)

propagating into an unstable state (n(x, t) = 0), there is an associated linear

spreading velocity: the velocity at which perturbations to the (unstable) zero

state spread, obtained by linearisation of the equation about that unstable

state [117]. For Eq. 3.3, this linear spreading velocity can be shown to be v∗ = 2,

see §A.1.1.

The linear spreading velocity places a constraint on the wave speeds of asymptotic

solutions of Eq. 3.3: vasym ≥ v∗ for all initial conditions. In fact, all travelling wave

solutions to Eq. 3.3 can be split into two classes. Wavefronts travelling with speed

vasym = v∗ are pulled solutions, with the spreading perturbation ‘pulling’ the

nonlinear behaviour behind it. Wavefronts travelling with speed vasym > v∗ are

pushed solutions, with the nonlinear behaviour ‘pushing’ forward the perturbation

into the zero state [117].

Which of these possible solutions actually occurs is determined by the initial
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conditions. It has been shown that the asymptotics of the travelling wave

solution is determined by the asymptotics of the initial conditions [79]. Any

initial conditions with compact support (that is, that are non-zero only on some

finite domain) will have the same asymptotic behaviour. In other words, for

initial conditions of the form

n(x, 0) =

{
f(x) > 0 if x < a

0 if x ≥ a
(3.4)

for some finite a, this equation has travelling wave solutions [79] with speed v∗ = 2

and width3 w = 4v∗, and these travelling wave solutions have the approximate

form

n(x, t) ∼ 1

1 + e(x−v∗t)/v∗
. (3.5)

In fact, many other initial conditions also lead to asymptotic wavespeed vasym =

v∗, even if the initial density is non-zero everywhere. Since the asymptotic

solution is determined by the asymptotics of the initial condition, it is sufficient to

require that the initial condition be sufficiently steep. If we can write the initial

condition in the asymptotic form n(x, t=0) ∼ Ae−λx for λ > 0 and arbitrary

A > 0, then steep initial conditions must decay exponentially with rate λ > λ∗,

where λ∗ = 1 is the asymptotic spatial decay rate (as found in § A.1.1). All initial
conditions which satisfy this criterion will have asymptotic wavespeed vasym = v∗,

and approximate form as in Eq. 3.5 [79].

The condition for pushed fronts, vasym > v∗, is that the initial condition must

decay ‘more slowly’ than the asymptotic spatial decay rate. In this case, λ < λ∗,

the travelling waves travel with asymptotic wave speed vasym = λ + 1
λ
. These

solutions with vasym > v∗ have the approximate asymptotic form [79]

n(x, t) ∼ 1

1 + eζ
+

eζ

v2asym(1 + eζ)2
ln

[
4eζ

(1 + eζ)2

]
, (3.6)

where ζ = x/vasym − t.

3width being defined as the inverse steepness of the wavefront
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3.3.2 Infection pathways: specifying initial and boundary

conditions

Returning to Eq. 3.1, by redimensionalising the results of §3.3.1 (see §A.1.1)
we see that the linear spreading velocity is v∗ = 2

√
rSDS. Thus, for initial

conditions with compact support, the solutions are travelling waves, with velocity

v = 2
√
rSDS, width w = 8

√
DS/rS, and approximate form

n(x, t) ∼ κS

1 + e(
√
rS/4DSx−rSt)

. (3.7)

Many of the infection pathways discussed in Chapter 2 satisfy this condition of

compact support (that is, they satisfy Eq. 3.4). In fact, infections that originate

at the skin (a bacterial reservoir at the ‘bottom’ of the extraluminal surface),

drainage bag (a bacterial reservoir at the ‘bottom’ of the intraluminal surface) or

bladder (i.e., a dynamic, growing, bacterial reservoir at the top of the catheter),

as well as the delta condition at the bottom of the catheter as considered in

Figure 3.3, all satisfy compact support. This may be surprising, given that several

of these scenarios are formulated as boundary conditions for the bacterial density

rather than as initial conditions (i.e., are not only a condition at t = 0 – an initial

condition, as required by Eq. 3.4 – but rather must be true at all times), but we

can see that compact support holds for these three boundary conditions by the

following graphical argument.

The boundary condition may be static (as in the case of the skin acting as a

reservoir), or dynamic (as in the case of bacterial growth within the bladder).

Regardless, we can without loss of generality, write this boundary condition as

n(x=0, t) = b(t). In all the scenarios discussed in the previous paragraph, the

catheter is assumed to be clean at time t = 0, such that the initial condition

is n(x, t=0) = b(0)δ(x). This is a perturbation to the unstable zero state,

which will spread at a speed no less than v∗. As this perturbation spreads

it will grow, according to the nonlinear behaviour of Eq. 3.1. If this initial

perturbation corresponds to a single bacterium (since there is no physical meaning

to a perturbation that is smaller than a single bacterium), then there is some

finite distance4 x1 = B and finite time t1, such that n(x1, t1) ≈ κS. Since

4If we consider Eq. 3.1, the nature of the nonlinear logistic term is such that although
n(x, t) → κS , it does not converge in finite time or distance. However, since bacteria are
discrete and finite, in practice n has finitely many possible values, and hence converges in finite
time/distance. Within our simulations we define B as the distance x at which n(x=B, t→∞) =
0.999κS , when there is a fixed boundary condition of n(x=0, t) = 1 mm−2. This scales with
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Figure 3.4 The maximal boundary effect distance for bacterial density
wavefronts on a catheter. (a) Eq. 3.1 simulated with a time
dependent boundary, b(t) (Eq. 3.8 – shown in (b)) at the origin, and
a reflecting boundary ∂n/∂x = 0 at x = 140 mm. Parameters are as
in Table 2.2, with the exception of Ds, which here is 10−4 mm2s−1.
In green is the bacterial density profile on the catheter after 7.5( ),
15( ), 22.5( ) and 30( ) hrs. In grey ( ) is the long-time
behaviour of Eq. 3.1 with the same parameters, but with instead a
fixed boundary of n(0, t) = 1 mm−2. The grey vertical line ( ) shows
the maximal boundary effect distance B. Next to it, the green vertical
line ( ) is the position at which n(x, 30) has attained 0.999κS –
illustrating how x1 may shift leftwards. (b) The dynamic boundary
condition applied in (a): Eq. 3.8.
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n(x, t) = κS is the stable state for Eq. 3.1, we have for all x > x1 and t > t1 that

n(x, t) is independent of anything left of x1, i.e. independent of the boundary

conditions. Since a single bacterium was the smallest possible perturbation, the

only possible effects of changing the boundary condition (i.e., increasing the size

of the perturbation) is to drive x1 leftwards, closer to the origin. The distance

B, set by the limit of a single discrete bacterium perturbation, is the maximal

boundary effect distance, just as v∗ is the minimal asymptotic speed.

In Figure 3.4 we illustrate this argument with an example. We simulate Eq. 3.1

(Figure 3.4a) for a boundary condition that has logistic form (Figure 3.4b),

b(t) =
0.4κSe

0.8rSt

4 · 10−4κS + e0.8rSt
, (3.8)

chosen to approximate the behaviour of the bacterial density in the bladder

(Chapter 4). We see that after some time t1, the density attains a value

n(x1, t1) ≈ κS at some position x1. To the right of this point, the density wave

solution propagates as if from an initial condition n(x−x1=0, t−t1=0) = κS, i.e.

independently of the values of the density profile n(x<x1, t). This position x1 can

be seen to lie closer to the origin than B (superimposed in grey in Figure 3.4a).

The only infection pathway that does not have compact support over the

extraluminal surface is the scenario in which the catheter is contaminated at

time of insertion, so that there is non-zero bacterial density over the entire

extraluminal catheter surface. If the initial contamination is sufficiently uniform,

then there will be no travelling wave solutions. Assuming non-uniform initial

contamination, then the behaviour of the travelling wave solutions is determined

by the asymptotic behaviour of the initial conditions, as discussed earlier in §3.3.1.

3.3.3 Relaxation behaviour and timescales

All the wavespeeds we have discussed so far in this chapter are asymptotic

wavespeeds. The true solutions converge towards these asymptotic wavespeeds

rapidly following some establishment time, T . These establishment times scale

logarithmically with the initial condition (Figure 3.5), T ∼ log(κS/n0), which

the ‘width’ of the pulled solutions we have discussed earlier: 8
√
DS/rS . We might worry about

whether this boundary effect distance is actually small relative to the system size: the catheter
length L. For DS = 10−4, B ≈ 5 mm. And for DS = 10−8, B ≈ 0.05 mm. Comparing these to
the lengths of a catheter, 40 - 200 mm, we see that B is indeed small.
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Figure 3.5 The solutions to Eq. 3.1 relax to the asymptotic form of Eq. 3.7
following an establishment time T . Plotted is T for varying
initial condition, n(x, 0) = n0δ(x), for DS equal to 10−8 (•) and
10−4 (•) mm2s−1. All other parameters are as in Table 2.2.

emerges from the scaling behaviour of the linearised form of Eq. 3.1. In fact, the

wavespeeds relax exponentially to the asymptotic wavespeed from above [117].

We can think of this as the wavefront being initially pushed by the nonlinear

behaviour close to the front, due to the steepness of the initial conditions. This

nonlinear front is then overtaken by the linear spreading front, so the relaxation

time is the speed at which the linear front overtakes the nonlinear front. The

timescale that this occurs over, T ∼ 30 hrs, is small compared to the overall

timescale of the wave travelling over the catheter (e.g. L/v∗ ∼ 4000 hrs for

parameter values as in Table 2.2) for most parameter values (this is not true for

L/v∗ ∼ 40 hrs when Ds = 10−4 mm3s−1 and L = 40 mm), so we can generally

consider the timescale of bacterial ascension of the catheter to simply be the time

associated with the FKPP wavespeed, L/v∗.

3.4 Summary

The spread of bacteria over the extraluminal surface of the catheter is modelled

by the one-dimensional FKPP equation (Eq. 3.1):

∂n

∂t
= DS

∂2n

∂x2
+ rSn

(
1− n

κS

)
,

37



where n(x, t) is the bacterial surface density, DS is the diffusivity of the bacteria

on the catheter surface, rS is the bacterial growth rate on the catheter surface,

and κS is the bacterial carrying capacity of the catheter surface.

This equation supports travelling wave solutions for many initial conditions,

with the propagation direction of the wave carrying information on the location

of the initial contamination. Where the initial condition is mostly zero, with

contamination limited to a small region, an approximate form of the wave profile

can be written, and these solutions have wave speed 2
√
rSDS.

The dimensionless number ρ = rSL
2/DS is the ratio of the growth timescale

to the motility timescale, and scales with the ratio of wavewidth to catheter

length – parameterising the shock-like behaviour of the system. The motility

of the bacteria is captured by an effective diffusion term, with the different

possibilities for both catheter surface properties and bacterial motility resulting

in an extremely large parameter space for DS, spanning 5+ orders of magnitude.

Since the ratio of the growth timescale to the motility timescale, ρ ∼ 1/DS, this

also implies a large physical range for ρ in this system. This has implications for

the numerical stability of the system, as well as for any estimates of the timescales

of infections.

For most parameterisations (excluding the case of short urethral length and

high bacterial motility), the timescale of bacterial ascension of the catheter is

approximately the time taken for the asymptotic FKPP wave to travel the length

of the catheter: L/v∗ = L/2
√
rSDS. The distance over which the waveform

approaches its asymptotic form, B, is small relative to L for all physically

relevant parameters, so we can more accurately consider the timescale of bacterial

ascension to be the timescale of the asymptotic wave plus the establishment time

over which the wave relaxes to the asymptotic form: T + L/v∗.
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Chapter 4

Modelling the bladder

4.1 Introduction

The bladder is an elastic balloon-like volume which, under normal circumstances,

periodically fills and empties. At any moment the volume of the bladder is equal

to the volume of urine contained within it, i.e., there is no air or ‘empty space’

within the bladder. The filling of the bladder is controlled by the rate of urine

production by the kidneys, which is continuous but variable. In the absence

of excess fluid intake, the kidneys produce urine at a rate of 1 mL min−1 [31],

however the rate may be much higher after the intake of fluids.

When a continuously draining (Foley) catheter is introduced to this system the

normal cycle of filling and emptying is disrupted [64]. The balloon of a Foley

catheter causes some urine to be retained [30], as the eyelets of the catheter

sit some distance above the base of the bladder (Figure 1.2). Additionally,

pressure differentials, often caused by kinks in the tubing, mean that the catheter

frequently fails to drain the bladder [40]. As a result, there is a roughly constant

sump of residual urine within the bladder. There is no consensus on typical values

for this volume, only a claim by Feneley et al. [31] of a range of 10–100 mL. In

immobile patients with indwelling catheters, residual volumes as high as 500 mL

have been recorded [40], with the mean volume closer to 100 mL. Even in the

absence of a catheter, the bladder is known to retain a small volume of urine [43],

and studies on intermittent catheterisation1 have found mean residual volumes

1intermittent catheterisation – a catheter is inserted and left in place only long enough for
full drainage of the bladder (∼ 1 min)
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Figure 4.1 (a) Bacteria grow in residual urine within the bladder. (b) Behaviour
of Eq. 4.3, with an initial inoculation of 1 mm−3, subject to different
dilution rates kD. Each curve is a numerical solution for the
bacterial density, with dilution rates of 0 ( ), 1 ( ), 2 ( ), and
3 ( ) ×10−4s−1 respectively. Other parameters are as given in
Table 2.2.

in the range of 5− 25 mL [8, 63]. Within this chapter, we assume the volume of

the residual urine sump to be 50 mL (as in Table 2.2).

Under normal conditions the periodic cycle of the bladder results in the urethra

being regularly flushed, helping to prevent the adhesion of bacteria. In the

presence of a catheter this is no longer the case. To make matters worse still, the

catheter erodes the mucosal surface of both the bladder and urethra: surfaces that

would otherwise have provided some protection against bacterial adhesion [30].

4.2 A mathematical model

Previous work by Gordon and Riley [43] assumed exponential bacterial growth in

a model for micturition (urination) dynamics and urinary tract infection. Since

bacteria replicate by division, exponential growth is the simplest possible model

for bacterial population growth,

dN

dt
= rN, (4.1)
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where N is the population size, and r the growth rate. However, an exponential

growth model is unbounded, rapidly tending toward infinite bacterial densities,

rendering it appropriate only for short timescales. Logistic growth represents

the simplest modification that can be made to an exponential growth model to

enforce an upper bound on the population density [79]:

dN

dt
= rN

(
1− N

κ

)
, (4.2)

where κ is the carrying capacity – the maximum population size supported by

the environment. For the logistic growth model, in the limit of late time, the

population size achieves a steady state N = κ.

While the logistic growth model is simple, it has no mechanistic justification. An

alternative model would be that of a chemostat: a device in which bacteria grow

under conditions of continuous dilution [92], which closely resembles the situation

of bacterial growth in a catheterised bladder. Chemostat theory predicts the

dynamics of the bacterial population and the nutrient concentration in such a

device. However, chemostat theory describes bacterial growth only on a single,

simple limiting substrate, e.g., glucose as the sole carbon source. Urine is not

a simple substrate, and no chemostat model has yet been developed to describe

quantitatively bacterial growth on media with multiple nutrient sources, such as

urine. As a minimal model, therefore, assuming logistic growth dynamics may be

a reasonable approximation.

Bacteria proliferate in the residual sump of urine that remains in the bladder

during catheterisation [30, 31, 40] (Figure 4.1a; §Bacteriuria), and then are

removed from the bladder by urine flow. Assuming the residual urine in the

catheterised bladder to be well-mixed and of constant volume, we model bacterial

dynamics with a logistic growth equation, supplemented by a dilution term [79]:

dρ

dt
= rBρ

(
1− ρ

κB

)

︸ ︷︷ ︸
growth

− kDρ︸︷︷︸
dilution

. (4.3)

Here, ρ(t) is the bacterial volume density at time t, rB is the (maximum) growth

rate of the bacteria in urine, and κB is the carrying capacity of urine. The

dilution rate is given by kD = λ
V
, where λ is the rate of urine production by the

kidneys, and V is the volume of residual urine in the bladder (see Table 2.2).

The behaviour of Eq. 4.3 is illustrated in Figure 4.1b for numerical simulations
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Figure 4.2 The dependence of the steady state solution of Eq. 4.3, ρ = κeff, on
the dilution rate, kD. The steady state bacterial density decreases
linearly as the dilution rate increases. A washout transition occurs
at kD = rB, marked here by a vertical line ( ).

(§6.3.2, §A.2.2) of several different values of the dilution rate, where the initial

condition of ρ(0) = 1 mm−3 is equivalent to the presence of 103 CFU/mL bacteria

within the urine (recall from §1.3 that CFU = colony forming units).

The bacterial volume density ρ(t) within the bladder has dimensions [ρ] = L−3

(recall Table 2.1). The total number of bacteria within the bladder at a given

time is then

Nb(t) =

∫
ρ dVb = V ρ(t). (4.4)

4.3 Establishment criterion for bacterial growth:

criticality of the dilution rate

As we show in Figure 4.1b, modifying the dilution rate alters both the stationary

state bacterial density within the bladder and the time taken to attain that steady

state. In fact, from the form of Eq. 4.3 one can infer the existence of a washout

42



transition; occurring at kD = rB – we discuss this transition in detail in §4.3.1.
Washout is a phenomenon observed in continuous culture: when bacteria grow in

continuously diluted medium it is well known that a bacterial population can only

be sustained for dilution rates less than the bacterial growth rate [3, 92]. This

transition is illustrated in Figure 4.2, where the stationary state of the bacterial

density (i.e., the sustained bacterial population within the bladder) falls to zero

for dilution rates greater than the bacterial growth rate.

4.3.1 Rescaled logistic growth

To see how this washout phenomenon arises from Eq. 4.3, we rearrange the

equation to obtain a rescaled logistic growth equation:

dρ

dt
= (rB − kD)ρ

(
1− rBρ

(rB − kD)κB

)

= reffρ

(
1− ρ

κeff

)
.

(4.5)

Here we have identified an effective growth rate

reff = rB − kD, (4.6)

and an effective carrying capacity

κeff =
(rB − kD)κB

rB
. (4.7)

Therefore, by analogy with logistic growth [79], we must have a stationary state

bacterial density equal to κeff, i.e., κB(1− kD
rB
). Hence as kD → rB, κeff → 0, and

the stationary state bacterial density goes to zero. At the same time, the time

taken to achieve the stationary state increases, because reff = rB − kD. That is,

the bacteria grow slower, and reach a lower population density, as the dilution

rate increases.

Since the solution to the logistic equation is known (see §A.2.1), through this

rescaling argument we can also obtain the dynamics of the bacterial density within
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the bladder:

ρ(t) =
κeffρ0e

refft

κeff + ρ0(erefft − 1)

=
(rB − kD)κBρ0e

(rB−kD)t

(rB − kD)κB + rBρ0 (e(rB−kD)t − 1)
,

(4.8)

where ρ0 is the bacterial density at time t = 0.

We can now see that the value of the dilution rate is critical to the behaviour

of this model: governing both the bacterial steady state density in the bladder,

and the timescale over which the steady state is attained. This dependence

of the model on the dilution rate is very similar to the behaviour of other

(uncatheterised) micturition models, where there is a critical relationship between

the urine dilution rate and the bacterial growth rate [43].

4.3.2 A simple model for micturition dynamics leading to an

establishment criterion for bacterial growth

In 1992, Gordon and Riley [43] presented a mathematical model of human

micturition dynamics and bacterial growth, which they used to predict an

establishment criterion for infection in the absence of adhesin-mediated surface

growth. As we discussed in §1.5, in the model of Gordon and Riley the bladder is

assumed to periodically fill and empty, with a minimum volume Vn, a maximum

volume Vx, and a filling rate λ. Thus the volume of urine in the bladder is given

by

V (t) = Vn + λt, t ∈
[
0, τ =

Vx − Vn
λ

)
. (4.9)

Assuming exponential bacterial growth, in the time between micturition events,

the number of bacteria in the bladder is given by

N(t) = N0 exp (rBt) , (4.10)

where rB is the bacterial growth rate within the bladder and N0 is the number

of bacteria present in the residual urine at the start of the time interval. Then,

with Nk being the population after k micturition events, the bacterial population
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after the k + 1th micturition event is given by

Nk+1 =
Vn
Vx
Nk exp

(
rB(Vx − Vn)

λ

)
. (4.11)

The ‘establishment criterion’ is that Nk+1 > Nk, i.e., that the population should

grow in successive cycles. This establishment criterion implies a condition on the

growth rate:

rB > log

(
Vx
Vn

)
λ

Vx − Vn
. (4.12)

This work by Gordon and Riley is relevant to, but differs substantially from,

my own work. First, Gordon and Riley’s model does not consider the case of a

urinary catheter. Additionally, their model applies only at early times when the

infection is still establishing. Their assumption of exponential growth results in an

unbounded bacterial population that rapidly diverges in an unphysical manner.

However, I have applied their methodology to explore my own model for the

bacterial dynamics of the bladder in the presence of a urinary catheter (§4.3.3).

4.3.3 Establishment criterion for bacterial growth in the

presence of a catheter

In establishing Eq. 4.3 we took a continuum description of the bacterial and

urine dynamics in the bladder. Here we shall show that our model (Eq. 4.3) is

equivalent to applying the modelling methodology of Gordon and Riley to the

case of a catheterised bladder (where the time interval between micturition events

goes to zero).

Catheterised exponential bacterial growth

Gordon and Riley presented a model for the bladder in which the volume of

urine varies periodically between defined minimal and maximal values. When a

catheter is added to the system this is no longer the case. Simplistically applying

the approach of Gordon and Riley, we might assume that the bladder now empties

at the same rate as it fills (a rate we denote by λ), and hence that Vx = Vn.

Following through with this assumption we see that Nk+1 ≡ Nk, i.e., that the

bacterial population is in equilibrium.
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Instead let us consider the limit of Vx → Vn. Now we can write

t ∈ [0, ε) , ε→ 0, (4.13)

where ε is a small variable. Then using that Vx = Vn+λε (from Eq. 4.9), we can

apply Eq. 4.11 to write

Nk+1 =

(
1− λε

Vn + λε

)
Nk exp(rBε). (4.14)

Therefore, the establishment criterion for bacterial growth becomes

rB > log

(
1 +

λε

Vn

)
1

ε
. (4.15)

By Taylor expanding log(1 + x) = x− 1
2
x2 + . . . , we find

rB >
λ

Vn
− λ2

2V 2
n

ε+ . . . . (4.16)

And hence as ε→ 0, our criterion is simply

rB >
λ

Vn
. (4.17)

In other words, to remain in the bladder, bacteria must grow faster than they

are diluted out. This is exactly the washout phenomenon that we discussed in

§ 4.3.1.

Logistic bacterial growth

In deriving Eq. 4.17, we assumed exponential bacterial growth. However, as we

discussed in §4.2, exponential growth is not a physical model for growth within

the bladder, while logistic growth is more suitable (Eq. 4.2). As discussed above

(§4.3.1), in the limit of late time, the logistic growth model (Eq. 4.2) achieves a

steady state N = κB, and with the initial condition N(0) = N0 it has the solution

(see §A.2.1)

N(t) =
N0κB exp(rBt)

κB +N0 (exp(rBt)− 1)
. (4.18)

We can follow through the argument of Gordon and Riley for the uncatheterised

bladder with periodic micturition dynamics, this time applying it to the case of
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logistic growth:

Nk+1 =
VnNk

Vx
· κB exp(rBτ)

κB + VnNk

Vx
(exp(rBτ)− 1)

, (4.19)

where τ is as defined in Eq. 4.9, τ = (Vx − Vn)/λ. The growth condition is

Nk+1 > Nk, so we have

Vn
Vx

· κB exp(rBτ)

κB + VnNk

Vx
(exp(rBτ)− 1)

> 1, (4.20)

which can be rearranged to find

rB > log

(
VxκB − VnNk

Vn(κB −Nk)

)
1

τ
. (4.21)

Unlike in the exponential case, here we see that the condition for sustained growth

in the bladder depends on the current bacterial population size, and that there

is no growth rate r for which the population will always increase. This isn’t a

surprise, given that logistic growth is by nature self-limiting.

Catheterised logistic bacterial growth

Now once again we can introduce a catheter to the system and consider the limit

in which the time interval for micturition goes to zero: t ∈ [0, ε) , ε→ 0. Again,

using the fact that Vx = Vn + λε, and rearranging some terms, we obtain

rB > log

(
κB(Vn + λε)−NkVn

Vn(κB −Nk)

)
1

ε

= log

(
1 +

κBλε

Vn(κB −Nk)

)
1

ε

=
κBλ

Vn(κB −Nk)
− 1

2

(
κBλ

Vn(κB −Nk)

)2

ε+ . . .

(4.22)

Note that the above Taylor expansion is valid for 0 < ε < Vn(κB−Nk)
κBλ

, and so

it does not hold for Nk ≥ κB. In fact, for Nk ≥ κB it is obvious that there

can be no value of the growth rate for which the population increases. This is

because logistic growth enforces the population maximal bound of κB through

the nonlinear term rBNk(1 − Nk/κB), so when the population size Nk exceeds

κB, any non-zero value of the growth rate rB results in a negative rate of change

of population size.
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Now, taking the limit ε → 0 (our ‘catheterisation limit’), we obtain a condition

on the growth rate for sustained bacterial growth of

rB >
κBλ

Vn(κB −Nk)
. (4.23)

In the limit Nk ≪ κB (a small population that is not close to the carrying

capacity) the logistic growth model tends to exponential growth, and the

condition is once again more simply

rB >
λ

Vn
. (4.24)

In the context of a catheterised bladder, this inequality is a property of the

washout transition mentioned in §4.3: that the bacterial population size will

increase only if the bacteria grow faster than they are diluted out of the bladder.

Stationary state

From Eq. 4.23 we see that for the scenario of logistic growth in a catheterised

bladder, the stationary state solution is no longer N = κB, as it was in the case

of simple logistic growth2. The maximum value of the population size N occurs

at the limit of Eq. 4.23, i.e., when

rB =
κBλ

Vn(κB −N)
. (4.25)

Hence, in this model the stationary state is now

N = κB

(
1− λ

VnrB

)
. (4.26)

We can compare this to the stationary state we found in §4.3.1, which also

corresponded to logistic growth with dilution (Eq. 4.7):

κeff =
(rB − kD)κB

rB
.

2We can also find the maximum population in the non-catheterised logistic growth case, by
assuming that the growth criterion in Eq. 4.21 fails exactly:

N = κB

(
exp(rBτ)− Vx

Vn

exp(rBτ)− 1

)
; τ =

Vx − Vn
λ

.
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Since kD := λ/V , we see that the two steady state solutions, Eq. 4.7 and Eq. 4.26

are in fact the same state (for V = Vn).

Washout condition emerges from the ‘population growth rate’

The above discussion was framed around the concept of a bacterial growth rate rB,

which characterises exponential growth of a bacterial strain on a given medium;

we then used the logistic term to describe saturation of growth at large population

sizes. An alternate framing of the same logistic model is to define a ‘population

growth rate’ rpop := rB

(
1− N

κB

)
, giving

dN

dt
= rpop(N)N. (4.27)

Now we find in the steady state that the population growth rate is given by

rpop = rB

(
1− N

κB

)

= rB

(
1−

(
1− λ

VnrB

))

=
λ

Vn
.

(4.28)

This is of course exactly what we expect for the steady state of a bacterial

population in a diluting medium: that the growth of the population equals the

‘wash-out’ rate.

4.4 Summary

Assuming the residual urine in the catheterised bladder [30, 31, 40] to be well-

mixed and of constant volume, we model bacterial dynamics in the bladder with

a logistic growth equation, supplemented by a dilution term [79], Eq. 4.3:

dρ

dt
= rBρ

(
1− ρ

κB

)
− kDρ.

Here, ρ(t) is the bacterial volume density at time t, rB is the (maximum) growth

rate of the bacteria in urine, and κB is the carrying capacity of urine. The dilution

rate is given by kD = λ
V
, where λ is the rate of urine production by the kidneys,
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and V is the volume of residual urine in the bladder (see Table 2.2) .

The value of the dilution rate is critical to the behaviour of this model, governing

a transition (at kD = rB) between an ‘infected’ (bacteriuric) non-zero state and a

‘washed-out’ zero state. As we showed in §4.3.3, this model (Eq. 4.3) is equivalent

to a logistic modification to the model for micturition dynamics and bacterial

growth proposed by Gordon and Riley [43], in the limit of the micturition interval

τ tending to zero, where the maximal volume tends to the minimal volume,

Vx → Vn.
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Chapter 5

Modelling the intraluminal flow &

surface

5.1 Introduction

Urine leaving the bladder flows through the catheter lumen, transporting bacteria

downwards. Some bacteria become stuck to the catheter surface, where they

form a biofilm. These biofilms on the inside of the catheter are particularly

troublesome, as they may result in the blockage of the catheter. The most

problematic of these blockages are crystalline (formed by precipitates arising

from the alkalisation of the urine by P. mirabilis, recall §1.2), however even

the more viscous biofilms formed by E. coli can disrupt flow and alter the

performance of the catheter [30, 111]. Any biofilm can also act as a reservoir for

bacteria, resulting in frequent reinfections of the bladder, and are often resistant

to antibiotic treatment [9]. In our model, the biofilm is assumed to be thin, such

that it does not alter the flow profile of urine within the catheter. The bacterial

density becoming too high for this to be a reasonable assumption is taken as an

end state for the model.

Figure 5.1 shows some examples of bacteria colonising the intraluminal surface

of a catheter. These images were taken with Mesolens [76], in collaboration with

the group of Gail McConnell (Strathclyde University), and show E. coli biofilms

that were allowed to colonise a catheter for 24 hours in vitro. For full details of

how these samples were prepared and images obtained, see §A.3.6.
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(a) (b)

(c) (d)

Figure 5.1 Fluorescence images of E. coli biofilms grown on the intraluminal
surface of urinary catheters. (a) A 6 mm catheter segment. In
green are biofilms formed by E.coli strain AD51, in magenta is
the background fluorescence of the catheter. (b) Enlarged AD51
biofilm image, cropped from (a). (c) A 6 mm catheter segment.
In green are biofilms formed by E.coli strain RJA002, in magenta is
the background fluorescence of the catheter. (d) Enlarged RJA002
biofilm image, cropped from (c).
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x

Figure 5.2 Bacteria are deposited by the urine flow. They then grow and spread
as a wave over the surface.

5.2 A mathematical model

5.2.1 Bacterial growth on the intraluminal surface

We model the growth of bacteria on the intraluminal surface very similarly to

our model for growth on the extraluminal surface (Chapter 3). Again, bacteria

are growing and diffusing over the surface, as illustrated in Figure 5.2. However

there is now an additional source term arising from the deposition of bacteria

from the urine flow:

∂m

∂t
= DS

∂2m

∂x2︸ ︷︷ ︸
motility

+ rSm

(
1− m

κS

)

︸ ︷︷ ︸
growth

+ j(x)︸︷︷︸
deposition

. (5.1)

Similarly to the extraluminal surface, m(x, t) is the bacterial surface density (but

note that x is now measured from top to bottom of the catheter – in the direction

of urine flow); DS, rS, and κS are, as defined previously, the bacterial diffusivity,

growth rate, and carrying capacity (Table 2.2). The additional term j(x) is

the source term representing the bacterial deposition flux, which couples the

intraluminal surface to the urine flow. We will discuss the boundary conditions

of Eq. 5.1 later in §6.3.3.
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5.2.2 Dynamics of urine flow through a catheter

To find the form of the bacterial deposition flux, j(x) in Eq. 5.1, we need to

describe the bacteria within the intraluminal urine flow. First we must consider

the behaviour of the urine flow itself. As discussed in §1.1, within the catheter,

urine flows downwards at a rate equal to the production rate of the kidneys.

This is typically around 1 mL min−1, or 16.7 mm3s−1 (see Table 2.2). The

hydrodynamics of flow through a pipe is well-established, with its properties

determined by its Reynolds number [118]. In §1.1, we calculated the Reynolds

number for a ‘typical’ catheter of radius R = 1 mm, and urine flow rate of

λ = 1 mL min−1, to be Re = 6 (Eq. 1.2). Thus, the flow of urine through a

catheter is laminar, and can be described by Eq. 1.4:

u(r) =
2λ

πR4

(
R2 − r2

)
,

where λ is the rate of urine production by the kidneys, R is the internal radius

of the catheter, and r is our radial coordinate. This results in the flow profile

shown in Figure 1.3b.

We note that this laminar flow regime is the steady state for the established flow

within a pipe; it does not describe the initial hydrodynamic inlet region (right at

the top of the pipe). The distance downstream at which the flow has achieved

99% of its final axial velocity (and so can be said to be essentially laminar) is

given by [69] h ∼ 0.1R · Re, which for the values discussed above in Eq. 1.2 is

h ∼ 0.6 mm. Compared to the typical lengths of catheters of 40− 200 mm, this

length is negligible. Further, this initial region is also in the reality of complex

geometry (i.e., catheter eyelets), which we are neglecting within this model.

5.2.3 Transport of bacteria within the intraluminal urine flow

When there is a (catheter-associated) urinary tract infection, the urine flow will

transport bacteria downwards, as illustrated in Figure 5.3a, depositing some on

the intraluminal surface of the catheter. The bacteria diffuse within the urine

flow, with the bacterial flux onto the surface then being the depositional source

term, j(x), mentioned in Eq. 5.1.

When considering the bacterial dynamics within the intraluminal flow, we can

neglect the growth of bacteria, as it occurs on timescales very much slower than
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Figure 5.3 (a) Urine transports bacteria downwards through the catheter.
(b) The geometry of a cross section across the catheter. The catheter
can be seen to have rotational symmetry, allowing us to neglect ψ.

those of the fluid flow. The characteristic timescale of bacterial growth is the

doubling time, τb = log 2
r

∼ 1800 s. The timescale of the flow is the average

time taken for urine to pass through the catheter, τc =
πR2L
λ

∼ 7 s, so τc ≪ τb.

The characteristic timescales for the radial and longitudinal diffusive processes

are R2/DB = 1 × 104 s and L2/DB = 1.6 × 107 s. Both of these processes are

clearly much slower than the convective flow timescale (7 s). For this reason, we

neglect longitudinal diffusion within the model, although radial diffusion cannot

be neglected, as it has significant effects over small radial distances – such as close

to the catheter wall.

The rotational symmetry of the catheter, as illustrated in Figure 5.3b, allows us to

reduce the dimensionality of the problem, resulting in a 2-dimensional convection-

diffusion equation [70, 112]:

∂σ

∂t
= DB

(
∂2σ

∂r2
+

1

r

∂σ

∂r

)

︸ ︷︷ ︸
motility

−u(r)
∂σ

∂x︸ ︷︷ ︸
flow

. (5.2)

Here σ(r, x, t) is the bacterial volume density within the urine, DB is the

diffusivity of bacteria within urine, and u(r) is the (Poiseuille) flow profile given

by Eq. 1.4.
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5.2.4 Full bacterial dynamics in the catheter lumen

Finally, we can obtain the bacterial deposition flux, j(x), that appears within the

description of the intraluminal surface growth in Eq. 5.1:

j(x) = −DB
∂σ

∂r

∣∣∣∣
r=R

. (5.3)

Gathering everything so far together, we have a system of equations describing

the evolution of the bacterial density within the catheter lumen:

∂m

∂t
= DS

∂2m

∂x2
+ rSm

(
1− m

κS

)
+ j(x)

j(x) = −DB
∂σ

∂r

∣∣∣∣
r=R

∂σ

∂t
= DB

(
∂2σ

∂r2
+

1

r

∂σ

∂r

)
− u(r)

∂σ

∂x

u(r) =
2λ

πR4

(
R2 − r2

)

(5.4)

Dimensions, densities and absolute bacterial numbers

In our model we consider the dynamics of bacterial densities, rather than absolute

numbers of bacteria. This makes for generally simpler equations and is consistent

with the continuum approach that we adopt here. However, it is important to

clarify when we are discussing surface densities and when instead we have volume

densities. For the inside surface, Eq. 5.1, m(x, t) is a bacterial surface density,

with dimension [m] = L−2. The absolute number of bacteria this bacterial surface

density corresponds to is given by the surface integral

Nintraluminal surface(t) =

∫
m dS =

∫ L

0

2πR m(x, t) dx, (5.5)

where dS is a surface area element.

For the inside flow of Eq. 5.2, σ(x, r, t) is instead a bacterial volume density, with

dimension [σ] = L−3. This corresponds to an absolute number of bacteria within

the urine in the catheter lumen of

Nintraluminal flow(t) =

∫
σ dV = 2π

∫ L

0

∫ R

0

σ(r, x, t) rdr dx, (5.6)
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where dV is a volume element. Perhaps more importantly, this implies that the

total flux of bacteria entering the catheter lumen within the urine is

jintraluminal = 2π

∫ R

0

ρu rdr

=
4λρ

R4

∫ R

0

(
R2r − r3

)
dr

=
4λρ

R4

R4

4
= λρ.

(5.7)

Reassuringly, this is the same as the flux of bacteria leaving the bladder

(Chapter 4).

5.3 An analytic solution for the bacterial

deposition flux

So far, we have been considering the inside of the catheter in isolation, but of

course the urine flowing through the catheter lumen comes directly out of the

bladder. In fact, this is a boundary condition for Eq. 5.2, as the bacterial density

of the urine entering the catheter must be exactly the bacterial density of the

urine leaving the bladder: σ(x=0, r, t) = ρ(t).

Unlike all other equations introduced earlier within the model (Chapters 2 to 4),

the equation for the inside flow (Eq. 5.2) is not (spatially) one dimensional.

This makes the model much more complicated, and computationally intensive.

However, from a clinical perspective, the nature of the bacterial volume density,

σ(x, r, t) is not actually important. After all, all the bacteria that remain in the

urine flow simply wash out of the system. Then all we really need σ(x, r, t) for

is to calculate the bacterial deposition flux, j(x), which is itself one dimensional.

Therefore, if we can analytically solve for j(x), the model will become more

tractable.

Earlier we stated one of the boundary conditions for σ(x, r, t): the condition that

the flow comes directly out of the bladder, σ(x = 0, r, t) = ρ(t). There are of

course several other boundary conditions. As stated earlier, we assume that the

catheter surface forms a perfectly absorbing boundary. Moreover, since we are

working in cylindrical coordinates, we also state that at the centre of the pipe

there is no ‘real’ boundary. Together these three boundary conditions are as
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follows:

σ(r, x = 0, t) = ρ(t)

σ(r = R, x, t) = 0

∂σ

∂r

∣∣∣∣
r=0

= 0.

(5.8)

As stated earlier, the timescale of the urine flow τc ∼ 7 s is much shorter than the

timescale of bacterial growth τb ∼ 1800 s. Therefore, over timescales comparable

to the timescale of the urine flow, the bladder density can be regarded as constant.

Over timescales comparable to the timescale of bacterial growth, the bacterial

density profile within the catheter lumen is in a quasi-steady state, with ∂σ
∂t

≊ 0.1

Thus, Eq. 5.2 reduces to:

DB

(
∂2σ

∂r2
+

1

r

∂σ

∂r

)
=

2λ

πR4

(
R2 − r2

) ∂σ
∂x
. (5.9)

We can nondimensionalise Eq. 5.9 by making the change of variables r̃ = r
R
,

x̃ = DBπx
2λ

, resulting in:

∂2σ

∂r̃2
+

1

r̃

∂σ

∂r̃
= (1− r̃2)

∂σ

∂x̃
. (5.10)

Eq. 5.10 looks similar to the diffusion equation in cylindrical co-ordinates [126],

which has known solutions, so we might naively try to find a change of variables

so as to write our equation in that form; however, as we see in §A.3.1 this is not

possible. If instead we attempt to use a Laplace transform [19] on Eq. 5.10, we

can obtain a 2nd order linear ODE. However, this ODE turns out not to have

‘nice’ solutions (see §A.3.2). Instead, we will use a method involving a boundary

layer theory developed by Levich [69].

Levich’s boundary layer theory

Maintaining all the assumptions that brought us to Eq. 5.10, let us add one final

assumption: that we are in the ‘diffusion inlet region’, as defined by Levich [69],

such that radial diffusion of bacteria to the intraluminal catheter surface takes

place only within a thin boundary layer near the surface. This diffusion inlet

region is the region in which the hydrodynamic flow profile has already been

1We verify this argument numerically later, in Figure 5.5.
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established, but the radial diffusion flow profile of bacteria within the fluid is not

yet fully established. We will justify this assumption below for the parameters

of our model. Since in this assumption diffusion occurs only close to the surface,

we can approximate it as planar, defining y = 1− r as a small variable. Now we

need to solve the planar convection-diffusion equation,

v
∂σ

∂x
=
∂2σ

∂y2
, (5.11)

where v = 1− r2. Since y is small, we take v to the first order in y, v ≈ 2y. Then

we can write down

2y
∂σ

∂x
=
∂2σ

∂y2
(5.12)

with boundary conditions given by

σ = 0 at y = 0

σ = ρ as y → ∞.
(5.13)

Introducing a new dimensionless variable

η =
y
3
√
x
, (5.14)

we obtain
d2σ

dη2
+

2

3
η2
dσ

dη
= 0, (5.15)

which we can then solve, (and do solve, in §A.3.3), to obtain the density profile

σ(η) =
ρ 3
√
3

Γ(1
3
)

∫ η

0

e−
2
9
z3 dz, (5.16)

where Γ is the Gamma function, and then from there the bacterial deposition

flux:

j(x) = DB
∂σ

∂y

∣∣∣∣
y=0

= 0.5835DBρ
3

√
λ

R3DB

1
3
√
x
.

(5.17)

We can check this result for j(x) against a numerical solution of Eq. 5.2, in

addition to checking that the assumptions we have made earlier are valid. The

fundamental assumption made in Levich’s boundary layer theory is that diffusion
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Figure 5.4 Numerically simulating the intraluminal flow, Eq. 5.2, with
parameters as in Table 2.2. [a] The bacterial density within the urine
flow in the catheter lumen. [b] Comparing the numerically simulated
bacterial deposition flux with the analytic result of Eq. 5.17.

occurs within a thin boundary layer. To first order we have a relationship between

the deposition rate and the boundary layer thickness of j = DBρ/δ (see Levich

2.10 [69]). Therefore, the boundary layer thickness is approximately

δ ≈
3
√
x

0.5835
3

√
R3DB

λ
. (5.18)

This is thin when δ ≪ R, i.e., when DBx
λ

≪ 1. For this to hold for the entire

catheter, we need it to hold for x = L, and so we need DBL
λ

≪ 1. Taking the

typical values for these parameters, as presented in Table 2.2, we find DBL
λ

∼
10−4 ≪ 1, well within the regime described by boundary layer theory.

In Figure 5.4, the results of numerical simulations of Eq. 5.2 (§A.3.4) are shown

and compared to the analytic result of Eq. 5.17. In Figure 5.4a the existence

of a thin boundary layer (yellow) can clearly be seen, while in Figure 5.4b the

analytic result for j(x) can be seen to be a good approximation for x > 0.3 mm.

The 1/ 3
√
x dependence of j(x) predicts higher deposition at the catheter tip than

further down towards the outlet, consistent with observations that blockages are

typically located near the catheter eyelets [5, 30].
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Figure 5.5 Numerically simulating the system of Eq. 5.4, with parameters as in
Table 2.2, and initially uniform conditions (σ(r, x, t=0) = ρ). We
plot the sum over all grid points of the rate of change of the bacterial
density, ∂σ

∂t , normalised by the bladder population, ρ. The time for
these differences to vanish, i.e., for the steady state profile to be
achieved, is much less than the timescale of growth in the bladder,
as the bacterial doubling time is ∼ 30 mins.

5.4 Summary

Bringing together all the work presented in §5.2 and §5.3, we can now write

down the one-dimensional system of equations that describe bacterial transport,

deposition and spreading within the inside of the catheter:

∂m

∂t
= DS

∂2m

∂x2
+ rSm

(
1− m

κS

)
+ j(x)

j(x) = 0.5835DBρ
3

√
λ

R3DB

1
3
√
x
.

(5.19)

To get here we have of course made many simplifying assumptions. We have

assumed that the catheter has rotational symmetry, which is valid if we exclude

the catheter eyelets. As in the model for the extraluminal surface (Chapter 3),
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we have assumed that bacteria on the catheter surface spread via diffusion, and

hence may be described by a Fisher-Kolmagoroff equation. This is likely to

be a significant simplification of what ‘really’ happens, but it is the simplest

possible description. We have also assumed that the rate of flow of urine out

of the bladder is constant. In fact, this flow rate varies slowly throughout the

day and night [84], however this change is slow and continuous. We describe

the urine flow through the catheter as laminar, which is likely to be a good

description given the Reynolds number, Re ≈ 6. We have made the assumption

that convective-diffusive effects happen on a much faster timescale than bacterial

growth, and thus that when calculating the bacterial flux, we can take the bladder

bacterial density as constant. Earlier (§5.2.3), we argued this was justified since

the convective timescale is ≈ 7 s, while the bacterial doubling time is 30 mins.

To confirm this, in Figure 5.5 we numerically simulate Eq. 5.19 (A.3.5) to show

that the rate of change of the bacterial density profile after initial establishment

vanishes within 60 s. Finally, we assumed we were within the diffusion inlet

region, h < x ≪ H, where the laminar flow profile is fully established, but

diffusion occurs only within a thin boundary layer. This turns out to correspond

to the region 0.2 < x ≪ 105 mm, which of course catheters, with typical length

40–160 mm, fall well within.
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Chapter 6

Implementing the model

6.1 Introduction

In Chapter 2 we outlined a minimal model for bacterial colonisation of a

urinary catheter. We saw that this model can be divided into subsystems: the

extraluminal surface, the bladder, the urine flow down the catheter lumen, and

the intraluminal surface. In Chapters 3 to 5 we then explored these subsystems

in detail. We wrote down equations that described the dynamics of the bacterial

density in each subsystem:

extraluminal surface
∂n

∂t
= DS

∂2n

∂x2
+ rSn

(
1− n

κS

)
(6.1)

bladder
dρ

dt
= rBρ

(
1− ρ

κB

)
− kDρ (6.2)

intraluminal surface
∂m

∂t
= DS

∂2m

∂x2
+ rSm

(
1− m

κS

)
+ j(x) (6.3)

j(x) = 0.5835DBρ
3

√
λ

R3DB

1
3
√
x
. (6.4)

Here all the variables and parameters are as defined in Tables 2.1 and 2.2.

Note that we have only written explicit equations for the bacterial densities

corresponding to the extraluminal surface, bladder, and intraluminal surface.

The behaviour of the bacterial density in the intraluminal flow is implicit within

the equation for j(x): the solution of the bacterial deposition flux from the

intraluminal flow onto the intraluminal surface.
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Bacteria attach 
and detach between 
the extraluminal 
surface and bladder

Bacteria spread 
between extraluminal 
and intraluminal 
surfaces

Bacteria flow in the 
urine from the bladder 
through the catheter 
lumen

Bacteria deposited from 
flow onto intraluminal 
surface

Figure 6.1 Connecting the different parts of the model. Bacteria transfer
between the top of the extraluminal surface and the bladder (§6.2.1).
Bacteria transfer between the top of the extraluminal surface and
the top of the intraluminal surface(§6.2.2). The intraluminal flow
carries bacteria from the bladder (§6.2.3). Bacteria are deposited
from the intraluminal flow onto the intraluminal surface (§6.2.4).
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6.2 Coupling the model

We now need to couple these 3 partial differential equations together, into one

model (which can then be treated numerically). The different parts of the model

are connected through coupling terms which preserve the total bacterial number

(Figure 6.1). Briefly, bacteria that reach the top of the extraluminal surface

may detach and colonise the bladder. Conversely, bacteria within the bladder

may stick to the top of the extraluminal surface and join the biofilm. In this

simplified model the extraluminal and intraluminal surfaces of the catheter are

directly connected at the top, so bacteria freely diffuse between the two surfaces.

The connection between the bladder and intraluminal flow is intuitive: the urine

flowing down the catheter lumen is exactly the urine that has been diluted out

of the bladder. The intraluminal surface is the absorbing boundary for the

intraluminal flow, meaning that bacteria diffuse out of the flow and stick to

the surface, but never the reverse – this is j(x), as discussed above. Within the

entire system the only bacteria that ever ‘come unstuck’ are those growing at the

tip of the extraluminal surface inside the bladder, which may be thought of as

growing directly into the bladder, having run out of catheter surface. The various

couplings are illustrated in Figure 6.1 and described in detail in the following

sections.

In this process of coupling the sections we must be careful to conserve the number

of bacteria. In this model bacteria are ‘created’ only by growth, and ‘destroyed’

only by being washed out of the bottom of the catheter. Therefore, the coupling

terms must only transport bacteria, without changing the total number. Ensuring

that the total bacterial number is conserved requires some care, as our model

consists of equations for the bacterial density, not the absolute number. We

discuss each of the couplings in more detail in §6.2.1 to §6.2.4.

6.2.1 Connecting the extraluminal surface and bladder

The top of the catheter is located within the bladder and is immersed in urine.

Therefore, bacteria may detach from the extraluminal surface of the catheter and

join the planktonic population within the bladder. Conversely, bacteria within

the urine in the bladder may stick to the extraluminal catheter surface. Within

the model, this coupling is incorporated into the extraluminal surface equation
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w

Re

l

Figure 6.2 Illustrating the ‘contact area’ and ‘contact volume’. Some bacteria
within the bladder are close to the external catheter surface. At the
top of the catheter, some bacteria on the surface are immersed in
urine. If the catheter protrudes a distance l into the bladder, then
there is a total surface contact area on the catheter of Sc = 2πRel.
Suppose the bacteria within the bladder are ‘in contact’ with the
catheter if they are within a distance w, and simplify this contact
volume to be a cylinder of radius Re+w and height l+w. Then the
contact volume is Vc = π(Re + w)2(l + w)− πR2

el.

(Eq. 3.1; as written in Eq. 6.1) as a flux at the top boundary. For the bladder, the

coupling takes the form of a source term added to the right-hand side of Eq. 4.3

(Eq. 6.2). The coupling must conserve bacterial number, so the total number

of bacteria moving to the bladder must equal the number leaving the catheter

surface.

To derive the coupling terms, we consider that only bacteria that are in a region of

‘contact’ between the extraluminal surface and bladder can migrate. Therefore,

we need to define a contact surface (at the top of the catheter) and a contact

volume (in the bladder surrounding the catheter) within which bacteria can

transfer. Figure 6.2 illustrates how we define these contact geometries. Assuming

that a length l of catheter is exposed within the bladder, and that bacteria in

the bladder within a distance w have a chance of sticking, we can write down the

contact surface area and volume:

Sc = 2πRel

Vc = π(Re + w)2(l + w)− πR2
el.

(6.5)

Here Re is the external catheter radius, and l and w are as shown in Figure 6.2.
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Since we need to conserve the bacterial number, we must consider the absolute

number of bacteria within the contact regions. Ns = Sc · n(L, t) is the number

of bacteria on the catheter surface that are ‘in contact‘ with the bladder, and

Nb = Vc · ρ(t) is the number of bacteria in the bladder that are ‘in contact’ with

the catheter. Therefore, the flux of bacteria to the bladder is

kdNs︸︷︷︸
detaching

− kaNb︸︷︷︸
attaching

(6.6)

where kd and ka are respectively the rates at which bacteria detach from and

attach to the catheter surface in the presence of urine; and Ns and Nb are

the numbers of bacteria at the boundary on the outside of the catheter and

in the bladder. To set reasonable values for kd and ka we make the following

assumptions: any bacteria that are born on the exposed catheter surface detach,

so kd = rS (recall that rS is the bacterial growth rate on the catheter surface); and

bacteria in the bladder diffuse and stick to the surface irreversibly upon contact,

so ka is the Smoluchowski diffusion-limited rate constant [119].

We can now write down the coupling terms. In the bladder there is a source term

for the density,
kdScn(0, t)− kaVcρ(t)

V
, (6.7)

where V is the total residual urine volume of the bladder. At the top of the

catheter there is a corresponding surface density flux at the boundary:

kaVcρ(t)− kdScn(0, t)

Sc
. (6.8)

This leads to the full equation for the bladder:

dρ

dt
= rBρ

(
1− ρ

κB

)

︸ ︷︷ ︸
growth

− kDρ︸︷︷︸
dilution

+
kdScn(0, t)− kaVcρ(t)

V︸ ︷︷ ︸
extraluminal coupling

. (6.9)

6.2.2 Connecting the extraluminal and intraluminal surfaces

Since we do not model the catheter eyelets, we assume that bacteria can spread

freely across the top of the catheter between the extraluminal and intraluminal

surfaces. This is represented by a continuity condition on the bacterial density,
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connecting Eqs. 3.1 and 5.1 (Eqs. 6.1 and 6.3):

n(x=0, t) = m(x=0, t),

∂n

∂x

∣∣∣∣
x=0︸ ︷︷ ︸

extraluminal

=
∂m

∂x

∣∣∣∣
x=0

.

︸ ︷︷ ︸
intraluminal

(6.10)

6.2.3 Connecting the bladder and intraluminal flow

As urine is generated by the kidneys and enters the bladder, the residual urine

inside the bladder is diluted. To ensure continuity of bacterial density in the urine

leaving the bladder and entering the lumen, we impose the following coupling

between Eq. 4.3 (the bacterial density dynamics in the bladder; Eq. 6.2) and

Eq. 5.2 (the bacterial density dynamics in the intraluminal flow, not written

explicitly in this chapter):

σ(r, x=0, t)︸ ︷︷ ︸
flow

= ρ(t)︸︷︷︸
bladder

. (6.11)

In fact, this coupling is implicit within the derivation of the bacterial flux from

the urine onto the intraluminal surface, j(x) (Eq. 6.4) in Chapter 5 (Eq. 5.17).

6.2.4 Connecting the intraluminal flow and intraluminal

surface

As discussed in Chapter 5, deposition of bacteria from the urine onto the

intraluminal surface is incorporated via an absorbing boundary condition for

Eq. 5.2, i.e., the catheter wall is assumed to be a perfect sink. The flux of

deposited bacteria appears as the source term j(x) for the intraluminal surface in

Eq. 5.1 (Eq. 6.3). We found this flux by computing the rate at which bacteria hit

the boundary r = R for the longitudinal distance x down the catheter, finding

(Eq. 5.3):

j(x) = −DB
∂σ

∂r

∣∣∣∣
r=R

.
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This flux can be obtained either by numerical solution of Eq. 5.2 (Eq. 6.3), or by

an analytic approximation [69], as we showed in §5.3, which results in (Eq. 5.17):

j(x) = 0.5835DBρ
3

√
λ

R3DB

1
3
√
x
.

Note that this analytic solution for the bacterial deposition flux has no explicit

dependence on σ(r, x, t), the bacterial volume density within the intraluminal

urine flow. Thus, this coupling term (Eq. 5.17) can be viewed as a direct coupling

between the bladder and the intraluminal surface, incorporating both Eqs. 6.11

and 5.3. Hence, the full equation for the intraluminal surface is as written in

Eqs. 6.3 and 6.4:

∂m

∂t
= DS

∂2m

∂x2︸ ︷︷ ︸
motility

+ rSm

(
1− m

κS

)

︸ ︷︷ ︸
growth

+0.5835DBρ
3

√
λ

R3DB

1
3
√
x︸ ︷︷ ︸

bladder coupling (deposition)

.

6.3 Numerical implementation

Throughout Chapters 3 to 5 we have discussed the results of numerically

simulating the governing equations of the model (Eqs. 6.1 to 6.4). Here we discuss

the numerical implementation of these simulations, as well as the numerical

implementation of the coupling described earlier in this chapter (that will be

utilised to obtain the results discussed in Chapter 7).

6.3.1 Extraluminal surface

Recall Eq. 6.1:
∂n

∂t
= DS

∂2n

∂x2
+ rSn

(
1− n

κS

)
.

This can be discretised with a forward-time centred-space (FTCS) method as:

nk+1
p =

DS∆t

∆x2
(
nkp+1 − 2nkp + nkp−1

)
+ (1 + rS∆t)n

k
p −

rS∆t

κS

(
nkp
)2
, (6.12)

where nkp is the extraluminal bacterial surface density, n(x, t), at the pth discrete

position, and the kth time step; ∆t is the time step; and ∆x is the spatial

discretisation. For further details and stability analysis, see §A.1.2.
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Since bacteria are free to diffuse between the extraluminal and intraluminal

surfaces of the bladder, if there are N = L/∆x discrete spatial positions on the

lattice along the catheter surface for each of the extraluminal and intraluminal

surface, then we can define a ghost point before the first grid point on the

extraluminal surface – which is equal to the first grid point on the intraluminal

surface: nk−1 = mk
0 (Eq. 6.10). Here, nkp is the extraluminal bacterial density,

n(x, t) at the pth discrete position, and the kth timestep; and mk
p is similarly the

intraluminal bacterial density, m(x, t).

The extraluminal surface is coupled with the bladder, with flux given by Eq. 6.8,

so at the top of the catheter, n0 is incremented as

nk+1
0 =

DS∆t

∆x2
(
mk

0 − 2nk0 + nk1
)

+ (1 + rS∆t)n
k
0 −

rS∆t

κS

(
nk0
)2

+
1

2πRe∆x

(
kaVcρ

k − kdScn
k
0

)
. (6.13)

6.3.2 Bladder

Recall Eq. 6.2:
dρ

dt
= rBρ

(
1− ρ

κB

)
− kDρ.

Discretising this with a forward Euler method gives

ρk+1 = ρk +∆t

(
(rB − kD) ρ

k − rB
κB

(
ρk
)2
)
, (6.14)

where ρk is the bladder bacterial volume density at the kth time step, and ∆t is

the time step. For further details and stability analysis, see §A.2.2.

Instead discretising the coupled bladder equation (Eq. 6.9), again with a forward

Euler method, gives

ρk+1 = ρk +∆t

((
rB − kD − kaVc

V

)
ρk − rB

κB

(
ρk
)2

+
kdSc
V

nk0

)
, (6.15)

where ρk is the bladder bacterial volume density at the kth time step, and nk0

is the extraluminal bacterial density, n(x, t) at the bladder. This is numerically
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stable following the same argument as in §A.2.2, requiring

∆t < 1

/(
rB − kD − kaVc

V
+
kdSc
V

)
∼ 104 s. (6.16)

6.3.3 Intraluminal surface

To simulate bacterial growth and spreading on the inside surface of the catheter,

a forward-time centred-space (FTCS) method is used. Recall Eq. 6.3:

∂m

∂t
= DS

∂2m

∂x2
+ rSm

(
1− m

κS

)
+ j(x).

The bacterial flux, j(x), comes from the deposition of bacteria onto the

intraluminal surface from the urine flow out of the bladder. To calculate this

numerically requires simulating the intraluminal flow, which is computationally

more demanding as it is a 2-dimensional problem, unlike the 1-dimensional

surfaces. Instead, here we use the analytic approximation for the bacterial flux,

as given by Eq. 6.4,

j(x) = 0.5835DBρ
3

√
λ

R3DB

1
3
√
x
.

This analytic solution is valid for h < x ≪ H, i.e., the region in which the

hydrodynamic flow is established, but the diffusive boundary layer is still small.

We can find h by looking for the distance at which the hydrodynamic boundary

layer thickness is equal to the catheter radius (§A.3.5). This is h ∼ 0.22 mm.

The behaviour within the early region, x < h, would be highly dependent on

the exact geometry of the catheter, which is not incorporated into this model.

Instead, knowing that the deposition rate must always be finite, we take a zeroth

order approximation that the flux for x < h is constant, and j(x < h) = j(h).

Since this is only a very small region of the catheter, this approximation has very

little impact on the results of the model (see §A.3.5 for further justification).

We can discretise the intraluminal surface in a manner very similar to the
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extraluminal surface, using a FTCS method to find

mk+1
p =

DS∆t

∆x2
(
mk
p+1 − 2mk

p +mk
p−1

)
+ (1 + r∆t)mk

p

− r∆t

κS

(
mk
p

)2
+ 0.5835

(
λD2

B

R3

)1/3

∆tρk(p∆x)−1/3, (6.17)

where mk
p is the intraluminal bacterial surface density, m(x, t), at the pth discrete

position, and the kth time step; ρk is the bacterial volume density in the bladder

at the kth time step; ∆t is the time step; and ∆x is the spatial discretisation.

For further details and stability analysis, see §A.3.5.

At the top of the catheter, bacteria can diffuse between the intraluminal surface

and the extraluminal surface, so at the top of the catheter we have

mk+1
0 =

D∆t

∆x2
(
mk

1 − 2mk
0 + nk0

)

+ (1 + r∆t)mt
0 −

r∆t

κS

(
mk

0

)2

+ 0.5835

(
λD2

B

R3

)1/3

ρk(∆x)−1/3, (6.18)

wheremk
p is the intraluminal bacterial density,m(x, t) at the pth discrete position,

and the kth timestep, and nk0 is the extraluminal bacterial density, n(x, t) at the

bladder.

6.4 Boundary and initial conditions

In Chapter 2 (following on from §1.3) we discussed four different ‘infection

pathways’ through which colonising bacteria might enter the system. Each of

these pathways corresponds within our model to a different set of boundary/initial

conditions.

Considering Eqs. 6.1 to 6.4, we see that to fully specify our model we require 4

boundary conditions, as well as the state of the entire system at t= 0. In fact,

Eq. 6.10 specifies two boundary conditions. Additionally, we take as a default

initial condition a ‘clean’ catheter, with n(x, t=0), ρ(t=0), and m(x, t=0) all

zero. Now we must specify a boundary condition for x=L on the extraluminal

and intraluminal surfaces, as well as any alternative initial conditions.
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1. If the bacteria originate from the skin, this is a Dirichlet boundary condition

for the base of the extraluminal surface, nkN = const. (the extraluminal base

of the catheter is in contact with a reservoir of bacteria), and a Neumann

(reflecting) boundary condition for the bottom of the intraluminal surface,

mk
N+1 = mk

N−1 (i.e., we assume that the intraluminal system is closed).

2. If the bacteria come from the drainage bag, this is a Dirichlet boundary

condition for the base of the intraluminal surface, mk
N = const. (the

intraluminal base of the catheter is in contact with a reservoir of bacteria),

and a Neumann (reflecting) boundary condition for the base of the

extraluminal surface, nkN+1 = nkN−1 (i.e., we assume that the skin does

not interact with the extraluminal surface).

3. If there is uniform initial contamination across the extraluminal surface,

this corresponds to an initial condition n0
p = const., with reflecting

boundary conditions for both the intraluminal and extraluminal surfaces,

mk
N+1 = mk

N−1 and n
k
N+1 = nkN−1. Again, the reflecting boundary conditions

correspond to the assumption that the catheter-bladder system is ‘closed’,

with no external contamination except the condition explicitly considered.

4. Finally, if the bladder is already contaminated before the catheter is

inserted, this corresponds to an initial condition with non-zero bacterial

density in the bladder, ρ0, and again there are reflecting boundary

conditions for the catheter surfaces.

We explore all four of these infection scenarios in detail in Chapter 7. When not

explicitly stated otherwise, our ‘default’ assumption is Path 1, bacteria originating

from the skin, as the majority of CAUTI are attributed to the extraluminal

ascension of bacteria up the catheter [82].

6.5 Characteristic timescales

In developing the model presented in this thesis, we have used timescales to

justify assumptions and modelling choices. Here, in Table 6.1, we summarise

the timescales presented so far. In Chapters 7 and 8 we will make use of these

timescales to predict the timescales of clinical phenomena, including bacteriuria,

relating those timescales to the model parameters.
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Timescale Typical value (s)

Clinical

Short-term catheterisation ≤ 14 days ≲ 106

Long-term catheterisation > 30 days ≳ 2× 106

Extraluminal surface

Bacterial growth log(2)/rS 4× 103

Bacterial motility L2/DS 1011

Bacterial ascension L/2
√
rSDS 107

Establishment of wave solutions log
(
κS
n0

)
/rS 105

Bladder

Bacterial growth log(2)/(rB − kD) 104

Intraluminal flow

Bacterial growth log(2)/rB 2× 103

Convective transport πR2L/λ 7

Radial diffusive transport R2/DB 104

Longitudinal diffusive transport L2/DB 2× 107

Response to bladder density fluctuations 1 min 102

Table 6.1 The characteristic timescales of the processes within the model.

6.6 Summary

The three equations describing the growth dynamics of the bacterial densities –

on the extraluminal surface, intraluminal surface, and within the bladder – can be

connected via three coupling terms. We can numerically implement the resulting

unified model, allowing us to perform a parameter space exploration (Chapter 7),

and explore the predictive capabilities of our model (Chapter 8).
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Part II

Implications of the model
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Chapter 7

Parameter space exploration

7.1 Introduction

While some aspects of catheter associated urinary tract infections are well

understood, e.g., the strains of bacteria that are primarily responsible (as

discussed in §1.2), comparatively little is known about the factors that determine

the timescales and outcomes of these bacterial infections. In Chapters 2 to 6

we constructed a mathematical model for the bacterial colonisation of a urinary

catheter and discussed in detail the implications of our modelling choices. This

model has 10 physical parameters (and two coupling constants). In Table 2.2,

we established the physical significance of these parameters, and briefly discussed

values obtained from the literature.

Here, we perform a detailed parameter space exploration, investigating how

varying the model parameters alters the dynamics, timescales, and long-time

behaviour of the system. This allows us to identify key physical parameters,

and show how varying them provides clinical insights. Finally, we discuss our

results within the context of the clinical literature, qualitatively linking our model

predictions to observed clinical phenomena.
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7.2 Results

7.2.1 Urine production rate drives a transition in bacterial

density

The rate of urine production by the kidneys is strongly correlated with the fluid

intake of the patient. This is a key parameter in our model, since it controls

the rate at which bacteria are removed from the bladder by dilution (denoted by

kD; see Eq. 4.3) and the rate of urine flow through the catheter lumen (denoted

by λ; see Eq. 5.2), which in turn determines the rate of bacterial deposition

on the intraluminal surface. Previous (uncatheterised) micturition models have

suggested that there is a critical dependence between the urine production rate

and the bacterial growth rate in the bladder [43]. Therefore, we investigated how

the behaviour of our model depends on the rate of urine production.

We observed a critical transition upon varying the urine production rate

(Figure 7.1). At low production rates, the steady state bacterial population

density within the bladder is high since bacteria can grow fast enough to overcome

dilution. At high urine production rates, the population density in the bladder

falls dramatically, as the dilution rate exceeds the maximal rate at which the

bacteria can grow. The transition has a near-linear dependence of the steady

state bacterial population density on the urine production rate (Figure 7.1 lower

inset); however the time taken to attain the steady state diverges at the critical

urine production rate (Figure 7.1 upper inset). A typical value for the urine

production rate in humans is 16.7 mm3s−1 (i.e., 1 mL min−1; pink dashed line in

Figure 7.1) [31]. This value lies very close to the critical threshold predicted by our

model (Figure 7.1), suggesting that individual patients might show dramatically

different levels of bacteriuria (bacteria in the urine) depending on their fluid

intake. We will further discuss this result, in the context of the population-level

variance in urine production rates, in §8.5.1.

This transition is essentially a washout phenomenon, as observed in microbi-

ological continuous culture experiments, where bacteria grow in continuously

diluted medium and it is well known that a bacterial population can only be

sustained for dilution rates less than the bacterial growth rate [3, 92]. Indeed,

when plotted on a linear scale (Figure 7.1 lower inset), the transition in the

catheter model appears indistinguishable from washout, with the bacterial density
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Figure 7.1 Transition driven by urine production rate. As the rate of dilution
of the bladder increases beyond the bacterial growth rate, there is a
transition from a high-density bladder state to a “washed out” state.
Each point represents a bacterial density obtained from a numerical
simulation. A connecting line ( ) is drawn as a guide for the eye.
Lower inset shows the same data on a linear scale. Upper inset
shows the time taken to attain the maximum density, with a sharp
peak at the transition. Also plotted ( ) is the typical urine flow rate
in a patient, 1 mL min−1 [31].
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Figure 7.2 The residual urine volume also determines the dilution rate. (a)
The effect of varying the volume of residual urine, V on the steady
state bacterial density in the bladder. The vertical line ( ) marks
the washout transition, V = λ/rB. (b) The same data points as in
(a), however the x axis now plots the dilution rate, kD, where each
point was obtained from a simulation with fixed λ but varying V .
(c) The effect of varying the residual urine rate on the time taken
to steady state bacterial density in the bladder. All parameters other
than V are as in Table 2.2. V is varied within the physiologically
relevant range: 10 - 1000 mL.

approaching zero as the urine production rate approaches the bacterial growth

rate. However, in the logarithmic plot (Figure 7.1 main), we observe a ‘tail’ that

is due entirely to re-population of the bladder from bacteria that have adhered to

the catheter surfaces. Without this bacterial migration from the catheter surface

to the residual urine sump, the bacterial density in the urine would fall to zero at

the transition (see Figure 4.2 and §4.3.1). The presence of the catheter ‘smooths’

the transition, such that even at high urine production rates some bacteria are

still present in the urine. Hence, the presence of the catheter allows the infecting

bacterial population to persist even if the urine production rate is high enough to

wash it out of the bladder. Indeed, catheter-associated biofilms are known to act

as a bacterial reservoir, leading to persistent re-colonisation of the bladder [9].

As discussed above, and in §4.3.1, the value of the dilution rate kD (which is

related to the urine production rate λ and the bladder volume V via kD = λ/V )

is critical for the behaviour of our model. In our model, the dilution rate governs

both the steady state bacterial density in the bladder, and the timescale over

which the steady state is attained (Figure 4.1b). This dependence of the model
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on the dilution rate is very similar to the behaviour of other (uncatheterised)

micturition models, where there is a critical relationship between the urine

dilution rate and the bacterial growth rate [43] (§4.3.2). However, as discussed

above, in our model the presence of the catheter means that the bacterial density

in the bladder does not go to zero in the high dilution rate ‘wash-out’ state.

Since the urine production rate is incorporated into the bladder model through the

dilution rate (kD = λ/V ), varying the residual urine sump volume in the bladder,

V has similar effects on the bladder dynamics to varying the urine production

rate, λ (Figure 7.2). Comparing Figure 7.2b with Figure 7.1 lower inset, the

same linear behaviour can be observed. Similarly, comparing Figure 7.2c with

Figure 7.1 upper inset, the characteristic spike in timescales of the washout

transition (§4.3.1) can be seen. We note, however, that the intraluminal flow

dynamics, which control bacterial deposition on the intraluminal catheter surface,

are independent of the residual urine sump volume (although they do depend on

the urine production rate).

In summary, in §4.3 we established that the form of Eq. 4.3 for the bladder

dynamics leads to a washout transition, occurring at kD = rB, i.e., when the

dilution rate equals the growth rate. We now see how this transition is modified

within the full coupled model. The dilution rate is defined as kD := λ/V , thus

the washout transition can be seen when varying either urine production rate

(Figure 7.1), or residual urine volume (Figure 7.2). In both cases, the transition

is no longer perfectly linear as in Figure 4.2; rather, it is ‘smoothed’ by bacteria

migrating from the catheter surface.

7.2.2 Time to detection of bacteriuria is controlled by

movement of bacteria up the catheter

The appearance of bacteria in the urine, bacteriuria (as introduced in §1.2), is
an almost inevitable consequence of long-duration catheterisation [123], with an

estimated incidence rate of 3–7% per catheter day [71] (bacteriuria is about 10

times more prevalent than CAUTI [48, 82], and is often erroneously treated as

CAUTI [18]). By tracking the density of bacteria in the outflowing urine, our

model can predict how long after catheter insertion bacteriuria will be detected,

assuming a certain detection sensitivity. Here we assume that colonisation is

initiated by bacteria on the outside of the catheter, where the urethra meets the
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Figure 7.3 Time to detection of bacteriuria, for tests of varying sensitivities.
We plot the times until the bacterial volume density in the urine
exceed 104 (•), 102 (•), and 1 (•) mm−3 respectively. Also plotted
( ) is the time for the FKPP wave to spread across the extraluminal
surface, L/2

√
rSDS (recall §3.3.3). (a) Varying the urine production

rate. (b) Varying the urethral length. Note that in this case there
is no significant difference between different testing sensitivities, as
the urethral length dominates the timescale. All parameters are as
given in Table 2.2.

skin (Chapter 6).

For high-sensitivity tests (detection at cell counts of 1 mm−3, i.e. 103 mL−1), our

model predicts that bacteriuria will eventually be detected, no matter how high

the urine production rate (Figure 7.3a). This is because, even in the ‘washout’

regime (Figure 7.1), the presence of the catheter ensures that there are some

bacteria in the urine. The time to detection of bacteriuria is almost independent

of the urine production rate since the detection time is dominated by the time

for bacteria to migrate up the extraluminal surface (see §Bladder-surface regime

transition). This implies that early removal of the catheter can prevent occurrence

of bacteriuria, since bacteria do not have time to reach the bladder. Since

bacterial colonisation can lead to CAUTI, this is consistent with the fact that

the duration of catheterisation is the single biggest risk factor for developing

CAUTI [48, 71, 99].

In contrast, low sensitivity tests (requiring cell counts > 102 mm−3, i.e.

105 mL−1) will never detect bacteriuria in the high urine production rate regime

(Figure 7.3a), even though some bacteria are present in the urine (Figure 7.1).
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This is because the steady-state bacterial density is below the detection threshold.

Interestingly, some clinical guidelines [48] distinguish different thresholds for

diagnosis of CAUTI and bacteriuria. For CAUTI, these guidelines require both

clinical symptoms and bacterial counts > 103 CFU mL−1 (equivalent to our high

sensitivity threshold; CFU = colony forming units, a proxy for cell count), while

a diagnosis of bacteriuria does not require symptoms but does require a higher

bacterial count > 105 CFU mL−1 (equivalent to our low sensitivity values). We

can interpret this distinction in clinical definitions in the context of our model

and the results of Figure 7.3a, as our model predicting that lower sensitivity tests

might erroneously return (false) negative results for patients with higher urine

production rates suffering from CAUTI – hence the need for higher sensitivity

tests to diagnose CAUTI.

The time to detection of bacteriuria depends linearly on the length of the catheter,

which corresponds to the length of the urethra (Fig. 7.3b). This is because the

timescale of bacterial migration up the extraluminal surface is set by the speed of

the FKPP population wavefront (as found in §3.3). The main factor determining

urethral length in humans is gender, with a typical length for a woman being 40

mm, and for a man 160 mm [31]. This result is therefore consistent with the fact

that biological sex is a well-established risk factor for CAUTI [48, 99]. As we will

see later (Chapter 8), the linear dependence of the timescale of bacteriuria on the

urethral length is particularly significant in the context of short-term (≲ 14 days)

catheterisation.

7.2.3 Time to formation of a biofilm depends on

characteristics of the patient, catheter and infecting

bacteria

Catheter blockage is a frequent and serious complication of catheter use. Most

commonly, blockage is caused when biofilms of Proteus mirabilis form on the

catheter surface and increase the urine pH, causing crystals to precipitate [52,

124]. However, non-crystalline biofilms of other uropathogens such as E. coli

can also disrupt urine flow [30, 111]. Our model cannot directly predict catheter

blockage since we do not model biofilm-associated changes in urine flow. However,

as a proxy, we predict the time until the value of the surface density of bacteria

at any point on the intraluminal surface reaches a threshold of 107 bacteria per

mm2 (corresponding roughly to a monolayer), which we term “time to biofilm”.
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Figure 7.4 The interplay of physical parameters and bacterial characteristics on
the timescale of biofilm formation. We plot the time taken for the
maximum bacterial surface density on the catheter lumen to exceed
107 mm−2. Left, (a) and (c), varying the urine production rate.
Right, (b) and (d), varying the urethral length. Upper, (a) and (b),
have a bacterial surface diffusivity of 10−8 mm2s−1. Lower, (c) and
(d), have a bacterial surface diffusivity of 10−4 mm2s−1. All other
parameters are as given in Table 2.2.
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In our model, the time to biofilm formation depends on the characteristics of

the human patient, of the catheter and of the infecting bacteria. Assuming that

the infection starts on the external base of the catheter, bacteria must migrate

up the catheter before they can populate the intraluminal surface. Bacterial

migration up the catheter depends on urethral length and on bacterial surface

motility (Eq. 3.1); altering either of these parameters has a drastic effect on the

time to biofilm formation (compare Figures 7.4b and 7.4d with bacterial surface

diffusion coefficients of 10−8 mm2s−1 and 10−4 mm2s−1).

The urethral length determines the timescale of migration on the extraluminal

surface, while the urine production rate determines the timescale of bacterial

growth (bacteriuria) in the bladder (recall Table 6.1). The relative contributions

of these two timescales to the overall infection timescale are determined by the

bacterial characteristics (Figure 7.4; see §Bladder-surface regime transition for a

discussion of the dimensionless number). When the bacterial motility is low, the

effect of varying the urine rate is negligible (Figure 7.4a) compared to varying the

urethral length (Figure 7.4b) – this is the surface dominated regime. But when

the bacterial surface motility is higher, varying the urine rate has a significant

effect (Figure 7.4c), on a comparable timescale to varying the urethral length

(Figure 7.4d) – this is a mixed regime, with both bladder and surface dynamics

affecting the overall timescale. Unfortunately, the bacterial surface motility is

the model parameter which is least well-defined in the literature. In particular,

surface motility is highly dependent on the surface ‘wetness’ (Table 2.2, §3.2).

Bladder dominated to surface dominated regime transition

The timescale over which bacteriuria or blockages develop is a combination of the

time taken for bacteria to ascend the catheter, and the time taken for bacteria to

proliferate within the urine. As discussed above, depending on the characteristics

of the human host, catheter, and bacteria; there can be three different regimes:

a surface dominated regime, a bladder dominated regime, and a mixed regime.

The relevant dimensionless number controlling which regime the model is in is

the ratio of the two timescales: ascension and proliferation. That is, the ratio of

the characteristic time of the FKPP wavefront to ascend the catheter (§3.3.3),
and the characteristic time of growth within the bladder (§4.3.1):

α =
L√
rSDS

/ ln(κeff/ρ0)

reff
=

(rB − kD)L

ln
(
κB
ρ0
(1− kD

rB
)
)√

rSDS

, (7.1)

84



where κeff is the effective carrying capacity of the bladder (§4.3.1), reff is, similarly,

the effective bacterial growth rate in the bladder, and ρ0 is the initial bacterial

contamination of the bladder. All other parameters are as defined in Table 2.2.

When α ≫ 1, our model is in the surface dominated regime, and the urethral

length and bacterial surface motility determine the infection timescale. When

α ≪ 1, the model is in the bladder dominated regime, and the bacterial growth

rate in the urine, and the urine production rate determine the infection timescale

instead. The mixed regime occurs when α ≈ 1, and all the above properties

contribute to the infection timescale. Using the parameter values of Table 2.2,

and ρ0 = 1 (since growth in the bladder occurs as soon as a single bacterium is

present), α ≈ 100, and the surface properties dominate the infection timescale, as

observed. This is the case for Figures 7.4a and 7.4b. If, as discussed in Chapter 3

(and seen in Figures 7.4c and 7.4d), the bacterial surface motility were as high as

DS = 10−4 mm2s−1, we would instead have α ≈ 1, and be well within the mixed

regime.

7.2.4 Different sources of infection produce different

patterns of biofilm

As discussed in §1.3, §2.1, and §6.4, most CAUTI are thought to originate

extraluminally, for example, from the gastrointestinal tract via the skin of the

meatus and perineum [20, 52, 75]. However, bacteria can also contaminate the

drainage bag or port and ascend the intraluminal surface of the catheter [75].

A third pathway is contamination during catheter insertion, which is thought

to account for around 5% of CAUTI [82]. Sources within the bladder are also

possible, either because of a urinary tract infection prior to catheterisation or

because of persistent intracellular bacterial communities in the epithelial cells

that line the bladder [52, 83]. In our model, different sources of infection lead

to different patterns of bacterial density on the extraluminal and intraluminal

surfaces of the catheter during colonisation (Figure 7.5) – even though the model

always predicts eventual complete coverage of both surfaces by bacteria.

If the bacterial colonisation originates on the outside, at the catheter base (i.e.,

from the skin), a wave of bacteria spreads up the extraluminal surface. At early

times, therefore, the model predicts high bacteria coverage on the lower part of the

extraluminal surface only, while the upper extraluminal surface and intraluminal
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Figure 7.5 Bacterial density patterns for four different infection scenarios. We
plot the bacterial surface density for: the extraluminal surface, after
50 days ( ) and 60 days ( ); and the intraluminal surface after
50 days ( ) and 60 days ( ). Here a distance 0 mm up the
urethra is the skin or drainage bag boundary, and 40 mm the bladder
boundary, all parameters are as given in Table 2.2. Note that
within these results we assume the intraluminal surface to be the
same length as the urethra; in practice there is an additional length
beyond the urethra, connecting to the drainage bag, and we would
expect infections ascending from the drainage bag to have longer
establishment times than infections from another scenario. (a) The
skin acts as a reservoir from which infection can spread. (b) The
drainage bag becomes contaminated, and bacteria ascend the catheter
lumen. (c) The catheter is inoculated uniformly at time of insertion.
(d) Bacteria are already present in the bladder prior to insertion.
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surface are still uncolonised (Figure 7.5a). If the origin is instead at the base of

the intraluminal surface (e.g., from the drainage bag), the bacterial wave spreads

up the inner surface, so that at early times, bacterial coverage is high only on

the lower intraluminal surface (Figure 7.5b). If the colonisation originates in the

bladder, the entire intraluminal surface rapidly becomes colonised, and a bacterial

wave also propagates down the extraluminal surface from the top (Figure 7.5c).

Finally, if the catheter becomes contaminated on insertion, such that bacteria

become spread across the extraluminal surface, the model predicts very rapid

bacterial growth over the entire extraluminal catheter surface (Figure 7.5d).

Therefore, this model predicts that while catheters that have been in place for

long times will show similar patterns of bacterial colonisation, catheters that are

examined sooner, before they have been fully colonised, may have qualitatively

different spatial distributions of bacterial density, that reflect the source of

their colonising bacteria. Measuring patterns of bacterial density on clinical

catheter samples might provide a way to test these predictions. This is not

commonly assessed, but as we shall discuss in Chapter 8, Wang and Zhang et

al. [122, 127] measured the distribution of bacterial density on in vitro catheter

samples (Figure 8.1), demonstrating that such measurements are feasible. And

Raad et al. [96] studied the bacterial density on clinical intravenous catheters,

comparing the intraluminal and extraluminal biofilm densities – finding that

there was a distinct dependence on duration of catheterisation, with shorter

durations of catheterisation corresponding to mostly extraluminal biofilms, while

for longer durations the intraluminal biofilms had greater density (compared to

the extraluminal biofilms).

7.2.5 Bacterial surface motility determines more than just

ascension timescales

In Figure 7.1, we saw that urine production rate has a significant effect on the

long-time bacterial density within the bladder – determining if bacteriuria will

eventually occur, and the timescale over which it occurs. However, we have also

seen (Figures 7.4a and 7.4c) that urine production rate has only a minimal effect

on the timescale of biofilm development on the intraluminal catheter surface, and

both surface diffusivity and urethral length are more significant parameters. We

see this again in Figure 7.6a: the effect on the time to biofilm formation of varying

the urine production rate is insignificant compared to the effect of varying the

87



10−8 10−6 10−4

10

20

30

40

U
ri

n
e

p
ro

d
u

ct
io

n
ra

te
,
λ

(m
m

3
s−

1
)

10−8 10−6 10−4

0 75 150 100 103 106

0.0 0.2 0.4 0.6 0.8 1.0

Surface bacterial diffusivity, DS (mm2s−1)

0.0

0.2

0.4

0.6

0.8

1.0

Time to biofilm (days) Density in bladder (mm−3)

(a) (b)

Figure 7.6 The effects of varying the surface bacterial diffusivity and urine
production rate on (a) the time until biofilm formation, and (b)
the steady state bacterial density within the bladder. All other
parameters as given in Table 2.2.
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Figure 7.7 Increasing the surface diffusivity leads to an increased effective
coupling between the catheter surface and the bladder. This
dependence is determined by the width of the FKPP wave (§3.3),
and scales with ∼ √

DS. Plotted is the steady state bacterial
density within the bladder for varying values of the bacterial surface
diffusivity, for values of the urine production rate of 25 (•), 30 (•),
and 35 (•) mm3s−1. All other parameters are as in Table 2.2.
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surface bacterial diffusivity (when varying the urine production rate, λ, or the

surface bacterial diffusivity, DS, within the physiologically relevant ranges).

Surprisingly, the surface bacterial diffusivity, which we have previously considered

as only affecting timescales, can also have significant effect on the outcome of the

model: altering the long-time bacterial density within the bladder (Figure 7.6b).

In fact, as we discussed in §7.2.1, when the urine production rate is high,

λ/V > rB, there is a washout-like transition. The non-zero bacterial population

within the bladder at high urine production rates is sustained by the coupling

with the catheter surface. Thus, in Figure 7.6b, we see how increasing the surface

bacterial diffusivity effectively increases the coupling strength, increasing the

bacterial density in the ‘washed out’ state.

The effect of the surface diffusivity on the coupling between catheter and bladder

is indirect. The coupling term between the surface and the bladder (§6.2.1) has
no explicit dependence on the diffusivity: recall Eq. 6.7,

kdScn(L, t)− kaVcρ(t)

V
.

However, since the steady state bacterial density of the extraluminal catheter

surface (Eq. 3.1) is greater than that of the bladder (Eq. 4.3), there is a ‘dip’

in the bacterial surface density n(x, t) at the catheter tip (e.g. see Figure 7.5c

upper). The ‘steepness’ of this dip is determined by the width of the FKPP

wave (§3.3.2), which is w = 8
√
DS/rS. Thus, increasing the surface diffusivity

effectively increases the area of catheter that is ‘in contact’ with the bladder, and

so increases the effective coupling strength, leading to a higher bacterial density

within the bladder (Figure 7.7).

7.3 Discussion

Despite the high prevalence of CAUTI, and its societal and economic costs, much

remains to be understood about how bacteria colonise urinary catheters. So far

in this thesis, we have formulated a mathematical model that integrates bacterial

population dynamics on the catheter surfaces and in the bladder with urine flow.

Bacteria migrate on the external catheter surface, populate the bladder, and flow

in the urine through the catheter lumen where they can attach to and colonise

the surface. The model is consistent with clinical observations that nearly all
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long-term catheterisations result in bacteriuria [25, 82], and that catheterisation

duration and gender are important risk factors for CAUTI [110, 123].

We have studied in detail how the characteristics of the patient, the catheter

and the infecting bacteria influence bacterial density in the bladder, the time

to detection of bacteriuria, the time to formation of a biofilm (a proxy for

blockage), and the spatial patterns of bacteria on the catheter. The model

points to urine production rate as a key parameter controlling a transition

between regimes of high and low bacterial density in the bladder. Typical human

urine production rates lie close to the predicted threshold (here determined by

the growth rate of uropathogenic E. coli), suggesting that individual patients

might show dramatically different levels of bacteriuria depending on their fluid

intake. Drinking more water is known to be protective against urinary tract

infections [43, 49, 73, 102]. For CAUTI, previous work suggests that dilution of

the urine prevents its alkalisation, and hence crystallisation, by P. mirabilis [11].

Our work suggests that increased fluid intake can also delay catheter blockage

by decreasing the density of bacteria in the urine and hence slowing down

colonisation of the lumen.

Furthermore, our model predicts that reducing the residual urine volume may

have similar protective effects as increasing the urine production rate, since the

two parameters jointly control the dilution rate. Residual urine volumes are

not typically measured within patients, and there is likely to be large variability

in volumes patient to patient: values from 10 mL to as high as 500 mL have

been measured [40]. Where the urine production rate can be altered by changing

nursing/patient practices, the residual urine volume is more likely to be a suitable

target for catheter design changes. For example, in 2007 Garcia et al. [40]

proposed an alternative design for catheter tubing that reduced residual urine

volumes by minimising the disruptions to urine flow that occur when catheter

tubing becomes kinked.

The time taken by bacteria to migrate up the catheter is also an important factor,

since it dominates the time to detection of bacteriuria and strongly influences the

time to formation of a biofilm. Since migration time depends linearly on urethral

length, our model predicts that women will develop bacteriuria faster than men.

Gender is already a known risk factor for all urinary tract infections, with many

reports of greater prevalence in women than in men [36, 59, 110]. Since catheters

are typically removed after a fixed time, if the timescale of catheterisation is short

(as in many hospital settings), our model would indeed predict a higher incidence
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of observed bacteriuria in women than in men.

CAUTI is defined as a symptomatic infection that should be treated by catheter

removal and possibly antibiotics; in contrast, asymptomatic bacteriuria may not

require treatment [48, 82]. Our model does not describe the human response to

bacterial infection, so cannot predict the presence or absence of symptoms such as

pain or fever. However, it does make a clear distinction between bacteriuria and

bacterial colonisation of the catheter lumen (i.e., biofilm formation). In the model,

bacteriuria happens earlier than biofilm formation – suggesting that detection of

bacteriuria does not necessarily imply a colonised catheter. Interestingly, the

model also predicts that a catheter could become blocked without bacteriuria

being detected at all. This happens in the regime of high urine flow, where the

bacterial density in the urine is low but the lumen can still become colonised.

Inspecting the spatial patterns of biofilm on infected catheters could provide

a way to test our model, as well as a pointer to the origin of an infection.

Such measurements are not routinely performed, but intriguingly, a study of

central venous catheters [96] observed that while biofilm formation was universal,

the extent and location of biofilm formation depended on the duration of

catheterization: short-term catheters had greater biofilm formation on the

external surface while long-term catheters had more biofilm formation on the

inner lumen. These observations are similar to our model predictions, suggesting

that closer observation of the nature of the biofilm on infected urinary catheters

could be highly informative.
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Chapter 8

Predicting outcomes of clinical

interventions

8.1 Introduction

In Chapter 2, we laid out the framework for a model for bacterial colonisation of

urinary catheters. Then in Chapters 3 to 5 we discussed a specific form of this

model, choosing the exact form of equations for the dynamics of the bacterial

density. By Chapters 6 and 7, we were even more specific, discussing the form

and results of a numerical implementation of this model. In this chapter we

return to a broader perspective. We discuss the wider implications of our model

and demonstrate how we can use the model to make predictions for the efficacy

of prospective clinical interventions for CAUTI.

Our model has 10 parameters (Table 2.2) that together determine the behaviour

of the system (Chapter 7). These parameters describe the geometry of the system,

and the relevant bacterial and host characteristics. In fact, we can think of the

model as a mapping, from ‘parameter space’ to ‘outcome space’:

M : parameters → characteristic timescales,

M : parameters + boundary conditions → long-time (steady-state) behaviour,

M : parameters + boundary conditions + initial conditions → dynamics.

(8.1)

Here, the ‘characteristic timescales’ of the model include the timescale of bacterial
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ascension of the catheter (Chapter 3), the timescale of bacterial proliferation

in the bladder (Chapter 4), and the timescale of biofilm development on the

intraluminal catheter surface (§7.2.3). Many of these timescales are summarised

in Table 6.1. The boundary and initial conditions are as we discussed in §6.4,
and reflect the ‘infection narrative’, e.g., the bacteria originating from the skin,

the bladder, or the drainage bag. The steady-state behaviour of the model is the

clinical ‘outcome’, for example bacteriuria, the presence of bacteria in the urine –

we saw in §7.2.4 the steady state is independent of the initial condition. Finally,

the system dynamics are the full description of the bacterial growth dynamics on

the catheter surfaces and within the bladder.

In the model, the behaviour of the system is fully determined by its 10 parameters,

boundary conditions, and initial conditions. In this interpretation, we can think

of the equations of Chapter 6 as defining the mapping M. In fact, from this

perspective, we can think of Chapter 2 as describing a whole class of these

mappings (e.g., not specifying the form of the bacterial motility, or the dynamics

of bacterial growth on urine). Within this chapter, the majority of our results are

specific to this specific mapping M (the specific model of Chapter 6), however

in places we identify properties of the framework of Chapter 2: properties that

appear to be intrinsic to the underlying physical system (i.e., independent of the

choice of equation(s)).

8.2 Parameter classification

In Chapter 7 we explored the parameter space of our model. Here we use those

results to classify the model parameters into three groups, according to their

effects on the dynamics, long-time behaviour, and characteristic timescales. This

classification is summarised in Table 8.1 and discussed in detail in the following

subsections. The following discussion is based on a detailed parameter space

exploration, including but not limited to the results presented in Chapter 7. All

numerical simulation was performed as detailed in Chapter 6.
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Parameter Timescale significance Long-time significance

Urethral length L ✓

Residual urine vol-
ume

V α ≲ 1 ✓

Urine production
rate

λ α ≲ 1 ✓

Catheter internal
radius

R

Bacterial surface
diffusivity

DS ✓

Bacterial bulk diffu-
sivity

DB

Catheter surface
bacterial growth rate

rS ✓

Bacterial growth rate
in bladder

rB α ≲ 1 ✓

Catheter surface
carrying capacity

κS

Bladder carrying
capacity

κB

Table 8.1 Classifying the model parameters (Table 2.2) according to their effect
on the characteristic timescales and the steady state behaviour of
the model. Some parameters have conditionally significant effects
on the characteristic timescales, dependent on α ≲ 1, as defined by
Eq. 7.1 (i.e., significant only when the timescale of bacterial ascension
is comparable to the timescale of bacterial growth in the bladder –
requiring highly motile bacteria).
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8.2.1 Parameters with little effect

Four parameters – the catheter radius, bacterial bulk diffusivity, catheter surface

carrying capacity, and bladder carrying capacity (R, DB, κS, and κB) – have

generally negligible effects on the behaviour of the model system.

Catheter radius (R)

The catheter radius only affects the intraluminal urine flow, and intraluminal

bacterial growth. Within our model it appears as a dependence for the bacterial

deposition flux, j(x) ∼ 1/R. However, since bacterial deposition happens on a

much faster timescale than bacterial growth or bacterial ascension of the catheter,

this radial dependence has little impact on the overall infection timescale. It

does have a small effect on the predicted long-time bacterial densities over the

intraluminal surface, but this effect is small (for example, doubling radius might

shift density from 1.2 to 1.1; see the relative size of the spike near 40 mm in

Figure 7.5c lower).

Perhaps more importantly, the catheter radius will likely have an effect on the

timescale over which catheter blockages occur (which our model does not predict).

A greater radius will result in reduced bacterial deposition, since j(x) ∼ 1/R,

however it will also result in reduced wall shear rates (Eq. 1.5), resulting in

potentially more favourable conditions for biofilm development. Clinical studies

have not found the catheter radius to be significant [31].

Bacterial bulk diffusivity (DB)

Within the model, the bacterial bulk diffusivity appears in only two places. There

is a bulk diffusivity dependence of the bacterial deposition flux, j(x) ∼ D
2/3
B .

Therefore, changes in the bulk diffusivity can cause small shifts in the long-time

bacterial density over the intraluminal surface. The bacterial bulk diffusivity

also appears in the definition of the bacterial attachment rate, ka = 4πDB ·1 µm,

which in turn appears in the coupling of the bladder to the extraluminal surface.

Thus, increasing the diffusivity will increase the coupling strength, resulting in

a linear shift in the bacterial density on the extraluminal surface at the catheter

tip.
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Catheter surface carrying capacity (κS)

The catheter surface carrying capacity only scales the bacterial surface density

in the steady state; it does not affect the dynamics of the system. Therefore, the

carrying capacity could have implications for catheter blockages, but otherwise,

unless it approaches zero, it will not have significant effects on other outcomes

(bacteriuria, CAUTI, etc.).

Bladder carrying capacity (κB)

If the bladder carrying capacity is below the threshold for diagnosing bacteriuria,

then no bacteriuria can be observed. Beyond this, since the bladder bacterial

density appears in the deposition flux, j(x) ∼ ρ, it will have a scaling effect on

the bacterial deposition, resulting in a linear shift in the steady state intraluminal

bacterial density, as seen for the catheter radius and bacterial bulk diffusivity.

8.2.2 Parameters affecting characteristic timescales

Three parameters – the urethral length, bacterial surface diffusivity, and catheter

surface bacterial growth rate (L, DS, and rS) – have a significant impact on one or

more of the characteristic timescales (Table 6.1), while having lesser significance

for the long-time behaviour of the model.

Urethral length (L)

There is a linear dependence of the timescale of bacterial ascension of the catheter

on the urethral length. Therefore, for parameters and initial conditions such that

the infection timescale is determined by the ascension time (α ≫ 1 in Eq. 7.1),

doubling the urethral length will roughly double the timescale for bacteriuria to

occur. Urethral length does not have any effect on the long-time state of the

system.
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Bacterial surface diffusivity (DS)

As we saw in §3.3.2, the FKPP wave speed for the bacterial density on the

extraluminal surface scales as v∗ ∼ √
DS. Thus, the timescale of bacterial

ascension scales inversely with the square root of the bacterial surface diffusivity.

The bacterial surface diffusivity does affect the long-time behaviour of the model

as well (§7.2.5). Specifically, it scales the effective coupling of the bladder and the

extraluminal catheter surface, reducing the magnitude of the washout transition

discussed in §7.2.1. However for a realistic physical range of DS values (up to

10−4 mm2s−1), this effect spans only 2 orders of magnitude in bacterial density

(i.e., number of bacteria found within the bladder), much less than the washout

transition (∼ 6 orders of magnitude).

Catheter surface bacterial growth rate (rS)

The surface growth rate has similar effects to the surface diffusivity. The FKPP

wave speed scales as v∗ ∼ √
rS, leading to an inverse square root dependence of

the ascension timescale on the surface growth rate. The growth rate also has an

effect on the flux of bacteria from the catheter surface to the bladder, however

since the physical range of the bacterial growth rate is much smaller than the

range of the surface diffusivity, this has minimal effect on the bladder dynamics.

8.2.3 Parameters which control long-time behaviour

The final three parameters – the residual urine volume, urine production rate,

and bacterial growth rate in the bladder (V , λ, and rB) – significantly affect the

long-time behaviour of the model. Under certain circumstances (α ≲ 1, Eq. 7.1;

i.e., when the timescale of bacterial ascension of the catheter is comparable to

the timescale of bacterial growth in the bladder), these parameters also determine

the timescales.

Residual urine volume (V )

Varying the residual volume changes the dilution rate, since kD = λ/V . This

dilution rate determines both the effective growth rate within the bladder (and

hence timescale of bacteriuria), and the steady state bacterial density within the
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bladder (§4.3.1; §7.2.1). Recall that within the bladder, the effective growth rate

reff = rB − kD and the effective carrying capacity κeff = κ(rB − kD)/rB.

Urine production rate (λ)

As mentioned above, the urine production rate also determines the dilution rate.

However, this rate also appears in the expression for the bacterial deposition flux,

j(x) ∼ λ1/3, resulting in a small shift in the long-time bacterial density over the

intraluminal surface when the urine production rate is varied.

Bacterial growth rate within the bladder (rB)

We have established that the behaviour of the bladder is determined by the

parameter combination reff = rB − kD, and hence the bacterial growth rate is

also critical for determining the timescale of bacterial growth within the bladder,

and the steady state behaviour of the bacterial density. In particular, for values

of the bacterial growth rate less than the dilution rate, the long-time limit (the

steady state) for bacterial density within the bladder approaches zero.

8.3 Stationary state analysis

As we saw in Figure 7.5 (and wrote down in Eq. 8.1), the long-time behaviour of

the model is independent of the initial conditions: there are no memory effects.

We also suggested that there are some properties of the model that appear to

be inherent to the underlying physical system. Here we apply a stationary state

analysis to one of these properties.

It is well known that the logistic equation has two stationary states [79]: the

unstable zero state, and the stable ‘full’ state, n = 1. Since the nonlinear term in

the FKPP equation is logistic, the FKPP equation shares this property, with

an unstable n = 0 state, and stable n = 1 state [117]. In fact, our entire

model for a urinary catheter shares this property. The ‘clean’ system, where the

catheter and urine are void of bacterial growth, is an unstable state, in which any

perturbation (i.e., small contamination) will trigger bacterial growth, ultimately

resulting in the ‘infected’ state. This property has implications for the outcomes

of interventions that target CAUTI, bacteriuria, or bacterial colonisation of
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catheters. Starting from this perspective, we now consider how altering the

parameters of the system affects its stationary state.

All four ‘low impact’ parameters discussed in §8.2.1 rescale the ‘infected’ state.

The radius (R) and bulk diffusivity (DB) rescale the density on the intraluminal

surface only, the catheter carrying capacity (κS) rescales the densities on both the

intraluminal and extraluminal surfaces, and the bladder carrying capacity (κB)

rescales the densities on both the bladder and intraluminal surface. However,

for all finite non-zero values, none of the four parameters affect the stability

of the stationary state. While in their asymptotic limits they do rescale the

relevant ‘infected’ bacterial density state to zero, resulting in (for the relevant

surface/volume) a single stable stationary state at zero, all these asymptotic

limits seem physically implausible. For example, in the limit that R → ∞, or

DB, κS, κB → 0. Note that the reverse asymptotic limits will have somewhat

different behaviour, although they are also physically implausible. κS, κB → ∞
has no effect on stationary state stability, while DB → ∞ or R → 0 violate

our modelling assumptions (the assumption of a thin diffusive boundary layer in

§5.3).

The three ‘timescale’ parameters discussed in §8.2.2 have little effect on the

stationary states, as these parameters mainly alter the dynamics. The bacterial

surface diffusivity (DS) and catheter surface bacterial growth rate (rS) do alter

the density distribution of the extraluminal surface infected state slightly, and in

the case that rB < kD (the case of a ‘washed out‘ bladder) they also rescale the

density of bacteria in the bladder’s infected state.

Finally, the three ‘long-time’ parameters discussed in §8.2.3 have a significant

effect on the stationary state, specifically within the bladder. As observed

throughout this thesis, there is a transition, between a ‘washed out’ low density

state and a bacteriuric high density state, at λ/V = rB, and for all parameter

values such that λ/V ≥ rB, the only stationary state within the bladder is a

stable zero state (or at least near zero). We note that although changing the

parameters of §8.2.1 can also in principle lead to zero bacterial density within

the bladder, this only occurs in the asymptotic limit, not for realistic parameter

values.
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8.4 Implications for clinical interventions

Catheter associated urinary tract infections (CAUTI) account for up to 40% of

healthcare-acquired infections [82], and so reducing the occurrence of CAUTI is

a subject of considerable clinical interest [31]. With this aim, many interventions

have been proposed, which can be grouped into two broad categories. The

first type of ‘interventions’ are modifications to healthcare guidelines, targeting

hospital protocols and nursing practice. Examples include implementing ‘stop’

orders, that remind nurses to remove unnecessary catheters [48], or recommending

the practice of chlorohexidine cleaning of the skin [28] either before catheterisation

or throughout the duration of catheterisation. The second group of ‘interventions’

involve modified catheter design. The biggest success story of this type was the

introduction of closed drainage systems in the 1960s [64], but there have also

been numerous other proposals, e.g., silver-coated or antimicrobial catheters [90].

However, many of these interventions have proved ineffective in clinical practice,

despite in many cases performing well in laboratory tests. In this section, we

apply the model developed in this thesis to draw a new perspective on clinical

interventions for CAUTI.

An emergent theme from all the discussion in this chapter is that care must be

taken to select an appropriate metric against which to assess an intervention.

Over and over (for example, Table 8.1), we have seen that the parameters

controlling certain long-time outcomes (for example, bacteriuria is dominated by

the relation rB > λ/V ) are different from the parameters controlling timescales

(e.g. the timescale of ascension of the catheter is dominated by bacterial motility).

This implies that the appropriate intervention must be selected for the desired

outcome. The most obvious example of this is in the difference between an acute

care setting (where duration of catheterisation is typically short, and hence the

dynamics of the infection are likely relevant), and a long-term care setting (where

the duration of catheterisation is longer, and hence outcomes are determined by

the long-term behaviour). As we shall see, this has unfortunate implications for

the feasibility of evaluating proposed interventions in vitro: it is very easy to

devise laboratory tests that measure some property of a novel catheter, but if

that property is not the one determining clinical outcomes, the intervention is

unlikely to be successful. Currently, no formal regulations or standard tests exist

for assessing the antimicrobial efficacy of urinary catheters in vitro [97].
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8.4.1 A framework for understanding interventions

The first step in relating a clinical intervention to our model is to consider which

parameters the intervention alters (or if it is so fundamental it would alter the

equations themselves). For example, interventions relating to antiseptic cleansing

likely alter the initial/boundary conditions, whereas an antimicrobial catheter

coating would be likely to act through a bacterial death term – which in our model

would take the form of a modified bacterial growth rate in the FKPP equation.

An example of a ‘fundamental’ intervention that would alter the structure of

our model equations would be intermittent catheterisation, where the catheter is

inserted periodically, rather than being indwelling.

The second step is to consider the setting. What is the typical duration of

catheterisation? What is the infecting bacterial strain? Are the outcomes

being considered long-term or short-term? For example, reducing incidence of

bacteriuria in hospitals (where duration of catheterisation is typically short)

is a short-timescale problem, while reducing incidence of catheter blockage in

care homes (where catheterisation occurs over longer durations) is likely a long-

timescale problem. Based on our analysis in section §8.3, we can classify

interventions into three types, which we detail below.

Postponement

Interventions which alter ‘timescale’ parameters (§8.2.2) can delay the occurrence

of clinical outcomes (such as bacteriuria or blockage). These interventions can

be very effective if they result in the timescale of the primary outcome being

longer than the duration of catheterisation – so they are primarily applicable

to acute-care settings. Interventions that alter the initial conditions are likely

to also fall into this category: for example, antiseptic cleaning of the skin will

reduce the extent to which the skin acts as a reservoir, therefore delaying (but

not ultimately preventing) the occurrence of infection.

Mitigation

Interventions that rescale the stable stationary state, without altering the stability

of the state (parameters in §8.2.1 or parameters in §8.2.3 that still fall below the

critical threshold), may be able to reduce bacterial presence down to levels such
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that the host immune system can cope. We therefore term these interventions

‘mitigation’.

Prevention

Interventions that alter the stability of the stationary states, resulting in a stable

zero state, can (in theory) make the expectation value of the primary outcome zero

(that is, totally prevent the outcome, in all cases). For example, we would expect

incidence of bacteriuria to be zero (where bacteriuria is defined as a bacterial

density in the bladder greater than a threshold, e.g., 102 mm−3) if the urine

production rate is greater than λ = rBV . Interventions which alter the governing

equations may also fall into this category if they have a stable zero state. For

example, not using catheters should result in zero catheter-associated infections.

Less trivially, we could consider intermittent catheterisation or tidal drainage in

this category.

8.4.2 Evaluating interventions within the modelling

framework

New catheter designs, or any other proposed intervention, should clearly identify

the outcome that they target. Preventing blockages may require a very different

type of intervention to preventing bacteriuria. In short-term care settings,

postponement may be equivalent to prevention: this equivalence is unlikely to be

the case in long-term care facilities. Here we consider a selection of interventions

(that have been proposed in the past) within the framework of our model: relating

them to the model parameterisation (Table 2.2 and Table 8.1), and categorising

them according to §8.4.1. We summarise this evaluation in Table 8.2 and discuss

each intervention in detail below.

Chlorhexidine cleaning

Chlorhexidine is an antimicrobial agent that is commonly used topically in a

variety of healthcare settings. In chlorhexidine meatal cleaning, a chlorhexidine

solution is applied to the urethral meatus (the skin-urethra interface) immediately

prior to catheterisation. This aims to reduce the occurrence of bacterial

contamination at time of insertion (as discussed as a possible infection pathway
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Intervention Parameters Postpone Mitigate Prevent

Chlorhexidine cleaning ✓

Coiled drainage V ↓ ✓

Hydrogel coating κS ↓, ka ↓, DS ↑ ✓

Nitrofural-impregnation rS ↓, rB ↓ ✓

Silver-alloy coating rS ↓ ✓

Tidal drainage λ ↑, V ↑

Table 8.2 Evaluating interventions in the model framework, considering effected
model parameters to classify interventions, as in §8.4.1. The
parameters are as defined in Table 2.2, with ↑ indicating the
intervention raises the value of the parameter, and ↓ indicating a
decreased value.

in §1.3), as well as delay onset of bacterial ascension of the catheter (as the skin is

initially aseptic and will take time to become colonised again). Thus, we expect

chlorhexidine meatal cleaning to result in a postponement effect, with incidence of

bacteriuria delayed. Only a few randomised controlled trials have investigated the

efficacy of chlorhexidine meatal cleaning. Fasugba et al [28] studied 1642 patients

receiving catheterisation in hospital, with mean duration of catheterisation being

4.1 days in the control group, and 2.5 days in the intervention group, and found

a 74% reduction in catheter-associated bacteriuria associated with chlorhexidine

meatal cleaning. However, as we shall see in §8.5, duration of catheterisation is

a very important factor in incidence of bacteriuria (in §8.5, males in the control

group who were catheterised for ≥ 4 days were ∼ 3 times more likely to be

bacteriuric than males catheterised for ≤ 3 days). Fasugba et al [28] did not

control for duration of catheterisation in their analysis, so the true effect size

associated with chlorhexidine in that study is unknown.

Coiled drainage

As we discussed early in this thesis (§1.3), the volume of urine residual in the

bladder during catheterisation is partly due to kinks in the catheter tubing which

prevent full drainage. And we saw in §7.2.1 that since the dilution rate is

dependent on the residual volume, kD = λ/V , a greater residual urine volume

implies a lower dilution rate, and hence increased susceptibility to bacterial
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colonisation of the urine (bacteriuria). Garcia et al. [40] proposed a novel catheter

design with coiled drainage tubing, that greatly reduces the residual urine volume,

V , in catheterised patients. We predict that this style of catheter may reduce

incidence of bacteriuria. For example, reducing the mean residual urine volume

from 50 mL to 10 mL would lead to a predicted reduction in incidence of

bacteriuria from 73% to 6% in females and 69% to 4% in males (resulting in

a threshold urine production rate of 0.23 mL/min; analysis as in §8.5.1).

Hydrogel coating

Hydrogel catheters have a coating of insoluble hydrophilic polymers that repulse

proteins and bacteria from the surface, theoretically reducing catheter encrusta-

tion and biofilm development [107], as well as reducing patient discomfort [31].

Interpreting this from the perspective of our model, we suggest that hydrogel

coating reduces the carrying capacity of the catheter surface, κS, and the bacterial

attachment rate, ka. However, we would also expect an increase in bacterial

motility, DS, as bacteria are not stuck to the catheter surface. We would not

expect a change in bacterial dynamics within the bladder, as hydrogels are not

antimicrobial. Thus, our model predicts that hydrogel catheters reduce biofilm

formation (since κS is reduced), and may reduce blockage, but also reduce the

timescale of bacteriuria (since DS is increased), resulting in higher incidence of

bacteriuria in a short-term clinical setting. Clinical trials of hydrogel-coated

catheters have been inconclusive [107].

Nitrofural-impregnation

Catheters impregnated with antimicrobial agents, such as nitrofurazone, are in

current use in healthcare settings [101]. Nitrofurazone is an antibiotic that is

effective against several common uropathogens, including E. coli, S. aureus, and

S. epidermidis. [39]. When applied to catheters, it suppresses bacterial growth

and adhesion on the catheter surface [24]. It may also have some suppressing

effect on bacterial growth in the urine within the bladder, as it leaches from the

catheter into the urine. However, multiple studies have found that the efficacy of

nitrofural catheters wanes rapidly in time [24, 39], likely due to the concentration

of nitrofurazone on the catheter dropping. Gaonkar et al. [39] performed ‘zone

of inhibition’ assays, in which catheter segments were embedded in agar seeded
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Figure 8.1 Efficacy of silver-PTFE coating in reducing bacterial ascension of
the catheter. The bars are optical density measurements (UV
absorbance after crystal violet staining) of the biofilm distribution
along the extraluminal surface of silicone (■) catheters, or silver-
PTFE coated (■) catheters. Overlaid is the normalised biofilm
density distribution over the silicone ( ) and silver-PTFE coated
( ) catheters. (a) Bacterial density at the ‘skin’ (x = 13 cm)
was 106 cells/mL; ‘bacteriuria’ occurred after 1.8 days (silicone) or
4 days (silver-PTFE). (b) Bacterial density at the ‘skin’ (x = 13 cm)
was 102 cells/mL; ‘bacteriuria’ occurred after 6 days (silicone) or
41 days (silver-PTFE). Figure reproduced with modifications from
Wang et al., 2019, Figure 2c–d [121].

with a high (108 CFU/mL) concentration of test organisms and incubated. The

diameter of the ‘dead zones’, where growth was suppressed, was measured. The

authors observed the waning efficacy of nitrofural catheters by repeating this

assay over multiple days with the same catheter segment. Their results show

that within 3 days nitrofural catheters no longer suppress the growth of E. coli

or S. aureus, and the diameter of the inhibition zone for S. epidermidis is reduced

from 17.5 mm to 4.5 mm (a reduction in area of effect of 93%). Similarly, Desai

et al. [24] examined the waning efficacy of nitrofural catheters for preventing

bacterial adhesion to the catheter surfaces and found that adhesion of E. coli to

nitrofural catheters, though reduced, could occur within 3 days of catheter use.

In our model, this would result in a time-dependent bacterial surface growth rate

(rS), with a value that is initially zero, but increases with time to approach the

bacterial surface growth rate value in the absence of antimicrobials.
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Silver-alloy coating

Silver-alloy coated catheters are the most commonly used type of antimicrobial

catheter [101]. While silver is less effective at killing microbes than nitrofurazone,

silver-alloy catheters do not suffer from rapid waning efficacy in the same manner

as nitrofural catheters [101]. Zhang et al. [127] investigated the efficacy of a silver-

PTFE coated catheter in preventing E. coli ascension up the catheter in an in

vitro bladder model, in which a catheter was embedded in an agar ‘urethra’ with

an artificial urine growth medium flowing down the catheter from a ‘bladder’.

The authors measured the biofilm density (via UV absorbance after crystal violet

staining) on catheter sections at different positions along the catheter, to obtain

bacterial density profiles, similar to those we numerically simulated in Figure 7.5,

as well as measuring the time from inoculation until ‘bacteriuria’ (here defined

as ≥ 103 CFU/mL within the ‘bladder’).

In a separate paper arising from the same in vitro study, Wang et al. [121]

compared bacterial ascension for a bacterial density at the ‘skin’ (x = 13 cm)

of either 106 cells/mL, or 102 cells/mL (Figure 8.1). The shapes of the observed

bacterial density distributions are strikingly similar to the FKPP density wave

profiles we discussed in Chapter 3, particularly Figure 3.3a and Figure 3.4a.

Specifically, the blue dashed lines (Figure 8.1) are density profiles measured by

Wang et al. [121] for an experiment with a ‘fixed’ boundary at x = 13 cm (where

Wang et al. [121] placed the catheter in contact with a reservoir of bacteria), and

very steep initial conditions (the catheter was initially clean). The peak in the

middle results from the nonlinear spreading of the initial condition, which has

been overtaken by the linear FKPP wavefront to the left [117].1 The red dashed

lines are characteristic of an FKPP wave with a slower growth term relative to the

diffusion term: the non-linear initial conditions relax to the asymptotic waveform

(§3.3.3).

Wang et al. [121] determined the time taken to ‘bacteriuria’ to be 1.8 days

(silicone) or 4 days (silver-PTFE), for a ‘skin’ density of 106 cells/mL, and

6 days (silicone) or 41 days (silver-PTFE), for a ‘skin’ density of 102 cells/mL.

Assuming FKPP dynamics (as in our model; Chapter 3), we can estimate both rS

and DS for silver-PTFE catheters, compared to silicone catheters, and calculate

a ‘wavespeed modifier’ that parameterises the efficacy of silver-PTFE coated

1The FKPP wavefront is travelling with the linear spreading velocity (recall v∗ in §3.3.1)
that results from perturbing the initially zero unstable state. Meanwhile, the initial conditions
behave according to the non-linear growth dynamics (the reaction term in the FKPP equation).
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catheters in delaying bacteriuria compared to silicone catheters:

∆v =

√
rS;Ag-PTFEDS;Ag-PTFE

rS;siliconeDS;silicone

. (8.2)

Here we have four independent measurements (the time to ‘bacteriuria’ for each

case) and four unknown parameters. Our model predicts that the time taken to

bacteriuria is the timescale for the asymptotic (FKPP) wavefront to reach the

top of the catheter, plus the timescale over which the bacterial density grows to

the detection threshold, once the bladder is contaminated:

T = τ(x=0 → x=L) + τ(N=N0 → N=Ndetect)

=
L

2
√
rSDS

+
1

rS
log

(
Ndetect

N0

)
,

(8.3)

where N0 is the initial inoculation density (here either 106 cells/mL or 102 cell-

s/mL), Ndetect is the threshold sensitivity (here 103 CFU/mL), L is the urethral

length (here 13 cm in the laboratory setup), rS is the bacterial growth rate on the

surface, and DS the bacterial surface diffusion coefficient. By evaluating Eq. 8.3,

we find

rS;Ag-PTFE = 0.062 day−1 DS;Ag-PTFE = 4200 mm2day−1

rS;silicone = 0.55 day−1 DS;silicone = 2400 mm2day−1 (8.4)

∆v = 0.44.

Comparing the parameters obtained in Eq. 8.4 with the parameters we assumed in

Table 2.2, which were based on observed values in the literature (rS = 0.69 hr−1;

DS = 10−8 mm2s−1), we see that, when put in the same units, our calculation

(Eq. 8.4) results in values of DS ∼ 10−2 mm2s−1, and rS = 2 × 10−2 hr−1.

These describe a bacterial strain that is highly motile and unusually slow growing.

Unfortunately, the strain used by Wang et al. [121] was a uropathogenic E. coli

clinical isolate that has not been well characterised, and Wang et al. [121] did

not measure the growth rate of the bacterial strain on the artificial urine medium

they utilised within the study. It seems plausible that the artificial urine medium

choice was constraining the bacterial growth in their study. As mentioned above,

this strain appears to be highly motile,2 but notably, the motility increases for

2E. coli is known to exhibit swarming behaviours, with similar motility to as observed by
Wang et al. [121], this has been observed particularly for E. coli cells confined between agar
and a surface [57] – exactly as was the case in the setup of Wang and Zhang et al. [121, 127].
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the silver-PTFE coating. This may be a result of the PTFE component of the

coating, which is highly hydrophobic.

Tidal drainage

Standard Foley catheters, as discussed throughout this thesis, drain the bladder

continuously, resulting in infection dynamics as discussed in Chapter 4, with

bacteriuria occurring if the bacterial growth rate exceeds the dilution rate, rB >

λ/V . Tidally draining catheters instead allow the bladder to fill and empty

through raising the height of the drainage tubing or bag, and then intermittently

lowering the bag to form a syphon [31], mimicking the natural drainage of the

bladder. In this case, the condition on the growth rate for the occurrence of

bacteriuria is as found by Gordon and Riley [43] for the case of regular (periodic)

micturition (Eq. 4.12):

rB > log

(
Vmax

Vmin

)
λ

Vmax − Vmin

,

where Vmax is the maximum urine volume in the bladder, and Vmin is the minimum

urine volume within the bladder. Typical values for Vmax ∼ 300 mL in healthy

bladders, and for Vmin ∼ 10 mL [43].

We might interpret this as suggesting that for the same colonising species (for

example, a uropathogenic E. coli strain, with growth rate ∼ 1.4 hr−1), the urine

production rate threshold for bacteriuria susceptibility is altered compared to

that for the regular Foley catheter configuration. In §8.5.1, we will discuss the

natural variability in urine production rates among the population in detail. Our

model suggests that for ‘standard’ Foley catheters, the threshold value of urine

production rate, below which bacteriuria occurs, is 1.16 mL/min, which when

combined with the population distribution of urine production rates, results in

an estimated fraction of 73% of females, and 69% of males who are susceptible to

bacteriuria. The remaining individuals in the population have urine production

rates that are high enough that our model predicts that they will never develop

bacteriuria when catheterised with a standard Foley catheter. However, we find

that for tidally draining catheters, the threshold value is 1.97 mL/min, resulting

in a higher susceptible fraction of ∼ 90% of females, and ∼ 89% of males.3

3To be fair to tidal drainage, we can obtain better results if we drain the bladder more
frequently, and do not allow the maximum bladder volume to exceed the typical values seen
in ‘standard’ catheterisation: Vmax = 50 mL → 38% and 30%. However, reducing the residual
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We might compare this prediction with the results of an actual study on tidal

drainage, where it was found to reduce the rate of infection from 73% to 15% [31],

and be surprised, since our prediction is that tidal drainage performs worse. But

we should bear in mind that the study quoted on tidal drainage dates to 1943 [98],

which predates the introduction of a closed drainage system [64]. Prior to closed

drainage, the majority of bacterial colonisation of catheters was intraluminal:

today the majority (66%) is extraluminal [82]. And tidal drainage is very effective

in flushing bacteria from within the catheter lumen, while leaving the bacteria on

the extraluminal surface untouched. Tidal drainage is not commonly used today.

8.5 Case study: predicting the results of a clinical

trial

Pickard et al. [90] recruited 7102 UK adults receiving short-term catheterisation

(mostly patients undergoing surgical procedures) between 2007 and 2010 for

a multicentre randomised control trial4 investigating the efficacy of antimi-

crobial catheters in preventing CAUTI. Patients were randomly assigned one

of three catheter types: silver-alloy coated latex (referred to throughout this

section as ‘Silver’), nitrofural-impregnated silicone (referred to as ‘Nitro’), or

polytetrafluoroethylene-coated latex (the control group; referred to as ‘PTFE’).

Outcomes data collected included the incidence of symptomatic CAUTI, and

the incidence of bacteriuria (bacteria present within the urine). The analysis by

Pickard et al. [90] – identifying an absolute reduction of 3.3% in incidence of

symptomatic CAUTI as a minimum effect size for clinical relevance – found no

statistically significant difference across the randomised groups. The incidence

of bacteriuria was regarded as a secondary outcome, and the authors did find

a significant reduction in incidence of bacteriuria for nitrofural-impregnated

catheters compared to PTFE-coated catheters, but not for silver-alloy catheters

compared to PTFE-coated catheters.

The mathematical model developed in this thesis does not predict symptomatic

CAUTI, but it does make predictions for catheter-associated bacteriuria. In

volume (for example §Coiled drainage) is significantly more effective.
4Randomised control trials (RCT) are “prospective studies that measure the effectiveness

of a new intervention or treatment . . . randomisation balances participant characteristics (both
observed and unobserved) between the groups allowing attribution of any differences in outcome
to the study intervention.” (Hariton and Locascio, 2018; [45])
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Figure 8.2 The fraction of patients with a positive CFU result (bacteriuric) for
each intervention group, plotted against duration of catheterisation.
(a) 1201 females (•) and 762 males (•) received ‘PTFE’ catheters.
(b) 1060 females (•) and 633 males (•) received ‘Nitro’ catheters.
(c) 1078 females (•) and 612 males (•) received ’Silver’ catheters.
The upper horizontal line ( ) is the mean bacteriuric fraction across
all patients with a duration of catheterisation > 7 days. The lower
horizontal line ( ) is the baseline fraction of patients bacteriuric
prior to catheterisation. Data has been cleaned and binned according
to duration of catheterisation (Table B.1).

particular, the model predicts the timescale of onset of bacteriuria (§7.2.2),
and patient susceptibility to bacteriuria, dependent on physical and biological

parameters (§7.2.1). As discussed in §Bladder-surface regime transition, the time

before bacteriuria is detected is the sum of the timescale of bacterial ascension

of the catheter and the timescale of bacterial proliferation within the bladder.

Thus, the model predicts that if a patient is susceptible to bacteriuria (having

a urine production rate below the threshold value; §8.5.1), they will develop

bacteriuria if catheterised for a duration greater than their timescale of bacteriuria

(as determined by their parameterisation within the model). Thus, if we apply

the model to a population of such patients, each with a given duration of

catheterisation, we can predict the incidence of bacteriuria: i.e., the fraction

of patients whose duration of catheterisation is greater than their timescale of

bacteriuria.

We can test the predictive capability of the model by applying it to the dataset

of Pickard et al. [90], which contains data on both incidence of bacteriuria, and

duration of catheterisation. We were able to obtain access from the authors

(§B.0.1) to data from the study dataset. For 6394 patients we were provided
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data on: the duration of catheterisation, sex, type of catheter received, and a

True/False result for ‘bacteriuria’ (a bacterial count in the urine > 104 CFU/mL

up to 3 days after catheter removal). After cleaning the data to remove patients

with missing data entries (§B.1.1), we had data on 5369 patients, who we sorted

into groups according to sex and catheter type used, and binned according to

their duration of catheterisation (Table B.1; §B.1.2).

The incidence of bacteriuria in this dataset can be seen to differ between males

and females (Figure 8.2) – as our model predicts since males and females have

very different urethral lengths (§8.5.2). The baseline rate of bacteriuria in patients

within the study (i.e., patients for whom bacteria were present in the urine prior

to catheterisation) was 7.7± 0.3% (Figure 8.2: grey dashed line). For longer

durations of catheterisation (> 7 days), both males and females, for all catheter

types, can be seen to converge to the same incidence of bacteriuria: 20± 2%

(§B.2.1). Looking at the male data (light green), we see that the bacteriuric

fraction transitions between the baseline fraction and the long-time fraction on a

timescale between 3 and 10 days, with qualitatively different behaviour for each

of the three intervention groups (compare Figures 8.2a, 8.2b, and 8.2c).

As we shall see (§8.5.2), the mean urethral length in males is∼ 7 times longer than

in females, so – given that we are observing the timescale of bacteriuria for males

to be between 3 and 10 days – we expect the transition in bacteriuric fraction for

females to occur on a timeframe ≲ 1 day (as the timescale of bacteriuria scales

linearly with urethral length). Thus, as the resolution of the study data is 1 day,

we do not expect to see any transition in the bacteriuric fraction for the female

data (dark green).

In the following section, we apply the model to predict the efficacy of silver-

alloy and nitrofural-impregnated catheters in reducing incidence of bacteriuria in

males, and then compare these predictions to the data collected in the study

of Pickard et al. [90]. We gather data on population distributions of urine

production rate (§8.5.1) and urethral length (§8.5.2) from the literature, as

this data was not collected by Pickard et al. [90]. We utilise this distribution

data to develop a model fit to the male control data (PTFE), from which we

obtain a fitted value5 for the speed of bacterial ascension of the catheter, vasc

5Our model predicts that vasc = 2
√
rSDS (§3.3.2), but as discussed in Chapter 3, (literature)

estimated values for DS are highly variable, dependent on both bacterial strain characteristics
and catheter surface properties, and while rS is less uncertain, estimating rS requires knowledge
of the colonising bacterial species and strain - which we lack. Thus, in this context, our model
is unable to predict the value of vasc, and fitting is appropriate.
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Figure 8.3 Distribution of average urine production rates in the US population.
(a) A sample population of 11011 adult females. (b) A sample
population of 10202 adult males. The pink vertical dashed line
represents our model estimation of the bacteriuric susceptibility
threshold. Patients with higher mean flow rates than this threshold
are not predicted to develop bacteriuria, even if catheterised.
Patients with lower mean flow rates are predicted to be at greater
risk of bacteriuria if catheterised. Data from the CDC National
Health and Nutrition Examination Survey, 2009-2014 [81].

(§8.5.3).Through the exploration of catheter properties and parameterisation of

§8.4.2, we obtain predictions for the change in parameterisation for Nitro and

Silver catheters, relative to PTFE catheters. This gives rise to model predictions

for the dependence of the incidence of bacteriuria on duration of catheterisation

for the Nitro and Silver male study groups (§8.5.4). Finally, we apply the model

fit (PTFE) and predictions (Nitro and Silver) to the study duration data, to

predict the overall incidence of bacteriuria in males in the study and compare

these predictions to the outcomes observed in the study (§8.5.5).

8.5.1 Urine production rates in the population

As we saw in Chapter 4 and discussed further in §8.2.2, the urine production

rate, λ, is critical in determining the model predictions for catheter-associated

bacteriuria. If the dilution rate, kD = λ/V exceeds the bacterial growth rate,

‘washout’ occurs, and there can no longer be a sustained bacterial population

within the urine. In Table 2.2, we established the mean urine production rate

(for humans) to be 1 mL/min, and then in §7.2.1, discussed how (assuming the

residual urine volume to be 50 mL), this mean rate is close to, but below, the
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critical rate, λ = rBV .

Of course, not all people have the same urine production rate – within the

population there is a distribution of urine production rates, so while the average

person falls short of the critical rate, there is a subgroup of the population who

exceed it. Our model predicts that these people, with urine production rates

exceeding the critical rate, λ > rBV , are not susceptible to catheter-associated

bacteriuria.

Through the annual National Health and Nutrition Examination Survey, the

CDC collects health data on a random sample of the US population. This

dataset includes the urine production rate and is available online for years from

2009–2020 [81]. Figure 8.3 shows the distribution of urine production rates in

the US adult population between 2009 and 2014 (a timeframe comparable to

the timeframe of data collection for the study considered in §8.5). Overlaid

with a pink dashed line is the critical urine production rate predicted by our

model for catheter-associated bacteriuria, assuming parameters as in Table 2.2

(colonisation by uropathogenic E. coli). From this we derive an estimate of the

susceptible fraction of the population (those with urine production rates less

than the threshold value, λ < rBV = 1.16 mL/min): 72.9± 0.4% of females, and

68.8± 0.5% of males (§B.2.2). We can also calculate the population mean urine

production rate: 1.00±1.15 mL/min in females, and 1.09±1.12 mL/min in males

– consistent with the 1 mL/min of Table 2.2.

In our previous discussion (§8.5), the outcome discussed as ‘bacteriuria’ was

defined as a urine culture of > 104 CFU/mL, up to 3 days after catheter removal.

Since the timescale over which bacteriuria occurs is also determined by the urine

production rate (§7.2.1), the population who are expected to develop a bacterial

count of 104 CFU/mL within 3 days of bacterial contamination of the bladder is

slightly lower than the total susceptible population. Recalling Eq. 4.8,

ρ(t) =
(rB − kD)κBρ0e

(rB−kD)t

(rB − kD)κB + rBρ0 (e(rB−kD)t − 1)
,

we can calculate the value of kD for which ρ(t = 3 days) = 104 CFU/mL, from

an initial inoculation of ρ0 = 1 CFU/mL. From this we find the critical urine

production rate to be 1.05 mL/min, resulting in an estimate of the susceptible

population as 68.9± 0.4% of females, and 63.8± 0.5% of males.

In the study of Pickard et al. [90], 72.1 ± 0.6% of study participants received
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antibiotics prior to surgery. We would not expect these patients to develop

bacteriuria within the study duration. This leaves 27.9 ± 0.6% of the study

participants potentially susceptible to bacteriuria. From the discussion above,

if we assume the study participants to be similar to the population sampled

in Figure 8.3, we estimate the fraction of this population that is susceptible to

bacteriuria to be 68.9±0.4% of the potentially susceptible females, and 63.8±0.5%

of the potentially susceptible males (see preceding paragraph). This results

in an estimate of 19.2 ± 0.4% of females and 17.8 ± 0.4% males in the study

who are susceptible to catheter-associated bacteriuria.6 This estimate compares

favourably to the 20 ± 2% of the study participants who were catheterised for

a duration of 7 days or more who were observed to have positive urine culture

(bacteriuric; Figure 8.2). To test if this is coincidence or a true explanation would

require urine production rate data for the study participants, which unfortunately

Pickard et al. [90] did not collect. Unfortunately, we also did not obtain data on

which patients in the dataset had been treated with antibiotics (although such

data might be available on further request).

Increasing fluid intake is known to be protective against urinary tract infections

(UTI) [43, 49, 73, 102], and several studies have linked increased fluid intake with

lower rates of catheter encrustation and blockages [11, 13]. In Chapter 4, we

proposed a mechanism through which increased fluid intake (which is correlated

with urine production rate) can be directly protective against catheter-associated

bacteriuria, since this rate governs a washout transition within the bladder. Using

the data fits presented here, we can now quantify the reduction in risk of catheter-

associated bacteriuria that is associated with a (modest) increase in fluid intake

(Table 8.3; §B.2.2). In the study by Pickard et al. [90], we estimate only 27.9 ±
0.6% of study participants to be potentially susceptible to bacteriuria. If we look

for a 3.3% reduction in absolute incidence of bacteriuria (as Pickard et al. [90]

calculated to be required for clinical significance), our model predicts this could

be obtained by increasing the mean urine production rate of study participants

(ie increasing their fluid intake) by ∼ 400 mL/day.7

60.279× 0.689 = 0.192 . . .
7For example, for males: 68.8− 3.3/27.8 = 57.0 %, which we see from Table 8.3 is attained

with an increase of ∼ 400 mL/day.
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Increase in urine
production rate

Predicted susceptibility Relative risk adjustment

Female Male Female Male

(mL/day) (%) (%) (%) (%)

0 72.9± 0.4 68.8± 0.5 - -

100 70.4± 0.4 65.5± 0.5 −3.4± 0.8 −4.7± 0.9

200 67.3± 0.4 62.2± 0.5 −7.7± 0.8 −9.6± 0.9

300 63.6± 0.5 58.4± 0.5 −12.7± 0.8 −15.1± 0.9

400 60.1± 0.5 53.6± 0.5 −17.6± 0.8 −22.1± 0.9

500 55.7± 0.5 48.6± 0.5 −23.6± 0.8 −28.3± 0.9

Table 8.3 Our model predicts that increasing fluid intake decreases susceptibility
to catheter-associated bacteriuria. An increase in urine production
rate of 100 mL/day is equivalent to 0.07 mL/min.

8.5.2 Urethral lengths in the population

Urethral length, L, determines the timescale for bacterial ascension of the catheter

(Chapter 3), and as discussed in §8.2.2, for α ≫ 1 (surface-dominated behaviour),

the overall timescale of bacterial colonisation scales roughly linearly with urethral

length. In Table 2.2, we took the urethral length as 40 mm in females, and 160–

200 mm in males – a common assumption in the literature [31]. In fact, as we

shall see below, urethral length is normally distributed within the population.

Pomian et al. [94] measured the urethral lengths of 927 Caucasian adult females,

and found the urethral lengths to be normally distributed, with mean 30.1 mm,

and standard deviation 4.2 mm. Kohler et al. [60] measured the urethral lengths

of 109 American adult males, and similarly observed a normal distribution, with

mean 223 mm, and standard deviation 24 mm. From this we see that the sex

disparity in urethral lengths is even greater than we previously assumed, and for

males the variance in urethral lengths is substantial. In particular, we expect

bacteriuria to occur in females ∼ 7 times faster than in the average male (as the

mean female urethra is ∼ 7 times shorter than the mean male urethra), and we

expect ∼ 20% difference in the time to bacteriuria for males with shorter urethras

vs. males with longer urethras.
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8.5.3 Fitting the model to find vasc

As discussed in §8.5, in Figure 8.2 we saw that the timescale of bacterial

colonisation in females seems to be less than 1 day (the resolution of the study

data for duration of catheterisation). As a result, we are unable to meaningfully

compare the model predictions to the study data for females. Hence, in the

following subsections we focus only on male data.

We assume males within the study of Pickard et al. [90] to have urethral lengths

normally distributed, with mean 223 mm, and standard deviation 24 mm, in line

with the population data of Kohler et al. [60] (§8.5.2). Our model predicts that

a patient will develop bacteriuria if they have been catheterised for a duration

that exceeds the timescale for bacteria to ascend their catheter. Here we neglect

to include the timescale of bacterial proliferation within the bladder, as this is

typically ∼ 2.1 days (for parameter values as in Table 2.2), which is less than

the 3 day window post-catheterisation in which Pickard et al. [90] tested for

the occurrence of bacteriuria (in other words, we expect almost all patients who

were catheterised for a duration greater than the ascension timescale to have a

positive CFU result). As we discussed in §3.3.2, the characteristic timescale of

ascension is L/vasc = L/2
√
rSDS. The model prediction for the dependence of

bacteriuric fraction on catheterisation duration is then a cumulative function:

the fraction of patients for whom the predicted timescale of ascension is less than

the catheterisation duration. Since urethral lengths are normally distributed,

the model prediction for the bacteriuric fraction takes the form of a sigmoid

(error) function [29], with mean Lµ/vasc, and width Lσ/vasc (where Lµ is the

mean urethral length, here taken to be 223 mm, and Lσ is the standard deviation

on the mean urethral length, here taken as 24 mm):

f(T ; vasc) = f0 +
fsus
2

[
1 + erf

(
Tvasc − Lµ√

2Lσ

)]

= 0.077 + 0.10

[
1 + erf

(
Tvasc − 223 mm

24
√
2 mm

)]
,

(8.5)

where f(T ) is the fraction of patients catheterised for duration T who have

positive CFU result, f0 is the baseline bacteriuric fraction (§8.5), and fsus is the
total fraction of the population susceptible to bacteriuria (for example, not taking

antibiotics, with urine production rate below the washout threshold; §8.5.1), Lµ
is the mean urethral length, Lσ is the standard deviation of the urethral length

distribution (§8.5.2), and erf is the error function. Here we take fsus = 20%,
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the mean bacteriuric incidence for catheterisations > 7 days (as in §8.5). An

alternative modelling choice would be to take fsus = 17.8%, the (model) predicted

bacteriuric susceptibility in the male study participants (§8.5.1). This alternative
choice would result in a slightly lower prediction of the overall bacteriuric fraction

but does not significantly alter the fit for vasc. In fact, as we can see in Figure 8.4,

the fit we obtain from Eq. 8.5 (green dashed line) is excellent. We discuss this fit

further below.

We fit Eq. 8.5 to the control group data, to determine the wavespeed, vasc

for the PTFE catheter group (Figure 8.4). We obtain a fitted value vasc =

61.2± 7.7 mm/day, corresponding to a mean ascension time of 3.65± 0.46 days.

In principle we can compare this to the parameter space exploration we performed

in §7.2.3 by assuming a value of rS as typical of E. coli (as in Table 2.2), and

taking vasc = 2
√
rSDS to estimate DS ∼ 6 × 10−4. This is similar to the value

we previously took as an upper estimate for DS (§3.2), which was the active

diffusion coefficient of E. coli swimming freely in a bulk medium (water). We

might interpret this as suggesting that in this context, bacterial migration up the

catheter is primarily a swimming motility mode (perhaps through the mucosal

layer), rather than a slower surface (biofilm) growth-mediated spread, or faster

swarming behaviour (§3.2).

In the discussion above we have used the model predicted wavespeed, arising

from the FKPP equation, 2
√
rSDS. However, ascertaining the bacterial surface

diffusion coefficient, DS from the literature is challenging, as it depends on both

bacterial strain-specific characteristics, and on catheter surface properties – both

material-specific properties and surface ‘wetness’. In fact, as we saw in Chapter 3,

in the literature we find an estimated range of values for DS that spans many

orders of magnitude. Additionally, while the bacterial growth rate, rS is better

defined, it is also strain-specific. In the context of this study, we do not know the

colonising bacterial species, and so we can estimate neither rS or DS.

It is common in the literature to assume a linear increase in bacteriuric incidence

with duration of catheterisation – indeed this assumption is made by Pickard et

al. [90] in their analysis. Our model suggests a sigmoidal fit (Eq. 8.5) should be

more appropriate than a linear fit. We can compare a linear fit (Figure 8.4 grey

dotted line) with our model sigmoidal fit, for example by calculating the residual

sum of squares (RSS). We find RSS = 0.011 for the sigmoidal fit, a better result

than RSS = 0.018 for the linear fit (§B.2.3).8 Furthermore, the sigmoidal fit is a

8If, as we discussed above, we fit our sigmoidal function (Eq. 8.5) with fsus = 17.8%, rather
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Figure 8.4 Fitting the model to control group data. Plotted is the fraction
of patients who have a positive CFU count, for males receiving
PTFE catheters, against the duration of catheterisation. The model
prediction is a sigmoid function (Eq. 8.5), with a mean duration
of Lµ/vasc, and a width of Lσ/vasc. This prediction has been fit to
the data ( ) to obtain an estimate of vasc = 61.2 ± 7.7 mm/day
(a mean ascension time of 3.65± 0.46 days – shown with a vertical
dash line ( )). It is common within the literature to assume a linear
increase in bacteriuric fraction with duration of catheterisation ( ).
Comparing the residual sum of squares for the two fits, the sigmoidal
fit (RSS = 0.011) is a better fit than the linear fit (RSS = 0.018).
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single parameter fit, while the linear fit is a two-parameter fit: if we constrain the

linear fit (for example requiring that the bacteriuric fraction at 0 days is 7.7%), it

performs even worse, RSS = 0.021. Figure 8.4 shows both fits, with the sigmoidal

fit (green dashed line) visually (qualitatively) more convincing than the linear fit

(grey dotted line).

8.5.4 Predicting the bacteriuric fraction

The intervention groups in the study of Pickard et al. [90] received one of two

catheter types: nitrofural-impregnated silicone (Nitro), or silver-alloy coated

latex (Silver). These antimicrobial catheters have different parameterisations

within the model (§8.4.2). We can make model predictions for these intervention

groups by considering how the altered growth rate, rS, results in either a slower

ascension speed, vasc (§Silver-alloy coating corresponds to a constant reduction in

bacterial growth rate), or a delayed onset of bacterial colonisation on the catheter

(§Nitrofural-impregnation corresponds to a time-dependent reduction in bacterial

growth rate, due to the waning efficacy). We estimate the wavespeed of bacterial

ascension on a silver-alloy catheter to be ∼ 2.3 times slower than on a PTFE

catheter (a ‘wavespeed modifier’ of ∆v = 0.44; Eq. 8.2), while the initially high

antimicrobial activity (with rapid waning) of the nitrofural-impregnated catheters

leads to an estimated 3 day lag in the bacterial ascension compared to a PTFE

catheter.

In Figure 8.5, we compare these model predictions for the dependence of the

bacteriuric incidence on duration of catheterisation, to the incidence observed for

the two interventions within the study. The predicted sigmoid functions take the

form

fsilver(T ) = f(T ; 0.44vasc)

fnitro(T ) = f(T − 3 days; vasc).
(8.6)

where f(T ; vasc) is as defined in Eq. 8.5. We see (Figure 8.5) that these predictions

are qualitatively plausible when compare with the data (note that these are not

fits, rather they are model predictions using literature values), particularly in

the predicted mean ascension times (6.65 ± 0.46 days for Nitro, 8.4 ± 1.1 days

for Silver), however there is insufficient data to assess the quality of the fit. For

than fsus = 20%, we in fact obtain an even better fit, with RSS = 0.007, while the fitted value
of the ascension velocity does not significantly shift (vasc = 63.0± 8.6 mm/day).
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Figure 8.5 The ascension time of bacteria varies with catheter type. Plotted
is the fraction of patients with a positive CFU count against the
duration of catheterisation, for males with a PTFE catheter (•),
males with a nitrofural-impregnated catheter (•), and males with
a silver-coated catheter (•). A sigmoid function has been fitted to
the PTFE group ( ; Figure 8.4), obtaining an estimate of vasc =
61.2 ± 7.7 mm/day. We predict sigmoid functions (Eq. 8.6) for
the Nitro group ( ) and the Silver group ( ). This gives rise to
predicted mean ascension times of 6.65 ± 0.46 days for the Nitro
group, and 8.4± 1.1 days for the Silver group.
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Figure 8.6 Comparing the model predicted bacteriuric fraction with a fitted
bacteriuria susceptibility, fsus = 20%(■) and a model predicted
bacteriuria susceptibility, fsus = 17.8% (■) with the observed
incidence of bacteriuria (■), across all males within the study. (a)
Comparing across all catheterisation durations. (b) Sampling only
catheterisation durations up to one week.

example there are only 89 males in the Nitro group who were catheterised for

5 days or longer, and 113 males in the Silver group who were catheterised for 5

days or longer (Table B.1) – so we are unable to resolve the data sufficiently

to compare the steepness of the transition between baseline and maximum

bacteriuric fraction.

8.5.5 Comparing the model predictions to observed results

The model allows us to predict the risk of developing bacteriuria for a patient

catheterised for a given duration. Applying this risk function to the catheterisa-

tion duration distribution and taking the mean results in a prediction for the total

fraction of patients who will have a positive CFU result in the study (Figure 8.6;

§B.2.4), i.e., the incidence of bacteriuria.9 Comparing these model predictions to

the outcomes observed in the study by Pickard et al. [90], again the predictions

seem qualitatively plausible, but the relative lack of data for durations > 7 days

limits the ability of the model to distinguish between nitrofural-impregnated

catheters and silver-alloy coated catheters.10 The consistent overestimation of

9We plot the model predictions for both of the values of fsus previously discussed. We see
that although the model predicted susceptibility leads to a better fit for PTFE, it does not
significantly alter the model predictions for Silver or Nitro.

10The errorbars quoted on the model predictions in Figure 8.6 should be interpreted as a
measure of the certainty of the model to predict the study outcomes, assuming all modelling
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bacteriuric fraction which we observe in Figure 8.6 is likely due in part to

an overestimation of the baseline bacteriuric fraction, f0. The value taken,

f0 = 7.7%, throughout this analysis is a statistic calculated across all patients

within the study, male and female; however, it is well known that females have

much higher incidence of both UTIs [36, 110] and recurrent UTIs [59] (in the

absence of catheterisation) than males, so we would expect the true value of f0

across males within the study to be lower. For future work, we can request access

to the individual patient data for pre-existing bacteriuria, to explore this further.

For both the model predictions and the observed outcomes, we see a significant

decrease in incidence of bacteriuria in males for antimicrobial catheters, compared

to the control PTFE catheter group. Our model predicts a decrease in

absolute incidence of bacteriuria of 2.4% and 2.5% for Nitro and Silver catheters

respectively, while in the data we observe a decrease in absolute incidence of

bacteriuria of 2.4% and 2.6% respectively. This is particularly notable, since

Pickard et al. [90] did not observe any decrease in bacteriuria associated with

Silver catheters in their analysis. This is because Pickard et al. [90] controlled

for sex but did not analyse separately the male and female data. Using the

perspective gained from our model, we could predict that antimicrobial catheters

should be more effective in males (due to their greater urethral lengths). Once

analysed with this perspective in mind, the data of Pickard et al. [90] indeed

shows a substantial decrease in bacteriuria for antimicrobial catheters used for

males – hence our model has led us to an improved analysis of the data and a

new result.

8.5.6 Discussion

Our model predicts the long-time bacteriuria incidence within the study of

Pickard et al [90] to be 19.2 ± 0.4% for females and 17.8 ± 0.4% for males

– which compares favourably to the 20 ± 2% incidence of bacteriuria for the

study participants who were catheterised for a duration of 7 days. The model

predicts that the time before bacteriuria occurs depends linearly on the urethral

length. Applying this to the underlying normal distribution of urethral lengths

within the male population results in a predicted sigmoidal function for the

dependence of the incidence of bacteriuria on the duration of catheterisation.

assumptions to be true. Quantifying the uncertainty due to parameter estimation (§8.4.2) or
modelling assumptions (Chapters 2 to 6) would require more data, not currently available in
the literature.
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This sigmoidal prediction provides a much more convincing fit (both qualitatively

and quantitatively) than the linear fits common within the literature. We

parameterised the interventions (silver-alloy and nitrofurazone) within our model

to predict the mean ascension times for the intervention groups, resulting in

qualitatively convincing predictions, compared to the observed data. Finally, we

predicted the overall incidence of bacteriuria for each intervention group within

the study of Pickard et al [90], again finding a qualitatively convincing comparison

with the study data. Particularly notably, the model predicted a decrease in

incidence of bacteriuria associated with the use of silver-alloy catheters, which

was present in the dataset yet not reported by Pickard et al. [90].

It is known that in long-term catheterisation, polymicrobial infections develop,

with number of colonising species increasing with duration of catheterisa-

tion [123]. The analysis conducted in this section does not consider polymicrobial

infections explicitly: our model would predict that the incidence for each

colonising species will take the form of a sigmoid, with wavespeed determined

by the bacterial characteristics (growth and motility). Since individual species

were not distinguished within the study by Pickard et al. [90], it is not possible

to confirm this.

In Figure 8.2, we saw that incidence of bacteriuria across all the subgroups

appeared to converge to the same value for longer durations of catheterisation

(> 7 days): all except one group. For the group receiving PTFE catheters,

the incidence of bacteriuria in females seems to increase with duration of

catheterisation - despite our model prediction (as discussed in §8.5) that the

transition from baseline to maximum incidence of bacteriuria happens rapidly, in

≲ 1 day. It is possible that this is attributable to the end of the surgery-related

course of antibiotics being taken by some of the patients finishing, leading to an

increase in the total susceptible population. If, for example, the length of time

that patients take antibiotics for varies across the group, then this would lead

to the type of spread-out increase in bacteriuric fraction seen in Figure 8.2a.

However, we do not currently have access to data concerning the antibiotic

treatment of patients within the study, so we cannot evaluate this.

Also, in Figure 8.2 we took the baseline bacteriuric fraction to be 7.7%, as

calculated across all patients within the study. We discussed briefly in §8.5.5
why this may be an overestimate for the baseline bacteriuric fraction in males.

However, in Figure 8.2, comparing (a), (b), and (c), we see that the distribution

of the ‘pre-transition’ datapoints around the baseline, regardless of the value,
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differs across the subgroups. In particular, in Figure 8.2b, the first data point –

males catheterised with Nitro catheters for 1 day – reflects a bacteriuric incidence

of ∼ 2%, well below the baseline incidence, prior to catheterisation. This

suggests that the antimicrobial activity of the nitrofural catheters immediately

after insertion may be sufficient to kill the bacterial population within the urine

in the bladder, as well as on the catheter surface. However, this effect is lost by

the second day of catheterisation – a rapid waning in the antimicrobial activity

– suggesting that the effect seen on day 1 may only apply to the planktonic

bacterial population, not the underlying recurrent population (likely intracellular

populations). In contrast, in Figure 8.2c, all but one of the male datapoints

‘pre-transition’ lie beneath the baseline. This may reflect a consistent small

antimicrobial activity from the silver catheters in the urine within the bladder.

In the absence of study-specific data on urine production rates or urethral lengths,

we took distributions from other studies in the literature, and assumed a similar

population. For urethral lengths (§8.5.2) this may not be too unreasonable.

Making this similarity assumption for urine production rates (§8.5.1) is more

problematic. In particular, the patients within the study of Pickard et al. [90]

were inpatients in a hospital, generally undergoing a surgical procedure. This

is likely to significantly disrupt normal habits, including fluid intake, so it is

unclear what the true distribution of urine production rates should be for these

patients. It is also possible that fluid intake behaviour would vary significantly

with duration of catheterisation, for example behaviour immediately before or

after surgery is likely to be different to behaviour in recovery.

When we discussed antibiotic usage in the study (§8.5.1), we assumed a flat figure

of 72%. However, as we began to discuss above, it is likely that many patients

took antibiotics for only a portion of the time they spent catheterised. Some

patients also began taking antibiotics subsequent to being catheterised, either

to treat catheter-associated infection, or for unrelated reasons [90]. Moreover,

it is likely that antibiotic usage is correlated with duration of catheterisation,

as patients undergoing catheterisation for longer periods are correspondingly in

hospital for a longer time – and longer duration of stay in hospital is associated

with increased antibiotic usage [116]. This is a possible explanation for the

unexpectedly low value of bacteriuria incidence in males in the PTFE group

undergoing catheterisation for 8–20 days (Figure 8.2a).

The greatest uncertainty in our model predictions likely comes from estimating

the parameter change for Nitro or Silver, relative to PTFE (§8.5.4). As
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discussed in §8.4.2, in vitro studies of catheter properties are limited, with the

majority assessing only bacterial adhesion, or ‘zone of inhibition’ antimicrobial

activity. Neither of these properties can be used to determine the bacterial

ascension wavespeed - for that we need growth and motility assays. Where

studies have measured bacterial ascension of catheters, for example using an

artificial bladder/urethra setup, these authors have focused on specific (novel)

catheters, and normally compared them to only one other catheter, often

silicone [39, 101, 121, 127].

The wavespeed adjustment we utilise in Eq. 8.6, a factor ∆v = 0.44, is

more correctly the adjustment for a silver-alloy coated latex hydrogel catheter,

compared to a silicone catheter (§8.4.2;[121, 127]). But the silver-alloy coated

latex catheters in the study of Pickard et al. [90] were not hydrogel coated, and

the control group received PTFE-coated latex catheters, not silicone catheters.

It is difficult to say how these factors alter the wavespeed adjustment: hydrogel

likely increases bacterial motility, latex catheters are associated with slightly lower

bacterial adhesion than silicone catheters, and the action of PTFE on catheters

is difficult to predict. By reducing friction with the urethra and bladder [31], the

deposition of fibrinogen is likely reduced, possibly reducing bacterial adhesion,

growth or motility, but conversely, PTFE has been linked to increased biofilm

formation compared to silicone [66].

In addition, the data supporting the assumption of a 3 day lag in bacterial

ascension in nitrofural-impregnated catheters (Eq. 8.6) is very weak. Two studies

found that nitrofural catheters completely suppressed bacterial growth on first

exposure (i.e., straight ‘out of the packet’), but that by 3 days of exposure

nitrofural catheters were no longer able to prevent bacterial growth. Desai et

al. found that after 3 days the catheters still displayed some antimicrobial

activity [24], while Gaonkar et al. found no antimicrobial activity after 3 days [39].

Neither study made observations for intervals between 0 and 3 days, and, as we

discussed above, Figure 8.2b suggests that the waning effect may be significant by

2 days. It is highly unlikely that the effect of nitrofural-impregnation on bacterial

growth is discontinuous (as we assumed when writing Eq. 8.6) – instead, it is more

likely that the antimicrobial activity wanes continuously after insertion, with the

majority of the effect lost by 3 days.

In discussing our results in §8.5.5, we highlight how our model predicts that the

efficacy of antimicrobial catheters in preventing catheter-associated bacteriuria

should depend strongly on urethral length, and thus be more significant in males.
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We also saw that this effect was present within the study data, for both nitrofural

and silver-alloy catheters. We mentioned that Pickard et al. [90] did not note this

effect, as they did not conduct separate analyses for male data and female data.

In fact, this seems to be a common phenomenon in the literature. Some studies

are conducted only on male patients, or only female patients, or have different

sex breakdown for the control group compared to the intervention group, or

even neglect to collect sex data entirely [101]. In light of our model, it seems

likely that this is a major factor muddying the waters when evaluating efficacy

of antimicrobial catheters. In particular, for silver-alloy catheters, there have

been many studies that find them highly effective in reducing bacteriuria or

CAUTI in short-term catheterisation, but there have also been many studies

(including Pickard et al. [90]), that have found them to have no effect. In our

analysis presented here, we have shown that silver-alloy catheters are effective in

preventing bacteriuria specifically in males undergoing short-term catheterisation,

and not in females.

8.6 Summary

We can interpret the model presented within this thesis as a mapping from

‘parameter space’ to ‘outcome space’ (Eq. 8.1). By classifying the model

parameters according to their effect on the characteristic timescales and steady

state behaviour of the model (Table 8.1), we identify parameters that are

particularly critical in determining the outcomes in short-term catheterisation

(urethral length, bacterial surface diffusivity, and catheter surface bacterial

growth rate), and in long-term catheterisation (residual urine volume, urine

production rate, and bacterial growth rate within the bladder).

We use a stationary state argument to conclude that the ‘clean’ catheter state is

an unstable state, in which any small contamination leads to bacterial growth.

Thus, we come to understand that interventions with the goal of preventing

bacterial colonisation long-term must act on the stationary states of the

system. Conversely, interventions that modify the dynamics may reduce bacterial

colonisation within short-term settings. We can classify clinical interventions

according to their action on the parameters, stationary state, and dynamics –

leading to a classification of postponement, mitigation, or prevention (Table 8.2).

While considering clinical interventions, we apply the model to find new
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perspectives on both in vitro and in vivo studies. Of particular note, the only

study to investigate the spatial distribution of bacterial biofilms on extraluminal

catheter surfaces found distributions highly suggestive of FKPP dynamics

(Figure 8.1). We finish by demonstrating how the model can predict outcomes

of clinical trials of catheter interventions, applying insights from the model to a

multicentre randomised control trial investigating the efficacy of antimicrobial

catheters [90]. We find that the model predicts a sigmoidal dependence of

incidence of bacteriuria on duration of catheterisation, and that this sigmoidal

shape is a much better fit than the linear dependence typically assumed in the

literature (Figure 8.5). The model predictions for overall incidence of bacteriuria

are qualitatively plausible and identify an outcome (reduced incidence associated

with silver-alloy catheters in males) that was present in the data but not discussed

in the original study.

This comparison to the CATHETER trial (§8.5) is a case study in how the model

might be applied. As we discussed, in this case the extraluminal surface emerged

as the relevant part of the model. However, the model could also be applied to

other clinical studies. For example, if the model were applied to a study focussing

on intraluminal biofilm development/blockage, the intraluminal surface and flow

could be expected to play a larger role. And for studies evaluating the origin

of CAUTI, for example by examining biofilm distribution across catheters, the

entire coupled model might be necessary.
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Further work

As we have seen, the model presented in this thesis captures all the phenomena

described in the clinical literature. However, as we discussed in detail within

each chapter, we made many simplifying assumptions, some more justified than

others. Moreover, the results presented within Chapters 7 and 8 raise a number

of further questions. Here I discuss some possible modifications to the model and

potential avenues for further study.

Mathematical modelling

In Chapter 3, we modelled bacterial ascension on the extraluminal surface of the

catheter with an FKPP equation. We commented that this inherently reduces

the number of modes of bacterial motility to one: an active diffusion term. In

Chapter 8, we discussed experimental results suggestive of FKPP-like dynamics

for the bacterial ascension on the extraluminal surface, and saw how data from the

CATHETER trial by Pickard et al. [90] led to estimates for the active bacterial

diffusion coefficient consistent with the motility of bacteria swimming in bulk

medium. However, we might ask what is the ‘real’ nature of bacterial motility

ascending the catheter? We know that the bacteria are moving in a region

between the catheter surface and the uroepithelial cells that line the urethral

wall. This region contains a mucosal layer consisting of urine, fibrinogen, and

other proteins. It would be interesting to model bacterial motility in such an

environment in more detail. Perhaps the model for this extraluminal surface

ascension should be compartmental, for example with separate compartments for

the catheter surface, the mucosal layer, and the epithelial cells. Alternatively,

perhaps the model should allow for multiple motility modes, for example rapidly

moving ‘swarming’ cells, randomly swimming motile cells, and slow-moving cells

adhered to the catheter surface.
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In Chapter 4, we discussed how the logistic growth model that we used for the

bladder dynamics has no physical justification, but it is a convenient way to add

a physical bound to exponential growth. We briefly discussed how an alternative

approach might be to use a chemostat model, where bacterial growth is nutrient-

limited, and the steady state is controlled by the dilution rate. However, to

construct such a model we need to ask what is the dynamics of bacterial growth

on urine? Urine is a complex medium, with carbon sources mainly in the form of

amino acids: the subject of how bacteria grow on multiple scarce carbon sources

is a topic of current research [86, 87].

However, this modelling approach describes only the planktonic bacterial popula-

tion. A recent topic of interest in UTI modelling has been intracellular bacterial

communities (IBC; bacteria that persist inside the epithelial cells that line the

bladder), as it is believed these are a mechanism for recurrent UTIs [17]. It

is unclear what role IBC play in catheter-associated infections, and to what

extent IBC models developed for UTIs would need modification for catheters, for

example to account for catheter-induced uroepithelial cell damage. If considering

the role of the epithelial cells, it is likely that the host immune system also plays

some role in regulating bacterial growth within the bladder and would need to

be included in future models. Thus, a more sophisticated model for bacterial

colonisation of the bladder might also need to be compartmental, perhaps with

a chemostat model describing the planktonic population, and an IBC model

describing the sustained bacterial population and the host immune response.

When developing the model of Chapter 5 for the intraluminal dynamics, for

simplicity we neglected to consider the effect of biofilm development on the

surface on the flow profile. To be able to predict catheter blockages this

would need to be included, and the fluid dynamics treated more carefully, likely

requiring computational fluid dynamics simulations (for example, software such

as OpenFOAM). We also assumed the dilution rate to be constant: in fact, urine

production rate varies periodically, with reduced rates overnight [84]. A topic

of considerable interest in the biophysics community is ‘upstream swimming’,

whereby the flow orients bacteria near the pipe surface to swim upstream against

the flow, attaining upstream velocities of ∼ 20 µms−1 [55]. Previous authors have

suggested that this may be relevant to catheter-associated bacteriuria/infections.

Assuming these reported rates of upstream swimming, bacteria might migrate

from the drainage bag to the bladder on a timescale of 5 hrs. Within this thesis we

neglected upstream swimming as: the majority (66%) of CAUTI is attributable

129



to extraluminal bacteria ascension; after placement urinary catheters are rapidly

coated in a sticky conditioning film, not accounted for within upstream swimming

models; and since urinary catheters rely solely on gravity for drainage, backflow is

likely to be a common and frequent occurrence, which is likely to be a much more

significant mode of transport of bacteria from the drainage bag to the bladder. A

future model would however do well to consider the occurrence of backflow and

its role in the development of bacteriuria.

Other modelling considerations for future work might include the action of

antibiotics in the treatment of CAUTI, for example the role of catheter biofilms in

determining treatment efficacy, since biofilms are notoriously difficult to eradicate

with antibiotics. From a nutrient-limitation perspective, we might ask if people

with abnormal urine (for example diabetics have higher sugar concentrations)

experience UTIs or CAUTIs differently. Finally, we might wonder if there is a

better modelling approach for estimating the strength of coupling between the

different parts of our model. For example, within this work we assumed that all

bacteria that come into contact with the catheter surface stick – this is unlikely

to be the case. We might also ask how the coupling strengths vary with bacterial

and catheter specific properties.

Experimental biophysics

The experimental results of Wang and Zhang et al. [122, 127] (who constructed

an artificial bladder/urethra system to investigate bacterial ascension of urinary

catheters) are highly supportive of a reaction-diffusion (FKPP) style description

of bacterial ascension of the extraluminal surface of catheters (Figure 8.1). It

would be very interesting to see further studies conducted with a similar exper-

imental setup to ascertain the nature of bacterial ascension of the extraluminal

surface, for example investigating other bacterial strains and catheter coatings. A

complementary experimental study might apply the same staining, imaging, and

analysis to analyse bacterial density patterns on catheters obtained from clinical

use. If data on duration of catheterisation was also collected, then – assuming

the existence of a bacterial wavefront – the position of the wavefront could be

correlated with the duration of catheterisation, and potentially a wavespeed could

be determined. Ideally, such a study would measure bacterial densities on both

surfaces of the catheter: extraluminal and intraluminal. However, conducting

such measurements on the intraluminal surface is more challenging, due to the
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high surface curvature, and the need to image ‘through’ the catheter (which, as

we discussed briefly in Chapter 5, fluoresces brightly with excitation/emission

wavelengths similar to many stains). Avoiding such microscopy via standard

microbiology methods of culturing and counting colonies is unlikely to be viable,

due to the presence of many ‘unculturable’ cells in catheter biofilms [125].

In our model, colonisation by multiple bacterial species would be assumed to be

independent, with the timescale of colonisation determined by the wavespeed

of the bacterial front for each species. Thus we expect that in an artificial

catheter/urethra/bladder setup, if we exposed the end of the system (the ‘skin-

urethra interface’) to a reservoir containing multiple bacterial species, we would

detect those species in the ‘bladder’ after times determined by the bacterial strain

characteristics: L/2
√
rSDS, where L is the ‘urethral length’, rS is the bacterial

strain growth rate in the ‘urethra’ and DS is the bacterial strain surface motility

(active diffusion coefficient). This would be interesting in comparison to clinical

observations of incidence of bacteriuria for durations of catheterisation between

14 days and 30+ days – and in comparison to rates of polymicrobial bacteriuria.

Clinical studies

In this thesis, urine production rate emerged as a critical parameter, determining

if bacteriuria is possible, or if the bladder is instead in a ‘washed out’ state with

bacteria being diluted out faster than they grow. Clinical studies of fluid intake

and urinary catheters have focused mostly on catheter encrustation, urine pH, and

the activity of P. mirabilis. Our model predicts a universal effect, with increasing

urine production rate resulting in reduced incidence of bacteriuria, regardless of

bacterial strain. This is a prediction that could be tested in a clinical study,

linking fluid intake with incidence of catheter-associated bacteriuria. Similarly,

dilution rate is also determined by the residual urine volume within the bladder.

Currently, little data exists on the population distribution of residual urine

volumes with catheterisation, particularly outside of intensive care units. It would

be interesting to determine what the form of this distribution is, and if, in an

observational study, there is any correlation between mean residual urine volume

and incidence of bacteriuria – as our model predicts there will be.

Kohler et al [60] measured urethral lengths in men via use of a Foley catheter:

inserting a catheter, marking on the catheter where it exited the urethra, and then
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measuring the length of catheter that had been inserted. Thus, measurements

of urethral lengths seem a natural addition to studies investigating urinary

catheters. In Chapter 8, we saw that urethral length determines the timescale of

bacterial colonisation, and hence, in short-term catheterisation, urethral length

determines incidence of bacteriuria. A clinical study could directly confirm this

link, identifying urethral length as a risk factor for catheter-associated bacteriuria.

This might identify men with shorter urethral lengths as having a greater risk

of catheter-associated bacteriuria, as well as determining the extent to which

differing incidence of bacteriuria between males and females might be attributable

to urethral length.

Catheter design

Finally, we suggest that our model, with its identification of critical parameters for

different outcomes, might guide the development of a testing framework for new

catheter design. Our model predicts how changing the parameters of the system

alters the outcomes, timescales, and dynamics (Chapter 8). If a testing framework

can determine the parameterisation of a given catheter design or intervention,

then the model can be applied to predict the outcomes in a clinical setting.
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Conclusions

The primary aim of this thesis was exploratory: to identify topics in which

biophysics may contribute to understanding the bacterial colonisation of urinary

catheters. To accomplish this, I constructed a minimal mathematical model,

following the ‘infection story’ described to me by clinical collaborators. This

‘narrative-driven’ modelling approach is common across ecology, epidemiology,

and population dynamics – but also across physics. In writing only the maths

necessary to tell the story, I constructed a ‘least-wrong’ model, elucidating

the fundamental mechanisms of the system, without obfuscation by small-scale

complex processes.

To do so, I made many simplifying assumptions and reductions, as highlighted

throughout this thesis. Yet, as also discussed throughout, and especially

within Chapter 8, this minimal model is already sufficient to explain all the

phenomena I encountered within the literature. One conclusion from this is that

in sufficiently complex systems, even ‘obvious’ or ‘trivial’ statements can have

many consequences and deeper significance. For example, within this thesis, the

‘trivial’ statement that if bacteria are diluted faster than they grow then there

will not be a sustained population within the urine (washout), leads to predictions

for the susceptibility to bacteriuria within a population.

A second conclusion is that while it is possible to build ‘perfect’ in vitro setups,

which capture all sorts of complex physical behaviours (e.g., upstream swimming),

and that we might also describe with beautiful physics, these behaviours are

typically ‘fragile solutions’ to the system. Outside of the idealised laboratory

conditions, in the inherently noisy conditions of life, these solutions are rarely

seen. We can consider this as a parallel to the wavespeed solutions of the FKPP

equation. It is possible to construct intricate initial conditions, resulting in many

possible theoretical wavespeeds, yet, in a numerical or experimental setting, these

almost invariably collapse to the asymptotic solution. We can also draw a second
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parallel, to ordering in statistical physics, where low temperature ordering is lost

as temperature rises.

The above argument seems to imply that we should expect a sufficiently complex

system to collapse to its ‘story’. This is uncomfortable, but we can take a

more ‘physics-based’ understanding by considering emergent phenomena. When

we combine sufficiently large numbers of microscopic systems (whether atoms,

or bacteria, or fish, ...), the resultant macroscopic system has properties and

phenomena of its own, that the individual constituents do not possess. When a

clinician observes a patient, they are observing properties of the macroscopic

system – so the ‘story’ they tell is the emergent phenomenon. Here I am

claiming that this is an emergent phenomenon not only from the vast numbers of

individual cells (human and bacterial) interacting, but also from the high numbers

of processes and interactions involved. Biophysics phenomena, like biofilms and

upstream swimming, are emergent phenomena resulting from the interactions of

large numbers of living organisms (here bacteria) with their environments. The

clinician’s narrative then is the emergent phenomenon from all of the underlying

biophysics processes.

The corollary to the ‘story’ is that context matters. If we alter the narrative,

then the mathematical description – the model – also changes, and hence the

results we obtain differ. This is the argument we made in Chapter 8. If we

wish to design an intervention that mitigates or prevents a specific outcome, we

must consider that specific outcome in the design and testing of our intervention.

And an intervention may be highly effective in one context (e.g., short-term

catheterisation in hospital), yet have no effect in another context (e.g., long-term

care in the community).

Biophysics is a rich and beautiful field; however, we must be wary when we draw

conclusions from phenomena studied in isolation. Life is noisy and complicated,

and phenomena rarely occur in isolation. When it comes to biophysical modelling

for clinical applications, perhaps simple is best.
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Appendix A

Methods, proofs and derivations

A.1 Chapter 3: Modelling the extraluminal surface

A.1.1 Linear spreading velocity of the FKPP equation

As referred to on pages 32, 33.

We can find the linear spreading velocity of the FKPP equation (Eq. 3.1 or

Eq. 3.3) by linearising the equation about the unstable (zero) state [117]. Van

Saarloos [117](p38–42) demonstrates this method for the dimensionless FKPP

equation (Eq. 3.3), showing that the linear spreading velocity v∗ = 2, and the

asymptotic spatial decay rate λ∗ = 1. Here we apply this method to our model

for bacteria on a catheter surface, recalling Eq. 3.1:

∂n

∂t
= DS

∂2n

∂x2
+ rSn

(
1− n

κS

)
.

We linearise Eq. 3.1 about the unstable state n(x, t) = 0, to find

∂n

∂t
= DS

∂2n

∂x2
+ rSn. (A.1)

We obtain the dispersion relation by substituting a Fourier mode, e−iωt+ikx, into

Eq. A.1:

ω(k) = i(rS −DSk
2). (A.2)
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Following van Saarloos [117], we solve for the saddle point k∗ by solving

dω

dk

∣∣∣∣
k∗

=
ℑ[ω(k∗)]
ℑ[k∗] , (A.3)

finding

k∗ = i

√
rS
DS

. (A.4)

We can then write down the linear spreading velocity:

v∗ =
ℑ[ω(k∗)]
ℑ[k∗] = 2

√
rSDS, (A.5)

and the asymptotic spatial decay rate

λ∗ = ℑ[k∗] =
√

rS
DS

. (A.6)

A.1.2 Numerical implementation of the extraluminal surface

As referred to on pages 30, 69.

Recall Eq. 3.1:
∂n

∂t
= DS

∂2n

∂x2
+ rSn

(
1− n

κS

)
.

This can be discretised with a forward-time centred-space (FTCS) method as:

nk+1
p =

DS∆t

∆x2
(
nkp+1 − 2nkp + nkp−1

)
+ (1 + rS∆t)n

k
p −

rS∆t

κS

(
nkp
)2
, (A.7)

where nkp is the extraluminal bacterial surface density, n(x, t), at the pth discrete

position, and the kth time step; ∆t is the time step; and ∆x is the spatial

discretisation.

To check for stability, we can apply von Neumann stability analysis while freezing

a coefficient [1]. We take an error ansatz n(x, tk) = eiϕx, and calculate the

amplification factor, which for stability must be less than one:
∣∣∣n(x,tk+1)

n(x,tk)

∣∣∣ ≤ 1.

Then by freezing
(
nkp
)2

= nkp |max[n(x, t)]| = nkpκS, we have

n(x, tk+1)

n(x, tk)
=
DS∆t

∆x2
(
eiϕ∆x − 2 + e−iϕ∆x

)
+ (1 + r∆t)− r∆t

= 1− 4DS∆t

∆x2
sin2

(
ϕ∆x

2

)
.

(A.8)
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So we require

−1 ≤ 1− 4DS∆t

∆x2
sin2

(
ϕ∆x

2

)

︸ ︷︷ ︸
∈[0,1]

≤ 1 ∀ ϕ∆x ∈ [−π, π] (A.9)

Which is just the ‘normal’ stability condition ∆t < ∆x2

2DS
.

Due to the existence of travelling wave solutions, we also have a condition on

∆x: the step size must be less than the width of the travelling wavefront. This

is necessary to avoid shock behaviour. If the spatial discretisation is coarser

than the width of the travelling wavefront, then the shock wave will propagate

through the numerical solution at a speed of ∆x/∆t, rather than the correct

speed of 2
√
rSDS. Thus, we have a shock condition of ∆x < 8

√
DS

rS
. More

accurate numerical results are obtained [1] with a step size slightly smaller than

the stability conditions, so in this thesis the values chosen for the step sizes were:

∆x =
1

2

√
DS

rS

∆t =
∆x2

20DS

(A.10)

which for the parameter values given in Table 2.2 are ∆x = 0.003 mm, and

∆t = 45 s.

A.1.3 Experimental methods for Figure 3.1

As referred to on page 27.

Sample preparation

E. coli strain MG1665 was cultured in LB growth medium at 37◦C overnight. The

culture was diluted 1:10 in M63 growth medium, for a total volume of 10 mL. An

8 cm segment of catheter was sterilised with alcohol, placed in a petri dish, and

covered in the cell culture solution. The dish was then covered and incubated at

30◦C for 72 hrs. The sample was then rinsed in PBS twice to remove unattached

cells, fixed with formaldehyde, and stained with DAPI.
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Figure A.1 A frame designed to hold a section of catheter flat between cover
slides. This allows the use of a microscope to image along the length
of the catheter.

Imaging

In order to image bacteria along the length of the catheter we designed a custom

microscope stage, which frames a 5cm section of catheter between two cover slides

(Figure A.1). This design holds the catheter completely flat/taut, minimising

the distortion, and also results in least ‘wastage’ as very little of the catheter is

obscured by the frame.

Utilising this frame, epi-fluorescence images of the sample were taken, with a

DAPI filter cube, at both 10x (Figure 3.1a) and 60x (Figure 3.1b) magnification.
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A.2 Chapter 4: Modelling the bladder

A.2.1 Solution to the logistic equation

As referred to on pages 43, 46.

We can solve the logistic equation (Eq. 4.2) through separation of variables. For

ease of writing, we take a change of variable Ñ = N/κ, to write

dÑ

dt
= rÑ(1− Ñ). (A.11)

Separating variables results in

rdt =
dÑ

Ñ(1− Ñ)
=
dÑ

Ñ
+

dÑ

1− Ñ
, (A.12)

which can then be integrated to find

log Ñ − log(1− Ñ) = rt+ c, (A.13)

where c is the constant of integration. We can rearrange this to obtain

Ñ(t) =
Aert

1 + Aert
, (A.14)

where A = ec. Applying the initial condition Ñ(0) = N0/κ, we find A = N0/(κ−
N0), and hence

N(t) =
N0κe

rt

κ+N0 (ert − 1)
. (A.15)

A.2.2 Numerical implementation of the bladder

As referred to on pages 41, 70, 70.

Recall Eq. 4.3:
dρ

dt
= rBρ

(
1− ρ

κB

)
− kDρ.

Discretising this with a forward Euler method gives

ρk+1 = ρk +∆t

(
(rB − kD) ρ

k − rB
κB

(
ρk
)2
)
, (A.16)
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where ρk is the bladder bacterial volume density at the kth time step.

The stability can be evaluated by comparison with the logistic map, as follows.

Rewriting Eq. A.16 as

ρk+1 = (1 + A∆t)ρk +
rB∆t

κB

(
ρk
)2
, (A.17)

where A = rB − kD, and making a change of variables uk = − rB∆t
κB(1+A∆t)

ρk, gives

uk+1 = (1 + A∆t)uk(1− uk), (A.18)

which stably converges to its non-zero equilibrium (see Murray, Chapter 2.3 [79])

for 1 < 1 + A∆t < 2, i.e.

∆t <
1

rB − kD
. (A.19)

For the parameters in Table 2.2, this gives ∆t ≲ 104 s. Within simulations the

time steps chosen are of the order ∆t ∼ 102 s, satisfying the stability condition.

A.3 Chapter 5: Modelling the intraluminal flow &

surface

A.3.1 Appealing to a parallel with the diffusion equation

As referred to on page 58.

Recall Eq. 5.10, the dimensionless form of our stationary state equation for the

bacterial density transport and diffusion:

∂2σ

∂r2
+

1

r

∂σ

∂r
= (1− r2)

∂σ

∂x
.

As we noted in §5.3, Eq. 5.10 has parallels with the diffusion equation in

cylindrical co-ordinates [126]:

1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
=
∂ψ

∂t
, (A.20)
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which has solutions of the form

ψ(ρ, t) =
1

t
exp

(−ρ2
4t

)
. (A.21)

Ideally we would like to change variables r → ρ = f(r) to write Eq. 5.10 in the

form of Eq. A.20. Making this substitution gives

(
1

r
f ′ + f ′′

)
∂σ

∂ρ
+ (f ′)2

∂2σ

∂ρ2
=
(
1− r2

) ∂σ
∂x
. (A.22)

But, equating the terms of Eq. A.22 and Eq. A.20, we would need to have this

system of equations:

f ′′ +
1

r
f ′ = (1− r2)f

(f ′)2 = 1− r2
(A.23)

which is inconsistent and not solvable.

A.3.2 Attempting method of Laplace transform

As referred to on page 58.

Again recall Eq. 5.10:
∂2σ

∂r2
+

1

r

∂σ

∂r
= (1− r2)

∂σ

∂x
.

This time we instead attempt to solve Eq. 5.10 by using a Laplace transform [19],

as follows:

∫ ∞

0

e−pz
1

r

∂

∂r

(
r
∂σ

∂r

)
dz =

∫ ∞

0

e−pz(1− r2)
∂σ

∂z
dz, (A.24)

which leads to the following ODE:

d2σ̃

dr2
+

1

r

dσ̃

dr
= p(1− r2)σ̃. (A.25)

Now we have a 2nd order linear ODE and we would like to find a ‘nice’ solution

to it. That is, we would like to have a closed form solution, otherwise known as a

Liouvillian solution. As we have already seen (§A.3.1), it is not straightforward
to see how to find this solution, nor is it obvious whether such a solution exists.

The Kovacic algorithm is one way to find such a solution, and in fact if it fails

142



then there is no such closed form solution [26, 62]. The Kovacic algorithm

is implemented within Mathematica’s DSolve function, meaning that if that

function fails to solve our equation, then no such solution exists.

Using DSolve in Mathematica to solve Eq. A.25 gives solutions of the form:

σ̃ =
√
2 exp

[
i
√
pr2

2

](
AU [. . . ] +B1F1 [. . . ]

)
(A.26)

where U and 1F1 are confluent hypergeometric functions, and A and B are

constants of integration. To proceed with this approach we would next take

the inverse Laplace transform of Eq. A.26. Instead we shall choose a different

approach, as described in §A.3.3.

A.3.3 Levich boundary layer theory

As referred to on page 59.

To calculate the bacterial flux, we follow the path laid out by Levich in his book,

Physiochemical hydrodynamics [69]. In particular, we use the approach laid out

in Chapter 2.20, Diffusion in laminar flow in a tube. We first summarise the

approach and the requisite assumptions, before working through the full solution

in detail.

Summary

The maximal deposition of particles on the surface of a pipe is given by

j(x) = D
∂σ

∂y

∣∣∣∣
y=0

= 0.5835Dσ0
3

√
λ

R3D

1
3
√
x
. (A.27)

This holds when Re < 2500 and L ≪ λ/D. Here j(x) is the particle flux to the

surface, D is the particle bulk diffusivity, σ0 is the initial particle concentration,

λ is the volume flow rate, R is the pipe radius, x is the longitudinal displacement,

Re is the Reynolds number, and L is the pipe length. Also, σ(x, y) is the particle

concentration (i.e., bacterial density) within the fluid, and y is the perpendicular

displacement from the surface (i.e., a planar approximation of the radial co-

ordinate).

On a catheter we have typical values as given in Table A.1, so Eq. A.27 can be
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Parameter Value
D 10−4 mm2s−1

λ 16.7 mm3s−1

R 1 mm
Re 6
L 100 mm

Table A.1 Typical parameter values for CAUTI, as taken from Table 2.2, and
Eq. 1.2.

seen to be valid: L = 102 mm and λ/D = 105 mm, so L≪ λ/D, and Re = 6, so

Re < 2500. Hence, we can calculate the typical deposition rate to be

j(x) ≈ 0.003
σ0
3
√
x
.

Assumptions

1. All particles that contact the surface stick, i.e. the ‘perfect sink’ assumption.

This is an absorbing boundary condition, and leads to a maximal estimation

for the deposition flux.

2. There are no external forces, except for the pressure differential driving the

flow. This is the so-called ‘Smoluchowski-Levich’ assumption [14].

3. The flow within the pipe is laminar. This requires Re < 2500, and that we

must be beyond the initial hydrodynamic inlet region, x > h ∼ R · Re/27.
For our model catheter, Re ∼ 6, and so h ∼ 0.2 mm. Since the length of

a catheter is 40− 160 mm, the majority of our modelled catheter is in the

laminar flow regime.

4. The diffusion profile is not fully established, and so there exists a thin

diffusion boundary layer. The diffusion profile is fully established at a

distance H ∼ λ/D down the pipe. Then for x ≪ H, the boundary layer

is extremely thin, and can be approximated as planar. So, for the catheter

we need L≪ λ/D.
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Solution

The full convection-diffusion equation to be solved in the case of a catheter is as

follows [70, 112]:

∂σ

∂t
= D

(
∂2σ

∂r2
+

1

r

∂σ

∂r

)
− u(r)

∂σ

∂x

u(r) =
2λ

πR4

(
R2 − r2

)
.

(A.28)

Here σ(r, x, t) is the bacterial volume density, D is the diffusivity of bacteria

within urine, and u(r) is the (Poiseuille) flow profile. Within the description of

the flow, λ and R are, respectively, the rate of urine production and the internal

radius of the catheter.

Since the convective-diffusion processes take place over a timescale much shorter

than that of bacterial growth, we assume that the concentration of bacteria across

the top of the catheter is constant, and we are in steady state, ∂σ
∂t

= 0. Then the

boundary conditions are as follows:

σ(r, x = 0, t) = σ0

σ(r = R, x, t) = 0

∂σ

∂r

∣∣∣∣
r=0

= 0.

(A.29)

Now Eq. A.28 becomes

D

(
∂2σ

∂r2
+

1

r

∂σ

∂r

)
=

2λ

πR4

(
R2 − r2

) ∂σ
∂x
. (A.30)

If h < x ≪ H, we are in the diffusion inlet region, and diffusion takes place

within a thin boundary layer near the surface. Hence we have σ(r) ≈ σ0 when

far from the walls, i.e. when R− r is large. Therefore, it makes sense to consider

a new (small) variable y = R − r, with σ → σ0 as y → ∞. Now the boundary

conditions become

σ = σ0 at x = 0

σ = 0 at y = 0

σ = σ0 as y → ∞,

(A.31)
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and the velocity becomes

u(r) =
2λ

πR4

(
R2 − r2

)

≃ 4λ

πR3
y to first order.

(A.32)

Since δ ≪ R, that is since the region of interest (the boundary layer, δ) is small

compared to the radius of curvature, we can approximate the system as planar,

and Eq. A.30 becomes

D
∂2σ

∂y2
=

4λ

πR3
y
∂σ

∂x
. (A.33)

For brevity, we define ε = 4λ
πR3D

, (which has dimensions of length−2), and write

∂2σ

∂y2
= εy

∂σ

∂x
. (A.34)

Now we will proceed by following the similarity method laid out by Levich in

Chapter 2.14 (a variant on the more familiar method of characteristics [69]). We

look for a transformation under which Eq. A.34 is unchanged:

y → ay′ x→ bx′, (A.35)

which turns out to require b = a3. We can see that this transformation does not

alter our boundary conditions, and hence that the solution is invariant under the

transformation:

σ(y, x) = σ(ay, a3x). (A.36)

Then we can look for a combination η(y, x) such that η is unchanged under this

transformation and proceed essentially as in the method of characteristics.

η =
ε1/3y

x1/3
, (A.37)

∂σ

∂x
= −ε

1/3y

3x4/3
dσ

dη
,

∂2σ

∂y2
=
ε2/3

x2/3
d2σ

dη2
,

(A.38)
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and Eq. A.34 becomes

d2σ

dη2
= −ε

2/3y2

3x2/3
dσ

dη

= −1

3
η2
dσ

dη
.

(A.39)

To solve this, we define an intermediary variable, v = dσ
dη
, and then solve the first

order ODE:

dv

dη
+

1

3
η2v = 0,

v = C1e
− 1

9
η3 .

(A.40)

And then we see that σ(η) is given by

σ(η) = C1

∫ η

0

e−
1
9
z3 dz + C2 η =

ε1/3y

x1/3
, (A.41)

where C1 and C2 are constants of integration. Now we can apply the boundary

conditions given in Eq. A.31:

1. At y = 0, i.e. at η = 0, σ = 0. So C2 = 0.

2. As y → ∞, η → ∞, we have σ → σ0. Therefore,

C1 =
σ0∫∞

0
e−

1
9
z3 dz

(A.42)

And so we find

σ(η) =
σ0
∫ η
0
e−

1
9
z3 dz

∫∞
0

e−
1
9
z3 dz

. (A.43)

We can evaluate
∫∞
0

e−
1
9
z3 dz using Gamma functions. The Gamma function is

defined by Γ(z) =
∫∞
0
xz−1e−x dx. Making a change of variables, u = 1

9
z3, so that

du = 1
3
z2dz and dz = 3−1/3u−2/3du, we write

∫ ∞

0

e−
1
9
z3 dz =

∫ ∞

0

3−
1
3u−

2
3 e−u du

=
Γ(1

3
)

3
√
3
.

(A.44)
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Then finally we find an expression for σ,

σ(y, x) =
σ0

3
√
3

Γ(1
3
)

∫ 3
√

4λ
πR3D

y
3√x

0

e−
1
9
z3 dz. (A.45)

And hence we can find the deposition rate

j(x) = D

(
∂σ

∂y

)

y=0

= D

(
σ0

3
√
3

Γ(1
3
)
e−

1
9
η3 3

√
ε

x

)

y=0

=
Dσ0
Γ(1

3
)

3

√
12λ

πR3D

1
3
√
x

= 0.5835Dσ0
3

√
λ

R3D

1
3
√
x
,

(A.46)

where the constant prefactor 0.5835 is obtained by numerical evaluation of
1

Γ(1/3)
3
√
12/π.

Finally, we check the boundary layer thickness. To first order we have a

relationship between the deposition rate and the boundary layer thickness of

j = Dσ0/δ (see Levich Chapter 2.10 [69]). Therefore, the boundary layer

thickness is approximately

δ ≈
3
√
x

0.5835
3

√
R3D

λ
, (A.47)

and this is thin when δ ≪ R, i.e., when Dx
λ

≪ 1.

A.3.4 Numerical implementation of the intraluminal flow

As referred to on page 60.

Recall Eq. 5.2:

∂σ

∂t
= DB

(
∂2σ

∂r2
+

1

r

∂σ

∂r

)
− 2λ

πR4

(
R2 − r2

) ∂σ
∂x
.
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For convenience, we nondimensionalise with the following transform: r̃ = r/R,

x̃ = DBπx/2λ, and t̃ = DBt/R
2, to write

∂σ

∂t̃
=

(
∂2σ

∂r̃2
+

1

r̃

∂σ

∂r̃

)
−
(
1− r̃2

) ∂σ
∂x̃
. (A.48)

We discretise this with a forward time, centred r space, and backward x space

scheme, to obtain:

σk+1
pq = σkpq +∆t

[
σkpq+1 − 2σkpq + σkpq−1

∆r2
+

1

q∆r

(
σkpq+1 − σkpq−1

2∆r

)

−
(
1− (q∆r)2

)
(
σkpq − σkp−1q

∆x

)]
, (A.49)

where σkpq is the intraluminal bacterial volume density, σ(r, x, t), at the pth

discrete longitudinal position, qth discrete radial position, and the kth time step;

∆t is the time step; ∆r is the longitudinal radial discretisation; and ∆x is the

longitudinal spatial discretisation. Here we have chosen a backward (upstream)

scheme for x as it allows us to neglect the downstream boundary at the end of

the catheter.

We can analyse Eq. A.49 for stability using von Neumann analysis, with the

following error ansatz: σ(r, x, tk) = eiψxeiϕr. This results in an equation for the

amplification factor:

σk+1
pq

σkpq
= 1 +

∆t

∆r2

((
2 +

1

q

)
cos(ϕ∆r)− 2

)

︸ ︷︷ ︸
∈
[
−5,1
]

+
∆t (1− (q∆r)2)

∆x

(
e−iψ∆x − 1

)

︸ ︷︷ ︸
∈
[
−2,0
]

.

(A.50)

For numerical stability we require
∣∣∣σ

k+1
pq

σk
pq

∣∣∣ ≤ 1. That is, we require

−1 ≤ 1− 5∆t

∆r2
− 2∆t

∆x
(A.51)

and

1 +
1

q

∆t

∆r2
≤ 1. (A.52)

From Eq. A.51 we obtain a stability condition on the time step, which we can

redimensionalise:

∆t ≤
(
5DB

2∆r2
+

2λ

R2π∆x

)−1

. (A.53)
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Figure A.2 Convergence of the numerical scheme for the bacterial density
within the intraluminal flow (Eq. A.49). Plotted is the difference in
simulated density between a simulation run with a timestep ∆t, and
a run with a timestep 1.25 times larger. Each simulation was run
with parameters as in Table 2.2, ∆x = 0.8 mm, and ∆r = 0.02 mm.
Inset is a zoomed view, showing numerical stability for timesteps
∆t ≲ 0.1 s.
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Evaluating this for the parameter values of Table 2.2, with ∆x = 0.8 mm and

∆r = 0.02 mm, would imply that we require ∆t ≲ 10−4 s. However, from

Eq. A.52, we see that there is no value for the timestep that can ensure the

stability of this scheme, as q, ∆r, and ∆x are all strictly positive, and hence this

condition is always violated.

However, all is not lost. So far we have only considered one of our boundaries (the

downstream, x = L, ‘open’ boundary). In fact we also have Dirichlet boundary

conditions, both at the upstream (x = 0) boundary, where the bacterial density is

fixed by the density within the bladder (σ(x=0, r, t) = ρ(t)), and at the catheter

surface (r = R) boundary, where bacteria stick to the surface (σ(x, r=R, t) = 0).

These absorbing boundary conditions effectively ‘damp’ errors: as we can see in

Figure A.2, this scheme actually converges at timesteps closer to 0.1 s. For the

figures within this chapter, a timestep of 0.05 s was used.

A.3.5 Numerical implementation of the intraluminal surface

As referred to on pages 61, 71, 71, 72.

To simulate bacterial growth and spreading on the inside surface of the catheter,

a forward-time centred-space (FTCS) method is used. Recall Eq. 5.1:

∂m

∂t
= DS

∂2m

∂x2
+ rSm

(
1− m

κS

)
+ j(x).

The bacterial flux, j(x), comes from the deposition of bacteria onto the

intraluminal surface from the urine flow out of the bladder. To calculate this

numerically requires simulating the intraluminal flow, which is computationally

more demanding as it is a 2-dimensional problem, unlike the 1-dimensional

surfaces. Instead, here we use the analytic approximation for the bacterial flux,

as given by Eq. 5.17,

j(x) = 0.5835DBρ
3

√
λ

R3DB

1
3
√
x
.

This analytic solution is valid for h < x ≪ H, i.e., the region in which the

hydrodynamic flow is established, but the diffusive boundary layer is still small.

We can find h by looking for the distance at which the hydrodynamic boundary

layer thickness is equal to the catheter radius. From Levich [69], defining the
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hydrodynamic boundary layer thickness as the thickness at which the flow speed

is 90% of the main flow speed, this is

R ∼ 5.2

√
νh

U0

h ∼ 1

27

λ

πν
∼ Re ·R

27
∼ 0.22 mm.

The behaviour within the early region, x < h, would be highly dependent on

the exact geometry of the catheter, which is not incorporated into this model.

Instead, knowing that the deposition rate must always be finite, we take a zeroth

order approximation that the flux for x < h is constant, and j(x < h) = j(h).

Since this is only a very small region of the catheter, this approximation has very

little impact on the results of the model (as can be seen in Figure 5.4b).

We can discretise the intraluminal surface in a manner very similar to the

extraluminal surface, using a FTCS method to find

mk+1
p =

DS∆t

∆x2
(
mk
p+1 − 2mk

p +mk
p−1

)
+ (1 + r∆t)mk

p

− r∆t

κS

(
mk
p

)2
+ 0.5835

(
λD2

B

R3

)1/3

∆tρk(p∆x)−1/3, (A.54)

where mk
p is the intraluminal bacterial surface density, m(x, t), at the pth discrete

position, and the kth time step; ρk is the bacterial volume density in the bladder

at the kth time step; ∆t is the time step; and ∆x is the spatial discretisation.

Eq. A.54 is numerically stable with the same condition as the extraluminal

surface, provided that the conditions discussed prior hold for the validity of j(x).

That is, L≪ 105 mm.

Recalling §A.1.2, the discretisation is stable provided

∆x < 8

√
DS

rS

∆t <
∆x2

2DS

.

(A.55)

We find that the best results are obtained with a slightly smaller step size:

∆x <
1

2

√
DS

rS

∆t <
∆x2

20DS

.

(A.56)

152



A.3.6 Experimental methods for Figure 5.1

As referred to on page 51.

Sample preparation

Sample 1 was used for Figures 5.1a and 5.1b. E. coli strain AD51, which

constitutively expresses green fluorescent protein (GFP), was cultured in LB

growth medium at 37◦C overnight. The culture was diluted 1:10 in M63 growth

medium, for a total volume of 5 mL. An 8 cm segment of a (veterinary) urinary

catheter was injected with culture, then placed in a petri dish with a DI water

trough (to avoid excess evaporation), covered and incubated at 30◦C for 24 hrs.

The sample was then fixed by injection with formaldehyde.

Sample 2 was used for Figures 5.1c and 5.1d. E. coli strain RJA002, which

contains a constitutively expressed yellow fluorescent reporter gene (YFP), was

cultured in LB growth medium at 37◦C overnight. The culture was diluted 1:10

in M63 growth medium, for a total volume of 5 mL. An 8 cm segment of catheter

was injected with culture, then placed in a petri dish with a DI water trough (to

avoid excess evaporation), covered and incubated at 30◦C for 24 hrs. The sample

was then fixed by injection with formaldehyde.

Before fixing the samples, I checked that injecting catheters with formaldehyde

does not lead to biofilm detachment. In the literature it is established that

biofilm detachment occurs for flow speeds above 3 ms−1 [16, 106]. The maximum

flow speed obtained when injecting formaldehyde into a urinary catheter is ∼
0.3 ms−1, as above this speed the pressure is sufficient to dislodge the syringe

connector. Thus, it is unlikely that fixing samples by formaldehyde injection

leads to significant biofilm detachment.

Imaging

Both samples were imaged with the Mesolens setup by Gail McConnell and her

group at the University of Strathclyde. Mesolens is a giant microscope that has

a numerical aperture of 0.47 with a magnification of 4x [76]. This allows for the

imaging of 6 mm samples to resolutions ∼ 1 µm.

Strain AD51 expresses green fluorescent protein, and strain RJA002 expresses

yellow fluorescent protein. Epi-fluorescence images were taken with excitation
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wavelength 490 nm. Epi-fluorescence images of both samples were also taken at

385 nm. Significant background auto-fluorescence and debris could be seen at

385 nm. During image processing this background fluorescence was subtracted,

resulting in the images seen in Figure 5.1.
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Appendix B

Data access and data analysis

B.0.1 Data access

As referred to on page 110.

We obtained limited access to data from the CATHETER trial [91]. We

received data on duration of catheterisation, sex, type of catheter received, and a

True/False result for ‘bacteriuria’ – a bacterial count in the urine > 104 CFU/mL

up to 3 days after catheter removal. No patient-identifying information was

provided.

B.1 Data processing

B.1.1 Cleaning data

As referred to on page 110.

We received data on 6394 patients in the study. Of these, 146 were missing

duration data, with a further 791 missing outcome data. Removing data points

with cross catheterisation (whereby multiple types of catheters were used for one

patient), left 5369 patients with complete data entries. Of these, 1703 received

nitrofural-impregnated catheters, 1695 received silver-alloy coated catheters, and

1971 received PTFE-coated catheters.

The median duration of catheterisation was 2 days for all patient groups. Plotting
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Figure B.1 Breakdown by sex of the durations of catheterisation for patients in
the study (Pickard et al., 2012 [90]), excluding 32 patients with
durations greater than 20 days. (a) Distribution of duration of
catheterisation for 3897 females. (b) Distribution of duration of
catheterisation for 2351 males.

the distribution of catheterisation durations for females (Figure B.1a) and males

(Figure B.1b), we see that most patients were catheterised for ≤ 7 days, however

catheterisation up to 20 days was not uncommon. 32 patients were catheterised

for durations greater than 20 days (maximum duration 65 days): these patients

have been excluded from further analysis. We see that the distribution of

durations for female patients differs from the distribution for male patients, with

many more female patients undergoing catheterisation of duration ≤ 2 days.

This likely represents an underlying sex-based difference in the reason for patient

hospital stays.

B.1.2 Binning data

As referred to on page 110.

To obtain the bacteriuric fraction, we binned the data points into duration bins of

size ≥ 25 patients, and defined the bacteriuric fraction as the number of patients

with a positive urine culture, divided by the total number of patients in the bin.

The binned data is available in Table B.1. The choice of a minimum bin size of

25 represents a compromise between the duration resolution of the data, and the

accuracy of the bacteriuric fraction. The bacteriuric fraction for longer durations

(where data was sparser) was ∼ 20%, so with a bin size of 25 patients we expect

5 occurrences of bacteriuria per bin.
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Duration (days) Number of patients Bacteriuric fraction

Females with PTFE catheters

1 531 0.186± 0.017

2 385 0.234± 0.022

3 108 0.269± 0.043

4 55 0.182± 0.052

5 29 0.310± 0.086

6–7 41 0.212± 0.075

8–10 27 0.296± 0.088

11–20 25 0.400± 0.098

Females with Nitrofural catheters

1 498 0.179± 0.017

2 349 0.149± 0.019

3 86 0.198± 0.043

4 49 0.102± 0.043

5–6 46 0.174± 0.056

7–20 32 0.188± 0.067

Females with Silver-alloy catheters

1 472 0.231± 0.019

2 355 0.242± 0.023

3 103 0.146± 0.035

4 58 0.259± 0.057

5 26 0.269± 0.087

6–7 26 0.231± 0.083

8–20 38 0.211± 0.066

Males with PTFE catheters

1 133 0.052± 0.019

Table B.1 Cleaned and binned study data. Table continues on next page.
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Duration (days) Number of patients Bacteriuric fraction

2 301 0.086± 0.016

3 122 0.074± 0.024

4 80 0.188± 0.044

5 39 0.179± 0.061

6–7 39 0.179± 0.061

8–20 48 0.104± 0.044

Males with Nitrofural catheters

1 106 0.019± 0.013

2 247 0.073± 0.017

3 120 0.092± 0.026

4 71 0.070± 0.030

5 33 0.061± 0.042

6–7 28 0.143± 0.066

8–20 28 0.179± 0.072

Males with Silver-alloy catheters

1 95 0.053± 0.023

2 232 0.056± 0.015

3 97 0.082± 0.028

4 75 0.067± 0.029

5–6 51 0.059± 0.033

7–8 32 0.125± 0.058

9–20 30 0.200± 0.073

Table B.1 Cleaned and binned study data. After removing missing data entries,
the data points were binned into bins of ≥ 25 patients. The
bacteriuric fraction is defined as the fraction of patients with a
positive CFU result (a bacterial count > 104 CFU/mL up to 3 days
after catheterisation). The error is the sample standard deviation,√
p(1− p)/n, where p is the bacteriuric fraction, and n the bin size

(the number of patients).
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B.2 Data analysis

B.2.1 Bacteriuric fraction for each intervention group

As referred to on page 111.

In Figure 8.2, we plot the data points as described in Table B.1, and overlay the

baseline bacteriuric fraction, and the mean bacteriuric fraction for patients with

duration of catheterisation > 7 days. The bacteriuric fraction is defined as the

fraction of patients with a positive CFU result (a bacterial count > 104 CFU/mL

up to 3 days after catheterisation). The (y) error is the sample standard deviation,√
p(1− p)/n, where p is the bacteriuric fraction, and n the bin size (the number of

patients). The data points are located at the mean duration of the bin, and the (x)

error is the standard deviation in the durations within the bin,
√∑

(x− x̄)2/n,

where x is the duration, x̄ is the mean duration, and n the bin size. The baseline

bacteriuric fraction is 469/6123 (7.7 ± 0.3%), as reported by Pickard et al. [90].

The mean fraction for durations> 7 days was calculated as the number of patients

catheterised for > 7 days with positive urine cultures: 56/278 (20± 2%).

B.2.2 Urine production rates in the population

As referred to on pages 113, 114.

Data was obtained from the CDC National Health and Nutrition Examination

Survey [81], 2009-2014, on the mean urine production rates of 21313 American

adults and plotted in Figure 8.3. We define the susceptible fraction as those

with urine production rates less than a threshold value, and give the error on the

susceptible fraction as the sample standard deviation,
√
p(1− p)/n, where p is

the susceptible fraction, and n the number of patients. When we calculate the

population mean urine production rate, we give the standard deviation on the

mean,
√∑

(x− x̄)2/n.

In Table 8.3 we calculate the change in susceptible fraction corresponding to a

given increase in mean urine production rate. That is, if F (λ) is the distribution of

urine production rates, then the susceptible fraction is F (λ < λ∗), where λ∗ is the

critical urine production rate (generally λ∗ = rBV ); and the susceptible fraction

given an increased mean urine production rate is F (λ+∆λ < λ∗), where ∆λ is

the increase in urine production rate. We calculate the relative risk adjustment
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as
F (λ+∆λ < λ∗)− F (λ < λ∗)

F (λ < λ∗)
, (B.1)

with the resultant error then being

√[
ErrorF (λ+∆λ<λ∗)

F (λ < λ∗)

]2
+

[
F (λ+∆λ < λ∗)ErrorF (λ<λ∗)

(F (λ < λ∗))2

]2
. (B.2)

B.2.3 Fitting the model to find vasc
As referred to on page 117.

In Figure 8.4, we fitted our sigmoidal model (Eq. 8.5) to the control group (PTFE)

data and compared it to a linear fit. The sigmoid function was fitted using least-

squares minimisation (scipy.optimize.curve_fit), and the linear fit by a linear

regression (scipy.stats.linregress). We compared the two fits by comparing

the residual sum of squares: RSS =
∑

(x− y)2, where x is the study data, and y

is the model predicted value.

B.2.4 Making predictions

As referred to on page 121.

Eq. 8.6 defines the model prediction for the bacteriuric incidence dependence on

duration of catheterisation. We used this to calculate the mean ascension times:

6.65 ± 0.46 days for Nitro, 8.4 ± 1.1 days for Silver. Since Nitro represents a

time-translation in the model prediction, the error for Nitro is equal to the model

for PTFE. The predicted effect of Silver amounts to a stretch factor 2.3, hence

the error for Silver is 2.3 times the error for PTFE.

In Figure 8.5, we presented the model predictions for the total incidence of

bacteriuria for males in the study. These predictions were calculated as follows:

∑
T f(T ; vasc)

N
, (B.3)

where f(T ; vasc) is the modelled bacteriuric risk function (Eq. 8.5), T are the

durations of catheterisation recorded in the study, and N is the total number of

patients.

The errors on the predictions then arise from two source: the errors in the fit
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used to find vasc, and from the patient variability in the dataset:

√[
Errorvasc

]2
+
[
ErrorT

]2
. (B.4)

We determined Errorvasc by propagating the uncertainty on the fit for vasc through

Eq. B.3. We determined ErrorT through bootstrapping with replacement, using

sklearn.utils.resample.
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robotic concepts in catheter design: An on-demand fouling-release urinary
catheter. Advanced Healthcare Materials, 3(10):1588–1596, 2014.

[69] V. G. Levich. Physicochemical hydrodynamics. Prentice-Hall, Englewood
Cliffs, N.J., 1962.

[70] M. J. Lighthill. Initial development of diffusion in poiseuille flow.
IMA Journal of Applied Mathematics (Institute of Mathematics and Its
Applications), 2(1):97–108, 1966.

[71] E. Lo, L. E. Nicolle, S. E. Coffin, C. V. Gould, L. L. Maragakis, J. A.
Meddings, D. A. Pegues, A. M. Pettis, S. Saint, and D. S. Yokoe. Strategies
to Prevent Catheter-Associated Urinary Tract Infections in Acute Care
Hospitals: 2014 Update. Infection Control & Hospital Epidemiology, 35
(05):464–479, 2014.

[72] J. Long, S. W. Zucker, and T. Emonet. Feedback between motion and
sensation provides nonlinear boost in run-and-tumble navigation. PLoS
Computational Biology, 13(3):1–25, 2017.

167



[73] Y. Lotan, M. Daudon, F. Bruyère, G. Talaska, G. Strippoli, R. J. Johnson,
and I. Tack. Impact of fluid intake in the prevention of urinary system
diseases: a brief review. Current Opinion in Nephrology and Hypertension,
22(SUPPL.1):S1–S10, 2013.

[74] S. S. Magill, J. R. Edwards, W. Bamberg, Z. G. Beldavs, G. Dumvati, M. A.
Kainer, R. Lynfield, M. Maloney, L. McAllister-Hollod, J. Nadle, S. M.
Ray, D. L. Thompson, L. E. Wilson, and S. K. Fridkin. Multistate Point-
Prevalence Survey of Health Care–Associated Infections. New England
Journal of Medicine, 370(13):1198–1208, 2014.

[75] S. Mathur, N. A. Sabbuba, M. T. Suller, D. J. Stickler, and R. C. Feneley.
Genotyping of urinary and fecal Proteus mirabilis isolates from individuals
with long-term urinary catheters. European Journal of Clinical Microbiology
and Infectious Diseases, 24(9):643–644, 2005.
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