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Abstract
Improving the quality of data is a critical issue in data management and machine learn-

ing, and finding the most representative and concise way to achieve this is a key chal-

lenge. Learning how to represent entities accurately is essential for various tasks in data

science, such as generating better recommendations and more accurate question an-

swering. Thus, the amount and quality of information available on an entity can greatly

impact the quality of results of downstream tasks. This thesis focuses on two specific

areas to improve data quality: (i) learning and deducing entities for data currency (i.e.,

how up-to-date information is), and (ii) linking entities across different data sources.

The first technical contribution is GATE (Get the lATEst), a framework that com-

bines deep learning and rule-based methods to find up-to-date information of an entity.

GATE learns and deduces temporal orders on attribute values in a set of tuples that

pertain to the same entity. It is based on creator-critic framework and the creator trains

a neural ranking model to learn temporal orders and rank attribute values based on

correlations among the attributes. The critic then validates the temporal orders learned

and deduces more ranked pairs by chasing the data with currency constraints; it also

provides augmented training data as feedback for the creator to improve the ranking

in the next round. The process proceeds until the temporal order obtained becomes

stable.

The second technical contribution is HER (Heterogeneous Entity Resolution), a

framework that consists of a set of methods to link entities across relations and graphs.

We propose a new notion, parametric simulation, to link entities across a relational

database D and a graph G. Taking functions and thresholds for measuring vertex

closeness, path associations and important properties as parameters, parametric simu-

lation identifies tuples t in D and vertices v in G that refer to the same real-world entity,

based on topological and semantic matching. We develop machine learning methods

to learn the parameter functions and thresholds.

Rather than solely concentrating on rule-based methods and machine learning al-

gorithms separately to enhance data quality, we focused on combining both approaches

to address the challenges of data currency and entity linking. We combined rule-based

methods with state-of-the-art machine learning methods to represent entities, then used

representation of these entities for further tasks. These enhanced models, combination

of machine learning and logic rules helped us to represent entities in a better way (i)

to find the most up-to-date attribute values and (ii) to link them across relations and

graphs.

iii



Acknowledgements

I am deeply grateful to my primary supervisor, Professor Wenfei Fan, for his unwaver-

ing support, guidance, and encouragement throughout my PhD journey. Working with

him has been an incredible privilege, and I consider myself lucky to have had such

a dedicated and accomplished mentor. He has always amazed me for his exceptional

academic achievements, strong work ethic, and commitment to excellence. I am

truly appreciative of his kindness, support, and productive discussions. Thank you,

Professor Fan, for your invaluable guidance and mentorship.

I would like to express my gratitude to my second supervisor, Yang Cao. I can not

explain in words but Dr Yang Cao is and was more than a second supervisor for me.

His calmness and wisdow gave me the strength when l fell down. He has patiently

guided me through personal and academic challenges. Thank you, Yang Cao, for your

guidance and mentorship throughout my academic journey.

I would also like to thank all members in my research group including Dr.

Rouchun jin, Muyang Liu, Dr. Yuanhao Li, Dr. Ping Lu, Wenzhi Fu, as they are very

kind and helpful.

I was fortunate enough to have, Nick McKenna, Asif Khan, Eric Munday, Ibrahim

Abu Farha, Nikita Moghe, Ondrej Bohdal, Adarsh Prabhakaran, Faheem Kirefu, Mau-

rice Bailleu as my colleagues in the office. I appreciate the pleasant working atmo-

sphere and enjoyable lunch times we shared. Also, l want to thank to my friend,

Mehmet Aygun, for making my time in Edinburgh fun and joyable.

I especially thank the examiners of my thesis: Dr. Milos Nikolic and Dr.Nikos

Ntarmos, for taking time to read my thesis and providing valuable and constructive

feedbacks.

I would also like to thank the Republic of Türkiye, Ministry of National Education

for their full support, which made my studying abroad possible.

Lastly, I would like to thank my all family for their support. I am especially

grateful to my wife, Burcu Tugay for her unconditional love, encouragement and

support. Words cannot express how much her support has meant to me. I dedicate this

thesis to her and our beloved son Abdullah with all my love. Thank you both for being

the light in my life.

iv



Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Resul Tugay)

v



To my wife and son,

vi



Table of Contents

1 Introduction 1

1.1 Data Currency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Entity Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and Related Work 9

2.1 Data Currency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Rule Based Methods . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 ML Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Linking Entities across Relations and Graphs . . . . . . . . . . . . . 12

2.2.1 Entity Resolution . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Graph Simulation . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Learning and Deducing Entities 15

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Determining Temporal Orders . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Currency Constraints . . . . . . . . . . . . . . . . . . . . . . 21

3.3 GATE: A Creator-Critic System . . . . . . . . . . . . . . . . . . . . 23

3.4 Creator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Critic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.1 Chasing with CCs . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.2 Discovery of CCs . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.3 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.4 Structures and strategies . . . . . . . . . . . . . . . . . . . . 35

3.5.5 Deduction with the Chase . . . . . . . . . . . . . . . . . . . 38

vii



3.6 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Linking Entities across Relations and Graphs 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Heterogeneous Entity Resolution . . . . . . . . . . . . . . . . . . . . 57

4.3 Parametric Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Parameter Functions and Bounds . . . . . . . . . . . . . . . . . . . . 63

4.5 Parametric Simulation Algorithm . . . . . . . . . . . . . . . . . . . . 66

4.5.1 The Uniqueness of Parametric Simulation . . . . . . . . . . . 71

4.5.2 Example for the Challenges of Parametric Simulation . . . . . 72

4.5.3 Schema Matches . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Computing All Matches . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6.1 Algorithms for VPair and APair . . . . . . . . . . . . . . . . 75

4.6.2 Examples for Algorithm VParaMatch . . . . . . . . . . . . . 77

4.6.3 Algorithm AllParaMatch . . . . . . . . . . . . . . . . . . . . 78

4.6.4 Fixpoint computation . . . . . . . . . . . . . . . . . . . . . . 79

4.6.5 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.6 Implementation of HER on top of GRAPE . . . . . . . . . . 82

4.7 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Conclusion 93

Bibliography 95

viii



Chapter 1

Introduction

The amount of data being generated is increasing at an unprecedented rate, which

highlights the importance of considering both its quantity and quality. As of June

2022, YouTube receives over 500 hours of video content every minute on their platform

(Youtube, 2022), while Facebook and TikTok have more than 2.96 billion and 1 billion

monthly active users, respectively (Meta, 2022; TikTok, 2022). As the volume of data

continues to grow at an astonishing rate, it’s becoming increasingly crucial to ensure

that the data is of high quality and accuracy.

In practice, data obtained from real-world sources can often be of poor quality,

exhibiting various issues such as inconsistency, duplication, staleness, inaccuracy, and

incompleteness. As a result, relying on such data can lead to poor decision-making,

increased costs, and lost opportunities. For example, outdated customer data can result

in missed sales opportunities and reduced customer satisfaction, ultimately leading to

lost revenue. According to a study by Gartner (gar, 2022), poor data quality is a signif-

icant factor in the success or failure of 40% of business initiatives. It is also estimated

that inaccurate customer data costs organizations 6% of their annual revenues (Royal

Mail, 2018). These facts highlight the importance of data quality. There are several

methods for enhancing data quality, such as ensuring consistency, accuracy, removing

duplicates, addressing incompleteness, and so forth.

We studied two methods to improve data quality, data currency and entity resolu-

tion. The former refers to the timeliness or recency of the information in a dataset. It

addresses the question of how up-to-date and relevant the data is at a given point in

time. For example, consider a customer database for an e-commerce company. If the

information in the database is not regularly updated, it might contain outdated details

about customers’ preferences, contact information, or purchasing behavior. This can

1



2 Chapter 1. Introduction

lead to issues like sending promotional offers to inactive email addresses or mailing

catalogs to outdated physical addresses Royal Mail (2018). The data currency prob-

lem becomes especially critical in applications where timely information is crucial for

decision-making, such as in financial transactions, healthcare, emergency services, and

real-time analytics. Addressing data currency involves implementing strategies to en-

sure that data remains accurate and relevant over time. The latter is Entity resolution,

also known as record linkage or deduplication, is a process used in data management

to identify and merge duplicate or related records within a dataset. The goal is to cre-

ate a unified and accurate view of the entities (e.g., individuals, companies, products)

represented in the data. For example, consider a database containing information about

customers. Due to various factors like data entry errors, multiple entries may exist for

the same person. Entity resolution helps identify which records actually pertain to the

same real-world entity. This is crucial for tasks such as customer relationship manage-

ment, fraud detection, and data integration. The process involves comparing attributes

(like names, addresses, etc.) across different records to determine their similarity.

Entity resolution is a fundamental task in data quality management and is applied in

various domains, including healthcare (matching patient records), finance (detecting

duplicate transactions), and e-commerce (eliminating duplicate product listings). It’s

crucial for ensuring accurate decision-making and analysis based on clean, consoli-

dated data. Next, we will provide a more detailed description of each of the methods.

1.1 Data Currency

Data currency is a fundamental technique for enhancing data quality. Its primary goal

is to identify the most up-to-date values for entities represented by tuples (Fan et al.,

2013a, 2014a). The issue of data currency would be simple if valid timestamps were

available for data values, but in practice, timestamps are frequently absent or incor-

rect. Two approaches have been proposed to solve this problem in the literature: (1)

applying ranking models based on deep learning (Burges et al., 2005; Han et al., 2020;

Pasumarthi et al., 2019; Tay et al., 2017) or reinforcement learning (Hu et al., 2018;

Yao et al., 2021)), and (2) using logic rules such as currency constraints (CCs) to de-

duce temporal orders (Ding et al., 2020; Duan et al., 2020; Fan et al., 2014b, 2012; Li

et al., 2018; Liang et al., 2019; Wang et al., 2018).

Ranking models focus on training models to efficiently order a set of items based

on their relevance to a given query. (Freund et al., 2003) introduced a novel approach
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to learning to rank, leveraging gradient descent techniques to optimize ranking mod-

els. In this approach, the RankBoost algorithm formulates ranking as a binary clas-

sification problem and uses boosting techniques to improve the ranking quality. This

approach has been widely adopted and extended in subsequent research. Another im-

portant approach in this domain is the RankNet algorithm proposed by Burges et al.

(Burges et al., 2005). RankNet employs neural networks to learn a ranking function,

demonstrating impressive performance in various applications, including information

retrieval and recommendation systems. Furthermore, RankNet’s success paved the

way for the development of deep learning-based ranking models. Techniques like

LambdaRank and LambdaMART (Burges, 2010) have further advanced the field by in-

corporating advanced neural network architectures and optimization strategies. How-

ever, it is difficult to determine if the ranking aligns with the temporal orders in the real

world, which is important for reliable data-driven decision making. Additionally, these

models cannot explain the ranking of objects that have a complex interlinked structure

(e.g., job title depends on many attributes including salary, company etc.).

On the other hand, using CCs as logic rules can help to deduce temporal orders

among attribute values. As an example of a logic rule, one can observe that an individ-

ual’s monthly income typically rises as their years of professional experience. Another

example can be direct inference such that marital status only changes from single to

married, rather than in the opposite direction (Canada, 2022). The study of currency

constraints began with the research in (Fan et al., 2012), which initially utilized partial

currency orders. This concept was later expanded upon in (Fan et al., 2013b, 2014b)

to address conflict resolution, taking into account both CCs and conditional functional

dependencies (CFDs) (Fan et al., 2008). In (Li and Li, 2016), a category of rules known

as currency repairing rules (CRRs) was introduced, combining logic rules with statisti-

cal techniques. Another method, outlined in (Ding et al., 2017), established a two-step

process to assess the currency of dynamic data, employing a topological graph.

Furthermore, UncertainRule (Li et al., 2018) introduced a set of rules considering

both temporal sequences and data certainty, contributing to the treatment of uncertain

currency. The frameworks ImproveC (Ding et al., 2018) and Imp3C (Ding et al., 2020)

take a comprehensive approach to data cleaning, encompassing consistency, complete-

ness, and currency. They employ a metric to rectify noisy data using CFDs (Fan et al.,

2008) and currency orders. Additionally, (Duan et al., 2020) explores parallel incre-

mental updating algorithms by applying traditional currency rules.
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Although these approaches offer valuable strategies to enhance data quality, it can

be difficult to find enough rules to deduce the orders for all possible pairs of values.

Furthermore, it is challenging to generalize rules to handle values that are similar in

meaning but different in wording, especially when the tuples are extracted from dif-

ferent sources. For example, ”married” and ”wedded” both refer to the same marital

status but may appear differently in different data sources. The use of either machine

learning or logic rules alone is insufficient in solving the problem of deducing temporal

orders. Hence it raises the question of whether a uniform framework can be developed

by combining both approaches.

In this thesis, we combine logic rules with deep learning techniques to determine

the currency of an entity with the help of determining temporal orders on attributes.

We propose a creator-critic framework that not only learns temporal orders via deep

learning, but also adopts rules to deduce more temporal orders and help the models

learn better. The creator learns temporal orders based on contexts and iteratively im-

proves its model with augmented training data from the critic. Then the critic employs

rules and provide more training data to the creator. Our results demonstrate a substan-

tial increase in accuracy compared to models solely employing either deep learning or

rule-based approaches. Specifically, when considering performance against rule-based

methods, our system called GATE showcases superiosr generalizability by effectively

learning from previously unseen data. This is attributed to the interaction between deep

learning’s capacity for feature extraction and logic rules. Furthermore, in comparison

to models on machine learning, GATE improves the results with incremental training

data by logic rules.

1.2 Entity Resolution

Entity Resolution (ER), also known as record linkage or entity linking, is another tech-

nique to improve data quality, is the task of identifying and linking entities in a dataset

that refer to the same real-world entity (Herzog et al., 2007; Winkler, 2014). The

goal of entity linking is to eliminate duplicate records, resolve inconsistencies, and

merge related data from multiple sources. ER has primarily been studied for rela-

tional data that is specified by a schema. One widely used approach for relational

data is rule-based matching, where predefined rules are applied to compare attributes

and determine if two records refer to the same entity (Hernández et al., 2013). State-

of-the-art relational ER systems also employ machine learning (Konda et al., 2016)
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and deep learning models (Mudgal et al., 2018) to improve their accuracy. These ap-

proaches, both supervised and unsupervised, have shown promise in entity resolution.

Supervised methods learn from labeled data to predict matches, while unsupervised

methods use clustering techniques to group similar records (Getoor and Machanava-

jjhala, 2012). In addition to relational data, ER has also been studied for graphs and it

has mainly relied on rule-based (Fan et al., 2015) or ML-based (Kwashie et al., 2019)

approaches. Although ER has been studied on graphs and relational data separately, it

is harder to correlate entities when the data sources are different, especially one from a

relational database D and the other from a graph G. Unlike relational databases, real-

life graphs may not have a schema, and typically denote entities as vertices. Even in

the same graph, entities of the same “type” may have different topological structures,

and their properties are often linked via paths, rather than annotated as direct attributes.

With all that, the need for studying this problem is evident. While most business data

resides in relational databases, it is increasingly common to find graph-structured data,

e.g., transaction graphs, knowledge bases and social networks. It is often necessary to

correlate the data from different sources for extracting, integrating and querying data

in, e.g., data lakes (Nargesian et al., 2019). We propose an algorithm called parametric

simulation with score functions learned from machine learning models to link enti-

ties across relations and graphs. It can assess the semantic closeness of entities by

recursively inspecting properties linked to entities via paths.

Specifically, we use language models like BERT (Devlin et al., 2019a) to capture

the sequential information embedded in vertex and edge labels. We offer three distinct

modes in parametric simulation algorithm for entity linking, namely Spair, Vpair, and

Apair. In Spair mode, we determine whether a given pair of entities match. Vpair

mode involves examining all potential matches between a given entity e in relational

data D and all entities in graph G. Apair mode extends this evaluation to inspect

all possible matches between ”D” and ”G.” Additionally, we provide a parallelized

version of parametric simulation for the Apair mode to handle large graphs efficiently.

By incorporating parametric simulation and machine learning in global topological

matching, HER achieves quadratic-time efficiency between relational and graph data.

Furthermore, we have developed parallel parametric simulation algorithm for large

datasets. Through rigorous experimentation, we have demonstrated that HER offers

a highly promising solution, excelling in terms of accuracy, scalability, and overall

efficiency.
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1.3 Thesis Structure

The structure of this thesis is organized as follows. Chapter 2 provides the necessary

background and an overview of prior works related to data currency and linking en-

tities. Section 2.1 presents an overview of data currency of entities, including both

rule-based and machine learning-based methods, and discusses temporal orders in this

aspect. In Section 2.2, the background of entity resolution and graph simulation is

provided, which are required for understanding Chapter 4.

Chapter 3 focuses on data currency. We identify the latest attribute values of an

entity by determining temporal orders on attribute values in a set of tuples that pertain

to the same entity, in the absence of complete timestamps. We propose a creator-critic

framework to learn and deduce temporal orders by combining deep learning and rule-

based deduction, referred to as GATE (Get the lATEst). This framework has been

open-sourced at https://github.com/resultugay/GATE.

Chapter 4 focuses on entity linking. We propose a notion of parametric simulation

to link entities across a relational database D and a graph G. Taking functions and

thresholds for measuring vertex closeness, path associations and important properties

as parameters, parametric simulation identifies tuples t in D and vertices v in G that

refer to the same real-world entity, based on topological and semantic matching. We

use machine learning methods to learn the parameter functions and thresholds. We

also develop a system, denoted by HER, to check whether (t,v) makes a match, find

all vertex matches of t in G, and compute all matches across D and G, all in quadratic-

time. This system has been open-sourced at https://github.com/resultugay/her-toy.

1.4 List of Publications

The main contributions of this thesis are published in the following top conferences.

1. Chapter 3 introduces GATE and is based on the following paper:

Wenfei Fan, Resul Tugay, Yaoshu Wang, Min Xie, Muhammad Asif Ali. Learn-

ing and Deducing Temporal Orders. International Conference on Very Large

Data Bases (VLDB), 2023

As a co-author, I played a significant role in the development of the parametric

simulation algorithm, curated the UKGOV dataset, assisted in conducting exper-

iments, and made contributions to the paper’s writing and participated in various

discussions and proofread the paper.
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2. Chapter 4 introduces HER and is based on the following paper:

Wenfei Fan, Liang Geng, Ruochun Jin, Ping Lu, Resul Tugay, Wenyuan Yu.

Linking Entities across Relations and Graphs. International Conference on Data

Engineering (ICDE), 2022

As a co-author, I introduced the learning to rank approach to address the data

currency problem. I personally developed all the code for the creator component

and carried out initial experiments. Additionally, I was responsible for finding

and cleaning the datasets (except COM dataset), made contributions to the pa-

per’s writing and participated in various discussions and proofread the paper.





Chapter 2

Background and Related Work

In this chapter, we provide the necessary background and related work for understand-

ing two studied problems: data currency and entity resolution. To tackle data cur-

rency problem, various approaches and techniques have been proposed, ranging from

the application of ranking models based on deep learning to leveraging logic rules

like currency constraints. We delve into these methods and their respective strengths

and limitations, setting the stage for a comprehensive exploration of data currency en-

hancement. Then we provide background and related work for entity resolution. We

discuss the significance of entity resolution across various domains, and present an

overview of the techniques employed, including rule-based matching and advanced

ML approaches. By delving into both data currency and entity resolution, we do

groundwork for the subsequent chapters, where we propose our approaches to address

these challenges.

2.1 Data Currency

The data currency is the problem of identifying the current value of an entity in a

database in the absence of reliable timestamps. For instance, in a retail company’s

customer database, if the contact details of customers are not routinely updated, the

database may contain outdated email addresses or phone numbers. This could lead

to missed communications, failed deliveries, and ultimately, dissatisfied customers.

Hence, the data currency problem highlights the necessity of implementing strategies

and processes to keep information current, thus enhancing the overall quality and util-

ity of the dataset. Consider a set of tuples that pertain to the same entity e. Is it

possible to determine the temporal orders on the attribute values, i.e., for tuples t1

9
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and t2, whether the value in the A-attribute of t1 is more current than the value in the

A-attribute of t2, denoted by t2 ≺A t1, in the absence of complete timestamps?

One may want to approach this problem by training a ranking model that sorts ob-

jects according to their degrees of relevance or importance (Liu, 2010) using either ma-

chine learning (ML) (Burges et al., 2005) or reinforcement learning (Hu et al., 2018).

These approaches have also been used in search engine (Chapelle and Chang, 2011)

and machine translation (Zhang et al., 2016; Duh, 2009) to rank objects or entities. By

means of ranking models one can learn temporal orders and decide whether t1 ≺A t2
for all tuples t1, t2 and attribute A. However, it is hard to justify whether the ranking

conforms to the temporal orders in the real world. For data-driven decision making, we

need to ensure that the learned orders are reliable. Moreover, these approaches cannot

explain the ranking of objects that follow a complex attribute relations.

Another approach is to employ logic rules, e.g., CCs (Ding et al., 2020; Duan et al.,

2020; Fan et al., 2014b, 2012; Li et al., 2018; Liang et al., 2019; Wang et al., 2018).

These rules help us deduce temporal orders. For instance, the shoe sizes of the same

person typically monotonically increases (before 20 years old), and the address of a

person may be associated with the marital status (once the marital status changes, the

address also changes).

Using CCs, one can deduct up-to-date attribute values by looking at other attributes.

However, it is challenging to find enough rules to deduce relative orders on each and

every pair of values. Besides, it is difficult to generalize rules to handle lexically dif-

ferent but semantically similar values, since tuples might be extracted from different

source (e.g., marital status: married vs. wedded). Even though employing semantic

representations like word embeddings to compare words within a rule, this approach

alone may still fall short in identifying the most current attribute values. This limitation

arises from the absence of consideration for other relevant attributes.

Neither ML nor logic rules work well when used separately. A natural question is

whether it is possible to combine ML models and logic rules in a uniform framework,

such that we can learn temporal orders, and use the rules to validate the ranking and

improve the learning? How well can this framework improve the accuracy of the ML

models and logic rules when being used alone? Thus, we next categorize the related

work for learning and deducing entities as follows.
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2.1.1 Rule Based Methods

Currency constraints were first studied in (Fan et al., 2012) by employing partial cur-

rency orders and later extended in (Fan et al., 2013b, 2014b) for conflict resolution,

by considering both CCs and conditional functional dependencies (Fan et al., 2008).

A class of currency repairing rules was proposed in (Li and Li, 2016), which com-

bines logic rules and statistics. A two-step approach was developed in (Ding et al.,

2017) to determine the currency of dynamic data, by means of a topological graph. A

class of uncertain currency rules was supported by UncertainRule (Li et al., 2018) that

considers both temporal orders and data certainty. Improve3C (Ding et al., 2018) and

Imp3C (Ding et al., 2020) are 4-step data cleaning frameworks, including data consis-

tency, completeness and currency, which use a metric to repair noisy data using (Fan

et al., 2008) and currency orders. There has also been work (Duan et al., 2020) on

parallel incremental updating algorithms by employing traditional currency rules.

Our work in Chapter 3 differs from the prior work as follows. (a) To the best

of our knowledge, we make the first effort to combine deep learning and logic rules

for determining currency, for the two to enhance each other, while the prior work at

most extends rules with statistic. In particular, we employ the classic chase algorithm

(Fan et al., 2020) for handling logic rules, making sure it ensures the Church-Rosser

property. This process involves identifying tuple pairs (or valuations) associated with

a given temporal order and then inferring new ranked pairs based on this information.

(b) We propose a deep learning model for inferring temporal orders and use logic

deduction to derive more ranked pairs.

2.1.2 ML Models

There have also been efforts on inferring temporal orders by ML models (Goyal and

Durrett, 2019; Bramsen et al., 2006; Chambers and Jurafsky, 2008; Tourille et al.,

2017; Ning et al., 2017, 2018). A related topic is to incorporate temporal information

into knowledge graphs, e.g., for temporal link predictions (Divakaran and Mohan,

2020; Sadeghian et al., 2021) and reasoning (Trivedi et al., 2017; Zhang et al., 2020a;

Dikeoulias et al., 2022). These methods often embed temporal information in ML

models, for inference varying over time. Learning temporal orders has been modeled

as a learning-to-rank problem (pointwise, pairwise and listwise), where global orders

are learned for currency attributes. Temporal problems have also been studied in,

e.g., search and recommendation (Xu et al., 2020; Fan et al., 2022), information
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retrival (Liu, 2009) and natural language processing (Nogueira and Cho, 2019; Li

et al., 2020b). In particular, ranking in natural languange processing (e.g., in question-

answering tasks) can be handled by pre-trained language models with cross-entropy

loss or by a ranking function with a binary classifier as the comparison operator.

2.2 Linking Entities across Relations and Graphs

Entity resolution, also known as record linkage or deduplication, is the process of

identifying and merging duplicate or related records in a dataset to create a unified

and accurate view of entities (e.g., individuals, companies) represented in the data.

This involves determining which records in the dataset refer to the same real-world

entity, even if they have slight variations or discrepancies. For example, in a customer

database, there may be multiple entries for the same person with slightly different in-

formation (e.g., misspellings, variations in addresses). Entity resolution helps identify

and merge these entries to create a single, accurate representation of each customer.

Furthermore, entity resolution is a complex and longstanding challenge to the data

management community” (Golshan et al., 2017), as it involves dealing with large vol-

umes of data, noisy and incomplete information, and various types of errors and ambi-

guities. ER can be done on relational data, graph data or both. We conduct ER across

relational data and graphs in this thesis. Hence we categorize the related work as fol-

lows. First, we review previous research on ER in the context of relations and graphs.

Then, we discuss related work on graph simulation, which is relevant to our proposed

method of parametric simulation.

2.2.1 Entity Resolution

ER has primarily been studied for relational data that is specified by a schema (see

(Christophides et al., 2019) for a survey). ER systems can be categorized into (1)

rules, e.g., keys (Fan et al., 2015) and graph differential dependencies (Kwashie et al.,

2019); (2) ML models, e.g., (Saeedi et al., 2018) adopts unsupervised clustering and

matches vertices in the same cluster; (Trivedi et al., 2018) employs deep neural net-

works; (Dong et al., 2017) and (Zhao et al., 2020) make use of vertex embedding based

on heterogeneous skip-gram and co-occurrence; (Ngomo and Auer, 2011) exploits tri-

angle inequality for blocking, and conducts ER based on the metric; (Isele et al., 2010)

aggregates value similarities via link conditions; (Jeh and Widom, 2002; Yu et al.,
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2019; Kusumoto et al., 2014; Wang et al., 2020) compute SimRank scores to conduct

vertex matching.

There also exists work on heterogeneous ER (Papadakis et al., 2012, 2018; Li et al.,

2020a; Zhang et al., 2020b; Sun et al., 2011; Fu et al., 2020). But their notions of het-

erogeneity are quite different from ours. In (Li et al., 2020a), it means the (relational)

schema heterogeneity. (Sun et al., 2011) and (Fu et al., 2020) target heterogeneous

network with multiple typed objects and links. In (Papadakis et al., 2012), it comes

from loose schema binding. JedAI (Papadakis et al., 2018) considers various data for-

mats, e.g., RDF and CSV, by converting input entities into a set of profiles in the form

of name-value pairs, and then checking labels and attributes as in (Ngomo and Auer,

2011). While (Zhang et al., 2020b) links entities in web tables and knowledge bases,

it takes only local information (e.g., edit distance and vertex description) as features.

Unfortunately, none of the prior methods works well across relations D and graphs

G. Relational ER methods rely on the known structure of schema, and do not apply

to schema-agnostic graphs. In particular, entities are denoted as vertices v in G, and

its properties are linked from v via paths. Relational methods do not explore such

properties. To extend these methods, one has to use joins to traverse paths and incur

cost way beyond quadratic time. ER methods for graphs target entities with similar

topological structures, while D and G often have radically different structures even for

the same entity. Moreover, these methods and those heterogeneous ones explore only

local properties, but to accurately identify a tuple t in D and a vertex v in G, one has to

recursively check the pairwise semantic closeness of important descendants of t and v.

Our work in Chapter 4 differs from the prior work as follows. (a) We study dis-

joint graph G and (canonical graph representation of) database D , which are essen-

tially heterogeneous. (b) We embed ML models in topological matching, by proposing

parametric simulation with score functions learned with ML models, to cope with the

heterogeneity of D and G. It is beyond conventional ML methods, and cannot be ex-

pressed as rules since parametric simulation is inductively defined with ML models and

aggregate scores, beyond the expressive power of first-order logic. (c) It “globally” as-

sesses the semantic closeness by recursively inspecting properties (descendants) linked

to entities via paths, as opposed to checking labels, attributes and other local neighbors

of vertices.
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2.2.2 Graph Simulation

Graph simulation is a fundamental problem in the field of graph theory and has found

applications in various domains. Several approaches and techniques have been pro-

posed to address this problem.

Graph Simulation Algorithms: Graph simulation algorithms aim to determine if

there exists a mapping between nodes of two graphs that preserves certain relation-

ships, such as the reachability or connectivity between nodes. This notion has been

extended to map edges to paths, e.g., bounded (Fan et al., 2010) and strong simulation

(Ma et al., 2014). Other notions for graph matching, e.g., subgraph isomorphism and

homomorphism (see (Gallagher, 2006) for a survey), are too strong to match entities

with different topological structures; worse yet, they incur intractability (Garey and

Johnson, 1979)

Graph Isomorphism: One of the classic problems related to graph simulation is graph

isomorphism, where the goal is to determine if two graphs are isomorphic, meaning

they have the same structure. Various algorithms, such as the Ullmann algorithm and

the VF2 algorithm, have been developed to solve this problem efficiently (Ullmann,

1976).

Subgraph Matching: Subgraph matching is a related problem where the goal is to find

all occurrences of a given pattern graph within a larger data graph. This problem has

applications in database querying and network analysis. Techniques like the subgraph

isomorphism algorithm and subgraph matching with augmented data structures have

been proposed for efficient subgraph matching (Cordella et al., 2004).

Graph Neural Networks: Recent advancements in deep learning have led to the de-

velopment of graph neural networks, which can perform tasks like node classification,

link prediction, and graph classification. They leverage graph simulation principles

to propagate information across nodes in a graph and capture complex dependencies

(Kipf and Welling, 2016; Bronstein et al., 2017).

Parametric simulation radically differs from graph isomorphism, simulation

(bounded, strong) and graph neural networks as follows. (1) It is parameterized with

score functions and closeness thresholds learned via ML models. Neither (aggregate)

scores nor ML models are used in (bounded, strong) simulation. (2) It may map paths

in one graph to paths in another. It does not require every edge of u to find a match in

G, to cope with schemaless graphs in which missing links are common.
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Learning and Deducing Entities

In this chapter, we focus on the problem of data currency, which refers to the challenge

of determining the most current or up-to-date values of attributes associated with a

given entity, based on a set of tuples pertaining to the same entity. To tackle this

problem, we rely on the concept of temporal orders, which involves deducing the order

of events or changes to the attributes of a given set of tuples over time. In many

cases, these tuples may not have complete timestamps, which can make it difficult to

accurately identify the temporal order of attribute values.

3.1 Introduction

Real-life data keeps changing. As reported by Royal Mail, on average, “9590 house-

holds move, 1496 people marry, 810 people divorce, 2011 people retire and 1500

people die” each day in the UK (Royal Mail, 2018). It is estimated that inaccurate

customer data costs organizations 6% of their annual revenues (Royal Mail, 2018).

Outdated data incurs damage not only to Royal Mail. When the data at a search engine

is out of date, a restaurant search may return a business that had closed three years

ago. When the data about the condition of infrastructure assets is obsolete, it may

delay the maintenance of equipment and cause outage. Moreover, data-driven deci-

sions based on outdated data can be worse than making decisions with no data (Little,

2020). Indeed, “as a healthcare, retail, or financial services business you cannot afford

to make decisions based on yesterday’s data” (Exasol, 2020). Unfortunately, “82% of

companies are making decisions based on stale information” (Businesswire, 2022).

These highlight the need for determining the currency of data, i.e., how up-to-date

the information is. This is, however, highly nontrivial. Consider a set of tuples that

15
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pertain to the same entity. Their attribute values may become obsolete and inaccurate

over the time. Worse yet, only partial reliable timestamps might be available, where

a timestamp is reliable if it is precise, correct and moreover, it indicates that at the

time, the values are correct and up-to-date. Apart from mechanical reasons (malicious

attacks or hardware failures), the logical reasons below are the major temporal issues

in data quality (Bose et al., 2013), and account for the absence of reliable timestamps.

(1) Missing timestamps. Timestamps may simply not be recorded, e.g., in an e-health

database (Kurniati et al., 2019), only 16 out of 26 relations are timestamped. Even

when a relation has timestamps, it may not be complete, e.g., 25.36% missing in (Mar-

tin et al., 2019), up to 82.28% in (Kurniati et al., 2019).

(2) Imprecise timestamps. Timestamps may be too coarse, leading to unreliable

ordering. An e-form may be submitted multiple times to an office automation system

by employees during a day. If the forms are recorded in datestamps, it is not clear

which form (all on the same day) is the latest. Similar problems are often encountered

in hospital data, where only dates are recorded (Bose et al., 2013). Another example

concerns inconsistent granularity of timestamps (e.g., minutes vs. days (Bose et al.,

2013; Kurniati et al., 2019)). If two values have timestamps “12-8-2021” and “12-8-

2021 20:41”, it is not clear which one is more up-to-date. As reported in (Martin et al.,

2019), 90.41% of appointment records have imprecise timestamps.

(3) Incorrect timestamps. Many factors can lead to incorrect timestamps. Taking med-

ical data (Bose et al., 2013) as an example, an X-ray machine has many asynchronous

modules, each of which has a local clock and a local buffer. There can be a discrep-

ancy between when a value is actually updated and when it is recorded since the value

is first queued in the buffer before it is recorded. Moreover, 36.96% of appointments

have the overlapping issue (i.e., the next appointment in a particular room appears to

have started before the current one has ended) (Martin et al., 2019), indicating incor-

rect timestamps. As remarked earlier by Royal Mail (Royal Mail, 2018), customer

data changes frequently. To prevent the data from being outdated, the sales department

may contact the customers and get regular updates on some critical information (e.g.,

email and phone). Due to the impatience of customers and high cost (e.g., man power)

of contact, the rest (e.g., jobs, marital status) may not be frequently updated and may

gradually become obsolete, no longer having a reliable timestamp. Moreover, data val-

ues are often copied or imported from other sources (Dong et al., 2009, 2010), and even

in the same database, values may come from multiple relations (e.g., by join), where
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no uniform scheme of timestamps is granted, e.g., some values are more frequently

timestamped than the others (Kurniati et al., 2019). This calls for an attribute-level

time-stamping scheme (i.e., each value has a timestamp). It subsumes the tuple-level

scheme (i.e., all values in the same tuple have the same timestamp) as a special case.

No matter how desirable, the percentage of reliable timestamps is far lower than

expected. How can we determine the temporal orders on the attribute values, i.e., for

tuples t1 and t2, whether the value in the A-attribute of t1 is more current than the value

in the A-attribute of t2, denoted by t2 ≺A t1, in the absence of complete timestamps?

Example 3.1: Consider customer records t1-t6 shown in Figure 3.1, which have been

identified to refer to the same person Mary. Each tuple ti has attributes FN (first name),

LN (last name), sex, address, marital status, job, kids and SZ (shoe size). Some at-

tribute values of these tuples have become stale since Mary’s data changes over the

years, e.g., her job, address and last name have changed 4 times, five times and twice,

respectively. Only some attribute values might be associated with reliable timestamps,

e.g., the timestamp of t5[job] and t6[job] are 2016 and 2019 (not shown), respectively,

indicating that at that time, the values are up-to-date. In the absence of complete

timestamps, it is hard to know whether t2 ≺LN t6, i.e., whether the value of t2[LN] is

more up-to-date than t6[LN]? Moreover, what Mary’s current job title is, e.g., whether

ti ≺job t6 for i ∈ [1,4]? 2

FN LN sex address status job kids SZ

t1,e1: Mary Goldsmith F 19 xin st single n/a - 5

t2,e1: Mary Taylor F 6 gold plaza married journalist 1 6

t3,e1: Mary Taylor F 19 mall st espoused assoc editor 2 7

t4,e1: Mary Taylor F 7 ave divorced chief editor 2 7

t5,e1: Mary Taylor F 7 avenue detached chief editor 2 7

t6,e1: Mary Goldsmith F 6 const. ave married producer 3 7

Figure 3.1: Customer records dataset

Contributions & organization. We categorize this chapter as follows.

(1) Temporal orders (Section 3.2). We define the notion of temporal orders t1 ≺A t2

and t1 ⪯A t2 on attributes, and formulate the problem for determining temporal orders.

We also review the CCs of (Fan et al., 2012), for deducing temporal orders by our
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framework. We show that CCs can specify interesting temporal properties, e.g., the

monotonicity, comonotonicity and transitivity.

(2) GATE (Section 3.3). We introduce the framework, GATE. It iteratively invokes

a creator to rank the temporal orders on attribute values, followed by the critic that

validates the ranking of the creator and deduces more ranked pairs via discovered CCs.

The critic also produces augmented training data for the creator to improve its ranking

in the next round. This process proceeds for the creator and critic to mutually enhance

each other, until the temporal order cannot be further improved.

(3) Creator (Section 3.4). We propose a deep learning model underlying the creator

of GATE, to learn temporal orders on attribute values. It departs from previous rank-

ing models in that it learns the temporal orders based on contexts (i.e., attribute cor-

relations) and calculates the confidence of the ranking, by employing chronological

embeddings and adaptive pairwise ranking strategies.

(4) Critic (Section 3.5). The critic complements GATE with discovered rules (CCs).

We show how it justifies the ranked pairs learned by the creator, and (incrementally)

deduces latent temporal orders with the chase (Sadri and Ullman, 1980) using CCs. The

chase has the Church-Rosser property (cf. (Abiteboul et al., 1995)), i.e., it guarantees to

converge at the same result no matter in what orders the CCs are applied. Moreover, the

critic augments the training data for the creator to improve its model in the next round.

(5) Experimental study (Section 3.6). Using real-life and synthetic data, we find that

(a) the F-measure of GATE on dataset Career (Leone, 2022) is 0.866, versus 0.35

and 0.36 by rule-based UncertainRule (Li et al., 2018) and Improve3C (Ding et al.,

2018) (resp. 0.54 and 0.53 by ML-based RANKBert (Nogueira and Cho, 2019) and

DittoRank (Li et al., 2020b)). (b) On average, GATE is 43.8% and 7.8% more accurate

than the critic and the creator, respectively, verifying the effectiveness of combining

deep learning and logic rules. (c) GATE is feasible in practice; it only takes 7 rounds

to terminate on a real-life dataset of 1,983,698 tuples, with a single machine.

3.2 Determining Temporal Orders

In this section, we first provide the notations for this chapter and then formulate tem-

poral orders and the problem for determining temporal orders (Section 3.2.1). We then

review CCs of (Fan et al., 2012) and show that such rules are able to express mono-

tonicity, comonotonicity and transitivity (Section 3.2.2).
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Symbols Notations

R = (A1, . . . ,An) relation schema

(De,Te) entity instance of schema R pertaining to e

temporal order t1 ⪯A t2 t2 is at least as current as t1 in attribute A

conf(t1 ⪯A t2) the confidence of t1 ⪯A t2
(D,⪯A1 , . . . ,⪯An ,T ) temporal instance of R

ϕ = X → p0 currency constraint

h valuation of ϕ in a temporal instance

Γ the ground truth

Daug the augmented training data

GATE Get the lATEst

Table 3.1: Notations

3.2.1 The Problem

Temporal orders and temporal instances. An entity instance is (De,Te), where (a)

De is a normal instance of schema R such that all tuples t1 and t2 in De refer to the

same real-life entity e and hence, t1[EID] = t2[EID]; and (b) Te is a partial function

that associates a timestamp Te(t[A]) with the A-attribute of a tuple t in De. We refer to

(De,Te) as an entity instance pertaining to e.

Here the timestamp indicates that at the time Te(t[A]), the A-attribute value of

tuple t is correct and up-to-date; it does not necessarily refer to the time when t[A] was

created or last updated. If Te(t[A]) is undefined, a reliable timestamp is not available

for t[A].

Intuitively, an entity instance extends a normal instance with available timestamps.

Its tuples may be extracted from a variety of data sources, and are identified to refer

to the same entity e via entity resolution. In the same tuple t, t[A] and t[B] may bear

different timestamps (or even no timestamp) for different A and B. Note that we do

not assume a timestamp for the entire tuple, since we often find only parts of a tuple

to be correct and up-to-date.

Temporal orders. A temporal order on attribute A of De is a partial order ⪯A such that

for all tuples t1 and t2 ∈ De, t2 ⪯A t1 if the value in t1[A] is at least as current as t2[A].

We also use a strict partial order t2 ≺A t1 if t1[A] is more current than t2[A]. To simplify

the discussion we focus on ⪯A in the sequel; ≺A is handled analogously.
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In particular, if Te(t1[A]) and Te(t2[A]) are both defined and if Te(t2[A])≤ Te(t1[A]),

i.e., when timestamp Te(t1[A]) is no earlier than Te(t2[A]), then t2 ⪯A t1, i.e., t1[A] is

confirmed at a later timestamp and is thus considered at least as current as t2[A].

Temporal order ⪯A is represented as a set of tuple pairs such that (t2[tid],

t1[tid]) ∈ ⪯A iff t2 ⪯A t1. We write (t2[tid], t1[tid]) as (t2, t1) if it is clear in the context.

Note that the same value may bear different timeliness in different tuples, e.g., Mary’s

marital status changed from married (t2) to divorced (t4) to married (t6). While

t2[status] = t6[status], t2 ≺status t6. Here t2 ≺status t6 ranks the timeliness of the status-

attributes of tuples t2 and t6, not values (married vs. married) detached from the tuples.

We say that a temporal order ⪯1
A extends ⪯2

A, written as ⪯2
A⊆⪯1

A, if for all tuples

t1, t2 in De, if t2 ⪯2
A t1 is defined, then so is t2 ⪯1

A t1. That is, ⪯1
A includes all tuple pairs

in ⪯2
A and possibly more.

Temporal instances. A temporal instance Dt of R is given as (D,⪯A1, . . . ,⪯An ,T ),

where each ⪯Ai is a temporal order on Ai (i ∈ [1,n]), D =
⋃

i∈[k]Dei , T =
⋃

i∈[k]Tei ,

and for all i ∈ [1,k], (Dei,Tei) is an entity instance of R. Here tuples t1 and t2 in D are

compatible under ⪯A if they pertain to the same entity, i.e., t1[EID] = t2[EID].

Intuitively, Dt is a collection of entity instances, such that each (Dei,Tei) pertains

to the same entity ei. We do not rank the currency of tuples if they refer to different

entities. A temporal instance Dt = (D,⪯A1, . . . ,⪯An,T ) is said to extend another

temporal instance D′
t = (D,⪯′

A1
, . . . ,⪯′

An
,T ) if for all i ∈ [1,n], ⪯Ai extends ⪯′

Ai
.

Problem statement. We study the problem for determining the temporal orders of a

temporal instance, stated as follows.

◦ Input: A temporal instance Dt = (D,⪯A1, . . . ,⪯An,T ).

◦ Output: An extended temporal instance D′
t=(D,⪯′

A1
, . . . ,⪯′

An
,T ) such that for all

i ∈ [1,n], (a) ⪯′
Ai

extends ⪯Ai and (b) ⪯′
Ai

is a total order on all compatible t1 and

t2 with t1[EID] = t2[EID].

Intuitively, our goal is to extend ⪯Ai such that for all tuples t1 and t2 in D, if

t1[EID] = t2[EID], we can decide which of t1[Ai] and t2[Ai] is more up-to-date. As a

consequence, we can deduce the latest value for all attributes. Note that we define a

total order on each attribute, not a global order on tuples. The total orders on different

attributes can be different. This said, we can use the temporal orders learned on

one attribute to help the deduction on other attributes, via correlation expressed as

currency constraints.



3.2. Determining Temporal Orders 21

3.2.2 Currency Constraints

We next review the class of currency constraints proposed in (Fan et al., 2012). The

predicates over a relation schema R are defined as:

p ::= t[A]⊕ c | t1[A]⊕ t2[A] | t1 ⪯A t2,

where t, t1, t2 are tuple variables denoting tuples of R, A is an attribute of R, c is a con-

stant, ⊕ is an operator from {=, ̸=,>,≥,<,≤}; t[A]⊕c and t1[A]⊕t2[A] are defined on

attribute values, while t1 ⪯A t2 compares the timeliness of t1[A] and t2[A]. In particular,

t1[EID] = t2[EID] says that t1 and t2 refer to the same entity.

A currency constraint (CC) over schema R is defined as follows:

ϕ = X → p0,

where X is a conjunction of predicates over R with tuple variables t1, . . . , tm, and p0

has the form tu ⪯Ai tv for u,v ∈ [1,m]. We refer to X as the precondition of ϕ, and p0

as the consequence of ϕ.

As defined in (Fan et al., 2012), a CC can be equivalently expressed as a universal

first-order logic sentence of the following form:

ϕ = ∀t1, . . . , tm
( ∧

j∈[1,m]

(t1[EID] = t j[EID])∧X → tu ⪯A tv
)
.

Semantics. Currency constraints are defined over temporal instances Dt = (D,⪯A1

, . . . ,⪯An ,T ) of R. A valuation of tuple variables of a CC ϕ in Dt , or simply a valuation

of ϕ, is a mapping h that instantiates variables t1, . . . , tm with tuples in D that refer to

the same real-world entity, as required by t1[EID] = t j[EID] for j ∈ [1,m].

A valuation h satisfies a predicate p over R, written as h |= p, if the following is

satisfied: (1) if p is t[A]⊕ c or t1[A]⊕ t2[A], then it is interpreted as in tuple relational

calculus following the standard semantics of first-order logic (Abiteboul et al., 1995);

and (2) if p is t1 ⪯A t2, then t2[A] is at least as current as t1[A] i.e., (t1, t2) is in ⪯A.

For a conjunction X of predicates, we write h |= X if h |= p for all p in X . A

temporal instance Dt satisfies CC ϕ, denoted by Dt |= ϕ, if for all valuations h of

X → p0 in Dt , if h |= X then h |= p0.

Properties. Currency constraints are able to specify interesting temporal properties.

Below we exemplify some properties.

Monotonicity. A temporal order ⪯A over relation schema R is monotonic if for any

tuples t1 and t2 of R that refer to the same entity, if t1[A] ≤ t2[A] then t1 ⪯A t2. For
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instance, consider the SZ (shoe size) attribute of the customer relation of Example 3.1.

Then ⪯SZ is monotonic. It can be expressed as the following CC:

ϕ1 = t1[SZ]≤ t2[SZ]→ t1 ⪯SZ t2.

As another example, marital status only changes from single to married, not the

other way around (Canada, 2022). This is expressed as CC:

ϕ2 = t1[status] = “single”∧ t2[status] = “married” → t1 ⪯status t2.

With slight abuse of terminologies by considering timestamps as an “attribute”

associated with attribute A, we have:

ϕ3 = Te(t1[A])≤ Te(t2[A])→ t1 ⪯A t2,

since t2[A] is confirmed at a later timestamp.

Comonotonicity. For attributes A and B of R, we say ⪯A and ⪯B are comonotonic in a

temporal instance Dt of R if for all tuples t1 and t2 in Dt that refer to the same entity,

t1 ⪯A t2 if and only if t1 ⪯B t2.

Intuitively, ⪯A and ⪯B are comonotonic if the two are correlated such that when

one is updated, the other will also change. For instance, ⪯status and ⪯address are often

comonotonic: when the marital status of a person changes from single to married, this

person may move to a larger house. This can be expressed as a CC:

ϕ4 = t1 ⪯status t2 → t1 ⪯address t2.

Along the same lines, we could also have a CC:

ϕ5 = t1 ⪯A t2 → t1 ⪯ts t2.

Transitivity. Transitivity can also be expressed for any attribute A:

ϕ5 = t1 ⪯A t2 ∧ t2 ⪯A t3 → t1 ⪯A t3.

Correlating different attributes. One can correlate multiple different attributes to cap-

ture implicit temporal ordering. For example, marital status may change from

“married” to “divorced” and further from “divorced” to “married” again. To deduce an

order on t[status], we can use the number of kids as an additional condition:

ϕ6 = t1[status] = “married”∧ t2[status] = “divorced”∧
t1[kids]< t2[kids]→ t1 ⪯status t2.
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Deduction. Making use of CCs, we can deduce certain temporal orders, e.g., from

ϕ1-ϕ6 and Figure 3.1, we can deduce the following:

◦ t1 ⪯status t2 by ϕ2, t2 ⪯status t4 by ϕ6 and t1 ⪯status t4 by ϕ5;

◦ t1 ⪯address t2 by ϕ4; hence t2[address] is more current for Mary;

◦ t1 ⪯SZ t2 ⪯SZ t3 by ϕ1; hence Mary’s current shoe size is 7.

However, we cannot determine whether t2 ⪯LN t6 or t6 ⪯LN t2 by deduction with the

currency constraints ϕ1-ϕ6.

Discovery of currency constraints. As noted in (Fan et al., 2012), CCs can be consid-

ered as a special case of denial constraints (DCs) (Arenas et al., 1999) extended with

temporal orders ⪯A. Several methods have been developed for discovering DCs au-

tomatically, e.g., FastDC (Chu et al., 2013), Hydra (Bleifuß et al., 2017), DCFinder

(Pena et al., 2019) and ADCMiner (Livshits et al., 2020). We can readily extend these

algorithms for discovering CCs. Note that the discovery algorithm is executed once for

each relation schema R by sampling its temporal instances. The set Σ of discovered

CCs is then applied to different temporal instances. In other words, GATE does not

have to discover CCs for each input temporal instance.

3.3 GATE: A Creator-Critic System

In this section, we propose a creator-critic framework for determining temporal orders,

and develop system GATE to implement it. A unique feature of GATE is its combined

use of deep learning and logic deduction. Below we start with the architecture of

GATE, and then present its overall workflow, with termination guarantee.

Architecture. The ultimate goal of GATE is to obtain a total order ⪯A for each attribute

A. As shown in Figure 3.2, GATE first discovers a set Σ of CCs on Dt offline for per-

forming logic deduction. Then it takes a temporal instance Dt = (D,⪯A1 , . . . ,⪯An,T )

as input, and learns and deduces more temporally ranked pairs for Dt online. For sim-

plicity, we assume w.l.o.g. that D consists of a single entity instance De, i.e., all tuples

in D pertain to the same entity e and thus their attributes can be pairwisely compared;

the methods of this paper can be readily extended to Dt with multiple entity instances.

More specifically, the learning and deducing process in GATE iteratively executes

two phases, namely, creator and critic, as follows.
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Figure 3.2: Architecture of GATE

(1) Creator (Sections 3.4). In this phase, GATE (incrementally) trains a ranking model

Mrank via deep learning. By taking Dt and the augmented training data Daug (see its

definition shortly) from the critic as input, it predicts new orders for extending each ⪯A

of Dt . Our model has three features: (a) For each tuple t in D, the embedding for t[A]

is created using both t[A] and other correlated values in t, so that t[A] can be ranked

comprehensively. (b) The attribute embeddings (Devlin et al., 2019b) are arranged

to preserve chronological orders. (c) We adopt an attribute-centric adaptive pairwise

ranking strategy in Mrank, so that the ranking result can be justified semantically.

Moreover, the temporal instance Dt will also be extended based on Daug.

Given an attribute A, we associate each (t1, t2) ∈⪯A with a confidence, denoted by

conf(t1⪯At2), indicating how likely t1 ⪯A t2 holds. If t2[A] has a later timestamp than

t1[A], then conf(t1⪯At2) is 1. If t1 ⪯A t2 is predicted by Mrank, its confidence is from

0 to 1. We only consider (t1, t2) predicted by Mrank with conf(t1 ⪯A t2) ≥ δ, where δ

is a predefined threshold, as candidate pairs to be extended to ⪯A. We denote the set

of all candidate pairs of ⪯A by ⪯M
A .

The input and output of the creator are as follows:

◦ Input: A temporal instance Dt = (D,⪯A1, . . . ,⪯An,T ) and the augmented training

data Daug from the critic.

◦ Output: An extended temporal instance D′
t = (D,⪯′

A1
, . . . ,⪯′

An
,T ) based on Daug

and the predicted orders (⪯M
A1
, . . . ,⪯M

An
).

(2) Critic (Sections 3.5). In this phase, the critic of GATE justifies and deduces more

temporally ranked pairs, by applying CCs in Σ via the chase (Sadri and Ullman, 1980).

Denote the result of chasing by ⪯Σ
A. Depending on the validity of ⪯Σ

A, we construct an
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augmented training data, denoted by Daug, containing the ranked pairs justified (resp.

conflicts caught by CCs); Daug will be fed back to the creator, for the next round of

model learning, so that the creator can learn from more unseen data and get higher

accuracy iteratively. Specifically, Daug is a temporal instance extended with a validity

flag fvalid, i.e., Daug = (D,⪯′
A1
, . . . ,⪯′

An
,T, fvalid): (a) if fvalid is true, ⪯Σ

A is valid and

all temporal order deduced by the chase will be added to Daug; and (b) otherwise,

the chasing is invalid, i.e., both (t1, t2) ∈⪯A and (t2, t1) ∈⪯A are deduced, and either

t1 ≺A t2 and t2 ≺A t1. In this case, these two conflicting orders will be added to Daug,

and the creator will be asked to resolve this conflict, by revising its model accordingly.

Formally, the input and output of the critic are as follows:

◦ Input: A temporal instance Dt = (D,⪯A1 , . . . ,⪯An,T ), the predicted temporal

orders (⪯M
A1
, . . . ,⪯M

An
) and a set Σ of CCs.

◦ Output: Augmented data Daug = (D,⪯′
A1
, . . . ,⪯′

An
,T, fvalid).

The novelty of the critic consists of (a) the deduction using the chase, and (b) an

efficient algorithm implementing the chase.

Workflow. As shown in Figure 3.3, GATE takes a temporal instance Dt = (D,⪯A1

, . . . ,⪯An ,T ) and a set Σ of CCs discovered offline as input, and it outputs an extended

temporal instance D′
t = (D,⪯′

A1
, . . . ,⪯′

An
,T ) with a total order ⪯′

A defined for each

attribute A.

GATE first initializes the augmented training data Daug = (D,⪯′
A1
, . . . ,⪯′

An

,T, fvalid = true) (Line 1, details omitted) for the first round of GATE, by deducing its

initial temporal orders ⪯′
A via CCs in Σ whose preconditions do not involve timeliness

comparison, e.g., we can create temporal orders for those tuples with available

timestamps using ϕ3. The initialization can be done efficiently by (Fan et al., 2021).

Then GATE iteratively executes the creator and the critic in rounds. In the i-th

round, (a) the creator extends the temporal instance Dt (Line 4, see Section 3.4) based

on the augmented training data Daug returned by the critic in the (i − 1)-th round,

by possibly revising its model to resolve the conflicts. Then the creator incrementally

trains Mrank (Line 5, see Section 3.4) and predicts new temporal orders (⪯M
A1
, . . . ,⪯M

An
)

(Line 6), which are candidate pairs (t1, t2) with confidences at least δ; and (b) the critic

deduces more ranked pairs (⪯Σ
A1
, . . . ,⪯Σ

An
) by chasing with CCs in Σ (Line 8). Based on

the result of chasing, the critic constructs augmented training data Daug via procedure

ConstructAugmented (Line 9, see Section 3.5); this Daug is fed back to the creator for

the next round.
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Input: A temporal instance Dt = (D,⪯A1 , . . . ,⪯An ,T ), and a set Σ of CCs.

Output: An extended temporal instance D′
t = (D,⪯′

A1
, . . . ,⪯′

An
,T ) such

that for all i ∈ [1,n], (a) ⪯′
Ai

extends ⪯Ai and (b) ⪯Ai is a total order.

1. Daug := Initialize(Dt , fvalid = true,Σ); Initialize the ranking model Mrank;

2. while true do

3. /* The Creator of GATE */

4. Dt := Extend(Dt ,Daug);

5. Train Mrank incrementally based on Dt ;

6. (⪯M
A1
, . . . ,⪯M

An
) := the predicted temporal orders by Mrank;

7. /* The Critic of GATE */

8. (⪯Σ
A1
, . . . ,⪯Σ

An
) := Chase(Dt ,Σ);

9. Daug := ConstructAugmented(D,⪯M
A1
, . . . ,⪯M

An
,⪯Σ

A1
, . . . ,⪯Σ

An
,T );

10. if Dt no longer changes then

11. break;

12. Dt = Extend(Dt ,Mrank);

13. return Dt ;

Figure 3.3: Workflow of GATE

Finally, when Dt no longer changes (Line 10-11), the iteration ends. If Dt is still

not a temporal instance with total orders defined on all attributes, we extend it using

procedure Extend (Line 12), such that for each pair (t1, t2), one of (t1, t2) and (t2, t1)

learned with a higher confidence is in ⪯A, until each ⪯A becomes a total order.

Termination. We prove that eventually, GATE will terminate (Line 10), i.e., with more

iterations, Dt is gradually extended with more orders and finally, becomes stable and

does not change.

Theorem 1: GATE is guaranteed to terminate. 2

Proof of Theorem 1. We prove Theorem 1 by showing that each temporal order

⪯A will be stable after certain rounds, since (a) once a temporal order t1 ⪯A t2 is

stable, i.e., if (t1, t2) is added to ⪯A of Dt via procedure Extend (Line 5), it will not

be removed from ⪯A in the subsequent rounds; and (b) the number of stable pairs in

⪯A is strictly increasing, which is upper-bounded by O(|D|(|D|−1)). CCs is a special

case of entity enhancing rules (REEs) (Fan et al., 2020), extended with temporal

orders ⪯A. We prove Church-Rosser for CCs using a similar argument for REEs in
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(Fan et al., 2020), by showing (a) the length of any chasing sequence is bounded and

(b) all chasing sequences converge at the same results. 2

Example 3.2: Continuing with Example 3.1, assume that Σ = {ϕ1-ϕ6} and Dt has

empty temporal orders. We first initialize the training data Daug by applying CCs in Σ

that do not compare timeliness in their preconditions, e.g., we can deduce t5 ⪯job t6 by

ϕ3. Suppose that after training Mrank based on the initial Daug, no tuple pair predicted

by Mrank is at least δ-confident in the first round. The creator outputs empty ⪯M
A for

each A due to the lack of information. Then by applying the CCs in Σ, the critic can

deduce new temporal orders ⪯Σ
A, e.g., t1 ⪯address t2 by ϕ4 and t1 ⪯status t4 by ϕ5. Both

⪯M
A and ⪯Σ

A will be used to construct the augmented training data Daug, based on

which the creator extends Dt and incrementally trains Mrank in the second round. This

time the creator might be able to predict confident temporal orders, e.g., t1 ⪯LN t2,

based on the augmented training data Daug. The iteration continues until Dt does not

change anymore. Each temporal order ⪯A in Dt will be extended to a total order by

Mrank if it is still not total. 2

Remark. We adopt a confidence threshold δ to ensure the reliability of ML predictions,

so that only reliable orders are considered. When confident orders cannot be decided

for the lack of initial information, we may opt to invite user inspection to ensure

the correctness of a few initial ranked pairs, from which more reliable orders can

be iteratively deduced/learned. The parameter δ plays an important role in model

Mrank, e.g., when testing Mrank on procedural billing data (with 82.28% real missing

timestamps (Kurniati et al., 2019)), we find that 22.6% pairs are identified as confident

when δ = 0.55. The percentage decreases to 16.7% when δ = 0.6. We will test the

impact of δ in Section 3.6. The range of the parameter δ is between 0 and 1.

3.4 Creator

In this section, we develop the creator of GATE. Given a temporal instance

Dt = (D,⪯A1 , . . . ,⪯An,T ) and the augmented training data Daug (from the critic), the

creator (a) trains a ranking model Mrank to predict new orders and (b) extends each

⪯A of Dt based on Daug.

Review on ranking models. Learning to Rank (Liu, 2009) aims to learn a ranking

model so that objects can be ranked based on their degrees of relevance, preference, or

importance (in our setting, timeliness).
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Figure 3.4: The Network Architecture of Creator

We adopt pairwise ranking since (a) its semantics is consistent with temporal

orders, which is a set of tuple pairs on which partial orders are defined (Section 3.2);

and (b) by transitivity of temporal orders, pairwise ranking helps us get a total order

for all attributes.

Challenges. One naturally wants to adopt an existing model. However, it is hard

to directly apply one, since the unique features of temporal orders are not well

considered, resulting in poor performance.

(1) Attribute correlation. Due to the correlated nature of temporal order, we often

need to reference other attributes to determine the orders of a given attribute. More-

over, since a value may change back and forth (e.g., the marital status changes from

“married” to “divorced”, and back from “divorced” to “married”), it is hard to deter-

mine the up-to-date value based on a single attribute only.

(2) Limitation of embedding models. To determine the timeliness, care should be taken

for lexically different but semantically similar values (e.g., “baby” vs. “birth” and

“dead” vs. “expired” for attribute status). Although existing embedding models

(e.g., ELMo (Peters et al., 2018) or Bert (Devlin et al., 2019b)) are widely adopted, they

cannot be directly used here since they are not trained to organize data chronologically.

(3) Adaptive margin. Existing ranking strategies do not consider real-life character-

istics of timeliness, e.g., the timespan for a person’s status to move from “birth” to

“engaged” is typically longer than from “engaged” to “married” (Figure 3.4). Instead

of ranking status with a fixed margin as most existing strategies did, we need a new

methodology to embed values using adaptive margins, to conform to their real-life

behaviors and justify the semantic of ranking.
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Model overview. We propose a ranking model to tackle the above challenges, whose

novelty includes (a) a context-aware scheme that embeds each value along with other

correlated values, (b) an encoding mechanism to re-organize the embeddings in a

chronological manner, and (c) an attribute-centric adaptive ranking strategy.

As shown in Figure 3.4, our ranking model Mrank takes the current Dt as input,

and outputs new ranked pairs, where each (t1, t2) is associated with a confidence,

indicating how likely t1 ⪯A t2 holds.

Our ranking model consists of three stages as follows: context-aware embedding,

chronological encoding and order prediction.

(1) Mrank first builds a context-aware embedding for each attribute value using pre-

trained language models (ELMo (Peters et al., 2018) or Bert (Devlin et al., 2019b)), in

a way that information of correlated values is also embedded.

(2) Based on the embeddings, Mrank encodes a target vector φA for attribute A, via

non-linear transformation (see below). Similarly, a value vector φt[A] is encoded for

each A-attribute value of tuple t, so that (a) if t[A] is more current, φt[A] is closer to φA

and (b) the gap between φt[A] and φA is trained adaptively, to reflect real semantics.

(3) Finally, given φt1[A] and φt2[A] of t1 and t2, Mrank predicts the order, i.e., whether

t1 ⪯A t2 holds with high enough confidence.

We next briefly elaborate the context-aware embedding and the chronological en-

coding scheme with the adaptive margin.

Context-aware embedding. To reference correlated values, we treat tuples as sequences

and adopt the idea of serialization (Li et al., 2020b) (so that tuples can be meaningfully

ingested by models) to embed values.

Following (Li et al., 2020b), given a tuple t in Dt , we serialize its values:

serialize(t) = ⟨COL⟩A1⟨VAL⟩t[A1] . . .⟨COL⟩An⟨VAL⟩t[An],

where ⟨COL⟩ and ⟨VAL⟩ are special tokens, denoting the start of attribute and value,

respectively (see Figure 3.4). This serialization is fed as input to a pre-trained

language model emb(·) to compute a d-dimensional embedding for each A-attribute

value, denoted by emb(t[A]) ∈ Rd . Besides, we average out the embedding vectors

for all t[A] to get a context representation of tuple t, i.e., emb(t) = 1
n ∑

n
i=1 emb(t[Ai]).

Finally for each A-attribute value of t, we get the context-aware embedding of t[A],

denoted by Et[A] ∈ R2d:
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Et[A] = [emb(t[A]);emb(t)],

where [; ] denotes vector concatenation. In this way, Et[A] embeds not only the

A-attribute value, but also the contextual information from other attribute values, to

allow comprehensive ranking. Similarly, a schema embedding for each attribute A is

computed: EA = emb(A), by feeding the attribute name, e.g., status, to the model.

Chronological encoding with adaptive margins. While pre-trained embeddings are

widely adopted to capture semantics, they are not trained to organize temporal orders.

Thus we propose chronological encoding to re-organize the embeddings to preserve

timeliness. The idea is to use schema embedding as the target and make the embed-

ding of a more current value closer to the target; moreover, instead of ranking in fixed

margins, embeddings are ordered adaptively.

Specifically, given the embedding of the A-attribute of t, i.e., Et[A], we encode it

using a context encoder ENCcxtx(·) as follows:

φt[A] = ENCcxtx(Et[A]) = σ(W2 ∗σ(W1 ∗Et[A])),

where W1 and W2 are learnable parameters of the encoder, and σ is the non-linear

sigmoid activation function given by σ(x) = 1
1+e−x .

Similarly, the target vector for attribute A is encoded as φA = ENCattr(EA), where

ENCattr(·) denotes the schema encoder.

To train the encoders with ordered embeddings and adaptive margins, we adopt an

attribute-centric adaptive margin-based loss. Given ⪯A in Dt , the loss on A is formu-

lated as follows:

loss(A) = ∑(t1,t2)∈⪯A

{
max{−tanh(⟨φt2[A],φA⟩)+(γt1,t2)+ tanh(⟨φt1[A],φA⟩),0}

}
,

where ⟨·, ·⟩ is the inner product and γt1,t2 is the adaptive margin between the two

tuples; we set γt1,t2 to be 1− cos(vt1[A],vt2[A]) in practice, where vt1[A] and vt2[A] are the

Word2Vec (Church, 2017) embeddings which characterize the co-occurrence of t1[A]

and t2[A].

Intuitively, by minimizing the loss, for each training instance t1 ⪯A t2, (a) we make

the encoded vector of the more current value t2[A] closer to target φA (the first term)

and (b) we ensure an adaptive margin γt1,t2 between the two tuples (the second term). In

other words, the attribute values in the encoded space are not only arranged chronolog-

ically by their distances to φA, from which temporal orders can be easily derived, their

margins are also adaptively determined, to reflect the semantic of timeliness ranking.
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Model training and instance extension. In each round, the creator receives

augmented training data Daug = (D,⪯′
A1
, . . . ,⪯′

An
,T, fvalid), based on which it (a)

incrementally trains Mrank via back-propagation and (b) extends the temporal instance

Dt with Daug.

In the first round, Daug is initialized to be the temporal orders constructed by

applying those CCs in Σ without timeliness comparison in their preconditions (Fan

et al., 2021). In the following rounds, Daug is constructed by the critic, based on the

result of chasing with CCs.

Specifically, depending on flag fvalid in Daug, we have two cases:

(1) If fvalid is true, the result of chasing is valid and Mrank is incrementally trained on

the orders in Daug (see below). Moreover, the temporal instance Dt = (D,⪯A1, . . . ,⪯An

,T ) is extended with the ranked pairs in Daug, i.e., for each (t1, t2) in ⪯′
A of Daug, (t1, t2)

is added to ⪯A. In this case, we say that (t1, t2) becomes stable. Once a temporal order

becomes stable, it will not be removed from Dt .

(2) If fvalid is false, the result of chasing is invalid, i.e., there is an attribute A such that

conflicting orders (t1, t2) and (t2, t1) are both in ⪯′
A of Daug i.e., {(t1, t2),(t2, t1)} ⊆⪯′

A,

and either t1 ≺A t2 or t2 ≺A t1. In this case, we decide that either (t1, t2) or (t2, t1)

is added to ⪯A using Mrank, with a higher confidence (and possibly user inspection).

Assume w.l.o.g. that (t1, t2) is added to ⪯A (i.e., it becomes stable). Then, the creator

fine-tunes Mrank so that t1 and t2 are better separated in the encoded space.

Incremental training. Incremental training of Mrank might lead to the catastrophic

forgetting issue (Kirkpatrick et al., 2016), i.e., the model might forget some temporal

orders learned in prior rounds. To overcome this, we adopt a simple strategy to retain

prior knowledge: In each round, Mrank first makes inference to previously learned

orders, and then extracts those that make wrong predictions. Then, we add these

orders to the augmented data Daug and then train the model on Daug. In this way, the

model is able to learn from previous training instances and alleviate the impact of the

catastrophic forgetting issue.

Monotonicity. One can verify that the number of stable temporal orders in Dt is

(strictly) monotonically increasing when more rounds GATE are performed. The ter-

mination of GATE (Theorem 1) partly depends on this monotonicity.

Confidence. Given ⪯A and a tuple pair (t1, t2), Mrank predicts (t1, t2) ∈⪯A if

tanh(⟨φt2[A],φA⟩) > tanh(⟨φt1[A],φA⟩); its confidence indicates how likely t1 ⪯A t2
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holds. We compute it to be

conf(t1 ⪯A t2) = σ(tanh(⟨φt2[A],φA⟩)− tanh(⟨φt1[A],φA⟩))

and set conf(t2 ⪯A t1) to 0. Thus, given a confidence threshold δ > 0, we will not

predict both t1 ⪯A t2 and t2 ⪯A t1 as confident orders.

Intuitively, we use tanh(⟨φt[A],φA⟩) to measure the “distance” between φt[A] and

φA, where the closer one is more current. The distance gap between φt1[A] and φt2[A]

quantifies the confidence: the larger the gap, the larger the confidence, which ranges

from 0 to 1.

Example 3.3: Consider the example in Figure 3.4, where we focus on attribute status.

After creating the context-aware embedding based on a pre-trained model, it chrono-

logically encodes a target vector φstatus and value vectors for all values, so that they are

arranged by their distances to φstatus. To illustrate, we also label the unknown times-

tamp of each value vector in the figure (e.g., Te(Married) = 2018). Since φMarried is the

closest to φstatus, it is predicted to be the latest status value and new ranked pairs are

constructed accordingly for ⪯status, as augmented training data in the next round. 2

Remark. Our creator learns temporal orders by utilizing context-aware embedding,

chronological encoding and attribute-centric adaptive ranking. However, it does not

explicitly take into account of some temporal properties, such as the transitivity. This

motivates us to use critic to deduce and justify the temporal orders based on the se-

mantics of the data, as will be presented in the next section.

3.5 Critic

In this section, we develop the critic under GATE for justifying and deducing temporal

orders. Taking a temporal instance Dt , the temporal orders (⪯M
A1
, . . . ,⪯M

An
) predicted

by the creator and a set Σ of mined CCs as input, the critic (a) deduces more ranked

pairs (⪯Σ
A1
, . . . ,⪯Σ

An
) by applying CCs via the chase, and (b) constructs the augmented

training data Daug and feeds Daug back to the creator.

3.5.1 Chasing with CCs

We extend the classic chase in (Fan et al., 2020) for CCs under GATE. As opposed to

the classical chase, we apply a CC only if its precondition is satisfied by a collection
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“ground truth”. In the following, we first specify fixes and ground truth. We then

present the chase for CCs, with the Church-Rosser property.

Fixes. We extend temporal orders in Dt by applying CCs in Σ to deduce fixes, which

are modeled as sets of ranked pairs, denoted by U = (UA1, . . . ,UAn), where each

ranked pair (t1, t2) in UA is referred to as a fix and it means that t1 ⪯A t2 or t1 ≺A t2
is deduced. We only apply a CC if its precondition is satisfied by a collection Γ of

“ground truth”. Intuitively, the fixes are logical consequences of Σ and Γ, i.e., as long

as the CCs in Σ and Γ are correct, so are the fixes.

Validity. We say U is valid if it has no conflicting fixes, i.e., there exist no attribute A

and tuples t1, t2 such that (t1, t2) ∈ UA and (t2, t1) ∈ UA at the same time, and either

t1 ≺A t2 or t2 ≺A t1.

Ground truth. To justify the correctness of fixes, we maintain and employ a

collection Γ = (ΓA1, . . . ,ΓAn) of validated data, enclosed in U . In our setting, block

Γ is initialized by applying CCs in Σ whose preconditions do not involve timeliness

comparison (e.g., initial temporal orders with partial timestamps via ϕ3), and is

iteratively expanded with the temporal orders learned by the creator with confidence

above threshold δ or deduced by the chase in the critic.

The chase. Given a temporal instance Dt , the chase deduces fixes by chasing Dt with

CCs in Σ and ground truth in Γ. It uses sets ⪯Σ= (⪯Σ
A1
, . . . ,⪯Σ

An
) to keep track of the

affected fixes in U . Specifically, the i-th chase step of Dt by Σ at (U i,⪯Σ
i ) is:

(U i,⪯Σ
i )⇒(ϕ,h) (U i+1,⪯Σ

i+1),

where ϕ : X → p0 is a CC in Σ, h is a valuation of ϕ in Dt , and the application of (ϕ,h)

should satisfy the following conditions:

(1) All predicates p ∈ X are validated, i.e., if p is t[A]⊕ c or t1[A]⊕ t2[A], then h |= p;

and if p is t1 ⪯A t2, then (t1, t2) is in UA.

(2) The consequence p0 : t1 ⪯A t2 extends U i to U i+1, such that (t1, t2) is added to UA

of U i; similarly, p0 extends ⪯Σ
i to ⪯Σ

i+1.

Chasing. Starting from a set U0 of fixes, initialized to be Γ, and an empty ⪯Σ
0 , a

chasing sequence ξ of Dt by (Σ,Γ) is

(U0,⪯Σ
0), . . . ,(Uk,⪯Σ

k ),

where (U i,⪯Σ
i ) ⇒(ϕ,h) (U i+1,⪯Σ

i+1) is a valid chase step, i.e., a valuation h of ϕ

extends (U i,⪯Σ
i ) to (U i+1,⪯Σ

i+1) where U i+1 is valid.
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The chasing sequence is terminal if there exist no CC ϕ in Σ and valuation h of ϕ

such that (ϕ,h) leads to another valid chase step.

A chase sequence ξ terminates in one of the following cases:

(1) No more CCs in Σ can be applied. If so, we say that ξ is valid, with (Uk,⪯Σ
k ) as its

result.

(2) Either U0 is invalid or there exist ϕ,h,Uk+1 and ⪯Σ
k+1 such that (Uk,⪯Σ

k ) ⇒(ϕ,h)

(Uk+1,⪯Σ
k+1) but Uk+1 is invalid. Such ξ is invalid, and the result of the chase is ⊥

(undefined).

Intuitively, the chase helps us deduce more ranked pairs when it terminates with

enriched (Uk,⪯Σ
k ); moreover, it justifies and explains the learned order if no invalid

chase step is taken. When its result is ⊥, it detects invalid ranked pairs of the learner.

Example 3.4: Consider Dt in Figure 3.1. Assume that Σ = {ϕ1-ϕ6} and

⪯Σ= (⪯Σ
A1
, . . . ,⪯Σ

An
), where each ⪯Σ

Ai
is empty. We initialize U0 and Γ by applying

CCs without timeliness comparison, as we did in Example 3.2, e.g., since t1[status]

(resp. t2[status]) is “single” (resp. “married”) in Figure 3.1, t1 ⪯status t2 is initialized

in Γ by applying ϕ2.

We have the following chase steps of Dt by (Σ,Γ):

(1) By applying (ϕ4,h4), where ϕ4 is t1 ⪯status t2 → t1 ⪯address t2 and h4 maps the

variables of ϕ4 to tuples t1 and t2 in Dt , we deduce t1 ⪯address t2 by the chase step

(U0,⪯Σ
0)⇒(ϕ4,h4) (U1,⪯Σ

1), i.e., U1 extends U0 by adding (t1, t2) to Uaddress; similar

to ⪯Σ
1 .

(2) The chase proceeds to deduce t1 ⪯status t4 by applying ϕ5.

This chasing sequence is valid since each chase step in the sequence is valid and

no more CCs in Σ can be applied anymore. 2

Church-Rosser property. Following (Abiteboul et al., 1995), we say that chasing with

CCs is Church-Rosser if for any temporal instance Dt , any set Σ of CCs, any collection

Γ of ground truth, all chasing sequences of Dt by (Σ,Γ) are terminal and converge at

the same result. Below we show that chasing with CCs is Church-Rosser .

3.5.2 Discovery of CCs

As noted in (Fan et al., 2012), CCs can be considered as a special case of denial

constraints (DCs) introduced in (Arenas et al., 1999), extended with temporal orders
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⪯A. Several algorithms have been developed for discovering DCs, e.g., FastDC (Chu

et al., 2013), Hydra (Bleifuß et al., 2017), DCFinder (Pena et al., 2019) and

ADCMiner (Livshits et al., 2020).

We extend DCFinder (Pena et al., 2019) for discovering CCs as follows. (1) We

support timeliness comparisons, i.e., t1 ⪯A t2, by adding them to the evidence set used

in (Pena et al., 2019) or transforming categorical values to numerical ones using a

mapping function fmap(·), such that timeliness is preserved, e.g., given t1 ⪯A t2, we

ensure fmap(t1[A]) ≤ fmap(t2[A]). (2) We restrict our evidence set on tuples with the

same EIDs, instead of using a global evidence set. This accelerates CCs discovery,

since CCs are only defined on tuple variables that refer to the same entity. (3) We

revise DCFinder by always selecting t1[EID] = t2[EID] as the first predicate. Note that

CCs could also be added manually, e.g., to ensure the transitivity of the data.

3.5.3 Monotonicity

We next show that the number of stable temporal orders in Dt is (strictly) monotoni-

cally increasing when more rounds GATE are performed (Lemma 2). The termination

of GATE (Theorem 1) partly depends on this lemma. Lemma 2 directly follows from

the way we expand stable temporal orders.

Lemma 2: For temporal instances D j−1
t and D j

t in the j-th round of GATE before and

after the extension, respectively, i.e., D j
t = Extend(D j−1

t ,Daug), the following holds:

(a) ∀i ∈ [1,n],⪯ j−1
Ai

⊆⪯ j
Ai

and (b) ∃i∗ ∈ [1,n],⪯ j−1
Ai∗

⊂⪯ j
Ai∗

where ⪯ j−1
Ai

and ⪯ j
Ai

are the orders in D j−1
t and D j

t , respectively. 2

Proof. By the way we expand stable temporal orders, there are two cases: (1) If fvalid
is true, the result of chasing is valid. Then at least one non-empty ⪯′

A of Daug will

be used to extend ⪯A, whose size strictly increases. (2) If fvalid is false, the result of

chasing is invalid, i.e., there is an attribute A such that t1[A] ̸= t2[A] but conflicting

orders (t1, t2) and (t2, t1) are both in ⪯′
A of Daug. Either (t1, t2) or (t2, t1) is added to

⪯A, resulting an increased size of ⪯A. Once a temporal order t1 ⪯A t2 is added to ⪯A,

it will not be removed. 2

3.5.4 Structures and strategies

To support lazy evocation of valuations, we employ the following:
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(1) A set RHS of triples, where each triple (t1, t2,A) in RHS indicates that the order

between t1[A] and t2[A] is not settled, i.e., neither t1 ⪯A t2 nor t2 ⪯A t1 is stable in Dt

yet. Note that we only apply a CC if its consequence has a corresponding triple in

RHS. By ensuring this, the length of a chasing sequence is bounded by O(|RHS|).

(2) A set H of partial valuations. Specifically, a valuation h of CC ϕ : X → p0 is said to

be partial if some predicates in X are validated, while others are not. If all predicates in

X are validated, h becomes complete and we can deduce temporal orders by applying

(ϕ,h). The set H is maintained to avoid repeated predicate validation.

(3) An index I for the partial valuations in H , i.e., for each temporal order o, I [o]
maintains the partial valuations h of ϕ : X → p0 in H such that there exists a predicate

p in X and o = h(p). By maintaining I , every time a temporal order o is deduced, we

can efficiently locate the valuations affected by o in I [o], without scanning the entire

Σ. Besides, an inverted index is also built for each h so that once h is removed from

H , I can be updated efficiently.

(4) A set M of triples, where each triple (t1, t2,ϕ) indicates that the ranked pair (t1, t2)

has been used to evoke the valuations for ϕ before and thus those valuations will not

be evoked again.

Moreover, we adopt the following strategies.

(5) Lazy evocation, where valuations of CCs in Σ are constructed if they are evoked

by some newly deduced orders, instead of being generated all at the beginning of

the chase. Specifically, when a new temporal order o is deduced, we check each

ϕ : X → p0 in Σ and evoke a new partial valuation h of ϕ if o corresponds to a predicate

in X (i.e., o is validated in h) and h has not be evoked before (checked by M). Such

h can only be evoked if the temporal order it deduces, i.e., h(p0), is not deduced by

other valuations before (checked by RHS).

Algorithm. Putting these together, we present Chase in Figure 3.5 (a complete version

of Figure 3.6, with data structures incorporated). It returns new orders ⪯Σ if the chase

is valid, and ⊥ otherwise.

Chase starts with the initialization (Line 1). (a) Ground truth Γ is initialized with all

stable ranked pair in Dt via procedure Initialize (omitted). (b) U and ⪯Σ are initialized

as stated in Section 3.5.1 to be Γ and /0, respectively. (c) The set ∆ of newly vali-
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Input: A temporal instance Dt , the set Σ of CCs, the set (⪯M
A1
, . . . ,⪯M

An
)

predicted by the creator, the global structures GS= (RHS,H ,I ,M).

Output: The result of chasing, ⪯Σ.

1. Γ := Initialize(Dt); U := Γ; ⪯Σ:= /0; ∆ = NewStable(Γ);

2. while ∆ is not empty do

3. ∆new = /0;

4. for each o ∈ ∆ do

5. H := H ∪CCEvoke(Dt ,Σ,o,GS); Update I and M;

6. for each h ∈ I [o] where h deduces t1 ⪯A t2 do

7. if (t1, t2,A) /∈ RHS then

8. Remove h from H and I ; continue ;

9. Mark o as validated in h;

10. if h is complete then /* t1 ⪯A t2 is a newly deduced order */

11. Remove h from H and I ;

12. UA :=UA ∪ (t1, t2) ; ⪯Σ
A:=⪯Σ

A ∪(t1, t2);
13. if (t2, t1) ∈UA or (t2, t1) ∈⪯M

A then /* conflict */

14. ⪯Σ:=⊥; return ⪯Σ;

15. ∆new := ∆new∪{t1 ⪯A t2};

16. ∆ := ∆new;

17. return ⪯Σ;

Figure 3.5: Procedure Chase (with data structures)

dated orders is initialized to be the newly stable orders in Γ via procedure NewStable

(omitted), and they are the temporal orders “triggering” the chase.

Then for each order o in ∆, Chase does the following (Line 5-15): (a) Evoke

the valuations h based on o via the lazy evocation strategy stated above, by calling

CCEvoke (omitted), and add h to H (Line 5). (b) For each valuation h in I [o], mark o

as validated in h (Line 9). If h becomes complete (Line 10), the consequence t1 ⪯A t2
of h is deduced, and the ranked pair (t1, t2) is added to UA and ⪯Σ

A (Line 12). (c)

Check conflicts (Line 13-14): if (t1, t2) conflicts with (t2, t1) that is already in UA

or ⪯M
A , the chase terminates with ⪯Σ= ⊥. In this case, the partial valuations and

the temporal orders that have been examined and deduced are kept temporally in the

global structures so that they can be re-used in the next round of GATE when the



38 Chapter 3. Learning and Deducing Entities

conflicts are resolved (not shown). (d) Maintain the global structures in the three cases

below: (i) if new valuation h is evoked by o (Line 5), I is updated accordingly and M

is also updated such that h will not be evoked again; (ii) if h becomes useless, i.e., the

ranked pair it deduces is no longer in RHS (Line 7-8), h is removed from H and I ;

and (iii) if h becomes complete, we deduce new orders, namely t1 ⪯A t2, by applying

h; then h is removed from H and I (Line 11). (e) Add the newly deduced order to the

set ∆new (Line 15) for iteratively processing, by assigning ∆new to ∆ (Line 16).

Finally, the result of chasing, ⪯Σ, is returned (Line 17).

Complexity. The loop of Chase executes at most O(|R||D|2) times, since there are at

most |R||D|2 temporal orders to be deduced (i.e., the length of any chasing sequence is

O(|R||D|2)). For each temporal order o deduced, we evoke CCs based on o and update

the data structures in O(cval|Σ|) time, where cval denotes the unit cost of constructing

the valuations for fixed o and ϕ, and there are at most |Σ| many CCs. Thus, Chase takes

at most O(cval|Σ||R||D|2) time.

3.5.5 Deduction with the Chase

No matter how desirable, the chase could be expensive if we enumerate valuations of

CCs in an exhaustive manner. Below we provide an efficient algorithm to implement

the chase.

Challenges. A brute-force implementation of the chase is by enumerating valuations h

of each CC ϕ in Σ. If (ϕ,h) can be applied, a chase step is performed, until the chasing

sequence terminates. This method is, however, costly since valuation enumeration is

inherently exponential. To tackle this challenge, we develop an efficient algorithm

to implement the chase; the key idea is to only evoke valuations pertaining to the

affected fixes in the chase lazily (see below).

We assume w.l.o.g. that for each ϕ : X → p0 in Σ, X has a predicate p in the form of

t1 ⪯A t2 (e.g., ϕ4). For those CCs that do not compare timeliness in their precondition

(e.g., ϕ1), we apply them in a pre-processing step, to generate initial temporal orders

in Dt .

Lazy evocation. To allow lazy evocation, the valuations of CCs in Σ are generated

only when they are evoked by some newly deduced orders, instead of constructing all

at the beginning of the chase.

Specifically, when a new temporal order o is deduced, we check each ϕ : X → p0

in Σ and evoke a new valuation h of ϕ if (a) o corresponds to a predicate in X (i.e., o
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is validated in h); in this case, we say that h is a valuation pertaining to o since h is

“activated” by o, (b) h has not been evoked before and (c) the order that h deduces,

i.e., h(p0), is not deduced by other valuations before. We maintain designated data

structures for checking conditions (a), (b) and (c) efficiently.

Algorithm. Putting these together, we present Chase in Figure 3.6. It returns new

orders ⪯Σ if the chase is valid, and ⊥ otherwise.

Chase starts with the initialization (Line 1). (a) Ground truth Γ is initialized with

all stable ranked pair in Dt via procedure Initialize (omitted). (b) It initializes U and

⪯Σ as stated in Section 3.5.1 to be Γ and /0, respectively. (c) The set ∆ of newly vali-

dated orders is initialized to be the newly stable orders in Γ via procedure NewStable

(omitted); and they are the temporal orders “triggering” the chase. (d) The set H of

evoked valuations is initialized to be empty.

Then for each order o in ∆, Chase does the following (Line 5-15): (a) Evoke the

valuations pertaining to o via the lazy evocation strategy stated above, by calling

CCEvoke (omitted), and add them to H (Line 5). (b) For each valuation h pertaining

to o that deduces unknown ranked pair (checked in Line 7-8), mark o as validated in h

(Line 9). If all predicates in the precondition of h are validated (Line 10), (h,ϕ) can be

applied and the consequence t1 ⪯A t2 of h is deduced (Line 11). The ranked pair (t1, t2)

is added to UA and ⪯Σ
A (Line 12). (c) Check conflicts (Line 13-14): if (t1, t2) conflicts

with (t2, t1) that is already in UA or ⪯M
A , the chase terminates with ⪯Σ=⊥. In this case,

the valuations in H are kept temporally so that they can be re-used in the next round of

GATE when the conflicts are resolved (not shown). (d) Add the newly deduced order

to the set ∆new (Line 15) for iterative processing, by assigning ∆new to ∆ (Line 16).

Finally, the result of chasing, ⪯Σ, is returned (Line 17).

Example 3.5: Recall that ϕ4 is t1 ⪯status t2 → t1 ⪯address t2 and ϕ5 is

t1 ⪯status t2 ∧ t2 ⪯status t3 → t1 ⪯status t3. Let Σ = {ϕ4,ϕ5} and ∆ = {t1 ⪯status t2}. We

process t1 ⪯status t2 in ∆ as follows. It first evokes valuations h4 and h5 which map the

variables of ϕ4 and ϕ5 to tuples t1 and t2 in Dt , respectively, with t1 ⪯status t2 validated.

Since the predicate t2 ⪯status t3 in h5 is not validated, h5 is kept in H for later process-

ing. In contrast, all predicates in the precondition of h4 are validated and ϕ4 deduces

t1 ⪯address t2. Suppose that there is no conflicting order in Uaddress and ⪯M
address. Then

t1 ⪯address t2 forms a new set ∆ and the process continues, until ∆ is empty. 2
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Input: A temporal instance Dt , the set Σ of CCs, the predicted (⪯M
A1
, . . . ,⪯M

An
)

Output: The result of chasing, ⪯Σ.

1. Γ := Initialize(Dt); U := Γ; ⪯Σ:= /0; ∆ = NewStable(Γ); H := /0;

2. while ∆ is not empty do

3. ∆new = /0;

4. for each o ∈ ∆ do

5. H := H ∪CCEvoke(Dt ,Σ,o);

6. for each h of ϕ : X → t1 ⪯A t2 s.t. h pertains to o do

7. if the order between t1[A] and t2[A] is already settled then

8. H := H \{h}; continue ;

9. Mark o as validated in h;

10. if all predicates in the precondition of h are validated then

11. H := H \{h}; /* t1 ⪯A t2 is a newly deduced order */

12. UA :=UA ∪ (t1, t2) ; ⪯Σ
A:=⪯Σ

A ∪(t1, t2);
13. if (t2, t1) ∈UA or (t2, t1) ∈⪯M

A then /* conflict */

14. ⪯Σ:=⊥; return ⪯Σ;

15. ∆new := ∆new∪{t1 ⪯A t2};

16. ∆ := ∆new;

17. return ⪯Σ;

Figure 3.6: Procedure Chase

Complexity. The loop of Chase executes at most O(|R||D|2) times, since there are at

most |R||D|2 temporal orders to be deduced. For each temporal order o deduced, we

evoke CCs based on o and update data structures in O(cval|Σ|) time, where cval denotes

the unit cost of constructing valuations for fixed o and ϕ, and there are at most |Σ| CCs.
Thus Chase takes at most O(cval|Σ||R||D|2) time.

Augmented training data construction. Recall that the result of chasing, denoted by

⪯Σ, is valid or invalid. Based on ⪯Σ, we construct the augmented training data Daug

as follows.
(1) If ⪯Σ is valid, both the temporal orders deduced by the chase and predicted

by the creator are used to create Daug = (D,⪯′
A1
, . . . ,⪯′

An
,T, fvalid = true) where

⪯′
Ai
=⪯M

Ai
∪ ⪯Σ

Ai
(i ∈ [1,n]).

(2) If ⪯Σ is ⊥, then there exist conflicting ranked pairs, i.e., both (t1, t2) and (t2, t1)
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are in UA or ⪯M
A with t1 ≺A t2 or t2 ≺A t1. In this case, we construct Daug to be

(D,⪯′
A1
, . . . ,⪯′

An
,T, fvalid = false) where ⪯Ai= {(t1, t2),(t2, t1)} if Ai = A and ⪯Ai= /0

otherwise. As shown in Section 3.4, the creator fine-tunes its model by using the

deduced ranked pairs or the detected conflicts in Daug.

3.6 Experimental Study

Using real-life and synthetic data, we evaluated (1) the effectiveness and (2) the

efficiency of GATE for determining temporal orders. We also (3) conducted a case

study to showcase the usefulness of GATE.

Experimental settings. We start with the experimental setting.

Datasets. We used three real-life datasets and one synthetic dataset. (1) Career (Leone,

2022), a benchmark about the careers of football players from FIFA-15 to FIFA-22;

it contains 108.5K tuples from 27.2K entities with 20 attributes. We determine

the timeliness of potential, position, reputation and league name. (2) NBA (Ding

et al., 2018), a dataset that encompasses the careers of basketball players; it contains

10.6K tuples with 12 attributes. We determine the currency of team, pts (points) and

weight. (3) COM (Govement, 2022), an open-source dataset about self-employed

entrepreneurs in Shenzhen. After removing duplicated tuples and digital attributes

(e.g., the organization code), the dataset has 1,983,698 tuples and 8 attributes. We

derive the timeliness of entrepreneur names. (4) Person, a synthetic dataset with

12.3K tuples from 1K entities. Just like in Figure 3.1, we adopted 7 attributes and

determine the currency of LN, Status, Kids. Here Person is generated by enforcing

CCs (e.g., ϕ1-ϕ6), to simulate real-world scenarios.

All the datasets have ground truth, i.e., all tuples carry timestamps and are grouped

by entities. The timestamps of COM are in seconds, while the others are in years; it

is reasonable since, e.g., it is uncommon for NBA players to frequently change teams

in one year. We randomly selected 5% data with initial timestamps and masked the

remaining. This default ratio ts% of initial timestamps is set intentionally small (so

that the problem is more challenging); we will test the impact of ts% by varying ts%

(Exp-1).

Currency constraints. We extended DCFinder (Pena et al., 2019) to discover CCs as

discussed in Section 3.2. Note that CC discovery is conducted once on each dataset

offline. Besides, we manually checked and adjusted the CCs discovered to ensure their
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correctness. We found 42, 32, 40 and 36 CCs for Career, NBA, COM and Person,

respectively.

ML model. To learn the ranking model Mrank, we used Bert (Devlin et al., 2019b) (dis-

tilbert) with 768 dimension to initialize the embeddings. We adopted 2 hidden layers in

our encoders with sizes 200 and 100, respectively. The margin γ was adaptively com-

puted and the model was trained with 30 epochs using Adam optimizer (Kingma and

Ba, 2015). The learning rate is 1e-4. We used 5% data with timestamps as training data.

Baselines. GATE was implemented in Python and we compared it with the following

baselines: (1) Creator, a variant of GATE with the creator only, i.e., it predicts temporal

orders using Mrank; (2) Critic, a variant of GATE with the critic only, i.e., it deduces

temporal orders by chasing with CCs; (3) Creatoritr, a variant of Creator that iteratively

updates its training data with predicted but unjustified temporal orders. (4) CreatorNC,

CreatorNE, CreatorNA, another three variants of Creator that implement Mrank without

contextual information, without chronological encoding, and using regular cross en-

tropy loss instead of adaptive margin-based loss, respectively; (5) GATENC, a variant

of GATE that adopts the brute-force method for the chase, by enumerating all valua-

tions exhaustively.

We also tested (6) UncertainRule (Li et al., 2018), which uses uncertain currency

rules to evaluate data currency; (7) Improve3C (Ding et al., 2018), a data quality frame-

work that combines completeness, consistency and currency (Fan et al., 2014b); we

only compare its accuracy for currency; (8) RANKBert (Nogueira and Cho, 2019), a

state-of-the-art ML ranking model based on Bert; and (9) DittoRank, a ranking model

that first trains a ditto model (Li et al., 2020b) to conduct binary classification on at-

tribute values (with contextual information) and then sorts all attribute values using

ditto as the comparison operator.

Among the baselines, (a) Critic, UncertainRule and Improve3C are rule-based,

where rules for the latter two are converted from same CCs mined by DCFinder, (b)

Creator, Creatoritr, CreatorNA, CreatorNC, CreatorNE, RANKBert and DittoRank are

ML-based, and (c) GATENC is a hybrid method, which produces same results as GATE.

Thus, we compared GATENC mostly for efficiency.

We did the experiments on a single machine powered by 256GB RAM and 32 pro-

cessors with Intel(R) Xeon(R) Gold 5320 CPU @2.20GHz. We ran each experiment 3

times and report the average.
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Experimental results. We next report our findings.

Exp-1: Effectiveness. Since we adopted the pairwise ranking setting to deduce

ranked pairs, we evaluated the accuracy of GATE following (Fan et al., 2013b; Ding

et al., 2018; Li and Sun, 2018): (1) precision, the ratio of temporal orders determined

correctly to all ranked pairs predicated true, (2) recall, the ratio of temporal orders

predicted correctly to all true orders, and (3) F-measure = 2 × recall×precision
recall+precision . To

evaluate the ranking of GATE, for each entity instance pertaining to entity e, we com-

pute MRR(e) = 1
n ∑

n
i=1

1
ranki

, the mean reciprocal rank over a set of n ranking results,

where n is the number of currency attributes and ranki denotes the rank of the latest

value of the i-th attribute for entity e, and MAP@K(e) = 1
n ∑

n
i=1AP@K(i), the mean

average precision at K that assesses whether the top-K values predicted are relevant

and whether the latest K values are at the top, where AP@K(i) is the average precision

at K of the i-th attribute for entity e. Let Dt be a collection of k entity instances. We

report (4) MRR = 1
k ∑

k
i=1MRR(ei) and (5) MAP@K = 1

k ∑
k
i=1MAP@K(ei), with K =

3 by default , which is the first 3 elements of i-th attribute for entity e.

Rounds. We report the performance of GATE from the first round till its termination;

at the end of the fixed round, we use current Mrank in the creator. As shown in

Figures 3.7(a)-3.9(a), GATE takes 11, 12, 7 and 9 rounds to terminate on Career, NBA,

COM and Person, respectively, i.e., GATE converges quickly. Besides, we find the

following.

(1) Although the performance of GATE might fluctuate (e.g., Figure 3.8(d)), which is

common in ML models (Devlin et al., 2019b), all metrics increase with more rounds

in most cases, e.g., F-measure, MAP and MRR increase from 0.767 to 0.866, 0.786

to 0.857, and 0.752 to 0.809, respectively, after 11 rounds on Career, verifying that

GATE is able to deduce the latest values and produce good currency ranking. This is

because the creator iteratively accumulates training data from the critic such that the

model is better trained with more rounds; meanwhile, with better results predicted by

the creator, the critic deduces more orders as augmented training data for the creator

in subsequent rounds. Moreover, in Figures 3.7(b) and 3.7(c), precision and recall are

0.859 and 0.873, respectively, indicating that GATE achieves a good balance between

the two and is fairly accurate. Note that Creatoritr suffers from the accuracy fluctuation

since its model is affected by noisy (unjustified) temporal orders accumulated over

rounds. The performance of other methods does not depend on rounds, as shown in flat

lines. Since GATE behaves similarly under all metrics, below we focus on F-measure.
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Figure 3.7: F-measure, Precision, Recall and MRR vs varying rounds for GATE, its

variants and baseline models

(2) On average GATE outperforms Creator and Critic by 7.8% and 43.8% in F-

measure, respectively, up to 11.0% and 50.6%, improving both. The creator and critic

benefit each other: (a) Creator produces “hidden” temporal orders for Critic to preform

deduction, and (b) Critic deduces and justifies the orders, which are in turn provided as

augmented training data to Creator; on average, the critic generates 5733 new training

data (tuple pairs) per round on COM, improving F-measure of GATE from 0.701 to

0.748 after 5 rounds.

(3) Creator is more accurate than all its variants, e.g., the average F-measure of

Creator is 0.722, as opposed to 0.641, 0.613 and 0.714 by CreatorNC, CreatorNE and

CreatorNA, respectively, on Career. Intuitively, (a) without utilizing the contextual

information, CreatorNC cannot reference correlated attributes; (b) CreatorNE has low

accuracy with existing embedding models, and (c) compared to the regular cross en-
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Figure 3.8: MAP and F-measure performance evaluation of GATE, its variants and

baseline models

tropy loss used in CreatorNA, the adaptive pairwise ranking loss helps by considering

the semantics in ranking. Moreover, GATE is 10.1% more accurate than Creatoritr on

average. This verifies the need for justifying the temporal orders learned by Creator.

(4) The accuracy of GATE is higher than UncertainRule, Improve3C, RANKBert and

DittoRank, e.g., the average F-measure of GATE is 0.802 as opposed to 0.344, 0.349,

0.659 and 0.651 for the four, respectively. This shows the benefits of combining deep

learning and logic rules: (a) compared with rule-based methods, GATE can learn from

unseen data and has better generalizability; and (b) compared with ML-based methods,

GATE is able to justify the reliability of deduction and produces more training data

for the model. We also report the accuracy of GATE from the first round till its

termination on Career in Figure 3.10(c). We find: (a) the Accuracy of GATE increases

with more rounds, e.g., increases from 0.766 to 0.863 after 11 rounds, which verifies
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Figure 3.9: F-measure performance evaluation of GATE, its variants and baseline models

that GATE is capable to deduce the latest currency values; (b) the Accuracy of GATE is

consistently higher than Creator, Critic and their variants, e.g., it outperforms Creator

and Critic by 9.7% and 51.2%, respectively; and (c) GATE is more accurate, in terms

of Accuracy, than rule-based methods UncertainRule and Improve3C and ML-based

models DittoRank and RANKBert, e.g., the Accuracy of GATE is 22.7% higher than the

best baseline. This verifies the benefit of combining deep learning and logical rules.

Varying K. We varied parameter K of MAP@K from 1 to 5 in Figure 3.8(b). GATE

consistently achieves the highest MAP@K, e.g., 5% higher than the best baseline on

average, up to 10.1%. This verifies that GATE ranks attribute values better than the

baselines.

Varying |Σ|. Varying |Σ|, we evaluated the impact of the number of CCs in Fig-

ure 3.9(b). The accuracy of GATE, UncertainRule and Improve3C improves given

more rules. For GATE, its F-measure changes from 0.805 to 0.866 when |Σ| varies

from 20% to 100%. Indeed, the critic deduces more orders with more CCs for the cre-

ator to fine-tune its model, to get a higher accuracy in an earlier stage. We also varied

|Σ| from 20% to 100% on COM in Figure 3.10(d). As expected, the accuracy of GATE,

Critic, UncertainRule and Improve3C increase when |Σ| increases, e.g.,Accu of GATE

increases from 0.705 to 0.752 when |Σ| is from 20% to 100%. This show that more

temporal orders can be correctly deducted given more rules.

Varying initial ts%. We varied the ratio ts% of initial timestamps (randomly selected)

from 4% to 20%. More initial timestamps help since (a) the creator has more training



3.6. Experimental Study 47

4% 8% 12% 16% 20%
0.5

0.6

0.7

0.8

F
-m

ea
su

re

(a) Person: vary ts% (random, F1)

4% 8% 12% 16% 20%

0.5

0.6

0.7

0.8

F
-m

ea
su

re

(b) Person: vary ts% (weighted, F1)

1 2 3 4 5 6 7 8 9 10 11

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

(c) Career: varying rounds

20% 40% 60% 80% 100%

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

(d) COM: varying |Σ|

1% 2% 3% 4% 5%

0.55

0.60

0.65

0.70

0.75

0.80

A
cc

ur
ac

y

(e) NBA: varying ts%

20% 40% 60% 80% 100%

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

(f) Person: varying entities%

Figure 3.10: F-measure and Accuracy performance evaluation on different datasets

data and can have better initial performance; and (b) the critic gets temporal orders

as ground truth to perform deduction at the beginning of the chase. As shown in Fig-

ure 3.10(a), the F-measure of GATE increases (from 0.75 to 0.796 on Person) when

ts% varies from 4% to 20%, as expected. We also varied the ratio ts% of initial times-

tamps from 1% to 5% on NBA in Figure 3.10(e). As shown there, all methods tends to

be more accuracy with larger ts%, since more temporal orders can be deduced based

on tuples with initial timestamps and ML models are inclined to get more accurate

when given more training data.
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Figure 3.10: F-measure and Running Time performance evaluation of GATE, its vari-

ants and baseline models
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The discrepancy in the initial values of the F-measure between Figure 3.8(a) and

Figures 3.9(a) and 3.9(b) arises from distinct starting points. Specifically, Figure 3.9(a)

portrays the result across all rounds, leading to a higher starting point. In contrast,

Figure 3.8(a) exclusively illustrates the outcome of the initial round. However, it also

improves as there are more rounds.

As remarked earlier, some attribute values may have more reliable timestamps

than the others (Kurniati et al., 2019). To study the impact of timestamp distributions,

we assigned a weight to each attribute, where a larger weight indicates that the values

of this attribute is more likely to be selected with initial timestamps, e.g., on Person,

values on Status are more likely to have timestamps than Kids. Consistent with

Figure 3.10(a), Figure 3.10(b) shows that the accuracy under weighted sampling is

also improved with larger ts%. Note that the accuracy under weighted sampling

(Figure 3.10(b)) is slightly lower than random sampling (Figure 3.10(a)), e.g., when

ts%=20% on Person, its F-measure is 2.5% lower than random sampling. This is

because weighted sampling is impacted by distribution discrepancy between training

and testing data, which is a common out-of-distribution issue for ML.

Varying entities%. As reported in Figure 3.11(a), we varied the percentage of entities

that are used for the chase from 20% to 100%. As expected, GATE improves its

F-measure since with more entities, the critic can deduce more orders via the chase,

and the creator can have more augmented data to train the model, achieving higher

accuracy. For instance, F-measure of GATE is improved by 5.3% on average. We

also evaluated all methods by varying the percentage of entities used for chasing from

20% to 100% in Figure 3.11(a). GATE has higher accuracy with more entities, e.g.,

its Accuracy changes from 0.742 to 0.783 when entities% is from 20% to 100%, since

more training data can be produced by the critic, benefiting the creator.

Varying δ. We next tested the impact of confidence threshold δ. As shown in Fig-

ure 3.11(b), (a) although when δ is small, less confident predictions may appear in

subsequent deductions, more temporal orders could be used for training; (b) when δ

is too large, few ranked pairs learned are retained, and hence less augmented training

data is returned. Since the creator receives less data to fine-tune its model, the accuracy

may not be improved and it converges slowly. When δ = 0.52, GATE has the highest

accuracy on NBA. Thus, we set δ = 0.52 as its default; for other datasets, δ is set

similarly.
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Exp-2: Efficiency. We tested the efficiency of GATE, GATENC, Creator, RANKBert

and DittoRank. Denoted by CT (resp. OT) the chase time (resp. the overall time, for

training, chasing and order extension). For GATE, OT is accumulated over all rounds;

its order extension time is the time for extending stable orders to total orders by Mrank

(Line 12 of Figure 3.3). For other baselines, the order extension time is the inference

time of models for generating total orders. We did not report rule-based methods,

which are fast, since they do not need to train models; but as shown in Exp-1, they are

not accurate.

Chase time (rounds). We report CT of GATE and GATENC in the iterative process.

As shown in Figure 3.11(c), GATE is substantially faster than GATENC for all rounds;

it is 3.99X faster than GATENC on average, up to 6.30X on COM. The speedup of

GATE is due to the lazy evocation strategy we adopted, which accelerates the chase

by maintaining designated structures. In contrast, GATENC enumerates valuations and

incurs redundant computation. Since GATE and GATENC produces the same results,

their total rounds are the same.

Overall time. We next report OT in Figure 3.11(d). Although GATE has multiple

rounds, its overall time is comparable to most ML methods, e.g., GATE is 3.15X faster

than DittoRank on average. In particular, the order extension time of GATE is smaller

than most baselines except Creator, since GATE has to perform extra checks so that

the total order generated is consistent with the known stable orders.

Varying |Dt |. We evaluated CT (resp. OT) of GATE and GATENC (resp. ML methods)

by varying |Dt | from 20% to 100% in Figure 3.11(e) (resp. 3.11(g)). With larger |Dt |,
all methods take longer, as expected. Nonetheless, GATE is faster than GATENC when

|Dt | gets larger, since GATE maintains structures to avoid recomputation and does

deduction pertaining to affected orders, e.g., GATE is 4.80X faster than GATENC when

|Dt | is 100%; the result for OT is consistent.

Varying |Σ|. We varied |Σ| from 20% to 100% on Person in Figure 3.11(f) and 3.11(h).

As shown there, GATE is 3.86X faster than GATENC on average, up to 8.33X, which

again verifies the effectiveness of lazy evocation. OT of GATE increases as |Σ| is

larger, since more training data (i.e., temporal orders) is deduced by CCs to train the

ranking model.
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Exp-3: Case study. We use Career to illustrate why GATE works.

(1) Initial prediction. In the first round, GATE trains the creator on data with initial

timestamps. Due to the limited (5%) training data, its F-measure is only 0.65 and

some ranked pairs are mispredicted. One of confident and correct predictions is

t1 ⪯height t2, where t1 and t2 denote the same player with heights 186cm and 188cm,

respectively. While this player moved from team PARMA to SPAL, i.e., t1 ⪯team t2,

the creator makes a wrong prediction t2 ⪯team t1.

(2) Critic helps Creator. After the creator stage, the critic uses CCs to correct mispre-

dicted temporal orders. By applying ϕ7 : ta ⪯height tb → ta ⪯team tb to the known

t1 ⪯height t2, it deduces t1 ⪯team t2, correcting the mistake of Creator. Intuitively, ϕ7

holds since ⪯height is monotonic, and ⪯height and ⪯team correlate for young players.

Moreover, Critic provides augmented training data to Creator. For instance, if

t0 ⪯league name t1 and t1 ⪯potential t2 are in the ground truth, the critic could apply CC

ϕ8 : ta ⪯league name tb ∧ tb ⪯potential tc ∧ ta[height]≤ tc[height]→ ta ⪯position tc, and de-

duces a new pair t0 ⪯position t2 that is unknown before. Here ϕ8 is learned from the

data; intuitively, if a player moves to a new league (as indicated by monotonic ⪯height)

and if his potential changes, his position is likely adjusted, e.g., from LM to CAM.

After the first round, the critic creates 100,277 new ranked pairs as augmented training

data, and the creator improves its model with the new data.

(3) Creator helps Critic. Critic cannot correctly deduce total orders from limited initial

5% timestamps. Nonetheless, with augmented training data provided by Critic,

Creator can learn more ranked pairs with high confidence. On average it ranks 2843

tuple pairs with high confidence in the first 5 rounds. These ranked pairs are in turn

provided to Critic, for Critic to deduce more new ranked pairs.

(4) The creator learns better with more data. ML models are inclined to get more ac-

curate when given more training data. Creator continually receives more augmented

training data and incrementally trains its model accordingly. As a consequence, its

F-measure increases from 0.65 to 0.74 (resp. 0.81) after the first (resp. last) round.

Summary. We find the following. (1) Combining deep learning and logic rules makes

a promising approach to deducing currency. GATE is the most accurate, e.g., 0.866

in F-measure on Career, as opposed to 0.35 and 0.36 by rule-based UncertainRule

and Improve3C, and 0.54 and 0.53 by ML-based RANKBert and DittoRank. (2) GATE

only takes 7 rounds to terminate on COM, which has 1,983,698 tuples. (3) On average,
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GATE is 43.8% and 7.8% more accurate than Critic and Creator, respectively, i.e.,

the creator and critic indeed benefit each other. (4) GATE beats GATENC in efficiency

(with the same accuracy) by 9.62X on average, up to 19.37X, verifying the usefulness

of lazy evocation strategies. (5) GATE has competitive overall time against existing

ML methods, e.g., 1359s on COM, as opposed to 2514s by the fastest of them.

Although rule-based methods are fast (they do not train models), their accuracy are

low. (6) Creator is more accurate than its variants CreatorNC, CreatorNE, CreatorNA
and Creatoritr by 19.5%, 22.3%, 12.2% and 10.1%, respectively, verifying the need

for context-aware embedding, chronological encoding, adaptive margin and order

justification, respectively.



Chapter 4

Linking Entities across Relations and

Graphs

In this chapter, we focus on entity resolution to link entities across relations D and

graphs G. To achieve this, we first convert entities in relational data D into a graph GD,

where each attribute value of an entity is mapped to a unique vertex, and the attribute

itself is mapped to the corresponding edge between vertices. Then we propose a novel

graph matching algorithm, parametric simulation, to link entities between these graphs.

4.1 Introduction

Consider a relational database D and a graph G from different sources. Is it possible to

determine whether a tuple t in D and a vertex v in G refer to the same real-world entity?

Example 4.1: Consider an enterprise procurement order placed at an e-commerce

company A. It contains the quantities and specifications of the ordered items, along

with information on suppliers, brands, logistic, etc. While the formats of such orders

vary across enterprises, the orders can be uniformly expressed as relations, e.g., Tables

4.1 and 4.2. As shown in Fig. 4.1, company A maintains a knowledge graph G for

items it carries. Consider the following three scenarios.

(1) Given ordered item t1 of Table 4.1, company A wants to check whether it is

the item represented by vertex v1 in graph G of Fig. 4.1. This is nontrivial. The

specification of t1 comes from catalogs/websites of suppliers, which may differ

from the information collected in G. Indeed, t1 and v1 have different “topological

structures”, e.g., “Dame Basketball Shoes D7” is the value of item attribute of t1,

53
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while in G, it is represented by two vertices v0 “Dame Basketball Shoes” and v8

“Dame Gen 7”. Moreover, an attribute in a tuple may be encoded by a path in G, e.g.,

the made in attribute “Can Duoc, VN” of tuple b1 maps to a path (v15,v19,v9) in G,

bearing edge labels factorySite, isIn and isIn. Worse still, the attribute and the edge

labels on the path may not seem closely related.

(2) For item “Dame Basketball Shoes D7”, the procurement managers want to find

all matching items supplied by company A, and buy the most cost effective one. This

requires company A to search the entire graph G to find the matches.

(3) To fulfill the order, company A needs to find all matches from G of all the items

that enterprise intends to order.

Cross checking also happens once a period of time, when company A searches

all matches across vertices in graph G and all tuples from past orders collected in a

large dataset D , to accumulate information about items and orders and improve the

performance of its item recommendation (Koren et al., 2009).

item material color type brand qty
t1 Dame Basketball Shoes

D7

phylon

foam

white Dame 7 b1 500

t2 Lightweight Running

Shoes

synthetic red DD8505 b1 100

t3 Mid-cut Basketball

Shoes Ultra Comfortable

phylon

foam

red null b2 200

Table 4.1: Relation item

name country manufacturer made in
b1 Addidas

Originals

Germany Addidas AG Can Duoc, VN

b2 Addidas Germany Addidas AG Long An, Vietnam

Table 4.2: Relation brand

Contributions & organization. We categorize this chapter as follows. To the best of

our knowledge, we make a first effort to link entities across relations and graphs based

on their semantics.

(1) System (Section 4.2). We develop a system, denoted by HER (Heterogeneous Entity

Resolution), for linking entities in a relational database D and a graph G. It converts D
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to a canonical graph GD using W3C standard RDB2RDF (W3C, 2012b), and supports

three modes. (a) Users may enter pair (t,v) of a tuple t ∈ D and a vertex v ∈ G.

HER checks whether t and v make a match, i.e., they refer to the same entity. (b)

Alternatively, users may ask for all vertices in G that match a given tuple t ∈D . (c) One

may also request HER to find all matches across D and G. These modes correspond

to cases (1)–(3) of Example 4.1. In particular, VPair conducts real-time analysis as

in, e.g., (Whang et al., 2013), and APair is practiced for fine-grained advertising (Yan

et al., 2011).

(2) A new notion (Section 4.3). Underlying HER is a notion of parametric simulation.

Given GD and G, it determines whether a vertex ut in GD (denoting a tuple t in D)

matches a vertex vg in G. Since GD and G may have radically different topological

structures, it may not suffice to inspect only local features of ut and vg. Hence para-

metric simulation recursively checks the pairwise semantic closeness of descendants

of ut and vg, by embedding machine learning (ML) in topological matching.

More specifically, parametric simulation is inductively defined to match (ut ,vg) and

their descendants. It maps paths in GD to paths in G, to accommodate the semistruc-

tured nature of graphs. It is parameterized by score functions to assess the closeness

of (a) vertices, (b) properties (descendants linked via paths) of vertices, and (c) associ-

ations of pairwise matching descendants of ut and vg. It decides that ut and vg match

only if an aggregate score is above predefined bounds.

(3) Learning parameters (Section 4.4). As parameters, we define the score functions

with BERT-based embedding and metric learning models (Reimers and Gurevych,

2019; Devlin et al., 2019a), to quantify the semantic similarity between labels.

We select top-k “properties” of a vertex via Long Short Term Memory (LSTM)

network (Melis et al., 2017) for a bound k. Bounds are decided by random

search (Bergstra and Bengio, 2012), a trade-off between efficiency and accuracy.

Moreover, HER interacts with users to improve the parameter functions with feed-

back, which employs triplet loss function (Schroff et al., 2015) and majority voting to

make the fine-tuning robust.

(4) Complexity and algorithm (Section 4.5). We show that parametric simulation takes

quadratic time, as opposed to the intractability of graph homomorphism and subgraph

isomorphism (cf. (Garey and Johnson, 1979)). To show this, we develop a quadratic-

time algorithm to determine whether a pair (ut ,vg) makes a match.



56 Chapter 4. Linking Entities across Relations and Graphs

(5) Parallel algorithms (Section 4.6). We also give algorithms to compute all matches

of a tuple t and all pairs of matches across GD (i.e., D) and G with parametric

simulation. We show that both algorithms are in quadratic-time. We parallelize these

algorithms to scale with large databases and graphs.

(6) Empirical study (Section 4.7). Experimenting with six real-life datasets and syn-

thetic data, we find the following. On average, (a) HER has F-measure= 0.94; it is

23.3% and 41.6% more accurate than ML-based (Feng et al., 2016; Konda et al., 2016;

Mudgal et al., 2018) and rule-based (Papadakis et al., 2018) methods alone, respec-

tively. (b) It is also 118 and 6 times faster than ML-based and rule-based methods,

respectively. It takes 0.68ms to check whether a pair is a match across databases D
of 52M tuples and graphs G of 202 M vertices and edges with a single machine, and

107s to find all matches across D and G using 16 machines. (c) It scales well with

the number n of processors. It is on average 3.2 times faster when n varies from 4 to

16. These verify that integrating topological matching and ML models is promising

for entity linking.
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Figure 4.1: An e-commerce knowledge graph
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4.2 Heterogeneous Entity Resolution

Preliminaries. We start with a review of basic notations. Assume three infinite alpha-

bets ϒ, Θ and Φ, for relation attributes, graph vertex labels and edge labels, respec-

tively.

Relational databases. Consider a database schema R = (R1, . . . ,Rn), where Ri is a

relation schema (A1, . . . ,Ak), and Ai ∈ ϒ is an attribute. A relation of schema R is a set

of tuples with attributes Ai of R (i ∈ [1,k]). A database D of R is (D1, . . . ,Dn), where

Di is a relation of Ri for i ∈ [1,n].

Graphs. We consider directed labeled graphs G = (V,E,L), where (a) V is a finite set

of vertices, (b) E ⊆V ×V is a set of edges, and (c) for each vertex v ∈V (resp. edge e ∈
E), L(v) (resp. L(e)) is a label in Θ (resp. Φ). The graphs encode attributes (properties)

as edges, like in RDF.

Intuitively, edge labels of Φ typify predicates, and vertex labels of Θ represent

values. As will be seen in Section 4.4, we treat labels of Φ and Θ with different ML

models.

Symbol Notation

R , D database D of schema R
GD RDB2RDF canonical graph of D

G = (V,E,L) labeled directed graph

hv,hρ,hr score functions hv,hρ and ranking function hr

σ,δ,k thresholds (vertex & path associations, # of properties)

V k
u the top-k descendants picked by hr

S(u,v) lineage set of pair (u,v) of vertices

Π(u,v) match of (u,v) via parametric simulation

Γ(ut ,vg) schema match pertaining to t and vg

Table 4.3: Notations

Architecture. As shown in Fig. 4.2, HER operates on a database D of schema R and

a graph G. It consists of five modules.

(1) RDB2RDF. This module converts D to a canonical graph GD offline by, e.g., direct

mapping of RDB2RDF (W3C, 2012b), which yields an 1-1 mapping fD from the tuples

and their attributes in D to the vertices and their edges in GD, respectively.
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User 
Interaction

HER

RDB2RDF

Spair

Learn (with ML Models)

GRAPE Parallel Engine

Vpair Apair

Figure 4.2: HER Architecture

(2) Learn. It learns score functions and bounds, i.e., parameters for parametric simula-

tion. It also interacts with users to inspect the matches, and improves the bounds based

on feedback.

After these, users may issue requests in one of three modes.

(3) SPair. In this mode, users iteratively provide pairs (t,vg) for tuples t in D and ver-

tices vg in G. Given (t,vg), module SPair first finds the vertex ut of GD denoting t, via

mapping fD. It then checks whether (ut ,vg) makes a match via parametric simulation.

It returns true if so, and false otherwise.

(4) VPair. Users may enter a single tuple t. Module VPair finds all pairs (t,vg) for all

vertices vg∈G such that (ut ,vg) is a match, where ut is the vertex in GD that denotes

tuple t.

(5) APair. Alternative, users may request to find all pairs (t,v) that make matches for

all tuples t ∈ D and vertices v ∈ G.

Here SPair, VPair and APair compute matches based on parametric simulation,

taking the learned parameters. We will define parametric simulation in Section 4.3,

learn parameters in Section 4.4, and develop algorithms underlying SPair, VPair and

APair in Sections 4.5 and 4.6. The algorithms run on top of GRAPE (Fan et al., 2018b;

gra, 2020b), an open-source parallel graph engine.
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RDB2RDF. We next present RDB2RDF. Several methods are in place for converting

relations to graphs, e.g., (Michel et al., 2014). For instance, Labelled Property Graph

(LPG) (Angles, 2018) is another way to represent a relational data into a graph.

However, it is designed for representing complex relationships and hierarchical

structures while offering a high degree of flexibility, allowing for the representation of

complex relationships. We take RDB2RDF (W3C, 2012a) for simplicity since we do

not require hierarchical structures; But HER allows user to plug in other methods for

representing relations as graphs.

Following direct mapping rules of RDB2RDF (Berners-Lee, 1998), for a database

schema R , we define a canonical mapping fD. Given a database D of R , it returns a

canonical graph GD = fD(D) in which (1) each tuple t of relation schema R is mapped

to a unique vertex ut in GD labeled R; (2) each attribute A in t is mapped to a unique

vertex ut.A such that L(ut.A) is the value of t.A and there is an edge (ut ,ut.A) with label

A in GD; and (3) for each attribute A of a foreign key in tuple t referencing another tuple

t ′, there exists an edge (ut ,ut ′) with a pair (A,γ) of labels, where distinct γ indicates

foreign key.

Example 4.2: Figure 4.3 shows the canonical graph GD converted by canonical map-

ping fD from tuples t1 and b1 in D , i.e., fD maps t1 and b1 to vertices u1 and u2 in GD,

respectively, and the foreign key is mapped to an edge from u1 to u2. Each attribute

is mapped to a vertex with an edge from u1 or u2, where the vertex label is its value

and the edge label is its name; e.g., “phylon foam” in t1 is mapped to u3 and attribute

“material” is the edge label (see Fig. 4.3). 2
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4.3 Parametric Simulation

We next introduce the notion of parametric simulation. Given two graphs

G1 = (V1,E1,L1) and G2 = (V2,E2,L2), it is to identify their vertices that refer

to the same entity.

Paths. We use the following notations.

A path ρ from a vertex v0 in G is a list ρ = (v0,v1, . . . ,vl) such that (vi−1,vi) is an

edge in G for i ∈ [1, l]. The length of ρ, denoted by len(ρ), is l, i.e., the number of

edges on ρ. A path is simple if vi ̸= v j for i ̸= j, i.e., a vertex appears on ρ at most

once. We consider simple paths in the sequel.

We refer to v2 as a child of v1 if (v1,v2) is an edge in E, and as a descendant if

there exists a path from v1 to v2. A vertex is a called leaf if it has no children.

Parameters. To determine whether a vertex u0 in G1 matches a vertex v0 in G2, para-

metric simulation inductively considers the “closeness” of descendants of u0 and de-

scendants of v0.

Given a descendant u′ of u0 (resp. v′ of v0) connected by path ρ1 (resp. ρ2), we

define score functions hv and hρ:

hv(u′,v′) = Mv(L1(u′),L2(v′)) (4.1)

hρ(ρ1,ρ2) =
Mρ(L1(ρ1),L2(ρ2))

len(ρ1)+ len(ρ2)
(4.2)

As will be seen in Section 4.4, Mv is a function that assesses how close u′ and v′ are

to each other, based on their labels (types and values), and Mρ inspects how close

the association of u′ to u0 and that of v′ to v0 is, based on the labels on paths ρ1 and

ρ2. Intuitively, the longer a path is, the weaker the association is; hence Mρ(ρ1,ρ2) is

divided by len(ρ1)+ len(ρ2). Both hv(u′,v′) and hρ(ρ1,ρ2) are in [0, 1].

To identify u0 and v0 in practice, it often suffices to inspect a small number of their

important properties (descendants; e.g., 18 in Section 4.7). In light of this, we adopt an

ML-based ranking function hr(·, ·) and a bound k such that given a vertex u, hr(u,k)

ranks the descendants of u and selects top-k ones along with a path for each, which

represent characteristic features of u; similarly for hr(v,k) (see Section 4.4). Denote

by V k
v the set of top-k descendants of v picked by hr(v,k).

Using hr(·, ·) is to strike a balance between the complexity and accuracy of entity

linking. Indeed, there are exponentially many paths to descendants of u, and it is

impractical to enumerate them, especially when G1 or G2 is dense.
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Example 4.3: Consider vertices u6 in canonical graph GD of Fig. 4.3 and v8 in

graph G of Fig. 4.1. The closeness of vertices u6 and v8 is assessed by hv(u6,v8) =

Mv(LD(u6),L(v8))=Mv(Dame 7,Dame Gen 7). For paths ρ1=(u2,u9) in GD and ρ2=

(v10,v15,v19,v9) in G, their closeness is computed by hρ(ρ1,ρ2) = Mρ(made in,

(factorySite, isIn, isIn))/(1+3).

Let k=5. Function hr may select descendants item u10, material u3, color u4, type
u6 and brand u2 as properties of u1 in GD. Similarly, it selects soleMadeBy v6, names

v0, brandName v10, typeNo v8 and hasColor v12 for v1 in G. 2

We use bounds σ for hv and δ for hρ to assess the closeness of vertex labels and

associations of labels on paths, respectively. We will show how to determine σ,δ,k in

Section 4.4.

Parametric simulation. Taking functions (hv,hρ,hr) and thresholds (σ,δ,k) as pa-

rameters, parametric simulation is to check whether (u0,v0) is a match, for u0 ∈ V1

and v0 ∈V2.

Given (u0,v0), parametric simulation computes a binary relation Π(u0,v0)⊆V1×V2

satisfying the following conditions:

(1) (u0,v0) ∈ Π(u0,v0); and

(2) for each pair (u,v) ∈ Π(u0,v0),

(a) hv(u,v)≥ σ; and

(b) if u is not a leaf, then there exists a set S(u,v) of (u′,v′) that is a partial injective

(1-to-1) mapping from V k
u to V k

v such that its aggregate score

∑(u′,v′)∈S(u,v) hρ(ρ(u,u′),ρ(v,v′))≥ δ;

and for each (u′,v′) ∈ S(u,v), (u′,v′) ∈ Π(u0,v0).

Here ρ(u,u′) is the path selected by hr(u,k) for u′; similarly for ρ(v,v′). We call S(u,v)
a lineage set of (u,v).

We say that (u0,v0) is a match by simulation parameterized with (hv,hρ,hr,σ,δ,k)

if there exists such a nonempty Π(u0,v0). There are possibly many such sets; to check

whether (u0,v0) makes a match, we only need to check the existence of such a set,

referred to as a witness of (u0,v0).

Intuitively, (u0,v0) is a match if (1) u0 and v0 are close enough, measured by func-

tion hv based on their types and values; (2) there exists a lineage set S(u0,v0) of pairwise

matching pairs (properties) such that their associations to (u0,v0) are close enough,

measured by the aggregated score with function hρ; and (3) for a pair (u,v), S(u,v) is
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a set of pairs (u′,v′) such that each important property u′ of u finds the “best” match v′

if it exists (hence a partial 1-to-1 mapping) in terms of hρ scores on paths found by hr.

That is, (u0,v0) is a match if their “values” and important properties are close enough.

Example 4.4: Let σ=0.7, δ=1.5 and k=5. Vertices u1 in Fig. 4.3 and v1 of Fig. 4.1

match by parametric simulation, as follows.

(1) Vertices u1 and v1 make a match since they carry the same label, i.e., hv(u1,v1) =

Mv(item, item)≥σ. Moreover, there exists a lineage set S(u1,v1)={(u2,v10),(u3,v6),

(u4,v12),(u6,v8),(u10,v0)} that has an aggregate score above δ. Intuitively, S(u1,v1)

confirms that u1 and v1 have the same material, color and brand, and similar names

and types. We will see how to compute Mv() and aggregate scores hρ() in Section 4.4,

and how to pick lineage sets in Section 4.5.

Note that it is not necessary for all properties of u1 to find a match in S(u1,v1),

e.g., qty u5 has no match in G; in other words, properties in S(u1,v1) suffices to match

u1 and v1.

(2) To verify that S(u1,v1) is indeed a lineage set, inductive checking is needed: (a)

(u3,v6) is valid since they bear the same label “Phylon foam”, and u3 is a leaf; sim-

ilarly for (u4,v12),(u6,v8) and (u10,v0); in contrast, (b) (u2,v10) has to be verified

inductively itself since u2 is not a leaf; a lineage set is S(u2,v10) = {(u7,v20),(u8,v17),

(u9,v9),(u11,v18)}.

(3) It confirms that pairs in S(u2,v10) match and S(u2,v10) has aggregate score above σ,

since u7 and v20 have similar labels and u7 is a leaf; similarly for other pairs in S(u2,v10).

Intuitively, u2 and v10 have the same name and manufacture, and carry similar country

and made in attributes.

(4) At this point, (u1,v1) is confirmed a match, which is witnessed by

Π(u1,v1) = {(u1,v1)}∪S(u1,v1)∪S(u2,v10). 2

It is shown that for any u0 ∈ G1 and v0 ∈ G2, there exists a unique maximum

Π(u0,v0) by simulation with parameters (hv,hρ,hs,σ,δ,k). That is, parametric

simulation retains the uniqueness of graph simulation (Milner, 1989).
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4.4 Parameter Functions and Bounds

We next present module Learn of HER. We show how to learn parameters for

parametric simulation, i.e., score functions (hv,hρ), ranking function hr, thresholds

(σ,δ) and bound k.

Given graphs G1=(V1,E1,L1) and G2=(V2,E2,L2), we define functions (hv,hρ,hr)

pertaining to u ∈V1 and v ∈V2.

Vertex model Mv. Function hv(u,v) = Mv(L1(u),L2(v)) takes two vertex labels as

inputs, and returns their semantic similarity. We implement Mv(·, ·) with a sentence

embedding model (Reimers and Gurevych, 2019), since it captures both sequential

sentence information, such as descriptions of a movie, and words in vertex labels. The

model takes string L1(u) (resp. L2(v)) as input, and embeds it as a vector representation

xu (resp. xv). The semantic similarity between L1(u) and L2(v) is assessed by:

Mv(L1(u),L2(v)) = (|cos(xu,xv)|+ cos(xu,xv))/2,

where | · | is the absolute value, such that hv(u,v) ∈ [0,1]. The semantic similarity of

1 indicates high similarity between vectors xu and xv, whereas a value of 0 signifies

dissimilarity. In cases where the cosine similarity is negative, the semantic similarity

is considered to be 0. Otherwise, it can range from 0 to 1.

Edge model Mρ. Different from Mv, Mρ takes as input strings L1(ρ1) and L2(ρ2)

of edge labels on paths, and quantifies their similarity. It sends L1(ρ1) (resp. L2(ρ2))

to embedding model BERT (Devlin et al., 2019a) that captures sequential informa-

tion of edge labels on paths, and gets its vector representation xρ1 (resp. xρ2). A

metric learning model compares xρ1 and xρ2 , and outputs their similarity score in

[0, 1]. For example, Mρ obtains embedding vectors xρ1 and xρ2 of “made in” and

“(factorySite, isIn, isIn)” by using BERT, respectively, and the learning model gives

the similarity score of xρ1 and xρ2 .

We have to train the embedding and metric learning models in Mρ instead of

employing pre-trained NLP models, since edge labels are typically special relation

tokens for predicates, e.g., “/akt:has-author” in a publication graph (DBLP, 2020a).

More specifically, (1) we construct a corpus C by randomly walking in G and

collecting edge labels on the paths. (2) We then pre-train BERT model on C, driven by

the unsupervised Masked Language Model task (Devlin et al., 2019a). This enables

BERT to capture sequential information in L1(ρ1) (resp. L2(ρ2)) and embed it as

vector xρ1 (resp. xρ2). (3) We jointly train the metric learning and BERT models using
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annotated matching pairs (ρ1,ρ2). Thus, BERT fine-tunes the embeddings of xρ1 and

xρ2 , and the learning model measures their semantic similarity.

An ideal Mv (resp. Mρ) scores similar pairs above 0.5 and dissimilar ones below

0.5 (Yang, 2001); this guides model training and fine-tuning (see more details in

Section 4.7).

Example 4.5: Consider the candidate match (u7,v20) in the lineage set S(u2,v10) of

Example 4.4. Its vertex similarity is Mv(Germany,Germany)=1≥σ, and the close-

ness of the association of u7 to u2 (represented by the path ρ1=(u2,u7)) and that

of v20 to v10 (represented by the path ρ2=(v10,v20)) is measured by hρ(LD(ρ1),

L(ρ2))=Mρ(LD(ρ1),L(ρ2))/(len(ρ1) + len(ρ2)) = Mρ(country,brandCountry)/2 =

0.75/2 = 0.375. Here Mρ(country,brandCountry)=0.75 is computed using the em-

bedded vectors of strings “country” and “brandCountry”. After considering all pairs

in S(u2,v10), we compute the sum of their associations to (u2,v10), and find that the

aggregate score is 1.6, which is greater than δ. 2

Ranking function hr. Given vertex v and bound k, function hr returns top-k descen-

dants of v together with a path for each such descendant, representing important prop-

erties of v. It works in two steps: (1) it selects a set of m paths from v by using a

language model Mr, where m is the number of the children of v; and (2) it ranks the m

paths by using a path resource allocation (PRA) algorithm, and returns top-k ones.

(1) For each outward edge ei of v, function hr selects a path ρi from v guided by

language model Mr, and adds ρi to a set P. For instance, starting at edge e1 from v to

v1, hr initiates ρ1 = (v,v1), presents e1 to Mr, and obtains a list Ep1 of all edges from

v1 with their possibility of following “word” e1. Then from all outward edges of v1, hr

chooses an edge e2 from v1 to v2 with the highest possibility in Ep1 , appends v2 to ρ1

and feeds e2 to Mr for predicted list Ep2 . The iteration proceeds until (a) Mr returns

the “stop signal”, i.e., the end of sentence tag “<eos>”; (b) there is no outward edge

to choose; or (c) the path forms a cycle (it is then abandoned).

Here we use Long Short Term Memory (LSTM) network as Mr. Given one word

as a start, LSTM generates a sequence of following words with reasonable semantic

meanings (Melis et al., 2017).

(2) Function hr ranks paths in P as follows. Given a path ρ=(v0,v1, . . . ,vl), we extend

resource allocation (Lin et al., 2015) and propose PRA to measure whether ρ is a

meaningful connection by
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R(ρ) =
l−1

∏
i=0

1
|ch(vi)|

,

where ch(vi) denotes the set of vi’s children. Intuitively, PRA assumes that a resource

“flows” from the starting vertex of a path, and equally divides at each vertex in the

middle. After propagation, PRA quantifies the semantic association of ρ in terms of

the amount of resource that reaches vl from v0 via ρ.

Example 4.6: Taking v1 in Fig. 4.1 and k = 5 as input, Mr selects paths starting

from each outward edge of v1. For example, given edge (v1,v10) with the edge label

“brandName”, Mr returns the end of sentence tag “<eos>”, which terminates path

selection; this is because the trained language model prefers to select paths with fewer

branches and stronger semantic associations. Thus, it stops after v10, since v10 has

many descendants that will diverge and weaken the semantic association of longer

paths. Finally, it outputs path (v3,v13).

After picking 8 paths via model Mr (i.e., (v1,v0), (v1,v2), (v1,v6), (v1,v8), (v1,

v10), (v1,v11), (v1,v12) and (v1,v31)), hr ranks them with PRA, drops (v1,v2), (v1,v11)

and (v1,v31) for low scores, and gets 5 descendants v0, v6, v8, v10 and v12, with an

associated path for each. 2

Training. We prepare training data for Mr as follows. (1) For each vertex v, we first find

the set Vr of all reachable vertices of v. Then we inspect the label of each vertex v′ in

Vr and remove those whose labels are machine codes, e.g., URL or ID. This process is

automatic as pre-trained embedding models (e.g., GloVe (Pennington et al., 2014)) rec-

ognize machine codes as unknown words. (2) For each vertex v′ in Vr, we find all sim-

ple paths from v to v′, quantify each by PRA and add the one with the maximum value

to the training dataset. This preparation process does not take long, since we can prac-

tically collect enough paths by clustering and inspecting representative entities only.

Thresholds σ, δ and bound k. The objective of selecting σ, δ and k is to maximize

F-measure (for accuracy) defined with Precision and Recall. Here Precision, Recall and

F-measure are (1) the ratio of true matches to the matches returned, (2) the ratio of true

matches to the annotated matches, and (3) 2 · (Precision ·Recall)/(Precision+Recall),

respectively.

We choose σ, δ and k by random search (Bergstra and Bengio, 2012), since grid

search is computationally expensive for enumerating all combinations of the three pa-

rameters. More specifically, we construct a sampling validation set consisting of 15%

of all annotated vertex pairs (ut ,vg) randomly taken from GD and G, which participate
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in neither model training nor testing. Then we evaluate the model on this validation

set using random combinations of σ, δ and k. We pick the values that maximize the

F-measure after limited number of trials.

Interaction and refinement. HER allows users to inspect and annotate matching deci-

sions. It collects false positive (FP) and false negative (FN) pairs to refine Mv and Mρ.

Given an FP (resp. FN) feedback, we mark its vertex matches and path-path matches

as dissimilar (resp. similar) samples with similarity score 0 (resp. 1) to fine-tune Mv

and Mρ.

To handle false feedback, we demonstrate the results to multiple users and conduct

majority voting to reduce noisy, which is a common practice for annotation quality

control (Karger et al., 2011). Moreover, we employ triplet loss function (Schroff et al.,

2015) to ensure robust model fine-tuning, which has proven effective in suppressing

the negative influence of (possible) remaining false feedback.

Complexity. Once the training completes, it takes linear time for hv and hρ to measure

the similarity. It takes O(|V ||E|) time for function hr to select top-k descendants and

associated paths for each vertex v in a graph G = (V,E,L).

4.5 Parametric Simulation Algorithm

We now show that parametric simulation is in quadratic-time. As a proof, we develop

such an algorithm for module SPair of HER, denoted by ParaMatch. It takes functions

(hv,hρ,hr) and bounds (σ,δ,k) as parameters. Given a tuple t ∈ D and a vertex vg in

G, it checks whether (ut ,vg) is a match in O(|G||GD|) time, where GD is the canonical

graph of D , and ut is the vertex in GD denoting t via mapping fD.

Overview. ParaMatch is recursive. Given a pair (u,v) of vertices, it finds a lineage set

S(u,v) of top-k descendants of u and v, and recursively checks pairs of the descendants.

For (u′,v′) ∈ S(u,v) that makes a match, it sums up the associations between (u,v)

and (u′,v′), and checks whether the aggregate score reaches δ. It returns true if so.

Otherwise it backtracks and examines other lineage sets. It returns false if no lineage

set witnesses (u,v) as a match.

This is nontrivial. (1) When inspecting a pair (u1,v1), it has to select top-k

descendants of u1 and v1; special care has to be taken to avoid picking the same vertex

during repeated different recursive calls. (2) Candidate matches (u1,v1) and (u2,v2)

may depend on each other, e.g., when they are in a strongly connected component.
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This makes it tricky to backtrack and decide when to return false. To cope with

these we employ two hashmap structures: (1) ecache, to record V k
u , the top-k selected

descendants for each vertex u, and avoid repeated descendant selection; and (2) cache,

to record the current states of candidate matches and dependencies among candidates.

For each candidate (u,v), cache[u,v] is a pair [ϕ,W ], which is either [false, /0] or [true,

W ], where W is a set of candidate matches, and ϕ is a Boolean value indicating

whether (u,v) is invalid (false) or valid (true) under the condition that all candidates

in W are valid. Observe the following.

(a) If (u,v) and (u′,v′) are interdependent, (u,v) and (u′,v′) are marked [true,W1] and

[true,W2] in cache, respectively, and if (u′,v′) ∈ W1 and (u,v) ∈ W2, then both (u,v)

and (u′,v′) are matches by the definition of parametric simulation.
(b) We only need to store matches for vertices of V k

u in cache[u,v], i.e., |W | ≤ k;

moreover, the interdependence can be deduced from such W . In addition, we adopt

the following strategies.

(c) For each top-k descendant u′ of u, we sort the vertices v′ in V k
v in the descending

order of the association between (u′,v′) and (u,v). When we search a candidate match

v′ for u′, we follow the order in V k
v . Intuitively, this helps us decide earlier whether we

may not get a lineage set with aggregate score reaching δ and safely return false, since

backtracking in the descending order always yields smaller scores.

(d) When candidate match (u,v) is invalided, we first identify candidates (u′,v′) that

directly depend on (u,v), i.e., (u,v) ∈ cache[u′,v′].W . We then call ParaMatch to

recheck whether (u′,v′) is still valid. Observe that this suffices to deal with interde-

pendent candidates; indeed, if (u′,v′) is also invalid, the candidates that indirectly

depend on (u′,v′) are rechecked when recursive ParaMatch backtracks.
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Input: GD = (VD,ED,LD), G = (V,E,L), (u,v) ∈VD ×V ,

and a set FP of functions hv,hρ,hr and parameters σ,δ,k.

Output: true if (u,v) is a match, and otherwise false.

1. if hv(u,v)< σ then /*initial stage*/

2. cache[u,v] := [false, /0]; return false;

3. if u is a leaf then

4. cache[u,v] := [true, /0]; return true;

5. cache[u,v] := [true, /0]; W := /0; sum := 0;

6. if u ̸∈ ecache then

7. extract the set V k
u of selected vertices of u; ecache[u]:=V k

u ;

8. if v ̸∈ ecache then

9. extract the set V k
v of selected vertices of v; ecache[v]:=V k

v ;

10. V k
u := ecache[u]; V k

v := ecache[v];

11. construct a sorted list lu′ = {v′ | v′ ∈V k
v ∧hv(u′,v′)≥ σ}

for each u′ ∈V k
u following descending order of hρ score;

12. MaxSco:=∑ j hρ(ρ(u,u′j),ρ(v,v
′
j,1)); /*matching stage*/

13. if MaxSco< δ then

14. cache[u,v] := [false, /0]; return false;

15. for each u′ ∈V k
u do

16. for each v′ ∈ lu′ in the order of lu′ do

17. if (u′,v′) ∈ cache then

18. match := cache[u′,v′].ϕ;

19. else match := ParaMatch(GD,G,(u′,v′),FP);

20. if match then

21. sum += hρ(ρ(u,u′),ρ(v,v′)); W := W ∪{(u′,v′)};

22. if sum≥ δ then

23. cache[u,v] := [true,W ]; return true;

24. break;

25. MaxSco :=MaxSco−hρ(ρ(u,u′),ρ(v,v′))

+hρ(ρ(u,u′),ρ(v,v′n))

26. if MaxSco< δ then

27. break;

28. cache[u,v] := [false, /0]; /*cleanup stage*/

29. for each (up,vp) such that (u,v) ∈ cache[up,vp].W do

30. unset cache[up,vp];

31. ParaMatch(GD,G,(up,vp),FP);

32. return false;

Figure 4.4: Algorithm ParaMatch
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Algorithm. Putting these together, we present ParaMatch in Fig. 4.4. It returns true for

vertices ut ∈GD and vg ∈G if ut matches vg and false otherwise. It works in three steps.

(1) Initial stage (lines 1-11). ParaMatch starts with two steps. (a) It first checks

whether (u,v) can be a match by inspecting their labels (line 1-2), and whether u is

a leaf (line 3-4). (b) It then constructs a set of candidate matches for each descendant

of u (lines 6-11). If the top-k descendants of u or v are stored in ecache, it simply

initializes V k
u and V k

v with ecache[u] and ecache[v], respectively. Otherwise it calls

function hr to pick top-k descendants of u and v (lines 6-10). After these, it builds a

set lu′ of candidate matches for each descendant u′ of u (i.e., v′ ∈ lu′ if v′ ∈ V k
v and

hv(u′,v′)≥σ), and sorts lu′ in the descending order of associations (line 11).

(2) Matching stage (line 12-27). At this stage, ParaMatch inductively checks top-k

descendants of u. At first, it adopts an early termination strategy and checks whether

the maximum score among all possible lineages sets S(u,v) of (u,v) can reach δ; if not,

(u,v) is confirmed invalid (line 12-14); here v′j,1 is the vertex having the maximum hρ

score among all matches of u′j. Otherwise for each selected descendant u′, it finds a

candidate for u′, by checking vertices in V k
v following the descending order of lu′ (line

16). For a vertex v′ in lu′ , it first checks whether (u′,v′) has been validated. If so, it

directly uses the previous result. Otherwise, it checks (u′,v′) by recursively calling

ParaMatch (lines 17-19). If (u′,v′) is valid, it accumulates its association to (u,v) in a

variable sum, and adds (u′,v′) to the set W (line 21). Then it checks whether the value

of sum reaches δ. If so, it marks (u,v) as [true,W ] and returns true (lines 22-23).

Otherwise, it checks whether we can find a match of u′ in the remaining vertices of lu′

such that the maximum score can reach δ (lines 25-27).

(3) Cleanup stage (lines 28-32). ParaMatch performs necessary cleanup to entries

in cache after (u,v) is confirmed invalid. It first sets cache[u,v] to [false, /0] (line 28),

and then re-runs ParaMatch to update stale cache entries that directly depend on (u,v)

(lines 29-31). Finally, it returns false (line 32).

Example 4.7: Recall Example 4.4. We show how ParaMatch finds that items u1 and

v1 make a match as follows.

(1) In the first stage, the hashmap is set: cache[u1,v1] = [true, /0]. The top-

k descendants of u1 and v1 are selected by hr: V k
u1
={u2,u3,u4,u6,u10} and

V k
v1
={v0,v6,v8,v10,v12}. The sorted lists are lu2 = {v10}, lu3 = {v6}, lu4 = {v12},

lu6={v8,v0} and lu10={v0,v8} based on their label similarity.
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(2) During the matching stage, matches are recursively identified for descendants of u1

(i.e., u2, u3, u4, u6 and u10).

(a) Since u3, u4, u6 and u10 are leaves, (u3,v6), (u4,v12), (u6,v8) and (u10,v0) are

valid (lines 3-4) during the recursive calls. By now the aggregate score is below

δ, i.e., hρ(material,soleMadeBy)+hρ(color,hasColor)+hρ(type, typeNo)+hρ(item,

names)=1.4<δ. Thus, it checks (u2,v10).

(b) Vertex u2 has four outgoing edges: (u2,u7), (u2,u8), (u2,u9) and (u2,u11).

Hence ParaMatch is recursively called to match u7,u8, u9 and u11 when

processing (u2,v10). It finds that (u7,v20), (u8,v17), (u9,v9) and (u11,

v18) are matches. Since their aggregate score hρ(country,brandCountry) +

hρ(manufacturer,belongsTo) + hρ(made in, factorSiteisIn) + hρ(name, type) = 1.6 ≥
δ, (u2,v10) is confirmed to match, and the hashmap is updated: cache[u2,v10] =

[true,{(u7,v20),(u8,v17),(u9,v9),(u11,v18)}].

(c) Now ParaMatch checks the aggregate score of descendant matches

of (u1,v1). It finds that hρ(material,soleMadeBy) + hρ(color,hasColor) +

hρ(type, typeNo) + hρ(item, IsA) + hρ(brand,brandName)=1.87 ≥ δ. Thus,

(u1,v1) is valid. Then ParaMatch updates cache[u1,v1] = [true,{(u2,v10),

(u3,v6),(u4,v12),(u6,v8),(u10,v0)}], and returns true. 2

Analyses. Algorithm ParaMatch is correct and takes quadratic time O(|VD|2 + |V |2)
where |VD| and |V | are the number of vertices in GD and G respectively. Indeed, (I)

it takes the algorithm takes O(|VD||ED|+|V ||E|) time to select top-k descendants for

each pair (u,v) (see Section 4.4); and (II) checking whether (ut ,vg)∈Π(ut ,vg) takes

O(|VD||V |) time in the worst case, since the number of recursive calls is bounded.

For (II), (a) there exist at most O(|VD||V |) candidate matches; (b) for each (u,v),

ParaMatch is called at most k2 + 1 times, by the use of hashmap cache and more-

over, (i) the cleanup stage can only be called once for each candidate in cache[u,v].W
and (ii) |cache[u,v].W | ≤ k2; (c) line 1 of Fig. 4.4 takes O(|VD||V |) times in to-

tal; and (d) during each recursive call, all lines of Fig. 4.4 take O(1) time except

line 1 and recursive calls (line 16, lines 23-25). Thus ParaMatch takes at most

O((|VD|+|ED|)(|V |+|E|)) time.

In contrast, bounded simulation and strong simulation take

O(|V |(|VD|+|ED|)(|V |+|E|)) time (Fan et al., 2010; Ma et al., 2014).
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Theorem 3: Given graphs (GD,G) and a pair (ut ,vg) of vertices for ut∈GD and

vg∈G, ParaMatch takes O((|VD|+|ED|)(|V |+|E|)) time to decide whether (ut ,vg) is

valid. 2

Proof of Theorem 3. For the correctness of ParaMatch, we show that for any pair

(u,v), cache(u,v) = [true,W ] if and only if (u,v) is valid and W is a lineage set of

(u,v) with the maximal aggregate score. If this holds, we can construct a witness

Π(u0,v0) for (u0,v0) by taking union of all pairs (u,v) with cache(u,v)=[true,W ].

(⇒) Assume that cache(u,v)=[true,W ]. Consider the following two cases. (a) When

u is a leaf in GD, we have that hv(u,v)≥σ (line 1); then (u,v) is valid and the lin-

eage set of (u,v) is /0 by the definition of parametric simulation; in this case, the

empty set /0 is the one with maximum score; otherwise, (b) observe that ParaMatch

searches the match of u following the descending order of lu (line 16), and sets

cache(u,v)=[true,W ] once the aggregate score of W reaches δ (line 22); therefore,

(u,v) is valid and W is a lineage of (u,v) with the maximum aggregate score.

(⇐) Assume that (u,v) is valid and W is a lineage set of (u,v) with the maximum

aggregate score. (i) If W is /0, then u is a leaf in GD and hv(u,v)≥σ (condition (b) of

parametric simulation in Section 4.3). Thus cache(u,v)=[true, /0] (line 4). (ii) When

W ̸= /0, as (u,v) is valid and ParaMatch searches the match of u following the de-

scending order of lu (line 16), W will be finally identified by ParaMatch (line 23). 2

4.5.1 The Uniqueness of Parametric Simulation

There exists a unique maximum Π(u0,v0) witnessing match (u0,v0), i.e.,

Π′(u0,v0) ⊆ Π(u0,v0) for all possible Π′(u0,v0). We refer to the maximum Π(u0,v0)

as the match of (u0,v0) in (G1,G2) by simulation with parameters (hv,hρ,hr,σ,δ,k).

Proposition 4: For graphs G1 and G2 and pair (u0,v0) for u0 ∈ G1 and v0∈G2, there

exists a unique maximum Π(u0,v0) by simulation with parameters (hv,hρ,hs,σ,δ,k).

2

Proof: The existence of a match is ensured by Theorem 3. While the set Π(u0,v0)

of matches computed by algorithm ParaMatch may not be maximum, we can always

extend the set Π(u0,v0) to a maximum one since the number of possible matches are

finite. That is, the maximum match always exists.
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Below we show the uniqueness of the maximum match by contradiction. As-

sume that there exist two distinct maximum matches Π1(u0,v0) and Π2(u0,v0). Let

Π3(u0,v0) = Π1(u0,v0)
⋃

Π2(u0,v0). Since Π1(u0,v0) and Π2(u0,v0) are distinct,

Π3(u0,v0) has a larger size than both Π1(u0,v0) and Π2(u0,v0), i.e., Π1(u0,v0) ⊂
Π3(u0,v0) and Π2(u0,v0) ⊂ Π3(u0,v0). We next show that Π3(u0,v0) witnesses the

match (u0,v0), which contradicts that Π1(u0,v0) and Π2(u0,v0) are maximum. There-

fore, the maximum match is unique.

It remains to show that Π3(u0,v0) witnesses the match (u0,v0). To this end, we

prove that (1) (u0,v0) ∈ Π3(u0,v0); and (2) for each pair (u,v) ∈ Π3(u0,v0), the two

conditions of parametric simulation (see Section 4.3), denoted by P (Π3(u0,v0),u,v),

hold: (a) hv(u,v) ≥ σ; and (b) if u is not a leaf, then there exists a set S3
(u,v)

of (u′,v′) that is a partial injective (1-to-1) mapping from V k
u to V k

v such that

∑(u′,v′,ei,ρ)∈S3
(u,v)

he(ei,ρ) ≥ δ, and for each pair (u′,v′) ∈ S3
(u,v), (u

′,v′) ∈ Π3(u0,v0).

To simplify the proof, we define P (Π1(u0,v0),u,v) and P (Π2(u0,v0),u,v) similarly.

For (1), since both Π1(u0,v0) and Π2(u0,v0) witness the match (u0,v0), we know

that both (u0,v0) ∈ Π1(u0,v0) and (u0,v0) ∈ Π2(u0,v0). From Π3(u0,v0) = Π1(u0,v0)⋃
Π2(u0,v0), we have that (u0,v0) ∈ Π3(u0,v0).

For (2), it suffices to show that given any (u,v) ∈ Π3(u0,v0), condition

P (Π3(u0,v0),u,v) holds. Since (u,v) ∈ Π3(u0,v0) we have that (u,v) ∈ Π1(u0,v0)

or (u,v) ∈ Π2(u0,v0). If (u,v) ∈ Π1(u0,v0), the conditions for P (Π1(u0,v0),u,v)

hold. Because Π3(u0,v0) = Π1(u0,v0)
⋃

Π2(u0,v0), we can verify that conditions for

P (Π3(u0,v0),u,v) hold. Indeed, for condition (a) we have that hv(u,v) ≥ σ, since

the condition for P (Π1(u0,v0),u,v) holds; for condition (b), since the condition for

P (Π1(u0,v0),u,v) holds, there exists a lineage set S1
(u,v) with aggregate score that is

at least δ; then we can define the set S3
(u,v) as S1

(u,v), and verify that the condition (b)

holds. Therefore, the conditions for P (Π3(u0,v0),u,v) hold. The proof for the case

that (u,v)∈Π2(u0,v0) is similar.

Putting these together, the maximum match is unique. 2

4.5.2 Example for the Challenges of Parametric Simulation

Given GD and G in Fig. 4.5, let σ=1, δ=0.1. Assume that all edges are picked by hr,

and are labeled with association scores, e.g., 0.1 is the closeness between (u,v) and

(u1,v1).
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Figure 4.5: An example for rechecking

To check whether (u,v) is a match, one may want to first recursively check whether

(u1,v1) is a match; to do this we in turn have to inspect candidates (u2,v2) and (u3,v3).

Note that (u1,v1) and (u2,v2) form a strongly connected component and depend on

each other. When checking (u2,v2), pair (u1,v1) has to be examined again. Checking

these directly would be inefficient and may not even terminate.

To this end, we record the state of (u1,v1) and reuse it to avoid repeated check-

ing. We initialize the state of (u1,v1) as true (i.e., a match) and rectify it when it

is invalidated. Note that rectification is necessary. Indeed, when (u1,v1) is assumed

true, (u2,v2) becomes true since u2 and v2 bear the same label and the association be-

tween (u2,v2) and (u1,v1) is 0.1 = δ. However, later on (u3,v3) is found a non-match

(i.e., false), since they have distinct labels; then the state of (u1,v1) has to be changed

to false. At this point, it is necessary to “clean up” the true state of (u2,v2) that was

deduced from the initial true of (u1,v1). The cleanup is a must since actually none of

(u2,v2), (u1,v1) and (u,v) makes a match.

To implement these we employ a hashmap structure cache, to record both the cur-

rent states of candidates and the dependencies among candidate matches. For each

candidate match (u,v), cache[u,v] is a pair [ϕ,W ], which is either [false, /0] or [true,

W ], indicating whether (u,v) is invalid or valid, respectively. Here W is a set of can-

didate matches, and [true, W ] means that (u,v) is valid (i.e., denoted by true) under

the condition that all candidate matches in W are valid.

Using cache, we can get over the complications above as follows. (a) We first

record the states of candidates (u1,v1) and (u2,v2) by setting cache[u1,v1]=[true,W1]

and cache[u2,v2]=[true,W2]=[true,{(u1,v1)}], respectively; here cache[u2,v2]

=[true,{(u1,v1)}] is to record the fact that the validity of (u2,v2) depends on that

of (u1,v1); note that we can directly reuse these results during recursive calls; and

(b) when (u1,v1) is confirmed invalid, we need to clean up the state of (u2,v2), since

(u1,v1) ∈ W2 (i.e., (u2,v2) depends on (u1,v1)).
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4.5.3 Schema Matches

In addition to entity matches, HER can compute schema matches. Below we formulate

schema matches and show how to extend algorithm ParaMatch to compute schema

matches.

When it comes to graph G = (V,E,L) and the canonical graph GD = (VD,ED,LD)

of a relational database D (Section 4.2), we can deduce what paths in G represent

important attributes A of a tuple t in D . If ut matches vg, we deduce a set Γ(ut ,vg)

of pairs (e,ρ) using score function hρ, where e is an edge from ut encoding attribute

A, and ρ is a path from vg, such that path ρ encodes e (see Section 4.5). We refer to

Γ(ut ,vg) as the schema matches pertaining to (t,vg).

Algorithm ParaMatch in Section 4.5 can be extended to compute Γ(ut ,vg), the

schema matches pertaining to (ut ,vg).

Observe the following. When ParaMatch returns true on (ut ,vg), we get

cache(ut ,vg) = [true,W ], where W is a set of pairwise matching properties of (ut ,vg),

i.e., it consists of matches (u,v) for u ∈V k
ut

and v ∈V k
vg

, along with paths ρD from ut to

its top-k descendant u and ρG from vg to its top-k descendant v. Paths ρD are computed

by function hr and start with an edge e from ut to its children (see Section 4.4). Here e

may represent an attribute A of tuple t denoted by ut , and the attribute is encoded by a

prefix ρe of ρG.

For each such attribute A of t, if it is denoted by such an edge e, we deduce its

“match” ρe from ρG as follows. We use function Mρ (see Section 4.4) to pick ρe such

that Mρ(LD(e),L(ρe)) is the maximum among all prefixes of ρG. The path ρe is a

“match” of e (attribute A).

Note that when an attribute B of t is picked by hr as one of the top-k properties,

it may not find a match in G. This is not surprising since graph G is heterogeneous

from database D and it is not guaranteed to contain all properties of each entity in D .

Moreover, if B is not picked by hr, it indicates that B is not a very important property

of the entity after all.

Example 4.8: Continuing with Example 4.7, when ParaMatch terminates, schema

matches Γ(u2,v10) is computed as follows. Since cache[u2,v10]=[true,W ] with

W={(u7,v20),(u8,v17),(u9,v9),(u11,v18)}, and u7, u8, u9 and u11 are children of

u2, we can identify the “matches” of edges (attributes) (u2,u7), (u2,u8), (u2,u9) and

(u2,u11) as follows.
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(1) Edges (u2,u7), (u2,u8) and (u2,u11) in canonical graph GD are mapped to edges

(v10,v20), (v10,v17) and (v10,v18) in graph G, respectively, since (u7,v20) ∈ W ,

(u8,v17) ∈ W , (u11,v18) ∈ W , and v20, v17 and v18 are children of v10.

(2) For edge e3 = (u2,u9), since (u9,v9) ∈ W , e3 is mapped to path ρG =

(v10,v15,v19,v9). We check the prefixes of ρG, i.e., ρ1 = (v10,v15), ρ2=(v10,v15,v19)

and ρ3=(v10,v15,v19,v9). Since Mρ(LD(e3),L(ρ1))=0.46, Mρ(LD(e3),L(ρ2)) = 0.68

and Mρ(LD(e3), L(ρ3)) = 0.71, we know that Mρ(LD(e3),L(ρ3)) is the maximum

among all prefixes of ρG, and hence add (e3,ρ3) to Γ(u1,v1). 2

4.6 Computing All Matches

We now develop algorithms to compute (1) all matches (ut ,vg) for a given tuple t in

database D (i.e., module VPair), where ut is the vertex denoting t in the canonical

graph GD of D , and vg is a vertex in graph G, and (2) all matches across GD and G

(i.e., APair), based on parametric simulation.

We first develop algorithms for VPair and APair (Section 4.6.1). We then paral-

lelize these algorithms (Section 4.6.5).

4.6.1 Algorithms for VPair and APair

VPair. We first present algorithm VParaMatch for VPair. It takes functions (hv,hρ,hr)

and bounds (σ,δ,k) as parameters, and a tuple t ∈ D as input. It computes the set

Π(ut) of (ut ,vg) based on parametric simulation for vg in G, defined as

Π(ut) = {(ut ,vg) | vg ∈ G, Π(ut ,vg) ̸= /0}.

As opposed to ParaMatch, vertex vg is not given as input.

A brute-force approach to computing Π(ut) is to run ParaMatch for each (ut ,vg)

with hv(ut ,vg) ≥ σ. It is, however, not very efficient. Hence we develop another

algorithm.

Algorithm VParaMatch. As shown in Fig. 4.6, VParaMatch first selects all vertices vg

in G with hv(ut ,vg)≥σ, and initializes a set C(ut) with such candidates (ut ,vg) (lines 2-

3). It then sorts the pairs in C(ut) following the increasing order of degrees of vertices

in C(ut) (line 4). Intuitively, starting from vertices with smaller degrees, VParaMatch

can find more candidate matches to be valid or invalid earlier, and reduce runtime.

After that VParaMatch iteratively checks each (u,v) following its order in C(ut) (lines



76 Chapter 4. Linking Entities across Relations and Graphs

6-11). More specifically, it first checks whether (u,v) had been confirmed valid (lines

7-8); if so, it adds it to Π(ut). Otherwise, it calls ParaMatch on (u,v) to verify its

validity (lines 9-11). VParaMatch constructs inverted indices (Zobel et al., 1998) on

critical information (e.g., years of papers in DBLP) as blocking strategies; for example,

papers of the same year are in the same block of candidates.

Input: GD = (VD,ED,LD), G = (V,E,L), a vertex ut in GD,

and a set FP of functions hv,hρ,hr and parameters σ,δ,k.

Output: The set Π(ut) of matches.

1. Π(ut) := /0; (ut) := /0; initialize the hashmap cache;

2. for each vg ∈V such that hv(ut ,vg)≥ σ do

3. add (ut ,vg) ∈ (ut);

4. sort matches (u,v) in (ut) in increasing orders of degrees;

5. for each (u,v) ∈ (ut) do

6. remove (u,v) from (ut);

7. if (u,v) ∈ cache and cache[u,v].ϕ = true then

8. add (u,v) to Π(ut);

9. else match := ParaMatch(GD,G,(u,v),FP);

10. if match= true then

11. add (u,v) to Π(ut);

12. return Π(ut);

Figure 4.6: Algorithm VParaMatch

APair. We next present AllParaMatch for APair. It computes the set Π of all matches

across database D and graph G:

Π = {(ut ,vg) | ut ∈ GD, vg ∈ G, Π(ut ,vg) ̸= /0},

where ut (resp. vg) is a vertex in GD (resp. G). As opposed to ParaMatch and

VParaMatch, none of ut and vg is input.

Algorithm AllParaMatch. Extending VParaMatch, the algorithm initializes a set C

of candidate pairs (ut ,vg) across GD and G, for all ut∈VD and vg∈V such that

hv(ut ,vg)≥σ. After this, it works just like algorithm VParaMatch.

Analyses. Algorithms VParaMatch and AllParaMatch do not increase the worst-case

complexity bound of ParaMatch. Intuitively, to check whether (ut ,vg) ∈ Π(ut ,vg),
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ParaMatch may already check all u (resp. v) reachable from ut (resp. vg), i.e., in the

worst case, it checks all pairs across GD and G.

Corollary 5: VParaMatch finds all matches pertaining to a vertex ut ,

and AllParaMatch computes Π across database D and graph G, both in

O((|VD|+|ED|)(|V |+|E|)) time. 2

Proof of Corollary 5. We only prove the correctness and complexity of VParaMatch;

AllParaMatch can be shown similarly.

(1) For the correctness, observe that the set C(ut) consists of all possible candidates

(lines 2-3) and VParaMatch verifies all candidates in C(ut) along the same line as

ParaMatch.

(2) For the complexity, the analysis is similar to the counterpart for ParaMatch. Ob-

serve the following: (a) algorithm VParaMatch takes O(|VD||ED|+|V ||E|) time to se-

lect top-k descendants; (b) it takes O(|VD||V |) time to check whether (ut ,v)∈Π(ut ,vg)

for all candidates (ut ,v) in C(ut); this is because VParaMatch uses the hashmap cache,

and each pair (u,v) will be checked at most once; and (c) there exist at most O(|VD||V |)
pairs; note that although VParaMatch only identifies all matches for a given vertex ut ,

in the worst case all possible candidates need to be verified. Therefore, VParaMatch

takes at most O((|VD|+|ED|)(|V |+|E|)) time. 2

4.6.2 Examples for Algorithm VParaMatch

Continuing with Example 4.1, given an item “Dame Basketball Shoes D7” (tuple t1),

module VPair is then triggered to find all vertex matches of tuple t1 in G. Assuming the

same parameters hv,he,hr,σ,δ,k as in Example 4.7, VParaMatch (1) first finds items

(i.e., vertices) in G with names similar to “Dame Basketball Shoes D7” (i.e., v1 and

v3), and initializes C(u1) with candidate matches (i.e., (u1,v1) and (u1,v3)). (2) It then

inspects candidates in C(u1) along the same lines as Example 4.7, and returns (u1,v1).

We remark the following. (1) The verification starts from (u1,v1) since v1 has the

smaller degree than v3; it confirms the validity of (u2,v10), which can be reused to

verify other candidate matches. One can verify that inspecting candidates following

the increasing degree order reduces comparisons. When G is large, we group vertices

in G using inverted indices (Zobel et al., 1998) on vertex attribute values for quick

vertex search. Given vertex u1 in GD, the candidate matching vertices in G are v1 and
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Input: GD = (VD,ED,LD), G = (V,E,L), and a set FP

of functions hv,hρ,hr and parameters σ,δ,k.

Output: The set Π of matches.

1. Π := /0; C := /0; initialize the hashmap cache;

2. for each ut ∈VD and vg ∈V such that hv(ut ,vg)≥ σ do

3. add (ut ,vg) ∈C;

4. sort matches (u,v) in C in increasing orders of the degrees;

5. compute the set Π as VParaMatch;

Figure 4.7: Algorithm AllParaMatch

v3. If we built inverted indices on the hasColor attribute of items in G, we can quickly

locate the most similar vertex v1, since its color is “White”, which matches the color

of u1; while v3 has color “Red”, and then cannot match u1.

4.6.3 Algorithm AllParaMatch

As shown in Fig. 4.7, AllParaMatch extends ParaMatch along the same lines as

VParaMatch. The only difference is in the initialization phase (lines 2-3). That is,

AllParaMatch initializes a set Cof candidate pairs (ut ,vg) across GD and G, ranging

over all ut∈VD and vg∈V such that hv(ut ,vg)≥σ. Then it extends Π in the same way as

in VParaMatch (line 5).

Example 4.9: Continuing with Example 4.1, the e-commerce company runs

AllParaMatch offline after (hv,hρ,hr) and (σ,δ,k) have been substantially improved,

to identify items more accurately. When the process is triggered, AllParaMatch first

finds all items from GD and G, i.e., u1 for t1 and u12 for t3 (not shown) in GD, along

with v1, v3, v21, v24 and v30 in G. It initializes Cwith candidate pairs, e.g., (u1,v1),

(u1,v3), (u12,v1) and (u12,v3); note that (u1,v24) and (u12,v24) are not in C due to

the different labels of vertices. It then checks candidates in C along the same lines as

Example 4.7.

Note that (u1,v3) and (u12,v1) are invalid and are not in Π, due to the difference

between “Dame Basketball Shoes D7” and “Mid-cut Basketball Shoes Ultra Comfort-

able”. That is, AllParaMatch distinguishes “Basketball Shoes” (i.e., v2 in G) denoted

by v1 and the one denoted by v3. 2
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4.6.4 Fixpoint computation

Given fragmented graphs GD and G, PAllMatch computes matches Π in parallel. It

adopts the fixpoint model of GRAPE (Fan et al., 2018b; gra, 2020b,a). Under BSP, all

workers perform APair on its local data in parallel. At the end of each superstep, all

workers exchange messages, i.e., the changed status of border nodes. By treating the

messages as updates, all workers incrementally refine their local matches in parallel.

The process proceeds until no more changes can be made. It can be formulated as

fixpoint computation in supersteps, as follows:

R0
i=PPSim(Fi,σ,δ,k), (4.3)

R j+1
i =IncPSim(R j

i ,Fi,σ,δ,k,Mi). (4.4)

Here Ri
j denotes the partial result at worker Pi after j rounds of computation; it con-

sists of candidate matches identified at fragment Fi; and (2) Mi is the message sent to

Pi from other workers. Algorithm PAllMatch starts with a procedure PPSim at each

worker, and then iteratively runs IncPSim to incrementally refine the result, as shown

in Section 4.6.

4.6.5 Parallelization

When GD and G are large, quadratic-time could still be expensive. To scale with

large graphs, below we parallelize AllParaMatch, denoted by PAllMatch. Algorithms

ParaMatch and VParaMatch can be parallelized along the same lines.

Setting. We adopt the following parallel setting.

(1) Algorithms run with n shared-nothing workers P1, . . . ,Pn, under the Bulk Syn-

chronous Parallel (BSP) model (Valiant, 1990). The computation is divided into mul-

tiple supersteps.

(2) Graph GD is partitioned into n fragments FD
1 , . . . ,FD

n via edge-cut (Bourse et al.,

2014). Each fragment FD
i is defined as (V D

i ∪OD
i ,E

D
i ,L

D
i ), where (a) (V1, . . . ,Vn) is a

partition of V D, i.e., V D
1 ∪ . . .∪V D

n =V and V D
i ∩V D

j = /0 for any i̸= j; (b) OD
i is the set

of border nodes that are not in V D
i but have incoming edges from vertices in V D

i ; and

(c) FD
i is the subgraph of GD induced by V D

i ∪OD
i . We will see that the vertices in OD

i

are used to synchronize computation between fragments.

(2) Graph G is also partitioned into n fragments FG
1 , . . . ,FG

n via edge-cut (Bourse et al.,

2014), where FG
i = (V G

i ∪OG
i ,E

G
i ,L

G
i ). To reduce communication cost, special care is
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taken such that for each vertex u in fragment FD
i , we assign all vertices v in G with

their adjacent edges to fragment FG
i if (u,v) is a candidate, i.e., hv(u,v)≥σ. This is

done by using inverted indices.

Below we denote by Fi both fragments FD
i and FG

i .

Fixpoint computation. Given fragmented graphs GD and G, PAllMatch computes Π

in parallel. It adopts the fixpoint model of GRAPE (Fan et al., 2018b; gra, 2020b).

It starts with a procedure PPSim at each worker, and then iteratively runs procedure

IncPSim to incrementally refine the result, as follows.

(1) PPSim. In the first superstep, each worker Pi starts by setting cache[u,v′] as

[true, /0] for each border node v′ ∈ OG
i and each vertex u ∈ FD

i , i.e., it assumes that

border node v′ of FG
i could match all vertices in FD

i , due to the absence of the data of

v′ from local fragment Fi. Workers Pi then run AllParaMatch to compute partial result

R0
i in Fi, in parallel.

(2) Messages. To synchronize the workers, the newly deduced invalid matches (u,v)

(i.e., cache[u,v].ϕ is changed from true to false in the last superstep) are exchanged

as messages. More specifically, for each v ∈ Vi, we define a status variable v.status,

which stores invalid matches (u,v) deduced. Initially, v.status is /0. Recall that border

nodes v ∈ Oi are associated with edges across different fragments. At the end of each

superstep, the changes to v.status of border nodes in Oi are sent to other workers as

messages, following the cross edges.

(3) IncPSim. Upon receiving message Mi, each worker Pi incrementally refines partial

result R j
i of superstep j at Pi by treating Mi as updates. More specifically, (a) it first

initializes a set U of invalid matches (u,v) ∈ Mi for border nodes v ∈ Oi; that is,

PAllMatch improves R j
i by using the results of other workers. (b) It then follows the

cleanup stage of ParaMatch; for each (u,v) ∈ U, it updates cache[u,v] to be [false, /0];

it then calls ParaMatch for all entries in cache whose W overlaps with U to re-check

the affected candidates.

At the end of each superstep, each worker generates messages and communicates

with other workers as in (2) above.

(4) Termination. The process proceeds until it reaches a fixpoint i.e., when Rr∗
i =Rr∗+1

i

for all i∈[1,n] at some r∗. The match Π is the union of all partial results, i.e.,

Π=∪i∈[1,n] Rr∗
i .
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Theorem 6: Given fragmented graphs GD and G as above, PAllMatch correctly

computes the match Π of (GD,G). 2

Proof of Theorem 6. This can be proved by constructing a tree T to represent the

dependencies among candidates.

The tree T . We start with the construction of T , where the root is the given pair

(u0,v0), and other nodes on T are candidate matches (u,v). The tree T is con-

structed top-down from (u0,v0). Given any (u,v) in T , assume that cache[u,v] =

[true,{(u1,v1),(u2,v2), . . . ,(un,vn)}]. Then we add (u1,v1),(u2,v2), . . . ,(un,vn) to T
as the children of (u,v); intuitively, the children of (u,v) witness the match (u,v). The

construction stops when either u is a leaf in GD or a pair (u,v) has been verified be-

fore, i.e., (u,v) has already appeared on the path from the root (u0,v0). The tree T is

finite, since there exists at most O(|GD||G|) candidates, and each candidate can appear

at most twice on each path from the root (u0,v0).

By algorithm ParaMatch shown in Fig. 4.4, we can verify that given a candidate

(u0,v0), ParaMatch returns true if and only if there exists such a tree T rooted at

(u0,v0).

Correctness. It suffices to show that for each pair (ut ,vg), sequential algorithm

ParaMatch returns true if and only if the parallel algorithm PAllMatch returns true.

Before showing this, we first establish a connection between ParaMatch and

PAllMatch. Assume that T is the tree constructed for (ut ,vg) when ParaMatch runs

on GD and G; and T 1
i ,T 2

i , . . . ,T mi
i are trees constructed when PAllMatch runs on frag-

ment Fi (i∈ [1,n]); observe that T 1
i ,T 2

i , . . . ,T mi
i may not be connected, since G and GD

have been partitioned via edge-cut. But due to the use of border nodes in OD
i (see Sec-

tion 4.6), T can be obtained by merging T 1
i ,T 2

i , . . . ,T mi
i (i ∈ [1,n]). Note that when

PAllMatch terminates, the cached values cache[u,v] in different trees T 1
i ,T 2

i , . . . ,T mi
i

are consistent, since these values are synchronized during the running of PAllMatch

via messages (see Section 4.6).

Then the correctness can be verified as follows. ParaMatch returns true if and only

if T can be constructed from ParaMatch if and only if T can be obtained by merging

T 1
i , . . . ,T mi

i (i∈[1,n]) if and only if PAllMatch returns true. 2

Remarks. (1) PAllMatch also works asynchronously unless out of space. Under the

conditions of (Fan et al., 2018a) we can show that PAllMatch correctly computes Π

under the adaptive asynchronous parallel model of (Fan et al., 2018a). (2) IncPSim
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can be extended to incrementally link entities in response to updates to D and G, in

parallel.

4.6.6 Implementation of HER on top of GRAPE

Implementation of parametric simulation on top of GRAPE is as follows:

(1)Algorithms run with n share-nothing workers P1, . . . ,Pn, under the Bulk Syn-

chronous Parallel (BSP) model (Valiant, 1990). The computation is divided into mul-

tiple supersteps.

(2) Graph GD is partitioned into n fragments FD
1 , . . . ,FD

n via edge-cut (Bourse et al.,

2014). Each fragment FD
i is defined as (V D

i ∪OD
i ,E

D
i ,L

D
i ), where (a) (V1, . . . ,Vn) is

a partition of V D, i.e., V D
1 ∪ . . .∪V D

n =V and V D
i ∩V D

j = /0 for any i̸= j; (b) OD
i is the

set of border nodes that are not in V D
i but have incoming edges from vertices in V D

i ;

and (c) FD
i is the subgraph of GD induced by V D

i ∪OD
i . Note that (i) partitioning GD

via edge-cut can reduce the communication. Since GD is constructed from a relational

database, GD usually consists of a set of star graphs, where a star graph is a graph with

a central vertex having edges to all other vertices (see Fig. 4.3 for an example); then

when checking whether a candidate (u,v) is valid on such GD, we only need to check

the children of u and v, and do not need communication between fragments, since all

such vertices are in the same fragment due to the edge-cut; (ii) As will be seen below,

the vertices in OD
i are used to synchronize computation between different fragments.

(3) Graph G is also partitioned into n fragments FG
1 , . . . ,FG

n via edge-cut (Bourse et al.,

2014). Each fragment FG
i is defined as (V G

i ∪OG
i ,E

G
i ,L

G
i ). We cannot partition G with

arbitrary partition algorithms; this is because GD has been partitioned, if G is also

partitioned independently, some candidates matches (u,v) will be lost, e.g., u and v

have the same labels, but are located in different fragments. To solve this, we can first

partition GD via edge-cut, and then partition G according to the fragmented GD; more

specifically, for each vertex u of GD in fragment FD
i we assign all vertices v in G with

all its edges to the fragment FD
i such that (u,v) is a candidate match, i.e., hv(u,v)≥ σ;

this can be done using inverted index search.

(4) If G are not large, one can also replicate them to reduce communication cost. To

simply the discussion, in the following we use fragment Fi to represent both the frag-

ment FD
i of GD and the fragment FG

i of G which are assigned to FD
i .
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4.7 Experimental Study

Using real-life and synthetic datasets, we experimentally evaluated HER for its (1)

accuracy, (2) efficiency, (3) scalability and (4) the impact of user interactions on the

accuracy.

Experimental Setting. We start with the setting.

Datasets. We used five real-life datasets shown in Table 4.4: (1) UKGOV, a collection

of Camden Council data (Commercial Contracts, Parking Charges, Schools, Air

Quality and Trees), exported in CSV and RDF formats from the Websites (UK, 2020).

(2) DBpediaP, subsets of DBPedia knowledge base about athletes and politicians

in relations (dbp, 2020a) and graphs (dbp, 2020b). (3) DBLP, publication data in

relations (DBLP, 2020b) and graphs (DBLP, 2020a). (4) Movie, movie data in

relations(IMD, 2020b) and graphs(IMD, 2020a). (5) FBWIKI, consisting of (a) part of

FreeBase (Bast et al., 2014) knowledge graph and (b) entries of people extracted from

the wikidata (wik, 2020).

Based on the TPC-H data generator, we designed a graph generator to produce

synthetic graphs G, controlled by the number of vertices (up to 36M) and edges (up to

305M), with vertex labels drawn from a set of 1.1M words and edge labels from a set

of 100 words. We generated databases D with 70 columns (i.e., edge labels in GD).

Dataset |VD| |ED| |V | |E| Type

UKGOV 12.3M 11.9M 25.8K 76.9K public services

DBpediaP 2M 5.4M 4.8M 11.7M celebrity base

DBLP 36M 58.6M 15.9M 31M citation network

Movie 7.5M 34.2M 2.3M 5.4M movies

FBWIKI 4.0M 7.4M 60.8M 362.2M knowledge base

Table 4.4: Real-life datasets for evaluation

ML models. For Mv, we employed Sentence-bert (Reimers and Gurevych, 2019), a

pre-trained sentence embedding model for its high accuracy. For Mρ, we first con-

structed an edge label corpus (see Section 4.4) for pre-training BERT (Devlin et al.,

2019a), which contains 195K labels in 1845 categories from all datasets. The pre-

training of the BERT-base takes 122.2min with 30 epochs. After that, we utilized 50%

of all match/mismatch pairs to train other modules in Mρ, which takes 325.1s. The

similarity model in Mρ is implemented as a 3-layer neural network with width 1536,
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256 and 1 in each layer. We adopted LSTM for ranking model Mr with the default

configuration in (pyt, 2020), except 650 hidden units per layer. When collecting train-

ing paths for Mr, we took paths of at most 4 edges following (Lin et al., 2015) since

longer paths usually yield weaker associations. For all datasets, we collected 118K

paths as the training data for Mr.

Evaluation. For accuracy tests (the F-measure, see Section 4.4), we manually anno-

tated 5000 matches as ground truth for all datasets, assisted by a mapping provided by

Google (fre, 2020). In addition, we randomly sampled tuples and vertices and obtained

5000 mismatches, which were also manually verified. Thus, the match/non-match ra-

tio is 1. We used 50% of annotated pairs in each dataset to train Mρ, 15% as validation

sets to select bounds σ, δ and k, and the rest for accuracy tests. For efficiency and

scalability evaluations, the default σ, δ and k are set as 0.8, 2.1 and 20, respectively,

unless stated otherwise.

F-measure HER MAGNN Bsim JedAI MAG DEEP

UKGOV 0.94 0.78 OM 0.76 0.84 0.87

DBpediaP 0.96 0.73 OM 0.64 0.95 0.91

DBLP 0.94 0.65 OM 0.53 0.57 0.66

Movie 0.93 0.71 OM 0.62 0.65 0.72

FBWIKI 0.96 0.74 OM 0.79 0.86 0.89

Table 4.5: Accuracy of HER and baseline models (F-measure)

Baselines. We used five baselines. (1) MAGNN (Fu et al., 2020), a GNN-based model

that learns vertex embeddings for similarity, with both vertex attributes and meta-paths.

We implemented it using the default configuration in (Fu et al., 2020) in Pytorch to

extract embedding, and cascaded a 3-layer neural network as a classifier. (2) Bsim,

bounded simulation (Fan et al., 2010), based on vertex labels and topological matching.

(3) JedAI (Papadakis et al., 2018), a rule-based ER toolkit implemented in Java. We

configured JedAI with the “budget- and schema-agnostic workflow”, including rules

of “character 4-grams with TF-IDF weights and cosine similarity”. The threshold pa-

rameters were set default as (Papadakis et al., 2020), which has been verified generally

effective for different datasets. As a state-of-the-art non-ML system, the accuracy of

JedAI is comparable to many ML models (Papadakis et al., 2020). (4) MAG (Konda

et al., 2016) (Magellan), a state-of-the-art ML-based system for ER on relations. We

adopted the configuration in (Mag, 2020), using its random forest model with feature
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tables. MAG is mainly implemented in Python, with several core functions optimized

via C++. (5) DEEP (Mudgal et al., 2018), a deep-learning-based ER Python pack-

age under Magellan, configured as in (Dee, 2020) with the default hybrid model for

matching.

The baselines represent (a) ML systems (MAGNN, MAG and DEEP), (b) non-ML

rule-based method (JedAI), and (c) topological matching (Bsim). We did supervised

training for ML models of MAGNN, MAG and DEEP with the same training data

as for HER. MAGNN and Bsim used RDB2RDF to convert relations to graphs. In

order for MAG and DEEP to take vertex v from graph G as input, we took v along

with its 2-hop neighbors and flattened them into a tuple tv, i.e., we packed v into tv
with important features in its close neighbors as commonly practiced by ER methods.

Then we flattened G into a relation DG. Given a tuple t in D and a vertex v in G, we

compared t with tv for SPair. Similarly, we conducted VPair and APair to find matches

of an input tuple t and all matches, respectively. Bsim takes GD as a graph pattern and

computes its “match” in G for APair; however, it does not support SPair and VPair

since it is based on pattern matching.

For a fair comparison, we tested the baselines and HER with a single machine

using an Intel Xeon 2.5 GHz CPU and 192 GB memory, since only Bsim has a parallel

solution among the five baselines. We also tested the parallel scalability of HER and

Bsim on GRAPE (Fan et al., 2018b; gra, 2020b), using an HPC cluster of up to 16

machines connected by 10 Gbps links; each machine has an Intel Xeon 2.5 GHz CPU

and 192 GB memory. Each experiment was run 5 times and the average is reported

here.

Experimental Results. We next report our findings.

Exp-1: Accuracy. We first tested the accuracy using all datasets in Table 4.4. As

shown in Table 4.5, it is 0.94 for HER on average, consistently outperforming all the

baselines. Bsim ran out of memory (OM) for all datasets, giving no results.

(1) HER is on average 31%, 22% and 17% more accurate than MAGNN, MAG and

DEEP, respectively; this shows that parametric simulation is more accurate than ML

methods alone, by embedding ML models in topological matching and checking

“global” properties. In particular, it quantifies entity similarities better than meta-path-

based measures (MAGNN).

(2) HER beats JedAI by 42% on average, justifying that linking entities across relations
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Figure 4.8: HER accuracy,scalability and efficiency with varying parameters

and graphs needs both inductive topological matching and ML models, beyond existing

rules.

Varying σ and δ. Fixing δ = 2.4, k = 20, we varied σ from 0.4 to 0.99, to study the

impact of σ on F-measure with 3 datasets for which optimal parameters are close. As

shown in Fig. 4.8(a), F-measure first grows steadily when σ increases; it reaches the

peak and then drops sharply with larger σ. This is because when using lower σ values,

an extensive number of pairs are considered as matches, leading to a decrease in recall.
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Figure 4.9: HER accuracy,scalability and efficiency with varying parameters

Conversely, setting a higher σ results in only perfect matches being considered, lead-

ing to decrease in precision. F-measure is the harmonic mean of Precision and Recall

and the threshold is a trade-off between them. Fixing σ = 0.85, k = 20, we varied δ

from 1 to 3. As shown in Fig. 4.8(b), the impact of δ is similar for the same reason.

Varying k. Fixing δ=2.4 and σ=0.85, we varied bound k on descendants from 5 to

25, to test the impact of k on F-measure with the same datasets as above. As shown

in Fig. 4.8(c), F-measure first increases and then remains stable after k reaches a value
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Figure 4.10: HER accuracy,scalability and efficiency with varying parameters

around 18. Both Precision and Recall increase at the beginning since more properties

(path-path pairs) are inspected. However, when the pairs already accumulate sufficient

scores, increasing k no longer improves F-measure.

DBpediaP DBLP

SPair VPair SPair VPair

HER 2.8×10−5 1.4 1.2×10−4 15.9

MAGNN 9.6×10−4 357.1 8.3×10−4 2374.3

Bsim NA NA NA NA

JedAI 1.3×10−2 11.5 1.1×10−2 62.0

MAG 1.0×10−1 84.6 9.8×10−2 480.5

DEEP 2.6×10−1 209.8 2.5×10−1 1188.2

Table 4.6: Sequential execution time (s)
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Exp-2: Efficiency. Over real-life datasets DBpediaP and DBLP, we report in Table 4.6

the efficiency of modes SPair and VPair of HER versus their competitors, using a single

machine for fair comparison, since most of the baselines are not parallel. The results

on the other datasets are consistent (not shown). As remarked earlier, Bsim supports

neither modes.

SPair. Given a pair (t,vg), HER checks whether (t,vg) makes a match in 0.03ms and

0.12ms on DBpediaP and DBLP, respectively. On average it outperforms MAGNN,

JedAI, MAG and DEEP by 20.6, 288, 2262 and 5629 times, respectively. That is, HER

works well in the SPair mode.

VPair. Given a tuple t, VPair finds all its matching vertices in 1.43s and 15.9s over

DBpediaP and DBLP, respectively. For fair comparison, as HER firstly applies

inverted index to quickly search for candidate matching pairs before parametric

simulation, we also supported the blocking step in JedAI, MAG and DEEP, using

person names in DBpediaP and author names in DBLP to generate candidate tuple

pairs before matching. On average HER outperforms the four baselines by 199.7, 6.0,

44.7 and 110.7 times, respectively. Again, this shows that the response time of VPair

is reasonably short.

APair. We find the following. (a) On DBpediaP, it takes 93.4s to convert data between

relations and graphs, and 405.3s to finish matching in the APair mode, while the

other baselines could not terminate within hours. (b) APair takes much longer than

SPair and VPair, although the three have the same worst-case complexity. This is

because that APair has to check all candidates across GD and D. While we can run

APair offline on a single machine, we will see in Exp-3 that APair runs much faster

in parallel when given multiple processors. (c) Bounded simulation Bsim takes much

longer than HER and exceeds memory limit even on small graphs, since it takes the

entire GD as a graph pattern and computes the maximum match. In contrast, HER

only checks vertices reachable from (ut ,vg).

Exp-3: Scalability. We next evaluated the (parallel) scalability using large real-life

datasets and synthetic data.

Varying n. Taking the entire D and G as input, we varied the number n of workers from

4 to 16 to test the parallel scalability of HER. As shown in Figures 4.8(d)–4.9(a), on

average APair is 2.6, 3.4, 3.8 and 2.8 times faster on DBpediaP, FBWIKI, DBLP and

synthetic data (|GD| = 342M and |G| = 202M), respectively. The results are similar
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for SPair and VPair. We have the potential for further enhancement in these results if

an alternative graph partitioning approach is employed. The primary challenge lies in

optimizing the communication process, particularly concerning bridge vertices, which

exchange messages at each super step.

Synthetic data. Fixing n = 16, we tested APair mode using large synthetic graphs,

where |V | = 30M and |E| = 172M for G, and |VD| = 36.5M and |ED| = 305.5M for

GD. We also tested SPair and VPair modes with n = 1 using whole synthetic data,

which takes 0.68ms and 15.3s, respectively.

(1) Varying |GD|. Taking the entire G as input and varying the size of GD, we tested

the performance of HER. Figure 4.9(c) shows that the execution time increases with

larger |GD| and HER takes 107s when |G|=202M and |GD|=342M. In this scenario,

increasing the size of GD leads to an increase in runtime. Determining a precise speed

factor is inherently challenging, primarily due to the experimental nature of this eval-

uation, which is why Figure 4.9(c) has been included. It is worth emphasizing that

the potential for improvement is largely possible on the availability of an ideal graph

partitioning algorithm capable of significantly reducing message exchanges. In an op-

timal scenario where no messages are sent, achieving perfect parallelism would be

attainable.

(2) Varying |G|. Figure 4.9(b) reports results over the entire GD by varying |G|. The

results are consistent with Figure 4.9(c).

Varying k. Fixing n = 16 and varying k from 2 to 10 and 8 to 24 with different σ and δ,

we studied the impact of k over FBWIKI and DBLP, respectively. The values of k on

FBWIKI are smaller because each vertex has less descendants on average. As shown

in Figures 4.9(d) and 4.9(e) for APair, HER takes longer as k increases, as expected.

This is because with larger k, more path-path pairs need to be inspected. Results are

consistent for SPair and VPair, and on other graphs.

Varying σ and δ. We tested the impact of thresholds σ and δ with 16 machines. Vary-

ing σ from 0.75 to 0.95 with different configurations of δ and k, as shown in Fig-

ures 4.9(f) and 4.10(a) over DBpediaP and FBWIKI, respectively, APair takes less time

as σ increases. This is because more invalid match candidates are removed in the early

stage given higher σ; this reduces candidate checking and accelerates the matching.

However, it takes longer as δ increases from 0.2 to 0.6 on FBWIKI and from 1.6 to 4.8

on DBpediaP, with various configurations of σ and k (see Figures 4.10(b) and 4.10(c)).
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The reason for this is that in order to reach higher matching threshold δ, the algorithm

needs to check more path-path pairs. Note that the varying range of δ for FBWIKI is

smaller than that for other datasets as its matching paths are much longer.

Results are consistent for SPair and VPair on other graphs. We also report the

scalability and efficiency of HER in the APair mode on Movie in Figure 4.11. From

the figure, we find the following. (1) As the number n of workers increases from 4

to 16, APair becomes 2.3 times faster on Movie (see Fig. 4.11(a)); and (2) Figures

4.11(b)-4.11(d) show the efficiency of APair on Movie with 16 workers and various

parameter settings, which show that larger k or δ increases the execution time while

larger σ decreases the matching time. These results are consistent with those on other

datasets in Section 4.7.
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Figure 4.11: HER scalability and efficiency on Movie

Exp-4: Refinement. We next tested the impact of user interaction on the accuracy,

using UKGOV and Movie. We have chosen these datasets randomly among others. In

each round, 50 pairs were given to five users. The users inspected them and annotated

each pair either match or mismatch as feedback. Then we applied majority voting
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to the feedback to reduce the number of false annotations. These annotated pairs are

collected to fine-tune the ML models as outlined in Section 4.4. As shown in Figure

4.10(d), F-measure goes up by 3% and 4% on UKGOV and Movie, respectively, in the

first round, and 5 rounds suffice for HER to reach 100% accuracy. The results on other

datasets are consistent (not shown).

Summary. We find the following. (1) HER is more accurate than ML and rule-based

methods. On average HER beats MAGNN, JedAI, MAG and DEEP by 31%, 42%,

22% and 17% in accuracy, respectively. (2) HER also performs the best in efficiency.

When running in the VPair mode on a single machine, it is 90 times faster than these

baselines on average. (3) When |G|=202M and |GD|=342M, SPair and VPair take

0.68ms and 15.3s on a single machine, respectively, and APair takes 107s using 16

machines. In contrast, all the baselines could not finish in hours. (4) HER scales well

with the number n of processors. It is on average 3.2 times faster when n varies from

4 to 16. (5) At most 5 rounds of user interaction suffice to fine-tune the ML models in

parametric simulation. While this finding is based on experimental data, it is important

to note that this value may vary across different datasets. The results presented here

pertain specifically to the datasets utilized in our experimental settings.
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Conclusion

This thesis introduces two different approaches for improving data quality. In Chapter

3, (1) We formulate a new problem for determining the timeliness of attribute values.

(2) As a solution to the problem, we propose a creator-critic framework by combining

deep learning and logic deduction, for the two to enhance each other. (3) We develop

a novel ranking model to learn temporal orders on attribute values. (4) We show how

to justify the learned orders, deduce more ranked pairs and provide feedback for the

learner, by extending the chase using CCs. A potential limitation of the deep learning

approach is that it does not consider higher order attribute correlation other than all

attribute serialization. This may be alleviated using methods (e.g., (Wang et al., 2021;

Cheng et al., 2016)) that consider high order attribute interaction.

In Chapter 4, we have developed system HER to semantically link entities across

relational databases and graphs. We have proposed parametric simulation that embeds

ML in global topological matching, and shown that it is in quadratic-time, the same as

relational entity resolution. We have also developed ML models for learning parame-

ters and parallel algorithms underlying HER. The ML models help us to link entities

semantically. However, limitation of these models is that their accuracy depend on

training data, hyperparameters and the model itself, which (i) creating training data for

vertex and edge closeness might be biased (ii) and is hard to control hyperparameters

and (iii) the model limitation to catch relatedness of vertex and edge values.

One future topic for data currency is to study how to catch conflicts and missing

values given temporal orders. Another topic is to extend CCs (Fan et al., 2012) by

embedding ranking models as predicates, to improve the ranking accuracy with logic

conditions and interpret ranking in logic.

93
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Another topic for future work for entity linking is to extend HER to other data

formats, e.g., JSON. Another topic is to extract, integrate and query data of different

sources in data lakes (Nargesian et al., 2019) with HER.
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