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Abstract

In 1736 Euler published a proof of an astounding relation between π and the reciprocals

of the squares.

π2

6
= 1+ 1

4
+ 1

9
+ 1

25
. . .

Until this point, π had not been part of any mathematical relation outside of geo-

metry. This relation would have had an almost supernatural significance to the math-

ematicians of the time. But even more amazing is Euler’s proof. He factorises a tran-

scendental function as if it were a polynomial of infinite degree. He discards infinitely-

many infinitely-small numbers. He substitutes 1 for the ratio of two distinct infinite

numbers.

Nowadays Euler’s proof is held up as an example of both genius intuition and flag-

rantly unrigorous method. In this thesis we describe how, with the aid of nonstandard

analysis, which gives a consistent formal theory of infinitely-small and large num-

bers, and the proof assistant Isabelle, we construct a partial formal proof of the Basel

problem which follows the method of Euler’s proof from his ‘Introductio in Analysin

Infinitorum’. We use our proof to demonstrate that Euler was systematic in his use of

infinitely-large and infinitely-small numbers and did not make unjustified leaps of intu-

ition. The concept of ‘hidden lemmas’ was developed by McKinzie and Tuckey based

on Lakatos and Laugwitz to represent general principles which Euler’s proof followed.

We develop a theory of infinite ‘hyperpolynomials’ in Isabelle in order to formalise

these hidden lemmas and we find that formal reconstruction of his proof using hidden

lemmas is an effective way to discover the nuances in Euler’s reasoning and demystify

the controversial points. In conclusion, we find that Euler’s reasoning was consistent

and insightful, and yet has some distinct methodology to modern deductive proof.
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Chapter 1

Introduction

In 1644 Mengoli proposes the following problem: what is the sum of the reciprocals

of the squares? This series converges exceptionally slowly: to find the result to six

decimal places would require summing 1000 terms. Almost a century later, after many

mathematicians, including Jacob, Johann and Daniel Bernoulli, Leibniz, Stirling, and

de Moivre, had tried and failed, Euler proves that

1+ 1
4
+ 1

9
+ 1

16
+ 1

25
+⋯ = π2

6

His proof is met with simultaneous admiration and skepticism from his contemporar-

ies [33, p.1-4]. In this proof, at a time when the Fundamental Theorem of Algebra is

not yet proven, he derives the sum by factorising the sine function as though it were an

infinite polynomial. Euler revisits his proof four times [70, p.5], finally writing it out in

a textbook for the analysis of the infinite [29]. This last proof induces similar feelings

of wonderment and incredulity in the modern reader. Euler seems at once careless and

masterful: discarding infinitely-many infinitesimals, equating infinitesimally-different

polynomials, and extending theorems beyond the finite to the infinite.

Pen-and-paper reconstructions of Euler’s arguments using nonstandard analysis

seem to demonstrate that Euler’s reasoning could be made consistent and that Euler

appreciated the subtleties of infinitesimals [57, 55, 76, 5]. A formalisation of Euler’s

arguments in the proof-assistant Isabelle can take this further since it would ensure

the concepts involved are perfectly compatible and precisely expressed. It would also

highlight any intuitive leaps or misunderstandings that humans might not notice. For

this research, we have chosen to formalise Euler’s proof of the Basel problem, as he

stated it in his ‘Introductio in Analysin Infinitorum’(henceforth the ‘Introductio’) [29].

15



16 Chapter 1. Introduction

1.1 Motivation

In the 18th century, mathematicians were exploring the infinite: finding the sums of in-

finite series, evaluating infinite products, taking the ratios of infinitely-small quantities

and expressing quantities as infinitely continued fractions. Not every mathematician

was comfortable using or manipulating infinitely-large and infinitely-small numbers.

They could easily achieve absurd results. Euler seemed to have a genius intuition for

working with these quantities. In the ‘Introductio’ he tried to explain their use to any

student of mathematics. He felt, although subtle, working with these numbers could be

done using ‘ordinary algebra’ [29, p. v]. However, although this textbook is still lauded

as one of the best and most illuminating textbooks, even to learn from today [10], he

did not manage to convince the world that infinite and infinitesimal numbers should

have a place in mathematics. When limits were invented as a tool, mathematicians

gradually considered these as safer and more rigorous and they replaced the more intu-

itive infinitesimals. But even Cauchy, popularly regarded as rejecting this old method,

still relied on infinitely-small numbers in his arguments [53, p. 202].

In the 1960s Abraham Robinson created nonstandard analysis which gave a formal

basis to infinitely-large and infinitely-small numbers as an extension of the real num-

bers [15, p. 78]. There is reasonable doubt that the hyperreals are exactly like the in-

finitesimals and infinities that Euler used in an ontological sense [34, 5]. Nonetheless,

we believe his arguments can faithfully be reproduced with the use of hyperreals. They

can also be rehabilitated in terms of standard analysis e.g. limits but these do not follow

the form of the argument so closely. There are several pen-and-paper reconstructions

of Euler’s arguments using nonstandard analysis [76, 57, 55]. These reconstructions

argue that in his apparent leaps of intuition he was obeying general principles and

these principles are called ‘hidden lemmas’ by McKinzie and Tuckey [55] and Laug-

witz [52].

1.2 The Basel Problem

The Basel Problem was first thought of by Mengoli in 1644 [7]. He wanted to know

the sum of the reciprocals of the squares:
1
12 +

1
22 +

1
32 + ⋅ ⋅ ⋅+

1
n2 . . . .

He did not know the answer, not even a good estimate of it, since the series converges

extremely slowly. It was not until 1665 that Wallis was able to compute it to three



1.3. Aims of this thesis 17

decimal places. Jakob Bernoulli, Leibniz and other leading mathematicians of the time

were unable to solve it [57]. Euler heard about it from his mentor Johann Bernoulli

(Jakob Bernoulli’s brother) and was the first to discover that the sum of the series was:

1
12 +

1
22 +

1
32 + ⋅ ⋅ ⋅+

1
n2 ⋅ ⋅ ⋅ =

π2

6
.

This was all the more amazing to the 18th century mathematicians because π, the

number that describes a circle, was turning up in a context which had no apparent

connections to circles or geometry. Euler was able to calculate the sum to 17 decimal

places before he managed to prove it, so he may have guessed the true sum even before

he produced his first proof. [70, p. 5]

Euler’s first published ‘proof’ [31] was doubted by other mathematicians of the

time. However, it certainly provided justification for the result, and Euler had shown

that the method could be used to derive other known results, so it was reasonable to

assume it had some meaning. The proof involved the factorisation of the sine function

by its roots, just as we factorise polynomials. Bernoulli asked how it was known that

all the roots had been found. [26, §4 - §6]. Whether or not it was justified to treat

the sine function as an infinite polynomial, this proof had a gap, which Euler knew

about and tried to fill. He found a way to complete the proof, and this also led to his

discovery of a shorter demonstration which is he presented in his ‘Introductio’ [29].

Euler later found solutions to more generalisations of the Basel problem, and a

further proof of the original problem using l’Hôpital’s rule [70]. However, he never

managed to generalise it to odd numbers and this remains unsolved to this day. In fact,

one generalisation of the Basel problem is the Zeta function [4, p. 1067], which is the

fundamental concept behind the Riemann Hypothesis [9].

1.3 Aims of this thesis

This thesis includes a partial formalisation in Isabelle of Euler’s proof of the Basel

problem from the ‘Introductio’. However, the formalisation is the means by which we

accomplish the aims of thesis, rather than the aim itself. Our aims are as follows

1. To improve our understanding of the concepts used by Euler in the ‘Introduc-

tio’, in particular, ‘infinitesimal’, ‘infinite number’ and ‘polynomial’, by using

the analogous concepts in nonstandard analysis and to follow Euler’s reasoning

using formal proof in Isabelle



18 Chapter 1. Introduction

Figure 1.1: Timeline of Euler’s proof of the Basel problem: Euler’s papers are referred

to by their Eneström numbers E20 [25], E41 [27] and E63 [28].
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2. To examine the validity of the logic of Euler’s reasoning and the use of hidden

lemmas (see Section 4.4.3) to explain the ‘leaps of intuition’ in Euler’s proof

3. To provide insight into the reasoning of Euler’s proof of the Basel problem from

the ‘Introductio’ and its relationship to the rehabilitation given by McKinzie and

Tuckey [57].

Some parts of the thesis are a reconstruction of Euler’s work directly, some parts are

reconstructions of Euler’s reasoning through McKinzie and Tuckey’s interpretation,

and other parts are reconstructions of McKinzie and Tuckey’s reasoning that does not

directly correspond to parts of Euler’s proof.

To approach McKinzie and Tuckey’s reasoning which does not directly correspond

to Euler, we have used a combination of formal proof for discovery of gaps or show

validity and we have often used pen-and-paper proofs to plug the gaps we have dis-

covered. It would be ideal to have plugged the gaps also using formal proof, however,

we have used formal proof as a tool to break down the proof layers and force us to

examine the details the proof and how the structure of the proof fits together. Once

this additional level of detail is achieved, there are diminishing returns from breaking

the proof down a further level of detail. The proofs are less mathematically-complex

at the lower level: they do not involve as great leaps of reasoning and to formalise

them would raise fewer points of interest, although it could still be long-winded. In

this thesis we have used formal proof as a tool for understanding and analysing proofs

rather than considering it to be a necessary replacement for mathematical proof.

As for our approach to Euler’s reasoning, we have focused on the parts which

are considered to be controversial. We have not made great changes to McKinzie

and Tuckey’s interpretation of Euler’s reasoning as we have found it well-thought out

and, by comparison with Euler’s original text, generally faithful. However, we have

reanalysed their concept of determinacy/Euler-convergence since this is the greatest

liberty and arguably the greatest discovery they have made in their interpretation: they

claim that it transforms Euler’s reasoning into ‘a model of deductive reasoning’. We

would not entirely agree with this statement, however, we do find that it allows us to

formalise Euler’s reasoning with minimal deviations.

1.3.1 Categories of unformalised reasoning

There are many parts of Euler’s reasoning which have not been formalised by us. These

fall into the following categories:
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1. They do not correspond to modern deductive reasoning

2. They are uncontroversial, but long-winded in Isabelle.

3. They are not relevant to the main body of the proof of the Basel Problem (and

the truth of the statement is not under question)

Parts of McKinzie and Tuckey’s reasoning also fit into the second two categories. In

Section 6.1 we will describe which parts of Euler’s proof have been formalised and how

those which have not been fit into these categories. In Figure 6.1 we show the structure

and scope of the formalised proof. Accompanying this we give Table 6.1 which sum-

marises the categories the unformalised reasoning falls into along with Table 6.2 which

summarises the formalised reasoning with the reason we chose them as candidates for

formalisation.

Now we justify the main choices made to accomplish our research aims: why we

focus on the proof of the Basel Problem from the ‘Introductio’, why we use non-

standard analysis to represent Euler’s reasoning, and why we use Isabelle as our proof

assistant.

1.4 Versions of Euler’s proof of the Basel problem

There is no single account of Euler’s proof of the Basel problem, not even in terms

of the basic structure. There is even some dispute as to how many proofs of the Basel

problem Euler published. This can probably be explained by the fact that the proofs are

not entirely distinct from each other and some have more unique features than others.

As related by Sandifer [70], Euler published four distinct proofs: three in 1735 [27]

and a fourth in 1741 [28]. However, as Sandifer acknowledges, Euler published ver-

sions of his proofs of the Basel problem in other papers and books. There is a paper

published by Euler in 1743 entitled ‘Another dissertation on the sums of the series of

reciprocals arising from the powers of the natural numbers, in which the same sum-

mations are derived from a completely different source’ [26] (title translated from the

Latin by Aycock [33]) and from the title alone we could deduce this is yet another

proof of the Basel problem. There is, of course, also a version of the proof given in the

‘Introductio’ [29].

Euler’s proofs of the Basel problem were not distinct proofs, rather, they were dif-

ferent iterations of, or variations on, the same proof. The 1741 proof is nearly identical
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to that given in the ‘Introductio’: the main difference between them is that as the ‘In-

troductio’ was intended as a textbook, his presentation is more detailed. Even within

the ‘Introductio’, Euler’s proof is spread across several chapters and is intertwined with

related work on power series, logarithms and polynomial factors. So it is a subjective

task to separate out parts of the ‘Introductio’ and call them together ‘the proof of the

Basel Problem’. Several of the papers which we draw on for their analysis of this

proof are in fact analysing only Euler’s factorisation of the sine function. However, the

factorisation overlaps so thoroughly with the proof of the Basel problem, that the two

derivations are simply different perspectives on the same proof.

A key decision in our work was to select a version of the proof for mechanisation.

The proof as related in the ‘Introductio’ has two significant advantages over the others.

First, it is the easiest to follow and most rigorous account of all his proofs since Euler

wrote the ‘Introductio’ as a textbook for beginners. Second, McKinzie and Tuckey

give a thorough pen-and-paper rehabilitation of this proof of the Basel problem using

nonstandard analysis. This makes it the most feasible choice [57] and we base our

formalisation of the proof on their rehabilitation.

1.5 Theories of infinitesimals: nonstandard analysis

It is necessary to find a suitable theory of analysis and justify that it captures Euler’s

reasoning. Some mathematicians do not find that infinitesimals represent accurately

how Euler reasoned [35]. Other methods have been used to understand his work, for

example, protolimits [35, p. 17]. We do believe Euler explicitly uses infinitesimals and

discuss his conception of them in Section 2.3.1.2. Even if we accept that infinitesimals

best describe Euler’s reasoning, we must deduce which properties his infinitesimals

obeyed. It is possible that Euler’s theory was inconsistent, if every step is interpreted

literally, but we should look for the closest consistent theory that we are aware of. The

two most famous theories of infinitesimals are synthetic differential geometry [6] and

nonstandard analysis. The latter was Robinson’s attempt at giving the infinitesimal

analysis of the 18th century a rigorous and consistent basis [40, 43]. Both have been

used to understand early analysis1. However we know that Euler does not use nilpotent

infinitesimals in the Introductio since his infinitesimals were invertible, which there-

fore rules out synthetic differential geometry. Besides this, there are several rehabil-

itations of Euler’s arguments in terms of nonstandard analysis. Nonstandard analysis

1See Bell’s textbook [6] for a description of nilpotent infinitesimals and their use in early analysis.
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also has a well-developed library in Isabelle on which to base this work.

1.5.1 Different approaches to nonstandard analysis

Nonstandard analysis is concerned with the hyperreals which are an extension of the

reals to include infinitesimals and infinitely-large numbers. Different approaches can

be taken to nonstandard analysis. Robinson’s original construction of the hyperreals

(the closure of the reals with the infinitesimal and infinite numbers) used the Com-

pactness theorem to form a model of the hyperreals [40]. Alternatively, the hyperreals

can be defined as certain equivalence classes of sequences of reals numbers via the

ultrapower construction [40], or, now that we know the hyperreals are consistent, we

could take an axiomatic approach [43]. However, all these approaches agree on the

properties of the hyperreals, and as Bair et al. argue [5], for understanding Euler’s

work, it is the methods of proof that we are interested in rather than the ontology of the

concepts. Thus we can consider them in terms of their properties since we wish to ob-

serve whether they behave analogously to Euler’s infinitely-large and infinitely-small

numbers. We describe the relevant parts of nonstandard analysis and compare them in

detail to Euler’s concepts in Section 2.3.

1.6 Interactive theorem provers: Isabelle

There are several suitable interactive theorem provers within which a proof of the Basel

problem could be formalised. Notable among them are Coq [8], Lean [60] and Isa-

belle [65]. Although each have advantages, Isabelle has a well-developed nonstandard

analysis library [45] which meant that there would be less work required to develop the

mathematical framework for our proof. Nonetheless we found that there were many

additional theorems in nonstandard analysis that we needed to prove to progress our

proof of the Basel problem (see Sections 3.1- 3.4). Isabelle also has a language for

structured proof called Isar [62] (see Section 2.2.1), which was useful for represent-

ing Euler’s reasoning more faithfully. Worth mentioning is another formalisation of

nonstandard analysis by Ruben Gamboa in the automated theorem prover ACL2 [38].

ACL2 has a first-order logic with only limited support for quantification therefore it is

not suitable for our purposes.
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1.6.1 Current nonstandard analysis library in Isabelle

The current nonstandard analysis library in Isabelle uses the ultrapower construction

of the hyperreals (see Section 2.3.1.3) [45]. Major results that have been formalised in-

clude the Transfer Principle (see Section 1.5), which has been formalised as a method;

properties of hypernatural numbers: these are the ordinary natural numbers together

with some infinite numbers that share similar attributes including

• an induction principle

• hypercomplex numbers, which are an extension of the hyperreals using the square

root of minus 1 in exactly the way that the complex numbers are an extension of

the real numbers

• limits

• continuity

• hyperreal powers, including infinite and infinitesimal powers.

1.7 Previous work

Here we motivate the use of McKinzie and Tuckey’s and to a lesser extent other math-

ematicians’ work to guide our proof-plan. We also describe prior formalisations of

historical mathematics, Newton’s Principia and Hilbert’s Geometry, and we compare

these endeavours to this project. Finally, we discuss different rigorous theories of in-

finitesimals.

1.7.1 Previous formalisations of historical mathematics

There have been other formalisations which have attempted to reconstruct the math-

ematics of the past in proof assistants. The most directly similar is a mechanisation

of Newton’s ‘Principia Mathematica’ in Isabelle by Fleuriot and Paulson [36, 37].

This also uses nonstandard analysis to represent infinitesimals, along with geometrical

reasoning, and Newton was nearly a contemporary of Euler: he died when Euler was

19. Much of the nonstandard analysis library in Isabelle was originally developed for

that project. Newton discusses ‘ultimate’ situations and ‘evanescent’ quantities which

Fleuriot and Paulson choose to represent using the infinitesimals from nonstandard
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analysis. They are able to reconstruct Newton’s proofs as formal proofs, however,

many points had to be decided by their interpretation, for example, to represent time

geometrically as distance or area [37, p. 2 ]. Euler has more clarity in his prose and his

proof of the Basel problem from the ‘Introductio’ has no directly geometrical reason-

ing. Therefore less interpretation is required, although this also means that we might

wish to avoid using geometry as a tool when it comes to filling any potential gaps in

his argument.

Meikle [58] and Scott [72, 74, 73], along with Fleuriot, consecutively worked

on formalising parts of Hilbert’s ‘Grundlagen der Geometrie’ in Isabelle. Hilbert’s

‘Grundlagen’ gives a set of axioms for geometry along with theorems derived from

them. Hilbert was a driving force behind the formalisation of mathematics and ad-

vocated for developing firm foundations from a finite, complete set of axioms [80,

§1.1]. The aims of his programme, although doomed by Gödel’s Incompleteness The-

orems [80, §1.4], fit themselves well to formalisation in a proof assistant, in contra-

distinction with the axiomless mathematics of Euler’s time. Yet, Scott and Fleuriot

discovered that the Polygonal Jordan Curve Theorem, whose proof was claimed by

Hilbert to be ‘without serious difficulty’ [42, p. 6], was extremely involved to prove

and required the help of automated proof search [72]. Meikle and Fleuriot conducted

careful formalisation of Hilbert’s axioms and some of his theorems, and found that

Hilbert still relied on intuition and diagrams for some points of his reasoning [58, p.

334]. Scott and Fleuriot found some subtle errors in Meikle and Fleuriot’s formalised

axioms [71]. The difficulties in formalising mathematics which seems designed for the

purpose illustrates how much interpretation and precision is required in reconstructing

historical, and even modern, mathematics.

1.7.2 Previous formalisations of the Basel problem

Several formalisations of the Basel problem have previously been carried out, however

all of them use standard analysis. In Isabelle, the proof of the Basel problem has

been carried out by Eberl [19]. The origin of the proof being formalised is unclear

to us. It uses the language of modern standard analysis, and it uses concepts such

as continuity which were not fully formulated in Euler’s time. The proof uses the

Weierstrass product form of sine. This is the lemma used in Euler’s 1735 proof, but

made rigorous, so it is likely that Eberl’s proof relates to this proof by Euler although

it does not directly match the reasoning of any of Euler’s proofs. In mathematical
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notation, Eberl proves
∞
∑
n=0

1
(n+1)2 =

π2

6
.

A proof of the Basel problem has also been formalised in Coq by Madiot [54]. It

is unclear which proof is being used in this formalisation: however one step in the

proof is to link the even terms of the 1/n2 series to the series itself. This suggests the

proof is similar to one by Eberlein [20] in which at one point he simplifies by only

considering odd terms. Another proof of the Basel problem was formalised by Pąk

and Korniłowicz in Mizar [64]. They state that their proof is elementary, however it

does use many concepts that Euler and his contemporaries would have been unaware

of including general algebraic structures such as commutative rings, loop structures,

integral domains and a sieve functor. Nor does it appear to correspond in form to any

of the 18th century proofs. They find the value of the sum by bounding the series to m

above and below and using the Squeeze Theorem. A proof given by Cauchy in 1821

has been formalised by Carneiro in Metamath [12]. Due to Cauchy’s reputation for

rigour and as one of the creators of modern analysis, some may consider Cauchy’s

proof the first rigorous proof of the Basel problem. Finally, a formalisation is given

in HOL-Light by John Harrison based on Taylor Series [41] and in Lean by Masdeu

based on a proof by Daners [13].

1.7.3 Use of nonstandard analysis in formalisation

Nonstandard analysis has been used by Fleuriot to formalise some of Newton’s reas-

oning from his ‘Principia’ in the proof assistant Isabelle [36]. The reasoning in the

‘Principia’ is geometric and includes some infinitely-small geometric quantities. New-

ton was an older contemporary of Euler, and Euler of course used the calculus that

Newton and Leibniz had invented, although he avoided using it in the ‘Introductio’.

That Newton’s reasoning can be faithfully represented by a formalisation using non-

standard analysis provides support that Euler’s reasoning could be.

1.7.4 Reconstructions of Euler’s work in nonstandard analysis

There are many commentaries on Euler’s work, especially the Basel problem, which

interpret his mathematics using standard analysis. See Varadarajan [77] for example

who uses modern notation and concepts, e.g. limits, and ascribes the arguments to

Euler without even noting the differences or Eberlein’s [20] derivation of Euler’s in-
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finite product for sine. Eberlein acknowledges that although his proof follows Euler’s

basic idea, it uses standard 19th century analysis and he therefore calls it a new proof.

However commentaries on Euler’s work using nonstandard analysis are by their nature

more likely to analyse Euler’s use of infinitesimals. Even so, we should not assume that

Euler’s infinitesimals are identical with those described by nonstandard analysis. Bair

et al. [5] argue that even if their properties are identical, they are constructed with a

different ontological basis. As we also noted in Section 1.5, there are other theories of

infinitesimals, e.g. synthetic differential geometry which uses nilpotent infinitesimals.

However nonstandard analysis is a good fit with many concepts that parallel Euler’s

own. We compare Euler’s concepts to nonstandard analysis throughout the thesis, see

for example Section 2.3.1.2. The closest prior rehabilitations of Euler’s proof of the

Basel problem have been done using nonstandard analysis. McKinzie and Tuckey [57]

and Kanovei’s [76] reconstructions of Euler’s proof of the Basel problem and infinite

product for sine closely follow Euler’s arguments and concentrate on filling in gaps

that they identify in his arguments. For this reason, they are a good basis for formal-

ising Euler’s proofs faithfully. McKinzie and Tuckey have also reconstructed some of

Euler’s other work by using nonstandard analysis [55, 57]. We will give a brief de-

scription here of their reconstruction of some of the results from the ‘Introductio’ apart

from the Basel problem (as we reference their reconstruction of the Basel problem

throughout our thesis, we do not describe that here). Their methods for reconstructing

the other results are also useful for this project: for example we use their notion of

determinacy (see Section 4.4.2).

McKinzie and Tuckey define e by the expression (1+1/K)K for infinite hypernat-

ural K following Euler. This includes showing that the expression is determinate, that

is if the value chosen for K is changed to another infinite hypernatural, the expres-

sion will not change by more than an infinitesimal (see Section 4.4.2). They derive, as

Euler did, the power series for sine and cosine. Interestingly, their argument in one step

of this proof appeals to a diagram to demonstrate that 0 < sinθ < θ < tanθ for hyper-

real 0 ≤ θ ≤ π/2. This trigonometric estimate is also used in their rehabilitation of the

Basel problem but without justification. Implicitly, they assume that usual geometric

diagrams describe a metric geometry where the metric takes values in the hyperreals.

This appeal to geometry is consistent with Euler’s conception of sine and cosine as

defined via geometry. However, whatever ‘proof’ this diagram forms is not readily

formalisable: it is based on triangle geometry and perhaps a degree of intuition. In

order to formalise it, we would need an alternative way to obtain this result from tri-
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gonometry. Unfortunately Isabelle’s standard definition of sine and tangent is in terms

of their power series, and thus using these as definitions would make the argument

circular. Elsewhere, we formalised another definition of sine and cosine in terms of

three simple characterising equations including the angle-sum identity for cosine [59].

However, it was not possible to directly prove that there did in fact exist a unique pair

of functions satisfying these equations. So for this, we would need to look to geometry.

After reconstructing Euler’s proof of the power series for sine and cosine, McK-

inzie and Tuckey follow Euler’s reasoning to derive the power series for the natural

logarithm ln. As support for their rehabilitation of Euler’s proofs, they also prove and

formulate many of the lemmas that Euler used both explicitly and implicitly. They

prove the Binomial Theorem for fractional (hyperreal) exponents since Euler used this

theorem in his proofs. Similarly, they prove the Summation Comparison Theorem.

They also carefully define any concepts that they believe Euler used such as determin-

acy. According to McKinzie and Tuckey, determinacy provides a criterion for judging

whether infinitely many infinitesimals may be ignored in an infinite sum, which was a

question Euler considered on multiple occasions. Hence it is an important concept for

formalising Euler’s work. We discuss determinacy and the related concept of Euler-

convergence in full detail in Section 4.4.2.

1.7.5 Other approaches to Euler’s work

There are interpretations of Euler’s work which do not use infinitesimals. Ferraro

argues that interpreting Euler’s arguments by using any kind of modern mathematics,

standard or nonstandard analysis, ‘is only possible if elements are added which are

essentially alien to it’ [35, p. 2]. In particular, he makes the case that nonstandard

analysis could not be the correct infinitesimal theory in which to interpret Euler’s work

because he believes that Euler meant to use exact equality where nonstandard analysis

could only use the infinitely-close relation (see Section 1.5). However, for the purpose

of this research it is necessary to interpret Euler’s work within some formal theory

so we consider it sufficient to find the closest one and acknowledge the differences

between it and Euler’s ideas. Also, we are focused on Euler’s methods rather than the

ontology of his concepts. Thus the theory in which we explore Euler’s arguments need

not be identical to Euler’s theory provided the methods of proof closely agree.

Nonetheless, the commentaries on Euler’s work and that of his contemporaries that

do not explicitly interpret their arguments in terms of any specific formal theory are
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still useful for understanding Euler’s ideas and informing the formalisation. Laugwitz

argues that what appear to be gaps in the arguments of Euler and his contemporaries

are actually instances of lemmas which seem obvious if we remember that they are

using infinitesimals [51]. This is a useful idea for understanding Euler’s arguments

and was applied by McKinzie and Tuckey [57].

1.7.6 Using modern mathematics to represent Euler’s reasoning

Once a modern theory to formalise Euler’s analysis has been decided upon, there re-

mains the question of how it can be matched-up with Euler’s work. Bair et al.[5] and

McKinzie and Tuckey [57, p. 36] argue that Euler had two distinct concepts of zero,

and thus two concepts of equality. One of these is of course, the usual concept of

equality. The second is of being ‘relatively zero’, i.e. infinitesimal relative to the other

numbers in the context. For example, supposing ε to be infinitesimal, and a to be

finite, Euler might write a2 +aε = a2 since aε is infinitesimal compared to a2. Euler

called these two concepts of equality ‘arithmetic’ and ‘geometric’ comparison [5]. We

can match up one version of comparison with actual equality and another with the

infinitely-close relation.

Euler occasionally substitutes infinitely many infinitesimals for zero, even though

it is possible for the sum of infinitely many infinitesimals to be non-infinitesimal. For

example, see the omission of the term x2/N2 in an infinite product in Section 4.2.3.

This is an example of the general concept of a ‘hidden lemma’ which Laugwitz claims

is used in infinitesimal analysis by mathematicians such as Euler and Cauchy [53].

There are parts of Euler’s reasoning where an operation is performed which is not

justified in general, but in that instance there is a hidden lemma which justifies it [57].

If hidden lemmas are indeed used in places where infinitesimals can be discarded only

under certain conditions, their implicit nature may be a reason infinitesimal analysis

was regarded with suspicion for so long and yet was so successful for developing

early results in analysis. Sometimes Euler and his contemporaries seemed unaware

that a particular scenario required such a lemma. Sometimes they were aware, but

gave empirically-inductive arguments rather than the theorem we would expect for

modern standards of rigour. Sometimes they did state principles which would supply

the lemma, but were misunderstood. Possibly sometimes they were aware of such

lemmas even if they did not state them anywhere, but we may never know.
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1.7.7 Placing Euler’s analysis in context

An important consideration is to understand Euler’s analysis within context, and re-

frain from viewing his arguments through a modern lens. In the 18th century, they

used different notation. Euler used i for infinite numbers rather than the square root

of −1, and ω for infinitesimals. Notation was also not as standardised as it is now:

Euler introduced ∑ notation for sums and f (x) notation for functions but neither were

immediately adopted [11]. They did not have the same concept of the methodology

of mathematics that we do now. Pólya argues that Euler used empirically-inductive

reasoning (in the spirit of the scientific process) [67]. Euler’s contemporaries still in-

terpreted axioms as describing indubitable truths since non-Euclidean geometry, the

main reason for the overthrow of this idea, was not yet discovered. Mathematicians

did not even have the vocabulary or concepts to express Gödel’s Incompleteness The-

orems. Many mathematicians still did not conceive of imaginary numbers existing

with the same validity as real numbers, including Euler himself [46, p. 714]. In order

to understand Euler within his context, we should avoid using in our proofs ‘any prin-

ciple or notion that could not be stated in the language of Euler’s time’ as McKinzie

and Tuckey say [57].

1.8 Organisation of the thesis

This thesis is organised into 6 chapters:

This chapter forms our introduction. It gives the context and motivation for the

work, the aims of the thesis, describes previous work and outlines a summary of

contributions.

Chapter 2 gives background information on nonstandard analysis and Isabelle

which the reader will need to understand the rest of the thesis.

Chapter 3 describes our mechanisation of the mathematical context which was

required for formalising Euler’s proof of the Basel problem. We chose to place

in this chapter those parts of the formalisation which were general or outside the

main proof of the Basel problem.

Chapter 4 gives our initial analysis of Euler’s proof and describes relevant ana-

lysis and reconstruction of Euler’s proof by others, including McKinzie and
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Tuckey. Here we identify the gaps in Euler’s proof and describe important proof-

specific concepts that we will use to mechanise the proof.

Chapter 6 describes our partial mechanisation of Euler’s proof of the Basel

problem. We also describe gaps which we have discovered both in Euler’s and

McKinzie and Tuckey’s proofs and give proposed solutions for filling those gaps.

Chapter 7 contains the conclusion in which we reflect on the decisions taken in

the mechanisation process and discuss the extent to which we have accomplished

our aims. We place our work into the context of the other research on this topic

and we discuss potential future work.

Each chapter except the Introduction and Conclusion ends with a summary of the con-

tents. This provides a reminder to the reader of what was covered and gives an over-

view of the contents of that chapter.

1.9 Proof scripts

The accompanying proof scripts containing our mechanisation can be downloaded

at the following link: https://aiml.inf.ed.ac.uk/wp-content/uploads/2022/

10/basel_problem.zip. They are intended to be run in the 2021-1 version of Isabelle

within the HOL-Nonstandard Analysis session.

https://aiml.inf.ed.ac.uk/wp-content/uploads/2022/10/basel_problem.zip
https://aiml.inf.ed.ac.uk/wp-content/uploads/2022/10/basel_problem.zip


Chapter 2

Mathematical and system context

This thesis is based on concepts in mathematics which, as they are not part of the

mathematical mainstream, may be outside the reader’s expertise. It is also based on the

use of a specific theorem-prover, Isabelle [65], which comes with its own jargon and

methodology. To make the thesis as self-contained as possible, we aim to include here

the relevant mathematical and system context. We also aim to make each following

chapter and section as self-contained as possible by presenting specific information in

the context where it is used. However, this chapter is useful to present those concepts

which are fundamental or are used so often that to explain them in context would

become repetitive. We also take the opportunity to explain how we have related and

derived each concept from the ones used by Euler. We begin by examining Euler’s

concept of proof.

2.1 Euler’s concept of proof

Euler’s concept of proof may have been wider than the current well-developed and re-

strictive idea of proof. At this moment in history, we imagine that mathematics consists

of theorems built up from axioms by combining them according to logical rules. This

may not be how it really works in practice, but it informs our modern idea of rigor-

ous proof. Although Euclid’s Elements, written around 2000 years before, introduced

the axiomatic method, this only provided axioms for Euclidean geometry. Euler was

certainly familiar with deductive reasoning from geometry. However, Pólya analyses

Euler’s most criticised proof, which we discuss in Section 4.1, and based on this argues

that Euler also used empirically-inductive reasoning, as is used in the experimental sci-

ences. According to Pólya, Euler reasons by analogy to discover the factorisation of

31



32 Chapter 2. Mathematical and system context

sine as an infinite polynomial and thus prove the Basel problem [67]. Euler tries his

method of proof out on other examples. He compares his exact solutions to numerical

values which he computes, and he also rediscovers known results using his method.

Eventually, he is lead by his exploration to find a new rigorous proof, which he gives

a version of in the ‘Introductio’. McKinzie and Tuckey argue that, in this way, Euler

established that his method could both explain already known phenomena and predict

new phenomena, which confirms it as a scientific hypothesis [57, p. 32]. Euler con-

sidered the validity of his method to be an important result in its own right: not just

interesting because it gives him the value of the series 1+1/4+1/9+1/16+⋯ [26, p.

4].

Euler saw one of the functions of proof as being its power to convince others. He

took the doubts of his fellow mathematicians seriously, and they were a driving force

behind his further explorations [26, pp. 3-4]. Euler’s marvellous intuition is often

described. He was also a master of exploring mathematics and coming up with new

concepts, results and ways of describing existing mathematics. Mathematicians are

able to discover and reasonably justify much more than they can prove. Euler would

have felt limited if he had constrained himself to only publishing or writing about

ideas that he could give deductive arguments for. But when the empirically-inductive

arguments failed to convince, he could put greater effort into converting his intuitions

into a deductive proof, as we see with the history of his proofs of the Basel problem.

2.2 Proofs and concepts in Isabelle

First, we introduce the methodology and general concepts we have used to formalise

Euler’s reasoning in Isabelle. This forms a useful background to Chapter 6.

2.2.1 Using structured proof to represent Euler’s reasoning

This thesis aims to represent Euler’s reasoning as faithfully as possible, in order to

to better understand it and discover the gaps in his argument. Thus our formal proof

needs to follow the structure of mathematical proof, which will also have the benefit

of improving its readability. To accomplish this, we use the structured proof language

Isar, which allows prose-style proof within Isabelle. We give now as an example, the

Isar proof in Listing 2.1 which represents the top-level case-split in our representa-

tion of Euler’s proof of the Basel problem (see Section 6.10). Before the Isar proof,
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we give a rewriting of it in mathematical style. The concepts used (infinite hypernat-

ural numbers, the relation ≃, the hypersum ∗∑) may not yet be familiar to the reader

and are given in Section 2.3. We also refer to the theorems Basel_problem_odd and

Basel_problem_even_is_odd (which essentially states that the even case can be re-

duced to the odd case) among others. These are given in Section 6.7. However, their

contents are not relevant at the moment as this proof is given only to demonstrate

formal proof in Isabelle.

Theorem (Basel problem). Let N be an infinite hypernatural. Then

∗ N
∑
n=1

1
n2 ≃

π2

6
.

Proof. Assume first that N is odd. Then we can obtain a k such that N = 2k+1. We can

deduce that k is also an infinite hypernatural. Thus by Theorem Basel_problem_odd

we have ∗∑2k+1
n=1 1/n2 ≃ π2/6 which shows this case.

Next assume that N is not odd. Then we can obtain a k such that N = 2k. Because

N is an infinite hypernatural, we can rewrite it as N = 2(k−1)+2 where k−1 is itself an

infinite hypernatural and thus k ≥ 1. By Theorem Basel_problem_even_is_odd we can

deduce ∗∑2(k−1)+2
n=1 1/n2 = ∗∑2(k−1)+1

n=1 1/n2. Again, by Theorem Basel_problem_odd we

also have ∗∑2k+1
n=1 1/n2 ≃ π2/6 and thus ∗∑N

n=11/n2 ≃ π2/6.

Listing 2.1: Basel problem case-split

theorem Basel_problem:

assumes "N ∈HNatInfinite"

shows "hypsum (λn. 1/(n∈N pow 2)) {1..< N+1} ≈(star_of pi pow 2) / 6"

proof (cases "odd N")

assume "odd N"

then obtain k where k_def:"N=2⋅k+1"

using oddE by blast

from this assms have "k ∈HNatInfinite"

by (rule odd_HNatInfinite)

then have "hypsum (λn. 1/(n∈N pow 2)) {1..< 2 ⋅k+1+1} ≈ (star_of pi pow 2) / 6"

by (rule Basel_problem_odd)

then show ?thesis using k_def by simp

next

assume "¬odd N"



34 Chapter 2. Mathematical and system context

from this hypnat_odd_or_even2 obtain k where k_def:"N = 2⋅k"

by blast

from k_def assms have k_minus_one_inf: "k−1 ∈HNatInfinite"

using HNatInfinite_half HNatInfinite_diff Nats_1 by blast

have "k≥1"

using HNatInfinite_half assms k_def one_le_HNatInfinite by blast

from this k_def have N_as_k:"N = 2⋅(k−1) +2"

by (rule extract_factor_of_2_hypnat)

have "hypsum (λn. 1/(n∈N pow 2)) {1..< 2 ⋅ (k−1)+2+1} ≈
hypsum (λn. 1/(n∈N pow 2)) {1..< 2 ⋅ (k−1)+1+1}"

by (rule Basel_problem_even_is_odd)

also from k_minus_one_inf have "\ldots ≈ (star_of pi pow 2) / 6"

by (rule Basel_problem_odd)

finally show ?thesis

using N_as_k by simp

qed

Statements encased in " " are literals and can be thought of as the equations and for-

mulas that litter pen-and-paper mathematical proofs. Any statement in the proof may

be named e.g. k_def or N_as_k. These names are referred to in later steps of the proof

along with the names of previously proven theorems such as Basel_problem_odd. The

theorem name assumes assumptions shows statement set up what is to be proved.

The proof itself is done by a case-split on odd N. The beginning of the proof is in-

dicated by proof, division between cases is indicated by next and the conclusion of

the proof is marked by qed. Intermediate statements in the proof are prefaced with

the keyword have and concluding statements are prefaced with the keyword show. If

these follow from the previous line, we use then or from this. Below each statement,

except for assumptions, is the proof which consists of by method. This method may

be the use of a previously proven theorem e.g. by (rule Basel_problem_odd) or it may

be an automatic proof method e.g. by blast. The automatic proof methods are used to

fill in small steps that Isabelle is able to discover a proof by itself. On two occasions,

we obtain a variable k. This can be thought of as the step where we give a name to

the witness from the existential statement on the previous line, allowing us to use this

variable in the rest of the proof. All of these keywords correspond with steps usually

undertaken by mathematicians in their proofs.

One strategy which this proof demonstrates is breaking down each proof into smal-
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ler lemmas. This makes each part of the proof easier to find, because it is labelled with

a lemma name and has its own separate section. More importantly, it reduces redund-

ancy since lemmas can be reused. For example, here a mathematician would likely say

‘we can, without loss of generality’ assume that N is odd, if they mention it at all. Since

this is a formal proof, in Isabelle, we must consider every case, so here we case-split

on whether N is odd or even. However, we reduce the case where N is even to an inter-

mediate statement which can be proved by using the same lemma Basel_problem_odd

as in the odd case. If we had not extracted this as a lemma, the proof would have been

partially duplicated.

2.2.2 Locales

We have not proven all the theorems necessary for mechanising Euler’s proof in Isa-

belle. Some of these (e.g. the determinacy of some series - see Section 5.2) would be

relevant to the context of Euler’s proof but will be left for future work. Some of those

are well-known mathematically and outside the direct reasoning of the proof, and prov-

ing them would be tangential to the aim of this thesis. We explain these choices indi-

vidually in our description of the mechanisation: see, for example, the Fundamental

Theorem of Algebra (Section 3.3) and the Trinomial Lemma (Section 6.4.1). Rather

than adding these statements as axioms, which theoretically could introduce inconsist-

ency to the theory, we add them via a locale. This is an Isabelle structure allowing

the formalisation of a set of statements which are then are then attached as assump-

tions to any theorems proven within the context of the locale. The locale assumptions

can be proven later and the assumptions are then discharged from all the theorems

proven within the locale context. In Listing 2.2, we give the locale formalising the

Fundamental Theorem of Algebra which we need for the proof of the Basel Problem.

This locale consists of a single fact. We will explain statement given in the locale

in Section 3.3 once we have introduced the notion of hyperfinite sums and products

Section 3.2.4 and the type complex star of hypercomplex numbers.

Listing 2.2: Fundamental Theorem of Algebra locale

locale Fundamental_theorem_of_algebra =

assumes FTA:

"( ∗fn∗ b) N /= 0Ô⇒
∃a. (λx. (( ∗fn∗ b) N) ⋅ hyprod (λn. x − ( ∗fn∗ a) n) {1..< N+1}) =

(λx. hypsum (λn. ( ∗fn∗ b) n ⋅ (x :: complex star) pow n) {0 ..< N+1})"
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2.2.3 The Hilbert choice operator

Functions in Isabelle are required to be total [48, p.2]. Furthermore, the domain of a

function in Isabelle must be a type, not simply a set. In order to make composition

and application of functions as simple as possible in our theory, we use as few types

as possible for the domain and range of our functions. For example, it is useful to

use types which are closed under algebraic operations, such as R, ∗R, N and ∗N,

as domains and ranges, rather than defining new types based on subsets of the sets

associated with those types. However, some functions are naturally only defined on

intervals or subsets, e.g. the inverses of sine and cosine. With these kinds of functions,

it is possible to pick arbitrary values for them to take outside of the domain on which

they are naturally defined, in order to extend the domain to the whole type. A useful

Isabelle concept for handling this is the Hilbert choice operator [49, p. 727], SOME in

Isabelle.

The following definition gives a real number r which corresponds to a given hyper-

real number h.

definition unstarreal

where "unstarreal h = (SOME r. h = star_of (r :: real ) ) "

In this definition we use the function star_of which, given a real number r, constructs

the corresponding hyperreal number star_of r in Isabelle. Since the hyperreals contain

the reals as a subset, this construction is always possible. But it may not be possible

to give a corresponding real number for every hyperreal: e.g. a nonzero infinitesimal

would have no equivalent in the reals. Thus SOME r. h = star_of r refers to the real

number corresponding to hyperreal h when such a number exists (see Section 2.3.1.3),

otherwise it refers to an arbitrary element of the correct type, which allows it to fulfil

the requirement that it is a total function. We can also use SOME to define a partial

inverse (as we do in Section 3.1). For example, SOME r. r2= x would give an arbitrary

number which is the square-root of x. However, it is not possible to prove that this is

either specifically the positive square root or specifically the negative square root.
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2.3 Using nonstandard analysis in Isabelle to repres-

ent Euler’s analysis

In this section we will introduce the reader to the essential concepts of nonstandard

analysis as they are given in the nonstandard analysis library in Isabelle/HOL. We will

also discuss how the concepts can be used to approximate the ones used by Euler, and

their limitations when used to describe Euler’s reasoning.

The current nonstandard analysis library in Isabelle uses the ultrapower construc-

tion of the hyperreals (see Section 1.5) [36, 45]. Major results formalised in this library

and elsewhere include

1. the Transfer Principle (Section 2.3.2.5), has been formalised as a proof method;

2. properties of hypernatural numbers: these are the ordinary natural numbers to-

gether with infinite numbers that share similar attributes including an induction

principle;

3. hypercomplex numbers, which are an extension of the hyperreals using the square

root of minus 1 in exactly the way that the complex numbers are an extension of

the real numbers;

4. limits: continuity and hyperreal powers, including infinite and infinitesimal powers.

Nonstandard analysis is concerned with the hyperreals which are an extension of

the real numbers with infinitesimals and infinitely-large numbers, and by algebraic

closure, many additional numbers. Here we give a brief description of their properties

to demonstrate that the infinitesimal and infinitely-large hyperreals behave in a similar

way to Euler’s infinitesimals and infinitely-large numbers. They obtain these proper-

ties from their construction which we will describe concisely in Section 2.3.1.3. We

compare them to Euler’s numbers in Section 2.3.1.2. We also hope this will give the

reader a sufficient intuitive understanding of the hyperreals so that they can follow the

reasoning we lay out in Chapters 4 and 6. Our presentation is based on Goldblatt’s [40].

The hyperreals are denoted by ∗R. We define the set of infinitesimals E as E =
{x.∀r ∈ R. r > 0→∣ x ∣<∣ r ∣}. Notice zero itself is infinitesimal. We define the set of

infinite numbers L as L = {x. ∀r ∈ R. ∣ x ∣>∣ r ∣}. Imagine that we begin by adding

some infinitesimals and infinitely-large numbers to the ordinary reals. We now have a

cluster of infinitesimal numbers around zero. Each real number e.g. π will similarly
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have a cluster of numbers that are infinitely-close to it, called a halo [40, p. 52]. The

numbers in the halo of a real number r are not themselves real numbers, except for r

itself. Even the infinitely-large numbers will have a halo. Also, each of the hyperreal

numbers has a negative counterpart. They obey all the usual laws of the reals (such as

commutativity and associativity), but not the Archimedean principle which states that

given two positive numbers x and y, there is an integer n such that nx > y. This gives us

an initial picture of the hyperreals. We can describe their properties more precisely as

follows.

Let ε and δ be infinitesimals, let a and b be hyperreal numbers that are not infin-

itesimal or infinite, which we call appreciable [40, p. 50], let L and M be infinite and

let n be a finite natural number.

• Zero: zero is the only infinitesimal real number.

• Addition: ε+δ is infinitesimal, ε+a is appreciable and finite, ε+L and a+L are

infinite. We cannot determine in general a+b and M+L. However, if a and b are

either both positive or both negative, we know a+b is appreciable and if L and

M are either both positive or both negative, we know L+M is infinite.

• Negatives: −ε is infinitesimal, −a is appreciable and −L is infinite.

• Multiples: εδ is infinitesimal, aε is infinitesimal, ab is appreciable, ML is infinite

and aM is infinite. However εL may be infinitesimal (e.g. 1/L2 ⋅L), appreciable

(e.g. 1/L ⋅L), or infinite (e.g. 1/L ⋅L2).

• Reciprocals: Given ε and b nonzero, 1/ε is infinite, 1/L is infinitesimal and 1/b
is appreciable. Quotients can be deduced from the rules for multiples.

• Powers. εn is infinitesimal, an is appreciable and Ln is infinite.

• Roots. Given positive ε, a and L, n
√

ε is infinitesimal, n
√

a is appreciable and n
√

L

is infinite.

In nonstandard analysis it is useful to have the concept of numbers being infinitely

close to one another. Thus we define the infinitely-close relation as a ≃ b if a−b ∈ E
i.e. a and b are infinitely close if their difference is infinitesimal. It is an equivalence

relation and shares many properties with equality. This makes it a good representation

of Euler’s = when dealing with infinitesimals (see Section 2.3.1.2).
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A significant result supporting the validity of nonstandard analysis is the transfer

principle [40, Chap. 4]. This is a theorem that allows us to take certain statements in

standard analysis, obtain their transfer, and get a corresponding result in nonstandard

analysis. It also allows us to transfer statements from nonstandard analysis to standard

analysis under certain conditions. It is useful for the formalisation since it avoids

the need to reprove some results that are already available in standard analysis. In

Section 2.3.2.5 we describe its formalisation as a method in Isabelle.

2.3.1 Numbers, quantities and equality

In this section we discuss Euler’s understanding of numbers, quantities and equality.

We are then able to describe the relevant concepts from nonstandard analysis in this

context.

2.3.1.1 Euler’s concept of a number

Our present concept of a number is quite flexible, and can be given to anything which

we can perform arithmetical operations on. The number systems which first occur to us

are the natural numbers, rationals, reals and complex numbers, but specific examples

of any kind of algebraic structure, such as a ring or field, could be called number sys-

tems in the right context. In the 18th century, this widening of the concept of number

was still in progress. Naturals and rationals were universally accepted as numbers. Ir-

rationals, which were famously rejected by the Pythagoreans [1, p. 35], were used in

abundance, but they derived their validity from being described in terms of rationals.

‘Imaginary’ values had been given their derogatory epithet less than a century before

Euler by Descartes [14], but they were also beginning to be regarded as useful tools.

In fact, Euler is regarded as one of the first mathematicians to popularise their usage

because of his formula eix = cosx+ isinx [61]. The concept of transcendental values has

also been credited in part to Euler [22], who first described the number e and detailed

the concept of transcendence in his ‘Introductio’.

Euler used different words to refer to ‘number’ and ‘quantity’ (in his original Latin,

‘numerus’ and ‘quantitas’). It is relevant to know why he made this distinction, and

what he meant by each of these concepts. Petrie claims that Euler used the word

‘number’ only for naturals and rationals and ‘quantity’ for irrationals, transcendentals

and imaginary numbers [66, p. 281, pp. 285-286]. However, this was not the case at

the point that Euler wrote the ‘Introductio’, since in §3 of the first chapter he states
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‘a variable quantity encompasses within itself absolutely all numbers, both
positive and negative, integers and rationals, irrationals and transcendent-
als. Even zero and imaginary numbers are not excluded. . .

Euler even uses the word number to refer to infinite magnitudes in §138 of the ‘Intro-

ductio’. Later on, Euler gave a description of ‘number’ that makes it clear he regarded

them as ratios

. . . a number is nothing but the proportion of one magnitude to another
arbitrarily assumed as the unit.’ [32]

As Petrie points out, this would appear to exclude complex numbers from Euler’s defin-

ition of number [66, p. 284]. In the first chapter of the ‘Introductio’ Euler usefully ex-

plains what he means by such concepts as constants, variables and functions, although

it is hard to interpret what he meant without letting our understanding be coloured by

the present meanings of each term. In his own words from the ‘Introductio’ §§1−2, ‘A

constant quantity is a determined quantity which always keeps the same value. . . . A

variable quantity is one which is not determined or is universal, which can take on any

value.’ Although these definitions are tautological in the same vein as the primitive

notions from Euclid’s ‘Elements’, they still tell us something about his concepts. This

makes it clear that he regarded quantities as being either constant – ‘determined’ – or

variable. Functions themselves, he states, are ‘a function itself of a variable quant-

ity will be a variable quantity’. We can deduce that Euler’s concept of ‘quantity’ is

inextricably linked and overlaps with his concept of function (see Section 2.3.2.1).

We could interpret Euler’s concept of quantity as one explanation for why he was

comfortable using infinitesimals. Although infinitesimal quantities and quantities that

include infinitesimal increments are never fully calculated or ‘determined’ they are not

excluded from being quantities, since they might be considered variable quantities,

similar to the constructivist idea of conceiving of infinity as a process. This would

pleasingly allow Euler’s concept of infinitesimals to be considered as a precursor to

limits as Ferraro does [34, p. 45]. However, McKinzie and Tuckey have demon-

strated that treating infinitesimals as numbers using the theory of nonstandard analysis

allows us to follow Euler’s reasoning, whether or not this exactly matches Euler’s on-

tology [55].

Although Euler may not have given the same footing to transcendentals and irra-

tionals as he did to natural and rational numbers, he was more open minded than many

modern mathematicians about what mathematical tools he allowed himself to use in

his published work. Some of his proofs (e.g. his first proof of the Basel problem) were
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clearly intended as narrative or empirically-inductive derivations rather than watertight

arguments (although in Section 2.1 we argue that he also had proofs which he inten-

ded to fall into the latter category). In the next section, we describe how he conceived

of and used infinite and infinitesimal quantities, which are rarely used in contempor-

ary mathematics and were seen as mathematical pariahs from the time of Cauchy to

Robinson.

2.3.1.2 Euler’s concept of infinite and infinitesimal numbers

Purely from an analysis of their properties, Euler’s infinities and infinitesimals behave

similarly to the infinite and infinitesimal numbers from nonstandard analysis. The main

point of difference is that Euler does not explicitly distinguish between true equality

and equality up to an infinitesimal, which gives rise to the infinitely-close relation of

nonstandard analysis. Both are denoted by = in his proofs and in fact he often uses ε= 0

to mean that ε is infinitesimal. However, he is actually aware of the distinction between

infinitesimally close and equal. In several places Euler states that he can omit infin-

itesimal increments, with justification (see for example §156 of the ‘Introductio’ [29]).

Euler in fact gives an example where it is not justified to substitute in a quantity which

differs by an infinitesimal (see §§155-156 of the ‘Introductio’). Since Euler uses the

distinction, and since it would otherwise be difficult to create a consistent theory, we

formalise the two concepts of equality distinctly in our Isabelle proofs.

2.3.1.3 Construction of the hyperreals in Isabelle

In the Isabelle Nonstandard Analysis Library the hyperreals are constructed using the

ultrapower construction, which is described by Goldblatt [40, Section 2.3]. Given this

construction, the hyperreals are a consistent number system if and only if the reals are

consistent, assuming the Axiom of Choice. In essence, each hyperreal is given by an

equivalence class of sequences of real numbers. The equivalence relation is defined

by a nonprincipal ultrafilter U on N, which is a subset of P(N) with certain extra

properties:

1. U ≠∅

2. ∅ ∉ U

3. if A,B ∈ U , then A∩B ∈ U

4. if A ∈ U and A ⊆ B ⊆N, then B ∈ U
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5. for any A ⊆N, either A ∈ U or N−A ∈ U .

A nonprincipal ultrafilter exists on any infinite set, but its existence relies on the

axiom of choice, so we are unable to constructively specify the ultrafilter. Let {rn} be

a sequence r ∶N→R. Then the hyperreal r is the equivalence class of sequences [{rn}]
defined by the congruence relation {An} ∼ {Bn}↔ {n. An = Bn} ∈ U . In fact, N itself is

in the ultrafilter and so is any set that is different from N by only finitely many values.

Thus the sequence {π,π,π . . .} with every value equal to π and any sequence distinct

from π in only finitely many positions, e.g. {π,1,π,π,π,π . . .}, will be in the same

equivalence class, and will correspond to the hyperreal [{π}]. It is possible to prove

that the hyperreal [{π}] has the same properties as the standard real π. We can express

the congruence relation between the two sequences as {An} and {Bn} are congruent if

An = Bn for almost all n or equivalently, if it is eventually true that An = Bn. These two

modes of expression have equivalent formulations in the Isabelle Nonstandard Ana-

lysis Library.

1. ∀F n in U . (A n = B n)

2. eventually (λn. A n = B n) U

The first formulation ∀F corresponds to ‘almost all’, the second eventually corresponds

to ‘eventually’. Our sequences are represented by functions A and B from the naturals

to the reals. Hence A n stands for the usual sequence {An}. In the Isabelle Nonstandard

Analysis Library, we write star_n A to denote the equivalence class which is defined

by the sequence A. Each such equivalence class is a hyperreal number.

2.3.1.4 Hyperreal types in Isabelle

In fact, it is not just the hyperreals that are defined in the Isabelle Nonstandard Ana-

lysis Library, but the nonstandard models of every type universe. More theorems exist

about the hyperreals and hypernaturals, but some theorems have been shown for a gen-

eral nonstandard type. The nonstandard type corresponding to the type 'a is given

by 'a star. The types for hyperreal and hypernatural are thus real star and nat star

respectively, however there are also the synonyms hypreal and hypnat.
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2.3.1.5 Hyperreal sets in Isabelle

The set of infinite hypernatural numbers is denoted HNatInfinite in Isabelle. The set

of infinite hyperreals is denoted HInfinite and the set of finite hyperreals is denoted

HFinite. Finally, UNIV is the set of all elements of some type: this may be any type.

Thus UNIV::hypreal set is the set of all hyperreals.

2.3.2 Sets and functions

The now-familiar concepts of sets and functions were still being developed in the 18th

century. Indeed, Euler is credited with coming-up with the modern concept of a func-

tion, although we will see that his concept is not entirely equivalent to our own. We

analyse how Euler conceived of these notions so that we can evaluate our own repres-

entations of his reasoning about them.

2.3.2.1 Euler’s concept of a function

Euler begins the ‘Introductio’ with a discussion of his notion of function, which is not

quite as broad as the modern one. This places some emphasis on the importance of

functions in his work, and also helps us understand how we might faithfully represent

the functions in the proof of the Basel problem. Euler states briefly:

A function of a variable quantity is an analytic expression composed in any
way whatsoever of the variable quantity and numbers or constant qualit-
ies. [29, §4, p. 3]

This is somewhat vague. We can wonder if by stating that the function is an ana-

lytic expression he means that it is an analytic function in the modern sense that it has

a convergent power series at every point. However ‘convergence’ was not yet a fully

developed concept at the time. If Euler meant that he defined functions to be expres-

sions with power series that are ‘convergent’, surely he would state that explicitly. In

Chapter 4 of the ‘Introductio’ he does make it clear that he believes all functions can

be represented by an infinite polynomial which ‘gives the value of the function’, and

thus has a numerical limit, although to some value which may be infinite. Even more

unusually, he allows his infinite polynomials to have exponents of any real value so

these are not power series. This is similar but not equivalent to the modern notion of

‘analytic’. But from his discussion of functions in Chapter 1, it seems instead that he

thinks of functions as being built up from basic operations including algebraic opera-
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tions and composition with various common transcendental functions, and that this is

what he means by ‘analytic expression’. He later states

Functions are divided into algebraic and transcendental. The former are
those made up from only algebraic operations, the latter are those which
involve transcendental operations. [29, §4, p. 3]

We may wonder what kind of transcendental functions Euler conceives of. Certainly,

sine, cosine, tangent, logarithms and exponentials are included. At the beginning of

Chapter 6, he says ‘the concept of a transcendental function depends on integral calcu-

lus’. We may conclude that Euler allows any kind of transcendental function defined in

terms of algebraic operations and integrals1 and presumably derivatives. Interestingly,

Euler considered the function zπ algebraic, which nowadays would be considered tran-

scendental, so his understanding of the distinction is not the same as the modern one.

Euler also discusses functions of several variables and allows multivalued functions

such as square roots. Petrie describes Euler’s concept of a function as being closer to

the modern idea of a formula [66, p.282]. Despite these nuances, ‘Introductio’ was in

fact the first book to place the concept of a function so centrally and to outline it with

such clarity and closeness to the modern picture of a function [47, p.405].

2.3.2.2 Internal functions

In the proof of the Basel problem, the only transcendental functions used are the ex-

ponential, cosine and, implicitly, sine. All of these can be represented in standard real

analysis, as can all algebraic functions, at least up to some infinitesimal or infinite con-

stant. In nonstandard analysis, functions which depend upon nonstandard numbers, but

which are otherwise defineable in the reals, e.g. sinNx, x/N or xN for some nonstand-

ard N, are called ‘internal’ and they have the additional property that they are defined

by sequences of real functions, due to how nonstandard numbers are defined. In the

Isabelle Nonstandard Analysis Library, the internal function defined by the sequence f

of real functions is written as ∗fn∗ f where

( ∗fn∗ f ) x = [{ fn xn}]

for any hyperreal argument x = [{ xn}].

1Euler predated Cauchy, and was a continental mathematician, so presumably used Leibniz’s notion
of an integral.
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A hyperreal N is defined by the underlying sequence of hyperreals [{Nn}] as we

explained in Section 2.3.1.3. We can thus define the internal functions mentioned as

examples above e.g.
x
N
= [{ xn

Nn
}] .

When the sequence { fnxn} is constant, we call the function the nonstandard extension

of the corresponding real function. E.g. sinx can be extended to the hyperreals in this

way. Internal functions are far more manageable than general nonstandard functions

because their properties can be defined in terms of standard functions. They are not

directly covered by the transfer principle, as it is mechanised in Isabelle, but we can still

prove properties about internal functions first for the real functions whose sequence

defines them. This allows us to use proof by induction to a certain extent to prove

properties about these functions.

2.3.2.3 Euler’s concept of sets

Euler spent several chapters of the ‘Introductio’ outlining the concept of a function,

which was influential in the history of mathematics [47, p.405]. By contrast, at least

in the ‘Introductio’, he does not refer to sets explicitly, but instead implicitly describes

relevant numbers by the conditions they satisfy. For example, rather than referring to

the set or collection of all square numbers, he might say ‘all square numbers’, or define

a sequence with N terms, each of which are squares. Euler is credited with the inven-

tion of Euler diagrams, a version of Venn diagrams [69]. However, he did not conceive

of them as representing sets but rather the domain of truth of logical propositions.

Hence, we cannot conclude that Euler had a notion of a set as a mathematical object

in the same way he considered a function or number to be. Since in modern math-

ematics, sets and logical propositions are often used interchangeably, we can closely

follow Euler’s reasoning whilst using the modern representation of sets. Sets are also

necessary in Isabelle so that we can use the nonstandard analysis library and represent

Euler’s numbers as hyperreals.

2.3.2.4 Internal sets

Similarly to internal functions, there are internal sets which are defined in terms of

sequences of subsets of the reals. Again, if the sequence is constant, we call them

extensions of the real set. In the proof of the Basel problem, we only need quite

simple sets to represent Euler’s reasoning, many of which are internal. For example,
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the set of hypernatural numbers, hypernatural intervals (Section 3.2.3) and the set of

odd numbers (Section 3.2.5.1). However, we must also consider some sets which are

not internal such as the set of all infinite numbers, or the set of infinitesimals.

In the Isabelle Nonstandard Analysis Library, the internal set defined by the se-

quence E n of real subsets is written as ∗sn∗ E. We denote the set of internal sets by

InternalSets.

2.3.2.5 The Transfer Principle

The Transfer Principle in nonstandard analysis allows us to take statements about real

functions and sets, and formulate equivalent statements about their extensions which

have the same truth value as the original statements.

The transfer method in Isabelle [44] allows a goal to be transformed to a logically-

equivalent goal involving different types. We apply it to transform goals about terms

of type 'a star to goals about terms of type 'a. Goals in terms of types hypreal and

hypnat (which are abbreviations for real star and nat star respectively) result in goals

about terms of type real and nat respectively. The transfer method is possible to apply

in statements that involve only extensions and internal predicates because the Transfer

Principle states that the transformed goals have the same truth value. This transform-

ation forms part of a valid proof and enables us to use the corresponding statements

in terms of reals and naturals, which have often been proven already in the Isabelle

libraries. We give an example of its usage in Listing 2.3.

Listing 2.3: Example of usage of transfer method

lemma pow_zero:"⋀a. a pow (0::hypnat) = 1"

by transfer simp

The function pow ∶ ∗R× ∗N→ ∗R is an extension of the function ^ ∶ R×N→ R (See

Section 2.3.2.2). Applying the transfer method leads to the new goal

⋀a. a ^ (0:: nat) = 1

which is easily proved by the automatic proof method simp.

2.4 Summary

In this chapter we outlined the mathematical background in nonstandard analysis ne-

cessary to understand our formalisation along with a description of proof and concepts
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in Isabelle. At each point we connected various notions – e.g. the Transfer Principle,

infinitesimals, internal sets and functions – to Euler’s concepts and proof in order to

contextualise them. We also discussed Isabelle’s structured proof, locales and the Hil-

bert choice operator.





Chapter 3

Mechanisation of the mathematical

context

In this chapter we will describe our formalisation of concepts and theorems from non-

standard analysis and our formalisation of polynomials as functions. The choices we

have made are guided by representing Euler’s concepts and methods, following McK-

inzie and Tuckey’s rehabilitation of Euler’s proof, and developing a consistent math-

ematical context within which to formalise our proof of the Basel problem. Some

concepts overlap with Isabelle’s standard libraries or theories already in the Archive

of Formal Proofs [3], however, we have taken a different approach which works bet-

ter for representing Euler’s methods. An example of this is our theory of polynomials

which represents them concretely as functions rather than as abstract algebraic entities.

This mechanisation could form a useful background for other formalisations of Euler’s

work or that of his contemporaries.

3.1 Extending the Isabelle theory on internal sets and

functions

In Chapter 2 we discussed how we can use internal sets and functions to follow Euler’s

reasoning. Some useful and basic theorems on internal sets and functions, and some

useful defined concepts, are not included in Isabelle’s Nonstandard Analysis library.

We will describe their formalisation here since these properties and definitions will be

useful for the reader when we discuss our mechanisation of Euler’s proof of the Basel

problem in Chapter 6.

49
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It is useful to define an operator unstarfun which obtains the underlying sequence de-

fining any internal function.

definition unstarfun

where "unstarfun X = (SOME F. X = ∗fn∗ F)"

The SOME operator used in the definition returns a fixed but arbitrary element F

satisfying the property X = ∗fn∗ F if such an element can be proved to exist, which may

not be possible (see Section 2.2.3 for an explanation of this operator).

We prove various properties of internal functions. Some properties relate the in-

ternal functions to their underlying sequences of real functions. Others are intrinsic

properties. We prove, among other things, that the identity function is internal and

that multiplication, addition, raising to a power etc. are internal operators. We prove

that the composition of an internal function with another internal function produces

an internal function and similarly that composition with an internal operator such as

multiplication produces an internal function.

In our theory we also find it useful to define a partial inverse to star_n. The con-

struct unstarnum, given a hyperreal, returns a representative of the equivalence class

of real sequences defining that hyperreal.

definition unstarnum

where "unstarnum X = (SOME A. X = star_n A)"

Again, the SOME operator used in the definition returns a fixed but arbitrary ele-

ment A satisfying the property X = star_n A, if such an element can be proved to exist,

which happily in this case is true for any X.

We have defined starfun2_n which allows us to express functions that are internal

with respect to two variables. We proved the following theorems about it, among

others, which express it in terms of internal functions of single variables.

lemma starfun2_n_starfun_n:

"(∗f2n∗ f) (star_n X) (star_n Y) = (∗fn∗ (λn x. f n (X n) x)) (star_n Y)"

and

" (∗f2n∗ f) (star_n X) (star_n Y) = (∗fn∗ (λn x. f n x (Y n))) (star_n X)"

We use starfun2_n in Section 5.8 where it helps us to express the notion of multiplying-

out.

We also prove some basic properties of internal sets. Some properties relate the

internal sets to their underlying sequences of real subsets, for example, that two in-

ternal sets are equal if their underlying sequences are equal for almost all terms in the
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sequence and that an internal bijection between internal sets is equivalent to the cor-

responding relation holding between their underlying sequences for almost all terms.

lemma eventually_bij_betw:

"bij_betw ( ∗fn∗ f ) ( ∗sn∗ A) ( ∗sn∗ B)

= (∀F n in U . bij_betw ( f n) (A n) (B n))"

In the Isabelle Nonstandard Analysis library there are theorems stating that the

intersections and unions of two internal sets are internal. This gives us an algebra

of internal sets. Given a small number of fundamental internal sets, we can prove

that a greater variety of sets are internal by writing them as intersections and unions

of sets that we already know to be internal. We have shown that the empty set is

internal and that hypernatural intervals are internal (Section 3.2.3), and thus we have

obtained many internal sets by combining these with other known internal sets such as

the hypernaturals and the hyperreals.

We have defined some notation for coercion functions. In pen-and-paper math-

ematics, we often combine a hypernatural number with a hyperreal number, for ex-

ample 2π. However, multiplication in Isabelle takes two terms of the same type, and

many other functions behave in this way. Therefore, we use coercion functions to

transform elements of one type to that of a type that includes the first. For example

hypreal_of_hypnat takes an element of type hypnat and returns the corresponding ele-

ment of type hypreal. Thus 2::hypnat becomes 2::hypreal.

notation

hcomplex_of_hypreal ("_∈R" [100] 100)

notation

hypreal_of_hypnat ("_∈N" [100] 100)

3.2 Hyperpolynomials

Euler’s ‘Introductio’ involves what a modern mathematician would call power series,

as well as what would be considered polynomials, except that they are explicitly con-

sidered to have infinite degree. We formalise both these notions as hyperpolynomials.

These are a direct generalisation of real polynomials to nonstandard analysis, but are

allowed to have an infinite number of terms, as long as that number is a hypernatural.

In the next sections, we will discuss the prerequisite notions of hypercardinality, hyper-
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finiteness and hyperfinite sums, and their formalisation in Isabelle, before combining

these notions to give our definition of a hyperpolynomial as it is given in our formal

theory.

3.2.1 Euler’s concept of series, products and polynomials

Euler writes that ‘the nature of polynomial functions is very well understood’ [29, p.

50]. This is at a time when the Fundamental Theorem of Algebra was not yet proven.

Euler clearly regards it as an indisputable fact nonetheless: at the beginning of his

discussion of trinomial factors of polynomials he says ‘It is clear now that the number

of these linear factors is determined by the greatest power of z’ (see Section 3.3).

Many of the ‘polynomials’ Euler deals with in the ‘Introductio’ are infinite series

and products: at least, they are polynomials which have a degree which Euler explicitly

states to be an infinite number (we give an example near the end of this section). One

of Euler’s most controversial arguments is his factorisation of the power series for

sine as though it were an infinite polynomial. Euler was aware that infinite series and

products, such as power series, do not always behave like true finite polynomials: he

listened to the doubts of his contemporaries about his factorisation of the sine function

and tried to provide additional justification for his reasoning [26, §3]. However, he

certainly blurred the distinction between power series and polynomials, and we will

soon see he was often vague about the length (or degree) of the polynomials he was

discussing.

It is commonly claimed that there was no concept of the convergence of a series at

the time of Euler [16, p. 367]. However, as McKinzie and Tuckey point out, Euler did

have a similar notion of when a series takes a ‘clear and definite value’. McKinzie and

Tuckey develop this into the notion of Euler convergence (see Section 4.4.2) which they

use to rehabilitate his proof of the Basel problem. Euler regards his infinite series as

functions [29, p. 50] as opposed to formal power series. Just as we do now, he viewed

functions as having definite values, stating ‘a function itself of a variable quantity will

be a variable quantity’ [29, p. 3] Thus, some notion similar to convergence is important

and, we argue, necessary to his reasoning.

In our modern way of thinking, sums and products are indexed by sets. The par-

ticular objects within these sets do not usually matter, only the cardinality of the sets,

and sometimes whether or not they are ordered sets. The natural numbers are used

for most indexing purposes. The summation sign ∑ was Euler’s idea, however he
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did not use it until after he published the ‘Introductio’. When he used it in ‘Institu-

tiones Calculi Differentialis’ [23, §26] he used it without indices. Cauchy later used

the summation sign with natural number indices [11, p. 61]. Within the ‘Introductio’,

in the original Latin text, Euler writes ‘&c’ to indicate the continuation of the series

or product1. He rarely gives the general term of a series, instead he gives the first sev-

eral terms, and it is sometimes nontrivial to deduce the general term from this. The

length of the sum or product usually has to be worked out from previous steps, for

example, Euler asks us to let N be an infinitely-large number and expands (1+x/N)N

as 1+x/1+x2/1 ⋅2+x3/(1 ⋅2 ⋅3)+x4/(1 ⋅2 ⋅3 ⋅4)+&c [29, p. 94].

In the next section, we describe how we use modern indexing along with series and

product notation to represent Euler’s sums and products. The natural numbers are not

sufficient to represent Euler’s sums and products directly, since, as we have seen, Euler

often uses infinitely-large numbers as the degrees of his polynomials. Hence we use

hypernatural numbers for the indices.

3.2.2 Hypercardinality

Euler did not explicitly mention sets, nor did he mention cardinality. However, cardin-

ality, taking some hypernatural value, is a useful way to define sets which can index the

series and products of infinite natural number length which Euler defines. In Isabelle,

cardinality is defined only for finite sets, i.e. those in bijection with a natural interval,

and for all other sets it takes the value 0. In order to formalise Euler’s proof of the

Basel problem, we would like to define a version of cardinality which would give a

value to any hyperfinite sets, i.e. those in bijection with a hypernatural interval. Due to

the construction of the hyperreals as sequences of reals, and internal sets as sequences

of real subsets, the notions of hyperfiniteness and hypercardinality are defined in our

theory as follows.

definition hyperfinite :: " 'a star set ⇒ bool"

where "hyperfinite A = (eventually (λn. finite (unstarset A n)) U )"

definition hypcard::"( 'a star ) set ⇒ nat star "

where "hypcard A = star_n (λn. card ((unstarset A) n))"

If A is not internal, then the sequence unstarset A is an arbitrary element of the

correct type, and nothing can be proven about it. But if A is internal, then card ((

1Blanton transcribes this as ‘etc. ’ [29].



54 Chapter 3. Mechanisation of the mathematical context

unstarset A) n) becomes itself a sequence of the cardinalities of the sets which define

A (see SubSection 2.3.2.4). Finally star_n transforms that sequence back into a non-

standard number, a hypernatural. Since hypcard is defined in terms of card, it inherits

analogous properties to card and similarly for hyperfinite and finite . However, these

properties still required some nontrivial proof in Isabelle since they do not follow from

the existing transfer method in Isabelle which is defined only for nonstandard exten-

sions (see Section 7.4). We prove, for example, that hyperfinite sets are in bijection

with hypernatural intervals (see Section 3.2.3). This would allow us to index our hy-

perfinite sums with sets other than hypernatural intervals, although this has not been

necessary in our theory.

3.2.3 Hyperintervals

The half-open interval [a,b) is written {a ..< b} in Isabelle. We can directly use the

Isabelle construction for an interval to define intervals of hypernaturals and hyperreals.

However, in almost all situations that we use hyperintervals, we also need to use the

property that the hyperinterval is an internal set. Thus we prove the following lemma

which describes a hyper-interval in terms of its underlying sequence of standard inter-

vals.

lemma interval_starset_n:

"∗sn∗ (λn.{ (unstarnum a n) ..< (unstarnum b n)}) = {a..<b}"

Our theory of hyperintervals allows us to state and prove the following theorem which

gives the characterising property of hypercardinality and hyperfiniteness. In the the-

orem below, {0 ..<( hypcard S)} is a hypernatural interval since hypercardinality is of

hypernatural type. The predicate bij_betw f S1 S2 takes a function f and two sets S1

and S2. It is true if f forms a bijection between S1 and S2 and it is false otherwise.

lemma hyperfinite_imp_bij_betw_hypnat_int:

assumes "hyperfinite S" "S ∈ InternalSets"

shows "∃f. bij_betw f S {0 ..<( hypcard S)}"

The proof relies on the following lemma eventually_bij_betw proved in our theory char-

acterising internal bijections between internal sets in terms of the ultrafilter.

lemma eventually_bij_betw:

"bij_betw ( ∗fn∗ f ) ( ∗sn∗ A) ( ∗sn∗ B) = (∀F n in U . bij_betw ( f n) (A n) (B n))"
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We have now defined and linked the concepts of hyperfiniteness and hypernatural in-

tervals and we are ready to define hyperfinite sums and products.

3.2.4 Hypernatural indexed sums and products

Recall that Euler does not write out the nth term of a sum or product with an infinite

natural number of terms and that the length of the sum or product usually has to be

worked out from previous steps. It is not convenient to be intentionally vague with the

degree of the polynomials in our Isabelle formalisation, thus we use a more precise

notation. We define a hyperfinite sum as follows.

definition hypsum ::

" ( 'a star ⇒ 'b star ) ⇒ ( 'a star ) set ⇒ 'b star"

where "hypsum f S = star_n (λn. (sum (unstarfun f n) (unstarset S n)))"

Here 'a and 'b denote polymorphic variable types, which stand in place of whichever

concrete type, real, nat etc. which we may wish to instantiate them to. star is the type

constructor for nonstandard numbers e.g. real star would be type hyperreal. This al-

lows hypsum to be indexed by a set of any nonstandard type and have terms of any

nonstandard type. Notice that we define hypsum in terms of the already existing sum

defined for standard types. To do this, we use unstarfun and unstarset to obtain the

underlying standard sequences defining the nonstandard function and index set. Such

sequences only exist for internal functions and sets, thus hypsum is only well-defined

for internal functions and sets. Similarly to the definitions of hyperfiniteness and hy-

percardinality, this will only be meaningful if the function and set are internal. Thus

far it does not seem obvious why we describe hypsum as a hyperfinite sum, but, in the

same way that sum relies on its index set being finite for its characterising properties to

hold, so does hypsum rely on its index set being hyperfinite for us to be able to prove

useful properties of hypsum. Hyperfinite products are defined analogously as follows.

definition hyprod ::

" ( 'a star ⇒ 'b star ) ⇒ ( 'a star ) set ⇒ 'b star"

where "hyprod f S = star_n (λn. (prod (unstarfun f n) (unstarset S n)))"

With these notions of hyperfinite sums and products, we can now represent hyper-

polynomials as functions, which gives us a way to imitate Euler’s infinite polynomials

in Isabelle. In the next sections, we describe our hyperpolynomials and use them to

formalise a version of the Fundamental Theorem of Algebra.
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3.2.5 Hyperpolynomials

With these notions of hyperfinite sums and products, we can now represent hyperpoly-

nomials as functions, which gives us a way to imitate Euler’s infinite polynomials in

Isabelle. Euler helpfully tells us that the general form of a polynomial is.

In a polynomial function the variable z has no negative exponents what-
soever, nor does it contain fractional expressions in which the variable z
enters into the denominators . . . This then is the general formula for poly-
nomial functions:

a+bz+cz2+dz3+ez4+ f z5+⋯

etc. It is impossible to think up a polynomial function which is not in-
cluded in this expression. [29, p. 6]2

Euler considers his polynomials to have real coefficients, although he does acknow-

ledge the possibility of complex roots [29, p. 116]. He discusses ‘polynomials’ of

infinite degrees, and treats them mostly in the same way. Thus we consider a hyper-

polynomial to be a function that can be written in the canonical form

M
∑
n=N

anxn (3.1)

where an is an internal function of n, and N and M are hypernaturals. This is the

general form of the polynomial given by Euler expressed in nonstandard analysis, al-

though we have allowed the polynomial to start at exponent N rather than 0, and we

have specified the degree of the polynomial. We initially formalised hypercomplex hy-

perpolynomials, i.e. hyperpolynomials of a hypercomplex variable with hypercomplex

coefficients. This was because we planned to use the Fundamental Theorem of Al-

gebra (FTA) which in its most general form must be expressed in terms of polynomials

with complex coefficients. The following definition gives a relation which is defined

generally and can be applied to both hypercomplex and hyperreal hyperpolynomials.

definition isHypfactorOf ::

" (( 'a ::{ power,comm_monoid_add}) star⇒ 'a star)⇒ ('a star⇒ 'a star ) ⇒ bool"

("_ isHypfactorOf _" [60, 60] 60) where

"A isHypfactorOf B = (∃N M cf. B =

(λ x. A x ⋅ hypsum (λn. (∗fn∗ cf) n ⋅ x pow n) {(N::nat star ) ..< M + 1}))"

2The ellipsis is added.
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The idea behind this definition is that A is a hyperfactor of B whenever there is a hy-

perpolynomial C such that B = AC. We judge that C is a hyperpolynomial if it can be

written in the form hypsum (λn. (∗fn∗ cf) n ⋅ x pow n) {(N::nat star ) ..< M + 1}. In

Section 5.3.1 we explain why we take the interval {N ..< M + 1} rather than {N .. M}.

This is our Isabelle representation of (3.1). We have proven that isHypfactorOf is a

reflexive relation. We have partially proved it is a transitive relation. The proof is

complete apart from the lemma stating that a hyperpolynomial multiplied by a hyper-

polynomial is itself a hyperpolynomial. This could be proved by internal induction.

We also prove some other general properties including

lemma linear_factor_gives_root:

assumes "(λx.(x − (a::hypreal))) isHypfactorOf B"

shows "B a = 0"

and

lemma isHypfactorOf_multiple:

assumes "a isHypfactorOf b"

shows "a isHypfactorOf (λx. (k:: 'a:: field star ) ⋅ b x)" .

However, for the main part of the Basel problem, we used hyperpolynomials with

hyperreal coefficients of a hyperreal variable. We also mechanised many properties of

these which were necessary in proving the hidden lemmas (see Section 4.4). The main

challenges were proving that the functions involved were internal, which was time-

consuming but not of particular interest. Here is a typical example of a useful property

of hyperpolynomials. In mathematical notation this would be

Lemma 1. Let a, k and N be hypernaturals with k ≤ a ≤N. Then

N
∑
i=a

cixn = xk
N
∑
i=a

cixn−k

and its Isabelle representation is below.

lemma polynomial_extract_factor_of_x_pow_k:

assumes "a≤N" "k ≤a"

shows "hypsum (λn. ( ∗fn∗ c) n ⋅ (x :: hypreal) pow n) {a..<(N::nat star ) } =

x pow k ⋅ hypsum (λn. (∗fn∗ c) n ⋅ x pow (n − k)) {a..<N}"

We now describe some concepts that we defined in order to index our hyperpoly-

nomials appropriately in our proof of the Basel problem.
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3.2.5.1 Even and odd indexing of hyperpolynomials

Odd and even functions are defined by odd and even power series. Hyperbolic sine

has an odd power series and in Euler’s proof of the Basel problem, he expands (ex −
e−x)/2 = 1/2[(1+x/N)N −(1−x/N)N] (i.e. hyperbolic sine) as

x+ 1
3!

x3+ 1
5!

x5+ 1
7!

x7+⋯

We defined generally the concept of odd and even intervals in Isabelle to give a con-

venient and expressive way to describe this reasoning. We defined strict and non-strict

intervals with both or single bounds. Here is an example.

definition

lessThanOdd :: "'b ::{ comm_monoid_add,comm_monoid_mult,minus,ord,

semiring_parity} => 'b set" ("(1{..<odd_})")

where "{..<odd M} ≡{x. x<M ∧odd x}"

We also proved characterising theorems of these intervals, for example:

lemma hypsum_even_characterisation_cases:

"hypsum (∗fn∗ a) {N..<even M} =

hypsum (λn. if ∃k. n = 2 ⋅ k then (∗fn∗ a) n

else (0:: hypreal)) {N..<(M::hypnat)}" .

Later in McKinzie and Tuckey’s reconstruction of Euler’s proof, they describe the

polynomial as a product of half of its degree (interpreted as a hypernatural number).

The parity of the degree affects what half its degree would be. So we have proven

relations between even intervals and intervals up to ‘half degrees’. We use a transferred

version of the ceiling function ∗⌈N⌉1
2 in our representation, defined as follows.

definition upper_half_nat :: "nat ⇒ nat" ("⌈_⌉1
2")

where "⌈N⌉1
2 = (if ∃k. N = 2 ⋅ k then N div 2 else (N+1) div 2)"

definition upper_half_nat_star :: "nat star ⇒ nat star " ("∗⌈_⌉1
2")

where "∗⌈N⌉1
2 = star_n (λn. ⌈unstarnum N n⌉1

2)"

We can then characterise even intervals using ∗⌈N⌉1
2 as follows.

lemma even_interval_upper_half_nat_star:

"⋀i. (2 ⋅ i ∈ {0..<even N}) = ( i ∈ {0..<∗⌈N⌉1
2})"
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3.3 Fundamental Theorem of Algebra

Euler’s proof of the Basel problem uses a trinomial (in modern terminology, quadratic)

factorisation of an infinite polynomial (Section 4.2.2). This relies on a nonstandard ver-

sion of the statement of the Fundamental Theorem of Algebra (FTA) which we mech-

anise using our theory of hyperpolynomials. Euler’s treatment of infinite-polynomials

as though they were finite was one of the aspects of his proof of the Basel problem that

was remarked upon by his contemporaries.

3.3.1 The role of the FTA in our mechanisation

In the following discussion and formalisation of the statement of the FTA, we explore

Euler’s understanding of the FTA and how we could represent that in our theory of hy-

perpolynomials. This is important since it clarifies Euler’s understanding of his infinite

polynomials and demonstrates that he did not consider them entirely separately from

the usual polynomials of finite-degree. With our nonstandard representation of polyno-

mials, we were able to represent that aspect of his thinking since the hyperpolynomials

can take finite or infinite degree. However, in our mechanisation, we did not prove

the Trinomial Lemma which is based on the FTA (see Section 6.4.1 for our discussion

of the Trinomial Lemma) and we consider both of these (the FTA and the Trinomial

Lemma) to be external to the reasoning that makes up the proof of the Basel Problem,

and only of interest with regards to Euler’s concepts. In Figure 6.1 there is a visual

representation of the role of the FTA in our mechanisation.

3.3.2 Euler and the Fundamental Theorem of Algebra

Euler had an interesting relationship with the Fundamental Theorem of Algebra (FTA).

In 1742, he claimed to have a proof of it for polynomials of degree up to 6. In 1748,

within the ’Introductio’ at the beginning of his discussion of trinomial factors of poly-

nomials, he states:

It is clear now that the number of these linear factors (of a polynomial with
real coefficients) is determined by the greatest power of z. [29, p. 116]

In 1749, the year after he published the ‘Introductio’ he published a proof of it: a proof

which assumed that a polynomial of degree n will have n complex roots. This fact

seems almost equivalent to the FTA to a modern reader. However, Dunham states that

in the mid 18th century the FTA was considered to be as follows:
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Any polynomial with real coefficients can be factored into the product of
real linear and/or real quadratic factors [17, p. 283].

Euler calls these real quadratic factors ‘trinomials’ and devotes Chapter 9 of the ‘Intro-

ductio’ to outlining their form both in the general case and for particular polynomials:

including the polynomial at the heart of the Basel problem. His derivation of the trino-

mial factors rests on the modern version of the FTA:

Any non-constant polynomial of degree n with complex coefficients has,
counted with multiplicity, exactly n complex roots.

Therefore we find it necessary to mechanise this version of the FTA (Section 3.3.3).

Gauss later gave the first reasonably complete proof of the FTA (both in its modern

and 18th century forms) in his PhD dissertation of 1799 [17, p. 292][39]. He gives his

own analysis of Euler’s proof, making several criticisms, including pointing to Euler’s

assumption that the polynomial will have as many roots as its degree. He says:

. . . it can certainly not be understood with that clarity which must always
be insisted upon in mathematics. . .

However, Gauss’ own proof rests on an assumption which he considered to be obvious,

yet was only proven in 1920 [75, p. 290]3. This demonstrates a common theme in

18th century proofs: if assumptions were convincing, it was not always considered

necessary to prove them, and many of them were out of the reach of the contemporary

mathematical knowledge.

In the proof of the Basel problem, Euler applied his FTA to a polynomial of in-

finite degree. This was a point which was criticised by his contemporaries. However,

in nonstandard analysis, the FTA can be extended via the transfer principle to hyper-

polynomials including those with infinite hypernatural degree. In the next section we

describe such a version of the FTA.

3.3.3 Mechanisation of the Fundamental Theorem of Algebra

Euler thought of the FTA as finding real linear and real quadratic factors of polynomials

with real coefficients. Euler might not recognise the modern version of the FTA as the

18th century one, however, he would recognise it as an obvious fact: so obvious that

he thought it was an acceptable assumption to base his proof of the 18th century FTA

3This assumption is that two particular algebraic curves meet inside a particular circle. There is
some background setup before the assumption can be stated precisely so we will not summarise it here
but it is well explained in Stillwell’s book [75, p. 290].
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on. There is a formalisation and proof of the FTA in Isabelle/HOL/Computational-

Algebra. This uses the formulation that every nonconstant single-variable polynomial

with complex coefficients has a complex root.

lemma fundamental_theorem_of_algebra:

assumes nc: "¬ constant (poly p)"

shows "∃z::complex. poly p z = 0"

However, we cannot directly apply this theorem to our polynomials. The term poly

refers to abstract algebraic objects. It would be nontrivial to prove the equivalence of

our functional representation of polynomials with the algebraic representation, and so

we directly formulate the version of the FTA which is useful to us. Via the transfer

principle, we can and have extended the FTA to all hyperpolynomials including those

with infinite hypernatural degree.

Theorem 2 (Fundamental Theorem of Algebra for Hyperpolynomials). Given a hy-

perpolynomial ∗∑N
n=0bnxn with internal coefficients bn ∶ ∗N → ∗C for which the Nth

coefficient bN is nonzero, we can write it as a product of linear factors (x−an) given

by the hyperfinite sequence of internal coefficients an ∶ ∗N→ ∗C such that

∗∑N
n=0bnxn = bN

∗∏N
n=1(x−an)

As we stated in Section 2.2.2, we formalise this in a locale. It will be possible

to instantiate the locale if our functional polynomials are unified with the algebraic

representation. We did make some progress towards this by proving ‘equating coeffi-

cients’ (see Section 6.3) which shows that polynomials are uniquely defined by their

coefficients in their canonical representation a0+a1x+a2x2+a3x3+a4xa+⋯.

locale Fundamental_theorem_of_algebra =

assumes FTA:

"( ∗fn∗ b) N /= 0Ô⇒
∃a. (λx. (( ∗fn∗ b) N) ⋅ hyprod (λn. x − ( ∗fn∗ a) n) {1..< N+1})

= (λx. hypsum (λn. ( ∗fn∗ b) n ⋅ (x :: complex star) pow n) {0 ..< N+1})"

It would be possible to derive another version of the FTA as a lemma. This version

gives a degree and lowest exponent, and appears to be more general but in fact it is

equivalent, since we can define a polynomial to have some coefficients that are zero,

and that way include a coefficient for every power of the variable up to the degree.

lemma FTA_upper_and_lower_degree:
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assumes " N ≥1" "M ≤N" "( ∗fn∗ b) N /= 0"

shows

"∃a. (λx. (( ∗fn∗ b) N) ⋅ hyprod (λn. x − ( ∗fn∗ a) n) {1..< N})

= (λx. hypsum (λn. ( ∗fn∗ b) n ⋅ (x :: complex star) pow n) {N ..< (M + 1)})"

3.4 Overspill and Sequential Theorems

Euler’s proof deals with what modern mathematicians consider to be convergent se-

quences of elementary functions. As we have seen in Section 2.3.2.2, our nonstandard

analysis interpretation of these is as internal functions of the hypernaturals. If we sub-

sequently make a statement about these sequences, as long as that statement uses only

internal operations, the statement will itself be an internal predicate. By definition,

internal predicates can only be true on internal sets. We can use this fact to our advant-

age and derive the truth of the predicate on wider sets than we originally proved it for.

E.g. if we prove an internal predicate true for all infinite hypernaturals, since the infin-

ite hypernaturals do not form an internal set, the predicate must also be true for some

finite hypernaturals. We can actually formulate a stronger statement called the Over-

spill Theorem by McKinzie and Tuckey [57] or Overflow Principle by Goldblatt [40,

p. 129]. We shall call it ‘overspill’ since that is the most common terminology for this

theorem. McKinzie and Tuckey give a version of the Overspill Theorem used in the

proofs of their Hidden Lemmas.

Theorem 3 (McKinzie and Tuckey’s Overspill). Let φ(n) be an equation or inequality

of elementary sequences. Then φ( j) holds for all finite j greater than some finite m iff

φ(J) holds for all infinite J less than some infinite M.

McKinzie and Tuckey find it sufficient to specify that it holds for equations and in-

equalities between elementary sequences. A more general version for internal sets is

given in Goldblatt’s textbook [40, p. 129]. The theorem is given here as Goldblatt

wrote it apart from changes in notation.

Theorem 4 (Goldblatt’s Overspill). Let S be an internal subset of ∗N and k ∈N. If n ∈ S

for all n ∈ N with k ≤ n, then there is an infinite K ∈ ∗N with n ∈ S for all n ∈ ∗N with

k ≤ n ≤K.

Goldblatt only gives the implication in one direction but trivially it would hold in

the other direction (since all n ∈ N are less than any infinite K). The version of this
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theorem that we formalise in Isabelle is similar to the way that the way McKinzie and

Tuckey phrase their theorem, yet it is as general as Goldblatt’s version. The mathem-

atical version of our theorem can be given as follows.

Theorem 5 (Our Overspill). Let S be an internal subset of ∗N. If for all n ∈N, we have

n ∈ S, then there is an infinite K ∈ ∗N with n ∈ S for all n ∈ ∗N with n ≤K.

Although this seems at first glance less general than Goldblatt’s version, we can argue

that it is equivalent with it. First assume our version and try to prove Goldblatt’s.

Since S is a variable, it can be instantiated to any internal set and any internal predicate

P(n) defines an internal set S = {x.P(x)}. Given an internal subset T of ∗N, then

P(n) = k ≤ n→ n ∈ T would be one such internal predicate. Plugging this instantiation

into our version gives us Goldblatt’s version. Then for the other direction, just choose

the k ∈N from Goldblatt’s version to be 0.

The following lemma is the basic principle upon which the Overspill Theorem

rests: an internal predicate can only be true over an internal set. Our proof in Isabelle

uses the definition of an internal predicate.

lemma internal_predicate_true_on_internal_set:

" {x. ( ∗pn∗ P) x} ∈ InternalSets"

The Overspill Theorem is related to a corollary: the Sequential Theorem.

Theorem 6 (McKinzie and Tuckey’s Sequential Theorem). Let a1,a2,a3, . . . and b1,b2,b3, . . .

be elementary sequences. If an ≃ bn for all finite n, then there is an infinite N such that

for all n smaller than N, an ≃ bn.

At first it looks like a simple application of the Overspill Theorem to a predicate, until

we recall that the infinitely-close relation ≃ is not an internal operator. Thus the proof

involves rewriting the relation an ≃ bn between terms of the sequence as an internal

predicate which is provably equivalent to the original relation (see Section 3.4.2).

The Sequential Theorem is used to prove the Hidden Lemmas, as formulated by

McKinzie and Tuckey. We discuss the Hidden Lemmas in the context of Euler’s proof

in Section 4.4 and we describe their mechanisation in Isabelle in Chapter 6. However,

as the Overspill and Sequential Theorems are general results in nonstandard-analysis

we will describe their mechanisations here.

3.4.1 Mechanisation of the overspill theorem

McKinzie and Tuckey provide a proof only of the first direction.
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For the first direction, assume that m is finite and that φ( j) holds for all
finite j greater than m. If φ( j) holds for all j greater than m then we are
done. Otherwise, there is a least counterexample; that is, there is an M
greater than m such that φ(M) fails but φ( j) holds for all j greater than m
and less than M. This M cannot be finite. The other direction is left to the
reader.

The following lemma formalises the first direction of the proof for our Overspill The-

orem.

lemma Nats_overspill_interval:

assumes "∀n∈N. (∗pn∗ p) n"

shows "∃N∈HNatInfinite. ∀n<N. (∗pn∗ p) n"

McKinzie and Tuckey’s proof does not explicitly rely on internal propositions or sets.

However, when formalising this in Isabelle we were able to determine that the step

where they obtain a ‘least counterexample’ does rely on the concepts involved being

internal. The Isabelle proof of this lemma is similar to McKinzie and Tuckey’s math-

ematical proof. Our internal proposition (∗pn∗ p) n corresponds to their φ( j). Instead

of considering whether φ( j) holds for all j greater than m we make a case-split on the

proposition {n. (∗pn∗ p) n } = (UNIV::nat star set). If it is true, then (∗pn∗ p) n holds

for all hypernaturals. Thus ∃N∈HNatInfinite. ∀n<N. (∗pn∗ p)n as long as there exists an

infinite hypernatural. If not, we construct the internal set S which describes the values

on which (∗pn∗ p) n does not hold.

The two following lemmas show the converse direction of the Overspill Theorem

which is much easier to prove. Note that we can prove this direction also for the

hyperreals.

lemma internal_predicates_on_HInfinite_also_on_finite_values:

assumes "∀(x::real star)∈HInfinite . ( ∗pn∗ P) x"

shows "∃k∈HFinite. ( ∗pn∗ P) k"

lemma internal_predicates_on_HNatInfinite_also_on_finite_values:

assumes "∀(x::nat star)∈HNatInfinite. ( ∗pn∗ P) x"

shows "∃k∈HNatFinite. ( ∗pn∗ P) k"

Hidden Sublemma (ii) (see Section 5.8) uses the converse direction of the Overspill

Theorem, however, the first direction of the Overspill Theorem is used in the proof of

the Sequential Theorem (Section 3.4.2) and the rest of the Hidden Lemmas depend on
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the Sequential Theorem (see Sections 5.3- 5.5). Hence the Hidden Lemmas require

both directions of the Overspill Theorem.

3.4.2 The Sequential Theorem

We use the Sequential Theorem in our proofs of the Hidden Lemmas in Sections 5.3-

5.5. Our mechanised proof of the Sequential Theorem follows that of McKinzie and

Tuckey [55]. It is an application of the Overspill Theorem, but as McKinzie and Tuckey

say, not a direct application since the relation ≃ is not internal. We replace an ≃ bn

with ∣an −bn∣ < 1/n, with n ∈ ∗N, which is internal so that we can apply the Overspill

Theorem. We formalise McKinzie and Tuckey’s argument by a case-split on whether

n is infinite.

lemma sequential_theorem:

assumes "∀n∈N. ( ∗fn∗ a) n ≈((( ∗fn∗ b) n) :: hypreal)"

shows "∃N∈HNatInfinite. ∀n<N. ( ∗fn∗ a) n ≈ ( ∗fn∗ b) n"

We prove the Sequential Theorem using the following lemma which is an interme-

diate step between the Overspill Theorem and the Sequential Theorem.

lemma Nats_overspill:

assumes "∀n∈N. (∗pn∗ p) n"

shows "∃N∈HNatInfinite. (∗pn∗ p) N"

Our proof of this theorem relies on showing that the infinite hypernaturals are an ex-

ternal set in the hypernaturals. We describe external sets and their formalisation in the

next section.

3.4.3 External sets

External sets are exactly those which are not internal (Section 2.3.2.4). Examples of

external sets in the hyperreals include the infinite hypernaturals, the finite hyperreals

and the infinitesimals. Clearly external sets can still be useful sets to discuss. We give

the following definition of external sets in our formalisation.4

definition ExternalSets where "ExternalSets = {E. ¬(∃e. E = ∗sn∗ e)}"

4Alternatively we could have given the definition ExternalSets = − InternalSets which would have
been a simpler expression. Instead we prove this from the definition.
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Externality and internality of sets are relative to the type in which those sets are

embedded. For example, UNIV is the set of all elements of some type and UNIV is

always internal, with respect to its own type. Yet UNIV may be any set provided that

set forms the entire type. Even the infinite hypernaturals are internal relative to the type

that they define. Thus we have proven separately in our formalisation that the infinite

hypernaturals are external relative to the hyperreals and relative to the hypernaturals.

Mathematicians e.g. Goldblatt, do not usually think in terms of types and Goldblatt

simply states that any set of interest e.g. N is external, but he does make it clear at the

beginning of the section that he is considering them as subsets of the hyperreals [40, p.

131].

To prove a set is external, we typically use the algebra of internal sets and argument

by contradiction to show that it cannot be internal. If it were internal, then combining

it with an internal set (either by union, intersection, difference or other means) would

produce an internal set. However, to begin this chain of reasoning, it is necessary

to start with one set which we know to be external. Following Goldblatt [40, p.132]

we first show that the infinite hypernaturals of type hypnat are external. This follows

from the internal least number principle which states that every internal subset of the

hypernaturals contains a smallest member. In our formalisation we prove the following

fundamental sets are external:

1. the infinite hypernaturals of type hypnat i.e. L∩ ∗N ⊂ ∗N (in our Isabelle theory

as HNatInfinite_ExternalSets),

2. the finite hypernaturals of type hypnat i.e. N ⊂ ∗N (in our Isabelle theory as

HNatFiniteInHypnats_ExternalSets),

3. the finite hypernaturals of type hypreal i.e. N ⊂ ∗R (in our Isabelle theory as

HNatFiniteInHypreals_ExternalSets),

4. the hypernaturals of type hypreal i.e. ∗N ⊂ ∗R (in our Isabelle theory as

HNatInHypreals_internal),

5. the infinite hyperreals i.e. L⊂ ∗R (in our Isabelle theory as HInfinite_ExternalSets),

6. the finite hyperreals i.e. L∩∗R⊂ ∗R (in our Isabelle theory as HFinite_ExternalSets).

Each hypernatural set is proved to be external twice: once as a set of type hypnat set,

and once as a set of type hypreal set. The hypnat proofs follow Goldblatt’s reasoning.

The hypreal proofs use coercion functions which force some difference between formal
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proof in Isabelle and standard mathematical proof. For an Isabelle proof, we need to

prove that the inverse of the coercion function is internal, which makes the reasoning

more involved.

3.5 Summary

In this chapter we described the mechanisation of some of the results from nonstandard

analysis necessary for the proof of the Basel problem:

• definition of unstarfun (Section 3.1): an operator that, for nonstandard functions,

allow us to find a representative of the equivalence-class of the underlying se-

quences of standard functions;

• definition of unstarnum (Section 3.1): an operator that, for nonstandard num-

bers, allow us to find a representative of the equivalence-class of the underlying

sequences of standard numbers;

• further properties of internal sets (Section 3.1);

• the Overspill Theorem (Section 3.4) with its proof in Isabelle (Section 3.4.1);

• the Sequential Theorem (Section 3.4.2) with its proof in Isabelle;

• External sets (Section 3.4.3), their definition and proofs that some of the funda-

mental sets are external.

We also described the mechanisation of a theory of polynomials in Isabelle de-

signed to more directly capture Euler’s reasoning about these objects.

• hyperfiniteness, hypercardinality, hyperintervals and their characterising theor-

ems with proofs in Isabelle (Sections 3.2.2- 3.2.3);

• hyperfinite sums and products and their characterising theorems with proofs in

Isabelle (Section 3.2.4);

• The Fundamental Theorem of Algebra (Section 3.3.3) as a locale.

In order to place these in context and compare them to Euler’s concepts, we described

• Euler’s notion of series, product, and polynomial (Section 3.2.1);

• Euler’s version of the Fundamental Theorem of Algebra (Section 3.3.2).
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In the next chapter we introduce the reader to Euler’s proof and the concepts of

hidden lemma and E-convergence which will be necessary to the formalisation.



Chapter 4

Analysis of the Basel Problem

The purpose of this chapter is to outline Euler’s proof of the Basel problem, and make

note of the points of interest, thereby allowing the reader to understand what is going

on from a mathematical perspective. This is particularly important since we intend our

mechanisation of the Basel Problem to improve our understanding of Euler’s proof.

We have informed our mechanisation using McKinzie and Tuckey’s rehabilitation of

the proof [57], as well as Kanovei’s analysis of Euler’s factorisation of sine [76], and

occasionally we have looked to standard-analysis rewritings of the proof (e.g. Eber-

lein [21]) for interpretation of Euler’s reasoning.

Therefore, in this chapter, we will discuss Euler’s proof with reference to the ap-

proaches and insights we have taken from these prior interpretations. We give an over-

view of two of Euler’s proofs of the Basel problem. First, his most criticised proof in

which he factorised sine as an infinite polynomial [27], and second, his proof given in

the ‘Introductio’ [29]. On occasion, we point out how modern mathematicians inter-

pret the various parts of the proof. We give special attention to the interpretations in

terms of nonstandard analysis, as these are most relevant to us, but we also mention

standard analysis accounts of the proof where appropriate. We do not seek to discuss

Euler’s proof, independently and objectively, but instead build upon the prior work.

We identify new points of interest as we proceed and seek to examine these in Euler’s

terms.

We also introduce the concepts of hidden lemmas, Euler-convergence and determ-

inacy which were introduced by McKinzie and Tuckey to rehabilitate Euler’s proof.

These are used centrally in our formalisation.

69
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4.1 Overview of Euler’s most criticised proof

In the introduction we mentioned some of the criticisms of Euler’s proof of the Basel

problem. Most of the modern criticisms are directed at what could be called his ‘third’

proof, from 1736, which was a refinement of his argument from 1734 that the sum of

the reciprocals of the squares add up to π
2

6 [27].

In this third proof, Euler states that the power series for sine can be obtained by ‘a

well-known method’ [27, §3, p. 3]. This method is to write sine as a product of linear

factors given by its roots

sins = s(1− s2

π2)(1− s2

4π2)(1− s2

9π2)(1− s2

16π2)⋯

and multiplying-out this product to obtain a power series for sine.

sins = s−( 1
π2 +

1
(2π)2 +

1
(3π)2 +⋯)s3+⋯ (4.1)

He says ‘. . . if our method should appear to some as not reliable enough. . . ’ [27, §10, p.

4] indicating that he considered this ‘proof’ as a method of calculating a result, rather

than an indisputable chain of reasoning. Pólya argues that he meant this argument in

the spirit of scientific reasoning [67]. McKinzie and Tuckey summarise Pólya’s points

neatly.

A scientific hypothesis gains confirmation (or corroboration) when it is
shown to lead to (i) the explanation of an already known phenomenon,
and (ii) the prediction of some unexpected new phenomenon. In 1734,
Euler established both of these points for [his method of factorising sine
by its roots to obtain a power series].

Euler obtains the sum of the reciprocals of the squares by equating the second coef-

ficient of (4.1) with the second coefficient of the other power series for sine s− 1
6s3 +

1
24s5−⋯.

In a paper written eight years later, Euler gives another proof of the Basel problem

and writes a description and criticism of his own earlier proof [26]. It is interesting to

look at what he says about his much criticised proof. He says he regards the theorem

as ‘already established truth’ [33, §1, p. 2], implying that he was satisfied with his

earlier derivation of the theorem. He says that ‘. . . the argument pleased the smartest

Geometers so much that they did not only consider it to be correct but also invested

a lot of work to find the same summations using methods familiar to them’ [33, pp.

1-2]. It is interesting that he does not seem to think it was the rigour of the argument
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which convinced them, otherwise he might have said ‘there was no step they could

argue with’ but rather the brilliance of it: it ‘pleased them’. Yet he also acknowledges

that the method could ‘justly be in doubt’ [33, §3, p. 2]. He states that his method of

considering sine as an infinite polynomial and factoring it according to its roots was

novel. He also justifies why he thought it was appropriate to factor it that way in this

instance. According to Euler, Bernoulli and Cramer originally doubted his method but

now these doubts are ‘almost forgotten’. In this paper [26] Euler proves that the power

series of sine has no imaginary roots and claims that it was therefore valid to factor it

using its real roots.

4.2 Overview of Euler’s proof from the Introductio

Euler’s proof from the ‘Introductio’ was given over several chapters of that book and

is intertwined with other results.

The strategy of Euler’s proof of the Basel problem from the ‘Introductio’ is to write

the polynomial 1
2 [(1+ x

N )N −(1− x
N )N], with infinite hypernatural N, in two different

ways. This is in fact hyperbolic sine, up to an infinitesimal. This is not mathematically

essential to Euler’s argument, when interpreted with a formalist understanding, but it

did influence his method of discovery and also provides a convenient name for the

polynomial. Because of the way his proof is presented in the ‘Introductio’, we could

choose to interpret the first stage of Euler’s proof either as using the MacLaurin series

for hyperbolic sine, or we could interpret it as expanding 1
2 [(1+ x

N )N −(1− x
N )N] dir-

ectly by the Binomial Theorem. In Chapter 7, Euler writes ax as a polynomial which

can be expanded into its MacLaurin series using the Binomial Theorem, and thereby

he writes ex−e−x

2 as 1
2 [(1+ x

N )N −(1− x
N )N] which he then expands using the Binomial

Theorem. Since the rest of the proof of the Basel problem can be reduced to expanding
1
2 [(1+ x

N )N −(1− x
N )N] in a different way, it would be unnecessary to include rewrit-

ing into ex−e−x

2 as part of the formal proof, even though Euler took this expression as

his starting point. This should explain why some mathematicians describe this proof

as factorising the sine function (really hyperbolic sine, but of course they are easily ob-

tained from each other by a substitution of ix as Euler noted) as an infinite polynomial.

We note the following points of interest in the structure of the reasoning of Euler’s

proof

1. The expansion of hyperbolic sine using the Binomial Theorem
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2. The application of the Trinomial Lemma and subsequent multiplication of the

factors with discarded increments (see Section 4.6)

3. The substitution of a cosine term

4. The apparent equating of coefficients to obtain the final result

These all correspond to ‘gaps’ or points of interest identified by McKinzie and Tuckey,

Kanovei or other mathematicians. It is difficult to neatly separate these points of in-

terest into distinct and singular parts of the proof. This is evidenced by the different

ways they have been split up by modern commentators. Also, when we begin to ana-

lyse and mechanise each of point of interest in Euler’s proof, we realise that there is an

intricate web of reasoning behind each of these steps. Some may be the application of

more than one significant result, depending on how Euler’s reasoning is interpreted.

4.2.1 Binomial expansion

First Euler uses the Binomial Theorem to expand (1+ x
N )N

and (1− x
N )N

. The expan-

sion of (1+ x
N )N by the Binomial Theorem is

1+ 1
1

x+ 1(N −1)
1 ⋅2N

x2+ 1(N −1)(N −2)
1 ⋅2N ⋅3N

x3+ 1(N −1)(N −2)(N −3)
1 ⋅2N ⋅3N ⋅4N

x4+⋯

Euler says (ellipses are added)

Since N is infinitely large,
N −1

N
= 1 . . .

N −2
N

= 1,
N −3

N
= 1, and so forth. It

follows that
N −1
2N

= 1
2

,
N −2
3N

= 1
3

,
N −3
4N

= 1
4

, and so forth. . . . we substitute
these values . . . [29, §116]

He thus obtains

1
2
[(1+ x

N
)

N
−(1− x

N
)

N
] = x

1
+ x3

1 ⋅2 ⋅3
+ x5

1 ⋅2 ⋅3 ⋅4 ⋅5
+ . . . (4.2)

We describe how we mechanise the nonstandard Binomial Theorem in Section 6.5.

Notice that if we suppose N to be equal to some odd hypernatural K, this polynomial

is the same for K or for K+1. Thus, the degree N is equal either to such a K, or such a

K +1, depending on whether N is odd or even. If N = K +1 is even, we may take K to

be the degree instead. Hence we may assume N is odd. In Isabelle, we may formalise

this using a case split (discussed in Section 2.2). Euler does not make this reasoning

explicit, but in the next step of the proof it becomes relevant.
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4.2.2 Trinomial factors

In Chapter 9 of the ‘Introductio, Euler discusses ‘trinomial factors’: these are polyno-

mial factors which we would nowadays call ‘quadratic’.1 He discovered that

Theorem 7 (Trinomial Lemma). The factors of an − zn are a2 −2azcos 2kπ

n + z2 where

we let 2k range through all even integers not exceeding n.

The ‘Trinomial Lemma’ is our name for this theorem and it is a special case of

Euler’s more general exploration of the trinomial factors of polynomials. We discuss

our formalisation choices relating to it in Section 6.4.1. However, Euler states that for

any such factors which are perfect squares, we instead take only the square-root of the

trinomial as the factor [29, §151]. Euler applies this lemma with a = 1+ x
N , z = 1− x

N

and n = N for an infinitely-large natural number N, and as we may assume N is odd,

we find that 2azcos 2kπ

n is only equal to 2az when k = 0, due to the properties of cosine.

Hence, a2−2azcos 2kπ

n +z2 is only a perfect square when k = 0, in which case, the factor

is a− z = 2x
N , however Euler discards the constant factor 2

N and only says ‘the resulting

first term will be x’.

4.2.3 Rewriting the factors

In next step of the proof Euler rewrites the general factor in a simpler form. We have

a2−2azcos
2kπ

n
+ z2 = 2+ 2x2

N2 −2(1− x2

N2)cos
2k
N

π. (4.3)

Now we rewrite cos2k/Nπ using the rules Euler listed earlier in the ‘Introductio’

as being ‘known from trigonometry’. Note that Euler does not give this derivation

explicitly. We find

cos
2k
N

π = cos2 k
N

π− sin2 k
N

π

= 1−2sin2 k
N

π (using the Pythagorean identity)

and now, as Euler would put it, we use that sinε = ε for infinitesimal ε (taken literally

this is not quite true: in terms of nonstandard analysis we would write it instead as

sinε ≃ ε for infinitesimal ε, where ≃ is the infinitely-close relation). Hence,

cos
2k
N

π = 1−2
k2

N2 π
2. (4.4)

1Euler is not wrong to call these trinomials however: they are indeed polynomials consisting of three
terms.
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Euler substitutes (4.4) into (4.3) and obtains after rearrangement a simpler form of the

general factor:

4k2π2

N2 (1+ x2

k2π2 −
x2

N2) . (4.5)

This factor is itself divisible by (1+x2/k2π2−x2/N2) so Euler now argues that our

original polynomial has this as a factor, however he says ‘we omit the term x2/N2 since

even when multiplied by N it remains infinitely small’ 2 (recall that we have (N−1)/2
trinomial factors plus a factor of x according to the Trinomial Lemma). Notice that this

claim is not valid if k = 0, but that case has been dealt with separately.

4.2.4 Multiplication of factors

Now Euler puts the factors together to get

1
2
[(1+ x

N
)

N
−(1− x

N
)

N
] = x(1+ x2

π2)(1+ x2

4π2)(1+ x2

9π2)

(1+ x2

16π2)(1+ x2

25π2)⋯ (4.6)

Euler has thus far proved that 1
2 [(1+ x

N )N −(1− x
N )N] is divisible by the factors on the

right hand side of (4.6). However, since he discarded many constant factors we do not

know what the leading coefficient should be. We can use a version of the Fundamental

Theorem of Algebra, to compare the expansion of this product with the leading coeffi-

cient in the previous expansion (4.2) and conclude that the leading coefficient must be

1 as Euler has given it. At this point Euler has rewritten 1/2[(1+x/N)N −(1−x/N)N]
as (4.2) and (4.6).

4.2.5 Equating coefficients

Euler now argues that we are able to equate coefficients in the following sense, which

we discuss further in Section 4.4.7.

165. If 1+Az+Bz2+Cz3+Dz4+etc. = (1+αz)(1+βz)(1+γz)(1+δz) etc.,
then these factors, whether they be finite or infinite in number, must pro-
duce the expression 1+Az+Bz2 +Cz3 +Dz4 + etc., when they are actu-
ally multiplied. It follows then that the coefficient A is equal to the sum
α+β+γ+δ+etc. [29, §165]

2Euler originally used j to represent the infinite number which we have changed to N to be consistent
with the modern convention e.g. McKinzie and Tuckey’s notation.
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Euler reminds us that he has expanded ex−e−x

2 in two different ways, and thus the two

expansions can be ‘equated’.

x
1
+ x3

1 ⋅2 ⋅3
+ x5

1 ⋅2 ⋅3 ⋅4 ⋅5
+⋯

= x(1+ x2

π2)(1+ x2

4π2)(1+ x2

9π2)(1+ x2

16π2)(1+ x2

25π2)⋯

He then states ‘it follows that’

1+ x2

1 ⋅2 ⋅3
+ x4

1 ⋅2 ⋅3 ⋅4 ⋅5
+⋯ (4.7)

= (1+ x2

π2)(1+ x2

4π2)(1+ x2

9π2)(1+ x2

16π2)(1+ x2

25π2)⋯ .

Recall that in Euler’s proof ‘=’ means equality up to an infinitesimal. In terms of

nonstandard analysis, we would often be using the infinitely-close relation rather than

true equality, and the ‘equation’ in (4.7) is one of these cases3. Euler now applies the

reasoning from §165 as though (4.7) uses true equality. Notice this appears to be a

gap in his proof which we discuss further in Section 4.4.7 and Section 6.9. Before

applying §165, he first lets x2 = π2z. This is simply a substitution which will make his

subsequent reasoning easier to follow. For z > 0 that gives us

1+ π2

1 ⋅2 ⋅3
z+ π4

1 ⋅2 ⋅3 ⋅4 ⋅5
z2+ . . . = (1+ z)(1+ z

4
)(1+ z

9
)(1+ z

16
)(1+ z

25
) . . . .(4.8)

Now he applies §165 to equate the second coefficient π
2

1⋅2⋅3 with A= 1+ 1
4 +

1
9 +

1
16 +

1
25 . . ..

This gives our beautiful result

π2

6
= 1+ 1

4
+ 1

9
+ 1

16
+ 1

25
. . . .

3See Section 5.5.1.4 to see an example where it is invalid to divide by x on both sides of the infinitely-
close relation. In the current case, however, there is not truly any issue since we can restrict the domain
of x to be finite and noninfinitesimal without spoiling Euler’s chain of reasoning. In Section 6.9.1 we
will give McKinzie and Tuckey’s version of this, where they equate coefficients of the odd powers, thus
eliminating the division by x.



76 Chapter 4. Analysis of the Basel Problem

However, there are more beautiful results shortly to follow. We did not mention this

above, but §165 was followed by §166 which gave the expressions

P = α+β+γ+δ+ε+ . . .

Q = α
2+β

2+γ
2+δ

2+ε
2+ . . .

R = α
3+β

3+γ
3+δ

3+ε
3+ . . .

S = α
4+β

4+γ
4+δ

4+ε
4+ . . . (4.9)

T = α
5+β

5+γ
5+δ

5+ε
5+ . . .

V = α
6+β

6+γ
6+δ

6+ε
6+ . . .

which give powers of the coefficients of the binomial product from §1654. Euler states

that these can be found in terms of A, B, C, D etc. by P =A, Q =AP−2B, R =AQ−BP+
3C etc. . He says ‘The truth of these formulas is intuitively clear, but a rigorous proof

will be given in the differential calculus’. Now, from (4.9), and (4.8) he can obtain the

summation of the reciprocals of any power of the squares.

π4

90
= 1+ 1

42 +
1
92 +

1
162 +

1
252⋯ ,

π6

945
= 1+ 1

43 +
1
93 +

1
163 +

1
253⋯ ,

π8

9450
= 1+ 1

44 +
1
94 +

1
164 +

1
254⋯ ,

π10

93555
= 1+ 1

45 +
1
95 +

1
165 +

1
255⋯ .

and in fact, the result π2/6 = 1+1/4+1/9+1/16+1/25 . . . was a special case of this

reasoning since P = A is the only formula which could be discovered without the help

of Euler’s ‘rigorous proof’ using differential calculus. We will not cover these further

summations in this thesis apart from a mention in Section 7.4.

In Section 6.9.1 we give McKinzie and Tuckey’s version of Euler’s reasoning, and

explain how they attempt to fill the gap we mentioned above, which they call Gap

3. Their method is a minor simplification of Euler’s and works just for proving that

∑N
n=1 1/n2 = π2/6 for infinite N. The way they fill Euler’s gap also raises further ques-

tions which we address. But first, we must become familiar with the concepts of Euler-

convergence and hidden lemmas since these are integral to McKinzie and Tuckey’s

reasoning.

4Euler was using the Latin alphabet so there was no ‘U’!
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4.3 Gaps identified by McKinzie and Tuckey

We briefly state the gaps that McKinzie and Tuckey identify in Euler’s proof (by para-

phrasing their words) since we will refer to these on several occasions [57, pp. 37-38].

Gap 1. The substitution of 1 for
N −1

N
,

N −2
N

,
N −3

N
, and so forth.

Gap 2. The substitution of
1
2
(2kπ

N
)

2
for 1−cos

2kπ

N
and the substitution of

0 for x2/N2 in each factor.

Gap 3. The equation of the cubic terms in the first and second expansion of
hyperbolic sine.

4.4 Using the concept of hidden lemmas to rehabilitate

Euler’s proof

In their papers on Euler’s analysis of infinities [57, 55], McKinzie and Tuckey identify

several hidden lemmas. Of course, it may be a matter of opinion whether

1. these gaps in Euler’s proof amount to a lemma

2. Euler recognised that he was using some proposition or law in these gaps.

However, McKinzie and Tuckey give a convincing account of how these lemmas may

be used to rehabilitate Euler’s proofs in a way which is sympathetic to his original

reasoning, and the proofs of the lemmas they state do not use any principle or notion

which could not have been expressed in the language of Euler’s time. They do intro-

duce a key concept, that of Euler-convergence/determinacy, but they intend this as a

description of a distinction that Euler himself appeared to make. They also, of course,

use a rigorous theory of infinities and infinitesimals i.e. nonstandard analysis.

4.4.1 Euler’s concept of convergence

In his 1734 paper on the harmonic series [24], Euler expressed a principle under which

a series has a finite sum.

A series which, after its continuation to the infinite, has a finite sum, does
not accept increase, even if it is continued twice as far, but that which is
added in thought after an infinite will actually be infinitely small. For,
otherwise, the sum of the series continued to an infinite would not be de-
terminate and, consequently, not finite. From this follows that, if what
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originates from the continuation beyond an infinitesimal term be of finite
magnitude, then the sum of the series must necessarily be infinite. Thus,
from that principle we shall be able to judge whether the sum of any given
series be infinite or finite. 5

This has similarities to the Cauchy convergence criterion. We can remove the ambi-

guity from Euler’s principle by seeking counterexamples. Finding a ‘counterexample’

does not necessarily indicate that Euler’s criterion is wrong, but rather qualifies the

sense in which he meant it.

Laugwitz points out that Euler must have meant the principle to apply to series

with positive terms since he states that the series will be either finite or infinite. He

also argues that ‘duplo longius’ (twice as far) is not meant literally as twice, but some

arbitrary natural number of potentially infinite size [53, p. 207].

Euler’s condition is stated by Laugwitz to be both necessary and sufficient. Math-

ematicians have attempted to give counterexamples to it being a sufficient condition.

Most notably, Pringsheim gives the series ∑∞
n=2 1/(n logn) as a counterexample [53,

p. 207]. He takes Euler’s ‘duplo longius’ literally and thus wishes us to consider

∑n=2i
n=i+1 1/(n logn), where i is an infinite number. In 1735 Euler gave the sum from i+1

to ni as being infinitely close to log(1+ logn/ log i) [30]. Thus the sum from i+1 to 2i

will evaluate as log(1+ε), where ε is an infinitesimal. This is infinitely close to 0 and

so even though this series diverges, the sum from i+1 to 2i is infinitesimal. Pringsheim

thus believes he has found a counterexample to the sufficiency of Euler’s criterion.

Laugwitz argues that this only proves that ‘duplo longius’ was not meant literally by

Euler, since, when we consider the sum from i+1 to ni, we obtain ∑n=2i
n=i 1/(n logn)

where if n = i this is no longer infinitely close to 0. In this way Laugwitz dismisses

the counterexample and uses it to qualify the principle. McKinzie and Tuckey follow

Laugwitz’s interpretation here.

We can also give a ‘counterexample’ to it being a necessary condition. Take some

series which when continued to an infinite i is finite. Then define the (i+1)th term to

be some non-infinitesimal finite number, and let all the terms thereafter be 0. From this

we can deduce that either

• Euler meant that his series cannot depend on infinite numbers, or was otherwise

placing restrictions on the functions which he was using to define the terms of

the series. For example, that they are in some sense continuous.

• Euler meant that the sum must be finite for all infinite indices.
5Euler’s original statement is in Latin: this English version is taken from Laugwitz. [53, p. 206]
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McKinzie and Tuckey take the latter interpretation to formulate their notion of Euler-

convergence.

Within the principle, Euler also says what is required for a sum to have a determ-

ined value, which, as he says, is necessary for it to be finite. Determinacy by itself is a

useful property, and is used by McKinzie and Tuckey.

Euler did not mention this principle in any other work [53]. However, he appears

to have used it implicitly in the ‘Introductio’. We can only speculate on his reasons

for avoiding any explicit mention. Perhaps he was not himself convinced of its truth

in the general case, but could more easily see its usefulness and validity in specific

examples. McKinzie speculates that Euler became interested in series which take on

infinite sums and did not wish to exclude them from consideration [56, pp. 116-117].

His single explanation of the convergence criterion seems to have been unnoticed by

later mathematicians. It was not mentioned by Bolzano or Cauchy when they for-

mulated their own principles, and thus Euler’s principle did not leave its mark on the

history of mathematics.

Laugwitz uses the Eulerian convergence criterion to define a hidden lemma in

Euler’s 1748 expansion of the exponential series. McKinzie and Tuckey define two

separate notions which parallel the convergence criterion: determinacy [55, p. 349]

and Euler-convergence [57, p. 44]. They then extend Laugwitz’s work by formulat-

ing three hidden lemmas and two hidden sublemmas based on these. They use them

to reconstruct Euler’s 1748 proof of the Basel Problem with his reasoning intact and

the ‘gaps’ filled or explained. Following Laugwitz and McKinzie and Tuckey, we use

the convergence criterion and the hidden lemmas based on it to partially reconstruct

Euler’s proof in Isabelle as described in Chapter 6. In the following sections we de-

scribe McKinzie and Tuckey’s hidden lemmas and the concepts they are based on.

4.4.2 Determinacy and Euler-convergence

In their rehabilitation of the proof of the Basel problem, McKinzie and Tuckey express

Euler-convergence as follows [57].

Definition 1 (Euler-convergence). A sum a1+a2+a3+⋯ is Euler-convergent iff (i) ak

is defined, by an elementary function, (ii) for all infinite J, the sum a1+a2+a3+⋯+aJ

is finite, and (iii) for all infinite J and K the sum aJ +aJ+1+⋯+aK is infinitesimal.

Similarly, a product (1+b1)(1+b2)(1+b3)⋯ is Euler-convergent iff (i) bk is defined

by an elementary function, (ii) for all infinite J, the product (1+b1)(1+b2) . . .(1+bJ)
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is finite, and (iii) for all infinite J and K the product (1+bJ)(1+bJ+1)⋯(1+bK) differs

infinitesimally from 1.

They use ‘elementary’ function to represent Euler’s concept of a function, however,

they state than an internal function is one possible broad interpretation [57, p. 43].

McKinzie and Tuckey define the related notion of determinacy in another of their

papers where they reconstruct some of Euler’s reasoning from the ‘Introductio’ in non-

standard analysis. They express determinacy as follows [55].

Definition 2 (Determinacy). A hypersequence s0, s1, s2, . . . is said to be determinate

iff sM ≃ sN for all infinite M and N. If a0, a1, a2, . . . is a hypersequence, then a series

a0+a1+a2+⋯ is said to be determinate iff the hypersequence of partial sums defined

by sn = a0+a1+a2+⋯+an is determinate.

Similarly, a product is determinate iff the hypersequence of partial products is determ-

inate. Although Euler-convergence and determinacy are expressed in quite different

terms by McKinzie and Tuckey, we can think of Euler-convergence as simply being de-

terminacy plus finiteness. We explain the nuances more thoroughly in Section 4.4.10.

4.4.2.1 Relation to nonstandard definition of convergence

In nonstandard analysis, convergence of a sequence is defined by [40]

Definition 3 (Convergence of a sequence). A real-valued sequence ⟨sn ∶ n ∈ N⟩ con-

verges to L ∈R if and only if sn ≃ L for all infinite n.

We can also define Cauchy convergence of a sequence [40].

Definition 4 (Cauchy convergence of a sequence). A real-valued sequence ⟨sn⟩ is

Cauchy in R if and only if all its extended terms are infinitely-close to each other.

They are equivalent to the definitions of convergence and Cauchy-convergence in

standard analysis. Euler-convergence and determinacy are variations on convergence.

The difference is that we work with hypersequences sn ∶ ∗N→ ∗R. As McKinzie and

Tuckey define it, Euler-convergence could be called Cauchy Euler-convergence if we

were using terminology similar to the convention for convergence.
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4.4.3 Hidden lemmas

Following Laugwitz [51] and Lakatos [50], McKinzie and Tuckey formulate ‘hidden

lemmas’ in places where Euler appears to have used his convergence criterion to con-

clude results that are not generally true, but would be justified for Euler-convergent

series or products. In their words, such hidden lemmas are ‘principles under which the

steps from one equation to the next in Euler’s arguments are simple and obvious.’ [57,

p. 44]. The intention behind a hidden lemma is to express formally a principle which

Euler can be assumed to have known, at least intuitively, and used often. From hints in

the way Euler expresses his reasoning, we can also try to argue that he was conscious

of these general principles, and that he felt them to be obvious. It would be sufficient to

use only the notion of Euler-convergence to follow Euler’s reasoning in his proof of the

Basel problem, and McKinzie and Tuckey use only this notion in their rehabilitation of

Euler’s proof [57]. However, some of their Hidden Lemmas from this proof can in fact

hold for the weaker notion of determinacy as well (see Section 4.4.4). It is unneces-

sary to additionally prove finiteness, and thus obtain Euler-convergence, in every case

and proving finiteness is convoluted in Isabelle even if it can be trivially observed by a

mathematician. We prefer to formalise the Hidden Lemmas and gaps with determinacy

where possible, and Euler-convergence where necessary. This also has the advantage

of allowing us to see the required conditions for each step of the proof. We describe

how we use McKinzie and Tuckey’s concepts of Euler-convergence, determinacy and

Hidden Lemmas in Section 5.1.

4.4.4 Hidden lemmas and the choice between determinacy and

Euler-convergence

We initially attempted to formalise the hidden lemmas using only the concept of de-

terminacy which is simpler than Euler-convergence. However, it became clear when

proving the Second Hidden Lemma that Euler-convergence is truly needed: i.e. we

need the finiteness property along with determinacy. The infinitely-close relation be-

gins to behave less like equality when we use products or multiplication, unless the

quantities involved are appreciable.

Equality allows for substitution and cancellation without any special conditions on

the quantities involved. We may compare this to the infinitely-close relation. Cancel-
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lation of addition is also valid for the infinitely-close relation

a+c ≃ b+cÐ→ a ≃ b

No conditions are on a, b or c other than that they are hyperreal numbers. The analog-

ous theorem for multiplication is

ac ≃ bcÐ→ a ≃ b

and this requires c is both finite and not infinitesimal. As this theorem is used in the

proof of the Second Hidden Lemma, this means that the products (which are used as

c is here) must be proved to be finite and non-infinitesimal. Thus, the Second Hidden

Lemma requires Euler-convergence. We discuss this more fully in Section 5.4.

However, some of the hidden lemmas can be formalised using only determinacy.

We prefer determinacy to Euler-convergence where possible, because it is a weaker

condition. We summarise the minimal conditions for the various hidden lemmas and

sublemmas, along with the justification, in Table 4.4. In the following section we

will give the hidden lemmas as McKinzie and Tuckey stated them as we will need to

understand their versions before comparing with the versions formalised in Isabelle.

4.4.5 The First Hidden Lemma

The First Hidden Lemma is also named the Summation Comparison Theorem by McK-

inzie and Tuckey [55, p. 349]. They state it for Euler-convergent polynomials as fol-

lows.

First Hidden Lemma. If the sums a1 + a2 + a3 +⋯ and b1 + b2 + b3 +⋯ are Euler-

convergent, and if for each finite n, an ≃ bn, then for all N, a1 + a2 + a3 +⋯+ aN ≃
b1+b2+b3+⋯+bN .

We saw in Section 4.2.1 that Euler appears to set equal two polynomials whose

coefficients differ infinitesimally from each other: he substitutes 1 for (N−1)/N, (N−
2)/N, (N −3)/N etc. , where N is infinitely large so that

1+ 1
1

x+ 1(N −1)
1 ⋅2N

x2+ 1(N −1)(N −2)(N −3)
1 ⋅2N ⋅3N ⋅4N

x4+⋯

can be rewritten as

x
1
+ x3

1 ⋅2
+ x3

1 ⋅2 ⋅3
+ x4

1 ⋅2 ⋅3 ⋅4
+ x5

1 ⋅2 ⋅3 ⋅4 ⋅5
+ . . .
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We know that Euler often wrote ‘=’ when he was aware that the results differ by

an infinitesimal, so in this case we can reinterpret this using ‘≃’, however, this is not

enough to make it universally true that any two series whose terms are infinitely-close

will themselves be infinitely-close. Here is a counterexample. Let N be an infinite

hypernatural. Then 1/N ≃ 1/2N but

N
∑
i=1

1
N

/≃
N
∑
i=1

1
2N

. (4.10)

The First Hidden Lemma is meant to qualify when such substitution is allowed and

bridge this gap.

4.4.6 The Second Hidden Lemma

The Second Hidden Lemma, also called the Product Comparison Theorem, is stated

by McKinzie and Tuckey as follows

Second Hidden Lemma. If the products (1+a1)(1+a2)(1+a3) . . . and (1+b1)(1+
b2)(1+b3) . . . are Euler-convergent, and if for each finite n, an ≃ bn, then for all N,

(1+a1)(1+a2)(1+a3) . . .(1+aN) ≃ (1+b1)(1+b2)(1+b3) . . .(1+bN).

They use it to fill the second gap that they identify in Euler’s proof by setting:

ak =
x2

(kπ)2 and bk =
x2

(kπ)2 −
x2

N2 (4.11)

4.4.7 The Third Hidden Lemma

McKinzie and Tuckey identify the third gap in Euler’s proof as the equating of the

cubic terms from his two separate expansions of hyperbolic sine. If this was equating

coefficients between two equal polynomials, there would be no gap. However, both in

Euler’s proof and McKinzie and Tuckey’s rehabilitation, the polynomials differ by an

infinitesimal6.

The Third Hidden Lemma, which is a partial converse to the First Hidden Lemma

(when x=1), is a way to match the coefficients of polynomials which are only infinitely-

close. 7

6Euler does use the symbol = nonetheless: see Section 2.3.1.2 for our analysis of what Euler meant
by this relation.

7For the purposes of our Isabelle theory, we can only know a function is a polynomial if it has
a representation of the form a0 + a1x+ a2x2 + a3x3 +⋯+ aNxN for hypernatural N. To be precise, the
function is of two variables, x and N, and this sum is expressed using hypsum. Multiples of polynomials
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Third Hidden Lemma. Let f (x) = a0 + a1x+ a2x2 + a3x3 +⋯ and g(x) = b0 + b1x+
b2x2+b3x3+⋯. If for all finite x, f (x) and g(x) are Euler-convergent and f (x) ≃ g(x),

then an ≃ bn for all n.

The Third Hidden Lemma under the infinitely-close relation corresponds to ‘equating

coefficients’ under equality.

McKinzie and Tuckey also describe this as the Polynomial Comparison Theorem [57,

p. 52]. Their reasoning for how this lemma fills their third gap is given in the context

of their proof [57, pp. 47-48]. They take the polynomials

f (x) = x+ 1
3!

x3+⋯+ 1
N!

xN

and

g(x) = x+
⎛
⎝

(N−1)/2

∑
k=1

1
(kπ)2

⎞
⎠

x3+
⎛
⎝
⋯
⎞
⎠

x5+⋯

and apply the Third Hidden Lemma to these. The polynomial g(x) is obtained by

multiplying-out and gathering-terms from

h(x) = x
(N−1)/2

∏
k=1

(1+ x2

(kπ)2) . (4.12)

This is the origin of g(x), but note that this does not mean g(x) = h(x) unless it has

been proven that multiplying-out and gathering infinitely-many terms does not change

the value of the polynomial. Thus they have proven h(x) = f (x) but not g(x) = h(x) or

g(x) ≃ h(x). Therefore, this is a gap in their transitive reasoning, since the antecedent

f (x) ≃ g(x) of the Third Hidden Lemma is not proved explicitly by them.8. We discuss

this further in Section 6.9.1.

4.4.8 The Hidden Sublemmas

The Hidden Sublemma (i) given by McKinzie and Tuckey describes the relation of

Euler-convergence between sums and products. Hidden Sublemma (ii) tells us that

Euler-convergence is preserved by multiplying out. They combine these two lemmas

into a single Hidden Sublemma which they state as follows.

are not easily proved to be polynomials in Isabelle. We have not proven this in Isabelle since this
was not a priority for formalisation as it is outside the main reasoning of the proof. Mathematically, it is
straightforward and can be done by induction. Sums of polynomials are easily proved to be polynomials,
but this must be proved rather than known implicitly by closure.

8Kanovei, even though he quotes Euler multiplying-out (and implicitly gathering-terms of) the same
polynomial, does not note that as one of his ‘controversial points’. [76, pp. 68-69]
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Hidden Sublemma. Assume that bn is defined by a nonnegative elementary function.

(i) The product (1+b1)(1+b2)(1+b3) . . . is Euler-convergent if and only if the sum

b1+b2+b3+ . . . is Euler-convergent.

(ii) If for a given x the product (1+b1x)(1+b2x)(1+b3x) . . . is Euler-convergent,

then the sum 1+ (b1 + b2 + b3 + . . .)x+ (b1b2 + b1b3 + b2b3 + . . .)x2 + (b1b2b3 +
. . .)x3+. . . obtained by multiplying-out the products, is Euler-convergent as well.

Since x is assumed to be given, the product (1+b1x)(1+b2x)(1+b3x) . . . could be

equally well represented as simply (1+ c1)(1+ c2)(1+ c3) . . . . Thus both of the Sub-

lemmas give series whose Euler-convergence is equivalent to the Euler-convergence of

a binomial product of the form (1+ cn). The Hidden Sublemma (i) expresses a sym-

metry between Euler-convergence of sums and products: the degree of closeness to

the identity that is required for the tail of a sum to converge is the same as the degree

of closeness to the identity that is required for the tail of a product to converge. In

Section 6.2 and Section 5.8 we discuss Hidden Sublemma (ii) further and our formal-

isation of its statement. In Section 6.9.1 we point out that Hidden Sublemma (ii) may

not actually be necessary for rehabilitating Euler’s proof.

4.4.9 Use of the hidden lemmas, sublemmas and Euler-convergence

So far in this chapter we have given a description of Euler’s proof, and we have in-

troduced McKinzie and Tuckey’s perspective of Euler’s proof by giving the hidden

lemmas and describing Euler-convergence/determinacy. They provide a rehabilitated

proof based on Euler’s, but using their hidden lemmas to ‘complete’ the proof. We

refer the reader to McKinzie and Tuckey’s paper to see in more detail how they use the

hidden lemmas in their rehabilitation of Euler’s proof [57]. We give brief descriptions

of their method in context.

Our mechanisation, although incomplete, provided the language to formulate and

specify the gaps to an even higher level of precision and how the hidden lemmas are

used to fill these gaps. In Chapter 6 we explain how we use the hidden lemmas and

sublemmas to fill the gaps in Euler’s proof, which has some differences from McKinzie

and Tuckey’s approach. The mechanisation also lead us to discover places where even

McKinzie and Tuckey’s rehabilitated proof has unclear steps. We will discuss these in

the next chapter since discovery and understanding of the additional gaps is intertwined

with the mechanisation.
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4.4.10 Relations between the different notions of Euler-convergence

and determinacy, and their use in the Hidden Lemmas

We wish to be clear about the relative strengths of each notion of convergence. This is

needed since we formalise the hidden lemmas with minimal assumptions. A necessary

step to clarifying this is explained now.

4.4.10.1 Euler-determinacy

In Section 4.4.1 we stated that Euler’s convergence criterion is similar to Cauchy’s.

The similarity is because it is expressed in terms of closeness between sufficiently-

large terms of the series rather than absolute closeness over the entire series. For the

usual definition of convergence in nonstandard-analysis, we can have either conver-

gence or Cauchy-convergence. McKinzie and Tuckey express Euler-convergence with

the Cauchy property but they express determinacy differently. Their reason for doing

this is because they wished to extend the notion of determinacy to sequences, and cap-

ture the determinacy of both sums and products with a single notion. We would like

to make the same distinction for determinacy, but it would be unfair to Euler to use

the term ‘Cauchy’ as the qualifier. Therefore we will define Euler-determinacy. This

notion is also closer to what Euler called ‘determinate’ than McKinzie and Tuckey’s

determinacy, thus the name is appropriate.

Definition 5 (Euler-determinacy). We will say a hypersum∑b
n=a xn is Euler-determinate

if
M
∑
n=N

xn ≃ 0

for all infinite hypernatural N, M and similarly a hyperproduct ∏b
n=a xn is Euler-

determinate if
M
∏
n=N

xn ≃ 1

for all infinite hypernatural N, M.

Note that finite Euler-determinacy, i.e. Euler-determinacy with the additional property

that the hypersum/hyperroduct is finite when taken from index 0 to an infinite hyper-

natural index, is simply Euler-convergence as defined by McKinzie and Tuckey. In

order for the reader to develop an intuition for the concepts of Euler-convergence, fi-

nite determinacy, Euler-determinacy and determinacy, we have provided Table 4.1 and

Table 4.2 which give examples of each type of sum and product.
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Table 4.1: Examples of the hierarchy of determinate/Euler-convergent sums

Type of determinacy Example Justification

Finite determinate

Euler-convergent
1+ 1

4
+ 1

9
+ 1

16
+⋯+ 1

N2 (the Basel series)
We proved this in

Section 5.2.1

Determinate

Euler-determinate

Not finite determinate

L+ 1
4
+ 1

9
+ 1

16
+⋯+ 1

N2 for some L ∈L∪∗N
Follows from the determinacy

of the Basel series

Not determinate 1+4+9+16+⋯+N2 The distance between successive terms grows

Table 4.2: Examples of the hierarchy of determinate/Euler-convergent products. Take L ∈L∪∗N.

Type of determinacy Example Justification

Euler-convergent
N
∏
k=1

(1+ 1
(kπ)2) (infinite factorisation of sinh1) See Section 5.2.3

Finite determinate

Not Euler-convergent
∏N

k=1 (1/k) The terms become infinitesimal

Euler-determinate

Not finite determinate
L ⋅

N
∏
k=1

(1+ 1
(kπ)2)

Follows from the Euler-convergence

of the infinite factorisation of sinh1

Determinate

Not Euler-determinate
∏N

k=0ak with ak = 1 when k /= 2,L, a2 =
1
L2 and aL =

1
L

See Proposition 4

Not determinate 1 ⋅2 ⋅3 ⋅4⋯N The distance between successive terms grows
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4.4.10.2 Relations between the convergence properties

Given the many variations on Euler-convergence and determinacy, we define here ab-

breviations for these properties which we use to formally express the relations between

them. The following notation is only used within this section and in Table 4.3 and

Table 4.4 and should not be read literally as sums and products or numbers .

E for Euler-convergence

F for finiteness

d for determinacy

∑ for sums

∏ for products

M
N to indicate Eulerness (i.e. the Euler property from Section 5.1.2)

For example, Euler-convergence for sums is E∑ (equivalently Fd∑M
N ) and determinacy

for products is d∏. The following equivalences hold:

Fd
M
∑
N
≡ E∑

and

d
M
∑
N
≡ d∑

The following implication holds

E∏Ô⇒ Fd
M
∏
N

and since Euler-convergence is determinacy plus finiteness the following implications

also hold

E∑Ô⇒ d
M
∑
N

E∏Ô⇒ d
M
∏
N

and of course

Fd∑Ô⇒ d∑

Fd∏Ô⇒ d∏ .
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Table 4.3: Types of determinacy required to be proved for each polynomial

Polynomial Type of determinacy required Antecedent for Consequent of Proof

1+ 1
4
+ 1

9
+ 1

16
+⋯+ 1

N2 Fd∑
Hidden Lemma 3

Hidden Sublemma (i)
–

Isabelle

(Section 5.2.1)

1+ x
1
+ x2

2!
+ x3

3!
+ x4

4!
+⋯+ xN

N!
Fd∑

Hidden Lemma 1

Corollary
–

Pen-and-paper

(Section 5.2.2)

x+ N(N −1)(N −2)
N3

1
3!

x3+⋯+ N!
NN

xN

N!
d∑ Hidden Lemma 1 – Incomplete

x+ x3

3!
+⋯+ xN

N
d∑

Hidden Lemma 1

Hidden Lemma 3
–

Pen-and-paper

(Section 5.2.2.3)

x
(N−1)/2

∏
k=1

⎛
⎝

1+ x2

(kπ)2
1/2(2kπ/N)2

1−cos2kπ/N
− x2

N2

⎞
⎠

E∏ Hidden Lemma 2 Hidden Sublemma (i)
Incomplete

(Section 5.2.3)

x
(N−1)/2

∏
k=1

(1+ x2

(kπ)2) E∏ Hidden Lemma 2 Hidden Sublemma (i)
Incomplete

(Section 5.2.3)

x+x3⎛
⎝

(N−1)/2

∑
k=1

⎞
⎠
+x5 (⋯)+⋯ d∑ Hidden Lemma 3 Hidden Sublemma (ii) Incomplete
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Table 4.4: Types of determinacy required in the Hidden Lemmas and Sublemmas

Lemma
Weakest type of determinacy

required in antecedent

Strongest type of determinacy

given in consequent
Proof complete in Isabelle

Hidden Lemma 1 d∑ – Complete

Hidden Lemma 2 Fd∏ –
Complete

with extra assumptions

Hidden Lemma 3 d∑ –
Complete except one lemma

with extra assumptions

Hidden Sublemma (i) Fd∑ or E∏ Fd∑ or E∏ Incomplete

Hidden Sublemma (ii) E∏ Fd∑ Incomplete
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Using our abbreviations, we can notate Table 4.3 which gives the polynomials in the

proof of the Basel problem that require proving some kind of determinacy or Euler-

convergence. We have columns for the Hidden Lemmas and Sublemmas which the

determinacy of these polynomials is used in: either as the antecedent or as the con-

sequent. We also give Table 4.4 which shows the requirements of Euler-convergence

or determinacy for each of the Hidden Lemmas and Sublemmas.

For the rest of this chapter, we will look at some of Euler’s reasoning in more detail,

focusing on parts which are not analysed in McKinzie and Tuckey’s paper [57].

4.5 Euler’s §165 and equating coefficients

Euler’s intuition for why §165 can be taken seems to be based on equating coefficients.

It also seems to be based on Vieta’s formulas [78]. We described his depiction of this

step in Section 4.2.5. However, he applies §165 in a case where true equality does not

hold: McKinzie and Tuckey use the 3rd Hidden Lemma to replace this instance. We

discuss true equating coefficients and the relation between Vieta’s formulas and §165

in this section.

4.5.1 Equating coefficients

Equating-coefficients is so natural to most mathematicians that it is not immediately

obvious where this property of polynomials comes from. It is in fact part of the ac-

cepted definition of a polynomial: polynomials are uniquely determined by their coef-

ficients and their degree. Thus proving that coefficients may be equated is the same

as proving that polynomials are well-defined. We can prove this, when considering

polynomials as functions9, by successive differentiation of a generalised polynomial.

This is how we formalise our proof of equating coefficients in Section 6.3. It is neces-

sary to equate coefficients in the true sense at another point in Euler’s proof: when he

writes hyperbolic sine as the product of its trinomial factors, he simplifies the constant

factor, presumably by comparing with the leading coefficient of the other expansion of

hyperbolic sine [29, §156, p. 126].

9When polynomials are considered as elements of a polynomial ring, they exist as lists of coeffi-
cients. So equating coefficients truly arises from their definition, and it is not necessary to prove it.
However, if we wish to show that there are some functions which represent the properties defined by a
polynomial ring, then it is necessary to prove that equating coefficients is possible.
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In Gap 3, Euler merely matches coefficients of two polynomials which are infinitely-

close. In other places, e.g. where he determines the constant factor in the trinomial

expansion of hyperbolic sine, he truly equates coefficients of polynomials which are

equal. By comparing the language he used, we can find out whether he made any

distinction between the two situations. There does not in fact appear to be much dif-

ference: in both cases he provides no additional justification. The two situations must

be formalised differently, but he may not have considered them to be different.

4.5.2 Euler’s version of Vieta’s formulas

In this section, we describe, and justify with mathematical reasoning and proof, our

understanding of the origin of Euler’s method described in §165. We conduct this

process literally and consider Euler’s ‘=’ as equality here, since the intention is merely

to understand where Euler’s §165 came from. Recall that §165 is the proposition in

the ‘Introductio’ which Euler uses to multiply-out the factors obtained by the Trinomial

Lemma. We have discussed and quoted it in Section 4.2.5, and we state it here again

for convenience since we refer to Euler’s notation.

165. If 1+Az+Bz2+Cz3+Dz4+etc. = (1+αz)(1+βz)(1+γz)(1+δz) etc.,
then these factors, whether they be finite or infinite in number, must pro-
duce the expression 1+Az+Bz2 +Cz3 +Dz4 + etc., when they are actu-
ally multiplied. It follows then that the coefficient A is equal to the sum
α+β+γ+δ+etc.

Euler’s assumption, i.e. that

1+Az+Bz2+Cz3+Dz4+etc.

= (1+αz)(1+βz)(1+γz)(1+δz) etc. (4.13)

should always be satisfied in the sense that (1+αz)(1+βz)(1+γz)(1+δz) etc. may al-

ways be expanded in this form. We can show this as follows. If we use the nonstandard

version of the Fundamental Theorem of Algebra as we have formalised it in Isabelle,

then we find

1+a1z+a2z2+a3z3+⋯+aNzN

= aN(z− r1)(z− r2)(z− r3)⋯(z− rN) (4.14)

where we have used the notation ai for the ith coefficient of Euler’s polynomial, ri for

the ith root of the polynomial and N for the hypernatural degree of the polynomial. It
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is justified to assume that the polynomial has a degree, because although Euler writes

the polynomial here without a degree, he will later use the property outlined in §165

on a polynomial with a degree. Note also that the first antecedent of §165 implies 0 is

not a root. So we can now define:

bi = −
1
ri
. (4.15)

Then

(z− r1)(z− r2)(z− r3)⋯(z− rN)

= 1
b1b2b3⋯bN

(1+b1z)(1+b2z)(1+b3z)⋯(1+bNz).

Hence

1+a1z+a2z2+a3z3+⋯+aNzN

= aN

b1b2b3⋯bN
(1+b1z)(1+b2z)(1+b3z)⋯(1+bNz)

and by equating the leading coefficient we see aN = b1b2b3⋯bN so we derive

1+a1z+a2z2+a3z3+⋯+aNzN

= (1+b1z)(1+b2z)(1+b3z)⋯(1+bNz) (4.16)

which is equivalent to Euler’s assumption (4.13).

We can show that the property which Euler describes in §165 is equivalent to Vi-

eta’s formulas. We shall give here a pen-and-paper proof. So far we have been inten-

tionally agnostic about whether N is a natural or hypernatural number: our reasoning

is valid for both. We will continue to be agnostic in our equivalence proof.

First we state Vieta’s formulas and Euler’s §165 mathematically. One aspect which

deserves some discussion is the notation used for the symmetric sum. Vieta’s formulas

are commonly expressed as follows.

Proposition 1 (Vieta’s formulas with sum over ordered indices). Given a polynomial

with degree N, coefficients ai and roots ri

∑
1≤i1<i2<⋯<ik≤N

k
∏
j=1

ri j = (−1)k aN−k

aN
.

for k = 1,2, . . .N.

However, in the only current formalisation of Vieta’s formulas in Isabelle, Eberl has

an AFP entry on ’Symmetric Polynomials’ in which he proves Vieta’s formulas [18],
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and he uses k-subsets to formalise the sum of ordered indices. We cannot easily reuse

Eberl’s mechanisation of this result since the formalisation of polynomials used by

him is in terms of lists, and cannot easily be translated to our functional definition.

However, his formalisation gives us an idea of the best way to express Vieta’s formulas

in Isabelle, as opposed to mathematically.

Definition 6 (Set of k-subsets). The set of k-subsets of A is given by [A]k = {X ∣ X ⊆
A∧ ∣X ∣ = k}.

We find k-subsets simple to formalise, compared to the sum with ordered indices,

which requires indices indexed with indices, Besides this, k-subsets have some well-

known properties that we can make use of in our equivalence proof. Therefore we will

express the two propositions using sums over these sets, and conduct our proof using

this notation. We will describe our formalisations of these results in Section 6.2.1.

Proposition 2 (Vieta’s formulas with sum over k-subsets). Given a polynomial with

degree N, coefficients ai and roots ri

∑
X∈[{1,2,...N}]k

∏
x∈X

rx = (−1)k aN−k

aN

for k = 1,2, . . .n.

Proposition 3 (Euler §165 with sum over k-subsets). Given a polynomial as in (4.16),

then its coefficients an are given by

an = ∑
X∈[{1,2,...N}]n

∏
x∈X

bx

for n ∈N.

Theorem 8. Propositions (2) and (3) are equivalent.

Proof. Let us rewrite Vieta’s formulas to give the nth coefficient an as Euler’s does. As

k takes any value 1,2, . . .N we can let n=N−k. Then k =N−n and after this substitution

and rearrangement, we obtain an equivalent of Vieta’s formulas:

an = (−1)N−naN ∑
X∈[{1,2,...N}]N−n

∏
x∈X

rx (4.17)

We can now show that Euler and Vieta’s formulas are equivalent. First recall,
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aN = b1b2b3⋯bN and bi = −1/ri, i ∈ {1,2, . . .N},

an = (−1)N−nb1b2b3⋯bN ∑
X∈[{1,2,...N}]N−n

∏
x∈X

− 1
bx

= b1b2b3⋯bN ∑
X∈[{1,2,...N}]N−n

∏
x∈X

1
bx

= ∑
X∈[{1,2,...N}]N−n

b1b2b3⋯bN∏
x∈X

1
bx

= ∑
X∈[{1,2,...N}]N−n

∏
x∈{1,2,...N}−X

bx

As by definition (N
n) gives the number of n-subsets of {1,2, . . .N}, and ( N

N−k) = (N
k),

thus ∑X∈[{1,2,...N}]N−n has the same number of terms as ∑X∈[{1,2,...N}]n . Further, the

complements of the (N − n)-subsets of {1,2, . . .N} in {1,2, . . .N} are exactly the n-

subsets of {1,2, . . .N}. So

an = ∑
X∈[{1,2,...N}]n

∏
x∈X

bx

which is exactly Euler §165 as we described it in Proposition 3.

In Section 6.2 we discuss approaches to formalising Euler’s §165. Euler’s only

words towards a proof are that ‘the factors must produce the [same] expression . . . when

they are actually multiplied’.

4.6 Euler’s Trinomial Lemma

Euler says he is interested in ‘the quadratic factors of the form p−qz+ rz2 which are

real, but whose linear factors are complex.’ He calls these ‘trinomial factors’, and

deduces their form. Euler’s derivation of the trinomial factors is impressive in its gen-

erality, but he also discusses the two particular examples an+ zn and an− zn. The latter

gives us the factors he uses in his proof of the Basel problem.

4.6.1 Euler’s statement of the Fundamental Theorem of Algebra

The Trinomial Lemma is based on the Fundamental Theorem of Algebra (FTA). In

§143 Euler uses some apparently erroneous reasoning to ‘deduce’ the FTA. He claims

If the polynomial is α+βz+γz2+δz3+εz4+ . . . and a linear factor is of the
form p−qz, then it is clear that whenever p−qz is a factor of the function
α+βz+ γz2 + . . ., and when we substitute p/q for z, then the factor p−qz
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becomes zero and the proposed function vanishes. It follows that p−qz is
a factor or divisor of the polynomial α+βz+ γz2+δz3+εz4+ . . . whenever
α+βp/q+ γp2/q2 +δp3/q3 + εp4/q4 + . . . = 0. Conversely, if all the roots
p/q of this equation have been extracted, they will give all of the linear
factors of the proposed polynomial α+βz+ γz2+δz3+ . . ., that is p−qz. It
is clear now that the number of these linear factors is determined by the
greatest power of z.

If we assume that Euler is using material implication here, we could understand the

form of his reasoning as follows:

p−qz is a factor of the polynomial→ the polynomial vanishes at z = p
q

(4.18)

hence

the polynomial vanishes at z = p
q
→ p−qz is a factor of the polynomial. (4.19)

This is clearly not a valid form of reasoning. The conclusion of this argument is the

Factor Theorem. He then claims this shows a version of the FTA to be true. The Factor

Theorem and the most simple statement of the FTA (every nonconstant single-variable

polynomial with complex coefficients has at least one complex root: let us label this

FTA1) can be combined to show that the number of complex factors of the polynomial

is equal to its degree (let us call this FTA2). However, this corollary deserves proof

and does depend on FTA1 which Euler does not state.

It would be unfair, and improbable, to conclude that Euler does not understand the

basic properties of implication from this example of his reasoning. A more reasonable

interpretation is that he is describing observed properties of polynomials. When he

states that (4.18) thus (4.19) he could be hinting that the two properties go hand-in-hand

(which they do) rather than they follow from each other (which they do not). Previous

analyses of Euler’s work [67, 57] observe that Euler often uses empirically-inductive

reasoning in the style of the physical sciences, as we mentioned in Section 2.1. As

for the deduction of FTA2, he is likely to consider FTA1 a self-evident fact or at least,

since it was commonly used without proof in the 18th century, something which can

be assumed.

4.6.2 Overview of Euler’s reasoning behind the Trinomial Lemma

Now we give a brief description of Euler’s reasoning behind the trinomial lemma. We

do not intend to explain the reasoning in detail, but instead to simply indicate some of

the tools and concepts which Euler is using.
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Euler used the Factor Theorem to begin his line of reasoning in §143. He claims

that complex factors (which he calls imaginary) come in pairs (complex conjugates)

that are multiplied to make a factor of the polynomial of the form p−qz+ rz2 where

p, q and r are real. He uses the discriminant to decide when factors of the form p−
qz+ rz2 have complex factors themselves and when they have real factors: the factors

are complex when 4pr < q2. He states this is equivalent to asking if q/(2
√

pr) < 1.

This allows him to say that the factors are complex linear if q/(2
√

pr) is equal to

the cosine or sine of some angle. This reframing allows Euler to use trigonometry as

a replacement for complex numbers: in the previous chapter of the ‘Introductio’ he

proved many trigonometric identities so he is well-armed to deal with them. Euler can

then express the roots of the polynomial in polar-coordinate form. The polynomial of

course vanishes at its roots and he uses this to obtain simultaneous equations which

can be solved for the unknowns p, q and r.

4.6.3 Challenges in our partial mechanisation of the Trinomial

Lemma

McKinzie and Tuckey do not prove the trinomial lemma in their rehabilitation of

Euler’s proof, although they still use a version of it. The trinomial argument is one of

the pillars on which the proof of the Basel problem rests, however, the reasoning used

in it is different from the rest of the Basel proof in that Euler uses no infinitesimals. Yet

the reasoning in it is equally controversial. He apparently believes that this line of reas-

oning could be applied to any power series and hence any ‘whole function’10. He will

later apply the reasoning to ‘polynomials’ of infinite degree, as he does in the Basel

proof. We explored formalising the Trinomial Lemma and mechanised some of the ne-

cessary background: the beginnings of a theory of hyperpolynomials. In Section 6.4.1

we describe how we mechanise the statement of the Trinomial Lemma in locale. We

have not mechanised a proof of the Trinomial Lemma. This is partially because it is not

a central part of Euler’s proof of the Basel Problem and indeed McKinzie and Tuckey

did not reconstruct the proof of this lemma. However, Euler’s justification for the Tri-

nomial Lemma is also more similar to an exploration and less like a proof. Therefore

his discussion is not as directly formalisable and as the formal proof would necessarily

diverge significantly from his reasoning, there would be less to gain from comparing

his reasoning to any formalisation. Finally, the truth of the Trinomial Lemma is not

10In modern terms he may mean analytic real function.



98 Chapter 4. Analysis of the Basel Problem

under any doubt and neither was it criticised by contemporary mathematicians since it

did not involve any controversial reasoning with infinitesimals.

In the following discussion we outline our understanding of Euler’s exploration

and which parts of it could be formalisable. In Section 7.4 we also discuss future steps

that could be taken to give a proof of the lemma if desired.

Euler’s argument includes meta-mathematical reasoning. When he discards real

factors whose trinomials are perfect squares, he argues that this is because the pair

of equations he gives in §148 are in fact the same equation in that case. From this

we can observe that Euler considers the argument to generate the theorem, along with

all its exceptions and counterexamples. He does not state the theorem in full at the

beginning followed by a proof, as is the way in modern mathematical textbooks, but

instead allows the reader to deduce what theorem he has derived by following his line

of reasoning.

Meta-mathematics is possible to formalise in Isabelle, but since the object-level and

meta-level must be clearly distinguished between, it is inconvenient at best. However,

there are options for proving that perfect squares are an exception to the trinomial

Factor Theorem without using meta-mathematical reasoning.

Suppose for simplicity we are considering the trinomial factors a2−2azcos2kπ/n+
z2, where 0 ≤ 2k ≤ n, of an−zn. This is all we require for the proof of the Basel problem.

Assume that we know the factors of the trinomials are factors of the polynomial. We

can justify Euler’s remark that the factors come in pairs except for 2k = 0 by using the

FTA. We find that for 2k = 0, the expression a2 −2azcos0+ z2 = (a− z)2 is a perfect

square, and, if n is even, for 2k = n, the expression a2−2azcosπ+ z2 = (a+ z)2 is also a

perfect square. We can deduce that these are the only perfect square trinomials.

Proof. All perfect square trinomials are, by definition, squares of factors of a polyno-

mial in a and z, thus they must be of the form (c± z)2, where c is any quantity. By

symmetry, they must also be of the form (c±a)2, where c is any quantity. Thus they

must be (a− z)2 or (a+ z)2 (or (z−a)2 or (−a− z)2 but these are equivalent).

For each k = 1 . . .n−1, (k = 1 . . .n if n is odd) the expression a2−2azcos2kπ/n+z2 is

not a perfect square, since cosine is not equal to 1 or −1 in the interval (0,π). Thus for

these values of k the trinomials each have two distinct roots. Using combinatorics, we

observe that when n is odd, there are n−1 root pairs, and thus by the FTA the perfect

square trinomial (a− z)2 can only give one factor (a− z). When n is even, there are

n−2 root pairs and the trinomials (a− z)2 and (a+ z)2 are distinct. Thus by the FTA,
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we obtain (a− z) and (a+ z) as factors of multiplicity one.

There are other potential difficulties in writing a formal proof of the trinomial

Factor Theorem in Isabelle, in general or even just for the special case an − zn. Euler

seems to be intentionally vague about the degree of the polynomial. As stated earlier,

he intends any ‘whole function’ to be representable by a polynomial. Thus he is con-

sidering infinite power series with the same validity as polynomials of finite degree.

4.7 Summary

In this chapter we gave an overview of Euler’s reasoning in two of his proofs of the

Basel problem.

• His most often criticised and widely-discussed proof, which involves factorising

sine into an infinite product of its factors (Section 4.1).

• His proof from the ‘Introductio’ (Section 4.2). The reasoning of this proof is

based on his earlier proof, however he has adapted it so that it provides deductive

justification. This is the proof which we mechanise and wherever we mention

‘Euler’s proof of the Basel problem’ hereafter, we are referring to this proof.

We went into further depth on two parts of Euler’s proof of the Basel problem

• Euler’s §165 (Section 4.5). The application of Euler’s §165 to the factorisation

of hyperbolic sine forms the third gap in his proof of the Basel problem identified

by McKinzie and Tuckey.

• Euler’s Trinomial Lemma (Section 4.6).

Furthermore we discussed the concepts used by McKinzie and Tuckey to rehabilitate

Euler’s proof.

• Euler-convergence (Section 4.4.2)

• determinacy (Section 4.4.2)

• We expanded on Euler-convergence and determinacy by adding the related no-

tions of Euler-determinacy and finite determinacy.

• Their hidden lemmas which they use to fill the three gaps that they identify in

Euler’s proof Sections 4.4.5- 4.4.7
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• Their Hidden Sublemma parts (i) and (ii) which is used to help bridge the gaps

and show Euler-convergence so that they may apply the hidden lemmas (Sec-

tion 4.4.8).

In this chapter we also gave Table 4.3 and Table 4.4 summarising the interaction

between the hidden lemmas and the concepts of Euler-convergence and determinacy.

We base our mechanisation on McKinzie and Tuckey’s previous work, and thus we

will mechanise Euler-convergence, determinacy and the hidden lemmas in Chapter 6



Chapter 5

Mechanising determinacy and

Euler-convergence

The purpose of this chapter is to describe our mechanisation of the concepts of Euler-

convergence and determinacy introduced by McKinzie and Tuckey based on the Eu-

lerian convergence criterion which they identified in his work. These concepts of de-

terminate and Euler-convergent series and products are the key to their rehabilitated

proof of the Basel problem. They are necessary to at least attempt to give a formal

representation of the leaps of reasoning in Euler’s proof that still remains faithful to

his argument and his knowledge. Thus we begin by explaining how we mechanise the

concepts of determinacy and Euler-convergence which we use throughout our formal-

isation. We then apply these concepts to specific series and products which are used in

the proof of the Basel problem. Finally, in this chapter, we describe the extent of our

mechanisation of McKinzie and Tuckey’s Hidden Lemmas and how our formalisation

lead to the discovery of gaps in McKinzie and Tuckey’s proofs. Our description of the

mechanisation of the statement of Hidden Sublemma (ii) (see Section 5.8) depends on

a concept that we introduce in Section 6.2.1 so the reader may wish to read that section

beforehand although we also give an informal explanation in context. In Chapter 6 we

will integrate these results into our partial mechanisation and exploration of Euler’s

proof of the Basel Problem.

5.1 Mechanising determinacy and Euler-convergence

We discussed in Section 4.4.2 McKinzie and Tuckey’s hidden lemmas, which are used

to fill the gaps in Euler’s proof, and how they rely on the concepts of Euler-convergence

101
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and determinacy, which we also outlined in Section 4.4.2. Here we will describe our

formalisation of Euler-convergence and how we break it down into the three separate

properties

• finiteness

• Eulerness

• determinacy

as we discussed in Section 4.4.10. This allows us to discuss the assumptions and proofs

of the hidden lemmas with greater detail and nuance.

5.1.1 Determinacy, finite determinacy and Euler-convergence

We formalise the notion of a determinate sequence as follows.

definition determinate where

"determinate b = (∀N∈HNatInfinite. ∀M ∈HNatInfinite . b M ≈ b N)"

We can now state in Isabelle that a series is determinate by writing

determinate (λM. hypsum ( ∗fn∗ b) {0..< M})

and similarly for products. The determinacy condition for series (products) is the same

as insisting that the tail of the series (product) is infinitely close to the additive (multi-

plicative) identity.

Isabelle is not as flexible as pen-and-paper mathematics when it comes to formulat-

ing definitions. In this case, in Isabelle, Euler-convergence must be defined separately

for sums and products, despite the fact that it is really the same notion for both. This

is because the overarching notion of inductively-applied (or hypernatural–inductively-

applied) group product has not been abstracted far enough in Isabelle/HOL. In the

conclusion Section 7.2 we revisit this along with related difficulties for expressing

definitions in Isabelle.

definition EconvergentSum where

"EconvergentSum d ≡
(∀N∈HNatInfinite. ∀M∈HNatInfinite. hypsum (∗fn∗ d) {N..< M} ≈0 ∧ hypsum (∗fn∗ d)

{0..< N} ∈ HFinite)"
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definition EconvergentProd where

"EconvergentProd d ≡
(∀N∈HNatInfinite. ∀M∈HNatInfinite. hypsum (∗fn∗ d) {N..< M} ≈0 ∧ hypsum (∗fn∗ d)

{0..< N} ∈ HFinite)"

We must also define it for coefficient functions, rather than polynomials, and due

to this restriction, we have to state, as part of the definition, that the polynomial start-

ing from 0 is finite. Hence if we are given a polynomial with coefficient function bn

where b0 = L for some infinitely-large L, and is zero otherwise, we cannot express that

∗∑N
n=1 bn is Euler-convergent using these Isabelle definitions.1 We made the choice

not to use these definitions in our Isabelle theory, and where we must use the property

of Euler-convergence, we write it out in full (see Listing 5.1 and Listing 5.2 in the next

section).

Ultimately, we mainly replace Euler-convergence with the related notion of finite

determinacy Fdeterminate which can be much more elegantly expressed. This notion

is equivalent to Euler-convergence under certain conditions which we explore in Sec-

tion 5.1.2.

definition Fdeterminate where

"Fdeterminate b ≡(∀N∈HNatInfinite. ∀M ∈HNatInfinite . b M ≈ b N) ∧
(∀M ∈HNatInfinite . b M ∈ HFinite)"

Finite determinacy is generally a weaker notion than Euler-convergence, as is determ-

inacy, and as we aim to have minimal assumptions to the hidden lemmas, we find these

notions useful in our formalisation.

5.1.2 Equivalences between Euler-determinacy, determinacy, finite

determinacy and Euler-convergence

We claimed in Section 4.4.2 that Euler-convergence is just determinacy plus finiteness.

In this section, we show that McKinzie and Tuckey’s definition of Euler-convergence

is equivalent to finite determinacy under certain conditions.

As we stated in Section 4.4.10.1, it is possible to represent determinacy of hy-

perseries and hyperproducts in a way analogous to the Cauchy convergence criterion

for sequences in standard analysis. That is, instead of saying that the summation or

1Given a polynomial which is Euler-convergent after a certain finite index k, we could of course
redefine the coefficient function so that the kth index is instead the 0th index.
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product to an infinite N must be infinitely-close to the summation or product to any

other infinite M, we can say that the sum between some infinite N, M is infinitesimal,

or that the product between N, M is infinitesimally-close to 1. Recall that L is the set

of infinitely-large hyperreals. In mathematical notation,

∀N,M ∈L∩∗N.
N
∑
i=0

ai ≈
M
∑
i=0

ai

and

∀N,M ∈L∩∗N.
N
∏
i=0

ai ≈
M
∏
i=0

ai

express determinacy for sums and products respectively and

∀N,M ∈L∩∗N.
M
∑
i=N

ai ≈ 0

and

∀N,M ∈L∩∗N.
M
∏
i=N

ai ≈ 1

express Euler-determinacy.

We prove relations between finite determinacy with Euler-convergence for both hy-

perseries and hyperproducts. Recall the relations we stated in Section 4.4.10. For hy-

perseries, it is possible to prove both that determinacy is equivalent to Euler-determinacy

and that finite determinacy is equivalent to Euler-convergence. However for hyper-

products, we discovered through our proof that Euler-convergence is only equivalent

to finite determinacy if we also assume that the hyperproduct does not contain infin-

itesimal terms. Furthermore for hyperproducts, Euler-determinacy cannot be proven

equivalent to determinacy since finiteness is an essential element of the equivalency

proof.

We expressed Hidden Sublemma (ii) using finite determinacy rather than Euler-

convergence, and thus we have additional proof-steps in that proof (see Section 5.7.1).

We formalise the equivalence between Euler-determinacy and determinacy of hyper-

sum as follows. We do not have an Isabelle abbreviation for Euler-determinacy, but it

is represented by the right-hand side.

lemma Euler_determinacy_hypsum: "determinate (λM. hypsum ( ∗fn∗ b) {0..< M})

= (∀N ∈HNatInfinite . (∀M ∈HNatInfinite . hypsum ( ∗fn∗ b) {N..< M} ≈ 0)"

This version of the lemma is the most faithful to McKinzie and Tuckey’s use of de-

terminacy, as they always consider their series and products starting from zero. Using
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pen-and-paper, this is without loss of generality, since the series or product could al-

ways be relabelled in this way. However, we find that a generalised version is necessary

for some proofs in Isabelle, due to the way that hypsum and hyprod are defined. This

version does not start the sum at zero and allows for the upper indices of the hypersums

to be a finite amount greater than the variable M.

Listing 5.1: Finite determinacy is equivalent to Euler-convergence for sums

lemma Euler_determinacy_mismatched_shift_hypsum:

assumes "i ∈N" and "c ∈ N" and "k ∈ N"

shows "determinate (λM. hypsum (λn. ( ∗fn∗ b) n) {i..< M + k}) =

(∀J∈HNatInfinite. ∀K∈HNatInfinite. hypsum (∗fn∗ b) {J..<K + c} ≈ 0)"

Finally, we show Euler-convergence is equivalent to finite determinacy for hyper-

products. We allow the product to begin at a finite index i which need not be zero. As

we stated above, the finiteness is an essential assumption to the proof, so the analogous

theorem for determinacy cannot be shown. We cannot show that Euler-determinacy is

equivalent to determinacy for hyperproducts unless we make the further assumption

that the hyperproduct is not infinitesimal for any upper index.

Proposition 4. Determinacy does not imply Euler-determinacy for hyperproducts

Proof. Suppose k is a finite hypernatural and K is an infinite hypernatural. Let ε be a

nonzero infinitesimal. Define ai = 1 for i /= k,K, ak = ε2 and aK = 1/ε. Then ∗∏K−1
i=0 ai =

ε2 ≈ ε = ∗∏K
i=0ai thus the product is determinate. However, given some M > K, then

∗∏M
i=Kai = 1/ε, which is infinite, thus the product is not Euler-convergent.

If we assume that the product is not infinitesimal for any finite index, we rule out such

counterexamples.

Listing 5.2: Finite determinacy is equivalent to Euler-convergence for products given an

assumption

lemma Econvergent_Fdeterminate_variable_initial_value_hyprod:

assumes "c∈N" "i∈N" "∀N ∈HNatInfinite. hyprod (∗fn∗ b) { i ..<N} ∉ Infinitesimal "

shows "Fdeterminate (λM. hyprod ( ∗fn∗ b) { i ..< M+c}) =

(∀N ∈HNatInfinite . (∀M ∈HNatInfinite . hyprod ( ∗fn∗ b) {N..< M+c} ≈ (1:: hypreal)

∧ hyprod (∗fn∗ b) { i ..<M + c} ∈ HFinite) )"

McKinzie and Tuckey’s hidden lemmas are slightly less general than our versions,
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since we make minimal assumptions. However, their statements follow from our form-

alisation.

The conditions on the theorems on the relations between determinacy and Euler-

convergence have implications for the hidden lemmas, whose proofs they are used in,

and therefore for the entire formalisation of the Basel problem. All the series and

products involved have conditions on them which must be proven.

5.1.3 Characterising properties of determinacy and Euler-convergence

We can think of determinate series and products as having a periodicity property2. For

some hypernatural n, let S(m) =∑m
i=n si be a determinate series. Then

S(M) ≃ S(M+c)

for infinite hypernatural M and finite hyperinteger c. And thus S(m+ c) is also de-

terminate. Similarly, if S(m+ c) is determinate this implies S(m) is determinate. If c

is assumed hypernatural (i.e. if we restrict it to positive values), then we do not need

to restrict it to being finite. This periodicity property allows us to express lemmas on

determinacy with ‘mismatched shifts’. We have not proved this property in general,

however, we have only incorporated it into the statement of Listing 5.1 in Section 5.1.2.

The other special property of determinate series is that we only need to consider the

tail of the series. Therefore, it does not matter from which index we begin the series,

so long as it is finite. We have proven this property in full generality as the following

lemma.

Listing 5.3: A series is determinate regardless whether it begins at 0 or i ∈N.

lemma determinate_variable_initial_value_hypsum:

assumes "i ∈N"

shows

"determinate (λM. hypsum ( ∗fn∗ b) {i ..<M + c}) =

determinate (λM. hypsum ( ∗fn∗ b) {0..<M + c})"

Notice also that we prove this for M+c rather than simply M. Of course the expres-

sion ∑M+c
n=i an can be rewritten as ∑N

n=i an by setting N = M+ c. However, the function

λM. hypsum ( ∗fn∗ b) { i ..<M + c}) cannot be directly rewritten as a function of the form

2McKinzie and Tuckey describe this as ‘the value . . . cannot depend perceptibly on the particular
infinite value of N’ [55, p. 348].
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λN. hypsum ( ∗fn∗ b) { i ..<N}). The best we could achieve would be λM. hypsum ( ∗fn∗

(λx n. b (x + unstarnum c n) n) { i − c..<M}) but this is tedious to prove equivalent to

λM. hypsum ( ∗fn∗ b) { i ..<M + c}) (and in fact, is only equivalent if we assume i ≥ c).

But λN. hypsum ( ∗fn∗ b) { i ..<N}) can be written as function of the form λM. hypsum

( ∗fn∗ b) { i ..<M + c}) by writing λN. hypsum ( ∗fn∗ b) { i ..<N + 0}). Therefore, repres-

enting the series in the lemma as λM. hypsum ( ∗fn∗ b) { i ..<M + c} makes it far easier

to reuse the lemma.

For determinate products, it only takes a single term of the product with finite index

to be zero for the whole product to disappear and to be trivially determinate. So we

require additional assumptions to prove that the determinacy of a product does not

depend on the initial index: in short, the product from zero to the initial index must be

finite and non-infinitesimal. This is formalised as follows with proof.

lemma determinate_variable_initial_value_hyprod:

fixes b:: "nat ⇒ nat ⇒ real "

assumes "i ∈N" and

"hyprod (∗fn∗ b) {0..< i } ∈ HFinite" and

"hyprod (∗fn∗ b) {0..< i } ∉ Infinitesimal "

shows

"determinate (λM. hyprod ( ∗fn∗ b) { i ..<M + c}) =

determinate (λM. hyprod ( ∗fn∗ b) {0..<M + c})"

We can prove similar theorems for finite determinacy. These combine the determinacy

theorems with theorems that allow hyperfiniteness of sums and products to be shifted.

lemma hypsum_HFinite_tail:

assumes "∀M∈HNatInfinite. hypsum (∗fn∗ b) {0..<M + c} ∈HFinite" and

"∀x. 0 ≤ (∗fn∗ b) x" and "i ∈ N" and "c ∈ N"

shows "∀M∈HNatInfinite. hypsum (∗fn∗ b) {i..<M + c} ∈ HFinite"

The finite determinacy theorems need to be separated into ‘gain’, where the summation

index interval is extended, and ‘loss’, where the summation index interval is shortened.

lemma Fdeterminate_shift_hypsum_gain:

assumes "Fdeterminate (λM. hypsum ( ∗fn∗ b) {i..<M + c})" and "i ∈N" and "c ∈ N"

and "hypsum ( ∗fn∗ b) {0..< i } ∈ HFinite"

shows "Fdeterminate (λM. hypsum ( ∗fn∗ b) {0..<M + c})"

lemma Fdeterminate_shift_hypsum_loss:
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assumes "Fdeterminate (λM. hypsum ( ∗fn∗ b) {0..<M + c})" "i ∈N" "c ∈ N"

and "∀x. ( ∗fn∗ b) x ≥ 0"

shows "Fdeterminate (λM. hypsum ( ∗fn∗ b) {i..<M + c})"

Listing 5.4: Finite determinacy of hyperproduct with widened initial bound

lemma Fdeterminate_initial_value_hyprod_gain:

fixes b:: "nat ⇒ nat ⇒ real "

assumes "Fdeterminate (λM. hyprod ( ∗fn∗ b) {i..<M + c})"

and "i ∈ N" and "c ∈ N"

and "hyprod (∗fn∗ b) {0..< i } ∉ Infinitesimal "

and "hyprod ( ∗fn∗ b) {0..< i } ∈ HFinite"

shows "Fdeterminate (λM. hyprod ( ∗fn∗ b) {0..<M + c})"

The lemma in Listing 5.4 is used to prove a generalised Second Hidden Lemma which

inherits additional assumptions from it.

lemma Fdeterminate_initial_value_hyprod_loss:

fixes b:: "nat ⇒ nat ⇒ real "

assumes "Fdeterminate (λM. hyprod ( ∗fn∗ b) {0..<M + c})"

and "i ∈ N" and "c ∈ N"

and "hyprod (∗fn∗ b) {0..< i } ∈ HFinite"

and "hyprod (∗fn∗ b) {0..< i } ∈ HFinite − Infinitesimal "

and "hyprod (∗fn∗ b) {0..< i } ∉ Infinitesimal "

shows "Fdeterminate (λM. hyprod ( ∗fn∗ b) { i ..<M + c})"

5.1.4 Comparison Test for determinacy

This lemma is a slight generalisation of McKinzie and Tuckey’s Comparison Test for

Determinacy. This is a version of the Squeeze Theorem from standard analysis.

lemma comparison_test_determinacy_variable_initial_value:

assumes "∀n≥j. ( ∗fn∗ a) n ≥ 0"

and "k∈N" "j∈N" "c∈N" "i∈N"

and "determinate (λM. hypsum ( ∗fn∗ b) {i..< M + c})"

and "∀n≥k. ( ∗fn∗ a) n ≤ ( ∗fn∗ b) n"

shows "determinate (λM. hypsum ( ∗fn∗ a) {j..< M + c})"
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The proof relies on the lemma Euler_determinacy_variable_initial_value_hypsum

which is another variation on the lemmas described in the previous section, and that

lemma allows this one to index the series from any natural number. This lemma will

be used to show that ∑N
i=0 1/i! and ∑N

i=0 xi/i! are determinate (Section 5.2.2).

5.1.5 Proving additional general properties of determinacy

Determinate series can be combined in certain ways to preserve their determinacy.

Some lemmas are also true for determinate products. There are also more rules for

combining determinacy of series and products than we list or prove, since we have

only proved those we found useful in our proof of the Basel problem. In each of the

lemmas below we have assigned the most general types for which the lemma is still

true, however we have omitted the types here for ease of reading.

Listing 5.5: The constant sequence is determinate.

lemma constant_seq_determinate:

"determinate (λn. c)"

Listing 5.6: The series consisting only of zeros ∑M
n=i 0 is determinate.

lemma determinate_hypsum_zero:

"determinate (λM. hypsum (∗fn∗ (λn x. 0)) {i ..<M})"

Listing 5.7: Given two determinate series ∑M
n=i an and ∑M

n=i bn, the series formed by

termwise addition ∑M
n=i(an+bn) is also determinate.

lemma determinate_hypsum_add:

assumes "determinate (λM. hypsum ( ∗fn∗ a) {i..< M})" and

"determinate (λM. hypsum ( ∗fn∗ b) {i ..< M})"

shows "determinate (λH. hypsum (λn. (∗fn∗ a) n + ( ∗fn∗ b) n) { i ..<H})"

Listing 5.8: Given two determinate series ∑M
n=i an and ∑M

n=i bn, the series formed by

taking the difference termwise ∑M
n=i(an−bn) is also determinate.

lemma determinate_hypsum_diff:

assumes "determinate (λM. hypsum ( ∗fn∗ a) {i..< M})" and

"determinate (λM. hypsum ( ∗fn∗ b) {i ..< M})"

shows "determinate (λH. hypsum (λn. (∗fn∗ a) n − ( ∗fn∗ b) n) { i ..<H})"
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Listing 5.9: Given two determinate hyperpolynomials (power series) ∑M
n=i anxn and

∑M
n=i bnxn, the polynomial whose coefficients are given by the termwise difference

between the coefficients of the original polynomials∑M
n=i(an−bn)xn is also determinate.

lemma determinate_diff_polynomial:

assumes

"∀x∈HFinite. determinate (λM. hypsum (λn. ( ∗fn∗ a) n ⋅ x pow n) { i ..< M})" and

"∀x∈HFinite. determinate (λM. hypsum (λn. ( ∗fn∗ b) n ⋅ x pow n) { i ..< M})"

shows

"∀x∈HFinite.

determinate (λH. hypsum (λn. ((∗fn∗ a) n − ( ∗fn∗ b) n) ⋅ x pow n) { i ..<H})"

Listing 5.10: If a series ∑M
n=i an is determinate, then if k ∈N so must be ∑M

n=i an+k.

lemma determinate_shift_argument:

assumes "k∈N" "i∈N" "determinate (λM. hypsum (λn. (∗fn∗ a) n) {i..<M})"

shows "determinate (λM. hypsum (λn. (∗fn∗ a) (n+k)) {i..<M})"

These general properties can now be used, along with the Hidden Sublemmas (Sec-

tion 4.4.8), to help show that the series and products in Euler’s proof are determinate.

5.2 Proving determinacy of series and products

There are specific series and products which need to be proved determinate and Euler-

convergent so that the hidden lemmas can be applied. We have formalised their state-

ments in Isabelle and some of their proofs. The reasoning in their proofs does not

correspond to any reasoning given by Euler. We also do not consider their truth to be

under question as determinacy is an analogue of convergence which is well-established

for these series and products. Therefore they fall under the third category of reason-

ing described in Section 1.3 and we have not found it necessary to mechanise all their

proofs. We still explore the reasoning of some their proofs out of interest. For the series

1+x+x2/2!+x3/3!+ . . . we analyse the justification of its Euler-convergence given by

McKinzie and Tuckey and find it insufficient. We give our own pen-and-paper proof

of its Euler-convergence in Section 5.2.2.2.
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5.2.1 The Basel series is Euler-convergent

The proof that the Basel series 1+1/4+1/9+1/16+1/25+⋯ is Euler-convergent is

completely formalised. This is a useful result since the Euler-convergent of several

other polynomials follows from this. First we will outline McKinzie and Tuckey’s

proof since we follow their proof closely with our mechanisation.

5.2.1.1 McKinzie and Tuckey’s proof that the Basel series is Euler-convergent

They first show that all the partial sums to an infinite degree are finite. They then

show Euler-determinacy and the two combined give Euler-convergence. We give their

proof here providing some additional explanation. We can bound above the sequence

of partial sums from n to m with 1 < n <m:

0 <
m
∑
k=n

1
k2 <

m
∑
k=n

1
k2− 1

4
=

m
∑
k=n

( 1
k− 1

2

1
k+ 1

2
)

=
m
∑
k=n

( 1
k− 1

2
− 1

k+ 1
2
)

= 1
n− 1

2
− 1

m+ 1
2
.

The series ∑m
k=n( 1

k−1/2 −
1

k+1/2) is telescoping, so all terms cancel except the first and

last. Observe that if n =N and m =M are infinite hypernatural numbers, and we assume

M >N without loss of generality, then 1
n−1/2 −

1
m+1/2 is infinitesimal, so we have shown

that∑m
k=n 1/k2 is Euler-determinate. Furthermore, using the same line of reasoning, we

can deduce that
N
∑
k=1

1
k2 < 1+

N
∑
k=2

1
k2− 1

4
= 1+ 1

2− 1
2
− 1

N + 1
2
< 5

3

if N is infinite, thus this is finite and we have now shown that∑m
k=n is Euler-convergent.

5.2.1.2 Mechanisation of the proof that the Basel series is Euler-convergent

We split the proof of Euler-convergence into a lemma showing finiteness (Listing 5.11)

and a lemma showing Euler-determinacy (Listing 5.12) just as McKinzie and Tuckey

do.

Listing 5.11: The Basel series is finite

lemma Basel_sum_finite:

assumes "N >1"

shows "hypsum (λn. 1/(n∈N pow 2)) {(1::hypnat)..< N +1} < 1+ 1/(2 − 1/2)"



112 Chapter 5. Mechanising determinacy and Euler-convergence

We show the series is less than 1+ 1
2−1/2 rather than 5/3 since simplifying the quantity

was unnecessary for showing that it is finite. In fact, showing that 1+ 1
2−1/2 is finite

requires its own proof in Isabelle. We argue that since it is a combination of finite

non-infinitesimal quantities it is itself finite.

Listing 5.12: The Basel series is determinate

lemma Basel_sum_determinate:

"determinate (λN. hypsum (λn. 1/(n∈N pow 2)) {(1::hypnat)..< N +1})"

To show that the series is determinate we make essentially the same argument as McK-

inzie and Tuckey, however in Isabelle we cannot ‘assume M > N without loss of gen-

erality’: this requires a case-split. To prove both the lemmas above, it is useful to

separately prove the following lemmas.

lemma Basel_sum_ineq:

assumes "N≥m" and "m>0"

shows "hypsum (λn. 1/(n∈N pow 2)) {m..< N +1}

< hypsum (λn. (1/( n∈N − 1/2))− (1/(n∈N + 1/2)) ) {m..< N +1}"

lemma Basel_telescoping_series:

assumes "N ≥m"

shows "hypsum (λn. 1/(n∈N − 1/2)) {m..< N +1}

− hypsum (λn. 1/(n∈N + 1/2)) {m..< N +1} =

1/(m∈N − 1/2) − 1/(N∈N + 1/2)"

A significant proportion of these proofs is spent in proving that all the functions in-

volved are internal. Recall that hypsum and hyprod are only defined for internal func-

tions (see Section 3.2.4), which makes this a necessary step in the proofs.

5.2.1.3 Use of the Euler-convergence of the Basel series

The Euler-convergence of the Basel series is not used directly in McKinzie and Tuckey’s

proof of the Basel problem, but it is used to show that other sums are Euler-convergent

(see Section 5.2.2.1) [57, p. 45].

By Hidden Sublemma (ii), they show that the sum

x+x3⎛
⎝

(N−1)/2

∑
k=1

1
(kπ)2

⎞
⎠
+x5⎛

⎝
⋯
⎞
⎠
+⋯ (5.1)
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is Euler-convergent for all finite x. Thus the Basel series is a coefficient in an Euler-

convergent sum. They then apply the Third Hidden Lemma to (5.1) but explicitly

this uses the Euler-convergence of (5.1) not of the Basel series. However, when we

formalised the Third Hidden Lemma, we realised that it was necessary to assume that

the differences between the coefficients of the two polynomials (that we apply the

lemma to) were finite (Section 5.5.2.1). Therefore, technically the finiteness of the

Basel series is needed for the application of the Third Hidden Lemma. However, each

of the infinitely-many coefficients of the polynomial would also need to be proven

finite. This would be difficult to show, and this can be avoided by making a stronger

assumption than strictly necessary for the Third Hidden Lemma: namely, by assuming

Euler-convergence rather than determinacy.

5.2.2 The power series of ex is determinate

McKinzie and Tuckey state that the series 1+ x+ x2

2! +
x3

3! + .. (the power series of ex)

is determinate for finite x. They justify this [57, p. 45]. However, we examine their

justification and find it insufficient.

5.2.2.1 McKinzie and Tuckey’s justification that the power series of ex is determ-

inate

In their paper, McKinze and Tuckey first show that the Basel series 1+ 1
4+

1
9+

1
16+

1
25+⋯

is Euler-convergent. We formalised this proof in Section 5.2.1. They use this to show

that the series 1+ 1
2! +

1
3! +

1
4! +

1
5! +⋯ is also Euler-convergent. They implicitly use the

First Hidden Lemma (Comparison Test) for Euler-convergence:

Since for k > 3, we have 1/k! < 1/k2, we may also conclude that 1+1/2!+
1/3!+1/4!+1/5!+⋯ is Euler-convergent, and furthermore that for all finite
x, the sum 1+x+x2/2!+x3/3!⋯ is Euler-convergent. [57, p. 45]

We are most interested in showing the determinacy part of Euler-convergence, since

this will be what is needed in the proof of the Basel problem (to apply the First Hidden

Lemma in Gap 1 Section 6.8.1).3 There is no theorem that says if a series ∑n
k=1 ak is

Euler-convergent then the series ∑n
k=1 akxk is also Euler-convergent for all finite x, nor

can there be such a theorem. Perhaps they mean to argue that, just as 1
k! <

1
k2 , also

xk

k! <
xk

k2 . This is true for x > 0. But again, they have not shown that 1+x+ x2

4 +
x3

9 +
x4

16 +⋯
is Euler-convergent, so this argument does not entirely work.

3However, finiteness is used for the Corollary (Section 5.6) and thus indirectly in proof of Hidden
Sublemma(i) (Section 5.7).
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5.2.2.2 Our pen-and-paper proof and formalisation of the statement

Since McKinzie and Tuckey’s proof is flawed, we provide a pen-and-paper proof of

the determinacy of 1+ x+ x2

2! +
x3

3! + .. for finite x ≥ 0. They do not directly use the

determinacy of this series in their proof of the Basel problem. In Section 5.2.2.3 we

explain how the determinacy of this series is nonetheless useful in our formal proof of

the Basel problem. We have not extended our pen-and-paper proof of this to a formal

proof since it is not part of the main proof which we have sought to understand through

formalisation and its truth is not under question.

We formalise the statement of the determinacy of 1+x+ x2

2! +
x3

3! + .. as follows.

lemma power_over_Hfact_sum_determinate:

assumes "x ∈HFinite" "x≥0"

shows "determinate (λN. hypsum (λn. x pow n/Hfact n {1..< N +1})"

The term Hfact n is the extension of the factorial function n!.

For the pen-and-paper proof that we have been able to provide, it is necessary to

add the assumption that x ≥ 0. This has implications throughout the formalised proof of

the Basel problem, but it does not affect the validity of the proof or the final statement

of the problem (see Section 6.8).

Theorem 9. The series 1+x+ x2

2! +
x3

3! +⋯ is Euler-determinate (and thus determinate)

for finite x ≥ 0.

Proof. By the definition of Euler-determinacy, the series will be determinate if for all

infinite N and M with M ≥N we have

xN

N!
+ xN+1

(N +1)!
+⋯+ xM

M!
≃ 0.

We can rewrite the LHS so that

xN

N!
+ xN+1

(N +1)!
+⋯+ xM

M!
= xN

N!
(1+ x

N +1
+ x2

(N +1)(N +2)
+⋯+ xM−N

(N +1)⋯M
) .

Since xN/N! is infinitesimal, it would be sufficient to show that

1+ x
N +1

+ x2

(N +1)(N +2)
+⋯+ xM−N

(N +1)⋯M
(5.2)
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is finite. We can bound this sum above using the assumption that x ≥ 0

1+ x
N +1

+ x2

(N +1)(N +2)
+⋯+ xM−N

(N +1)⋯M
=

M−N
∑
k=1

xk

∏N+k
i=N+1 i

<
M−N
∑
k=1

( x
N
)

k
(5.3)

= x
N

1−( x
N
)

M−N

1− x
N

≃ 0

by using the properties of geometric partial sums. The First Hidden Lemma (Com-

parison Test for determinacy of series) (Section 4.4.5) with (5.3) implies that our sum

(5.2) is infinitesimal and therefore finite.

5.2.2.3 Use of the determinacy of the power series of ex

To fill Gap 1 of the Basel problem it is necessary to apply the First Hidden Lemma.

This requires us to use the fact that

x+ x3

3! +⋯+ xN

N!

is determinate. We have not mechanised the proof of its determinacy, however it fol-

lows from the determinacy of the power series of e since

N
∑
k=1

xk

k!
−

N
∑
k=1

(−x)k

k!
= x+ x3

3!
+⋯+ xN

N!
(5.4)

for odd N. We must also use the lemmas about the algebra of determinate series we

proved in Section 5.1.5. However, the determinacy of the power series of ex is also

used directly in the proof of Hidden Sublemma (i) (see Section 5.7), which we have

not fully mechanised. We explain why the mechanisation of this is incomplete in

Section 6.1.2.2.

5.2.3 Finite determinacy of the products

The finite determinacy of the two products

x
(N−1)/2

∏
k=1

⎛
⎜
⎝

1+ x2

(kπ)2

1
2 (2kπ

N )2

1−cos 2kπ

N

− x2

N2

⎞
⎟
⎠

and x
(N−1)/2

∏
k=1

(1+ x2

(kπ)2)

results from the finite determinacy of the Basel series (see Section 5.2.1) and Hidden

Sublemma (ii), however we have not yet mechanised this.
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5.3 First Hidden Lemma

The First Hidden Lemma is by far the most straightforward to mechanise in Isabelle

and also has the shortest proof as given by McKinzie and Tuckey [57, p. 50]. The short

proof supports McKinzie and Tuckey’s (and Laugwitz’s) claim that it is a principle

which Euler tacitly used. McKinzie also argues that Halley used this principle before

Euler [56]. We give a detailed explanation of the formalisation of its statement since it

is the first of the hidden lemmas that we are describing.

5.3.1 Statement of the First Hidden Lemma in Isabelle

As we described in Section 4.4.5, McKinzie and Tuckey state the First Hidden Lemma,

which is more descriptively named the Summation Comparison Theorem, as

If the sums a1+a2+a3+⋯ and b1+b2+b3+⋯ are Euler-convergent, and if
for each finite n, an ≃ bn, then for all N, a1+a2+⋯aN ≃ b1+b2+⋯bN [57,
p. 50]

in their paper on reconstructing the proof of the Basel problem in nonstandard ana-

lysis. They consistently use Euler-convergence throughout this paper. However, they

also give the First Hidden Lemma in their subsequent paper where they rely only on

the more general notion of determinacy (see Section 4.4.2 and Section 5.1.1) [55, p.

349]. We were able to formalise and prove the lemma using the weaker assumption of

determinacy. This allows the lemma to be more easily applied in the full proof of the

Basel problem and elsewhere. Our Isabelle statement of the lemma:

lemma hidden_lemma1:

assumes "determinate (λM. hypsum (∗fn∗ a) {0..< M})"

"determinate (λM. hypsum (∗fn∗ b) {0..< M})"

"⋀n. n ∈ N Ô⇒(∗fn∗ a) ≈(∗fn∗ b) n"

shows "hypsum (∗fn∗ a) {k..< N + 1} ≈ hypsum (∗fn∗ b) {k..< N + 1} "

generalises the summation indices in the conclusion. They begin at k rather than 0.

This increases the complexity of the proof of the lemma but turns out to be necessary

for fitting the lemma into the overall proof. The summation indices in the assumption

can be generalised using one of the lemmas proved in Section 5.1.3. We also have a

choice between using the Isabelle interval {k .. N}, which corresponds to {x. k ≤ x ≤N},
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and {k..< N + 1}, which corresponds to {x. k ≤ x < N +1}, to define the bounds of the

hypersum. The latter might seem to be a strange choice, but our proof has to rely on

the theorem hypsum_split_interval which, represented in mathematical notation is this

theorem:

Theorem (Splitting hypernatural sums). Let n ≤ k ≤m be hypernaturals. Then

∑
i∈[n,m)

ai = ∑
i∈[n,k)

ai+ ∑
i∈[k,m)

ai

The same theorem cannot be as easily expressed using closed intervals. The final

formalisation choice in the First Hidden Lemma is to use internal functions to repres-

ent what McKinzie and Tuckey implicitly assume to be ‘elementary sequences’4. We

make the choice to represent sets and functions internally throughout and we will not

discuss it further apart from rare exceptions to this rule (see Section 2.3.2 for an explan-

ation of why we use internal functions and sets to represent Euler’s concepts). Apart

from the formalisation choices between determinacy/Euler-convergence and strict/non-

strict intervals, the statement of the lemma in Isabelle closely follows the mathematical

statement given by McKinzie and Tuckey.

5.3.2 Proof of the First Hidden Lemma

For ease of reference, we first quote McKinzie and Tuckey’s proof of the First Hidden

Lemma.

If an ≃ bn for all finite n, then by the Finite Induction Principle, a1 + . . .+
an ≃ b1+ . . .+bn for all finite n as well. By the Sequential Theorem, there
is an infinite J such that for all n less than J, a1+ . . .+an ≃ b1+ . . .+bn. Let
N be greater than J. If the sums are Euler-convergent, then by definition,
aJ+ . . .+aN and bJ+ . . .+bN are both infinitesimal, and hence for all N,a1+
. . .+aN ≃ b1+ . . .+bN . [57, p. 50]

Since we begin our hypersum at k rather than 0, we have extra cases to consider

in our mechanised proof. First we consider the case where k is infinite. If N is also

infinite, then the hypersums we are considering, i.e. hypsum ( ∗fn∗ a) {k..< N + 1} and

hypsum ( ∗fn∗ b) {k..< N + 1}, are the tails of determinate series. Therefore we can use

the lemma Euler_determinacy_hypsum (see Section 5.1.2) to conclude that they are

4We deduce this because they refer to ‘elementary sequences’ in earlier lemmas. They also state that
the internal functions of Robinson’s theory are a ‘particularly broad’ interpretation of ‘elementary’ in
this context [57, p. 43]
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both infinitesimals. Then they must be infinitely-close to each other. If N is finite then

the interval {k..<N+1} is just the empty set, and thus the hypersums we are considering

are both zero and of course infinitely-close to each other.

The case which corresponds to McKinzie and Tuckey’s proof is where k, like 0, is

finite. We might think that we also need to consider whether k is less than N. However,

the construction of their proof makes this unnecessary, since both k and N are compared

to an intermediate J. They use finite induction to add up infinitely-close terms of the

two sequences to get two sums of finitely many terms which are infinitely-close to each

other. They state

If an ≃ bn for all finite n, then by the Finite Induction Principle, a1+⋯+an ≃
b1+⋯+bn for all finite n as well.

This works for any finite number of terms. So they can then use the Sequential The-

orem to extend this to the infinite case, almost magically. As they say

By the Sequential Theorem, there is an infinite J such that for all n less
than J, a1+⋯+an ≃ b1+⋯+bn.

The use of finite induction is easily reproduced in Isabelle using the lemma below.

lemma finite_induction_principle_hypnat_type:

assumes "(n::hypnat)∈N" "P 0"

"⋀k. Jk<n;P kKÔ⇒P (k+1)"

shows "P n"

This is a corollary of the standard induction rule in Isabelle which we proved so that it

can be applied to hypernatural intervals. However, we have to compare our initial value

k to n since it is not always less than or equal to n. We formalise this as a case-split

with an easily proven degenerate case. Similarly to McKinzie and Tuckey we use the

Sequential Theorem to obtain an infinite J for which the following proposition holds.

∀n < J. hypsum ( ∗fn∗ b) {k..< n+1} ≈ hypsum ( ∗fn∗ a) {k..< n+1}

At this point in the proof, McKinzie and Tuckey state ‘Let N [the degree of the

polynomial] be greater than J’. In Isabelle we must represent this with a case-split on

N +1 > J. They then continue

If the sums are Euler-convergent, then by definition, aJ +⋯+aN and bJ +
⋯+bN are both infinitesimal, and hence for all N, a1+a2+⋯aN and b1+
b2+⋯bN .
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We are able to follow this in Isabelle using N +1 instead of N. The Isabelle proof is

96 lines compared to McKinzie and Tuckey’s 6 line proof. The greater length of the

Isabelle proof is partially due to the addition of all the trivial and degenerate cases

which needed to be considered and then discharged; partially due to the steps which

combine and split hypersums, where the proof assistant required more guidance than

a human might to follow the reasoning; and clear formatting requires more lines than

would be used in a pen-and-paper proof.

5.4 Second Hidden Lemma

The Second Hidden Lemma (or Product Comparison Theorem [55, p. 349]) is intended

by McKinzie and Tuckey to be exactly analogous to the First Hidden Lemma (Sum-

mation Comparison Theorem), but stated for products rather than sums. However, we

find that there is a significant increase in complexity, especially if we generalise the

lemma to allow for a different initial index.

5.4.1 Statement of the Second Hidden Lemma

They state it identically to the First Hidden Lemma, with no additional assumptions

and say only ‘The proof is similar to (the First Hidden Lemma)’.

If the products (1+ a1)(1+ a2)(1+ a3)⋯ and (1+ b1)(1+ b2)(1+ b3)⋯
are Euler-convergent, and if for each finite n, an ≃ bn, then for all N, (1+
a1)(1+a2)⋯(1+aN) ≃ (1+b1)(1+b2)⋯(1+bN) [57, p. 50]

The only difference the reader might observe is that they multiply (1+ai) rather than

summing ai. In fact, this is not a real difference since it is the increments from the

multiplicative identity (i.e. 1) in the case of products, and the increments from the

additive identity (i.e. 0) in the case of sums, which must be infinitely-close. So they

state the first two Hidden Lemmas entirely analogously. In fact, they are both instances

of the same general theorem which could be stated at the level of group theory.

In Isabelle, we state the lemma without writing the products as increments from the

identity. For this reason, one could either consider our statement to be a generalisation

of theirs, since they often assume their terms an and bn to be non-negative,5 or it could

be considered a simplified way of stating the same fact. Our lemma requires one more

5They did not explicitly state an and bn to be non-negative in this case, but if the Second Hidden
Lemma was generalised to any initial index, this assumption would be needed.
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assumption than McKinzie and Tuckey explicitly state. We justify its necessity in

Section 5.4.5.

lemma hidden_lemma2_initial_index_zero:

assumes

Fdeterminate_b: "Fdeterminate (λM. hyprod ( ∗fn∗ b) {0..< M})" and

Fdeterminate_a: "Fdeterminate (λM. hyprod ( ∗fn∗ a) {0..< M})" and

a_b_inf_close: "∀n ∈N. ( ∗fn∗ a) n ≈ ( ∗fn∗ b) n" and

a_HFinite: "∀n ∈N. (∗fn∗ a) n ∈ HFinite" and

shows "hyprod ( ∗fn∗ b) {0..< N+1} ≈hyprod ( ∗fn∗ a) {0..< N+1}"

This statement of the Second Hidden Lemma starts the product from the initial index

0, which corresponds to McKinzie and Tuckey’s statement6. In fact, the Second Hid-

den Lemma should be true no matter which finite initial index is chosen. We have

mechanised a second version which allows for any finite initial index, but this version

has several more assumptions, some of which are required, and some which could

potentially be removed. We will not go into detail on this second version. Mechan-

ising the proof of Second Hidden Lemma in Isabelle led to the discovery that it has

greater complexity than the First Hidden Lemma, both in its proof and in its statement.

Informally we can explain this increased complexity by the interaction between the

infinitely-close relation and products. The infinitely-close relation behaves like equal-

ity when addition is concerned but with the introduction of multiplication it behaves

differently. In the next section, we consider whether finite determinacy is required for

the lemma, or if it is sufficient to use determinacy.

5.4.2 Finite determinacy

In Section 4.4.2 we noted the difference between the related concepts of Euler-converg-

ence, finite determinacy and determinacy. Since determinacy is the weakest assump-

tion, we use it wherever possible, for example, in our statement of the First Hidden

Lemma (see Section 5.3.1). However, for the Second Hidden Lemma, we do need to

assume the finiteness of the product, since we will eventually divide by its tail and will

then wish to conclude that the infinitely-close relation is preserved (see Section 5.4.4).

When using the infinitely-close relation to make conclusions about multiplication or

division, the quantities need to be well-behaved in some way: i.e. non-infinitesimal

6Of course, they start from 1, but this difference is not significant. The significance is that a single
number is chosen.
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or non-infinite. If the quantities are not restricted, then the infinitely-close relation

behaves very differently from equality. Thus we assume it is finite determinate.

5.4.3 Additional assumption

As mentioned, there is an additional assumption a_HFinite which we had to make for

the Second Hidden Lemma. We can state this in mathematical notation as k ∈ NÐ→
ak is finite. In Section 5.4.5 we prove it is necessary in order to guarantee the truth of

the lemma, so it can rightly be called a missing assumption. The analogous result for

the function b easily follows from ∀n ∈N. (∗fn∗ a) n ≈ (∗fn∗ b) n. We can obtain the

fact that if k ∈N then ∏k
n=0 an is finite from a_HFinite by finite induction. We call this

fact a_hyprod_HFinite. Both a_hyprod_HFinite and a_HFinite are necessary to make

McKinzie and Tuckey’s proof work, but were not stated by them.

5.4.4 Structure of mechanised proof

McKinzie and Tuckey give no proof, but they do give a proof of the analogous First

Hidden Lemma (see Section 5.3.2). We base our proof of the Second Hidden Lemma

on this. As they do, we obtain that a1⋯an−1an ≃ b1⋯bn−1bn for all finite n by finite

induction. This step requires an additional assumption. We have to split the products

a1⋯an+1 and b1⋯bn+1 so that we can use our induction hypothesis and conclude that

a1⋯an+1 ≃ b1⋯bn+1. In the process we must use this property of the infinitely-close

relation

If c ≃ d and e ≃ f , for d and f finite, then ce ≃ d f .

This ends up requiring that if k ∈N then ∏k
n=0 an is finite and, further, if k ∈N then the

coefficient ak is finite. Of course, the first can be proved from the latter and we thus add

the latter fact to the statement of the Second Hidden Lemma as an assumption. Due

to the simplicity of the proof, and the rigidity of the properties of the infinitely-close

relation, it seems unlikely that there could be any way to avoid making this assumption.

5.4.5 Necessity of the additional assumption

The assumption can easily be discharged when the Second Hidden Lemma is used

in Euler’s proof of the Basel problem. But as a critique of the proof of the Second

Hidden Lemma given by McKinzie and Tuckey, we will show now that the assumption
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is necessary and should have been provided by McKinzie and Tuckey7. As this is a

detour from the main focus of the thesis, this is only a pen-and-paper example provided

for the interest of the reader.

Our additional assumption is

Assumption 2 (A). If k ∈N then the coefficient ak is finite.

The other assumptions are

Assumption 3 (B).

1. ∀N,M ∈L∩∗N.∏N
k=0 ak ≃∏M

k=0 ak (i.e. ak is determinate)

2. ∀N ∈L∩∗N.∏N
k=0 ak is finite.

3. ∀N,M ∈L∩∗N.∏N
k=0 bk ≃∏M

k=0 bk (i.e. bk is determinate).

4. ∀N ∈L∩∗N.∏N
k=0 bk is finite.

5. ∀k ∈N. bk ≃ an

Our proof is of

Statement 1 (C).

∀N ∈ ∗N.
N
∏
k=0

bk ≃
N
∏
k=0

ak

Our proof of the Second Hidden Lemma in Isabelle has shown A ∧ B Ð→ C. If

we can find some ak, bk such that B(ak,bk) ∧ ¬A(ak,bk) ∧ ¬C(ak,bk) then we would

have an example demonstrating that B alone is not enough to guarantee C and hence A

is a necessary assumption. Trivially, products which contain a coefficient of zero but

would otherwise not be determinate would provide such an example, but we can also

provide an example of a product with non-zero coefficients. Consider the following

definition of the coefficients:

Define a0 = b0 = L, for some infinite L. Define a1 = 1/L and b1 = 1/(2L). The rest

of the coefficients are given by ak = bk = 1 for k /= 0,1.

To show ¬A(ak,bk) is satisfied:

7However, we could have chosen instead the following assumption which would also allow our
above proof to work:

Assumption 1 (A′). If k ∈N then the coefficient ak is not infinitesimal.
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By construction, the coefficients at i = 0 are infinite and hence ¬A(ak,bk) is satis-

fied.

To show B(ak,bk) is satisfied:

For B.1 and B.3 both products are determinate since their tails are products of

ones and thus not depended on the particular infinite value they are taken until. For

B.2 and B.4 the values of the products are 1 and 1/2 respectively if the products are

continued beyond their first coefficient. For B.5 the only coefficient at which they

differ is a1 = 1/L and b1 = 1/(2L) and these values are both infinitesimal so they are

infinitely-close.

To show ¬C(ak,bk) is satisfied:

For some N ∈ ∗N we have that

N
∏
k=0

ak = L
1
L
= 1 /≃ 1

2
= L

1
2L

=
N
∏
k=0

bk.

5.5 Third Hidden Lemma

The Third Hidden Lemma (or Polynomial Comparison Theorem) masquerades as the

principle of ‘equating coefficients’ in Euler’s proof. In this section we will explain

McKinzie and Tuckey’s proof and the gaps and points of interest which we have iden-

tified in it. We then describe how these issues can be addressed to obtain a complete

proof and how we formalise this proof in Isabelle (see Section 5.5.3), with the excep-

tion of one lemma which was not explicitly proved by McKinzie and Tuckey and for

which we have provided a pen-and-paper proof in Section 5.5.2.3. We believe this

lemma forms a significant gap in their proof since it requires a general property of de-

terminacy which McKinzie and Tuckey did not mention or prove. We formalised the

proof of the Third Hidden Lemma in order to understand the points of interest in it and

identify gaps in its reasoning. Our mechanisation of the Lemma achieved this goal. We

did not deem it particularly useful to mechanise our proof of the gap identified since it

uses more elementary reasoning compared with McKinzie and TuckeyâĂŹs proof.

5.5.1 McKinzie and Tuckey’s proof of the Third Hidden Lemma

In Euler’s proof of the Basel problem, he appears to equate coefficients to conclude

that 1+ 1
4 +

1
9 +⋯ = π

2

6 . However, since the polynomials involved are only infinitely-

close rather than actually equal, McKinzie and Tuckey instead fill this gap with the

Third Hidden Lemma. In Section 4.5.1 we compared the Third Hidden Lemma to
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the method of equating coefficients. We proved the method in Section 6.3 using finite

induction. The structure of their proof of the Third Hidden Lemma also relies on

finite induction, however this is where the similarity ends. At several points, we find

that it is not obvious how the next step is justified in their proof, as we indicate in

Sections 5.5.1.3- 5.5.1.4.

5.5.1.1 Statement

Recall the statement of the Third Hidden Lemma which we discussed in Section 4.4.7.

Third Hidden Lemma. Let f (x) = a0 + a1x+ a2x2 + a3x3 +⋯ and g(x) = b0 + b1x+
b2x2+b3x3+⋯. If for all finite x, f (x) and g(x) are Euler-convergent and f (x) ≃ g(x),

then an ≃ bn for all n.

They assume that f (x) ≃ g(x). If we took this to mean that ∑n
i=0 aixi ≃ ∑n

i=0 bixi

for all degrees n ∈ ∗N some steps in the proof of the Third Hidden Lemma, such as

concluding an ≃ bn for all finite n, would become trivial, so instead we take it to mean

that they are infinitely-close for all infinite degrees. There is an argument to be made

that they should be assumed infinitely-close for only a single infinite degree H. In

fact, this would be equivalent since they are Euler-convergent and the tails of both

polynomials are infinitesimal.8 See the reasoning in Section 5.5.1.5.

5.5.1.2 Structure of the proof

We quote here McKinzie and Tuckey’s proof since we reference it extensively in the

following discussion.

We first show that if any polynomial p(x) given by ∑L
k=0 ckxk is Euler-

convergent for all finite x, and if p(x) ≃ 0 for all finite, noninfinitesimal x,
then c0 ≃ 0. To this end, first observe that p(1/m) ≃ 0 for all finite, nonzero
m, and hence by the Sequential Theorem, p(1/M) ≃ 0 for all sufficiently
small infinite M. Let M be infinite and sufficiently small. Next observe that
c1 ⋅1/M+c2 ⋅1/M2+ . . .+ck ⋅1/Mk ≃ 0 for all finite k, and hence by a second
application of the Sequential Theorem, ∑N

k=1 ck/Mk ≃ 0 for all sufficiently
small infinite N. Let N be infinite and sufficiently small, and less than H.
Then since p(1/M) = c0 +∑N

k=1 ck/Mk +∑H
k=N+1 ck/Mk, and since this last

summand is infinitesimal by Euler-convergence, we conclude that c0 ≃ 0.

Now let f (x) = a0 + a1x+ a2x2 + . . . and g(x) = b0 + b1x+ b2x2 + . . ., and
assume that for all finite x,g(x) and f (x) are Euler-convergent and f (x) ≃

8Even if we allowed f (x) and g(x) to take different infinite degrees, this would be equivalent by
Euler-convergence.
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g(x). Then the reasoning of the previous paragraph implies that a0 ≃ b0.
Now assume that n is finite and that for all k less than n,ak ≃ bk. Then for
all finite x,

xn (an+an+1x+ . . .+aHxH−n) ≃ xn (bn+bn+1x+ . . .+bHxH−n)

This implies that the polynomial p(x) given by∑H
k=n (ak−bk)xk−n is Euler-

convergent for all finite x, and is infinitesimal for all finite, noninfinites-
imal x. By the argument in the preceding paragraph, we conclude that
an ≃ bn as well. By the Finite Induction Principle, we conclude that an ≃ bn
for all finite n. That aN ≃ bN holds for all infinite N follows from the Euler-
convergence of f (x) and g(x). [57, p. 52]

McKinzie and Tuckey use strong induction over the natural numbers (as opposed

to the hypernatural numbers). They are inducting over the proposition an ≃ bn, and so

they obtain an ≃ bn for all finite n. They then use Euler-convergence of f and g to show

that aN ≃ bN for all infinite N (see Section 5.5.1.4).

5.5.1.3 Base case and main lemma

Their base-case is to show a0 ≃ b0. However, they do not prove this directly. Instead

they prove a lemma stating ‘. . . if any polynomial p(x) given by ∑L
i=0 cixi is Euler-

convergent for all finite x, and if p(x) ≃ 0 for all finite, noninfinitesimal x, then c0 ≃ 0.’

They later implicitly apply this lemma to p(x) =∑L
i=0(ai−bi)xi to conclude a0−b0 ≃ 0.

They also use it to show the induction step, thus we will call this the ‘main lemma’ of

the proof.

McKinzie and Tuckey’s proof of their lemma involves two successive applications

of the Sequential Theorem. They do this by discretising the second assumption and

they state ‘observe that p(1/m) ≃ 0 for all finite, nonzero m’. Implicitly, they assume

m to be a hypernatural number. In our formalisation of this proof, we need to rewrite

m as m+1 in order to explicitly avoid dividing by zero. They then use the Sequential

Theorem to apply the proposition to infinite values which results in p(1/M) ≃ 0 for all

sufficiently small infinite M. Hence they have now extended p(x) to some infinitesimal

values of x. McKinzie and Tuckey stated their Sequential Theorem as applying to ‘n

smaller than N’ and yet they apply it as though it applies to ‘n smaller than or equal

to N’.The latter version is a corollary of the former, so although we formalised the

Sequential Theorem using <, this does not present a problem.

Thus far we have described McKinzie and Tuckey’s proof that∑L
i=0 ci/mi ≃ 0 for all

nonzero m less than some infinite M. They next tell us to ‘observe’ that ∑k
i=1 ci/Mi ≃ 0
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for all finite k without any further justification: we provide a justification in Sec-

tion 5.5.2. McKinzie and Tuckey then apply the Sequential Theorem a second time

to obtain ∑N
i=1 ci/Mi ≃ 0. They now introduce H and they write it as the degree of the

polynomial, so we could deduce H = L. They claim H is larger than N. So according to

them L can be taken to be larger than N. Yet there is no way of knowing if L is larger

or smaller than N. We formalise this as a case-split:

If L >N then we can follow their original reasoning. They write

p( 1
M

) = c0+
N
∑
i=1

ci

Mi +
L
∑

i=N+1

ci

Mi

where all the terms except c0 have been shown to be infinitesimal (the last term is infin-

itesimal by Euler-convergence and it would be infinitesimal even if only determinacy

had been assumed), hence c0 ≃ 0.

If L ≤N then we instead write

p( 1
M

) = c0+
L
∑
i=1

ci

Mi

We use the second application of the Sequential Theorem to justify that L is sufficiently

small, thus ∑L
i=1 ci/Mi ≃ 0 and hence c0 ≃ 0.

5.5.1.4 Induction step

Once McKinzie and Tuckey have shown the base-case, they assume that n is finite

and for all k < n we have ak ≃ bk (corresponding to the hypothesis for finite strong

induction). They then conclude that for all finite x,

xn(an+an+1x+⋯+aHxH−n) ≃ xn(bn+bn+1x+⋯+bHxH−n) (5.8)

It is not mentioned what H is: recall H was also introduced with no explanation in the

main lemma. Although f (x) and g(x) are presented as degreeless, we deduce from

context that H is their infinite hypernatural degree. Their reasoning for obtaining (5.8)

may not be obvious so we provide further details here. McKinzie and Tuckey assume

that f (x) ≃ g(x). We took this to mean that they are infinitely-close for all infinite de-

grees. They then claim that the polynomial ∑H
k=n(ak −bk)xk−n is Euler-convergent for

all finite x, and is infinitesimal for all finite, noninfinitesimal x. This will allow them

to fulfill the explicit requirements of the main lemma. However, again, we need to un-

derstand how to derive these claims. If x is noninfinitesimal, then so will be xn and we

can thus divide both sides of (5.8) by xn to show that ∑H
k=n akxk−n ≃∑H

k=n bkxk−n. Thus
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∑H
k=n(ak − bk)xk−n is infinitesimal for all finite, noninfinitesimal x. However, Euler-

convergence must be obtained for all finite x, even those which are infinitesimal. It is

not obvious how to show this as we cannot divide through by xn when x is infinitesimal.

The main lemma cannot be applied without Euler-convergence; so this appears to form

a gap in the reasoning and we will provide our own justification in Section 5.5.2. After

application of the main lemma, McKinzie and Tuckey deduce that an ≃ bn, concluding

the induction step.

5.5.1.5 Concluding the proof

McKinzie and Tuckey have shown that an ≃ bn for all finite n, by finite induction.

They state that aN ≃ bN also holds for all infinite N, since f (x) and g(x) are Euler-

convergent for all x. We will spell out the reasoning further for clarity: let x = 1 and

consider the infinite number N. By the definition of Euler-convergence, we have that

∑N
k=N ak1n = aN ≃ 0 and ∑N

k=N bk1n = bN ≃ 0. In fact, determinacy would be sufficient to

show this since we do not use the finiteness property here. Thus aN ≃ bN for infinite N.

Hence they have shown an ≃ bn for all n.

5.5.2 Addressing the potential issues

Now we will explain how we understand and fill the parts of McKinzie and Tuckey’s

reasoning which are not obvious.

5.5.2.1 Justification of the missing step from the main lemma

We pointed out that in the main lemma McKinzie and Tuckey ‘observe’ that∑k
i=1 ci/Mi ≃

0 for all finite k. We must justify this step. We might think to prove∑k
i=1 ci/Mi ≃0 for all

finite k simply from the Euler-convergence of ∑L
i=0 cixi. However, this is not possible.

Suppose c1 =M2, c2 =−M2 and thereafter ci = 0. This series is clearly Euler-convergent,

and yet ∑k
i=1 ci/Mi =M2/M−M2/M2 =M−1 which is infinite.

Later in the proof, the ci are defined to be ai−bi and our aim is to show that ai ≃ bi

for all i. In Section 5.5.1.4 we considered and rejected the possibility that f (x) ≃ g(x)
should be taken to mean ∑n

i=0 aixi ≃∑n
i=0 bixi for all n. However, if this were the case,

then we could easily derive ∑k
i=1(ai−bi)/Mi ≃ 0 for all finite k.

By contrast, it would seem very reasonable to assume that the ci must be finite for

all finite i. In this case, ∑k
i=1 ci/Mi is a finite sum of infinitesimals, and so is itself
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infinitesimal, as desired. 9 In Section 5.5.3.1 we describe how we use the assumption

that the ci are finite for all finite i to mechanise the proof of the main lemma. Since

we have added this assumption to the main lemma, we will discuss whether it can be

discharged wherever the main lemma is used in the proof of the Third Hidden Lemma.

5.5.2.2 Inherited assumption

We have not yet proved the assumption that the cis are finite in the main lemma. The

main lemma is used twice in the rest of the proof: once in the base-case and once in

the induction step. Thus we need to either discharge the additional assumption or pass

it on to the statement of the Third Hidden Lemma.

The first time that McKinzie and Tuckey apply the main lemma is to conclude

a0 ≃ b0. However, this is easily obtained from f (x) ≃ g(x) when x = 0. Therefore, we

can avoid the first application of the main lemma. Second, McKinzie and Tuckey apply

the main lemma to obtain an ≃ bn. In this case, ci = ai+n −bi+n and so we must show

that ai−bi is finite for i ∈N. We have not found a way to show this.10 So, for now, this

has to be an assumption added to the Third Hidden Lemma.

5.5.2.3 Euler-convergence for infinitesimal x

When x is non-infinitesimal, we can deduce Euler-convergence of ∑H
k=n(ak −bk)xk−n

from (5.8) by dividing both sides by xn and preserving the infinitely-close relation.

However, when x is infinitesimal, we must take another approach. Our argument is

based on a geometric sum. We prove determinacy, rather than Euler-convergence,

because determinacy is sufficient for the reasoning of the main lemma. First we prove

a general condition for the determinacy of polynomials with finite coefficients.

Theorem 10. If cI is finite for all infinite I then q(ε) =∑H
i=J ciε

i ≃ 0 for all infinite J,

H and infinitesimal ε with J ≤ H. Hence, a polynomial with finite coefficients will be

determinate for all infinitesimal arguments.

Proof. First split q(ε) into two sums:

q(ε) = ∑
i∈S−

di∣ε∣i+∑
i∈S+

di∣ε∣i

9When we apply the third Hidden Lemma to the proof of the Basel problem, the ais and bis are finite.
Thus the cis are also finite, so assuming finiteness should be unproblematic in theory. However, we do
find it is not easy to prove.

10We know that f (x) ≃ g(x) although we only assumed this to hold for infinite degrees. If it held for
finite degrees we could easily prove our assumption.
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where di = ci(−1)i if ε is negative and di = ci if ε is positive, and where the set S− is the

values of i ∈ [J,H] for which di is negative, and the set S+ is the values of i ∈ [J,H] for

which di is positive. We now define m− and m+ to be the minima of {di ∶ i ∈ S−} and

{di ∶ i ∈ S+} respectively. We analogously define M− and M+ to be the maxima. Since

S− and S+ are hyperfinite and di is finite for all i ∈ [J,H], these quantities exist and are

finite. Thus

m−∑
i∈S−

∣ε∣i+m+∑
i∈S+

∣ε∣i ≤ q(ε) ≤M−∑
i∈S−

∣ε∣i+M+∑
i∈S+

∣ε∣i

and further

−(∣m−∣∑
i∈S−

∣ε∣i+m+∑
i∈S+

∣ε∣i) ≤ q(ε) ≤ ∣M−∣∑
i∈S−

∣ε∣i+M+∑
i∈S+

∣ε∣i.

Now let ML = max(∣m−∣,m+) and MR = max(∣M−∣,M+). They are both positive and

finite. Then

−ML

H
∑
i=J

∣ε∣i ≤ q(ε) ≤MR

H
∑
i=J

∣ε∣i. (5.9)

Since ∑H
i=J ∣ε∣i is a geometric sum, we may deduce

H
∑
i=J

∣ε∣i = ∣ε∣J 1− ∣εH−J+1∣
1− ∣ε∣

≃ 0

thus in (5.9), q(ε) is squeezed between two infinitesimals and so must itself be infin-

itesimal.

Theorem 10 may initially seem obvious. However the sum ∑H
i=J ci could potentially

be infinite and so we cannot assume that multiplying term-by-term with infinitesimals

must make it infinitesimal. Indeed this is not even always true for a finite sum which

we now demonstrate.

Theorem 11. ∑N
i=1 ci is finite and ε is infinitesimal does not imply∑N

i=1 ciε
i is also finite.

Proof. Let N be an infinite hypernatural. Consider the sum where c1 =N2 and ci = −N

for i ∈ [2,N+1]. Then∑N
i=1 ci =N2+∑N+1

i=2 −N =N2−N2 = 0 which is finite. Let ε = 1/N
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which is infinitesimal. Then
N
∑
i=1

ciε
i=N2 1

N
+

N+1
∑
i=2

−N ( 1
N
)

i

=N +
N
∑
i=1
−( 1

N
)

i

=N − 1
N

N
∑
i=1

( 1
N
)

i−1

>N − 1
N

N
∑
i=1

1

=N − N
N

=N −1

which is infinite.

This should convince the reader that reasoning about sums of infinitesimals has pitfalls

for intuition and so statements should require careful proof11. We can now deduce the

determinacy of ∑H
k=n(ak−bk)xk−n for infinitesimal x. 12

Lemma 12 (Proof of gap in Third Hidden Lemma). Let ε be infinitesimal. Suppose

n ∈N, and let J and H be infinite hypernaturals with J ≤H. Let q(ε) =∑H
i=J(ai−bi)εi−n.

Then q(ε) ≃ 0 i.e. ∑H
i=n(ai−bi)εi−n is determinate.

Proof. From the Euler-convergence of f (x) and g(x) we know that aH ≃ 0 and bH ≃ 0

for all infinite H (see Section 5.5.1.5). Hence aH − bH must be infinitesimal and is

certainly finite. Let ci = ai+n−bi+n. Then we have

q(ε) =
H
∑
i=J

(ai−bi)ε
i−n =

H−n
∑

i=J−n
ciε

i

By Theorem 10, q(ε) is infinitesimal.

5.5.2.4 Summary of McKinzie and Tuckey’s proof of the Third Hidden Lemma

The Sequential Theorem is used twice in this proof. It provides the flexibility to move

between the finite and the infinite for discrete propositions. Observe that nowhere in
11 This may initially seem to contradict the Comparison Test for Determinacy given in Section 5.1.4.

However, the example we have given does not satisfy the assumptions of that theorem: most importantly,
the cis in the example take both negative and positive values.

12Another approach could be to use the continuity of polynomials. This leads to a concept which is
beyond those used in the rest of McKinzie and Tuckey’s paper. We could make the argument that Euler
would have understood this property in an intuitive sense. However, trying to make the continuity of the
polynomial precise using nonstandard analysis quickly becomes complicated.



5.5. Third Hidden Lemma 131

the proof has the finiteness property of Euler-convergence been used. Thus we can

instead make the more general assumption of determinacy, and this is the approach we

take in our mechanised proof.

5.5.3 Isabelle proof of the Third Hidden Lemma

We now describe the Isabelle formalisation of the proof. We already described the

line of reasoning of the formal proof in juxtaposition with McTuckey’s reasoning in

Section 5.5.1.

5.5.3.1 Statement

We propose the following modified version of the Third Hidden Lemma based on our

analysis of the potential issues in its proof.

Third Hidden Lemma (Version for formalisation). Let f (x) = a0+a1x+a2x2+a3x3+
⋯ and g(x)= b0+b1x+b2x2+b3x3+⋯. If for all finite x, f (x) and g(x) are determinate,

∑N
n=0 anxn ≃∑N

n=0 bnxn for all infinitely-large N, and ak −bk is finite for all k ∈N, then

an ≃ bn for all n.

Our statement of the Third Hidden Lemma in Isabelle is

lemma hidden_lemma3:

assumes

"∀x∈HFinite. determinate (λM. hypsum (λn. ( ∗fn∗ a) n ⋅ x pow n) {0..< M})"

and

"∀x∈HFinite. determinate (λM. hypsum (λn. ( ∗fn∗ b) n ⋅ x pow n) {0..< M})"

and

"∀x∈HFinite. ∀M. (hypsum (λn. ( ∗fn∗ a) n ⋅ (x :: real star ) pow n) {0..< M}) ≈
(hypsum (λn. ( ∗fn∗ b) n ⋅ x pow n) {0..< M})"

and

"∀k∈N. (∗fn∗ a) k − (∗fn∗ b) k ∈ HFinite"

shows "∀n. ( ∗fn∗ a) n ≈ ( ∗fn∗ b) n"

Recall that we formalise it using determinacy rather than Euler-convergence. An-

other point of difference is that McKinzie and Tuckey write the relation between the

polynomials f (x) and g(x) in a way that is ambiguous about their degrees. Finally, we

formalised our Third Hidden Lemma with the additional assumption
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"∀i∈N. (∗fn∗ a) i − (∗fn∗ b) i ∈ HFinite" .

In Section 5.5.2.1 we explained how this assumption is used. It is possible that this

assumption could be proved from the others.

5.5.3.2 Structure of the proof

As McKinzie and Tuckey did, we used finite strong induction to show that an ≃ bn for

all n ∈ N and this required us to prove our own induction rule within Isabelle for this

purpose.

We separated out the main lemma as a separate lemma in Isabelle. This allowed

us to be explicit about the assumptions required by it. Since it was far simpler to

prove a0 ≃ b0 without using the main lemma, we only applied it once in our proof.

Apart from this instance, we followed McKinzie and Tuckey’s reasoning. However,

in Section 5.5.2 we explained that there were several parts of their proof which were

open to interpretation, and for these we gave additional reasoning which we replicated

in our mechanisation.

5.5.3.3 Main lemma

For the main lemma, it is also sufficient to assume determinacy rather than Euler-

convergence, although we do have to make the additional assumption that the coeffi-

cients are finite for finite indices. In Section 5.5.2.1 we discussed whether this assump-

tion is necessary.

Lemma 13 (Main lemma for Hidden Lemma 3: version for formalisation). If any

polynomial p(x) given by ∑L
k=0 ckxk is determinate for all finite x, and if p(x) ≃ 0 for

all finite, noninfinitesimal x, and if ck is finite for k ∈N, then c0 ≃ 0.

In the Isabelle version we assume that our series hypsum (λn. ( ∗fn∗ c) n ⋅ x pow n) {a..< H}

is determinate from some arbitrary a ∈N just to add some generality.

lemma hidden_lemma_3_main_lemma:

fixes c :: "nat ⇒ nat ⇒ real "

assumes

"∀x∈HFinite.

determinate (λH. hypsum (λn. ( ∗fn∗ c) n ⋅ x pow n) {a..< H})"

and

"∀x∈(HFinite − Infinitesimal ) . hypsum (λn. ( ∗fn∗ c) n ⋅ x pow n) {0..< L} ≈ 0"
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and

"L ∈ HNatInfinite "

and

"a∈ N"

and

"∀k∈N. ( ∗fn∗ c) k ∈ HFinite"

shows "( ∗fn∗ c) 0 ≈ 0"

In our proof of the main lemma, to conclude that p(1/m) ≃ 0 for all finite, nonzero

m, we first showed

"∀m∈(N − {0}). hypsum (λn. ( ∗fn∗ c) n ⋅ ((1:: hypreal) /m∈N) pow n) {0..< L} ≈ 0"

and then we derived

"∀m∈N. hypsum (λn. ( ∗fn∗ c) n ⋅ ((1:: hypreal) /( m∈N+1)) pow n) {0..< L} ≈ 0"

since to apply the Sequential Theorem, we needed a proposition quantified by m ∈N
not m ∈ N−{0}. Another deviation from McKinzie and Tuckey’s reasoning was that

we explicitly performed a case-split on whether N, which was obtained from the Se-

quential Theorem, was less than L (see Section 5.5.1.3).

5.5.3.4 Induction step

Although we gave a pen-and-paper proof in Section 5.5.2.3, in Isabelle, we have only

proved the determinacy of ∑H
i=n(ai −bi)xi and we have not yet shown in Isabelle that

this implies ∑H
i=n(ai −bi)xi−n is also determinate. So we formalised this as a separate

statement which is assumed in a locale given in Listing 5.13.

Listing 5.13: Gap in the Third Hidden Lemma

locale Hidden_Lemma3_Gap =

assumes hidden_lemma3_gap:

"J(x :: hypreal)∈HFinite; k∈N;

determinate (λM. hypsum (λi. ((∗fn∗ a) ( i + k) − (∗fn∗ b) ( i + k)) ⋅ x pow (i + k)

) {0..<M})KÔ⇒
determinate (λM. hypsum (λi. ((∗fn∗ a) ( i + k) − (∗fn∗ b) ( i + k)) ⋅ x pow i)

{0..<M})"

We also found it necessary to use an explicit example of an infinite natural number.

This is because we chose to interpret f (x) ≃ g(x) as holding ‘for all infinite degrees’,
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rather than ‘there exists an infinite degree for which f (x) ≃ g(x)’. Since an infinite

natural number called whn has been defined in Isabelle, this did not present a challenge.

It may have been a better choice to interpret f (x) ≃ g(x) as holding for a single infinite-

degree, since, although the two options are actually equivalent, proving that they are

equal for a single degree would be easier, and would make the Third Hidden Lemma

easier to reuse.

5.5.3.5 Challenges in the Isabelle proof

One additional difficulty of our Isabelle proof was that we explicitly proved the in-

ternality of all the functions, a step which McKinzie and Tuckey did not take. We

also proved many new theorems about rewriting hyperpolynomial sums and extracting

factors in order to replicate the mathematical reasoning.

Many of the issues we highlighted in Section 5.5.2 were discovered in the pro-

cess of formalisation and all were understood more completely. This is the strength

of formalisation: it forces us to have a complete understanding of the proof beyond

simply convincing ourselves of its validity. This is especially true when manipulating

infinitesimals or using the infinitely-close relation, since it is an easy mistake to treat

the latter as equality and to ignore all its extra conditions.

We will discuss the Hidden Sublemma (i) and (ii) shortly: first we describe a result

which the Hidden Sublemma (i) is based upon.

5.6 Hyperbolic sine is infinitely-close to 1 for values

infinitely-close to 0

McKinzie and Tuckey prove

(1+ x
N
)

N
≃ 1+ x

1
+ x2

2!
+ x3

3!
+ x4

4!
+⋯+ xN

N!
(5.10)

by taking the binomial expansion of the left hand side and applying the First Hidden

Lemma, and from this they show a corollary. We quote this along with their proof.

Corollary. If x is finite then (1+x/N)N is finite. If x ≃ 0 then (1+x/N)N ≃ 1.

Proof. The first result follows from the Euler-convergence of the series obtained from

multiplying out the product. The second result follows from the First Hidden Lemma. [57,

p. 46]
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The proof of the second part of the Corollary alone is 155 lines in Isabelle. To

prove the corollary, we must first show (5.10) which we formalise as

lemma one_plus_x_over_N_pow_N_expansion:

assumes "N ∈HNatInfinite"

shows "(1+x/N∈N) pow N ≈hypsum (λn. x pow n/Hfact n) {0..< N +1}"

Proving the lemma above requires showing that the series
M
∑
n=0

xn

N!
and

M
∑
n=0

(N
n
)( x

N
)

n
are

determinate for infinite hypernatural N, and further that

∀n ∈N. xn

N!
≃ (N

n
)( x

N
)

n
(5.11)

Recall that in Section 5.2.2 we were able to give a pen-and-paper proof of the determ-

inacy of the first series (which was not supplied by McKinzie and Tuckey). These

proofs have not been formalised in Isabelle (see Section 5.2 for why), but we have

assumed their statements and proven the lemma from them. Now we give our formal-

isation of the second part of the corollary as given by McKinzie and Tuckey. Its proof

is complete in Isabelle.

lemma infml_imp_one_plus_x_over_N_pow_N_approx_one:

assumes "N ∈HNatInfinite" and "x ≈ 0"

shows "(1+x/N∈N) pow N ≈1"

Notice that McKinzie and Tuckey do not state the converse direction of the second part

of the corollary and it is given no proof by them. However, they use the converse of the

second part of the corollary in the their proof of Hidden Sublemma (i) so it is in fact

necessary to prove it. The mechanised proof presents complications for us since it is

only straightforward to prove in the case that x is nonnegative. It is still true for x < 0,

but the alternating signs make the proof more involved, so we only give a complete

Isabelle proof for x ≥ 0.

lemma one_plus_x_over_N_pow_N_approx_one_imp_infml:

assumes "N ∈HNatInfinite" and "x≥0" and

"(1+x/N∈N) pow N ≈1"

shows "x ≈0"

The following lemma formalises the first part of the Corollary, which McKinzie and

Tuckey state comes from the Euler-convergence of the series obtained by multiplying-

out. Here when McKinzie and Tuckey say ‘multiplying-out’, they mean applying the

Binomial Theorem. However, since it comes from the Euler-convergence of a series

which we have not yet proven, we have not yet formalised the proof of this lemma.
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lemma one_plus_x_over_N_pow_N_finite_x_finite_equivalence:

assumes "N ∈HNatInfinite" "x∈HFinite"

shows "(1+x/N∈N) pow N ∈HFinite ≡x ∈ HFinite"

The Corollary is used in their proof of the Hidden Sublemma (i) which we discuss

next.

5.7 Hidden Sublemma (i)

Hidden Sublemma (i) (see Section 4.4.8) allows McKinzie and Tuckey to rewrite

Euler-convergence of sums as the Euler-convergence of products and vice-versa. It

could also be useful to show that determinacy of products is equivalent to determin-

acy of sums, finite determinacy of products to finite determinacy of sums and Euler-

determinacy of products is equivalent to Euler-determinacy of sums. Not all these

combinations may be true however.

Determinacy: McKinzie and Tuckey’s proof of Hidden Sublemma (i) would

not work for determinacy, since for products, Euler-determinacy is not equi-

valent to determinacy, and the proof relies on the Euler property (explained in

Section 5.1.2).

Euler-determinacy The finiteness property is also needed for the proof, so

without modification, it would not hold for Euler-determinacy.

Finite determinacy Euler-convergence of products is equivalent to finite de-

terminacy, as long as the terms are non-infinitesimal. So given that condition,

the Hidden Sublemma (i) works for finite determinacy.

We have not formalised the proof of Hidden Sublemma (i) as the infinitesimal-

reasoning it contains is limited to an application of the Corollary. Additionally, the

reasoning contains inequalities which, although uncontroversial, would be involved to

prove in Isabelle. Therefore it is not of particular interest but would end up being

technical to formalise. We discuss this in the wider context of the mechanisation in

Section 6.1.2.2.

Our formalisation of the statement is as follows. We formalise it using finite de-

terminacy, since that is the concept we use in our proof of the Basel problem.

Listing 5.14: Hidden Sublemma (i)
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lemma hidden_sublemma_i:

assumes

"∀n. (∗fn∗ b) n ≥ 0"

shows

"Fdeterminate (λM. hyprod (λn. (1::real star ) + ( ∗fn∗ b) n) {0..< (M::hypnat)}) =

Fdeterminate (λM. hypsum (λn. ( ∗fn∗ b) n) {0..< M})"

Hidden Sublemma (i) is written as ‘if and only if’. McKinzie and Tuckey use

the left-to-right direction in the proof of Hidden Sublemma (ii) and the right-to-left

direction directly in the proof of the Basel problem.

5.7.1 Partial proof

We give McKinzie and Tuckey’s proof of the Hidden Sublemma (i) before we discuss

our partial mechanisation.

Assume that bn ≧ 0. for all n. If x > 0 then by the Binomial Theorem for
natural exponents, the inequality (1+x/n)n > 1+x holds for all n > 1. Fix
J,K,N, with J ≦ K. Let B =∑K

n=J bn. By the Binomial Theorem and the
Geometric Sum Theorem we get,

1+B = 1+
K
∑
n=J

bn ≦
K
∏
n=J

(1+bn) ≦
K
∏
n=J

(1+ bn

N
)

N

= [
K
∏
n=J

(1+ bn

N
)]

N

≦ [1+ B
N
+(B

N
)

2
+ . . .+(B

N
)

K−J+1
]

N

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1+ B
N

⎛
⎝

1−(B/N)K−J+1

1−B/N
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N

= [1+ BC
N

]
N
.

In particular,

1+
K
∑
n=J

bn ≦
K
∏
n=J

(1+bn) ≦ [1+C∑K
n=J bn

N
]

N

.

Note that if B is finite and N is infinite then C ≃ 1. Recall that if N is
infinite, then (1+x/N)N is finite iff x is finite, and (1+x/N)N ≃ 1 iff x ≃ 0.
It follows that
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the sum b1+b2+b3 . . . is Euler-convergent

iff
J
∑
n=1

bn is finite and
K
∑
n=J

bn ≃ 0 for all infinite J,K

iff (1+∑
J
n=1 bn

N
)

N

is finite

and (1+∑
K
n=J bn

N
)

N

≃ 1 for all infinite J,K

iff (1+C∑J
n=1 bn

N
)

N

is finite

and (1+C∑K
n=J bn

N
)

N

≃ 1 for all infinite J,K

iff
J
∏
n=1

(1+bn) . is finite and
K
∏
n=J

(1+bn) ≃ 1 for all infinite J,K

iff the product (1+b1)(1+b2) is Euler-convergent. [57, pp. 50-51]

We do not have a complete proof of Hidden Sublemma (i) although we have formalised

some of the intermediate lemmas. The most significant of these is the Corollary given

by McKinzie and Tuckey which we discuss in Section 5.6. McKinzie and Tuckey’s

proof consists of a chain of equivalences. These equivalences are supported by some

inequalities which are obtained from the Binomial Theorem and the Geometric Sum

Theorem. We have a formalisation of the Binomial Theorem (see Section 6.5) but

we have not yet transferred the Geometric Sum Theorem. Since we formalised finite

determinacy rather than Euler-convergence, we also have extra proof-steps. These are

based on the lemmas in Section 5.1.3.

We define the same B and C used in McKinzie and Tuckey’s proof

Listing 5.15: Definition of B and C in Hidden Sublemma (ii)

let ?B = "λJ K. hypsum ( ∗fn∗ b) {J..< K+1}"

let ?C = "λJ K. ((1 − (?B J K/N∈N) pow (K − J + 1))/(1 − ?B J K/N∈N))"

have "∀J∈HNatInfinite. ∀K∈HNatInfinite. hyprod (λn. 1 + ( ∗fn∗ b) n) {J..< K+1}

≤ (1 + (?B J K/N∈N) ⋅ ?C J K) pow N"

From our partial formalisation we do not identify any particular challenges to a com-

plete mechanisation of the proof since we have already formalised the theorems and

definitions that it relies on. The reasoning involved is mostly concerning standard

manipulations of sums and apart from the one use of the Corollary does not involve
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nuanced manipulation of the infinitely-close relation. However, it does involve many

inequalities which remain to be shown.

In the section Section 6.5 we briefly outline our formalisation of multiplying-out

and how it ultimately lead us to find a representation in Isabelle for Hidden Sublemma

(ii). Our description of the mechanisation of the statement of Hidden Sublemma (ii)

depends on a concept that we introduce in that section so the reader may wish to refer

to it in advance although we also give an informal explanation in context.

5.8 Hidden Sublemma (ii)

We do not have a complete proof of Hidden Sublemma (ii). In Section 6.9.1 we find

that McKinzie and Tuckey are mistaken that it is necessary for the rehabilitation of the

proof of the Basel Problem and thus Hidden Sublemma (ii) fits into the category of

unformalised proofs which are not central to the reasoning of the proof of the Basel

Problem (Section 1.3.1). We anticipate that a formal proof would present some chal-

lenges which we outline below. Our formalisation of the statement in Isabelle is

lemma hidden_sublemma_ii:

assumes

"Fdeterminate (λM. hyprod (λn. (1::real star ) + ( ∗fn∗ b) n ⋅ x) {0..< M+1})"

and "∀n. (∗fn∗ b) n ≥ 0"

shows

"Fdeterminate

(λM. hypsum

(λk. hypsum (λi.

hyprod (∗fn∗ b) ( Iset i ) )

(hyp_k_subset k (star_n (λn. {0..<unstarnum M n}))) ⋅ x pow k)

{0..<M + 1})"

Every hypersum and hyperproduct needs to be indexed by something of type 'a star

. However, one of these indexes i must be a set, therefore it would seem that needs

to have the type 'b star set which would not be a valid indexing type. But internal

sets can be defined as equivalence classes of sequences of sets and therefore can have

type 'b set star. The Isabelle construct Iset takes an internal set of type 'b set star

and translates it to type 'b star set so that we can apply further functions: in this

case so that Iset i can be the indexing set for hyprod (∗fn∗ b) ( Iset i ). We introduce
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hyp_k_subset in Section 6.2.2. The reader can refer to that section for a formal ex-

planation, but it is enough to understand that this is a k-subset over the hypernaturals.

Our definition of hyp_k_subset uses Iset i . This is so that it has type nat star ⇒ 'a

set star ⇒ 'a set star set and thus we can use it as an indexing set for hypsum

5.8.1 Representing McKinzie and Tuckey’s proof

As we have done for the other hidden lemmas and hidden sublemma, we shall quote

McKinzie and Tuckey’s proof for the reader to refer to.

Fix x and assume that (1+b1x)(1+b2x) . . . is Euler-convergent. By (i),
the sum b1x+b2x+ . . . is Euler-convergent. Let H be infinite and let B =
∑H

n=1 bn. Note that

ck = ∑
1≦n1<n2<...<nk≦H

bn1bn2 . . .bnk ≦ Bk.

Let J be infinite and less than H. Then
H
∑
k=J

ck∣x∣k ≦
H
∑
k=J

Bk∣x∣k = ∣Bx∣J (1− ∣Bx∣H−J+1

1− ∣Bx∣
) .

If it happens that ∣Bx∣ ≦ 1/2, then this last term is infinitesimal, as required.
Otherwise, note that by Euler-convergence, ∣x∣∑H

n=J bn is infinitesimal for
all infinite J, and hence ∣x∣∑H

n=J bn < 1/2 for all infinite J. By the Overspill
Theorem, there is a finite m such that ∣x∣∑H

n=m bn < 1/2. Now we may factor
the original product as

H
∏
n=1

(1+bnx) =
m−1
∏
n=1

(1+bnx) ⋅
H
∏
n=m

(1+bnx)

and then apply the reasoning in the previous case to conclude that mul-
tiplying out this last product yields an Euler-convergent polynomial. Its
product with the polynomial of finite degree m−1 is Euler-convergent as
well. [57, pp. 51-52]

McKinzie and Tuckey’s proof of Hidden Sublemma (ii) involves expressing an n-

fold sum of products

∑
1≤n1<n2<⋅⋅⋅<nk≤H

bn1bn2 . . .bnk

where H is an infinite hypernatural. We could use a variation on the concepts of

folded sums of products defined in Section 6.2.2 to represent this in our mechanisa-

tion. McKinzie and Tuckey show several inequalities involving this sum. Formalising

these would require proving and transferring several new theorems on folded sums of

products. Their proof also uses the Overspill Theorem which we have formalised (see

Section 3.4.1) so that part of the proof should not present too many difficulties.
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5.8.2 Issues with showing internality

In Section 6.9.1 we explain why it is necessary to show that the sum from Hidden

Sublemma (ii):

hypsum (λk.

hypsum (λi.

hyprod (∗fn∗ b) ( Iset i ) ) (hyp_k_subset k

(star_n (λn. {0..<unstarnum M n}))) ⋅ x pow k)

{0..<M + 1})

has internal coefficients. Essentially, we must show that

λk. hypsum (λi. hyprod (∗fn∗ b) ( Iset i ) )

(hyp_k_subset k (star_n (λn. {0..<unstarnum M n}))) ⋅ x pow k)

is an internal function of k. Following the rules of composition of internal functions,

and since we know that λk. x pow k is internal, this requires showing that

hyprod (∗fn∗ b) ( Iset i )

is an internal function of i , and further that

λk. hypsum (λi. a i k) (hyp_k_subset k (star_n (λn. {0..<unstarnum M n})))

is internal when a i k is an internal function of both i and k. We have been able to

show that

λk. hypsum (λi. ∗f2n∗ a i k) (∗sn∗ S)

is internal. We use ∗f2n∗ because it is necessary that the coefficient is an internal

function of i so that we can apply the characterising theorem of hypsum, and it is also

a requirement that the coefficient is an internal function of k since we show that the

overarching function of k is internal. We were able to show

lemma internal_hypsum_hyprod_Basel_k_variable:

" (λk. hypsum (λi. hyprod (∗fn∗ b) ( Iset i ) ) (hyp_k_subset k (N::'b set star ) ) ) =

(∗fn∗ (λn k. sum (prod (b n)) {x. card x = k ∧ x ⊆ unstarnum N n}))"

and thus we know that the coefficients of multiplied-out polynomials are internal. We

have also shown that the particular coefficient function to which we apply Hidden

Sublemma (ii) is internal (see Section 6.9.3.1).
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5.9 Summary

In this chapter we described our mechanisation of determinacy, Euler-convergence and

general theorems on them, which we formulated and proved in Isabelle. We described

the mechanisation in Isabelle of some of the specific determinate series which are

involved in the proof of the Basel problem. We gave our formalisation and mechanised

proofs of the three hidden lemmas.

• The First Hidden Lemma (Section 5.3) was straightforward to formalise. By

contrast:

• The Second Hidden Lemma (Section 5.4) required an assumption beyond those

that McKinzie and Tuckey explicitly stated. However, we give a pen-and-paper

proof that this assumption is necessary.

• The Third Hidden Lemma (Section 5.5) had the most challenging proof. We

discovered that there were two gaps in McKinzie and Tuckey’s reasoning. We

provided an additional justification for the gap in the main lemma, but have so

far not been able to fill the other gap. It is quite likely that there is no way to

‘fill’ the gap and our solution, to give the lemma an additional assumption, is the

correct approach. It is at least an unproblematic approach since the assumption

can be discharged within the proof of the Basel Problem. We also found that the

Third Hidden Lemma requires additional assumptions.

We do not have a complete mechanised proof of the Hidden Sublemma but we gave the

formalisation of the statement of its two parts and we outlined some of the difficulties

that would need to be overcome to produce a fully formalised proof. For each of

the hidden lemmas and sublemmas we have worked out the minimum convergence

condition: some can be formalised using the weaker condition of determinacy rather

than Euler-convergence.



Chapter 6

Mechanising the Basel problem

The purpose of this chapter is to describe our mechanisation of the controversial parts

of Euler’s proof of the Basel problem and McKinzie and Tuckey’s reconstruction. In

the previous chapter we outlined our mechanisation of determinacy, Euler-convergence

and the Hidden Lemmas: in this chapter we describe how they are used within our

mechanisation of Euler’s reasoning. We describe how we represent Euler’s reason-

ing and what decisions were made. We also detail how our formalisation lead to the

discovery of gaps in both Euler’s and McKinzie and Tuckey’s proof, how we filled

these gaps and how our understanding of the proofs has been improved. Using the

Hidden Lemmas identified by McKinzie and Tuckey allows us to construct deductive

formal proofs which parallel parts of Euler’s reasoning. However, there are limitations

to how closely Euler’s proof can be represented by deductive reasoning and formal

logic-based mathematics and near the end of this chapter in Section 6.9.2 we explore

an example of such a limitation. There are also parts of both Euler’s and McKinzie

and Tuckey’s reasoning which are uncontroversial or not relevant to the main body of

the proof: these have mostly been omitted from the formalisation. In the next section

we describe the scope of the formalisation and which parts of Euler’s proof have been

included in the mechanisation.

6.1 The formalisation of Euler’s reasoning

We would like to remind the reader that the parts of Euler’s reasoning which have not

been formalised by us fall into the following categories:

• They do not correspond to modern deductive reasoning

143
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• They are uncontroversial, but long-winded in Isabelle.

• They are not relevant to the main body of the proof of the Basel Problem (and

the truth of the statement is not under question)

In Figure 6.1 we gave an idea of the scope of the formalisation via illustrating how

the formalised parts fit into the proof of the Basel problem. In Section 6.1.1 we explain

why we chose to include certain parts in the formalisation: we also cover parts from

the earlier chapters. In Table 6.2 and Table 6.1 we summarise the parts of the proof

which are of interest and also the parts of the proof which have not been formalised.

The tables contain some lemmas not mentioned in Figure 6.1 as that is concerned

with only the top-level lemmas. In Section 6.1.2 we explain how they fit into the

above categories. Combined, Figure 6.1, Table 6.2 and Table 6.1 also provide a way to

navigate this chapter and Chapter 5 and section references have been provided in the

table for this purpose.

6.1.1 The focus of the formalisation

In the formalisation, we found it was necessary to formalise the concepts and lemma

statements as a starting point to understanding Euler’s proof. This lead to the theory

of polynomials in Isabelle (Section 3.2.5) including the theorem on equating coeffi-

cients (Section 4.5.1), the theory of determinacy and Euler-convergence in Isabelle

(Section 5.1) and the theory of external sets and related theorems such as the Sequen-

tial and Overflow theorems in Isabelle (Section 3.4). The formalisation of concepts

could not be limited to definitions since proving the consequences of the definitions

(in particular, their characterising theorems) in Isabelle allowed us to verify that our

formalisations of the definitions are correct. As for lemmas, we formalised at least the

statement of every relevant lemma in the proof of the Basel problem which gave us a

better understanding of how they fit into the structure of the proof and chain together.

We felt it was important to find the minimal assumptions for the hidden lemmas

especially in terms of the level of determinacy/Euler-convergence required since this

mathematically characterises the ‘gaps’ in Euler’s reasoning. This was not explored in

as much detail by McKinzie and Tuckey.

Several of the hidden lemmas contain subtle reasoning involving infinitesimals. In

particular, Hidden Lemma 3 (see Section 5.5) contained some reasoning which puzzled

us when we first read McKinzie and Tuckey’s pen-and-paper proof. Formalisation al-

lowed us to identify that there was indeed a gap in their reasoning at this point, and to
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Figure 6.1: Overview of the structure and formalisation scope of the Isabelle mechan-

isation of Euler’s proof
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Table 6.1: Parts of the proof which are considered uncontroversial, not deductive, or outside the main body of reasoning

Lemma name Category Reference

trinomial_an_minus_bn
Not deductive reasoning

Outside the main body of reasoning
Section 6.4.1

fundamental_theorem_of_algebra (FTA) Outside the main body of reasoning Section 3.3.3

discardable_multiplier_in_trinomial_factors

(the cosine substitution)
Outside the main body of reasoning Section 6.6

hyperbolic_sine_polynomial_and_trinomial_Hfactorisation Uncontroversial but long-winded Section 6.4.3

Determinacy and Euler-convergence lemmas Uncontroversial but long-winded Section 5.2

hidden_sublemmai Uncontroversial but long-winded Section 5.7

hidden_sublemmaii Outside the main body of reasoning Section 5.8

one_plus_x_over_N_pow_N_finite_x_finite_equivalence

(the first direction of the Corollary)
Outside the main body of reasoning Section 5.6
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Table 6.2: Parts of the proof which are formalised

Lemma name Point of interest Reference

hidden_lemma1
Fills Gap 1

Uses infinitesimal reasoning
Section 5.3

hidden_lemma2
Fills Gap 2

Uses infinitesimal reasoning
Section 5.4

hidden_lemma3
Claimed to fill Gap 3

Has a gap in its own proof
Section 5.5

transitive_reasoning
Formalises the majority of the structure of

Euler’s reasoning
Section 6.8.8

hyper_binomial_star_theorem Formalises the first expansion of sinh up to the gap. Section 6.5

hyperbolic_sine_polynomial_and_binomial_star_expansion Formalises the first expansion of sinh Section 6.5

hypsum_prod_multiplying_out_binomial
Partially formalises Euler’s §165 (Section 4.5)

and influenced our representation of Hidden Lemma (ii)
Section 6.2.2

equating_coefficients
To confirm our representation of Euler’s polynomials

and to form part of the transitive reasoning of Euler’s proof
Section 6.3

one_plus_x_over_N_pow_N_approx_one_imp_infml

(the second direction of the Corollary)
Used in the proof of Hidden Lemma (i) Section 5.6

hypnat_internal_induct

Fills additional gap

(Not formalised by us but included in this

table for completeness)

Section 6.9.2

sequential_theorem

Could be used to fill additional gap

along with Hidden Sublemma ii

Used to show Hidden Lemmas

Section 3.4.2



148 Chapter 6. Mechanising the Basel problem

see how we could fix this gap. Only certain types of reasoning with infinitesimals and

infinities are dangerous to the user: these include infinite sums of infinitesimals, multi-

plications of quantities which combine the infinitely-large and infinitely-small and the

use of the infinitely-close relation. When the infinitely-close relation is involved, there

are pitfalls (we demonstrate this with Theorem 11). This is because it resembles equal-

ity, and our intuitions sometimes falsely treat it as though it really is. Euler’s reasoning

was doubted by his contemporaries and later mathematicians partly because he did not

disambiguate between the two (see Section 1.7.6).

We focus in this chapter particularly on the structure of the mechanised proof. To

this end, we have formalised Euler’s transitive reasoning which makes up the over-

arching structure. Some parts of this transitive reasoning do depend on lemmas left

unproven in Isabelle: we discuss why those lemmas were not proven in Section 6.1.2.

The other remaining part of the structure of the Basel problem was Gap 3. We form-

alised the structure of Gap 3 closely enough to discover that McKinzie and Tuckey’s

account of it was inaccurate: there is an additional gap that needs to be filled before

Gap 3 completes the proof.

In the next section we explain and justify why some parts of the reasoning of the

proof of the Basel problem were not included in the formalisation.

6.1.2 Categorisation of unformalised reasoning

We will now describe how each of the unformalised proofs falls into one of the three

categories.

6.1.2.1 Proofs which do not correspond to modern deductive reasoning

We discover that the account of Gap 3 given by McKinzie and Tuckey is incomplete,

and there is an additional gap in that part of the proof (see Section 6.9). Although we

strictly find that Gap 3 (and the additional gap) cannot be completed using a modern

deductive proof we do still discuss how the gap could be filled with a modern deductive

proof which is as faithful as possible to Euler’s original reasoning (see Section 6.9.2).

We argue in Section 4.6 that the trinomial lemma may also fall into this category.

However, this category is in the minority. We generally agree with McKinzie and

Tuckey’s thesis that Euler’s proof can be transformed into one of deductive reasoning

with the addition of the hidden lemmas, apart from, as we have discovered, Gap 3,

which the Third Hidden Lemma is not sufficient to fill.



6.1. The formalisation of Euler’s reasoning 149

6.1.2.2 Proofs which are uncontroversial, but long-winded in Isabelle.

Although the proof of Hidden Sublemma (i) (see Section 5.7) does make use of the

infinitely-close relation, which could lead to pitfalls, in this case it is only used for a

straightforward application of the Corollary (see Section 5.6). The proof of Hidden

Sublemma (ii) (Section 5.8) does not use the infinitely-close relation at all. Therefore

there was no part of the proofs which we felt required the more detailed examina-

tion which formalisation would bring. However, both parts of the Hidden Sublemma

rely on inequalities which are uncontroversial, but difficult to prove in Isabelle. The

automatic proof in Isabelle and in particular the simplifier is very useful for reducing

calculational proofs to a human level of detail. However, nonstandard analysis in Isa-

belle requires explicit expressions of the internal functions and sets in terms of their

underlying sequences. Theorems exist which show that e.g. the sum of two internal

functions is well-defined and for pen-and-paper mathematics the distinction between
∗ f (x)+∗g(x) and ∗( f (x)+g(x)) can be ignored. In Isabelle, distinctions such as this

cannot be ignored and thus calculational proofs involving such concepts have much

greater complexity and so steps which in standard analysis could be handled by the

automatic proof, in nonstandard analysis cannot always be. We revisit this in Sec-

tion 7.2 and discuss it in relation to the transfer principle.

The determinacy lemmas also fall into this category (Section 5.2), although we

have formalised some of the determinacy proofs as an example of what can be done.

The first part of the Corollary (Section 5.6) comes directly (as a corollary in fact) from

the Euler-convergence of one of these series.

6.1.2.3 Proofs which are not relevant to the main body of the proof

Every theorem which fits into this category also fits into the previous category: they are

uncontroversial and well-established enough to not have their statements under doubt.

However, the proofs or reasoning for them given by Euler, may still be controversial,

although, we argue, not considered part of the reasoning of his proof of the Basel

problem.

Not only is the Fundamental Theorem of Algebra (Section 3.3) now a well-established

result, but Euler did not know of any proof of it. Therefore we did not think it was relev-

ant to include any proof of it in our formalisation. The Trinomial Lemma (Section 4.6),

which we have argued may not have a modern deductive proof (although perhaps this

deserves further examination) is quite separate from Euler’s main argument. Its state-
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ment is uncontroversial and its proof never been included in any criticisms of the proof,

nor was it included in McKinzie and Tuckey’s rehabilitation.

We argue in Section 6.9.1 that the Hidden Sublemma (ii) does not actually fill the

gap in Euler’s reasoning that McKinzie and Tuckey claim it does. We find internal in-

duction to be closer representation of Euler’s reasoning here. Hence we do not consider

the Hidden Sublemma (ii) to be part of our rehabilitation of the reasoning of Euler’s

proof.

The cosine substitution (Section 6.6) is derived by McKinzie and Tuckey from

geometric reasoning. Although geometric reasoning exists in Isabelle, it would be a

large detour from the main focus of the proof. By Euler, the substitution is derived

from the power series of cosine. The derivation of this in turn takes up a large part

of the ‘Introductio’ and would again be a significant detour from the reasoning of the

proof.

In the next few sections (Sections 6.2- 6.6) we describe our approach to formal-

ising some of the controversial parts of Euler’s reasoning and how these relate to the

Hidden Lemmas provided by McKinzie and Tuckey. Finally, in (Sections 6.7- 6.10)

we synthesise these parts into the overall mechanisation.

6.2 Approaches to formalising Euler’s §165

In Section 4.5 we discussed a general statement made by Euler in §165 of his ‘In-

troductio’. This statement allows him to multiply-out a potentially infinite product of

binomials into a polynomial of determined coefficients. Euler explicitly states that his

reasoning holds whether the polynomial in question is finite or infinite. The applic-

ation of this piece of reasoning roughly corresponds to Gap 3 in Euler’s proof of the

Basel problem.

Our initial approach to formalising §165 was to represent ‘multiplying-out’ and

separately represent ‘gathering-terms’. Since the polynomials in question may be in-

finite, they may not in general be rearranged to ‘gather terms’. However, as per the

Riemann Rearrangement Theorem [2], if they are absolutely convergent they can be

rearranged. The series we are interested in (the expansion of ∏(N−1)/2
k=1 (1+ x2

(kπ)2 ))

is indeed absolutely convergent. We now believe that our initial approach was too

general and thus presented some problems: rearrangement would require using hy-

perpermutations, our inductive definition would be difficult to prove internal and the

generality means that it is unclear how closely it represents Euler’s reasoning. We did
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define multiplying-out in general (see Section 6.5), and we proved some characterising

properties of multiplying-out binomials. Our definition of multiplying-out ultimately

influenced our formalisation of Hidden Sublemma (ii) (see Section 5.8). McKinzie and

Tuckey’s strategy is to represent §165 using Hidden Sublemma (ii) and Hidden Lemma

3. Their Hidden Sublemma (ii) represents the form of the multiplied-out polynomial.

Their Hidden Lemma 3 gives the ‘matching coefficients’ part of §165. However, in

Section 6.9.1 we observe that there is a missing piece in their reasoning and we give

two options for how this missing piece can be filled. Out of these two interpretations

of Euler’s reasoning, we prefer McKinzie and Tuckey’s approach as it is simpler and

easier to relate to Euler’s reasoning.

6.2.1 Multiplying-out

‘Multiplying-out’ is merely the distributivity property of series, and can be applied to

any product of series, whether convergent or divergent. But ‘gathering terms’ involves

rearrangement or commutativity and this property only holds for absolutely conver-

gent or, in the case of our hypernatural polynomials, absolutely determinate products

of series. When we combine ‘multiplying-out’ and ‘gathering terms’ for power series,

this is known as the Cauchy-product theorem, a combination of distributivity and as-

sociativity. This is often expressed mathematically as

(
∞
∑
i=0

ai) ⋅
⎛
⎝

∞
∑
j=0

b j
⎞
⎠
=

∞
∑
k=0

ck where ck =
k
∑
l=0

albk−l. (6.1)

for infinite series ∑∞
i=0 ai and ∑∞

j=0 b j with complex terms, given that at least one those

series is absolutely convergent (also known as Merten’s theorem) [68, p. 74]. The

standard Cauchy-product theorem is proven in Isabelle in the Series library as

Jsummable (λk. norm (a k)); summable (λk. norm (b k))KÔ⇒
(λ. ∑≤k. a i ⋅ b (k − i ) ) sums ((∑k. a k) ⋅ (∑k. b k))

which expresses the fact that the limit of the partial sums of the terms ∑k
l=0 albk−l in-

dexed by k is (∑∞
i=0 ai) ⋅(∑∞

j=0 b j) i.e. it is the same as (6.1) but with different notation.

However, for our purpose, we wish to describe the theorem using sums of hypernat-

ural length, rather than limits of sums of finite length. The distributivity property is

formalised in Isabelle for finite sums as

sum f A ⋅ sum g B = (Σi∈A. Σj∈B. f i ⋅ g j )
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The distributivity property can be transferred to hyperfinite sums, but this is quite a

special-case of multiplying-out as it gives the product of only two sums. We would like

to expand the product of a hypernatural number of hyperfinite sums. In Section 6.2.2,

we define an n-fold sum which allows us to formally capture this notion generally.

Although we only need the hyperfinite product of binomials in order to capture Euler’s

reasoning in §165, we give a more general mathematical treatment and mechanisation

in Section 6.2.2. One reason we expand our formalisation is because our intention

was to develop an expressive formalisation of hyperfinite polynomials that could be

reused in other situations, e.g. for a nonstandard formalisation of Vieta’s formulas, and

to mechanise Euler’s other derivations. Another is that the proof of Hidden Sublemma

(ii) given by McKinzie and Tuckey relies on expressing an n-fold sum of products.

6.2.2 Defining hyperfinite sum of sums and the corresponding

distributivity

In §165, Euler describes an infinite product of sums, which by the distributivity law,

becomes an infinite sum of sums. Since the degree of the polynomial may be infin-

ite, we represent it as a hypernatural number, and thus the sum is a hyperfinite sum.

Therefore we are concerned with the concept of an n-fold sum, which we will attempt

to define. We can define mathematical notation for the n-fold sum as follows.

n
◯
l=1

ml

∑
il=1

=
m1

∑
i1=1

+
m2

∑
i2=1

+⋯+
mn

∑
in=1

(6.2)

We have used ◯n
l=1, the fold operator, which can be defined separately, using an

inductive definition, as follows. Inductive definitions can be used for functions of

hypernatural numbers so long as the functions involved are internal, since there is an

internal induction principle.

1
◯
l=1

f (l,x) = f (1,x) (6.3)

n+1
◯
l=1

f (l,x) = f (n+1,
n
◯
l=1

) (6.4)

The theorem encapsulating the notion of ‘multiplying-out’ can now be expressed math-

ematically as follows.
k
∏
l=1

ml

∑
il=1

al,il =
k
◯
l=1

ml

∑
il=1

k
∏
p=1

ap,ip (6.5)
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In Isabelle we do not represent the fold operator separately but use inductive defini-

tions to define a k-fold sum and a sum of products. There is not currently any way

of directly writing a definition by internal induction, so we must first define the con-

cepts in standard analysis and then transfer them. The type variable 'a has the sorts

comm_monoid_add (commutative monoid under addition) and times (a structure with

multiplication) but we have removed the sorts for ease of reading. We write each

definition first in mathematical notation and then give the representation in Isabelle.

Definition 7 (k-fold sum of products). The k-fold sum of products F is defined induct-

ively by

F(0, p,a,m) =
m0

∑
i=1

pai,0 (6.6)

F(k+1, p,a,m) =
mk+1

∑
i=1

F(k, pai,k+1,a,m) (6.7)

The type constructor of nat is Suc and here is equivalent with the function λn. n+1.

We must use Suc in inductive definitions. We define the product of sums as follows.

fun k_fold_sum_prod ::

"nat ⇒ 'a ⇒ (nat ⇒ nat⇒ 'a) ⇒ (nat ⇒ nat) ⇒ 'a"

where

"k_fold_sum_prod 0 p a m = sum (λi. (p ⋅ a i 0)) {1 ..< m 0 + 1}" |

"k_fold_sum_prod (Suc k) p a m =

sum (λi. k_fold_sum_prod k (p ⋅ a i (Suc k)) a m) {1 ..< m (Suc k) + 1}"

Definition 8 (product of sums). The product of sums G is defined inductively by

G(0,a,m) =
m0

∑
i=1

ai,0 (6.8)

G(k+1,a,m) =G(k,a,m)
mk+1

∑
i=1

ai,k+1 (6.9)

fun prod_sum ::

"nat ⇒ (nat ⇒ nat ⇒ 'a) ⇒ (nat ⇒ nat) ⇒ 'a"

where

"prod_sum 0 a m = sum (λi. a i 0) {1 ..< m 0 + 1}" |

"prod_sum (Suc k) a m =

sum (λi. a i (Suc k)){1 ..< m (Suc k) + 1} ⋅ prod_sum k a m"
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We then define hyp_k_fold_sum_prod and hyp_prod_sum as internal functions using

k_fold_sum_prod and prod_sum to define their underlying sequences of functions (see

Section 2.3.2.2 on internal functions).

definition hyp_k_fold_sum_prod ::

"nat star ⇒ 'a star ⇒ (nat star ⇒ nat star ⇒ 'a star ) ⇒ (nat star ⇒ nat star )

⇒ 'a star"

where

"hyp_k_fold_sum_prod k p a m =

star_n (λn.

k_fold_sum_prod (unstarnum k n) (unstarnum p n) (unstarfun2 a n) (unstarfun m n))"

definition hyp_prod_sum ::

"nat star ⇒ (nat star ⇒ nat star ⇒ 'a star ) ⇒ (nat star ⇒ nat star ) ⇒ 'a star"

where

"hyp_prod_sum k a m =

star_n (λn. prod_sum (unstarnum k n) (unstarfun2 a n) (unstarfun m n))"

We prove a relation between hyp_k_fold_sum_prod and hyp_prod_sum.

theorem hypsum_prod_multiplying_out:

assumes A_def:"A = (∗f2n∗ a)" and M_def:"M = (∗fn∗ m)"

shows "hyp_prod_sum K A M = hyp_k_fold_sum_prod K (1::('a::field) star) A M"

For the proof of the Basel problem, it is enough to consider binomial products, and

thus we have proven in Isabelle the following equivalence which formalises (6.5) for

binomials.

lemma hypsum_prod_multiplying_out_binomial:

assumes A_def:"A = (∗f2n∗ a)"

shows

"hyp_prod_sum K A (λx. 2) = hyp_k_fold_sum_prod K (1::('a::field) star) A (λx. 2)"

So far we have expressed multiplying-out without gathered terms. We find that it

is simpler to use k-subsets to express multiplying-out with gathering terms for Hidden

Sublemma (ii). We define a hyper–k-subset as follows

definition hyp_k_subset where

"hyp_k_subset k N = {x. hypcard (Iset x) = k ∧ ( Iset x) ⊆ ( Iset N)}"
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The term Iset indicates that the set Iset x is internal. It would seem more obvious to

formalise this as

definition hyp_k_subset where

"hyp_k_subset k N = {x. hypcard x = k ∧ x ⊆ N"

In Section 5.8 we explained in more detail what Iset is, and why it is necessary to

formalise this in the way that the first definition is expressed. We have shown that

hyp_k_subset is internal. We used our formalisation of this concept to express Hidden

Sublemma (ii).

6.3 Equating coefficients

In this section we present the mechanised proof of equating coefficients of hyperpoly-

nomials. Gap 3 in Euler’s proof (as identified by McKinzie and Tuckey) is not an ap-

plication of equating coefficients and can instead be filled by the Third Hidden Lemma.

However, equating coefficients is still a necessary result in the mechanised proof. First

we give the mathematical representation and the Isabelle version of equating coeffi-

cients.

Theorem 14 (Equating Coefficients). If two polynomials A and B of degree N, and

coefficients an and bn respectively, are equal i.e. if

∀x.
N
∑
n=0

anxn =
N
∑
n=0

bnxn (6.10)

then

∀n ∈ {0 . . .N}. an = bn (6.11)

Our theorem is represented in Isabelle as

lemma equating_coefficients_hyperpolynomial:

assumes

"∀x. hypsum (λn. ((∗fn∗ a) n) ⋅ (x :: real star ) pow n) {0..< (N::hypnat)} =

hypsum (λn. ((∗fn∗ b) n) ⋅ x pow n) {0..< N}"

shows "∀m ∈{0..< N}. (∗fn∗ a) m = (∗fn∗ b) m"

The usual mathematical proof of Equating Coefficients is by differentiating induct-

ively, and this is how we proceed. We first prove the standard version of the theorem.
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lemma equating_coefficients_real:

"∀a b. (∀(x:: real ) . (Σn∈ {0..< (N::nat) }. ( ((a n))

⋅ (x ^ n)) ) = (Σn∈ {0..< (N)}. ( (b n) ⋅ (x ^ n)) ) )

Ð→(∀ m ∈{0..< N}. (a m) = (b m))"

We then transfer this theorem so that it can be applied to hyperpolynomials with

hypernatural degree.

6.4 The trinomial expansion of hyperbolic sine

Euler expands hyperbolic sine 1
2 [(1+ x

N )N −(1− x
N )N] using his Trinomial Lemma.

With a substitution of iy for x, this is similar to the infamous step where he expands

sine as the product of its roots. However, since 1
2 [(1+ x

N )N −(1− x
N )N] is already a

polynomial (or hyperpolynomial when N is infinite), there is no real issue here with the

representation in nonstandard analysis. In this section we describe our formalisation

of his trinomial lemma, and the application of it to obtain the trinomial expansion.

6.4.1 Trinomial locale

We discussed Euler’s Trinomial Lemma in Section 4.6. We have formalised the Trino-

mial Lemma in a locale (see Section 2.2.2).

locale Hyptrinomial = Fundamental_theorem_of_algebra +

assumes trinomial_an_minus_bn:

"J0<2 ⋅ k; 2 ⋅ k<n; a = (λx. a1 ⋅ x + a2); b = (λx. b1 ⋅ x + b2)K Ô⇒
(λx. ((( a x) pow 2) − 2 ⋅ (a x) ⋅ (b x) ⋅ ( ∗f∗ cos) (2⋅k∈N ⋅ star_of pi / n∈N)

+ ((b x) pow 2))) isHypfactorOf (λx. ((( a x) pow n) − ((b x) pow n)))"

and trinomial_an_minus_bn_odd:

"0<n Ô⇒
(λx. ((a x)−(b x)) ) isHypfactorOf (λx. ((( a x) pow n) − ((b x) pow n)))"

and trinomial_an_minus_bn_even:

"0<2 ⋅ k Ô⇒
(λx. ((a x)+(b x)) ) isHypfactorOf (λx .((( a x) pow (2 ⋅ k)) − ((b x) pow (2 ⋅ k)) ) ) "

This locale only gives the factors of the polynomial an−bn. It is also necessary to say

that once the factors are found, their product is equal to the original polynomial. For

that, we need to use the Fundamental Theorem of Algebra.



6.4. The trinomial expansion of hyperbolic sine 157

6.4.2 Using the Fundamental Theorem of Algebra together with

the Trinomial Lemma

In Euler’s proof of the Basel problem the Fundamental Theorem of Algebra is used to

prove the Trinomial Lemma (see Section 4.6.1). Next we formulate a more specific

version of the Fundamental Theorem of Algebra which allows us to put together the

factors given by the Trinomial Lemma. First we give our mathematical representation.

Theorem 15 (Trinomial FTA). Let M and N be hypernaturals with M ≤ 2N and N ≥ 1.

For each n ∈ [0,N] let the trinomial anx2 +bnx+1 be a factor of the polynomial with

even degree ∑2N
n=M enxn. We assume that e2N /= 0 so that 2N truly is the degree of the

polynomial. Finally, we assume that these are the only such trinomial factors of the

polynomial, so if cx2+dx+1 is a factor of the polynomial, with c /= 0 then there is some

n ∈ [0,N] such that c = an and d = bn.1 Then we may write our polynomial as a product

of all the trinomials, multiplied by a constant which is the coefficient e0.

2N
∑

n=M
enxn = e0

N
∏
n=0

(anx2+bnx+1)

Our version in Isabelle is as follows.

locale Fundamental_theorem_of_algebra_trinomial_hypreal =

Fundamental_theorem_of_algebra +

assumes Eulers_FTA_trinomial_hypreal:

"J∀n∈{0..<N+1}.

(λx. a n ⋅ x pow 2 + b n ⋅ x + 1) isHypfactorOf

(λx. hypsum (λn. (∗fn∗ cf) n ⋅ x pow n) {M..<2 ⋅ N + 1}) ;

1 < 2 ⋅ N; M ≤2 ⋅ N; (∗fn∗ cf) (2 ⋅ N) /= 0;

∀r. ∃c d. ( r = (λx. c ⋅ x pow 2 + d ⋅ x + 1) ∧ c /= 0 ∧
r isHypfactorOf (λx. hypsum (λn. (∗fn∗ cf) n ⋅ x pow n) {M..<2 ⋅ N + 1})

Ð→ (∃n∈{0..<N}. c = a n ∧ d = b n))K

Ô⇒
λx. hypsum (λn. (∗fn∗ cf) n ⋅ x pow n) {M..<2 ⋅ N + 1}) =

(λx. (∗fn∗ cf) 0 ⋅ hyprod (λx. a n ⋅ x pow 2 + b n ⋅ x + 1) {0..<N})"

More work would be needed to prove the Trinomial FTA and Trinomial Lemma

from the versions of the Fundamental Theorem of Algebra we have stated. Thus in

1A consequence of this is that an /= 0 for all n ∈ [0,N].
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Section 6.4.1 we give a formalisation of the Trinomial Lemma in a locale. In Sec-

tion 4.6 we argued that Euler’s derivation of the Trinomial Lemma is not straightfor-

ward and has many points of interest, including his different concept of polynomials

to the modern day and his use of meta-mathematical reasoning. McKinzie and Tuckey

do not go into the proof of the Trinomial Lemma in their rehabilitation of Euler’s proof

of the Basel problem [57]. We leave the complete proof of the Trinomial Lemma for

future work (see Section 7.4).

6.4.3 Trinomial factorisation

The following lemma is the trinomial factorisation of hyperbolic sine. Its proof is

only partially complete in Isabelle. The proof is algebraic apart from the use of the

Trinomial Lemma and does not contain any mathematically-controversial reasoning,

however it does require some trigonometric reasoning and an expansion in order to

compare coefficients both of which are routine but involved in Isabelle. Thus this fits

into the second category of unformalised reasoning (see Section 1.3.1).

lemma hyperbolic_sine_polynomial_and_trinomial_Hfactorisation:

assumes "N = 2⋅k + 1" "N ∈HNatInfinite"

shows

"hyperbolic_sine N x ≈ x ⋅ hyprod (λn. 1+ (x pow 2)/((n∈N ⋅ pi ) pow 2)) {1..< k + 1}"

6.5 The binomial expansion of hyperbolic sine

As stated in Section 4.2, Euler’s proof hinges on expressing the polynomial for hyper-

bolic sine in two different ways:

1
2
[(1+ x

N
)

N
−(1− x

N
)

N
] (6.12)

The Binomial Theorem gives one of these expansions, as discussed in Section 4.2.1.

In order to obtain the second expansion, using the Fundamental Theorem of Algebra

as a product of linear factors determined by its roots, we need to prove that it is a

polynomial. This can be accomplished through the same expansion with the Binomial

Theorem and then simplifying, to fit the definition of a polynomial given in our Isa-

belle theory. We have proven the nonstandard version of the Binomial Theorem from

the standard version using properties of the ultrafilter (Section 2.3.1.3).
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lemma hyper_binomial_star_theorem:

"(a+b) pow (N::nat star) =

hypsum (λn. (N ⋅C n)∈N ⋅ a pow (N − n) ⋅ b pow n) {0..< N +1}"

Using it to expand the formula is straightforward. However, we then have a difference

between two hyperfinite sums: we want to combine them into a single sum, and we

need to then simplify the terms of that sum. In order to manipulate the sums, we first

need to prove that they are well-defined: in this case, we need to prove that the terms

are internal functions of the index variable. Hence, using the theorems concerning

composition, addition and subtraction of internal functions, we prove that the specific

functions involved are internal. We first prove that the binomial function is internal:

lemma binomial_is_internal_function:

"⋀x. (λn. (N C n)∈N) = ∗fn∗ (λn m. of_nat (unstarnum N n choose m))"

The function k choose l is the binomial coefficient Ck
l . It is also necessary to prove that

the functions (λn. (−x / N∈N)pow n) and are internal.

We express the binomial expansion and internality of hyperbolic sine as follows.

lemma hyperbolic_sine_polynomial_and_binomial_star_expansion:

"1 / 2 ⋅ ((1 + x/N∈N) pow N − (1 + (− x/N∈N)) pow N) =

hypsum (λn. if ∃k. n = 2 ⋅ k then 0 else (N ⋅ C n)∈N ⋅ (x/N∈N) pow n) {0..< N +1}"

Our proof of this lemma is complete in Isabelle. Both (1+x/N)N and (1−x/N)N are

expanded using the Binomial Theorem. The even terms cancel, and thus we use " if

... then ... else" to formalise this reasoning. We can express the binomial expansion

of hyperbolic sine in two ways which we prove are equivalent. The first allows us to

show that it satisfies the canonical representation of a hyperpolynomial. The second

allows us to reason using sums of odd intervals, which we have shown some useful

theorems about (see Section 3.2.5.1).

lemma equivalence_of_binomial_star_expansions_of_hyperbolic_sine:

assumes "N = 2⋅k +1"

shows "hypsum (λn. if ∃k. n = 2 ⋅ k then 0 else (N ⋅ C n)∈N ⋅ ( x / N∈N) pow n)

{0..< N +1} =

hypsum (λn. (N ⋅C n)∈N ⋅ ( x / N∈N) pow n) {0..<odd k +1}"
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6.6 The cosine substitution

McKinzie and Tuckey choose to substitute 1
2((

2kπ

N )2)/(1−cos 2kπ

N ) for 1 at a different

point in Euler’s proof than Euler. These two quantities are only infinitely-close, not

equal, and it is not always valid to substitute one for the other. Kanovei along with

McKinzie and Tuckey argues that Euler simply made a mistake in where he chose to

substitute [76, p. 75-80][57, p. 39]. We follow their method and make the substitution

as part of proving the antecedent for the Second Hidden Lemma when it is applied to

fill Gap 2 (see Section 6.8.7). We formalise the fact allowing the substitution as

locale discardable_multiplier_in_trinomial_factors =

assumes "Jk∈HNatFinite; 0<2⋅k; 2 ⋅ k<N KÔ⇒
1/2 ⋅ (((2 ⋅ k∈N ⋅ star_of pi ) /N∈N) pow 2)/(1−(∗f∗ cos) ((2⋅k∈N ⋅star_of pi ) /N∈N)) ≈ 1"

We have given this fact as a locale and have not formalised its proof, since it falls

into the category of reasoning which is external to the reasoning of the proof (see

Section 1.3.1). McKinzie and Tuckey derive it from the geometric estimate sinθ ≤ θ ≤
tanθ for 0 ≤ θ ≤ π/2. Euler says

. . . note that the arc
2kπ

j
π is infinitely-small and according to §134 we have

cos
2k
j

π = 1−2
k2

j2 π
2. The other terms in the series are neglected since j is

infinitely large.[29, p. 125]

In §134 he gave the power series for cosine. Thus McKinzie and Tuckey gave a differ-

ent derivation from Euler.

6.7 Final structure of the formal proof

McKinzie and Tuckey’s proof can be divided into the following parts:

1. A section of transitive reasoning where the polynomial representation of hyper-

bolic sine is rewritten in two different ways. This includes their Gap 1 and Gap

2, where infinitely-many infinitesimals are discarded, which they fill with the

first two hidden lemmas along with Hidden Sublemma (i).

2. Matching coefficients of the two rewritten expressions. McKinzie and Tuckey

do this only for the second term in order to obtain ∑N
k=1 1/k ≃ π2/6 but it could

be extended to further coefficients as Euler does. This is covered by their Gap
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3 which they fill using Hidden Sublemma (ii) and the Third Hidden Lemma.

However, we will argue that they have a gap in their proof here, and we give two

ways to fill this gap: by using Sequential Theorem or by using internal induction

(see Section 6.9.1).

6.8 Transitive reasoning for the Basel problem

We formally represent seven lemmas in Isabelle that correspond to McKinzie and

Tuckey’s chain of transitive reasoning. We have mechanised the proofs of those which

we find to be of interest for exploring Euler’s reasoning and we state where we have

done so. Some of the proofs would be technical in Isabelle but mathematically are

straightforward and uninteresting, and we have left these unformalised. Here we give

their mathematical representation as given in McKinzie and Tuckey’s proof above the

lemmas as formalised in Isabelle. They do not give the assumptions to each step expli-

citly throughout the proof, so we have added any necessary assumptions to the math-

ematical representation. As we stated in Section 5.2.2.2 it may be necessary to add the

assumption x ≥ 0 throughout since it would be required for our proof of the determin-

acy of the power series of ex. It may be possible to extend our proof of the determinacy

of ex to this case also. However, we have omitted this assumption since even if this

assumption was included through the transitive reasoning, it would not affect the over-

arching proof.

6.8.1 Gap 1

Lemma 16 (Gap 1). Suppose x is a finite hyperreal and N is an infinitely-large odd

hypernatural. Then

x+ N(N −1)(N −2)
N3

1
3!

x3+⋯+ xN

NN ≃ x+ 1
3!

x3+⋯+ 1
N!

xN (6.13)
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lemma Basel_gap1:

assumes

"N = 2 ⋅ k + 1" "N∈HNatInfinite" "x ∈ HFinite"

shows

"hypsum (λn.

(hyprod (λx. N − x) {0.. n})∈N ⋅ (N∈N pow n)⋅ (x pow n)/(Hfact n∈N))

{1..<odd N+1} ≈
hypsum (λn. (x pow n)/(Hfact n∈N)) {1..<odd N+1}

We formalise N(N −1)(N −2)⋯ as a product hyprod (λx. N − x) {0.. n}. There is a

falling-factorial pochhammer defined in Isabelle which we could have used. However,

we decided not to since defining the extension of that function would have only com-

plicated the representation. Recall we use the subscript ∈N as an abbreviation for the

coercion function from the hypernaturals to the hyperreals. The set {1..<odd N+1} is

the interval of odd hypernaturals from 1 to N. Since N is odd in this case, it includes

its endpoints. Gap 1 corresponds to the application of the First Hidden Lemma [57,

p.47]. The proof has not been mechanised.

6.8.2 Binomial expansion of hyperbolic sine

Lemma 17 (Binomial expansion of hyperbolic sine). Suppose x is a finite hyperreal

and N is an infinitely-large odd hypernatural. Then

1
2
[(1+ x

N
)

N
−(1− x

N
)

N
] = x+ N(N −1)(N −2)

N3
1
3!

x3+⋯+ xN

NN (6.14)

lemma binomial_expansion_hyperbolic_sine:

assumes

"N = 2 ⋅ k + 1" "N∈HNatInfinite" "x ∈ HFinite"

shows

"(1/2 ⋅ ((1+x/N∈N) pow N − (1−x / N∈N) pow N)) =

hypsum (λn.

(hyprod (λx. N − x) {0.. n})∈N ⋅ (N∈N pow n)⋅ (x pow n)/(Hfact n∈N))

{1..<odd N+1}"

This is the polynomial expression for hyperbolic sine expanded using the Binomial

Theorem. The proof is complete in Isabelle.
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6.8.3 Trinomial factorisation of hyperbolic sine

Lemma 18 (Trinomial factorisation of hyperbolic sine). Suppose x is a finitehyperreal

and N is an infinitely-large odd hypernatural. Then

1
2
[(1+ x

N
)

N
−(1− x

N
)

N
] =

(6.15)

x
N

(N−1)/2

∏
k=1

[2(1−cos
2kπ

N
)+2

x2

N2 (1+cos
2kπ

N
)]

lemma trinomial_factorisation:

assumes "N = 2⋅k + 1" "N∈HNatInfinite" "x ∈ HFinite"

shows

"(1/2 ⋅ ((1+x/N∈N) pow N − (1−x / N∈N) pow N)) =

x / N∈N ⋅
hyprod (λn.

2 ⋅ (1 − (∗f∗ cos) (2 ⋅ n∈N ⋅ hypreal_of_real pi / N∈N)) +

2 ⋅ x pow 2 / N∈N pow 2 ⋅ (1 + (∗f∗ cos) (2 ⋅ n∈N ⋅ hypreal_of_real pi / N∈N)))

{1..<k + 1}"

This is the statement of the trinomial expansion of hyperbolic sine before algebraic

simplification. The proof has not been mechanised. Note it is no longer an expression

over just odd indices. However, the product contains the same number of terms as the

sum from the previous section since its upper-bound is now (N − 1)/2. This upper-

bound is only a hypernatural number for odd values of N. So in our representation

we explicitly write N as a term of the form 2k + 1 which allows us to use k as an

upper-bound without it being necessary to prove k is a hypernatural number.

6.8.4 Factorisation of trinomial factorisation

Lemma 19 (Factorisation of trinomial factorisation). Suppose x is a finite hyperreal

and N is an infinitely-large odd hypernatural. Then

x
N

(N−1)/2

∏
k=1

[2(1−cos
2kπ

N
)+2

x2

N2 (1+cos
2kπ

N
)] =

(6.16)

x
N

(N−1)/2

∏
k=1

2(1−cos
2kπ

N
)×

(N−1)/2

∏
k=1

[1+ x2

N2

1+cos 2kπ

N

1−cos 2kπ

N

]
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lemma factorisation_of_trinomial_factorisation :

assumes "N = 2⋅k + 1" "N∈HNatInfinite" "x ∈ HFinite"

shows

"x / N∈N ⋅
hyprod (λn.

2 ⋅ (1 − (∗f∗ cos) (2 ⋅ n∈N ⋅ hypreal_of_real pi / N∈N)) +

2 ⋅ x pow 2 / N∈N pow 2 ⋅ (1 + (∗f∗ cos) (2 ⋅ n∈N ⋅ hypreal_of_real pi / N∈N)))

{1..<k + 1} =

x / N∈N ⋅
hyprod (λn.

2 ⋅ (1 − (∗f∗ cos) (2 ⋅ n∈N ⋅ hypreal_of_real pi / N∈N)))

{1..<k + 1} ⋅
hyprod (λn.

1 + x pow 2 / N∈N pow 2⋅
((1 + (∗f∗ cos) (2 ⋅ n∈N ⋅ hypreal_of_real pi / N∈N)) /

(1 − (∗f∗ cos) (2 ⋅ n∈N ⋅ hypreal_of_real pi / N∈N))))

{1..<k + 1}"

This factors out a constant term and a factor of x from the trinomial expansion of hy-

perbolic sine so that we have a product with a binomial of the form (1+ cx2) where

c = 1
N2 (1+ cos 2kπ

N )/(1− cos 2kπ

N ). The form of this binomial will allow McKinzie and

Tuckey to apply their Second Hidden Lemma and Hidden Sublemmas. This also fol-

lows the pattern of Euler’s reasoning. The proof has not been mechanised.

6.8.5 Trinomial factorisation with coefficient of unity

Lemma 20 (Trinomial factorisation with coefficient of unity). Suppose x is a finite

hyperreal and N is an infinitely-large odd hypernatural. Then

x
N

(N−1)/2

∏
k=1

2(1−cos
2kπ

N
)×

(N−1)/2

∏
k=1

[1+ x2

N2

1+cos 2kπ

N

1−cos 2kπ

N

] =

(6.17)

x
(N−1)/2

∏
k=1

[1+ x2

N2

1+cos 2kπ

N

1−cos 2kπ

N

]
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lemma unit_coefficient_trinomial_factorisation :

assumes "N=2⋅k+1" "N∈HNatInfinite" "x∈HFinite"

shows

"x/N∈N ⋅
hyprod(λn.

2 ⋅ (1 − (∗f∗ cos) (2 ⋅ n∈N ⋅ hypreal_of_real pi / N∈N)))

{1..<k+1} ⋅
hyprod(λn.

1 + x pow 2 / N∈N pow 2⋅
((1 + (∗f∗ cos) (2 ⋅ n∈N ⋅ hypreal_of_real pi / N∈N))/

(1 − (∗f∗ cos) (2 ⋅ n∈N ⋅ hypreal_of_real pi / N∈N))))

{1..<k+1} =

x ⋅
hyprod(λn.

1 + x pow 2 / N∈N pow 2⋅
((1 + (∗f∗ cos) (2 ⋅ n∈N ⋅ hypreal_of_real pi / N∈N))/

(1 − (∗f∗ cos) (2 ⋅ n∈N ⋅ hypreal_of_real pi / N∈N))))

{1..<k+1}"

The proof has not been mechanised, however, to arrive at this from the previous step,

it is necessary to compare coefficients. Since we are comparing coefficients between

equal polynomials, we use the transferred version of equating-coefficients rather than

the Third Hidden Lemma. We describe our formal proof of equating-coefficients in

Section 6.3.

6.8.6 Algebraic simplification of trinomial factorisation

Lemma 21 (Algebraic simplification of trinomial factorisation). Suppose x is a finite

hyperreal and N is an infinitely-large odd hypernatural. Then

x
(N−1)/2

∏
k=1

[1+ x2

N2

1+cos 2kπ

N

1−cos 2kπ

N

] =

(6.18)

x
(N−1)/2

∏
k=1

⎡⎢⎢⎢⎢⎣
1+ x2

(kπ)2

1
2 (2kπ

N )2

1−cos 2kπ

N

− x2

N2

⎤⎥⎥⎥⎥⎦
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lemma simplification_of_trinomial_factorisation

assumes "N = 2⋅k + 1" "N∈HNatInfinite" "x ∈ HFinite"

shows

"x ⋅
hyprod (λn.

1 + x pow 2 / N∈N pow 2 ⋅
((1 + (∗f∗ cos) (2 ⋅ n∈N ⋅ hypreal_of_real pi / N∈N)) /

(1 − (∗f∗ cos) (2 ⋅ n∈N ⋅ hypreal_of_real pi / N∈N))))

{1..<k + 1} =

x ⋅
hyprod (λn.

1 + x pow 2 / (n∈N ⋅ star_of pi ) pow 2 ⋅ (1/2) ⋅
(2 ⋅ n∈N ⋅ star_of pi /N∈N) pow 2 /

(1 − (∗f∗ cos) (2 ⋅ n∈N ⋅ hypreal_of_real pi / N∈N)) −
x pow 2 / N∈N pow 2)

{1..<k + 1}"

This gives the trinomial expansion of hyperbolic sine after all algebraic simplification,

but without Euler’s substitution of 1− 1
2 (2kπ

N )2
for cos 2kπ

N . This lemma has a complete

proof in Isabelle which relies on the internality of the functions involved, properties of

cosine and algebraic reasoning.

6.8.7 Gap 2

Lemma 22 (Gap 2). Suppose x is a finite hyperreal and N is an infinitely-large odd

hypernatural. Then

x
(N−1)/2

∏
k=1

⎡⎢⎢⎢⎢⎣
1+ x2

(kπ)2

1
2 (2kπ

N )2

1−cos 2kπ

N

− x2

N2

⎤⎥⎥⎥⎥⎦
≃ x

(N−1)/2

∏
k=1

(1+ x2

(kπ)2) (6.19)
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lemma Basel_gap2:

assumes "N = 2⋅k + 1" "N∈HNatInfinite" "x ∈ HFinite"

shows

"x ⋅
hyprod (λn.

1 + x pow 2 / (n∈N ⋅ star_of pi ) pow 2 ⋅
(1 / 2) ⋅ (2 ⋅ n∈N ⋅ star_of pi /N∈N) pow 2 /

(1 − (∗f∗ cos) (2 ⋅ n∈N ⋅ hypreal_of_real pi / N∈N)) − x pow 2 / N∈N pow 2)

{1..<k + 1} ≈
x ⋅ hyprod (λn. 1 + x pow 2 / (n∈N ⋅ star_of pi ) pow 2) {1..<k + 1}"

McKinzie and Tuckey state that this follows from the Second Hidden Lemma, which

requires that both products are Euler-convergent and that their respective finite factors

differ infinitesimally. The structure of its proof is formalised in Isabelle, but depends on

many unproven lemmas. Our Second Hidden Lemma has some assumptions requiring

terms to be appreciable (Section 5.4.1) and not all of these assumptions have been

discharged in our proof of Gap 2, although mathematically they are straightforward to

show. In Isabelle this would require a proof in terms of bounding them above by some

number known to be finite (or below by a non-infinitesimal), and since these proofs

are not interesting or controversial and do not replicate any reasoning given by either

Euler or McKinzie and Tuckey we did not formalise them.

6.8.8 Transitive reasoning

Finally we put all the previous lemmas together in a lemma which formalises the trans-

itive reasoning in the Basel problem. In Isabelle, the proof of this lemma simply chains

together the previously mentioned ones in Sections 6.8.1- 6.8.7.

Lemma 23 (Transitive reasoning). Suppose x is a finite hyperreal and N is an infinitely-

large odd hypernatural. Then

1
2
[(1+ x

N
)

N
−(1− x

N
)

N
] ≃ x

(N−1)/2

∏
k=1

(1+ x2

(kπ)2) (6.20)
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lemma transitive_reasoning_Basel_problem:

assumes "N ∈HNatInfinite" "N=2⋅k+1" "x ∈ HFinite"

shows

"hypsum (λn. (x pow n)/(Hfact n∈N)) {1..<odd N+1} ≈
x ⋅ hyprod (λn. 1 + x pow 2 / (n∈N ⋅ star_of pi ) pow 2) {1..<k + 1}"

6.9 Gap 3 and an additional gap

Our formalisation of Gap 3 is partial: in this section we detail our formalisation so far

and analyse the remaining parts. First we describe an additional gap that we discovered

in the proof, and how it may be filled. We further list our formalised lemmas which

are used in the proof of Gap 3, and the difficulties we have identified with putting them

together.

6.9.1 McKinzie and Tuckey’s derivation for Gap 3 and a fourth gap

At the end of the transitive reasoning, McKinzie and Tuckey have obtained two poly-

nomials which are infinitely-close

x+ 1
3!

x3+⋯+ 1
N!

xN ≃ x
(N−1)/2

∏
k=1

(1+ x2

(kπ)2) .

They expand the product by multiplying-out and gathering terms to

x+x3⎛
⎝

(N−1)/2

∑
k=1

1
(kπ)2

⎞
⎠
+x5⎛

⎝
⋯
⎞
⎠
+⋯. (6.21)

They then wish to ‘equate coefficients’ as Euler did. However, since there is no true

equality here, equating coefficients cannot be done directly. Thus they wish to apply

the Third Hidden Lemma (see Section 5.5) to

x+ 1
3!

x3+⋯+ 1
N!

xN (6.22)

and to the expansion of the product (6.21) in order to conclude that their respective

terms are infinitely-close. Explicitly they derive the Euler-convergence of both (6.22)

and (6.21), and then they state that they apply the Third Hidden Lemma. However, in
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order to fulfill the assumption of the Third Hidden Lemma, they would need to addi-

tionally show that (6.21) is infinitely-close to the original product ∏(N−1)/2
k=1 (1+ x2

(kπ)2 )
and thus that

x+ 1
3!

x3+⋯+ 1
N!

xN ≃ x+x3⎛
⎝

(N−1)/2

∑
k=1

1
(kπ)2

⎞
⎠
+x5⎛

⎝
⋯
⎞
⎠
+⋯.

Certainly, for all finite degrees, we can prove that a product is equal to its rearrange-

ment by finite induction. Furthermore, if the product and its rearrangement are internal,

we could prove that they are equal for all hypernatural degrees by internal induction. It

is also necessary for them to have internal coefficients for them to be Euler-convergent

as McKinzie and Tuckey claim they are, and they do not prove that they are internal

or ‘elementary’ in their terminology. However, although the multiplied-out product

(6.21) is composed purely of internal functions, it consists of an infinite hypernatural

number of internal functions. We have proven in Isabelle that hyperfinite sums and

products are internal with respect to their upper and lower bounds. We have also been

able to show that hyperfinite sums (and products) are internal with respect to an in-

ner variable. In other words, that the function ∑M
n=N bn(x) is internal when bn(x) is

an internal function of n and x. Showing that all the coefficients of the multiplied-out

product are internal is a nontrivial problem, and it was not initially obvious to us if

it was possible. We discuss this further in Section 5.8.2 and Section 6.9.3.1. But we

have been able to prove that the coefficients of (6.21) are internal functions of the ex-

ponent of x and furthermore that the polynomial itself is an internal function of x (see

Section 6.9. Thus we have two options

1. We could prove by internal induction that they are equal for all hypernatural

degrees.

2. We could instead use finite induction to show the equality for all natural num-

bers. Then we could extend this result with the Sequential Theorem to obtain

some infinite N such that the polynomials are infinitely-close. The Hidden Sub-

lemma (ii) would then be useful to show that both series are Euler-convergent

and thus they are infinitely-close for all infinite degrees.2

2If we had chosen to understand the antecedent f (x) ≃ g(x) of Hidden Lemma 3 differently: if we
had interpreted it to mean that there exists a single infinite degree for which f (x) and g(x) are infinitely-
close it would not actually be necessary to apply Hidden Sublemma (ii) to show f (x) ≃ g(x). However,
Hidden Sublemma (ii) would still be necessary to show the Euler-convergence of f (x) and g(x), thus it
makes no material difference.
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Option 1 is simpler but would make McKinzie and Tuckey’s Hidden Sublemma (ii)

redundant. Therefore we consider option 2 to represent their reasoning more closely.

Let us evaluate which option would be a better representation of Euler’s reasoning.

6.9.2 Filling the fourth gap with reasoning which could have been

used by Euler

Both the Sequential Theorem and internal induction are results from nonstandard ana-

lysis and thus cannot directly be said to have been used or understood by Euler. McK-

inzie and Tuckey do not use internal induction at all in their reconstruction of Euler’s

proof. They manage to use finite induction wherever induction is necessary. Neither do

they explicitly use the Sequential Theorem directly in their reconstruction of Euler’s

proof. They use the Sequential Theorem in the proofs of their hidden lemmas, but

although they argue that Euler may have understood and used the hidden lemmas im-

plicitly, they do not claim that he had proofs of them.

We argue that Euler did use a principle equivalent to internal induction. Euler’s

method of approaching induction was different from the modern conception of math-

ematical induction. He approached it in the style of empirical induction in the ex-

perimental sciences. McKinzie and Tuckey also believe that Euler used ‘inductive

arguments, in the style of the physical sciences, rather than as deductive proofs’[57, p.

32]. They base their reasoning for this on Pólya’s analysis of Euler’s first proof of the

Basel problem [67]. Let us give some examples from Euler’s ‘Introductio’.

1. Euler obtains de Moivre’s formula in the ‘Introductio’ by arguing that it is true

for 1, 2, 3 etc. and thus concluding it is true for n[29, p. ]. He will later go on to

apply this formula for infinite n. There are other formulas he treats in this way,

e.g. the Binomial Theorem which he applies in his proof of the Basel problem.

2. Another example is Euler’s generalisation of the Basel problem which we dis-

cuss in Section 7.4.2. He does not give the nth term but expects us to be able to

continue the pattern. This is typical of his presentation.

Euler’s definition of a function would satisfy the requirements for an internal func-

tion (see Section 2.3.2.1). Thus we feel justified in saying that internal induction can

parallel arguments made by Euler.

Informally, the Sequential Theorem allows transition from the finite to the infinite

when the infinitely-close relation is involved. We can consider similarly whether the
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Sequential Theorem could parallel reasoning used by Euler. We do not think that this

is as likely since Euler did not make a strong distinction between terms differing by an

infinitesimal and equality between terms. He represented both by ‘=’. Although the

hidden lemmas also use ≃, they have analogous statements for equality. A second and

perhaps stronger reason is that, on no occasion have we observed Euler state a fact only

for infinite numbers up to a certain size (as would result from the Sequential Theorem).

Whenever we have observed Euler make a statement involving infinite numbers, it is

either for a specific infinite number or infinite numbers in general. We believe this is

because he sees the infinite only as an extension of the finite, rather than true numbers

with actual values. We do not rule out the possibility that the Sequential Theorem

could have been intuitively used by Euler but we believe internal induction would be

easier to justify.

6.9.3 Gap 3: Matching coefficients

Lemma 24 (Gap 3). Suppose x is a finite hyperreal and N is an infinitely-large odd

hypernatural. Then

(N−1)/2

∑
k=1

1
(kπ)2 ≃

1
3!
.

lemma gap3:

assumes "N ∈HNatInfinite" "N = 2⋅k + 1"

shows "hypsum (λn. 1/((n∈N⋅star_of pi ) pow 2)) {1..< k+1} ≈ 1/(Hfact 3)"

This lemma formalises Gap 3, which is the result of matching coefficients from the

two expansions of hyperbolic sine. We have a partial formalisation of the proof of this

lemma. We have broken down the proof into some lemmas which follow McKinzie

and Tuckey’s reasoning. We apply the Hidden Sublemma (ii) to

"∀m. hypsum (λn. (x pow n)/(Hfact n∈N)) {1<.. m+1} ≈
hypsum (λk.

hypsum (λi.

hyprod ( ∗fn∗ (λn x. 1 / ( real x ⋅ unstarnum (hypreal_of_real pi) n)2 ) )

( Iset i ) )

(hyp_k_subset k (star_n (λn. {0..<unstarnum m n}))) ⋅ (x pow (2 ⋅ k +1)))

{1..<m+1}"
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We intend to apply the Hidden Lemma 3 to the result of our application of Hidden

Sublemma (ii). However, to apply it literally, as Isabelle requires, we will need to

show that our polynomial is equal to one with a term of every power. Each of the even

terms will be 0. We needed to use if . . . then . . . else to express this. The resulting

function is unwieldy, and thus we defined an abbreviation for it.

abbreviation

"multiplied_out_term l m ≡
( if odd l then

hypsum (λi.

hyprod

( ∗fn∗ (λn x. 1 / ( real x ⋅ unstarnum (hypreal_of_real pi) n)2 ) )

( Iset i ) )

(hyp_k_subset l (star_n (λn. {0..<unstarnum m n})))

else 0)"

Similarly, we define an abbreviation for the coefficients of the other expansion of hy-

perbolic sine, since it is also unwieldy to read.

abbreviation

"hyp_sine_pow_series_term n ≡(if odd n then 1 / Hfact n∈∗N else 0)"

Armed with these two abbreviations we are able to formalise a version of Hidden

Lemma 3 applied to the particular case of Gap 3.

lemma hidden_lemma3_in_gap3:

assumes

"∀x∈HFinite.

determinate (λM. hypsum (λn. hyp_sine_pow_series_term n ⋅x pow n) {0..<M})"

"∀x∈HFinite.

determinate (λM. hypsum (λn. multiplied_out_term n m ⋅ x pow n) {0..<M})"

"∀x∈HFinite.

∀M∈HNatInfinite. hypsum (λn. hyp_sine_pow_series_term n ⋅x pow n) {0..<M} ≈
hypsum (λn. multiplied_out_term n m ⋅ x pow n) {0..<M}"

"∀n∈N.

hyp_sine_pow_series_term n − multiplied_out_term n m ∈HFinite"

shows "∀n. hyp_sine_pow_series_term n ≈multiplied_out_term n m"

The proof of Gap 3 is reduced to showing the antecedents of this lemma.
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We have identified some challenges and remaining pieces which will need to be

overcome to complete the proof of Gap 3. We describe them here

6.9.3.1 Solution for the additional gap

In Section 6.9.1 we described our discovery of a potential gap in McKinzie and Tuckey’s

treatment of Gap 3. In short, the main antecedent of the Third Hidden Lemma needs

to be shown: we must show that the two polynomials are infinitely-close for all infinite

degrees. We outlined two solutions. Our preferred solution as we indicated in Sec-

tion 6.9.2 is to prove the antecedent using internal induction. We have formalised the

statement of this intermediate step. We have also shown that the polynomial resulting

from multiplying-out the product is internal, a necessary step so that we may apply in-

ternal induction (see Section 5.8.2). Our Isabelle representation of this polynomial was

complicated by the way that sums are indexed in Isabelle, and thus it was not trivial to

show that it is internal. We thus have all the component results we need to complete the

proof of the antecedent. However, although it is mathematically-straightforward, we

still have some difficulty in connecting the representations: in particular, in translating

between the results for series defined over only odd terms and series defined over all

terms. We would need to show many further theorems to bridge this gap even though

it is mathematically trivial.

6.9.3.2 Showing that the difference between coefficients is finite

Our current formalisation of the Third Hidden Lemma requires that the difference.

between the coefficients is finite. When the lemma is applied to Gap 3, this becomes

"∀n∈N. hyp_sine_pow_series_term n − multiplied_out_term n N ∈HFinite"

Note that the underlying goal which must be proven without the neat abbreviations

is algebraically far more complex. This is the weakest condition the Third Hidden

Lemma can have. However, it is unclear how to prove this on its own. It may be easier

to prove a stronger assumption: i.e. that all the coefficients are finite. If we assume

that all the coefficients are positive, which in the case of the Basel problem they are,

and prove that the series are Euler-convergent or finite determinate, we can obtain the

result that all the coefficients are finite.
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6.9.3.3 Putting together the pieces

Our main challenge towards completing the proof of Gap 3 is in outlining the structure

of the proof and putting together the lemmas which it consists of. As we outlined in the

previous section, we defined abbreviations for the However, although all the pieces are

formalised, there is the same difficulty in connecting the representations as we cited

for the proof of the main antecendent to the Third Hidden Lemma: we would need to

prove further theorems to unify series defined over only odd terms and series defined

over all terms. Our formal proof thus remains incomplete although mathematically

we have now characterised it in detail in terms of the Third Hidden Lemma and the

additional gap we discovered.

6.10 Concluding the Basel problem

Below we give our formalisation of the statement of the Basel problem, and we also

refer the reader back to the final formalisation of the structure of the case-split which

we gave as an example of Isabelle proof in Section 2.2.

lemma Basel_problem:

assumes "N ∈HNatInfinite"

shows "hypsum (λn. 1/(n∈N pow 2)) {1..< N+1} ≈(pi pow 2) / 6"

Our proof of this statement is by no means complete. We have focused on form-

alising those parts which formed a framework for understanding Euler’s proof more

precisely (e.g. the concepts of determinacy and Euler-convergence) and those points of

reasoning where we found McKinzie and Tuckey’s explanation lacking (e.g. the proof

of Hidden Lemma 3).

The aim of our formalisation efforts has been to use the formalisation as a tool to

achieve a greater level of detail in the description of the reasoning of Euler’s proof.

Some parts of Euler’s (and McKinzie and Tuckey’s) proof do not require a more de-

tailed understanding as they are mathematically uninteresting and not considered con-

troversial. These we have often omitted from our formalisation. In Section 6.1 we

outlined the scope of the formalisation to formalise Euler’s reasoning by categorising

the unformalised parts.

However, we have formalised the majority of the pieces which need to be put to-

gether to achieve this result, and we have formalised the upper levels of the structure

for putting these parts together into a whole.
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A fully-formalised proof would still provide a neat counterpoint to Euler’s proof,

thus to aid future work and demarcate the scope of our proof we will now describe

the formalisation state of those pieces which have not entirely made it into the form-

alisation, and outline some of the obstacles to integrating them into the formal proof.

The proof assistant Isabelle and the current library of Nonstandard Analysis which we

have used for the formalisation has a significant influence on what the difficulties in

producing a complete formalisation would be. We discuss the challenges specific to

Isabelle further in Section 7.2.

• Some pieces have proofs that remain to be understood. These are by far the

minority. We have analysed nearly every part of the proof at the larger scale

but some details remain to be explored. This includes the Trinomial Lemma

(Section 6.4.1), Euler’s Fundamental Theorem of Algebra (Section 3.3.3)

• Some pieces have been understood thoroughly but have not yet been formalised.

For example, we have given pen-and-paper proofs of the determinacy of the

power series of ex (Section 5.2.2.1) and of the missing piece from the proof of

Hidden Lemma 3 (Section 5.5.2.3). The determinacy and Euler-convergence of

the related series (Section 5.2.2.3) would fit into this category. Also here would

be the proof of Hidden Sublemma (i) (Section 5.7). It is still likely the case that

our understanding would change or deepen if the formalisation is undertaken.

• Some pieces have been understood partially but still contain parts that would

become clearer when formalised. For example, the proofs of Hidden Sublemmas

(i) (Section 5.7) and (ii) (Section 5.8).

• Some have proofs which would be tedious to implement. For example, the con-

verse of the second part of the Corollary for negative x (Section 5.6), the transit-

ivity of hyperpolynomial factors (Section 3.2.5).

• Some of the pieces are formalised with proofs, but do not fit together well and

require modification. For example, some of our lemmas assume that x (from the

polynomial representation of hyperbolic sine) is nonnegative, including Hidden

Sublemma (i) (Section 5.7) which depends on the Corollary (Section 5.6). We

could rewrite our proof to accommodate this restriction. The Second Hidden

Lemma also has a generalisation which we have mechanised and would fit more

easily into the proof (Section 5.4). However, this generalisation has overlapping
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assumptions which could be winnowed down. Alternatively, the assumptions

could simply be discharged when the lemma is applied in the proof of the Basel

problem. This latter method is perhaps easier, but would be more ugly.

6.11 Summary

In this chapter we outlined our partial mechanisation of Euler’s proof of the Basel

problem. We illustrated the scope of our mechanisation with Figure 6.1, Table 6.2 and

Table 6.1. We used these also to explain why we chose to focus our mechanisation of

Euler’s proof on certain controversial parts.

We described our formalisation of the central pieces of Euler’s proof outside of the

hidden lemmas (or ‘gaps’). We explained how we put together the pieces which we

have completed to form a partial reconstruction of Euler’s proof of the Basel problem,

and we outlined some of the pieces that are not mechanised and why. Most signific-

antly, we raised the point that McKinzie and Tuckey’s explanation of how Gap 3 may

be filled with Hidden Lemma 3 and Hidden Sublemma (ii) is incomplete. We argue

that this is a significant gap in their proof since it requires the use of either internal

induction or the Sequential Theorem to complete it. Both of these are methods that

they avoided using directly in their reconstruction of Euler’s proof since they do not fit

into the narrative of using hidden lemmas to rehabilitate the gaps in Euler’s proof. We

believe that this shows Euler’s methods can be closely, but not identically, replicated

in nonstandard analysis. Further, we believe it demonstrates the value of using a proof

assistant to gain deeper insights into the mathematics behind Euler’s reasoning.
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Conclusion

We conclude the thesis by discussing the decisions taken in the mechanisation process,

how these influenced the current state of the formalisation and how our choices could

be improved upon. We will revisit the aims we set out in the introduction and explain

how this thesis has attained each of them. Finally, we will outline multiple avenues of

future work.

7.1 Choices in our mechanisation

The act of formalisation can contribute to our understanding just as much as the end

product of the formal proof. Throughout our journey, we made numerous decisions

that informed the final formalisation. We can look back on these with hindsight and

assess how we may have addressed them differently in the future. Although parts of

our formalisation are unfinished, we have developed a fuller comprehension of effect-

ive methodology. This enables us to suggest approaches that would streamline the

completion of the mechanisation as future work.

7.1.1 Top-down and bottom-up approaches

We employed a hybrid of top-down and bottom-up formalisation approaches in this

project. Our bottom-up approaches consisted of mechanising many concepts and lem-

mas that we knew or believed to be useful. For example, theorems and definitions

relating to determinacy (Section 5.2), hyperpolynomials (Section 3.2.5), even-and-odd

intervals (Section 3.2.5.1). Our top-down techniques involved formally representing

the lemmas necessary for a mechanised proof of the Basel problem, without proof

177
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themselves, at least initially. For example, those lemmas representing Euler’s transit-

ive reasoning (Section 6.8) and the lemma representing McKinzie and Tuckey’s Gap 3

(Section 6.9.3). It also included outlining the proofs of central lemmas, for example,

the hidden lemmas (Sections 5.3- 5.5), in terms of unproven intermediate statements.

From our experience, a combination of both approaches is ideal. The top-down

approach was effective at highlighting the concepts and lemmas which were the most

fundamental to the formalisation. The bottom-up approach enabled the creation of

consistent definitions and theorems which were mutually compatible e.g. determin-

acy and hyperpolynomials, external sets (Section 3.4.3) and the Overspill Theorem

(Section 3.4). In practice, we did not always make a systematic decision between the

two approaches. Adhering entirely to a top-down approach would not have been pos-

sible or desirable. However, we believe it would have been better to give preference

to the top-down approach, as this would have helped to focus on the priorities of the

thesis. As an example, we spent significant effort in representing hyperpolynomials

and the Fundamental Theorem of Algebra, and as part of this we mechanised a proof

of equating-coefficients for complex polynomials. It was necessary to build a con-

sistent theory of hyperpolynomials in order to formalise even the lemma statements

in the Basel problem, and making sure of its consistency required proving theorems.

However, ultimately, some parts of our representation of hyperpolynomials were not

relevant to the main endeavour, including the proof of equating-coefficients for com-

plex polynomials. This theorem is well-established and did not need to be a priority.

There were omissions from the mechanisation which would have deserved formal-

isation instead of this e.g. the structure of the proof of Gap 3 which we discuss in

Section 6.9.3.3.

7.1.2 The choice between Euler-convergence and determinacy

In Section 4.4.10 we outlined the concepts of Euler-convergence, determinacy, Euler-

determinacy and finite determinacy. McKinzie and Tuckey conducted their rehabilita-

tion of Euler’s proof entirely using Euler-convergence. In a later paper they revisited

Euler’s Introductio, this time using the concept of determinacy. They rewrote some of

their hidden lemmas using determinacy. In between writing these two papers, McKin-

zie conducted PhD research on the early history of series, and explored Euler’s concept

of convergence in further depth. As we stated in Section 4.4.1, McKinzie speculates

that Euler never again mentioned his convergence principle because he became inter-
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ested in series which may have infinite sums. This is a likely reason why McKinzie and

Tuckey decided to use the notion of determinacy in their next paper, since even series

with infinite sums may be determinate. Initially we preferred the notion of determin-

acy since it could be more simply and universally expressed. We attempted to use it

to mechanise the proof of the Basel problem. However, we discovered that it was an

inadequate replacement in some places, for example, it cannot be used to represent the

Hidden Sublemma (ii) (see Section 5.8). We chose to discover the minimal assump-

tions for each hidden lemma and developed our categorisation of Euler-convergence,

determinacy, finite determinacy and Euler-determinacy. We found some value in this

endeavour since we were able to mathematically-characterise each ‘gap’ identified by

McKinzie and Tuckey in the Basel problem. However, it would have been simpler and

quicker to mechanise the entire proof using Euler-convergence since we could have

followed McKinzie and Tuckey’s proofs directly. The decision to use finite determ-

inacy for Hidden Sublemma (i) rather than Euler-convergence was a more complex

approach and contributes to the reason why the mechanisation of that proof is unfin-

ished. This is since we need to additionally prove that Euler-convergence is equivalent

to finite determinacy for sums and also for products in the proof. For products, this

fact is only true under the assumption that coefficients are noninfinitesimal, which is

in fact guaranteed for Hidden Sublemma (i) by its representation. 1

7.1.3 Representing the internality of functions, sets and predic-

ates

The internality of functions, sets and predicate can be specified in more than one way.

For each lemma, we could

1. write the internality as an assumption. For example

lemma determinate_shift_argument:

assumes "k∈N" "i∈N" "a ∈InternalFuns"

"determinate (λM. hypsum a {i..<M})"

shows "determinate (λM. hypsum (λn. a (n+k)) {i ..<M})"

where InternalFuns is the set of internal functions.
1We also generalised other Hidden Lemmas including Hidden Lemma 2 (to a greater range of coef-

ficients) and Hidden Lemma 3 (to other initial indices of the series) which did marginally increase the
difficulty of the proofs. We also formulated a more general version of Hidden Lemma 2 which we did
not complete a formal proof of.
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2. Write the functions, sets and predicates involved in terms of their underlying

sequences. For example

lemma determinate_shift_argument:

assumes "k∈N" "i∈N"

"determinate (λM. hypsum (λn. (∗fn∗ a) n) {i ..<M})"

shows "determinate (λM. hypsum (λn. (∗fn∗ a) (n+k)) {i ..<M})"

In most cases we made the latter choice. By taking a bottom-up approach to form-

alising internality, it was simpler to show that combinations of functions are internal

using the latter representation (see Section 7.1.1). However, we now believe that the

first choice would have been preferable. Statements in terms of underlying sequences

are unwieldy and complex to read. For example, the function representing the coeffi-

cients of the binomial expansion of (1+x/N)N is expressed directly as

(λn. (N ⋅ C n)∈N ⋅ ( x / N∈N) pow n)

which is more easily read than the following expression in terms of the underlying

sequence of real-valued functions.

∗fn∗ (λn m. real (unstarnum N n choose m) ⋅unstarnum (x / N∈N) n ^ m)

Statements in terms of underlying sequences must also be rewritten, potentially mul-

tiple times, to demonstrate that different functions and predicates that they contain are

internal.

7.1.4 Declarative versus procedural proof

Connected to this is the choice between using declarative structured Isar proof (Sec-

tion 2.2.1) and a procedural proof style consisting of successive rule applications. The

structured Isar proof style is preferable in almost every way: it is more readable, less

susceptible to small changes in the formalisation, more easily repaired when a change

in the theory invalidates the proof and can more closely replicate pen-and-paper proofs.

We used the structured style for all of our significant proofs. However, when proving

that functions, sets and predicates were internal, we wrote some of our proofs using

successive rule application as a quick way to obtain the result. These proofs were prone

to breaking and difficult to read. In the previous section, we described our preferred

approach of using assumptions to represent internality. If we had used this approach,

all our proofs could have been written declaratively.

We now explore the extent to which this thesis has fulfilled its aims.
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7.2 Criticisms of using Isabelle for formalising Euler’s

mathematics

Isabelle is not as flexible as pen-and-paper mathematics when it comes to formu-

lating definitions. This has advantages and disadvantages. The advantage is that

everything defined is well-defined (although it still may not be a definition of the in-

tended concept). The disadvantages are that Isabelle is not as expressive, and that the

definition must be carefully chosen, otherwise it may be overly complicated. Some-

times, there is not a simple and elegant way to express the concept. We see examples

of this at several points in the thesis e.g. in Section 5.8.2 where we must express

the internal function from Hidden Sublemma (i) using Iset which would be entirely

omitted in pen-and-paper mathematics; in Section 5.1.1 where we must define Euler-

convergence separately for sums and products rather than combining them into a single

notion and in Section 3.2.5 where we cannot easily unify the algebraic representation

of polynomials with the functional one. There are different reasons for this: often this

is because there is not a one-to-one correspondence between the usual mathematical

representation and the Isabelle representation. Then, since abstractions are built on ab-

stractions in mathematics, the divergence between the notions in mathematics and the

notions in Isabelle can grow. A choice that we needed to make at several points which

had unintended consequences was whether to directly input the underlying sequence

of an internal function as the argument of a definition or to instead input a function

which we could not guarantee was internal. In other words, it was a choice between

using the type 'a star ⇒ 'b star and the type nat ⇒ 'a ⇒ 'b (equivalently ( 'a ⇒ '

b) star). These are not entirely interchangeable. For some concepts, we tried both

representations and propagated the effects through several layers of definitions before

we could make an informed choice about which was simpler.

Another reason is insufficient integration between concrete instances of concepts

and abstractions. Even when the correspondence has been proven, this does not always

mean sufficient machinery has been developed to easily translate between the two.

The transfer method is an example of how such machinery can work, however, this

particular example could be extended further to apply to internal functions rather than

simply extensions. It could also theoretically be integrated to allow definitions directly

by hypernatural induction rather than requiring an intermediate concept defined by

natural induction.

Yet another related reason why definitions in Isabelle may have an awkward repres-
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entation is that often in mathematics two separate representations of one concept are

used interchangeably. For example, embeddings of the naturals in the hypernaturals

vs. naturals in the hyperreals. In Isabelle, these representations cannot be conflated

although they can be proved to be equivalent. In Isabelle, machinery is required to

translate from one to the other (e.g. automated proof methods such as simp) or to hide

the clutter that using two representations causes (e.g. pretty-printing).

We did a significant amount of work formalising a background theory of hyper-

polynomials for our formalisation of Euler’s reasoning along with external sets (see

Chapter 2). We prioritised this part of the background theory because the definitions

from it allowed us to formalise the statements of all the lemmas required for our form-

alisation. Even this work was not a complete formalisation of all the mathematical

background, however, and we would have had to do a great deal more further work

to formalise proofs of, for example, the trinomial lemma (see Section 4.6) and Euler’s

cosine substitution (see Section 6.6), or to link up the Isabelle proof of the FTA with

the version needed for the proof of the Basel problem (see Section 3.3). So although

Isabelle has a good deal of mathematics already formalised in its libraries and in the

Archive of Formal Proofs [3], the representations of mathematical concepts are specific

and cannot be instantly unified with isomorphic representations.

7.3 The aims of the thesis

Often I have considered the fact that most of the difficulties which block
the progress of students trying to learn analysis stem from this: that al-
though they understand little of ordinary algebra, still they attempt this
more subtle art. [29, Euler’s ‘Introductio’, p. v]

Euler’s mathematics in his proof of the Basel problem is not simply algebra. It

draws together a nuanced understanding of revolutionary mathematical concepts, and

combines them into a beautiful proof which he accomplished using methods differ-

ent to the current mathematical standard. In the introduction to this thesis, we stated

our aims which are each related to an aspect of understanding Euler’s mathematics,

and to analysing McKinzie and Tuckey’s endeavour of rehabilitating Euler’s proof us-

ing hidden lemmas. We will demonstrate how this thesis achieves these aims and

provides a rounded understanding of Euler’s proof along with McKinzie and Tuckey’s

reconstruction. In relation to each aim, we now summarise our accomplishments and

conclusions.
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7.3.1 Euler’s concepts

Our aim has been to improve our understanding of the concepts used by Euler in

the ‘Introductio’, in particular, ‘infinitesimal’, ‘infinite number’ and ‘polynomial’, by

using the analogous concepts in nonstandard analysis and by following Euler’s reas-

oning using formal proof in Isabelle

We analysed Euler’s concepts alongside giving our representation of each in our

formalisation. We aimed to discover how Euler conceived of his fundamental concepts

including functions, polynomials, infinitesimals, equality, convergence and determin-

acy. This helped us to represent each of his concepts sympathetically, if not faithfully,

in Isabelle, and use them appropriately. It also allowed us to demarcate the limitations

of our representation by noting the differences between Euler’s concepts and how we

chose to formalise them.

Our formalisation by its nature could not be as expressive as Euler’s mathematics.

For example, we needed to make a choice between representing polynomials as func-

tions or using their already existing representation as algebraic objects in Isabelle. The

use of numbers of different types in the same expression required the use of explicit

coercion functions. Euler was able to make transitions from the finite to the infin-

ite by analogy or implicitly, whereas we made use of the internal induction principle

and thus had to find the representations of the functions and sets involved in terms of

the ultrafilter. However, the precision of formalising definitions and statements added

clarity to our analysis and allowed us to characterise the gaps in Euler’s and McKinzie

and Tuckey’s reasoning, especially with regards to the exact type of determinacy or

Euler-convergence required in each case.

We believe that Euler regarded concepts such as infinite and infinitesimal numbers

as tools, or stepping-stones to results about real numbers, as do many other scholars

e.g. Petrie [66, p. 283], Ferraro [34, p. 45], Bair et al. [5, p. 205]. We observe

that Euler did not obtain end-results in terms of infinite numbers or infinitesimals.

This is similar to how Euler treated complex numbers. E.g. Euler’s project of find-

ing the trinomial factors of polynomials was founded on aiming to find the real linear

and quadratic factors of polynomials. The trinomials were pairs of complex-conjugate

roots multiplied-together to form factors with real-coefficients (see Section 4.6). Un-

derstanding the purpose of Euler’s Trinomial Lemma helped us to represent it faithfully

in Isabelle (see Section 6.4.1).

As McKinzie and Tuckey and Laugwitz observed, Euler understood that the trans-
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ition from the finite to the infinite could not always be made, and placed conditions

on when it could be allowed. For example, he stated that an infinite number N of in-

crements of 1/N could be discarded. McKinzie and Tuckey and Laugwitz analysed

Euler’s notion of convergence and determinacy, and they used their interpretation of

these concepts to rehabilitate and interpret Euler’s proof. We found their interpreta-

tion useful and agree with their assessment that Euler’s proof can be better understood

through the lens of Euler-convergence and determinacy. We took these concepts fur-

ther, and made distinctions between determinacy and Euler-determinacy, and between

finite-determinate and Euler-convergence. This improved the understanding of what is

occurring mathematically in each of the steps in Euler’s proof that apparently rely on

convergence notions.

We find that the expressivity of the concepts in nonstandard analysis is perfectly

sufficient for representing Euler’s reasoning. However, when it comes to proof meth-

ods, we believe that the modern rigorous proof methods that we, and McKinzie and

Tuckey use, do not map perfectly onto Euler’s. For example, in Section 6.9.2 we argue

that Euler did not use mathematical induction in the same sense, and we demonstrated

there are multiple methods in nonstandard analysis (either internal induction or finite

induction plus the Sequential Theorem) which could reasonably represent his ‘induct-

ive’ reasoning. This brings us to our second aim: to examine Euler’s use of deductive

reasoning.

7.3.2 Euler’s use of deductive reasoning

Our aim has been to examine the validity of the logic of Euler’s reasoning and the use

of hidden lemmas (see Section 4.4.3) to explain the ‘leaps of intuition’ in Euler’s proof

Laugwitz proposed the idea to use hidden lemmas to rehabilitate Euler’s reasoning

based on Lakatos’ concept. McKinzie and Tuckey have already demonstrated that

Euler’s reasoning can be rehabilitated into a deductive proof by the use of hidden

lemmas. By formalising the hidden lemmas, we obtained a better understanding of

how they are used accomplish this, and the distinction between the deductive proof

and Euler’s original reasoning.

Excepting the First Hidden Lemma, we discovered that each of the hidden lemmas

and sublemmas are more complex, both in statement and proof, than how they were

expressed in McKinzie and Tuckey’s paper. Hidden Lemma 2 and Hidden Lemma 3

required additional assumptions. The proofs, as given by McKinzie and Tuckey, have
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parts which either need additional clarification or actually contain gaps, for example,

the gap in the proof of the Third Hidden Lemma. McKinzie and Tuckey gave precise,

careful proofs which covered many cases which it would be easy to overlook, espe-

cially when concerned with the infinitely-close relation. One such case would be the

conditions given on the main lemma in their proof of the Third Hidden Lemma. Sev-

eral readings were required to fully understand and appreciate their reasons for stating

these conditions. Using a proof assistant to verify proofs adds a level of detail which

would be hard to achieve and to some extent would be undesirable in a pen-and-paper

proof.

However, this level of detail is important for fully understanding the nuance of

Euler’s reasoning. We have discovered some limitations in their rehabilitation of

Euler’s proof. In particular, we have demonstrated that Gap 3 cannot be entirely filled

with a single hidden lemma (Hidden Lemma 3) as they argue. We explored ways to

complete the proof to modern standards of mathematical rigour, whilst also remaining

as faithful as possible to Euler’s methods of reasoning. We devised two alternatives:

using internal induction or using finite induction along with the Sequential Theorem.

Verifying whether Euler’s functions are ‘elementary’ (i.e. internal) is complex. The

result of multiplying-out a product of binomials (Euler’s §165) is a sum of sums of

products, each of which may be infinitely-long. To represent this formally in Isabelle

requires unusual constructs so that types agree (see Section 5.8.2). We were able to

show that this folded sum of products is internal, but this function was sufficiently

complex that prior to constructing the proof it was not obvious to us whether it truly

was internal. Isabelle provides a useful tool to verify the nature of functions as internal

without doubt. Mathematical intuition alone is not enough except in simple cases.

At the same time, in Isabelle, the expression of internal functions in terms of their

underlying sequences is unintuitive due to the constructs required for type-agreement

and being overly-complex in notation (which could be fixed to some extent with better

pretty-printing) thus reducing readability. Since the user must come up with these

sequences constructively, and conduct the proofs manually, this is a significant obstacle

to creating and reading the proofs.

There are some instances where McKinzie and Tuckey’s reasoning requires addi-

tional justification, but predominantly this does not affect the understanding of Euler’s

proof. E.g. showing the determinacy of the series x+ x2

2! +
x3

3!⋯. We argue that contrast-

ing the work of modern mathematicians to formal proof is analogous to contrasting

Euler’s work with modern mathematics. We recognise that modern proofs, unlike
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Euler’s 18th Century proofs, are built on a well-defined mathematical theory and proof

methods that are considered ‘rigorous’. Similarly, formal proof, is built intrinsically

on the axioms and logic we have chosen, losing some flexibility in comparison with

McKinzie and Tuckey’s pen-and-paper proofs. However, this analogy is not perfect.

The flaws which we have discovered in McKinzie and Tuckey’s proof are instances

where the reasoning at first sight seems obvious, but due to some small oversight (e.g.

not taking into account infinitesimal values or negative values) some additional justi-

fication is needed for a complete proof. Whereas, in Euler’s proof, the gaps are not

subtle, but exist in plain view and could arguably be intentional.

Euler does not fully articulate his thought process behind each step. For example,

he gave his convergence principle explicitly in one single paper on the harmonic series,

but he apparently used the principle implicitly elsewhere, as Laugwitz points out by

formulating his hidden lemma [53]. As we stated in Section 4.4.1, McKinzie suggests

that Euler did not use his convergence principle in later work because he became in-

terested in series which take on infinite sums and did not wish to exclude them from

consideration [56, pp. 116-117]. This may explain why he does not strictly adhere to

this convergence principle but it does not explain why there is no mention of determ-

inate series or why he did not formulate the criteria explicitly when he made a step

which was valid only for series and products that satisfy those criteria. We can only

hypothesise as to why Euler was not more explicit, but we can say with confidence that

Euler does not have the modern expectation of a logically tight argument. He could not

have, since the modern concept of foundations for mathematics in terms of axioms and

logic had not been invented.2 However, the reasoning Euler gives still feels persuasive:

his aim was to convince the reader, and, at least in the ‘Introductio’, to help the reader

to become familiar with the workings of the infinite.

Euler could make mistakes on his own terms: as Kanovei pointed out [76, p. 75-

80], Euler made his substitution of 1− 1
2(

2kπ

N )2 for cos 2kπ

N prematurely.But many of the

gaps that we wish to fill in as a modern reader have a different nature: Euler simply did

not provide a complete account of all the steps in his reasoning, but there was an un-

derlying consistency. We discovered that the ‘3rd gap’ was more complicated mathem-

atically than McKinzie and Tuckey considered, and consisted of multiple steps. Thus

2 The reader may believe that Euclid is a counterexample to this. Eucliden geometry did give a
standard of proof in geometry, but proofs in other disciplines of mathematics were not held to the same
degree of rigour as they did not have the same groundwork. Non-Euclidean geometry had not been
discovered yet and the consensus among mathematicians at the time was that Euclid’s postulates were
self-evident truths rather than axioms in the modern sense of the term. The modern notion of a formal
system was introduced later by Hilbert [47, pp. 1026-1039].
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the hidden lemmas do not always neatly bridge gaps to construct a perfect, rigorous

modern proof. McKinzie and Tuckey were right to say that Euler was generally obey-

ing consistent principles [55, p. 340]. We disagree, however, that ‘[Euler’s arguments]

with the adjunction of a few elementary lemmas, become a model of deductive reas-

oning’ [57, p. 30]. This is accurate for some elements of Euler’s proof, but Euler still

incorporated empirically-inductive reasoning to some extent, as Pólya and McKinzie

and Tuckey agree he did in his 1734 proof. We argue an example of this empirically-

inductive reasoning is part of Gap 3. We do not believe this means that Euler is reckless

or relies solely on intuition. He merely has a concept of proof that is not as narrow and

specific as the modern one.

We reiterate McKinzie and Tuckey’s claims. Euler did have an understanding of

the difficulties inherent in the infinite. The hidden lemmas allow us to construct proofs

in nonstandard analysis that parallel Euler’s reasoning. However, we cannot translate

Euler’s methodology into nonstandard analysis or formal proof, since the kinds of

arguments he made simply do not exist there. Our best option is to use methods of

proof that share similarities with Euler’s and to acknowledge the differences between

the two.

We have observed that Euler had two main purposes when writing a proof.

• To give the reader the insight or understanding behind a fact, an explanation for

how he arrived at it.

• To convince the reader, as he states in his 1736 paper on the Basel problem.

Modern mathematics is seen as a rule-based system. Only certain logical inferences

may be made. Axioms are considered arbitrary starting points, only given significance

because we believe they give rise to interesting or useful theories. Unlike Euler, we do

not see ‘self-evidence’ as a reason for accepting a fact (we argued in Section 4.6.1 that

this is how Euler viewed the Fundamental Theorem of Algebra).

Euler’s ‘magical intuition’ comes from his experience with mathematics: thou-

sands of examples that he had voraciously invented and explored during his lifetime,

as one of the most prolific mathematicians ever. These examples and counterexamples

thus gave him a nuanced understanding of when certain operations can and cannot be

performed. Furthermore, he was able to choose examples that demonstrate exactly why

a certain property holds. This is not to say that he never stated his principles or rules in

the abstract. For example, his method of multiplying-out and equating coefficients in

§165 or his statement of a principle under which a summation has a clear and definite
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value. However, he appears to have believed that such principles gain meaning in their

application, and that others would best be able to learn or be convinced by examples.

This is apparent in his iterative proofs of the Basel problem, where he demonstrates

his method on several examples, in his application of the Trinomial Lemma and pro-

position from §165 to several polynomials or series, in his derivation of de Moivre’s

Formula from the ‘Introductio’ and, in fact, almost everywhere in his writings.

We argue that Euler’s proofs are best understood with a layered approach. For

a modern reader, the ‘Introductio’ is an exhilarating experience. We are dazzled by

the ease with which beautiful and insightful results are produced, but also somewhat

puzzled. To understand Euler’s methods, we can try to put ourselves into 18th century

shoes. This gives us sympathy and appreciation for the flexibility of his proof methods.

But we are not in an 18th century mathematical landscape, and to relate his proofs to

our own mathematical understanding, it is helpful to have a modern framework e.g.

nonstandard analysis that contains concepts of infinitesimals and infinite polynomials

that can mimic the behaviour of Euler’s concepts. The third level of formal, computer

verified proof provides two additional purposes. It brings us humility, as we realise

that we are still to some extent relying on our intuition to write and understand our

rigorous modern proofs. More importantly, it directs our attention to the nuances that

are left implicit both in Euler’s reasoning and our reconstructions of his reasoning.

At each point in this layered approach, it is important to note the aspects of Euler’s

reasoning that remain in our reconstruction, and those that can only be captured by the

level above. We have argued, for example, that Euler’s approach to inductive reasoning

is not perfectly mirrored by either internal induction or finite induction together with

the Sequential Theorem. Some level of his meaning has been lost. However, there is

still value in choosing methods of proof that are as close as possible to Euler’s original

methodology. We chose to use internal induction rather than the Sequential Theorem

in this example, since that better allowed us to represent Euler’s use of the infinite as an

extension of the finite. Thus, our understanding of the rehabilitated proof still provides

insights into Euler’s concepts.

7.3.3 Explanation of the proof

Our aim has been to provide insight into the details of the reasoning of Euler’s proof

of the Basel problem from the ‘Introductio’ and its relationship to the rehabilitation

given by McKinzie and Tuckey [57].
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Our formalisation comprises a concrete interpretation of Euler’s proof and given a

narrative to his reasoning which can be explored by the modern reader in detail. Since

our interpretation is specific and exact, it can easily be distinguished from Euler’s own

proof and does not pretend to be something it is not. Yet we mark the similarities

between the formalisation and Euler’s original reasoning, and thus it should be clear to

the reader which points are transferable.

McKinzie and Tuckey gave a simply-expressed reconstruction of Euler’s proof in

their paper. There are points where they gloss over detail in order to tell a succinct

story. We were able to fill some additional details in and provide the specifics of what

Euler did, as well as tracing the origin of results that he used. We have mechanised

McKinzie and Tuckey’s proofs of the three hidden lemmas and analysed the proofs

of their hidden sublemmas. As we stated in the previous section, there are points in

their proofs where we find that the reasoning is unclear. In these places, we have

provided additional argument. Some of these we feel constitute gaps in their proofs: in

particular, the Euler-convergence of∑H
k=n(ak−bk)xk−n for infinitesimal x in their Third

Hidden Lemma (Section 5.5.2.3).

We specified the minimal assumptions to each of the hidden lemmas, allowing us

to mathematically characterise the gaps in Euler’s proof as presented by McKinzie and

Tuckey. As a result of the formalisation we were able to build a coherent and thorough

narrative of Euler’s proof. It thus provides a resource to future work in multiple ways:

• Our formalisation provides a ‘dictionary’ to a reader of Euler’s proof of the Basel

problem from the ‘Introductio’. We have given a formal interpretation to much

of his reasoning and concepts and we have explained to what extent our inter-

pretation is able to represent Euler’s reasoning.

• Our formalisation of Euler’s concepts and sections of Euler’s reasoning can be

used to explore his many related works and develop formalisations of those. We

explore this possibility further in the next section.

7.4 Future work

Our mechanisation of Euler’s proof of the Basel problem is still partial. A completion

of this proof is the most obvious future work. We have analysed all the points that we

believe are interesting and outlined an approach to formalising them, but a complete
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mechanised proof could still add valuable insights. Beyond this, there are several direct

avenues for further research which we explain in the following sections.

7.4.1 The proof of the trinomial lemma

In Section 4.6.2 we gave a brief description of the kinds of reasoning used in the Tri-

nomial Lemma. Euler does not use any infinitesimals or infinitely-large numbers in his

derivation, although he will go on to apply his Trinomial Lemma to a polynomial with

infinite degree. Nonetheless, there are interesting aspects of 18th century mathematics

to explore in this derivation, in particular, Euler’s use of the Fundamental Theorem of

Algebra and trigonometry to represent complex numbers.

7.4.2 The generalisation of the Basel problem

In Section 4.2.5 we mentioned that Euler generalises his proof of the Basel problem to

give the values of the following summations [29, §168, p. 139]

1+ 1
24 +

1
34 +

1
44 +

1
54 +⋯ = 22

1 ⋅2 ⋅3 ⋅4 ⋅5
1
3

π
4

1+ 1
26 +

1
36 +

1
46 +

1
56 +⋯ = 24

1 ⋅2⋯7
1
3

π
6

1+ 1
28 +

1
38 +

1
48 +

1
58 +⋯ = 26

1 ⋅2 ⋅3⋯9
3
5

π
8

1+ 1
210 +

1
310 +

1
410 +

1
510 +⋯ = 28

1 ⋅2 ⋅3⋯11
5
3

π
10

1+ 1
212 +

1
312 +

1
412 +

1
512 +⋯ = 210

1 ⋅2 ⋅3⋯13
691
105

π
12

Euler provides more terms but we will not list them all here. These series are the

Riemann zeta-function for even naturals ζ(2n). Euler’s method for obtaining the val-

ues of these summations depends on formulas given in §166 of the ‘Introductio’ where

he states ‘The truth of these formulas is intuitively clear, but a rigorous proof will

be given in the differential calculus’. Euler did in fact write a book on the differen-

tial calculus [23] and he may have given the derivation explicitly there, or perhaps

elsewhere in his writings. In any case, an Eulerian proof of the generalisation of the

Basel problem to all even powers could be reconstructed by deriving these formulas.

One challenge in doing this this is apparent immediately: Euler expects us to find the

general term of the sequence by ourselves. He states

. . . we have gone far enough to see a sequence which at first seems quite ir-
regular, 1, 1/3, 1/3, 3/5, 5/3, 691/105, 35/1, . . . , but it is of extraordinary
usefulness in several places’.
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These are in fact (2n+1)B2n, where Bn are the Bernoulli numbers [63].

7.4.3 Extending our formalisation to other infinite series and products

from the ‘Introductio’

Two famous proofs which are often held as examples of Euler’s intuitive genius and

unrigorous methods, are his infinite factorisation of sine

sinx = x(1− x2

π2)(1− x2

4π2)(1− x2

9π2)⋯ (7.1)

and his subsequent use of that result to prove Wallis’ product

π

2
= 2 ⋅2 ⋅4 ⋅4 ⋅6 ⋅6 ⋅8 ⋅8 ⋅10 ⋅10 ⋅12 ⋅12⋅

1 ⋅3 ⋅3 ⋅5 ⋅5 ⋅7 ⋅7 ⋅9 ⋅9 ⋅11 ⋅11 ⋅13⋅
⋯. (7.2)

These two proofs, although often considered separately from the Basel problem, are

both from the ‘Introductio’ and their proofs either overlap with, or extend the proof

of the Basel problem. So our existing formalisation could form a starting point. The

formula for sine can be adapted from the formula for hyperbolic sine (which we have

formalised) by replacing x with ix. This would require the extension of our formalisa-

tion to hypercomplex numbers. These proofs could be used as case-studies to show the

application of the general methods and lemmas.

7.4.4 Related series and divergent series

A further, more ambitious project, which also draws on our existing formalisation is

to examine, and partly formalise, Euler’s paper on the relation between the alternat-

ing generalised Basel series, 1/1n −1/2n +1/3n −1/4n +1/5n −1/6n +1/7n −1/8n +⋯,

and the clearly-divergent alternating sum of the integers raised to powers, 1n − 2n +
3n − 4n + 5n − 6n + 7n − 8n +⋯ [79]. Because part of his investigation is based on his

existing proof of the Basel problem, our mechanisation could be reused to formalise

his argumentation. Euler’s concept of attributing values to truly divergent series could

also be explored: it would go beyond the concept of determinacy (which we discuss in

Section 5.1). Kanovei states

. . . is it true that any series has a unique "natural" value of the sum, as Euler
believed, and if so, how do we find that value? It would be of great interest
to find an approach to this question from the standpoint of non-standard
analysis. [76]
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7.4.5 Extension to the transfer method in Isabelle

Currently the transfer method in Isabelle (see Section 2.3.2.5) only works for non-

standard extensions. A more general mechanisation of the transfer method to cover

internal functions and sets would be useful for using nonstandard analysis in Isabelle.

It would greatly reduce the tedious reasoning involved in reproving results that are

already proved for standard analysis. A large part of our mechanisation effort was

spent on proving that functions, sets and propositions are internal. McKinzie and

Tuckey (and Euler) did not expend effort on proving that functions were ‘elementary’

(their corresponding concept to internal). As we state in Section 5.8.2, this could be an

issue in their proof of Hidden Sublemma (ii). If the transfer method was extended, we

would have the double advantage of ease of proof and absolute certainty.

However, we have come across functions which we did not immediately understand

how to prove were internal. An example of this is our folded sum of products which

we used to represent the multiplied-out polynomial from Euler’s §165. Furthermore,

in Isabelle, there are defined separate constructions to represent internal functions with

different arity: e.g. ∗fn∗ and ∗f2n∗ . Thus, we cannot clearly say that the method for

proving internality can be captured in a simple algorithm.

7.5 Concluding thoughts

Euler’s proofs are inspiring to the modern reader because they demonstrate an entirely

different approach to the one we use now: different concepts of function, polyno-

mial, and infinities; different methods of proof and inductive reasoning; self-evident

facts and convincing examples rather than axiomatic mathematical theories and lo-

gic. Euler’s consistent and insightful mathematics reveals to us that the mathematics

we practice now is not the only mathematics and, to some extent, it is arbitrary. We

gravitated towards using limits in analysis, but we might have managed to stay with

infinitesimals all along. In the future, mathematics and the standard for mathematical

proof will be different yet again. We have already found new mathematical tools in

the shape of theorem provers. This thesis at once unifies and distinguishes between

three types of mathematical understanding and proof: there is, in the end, no reason to

restrict ourselves to only one.
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