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Introduction 

Writing in 1958, Charles Elton – a founding figure of the field that is now invasion ecology – 

declared: “We must make no mistake: we are seeing one of the great historical convulsions in 

the world's fauna and flora” (Elton 1958, p. 22). Elton’s words hold just as true today; the 

intervening period has seen a marked increase in the rate of new species introductions, and this 

trend shows no sign of abating (Seebens et al. 2017). Consequently, biological invasions are 

now regarded as one of the foremost threats to ecosystems worldwide (Pyšek et al. 2020). 

In this introductory chapter I briefly overview the biological invasion process, outlining key 

factors which come into play from the point of initial transport and introduction, through the 

subsequent establishment phase, and then to the spread of the invader across the landscape. I 

also briefly review the impacts of invasive species. I then explore the invasion of Laikipia 

County, Kenya, by Opuntia cacti, which is the main subject of my thesis. Throughout these 

sections, I identify key knowledge gaps in our understanding of biological invasions in general, 

and the Laikipia Opuntia invasion in particular. I conclude with an overview of the four main 

chapters of my thesis, with a focus on how each chapter will address these gaps. 
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Biological invasions: an overview 

Invasive species (Box 1) are currently regarded as one of the most serious threats to ecosystems 

and human well-being (Pyšek et al. 2020). This threat continues to grow; the rate at which 

species have been introduced into new regions has increased markedly since 1800, and for most 

taxa this trend shows no sign of slowing (Seebens et al. 2017). Non-native species are now 

found on every continent, with some hotspot regions containing hundreds of these species 

(Dawson et al. 2017). The distributions of established non-native taxa are correlated with 

human population density and economic activity (GDP), as well as climatic factors including 

temperature and precipitation (Dawson et al. 2017). Non-native species occurrence and 

abundance are also associated with the type and intensity of land use, with the strength of these 

relationships varying among invasive taxa (Liu et al. 2023). In general, larger areas also tend 

to be more heavily invaded: after accounting for size, islands and coastal areas stand out as 

particularly high in non-native species richness (Dawson et al. 2017). Furthermore, the 

distributions of some non-native taxa still bear the imprint of European colonialism; the 

composition of non-native plant communities is more similar among regions which were 

previously occupied by the same empire than among randomly selected regions (Lenzner et al. 

2022). The challenge posed by invasive species is only likely to increase in the future as new 

species continue to be introduced (Seebens et al. 2021). Moreover, we have probably already 

accrued a substantial ‘invasion debt’, as many future invasive species will have been introduced 

already (Pyšek et al. 2020). Climate change is also expected to play an exacerbating role, 

particularly for temperature-sensitive taxa such as terrestrial arthropods (Hulme 2017).  

Biological invasions begin when species are introduced across biogeographic barriers. This 

introduction stage occurs through a number of human-mediated pathways. Some species, 

particularly vertebrates, are deliberately transported by humans and released into the wild 

(Hulme et al. 2008). A classic example is the European rabbit (Oryctolagus cuniculus), which 

was introduced to Australia for sport hunting (Alves et al. 2022). Other species, especially 

vascular plants, are deliberately transported and released into captivity (e.g., zoos, gardens, 

aquaculture), but later escape into the wild (Hulme et al. 2008). For instance, escape from 

botanical gardens is an important introduction pathway for non-native plant species (Dawson 

et al. 2008). In addition to these intentional pathways, several unintentional pathways play a 

critical role, particularly for invertebrates, fungi, and other microorganisms (Hulme et al. 

2008). First, a species may be inadvertently transported as a contaminant on a traded  
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Box 1: What is an invasive species? 

For the purpose of this thesis, invasive species are defined as those which have been introduced across 

biogeographic boundaries (i.e., they are non-native) by the action (either deliberate or accidental) of 

humans, and which have subsequently formed established populations that are growing in abundance 

and/or expanding in range. It is worth noting that invasion ecology has a history of imprecise terminology 

usage (Lockwood et al. 2013, p. 25) which most invasion ecologists regard as a problem (Shackleton et al. 

2022). Furthermore, there is significant polarisation within the invasion ecology community about whether 

certain characteristics, such as the potential for impact, should be used to define “invasive species” 

(Shackleton et al. 2022). I suggest that these definitional issues are particularly acute in invasion ecology 

because the definition of “invasive species” is often tightly linked to policy and management (Beck et al. 

2008). Consequently, I argue that it is important to be aware of the different ways in which “invasive 

species” can be defined, and to be clear about how we are defining them in a given situation. 

Definitions of “invasive species” can be mapped onto three main axes (Fig. 1). First, biogeographic 

definitions define invasive species as being non-native (allochthonous) to a region. Some definitions refine 

the biogeographic axis by requiring that the species is introduced due to human agency. Second, population-

dynamic definitions emphasise rapid increases in abundance and local range size as defining features of 

invasive species. In the extreme, invasive species are entirely defined by explosive population dynamics, 

meaning that “invasive species can also be native” (Valéry et al. 2009). Finally, impact definitions 

characterise invasive species by their impacts on the environment and people; at the extreme end of this 

axis, “invasive” is essentially a synonym for “pest”. 

 

Figure 1. Some definitions of “invasive species” organised by whether they include a biogeographic, 

population-dynamic, or impact component. Dashed lines represent the three main axes; axis labels are 

shown at the maximum value of each axis (i.e., the top of the triangle represents purely biogeographic 

definitions of “invasive species”). 

Most influential definitions of invasive species do not map onto the extremes of any one axis, but instead 

occupy the intermediate space where at least two axes are diagnostic. For example, Elton (1958, p. 7, 10) 

argued that biological invasions are a kind of “ecological explosion” which occur when “a foreign species 



9 
 

 

commodity, which may be another species (e.g., crop plants or seeds) or a derived commodity 

(e.g., timber; Hulme et al. 2008). For instance, the plant pathogen Phytophthora ramorum was 

introduced to several regions in Europe and North America through the trade of infected 

nursery plants (Grünwald et al. 2012). Second, species can be transported as stowaways within 

or attached to a transport vector, such as a ship (Hulme et al. 2008); the release of contaminated 

ballast water is a key pathway for the zebra mussel (Dreissena polymorpha; Strayer 2009), one 

of the world’s most damaging invasive species (Lowe et al., 2000). Third, species can be 

introduced when humans connect areas by creating novel dispersal corridors such as canals or 

bridges (Hulme et al. 2008). For example, the construction of the Suez Canal caused the 

introduction of several hundred non-native species to the Mediterranean Sea (Galil et al. 2015). 

Finally, species can disperse unaided from areas which have already been invaded (Hulme et 

al. 2008). 

Once introduced into a new region, a number of factors potentially determine whether a species 

is able to establish and form a self-sustaining population. The simplest models of population 

growth tell us that this will occur when the rate of births (plus immigration) outweighs the rate 

of deaths (plus emigration; Coulson & Godfray 2007), highlighting the fundamental 

importance of factors governing reproduction and survival. These factors include properties of 

the introduced species, such as life history traits like lifetime reproductive output, growth rate, 

successfully invades another country”. Similar population-dynamic-biogeographic definitions have been 

used in several influential papers, including the “unified framework for biological invasions” proposed by 

Blackburn et al. (2011); in this framework, invasive species are those which have undergone introduction, 

establishment, and spread in a new region. A similar definition is implied by the earlier stage-based 

framework of Colautti and MacIsaac (2004).  

A contrasting set of definitions, which are often employed by governments and non-governmental 

organisations (NGOs), are situated on the biogeographic and impact axes (Fig. 1). For example, the 

International Union for Conservation of Nature (IUCN 2023) define invasive species as: “introduced by 

humans, either intentionally or accidentally, into places outside of their natural range, negatively impacting 

native biodiversity, ecosystem services or human economy and well-being.” Similar definitions are used 

by the European Commission (European Commission 2023), the United States Department of Agriculture 

(USDA; Executive Order 13112, 1999), and the United Kingdom’s Parliamentary Office of Science and 

Technology (POST; 2022), and in the Convention on Biological Diversity (CBD; 2021), all include a 

biogeographic and impact component. Biogeographic-impact definitions are also used within the scientific 

community, including the highly cited textbook by Lockwood et al. (2013). 
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and lifespan (Capellini et al. 2015; Allen et al. 2017). The abiotic and biotic characteristics of 

the environment are also important, as is their interplay with the characteristics of the 

introduced species. For instance, the degree of overlap between the climate of the recipient 

environment and the climatic niche of the introduced species can influence the probability of a 

successful establishment event (Alaniz et al. 2021). Biotic interactions between the native 

community and the introduced species also play a key role in the establishment phase (Mitchell 

et al. 2006); classic hypotheses such as the biotic resistance hypothesis (Elton 1958), enemy 

release hypothesis (Keane & Crawley 2002) and Darwin’s naturalisation hypothesis (Darwin 

1859, p. 88) emphasise the importance of competitors and natural enemies of the introduced 

species. However, it is becoming increasingly clear that native mutualists can also be vital in 

determining whether a population becomes established (Traveset & Richardson 2014). Real 

biological invasions also include complexities that are not represented in the simpler models 

of population growth. For instance, demographic and environmental stochasticity can 

determine the fate of an introduction, particularly when the founder population is small (Lande 

1988, 1993). Small founder populations can also exhibit genetic bottlenecks (e.g., Puillandre 

et al. 2008) that can influence establishment success. The importance of these effects can be 

diminished by the introduced species’ propagule pressure, which is a function of the size, 

number, and spatiotemporal patterning of propagules which arrive in the system (Simberloff 

2009).  

Following establishment, a subset of non-native species goes on to spread: under definitions 

which include a population-dynamic element (Box 1), these species are now defined as 

invasive. For a species to spread, it must overcome dispersal barriers which would otherwise 

prevent it from reaching new locations, and then overcome environmental barriers imposed by 

differences between these new locations and the site of the original establishment (Blackburn 

et al. 2011). As with the establishment phase, the characteristics of the introduced species (e.g., 

dispersal-related traits such as seed size), the abiotic environment (e.g., the spatial arrangement 

and connectivity of suitable habitat patches), and the native community (e.g., the presence of 

native competitors) can influence the prospective invader’s ability to overcome these barriers 

(Theoharides & Dukes 2007). For many prospective invaders, biotic interactions are vital for 

overcoming dispersal barriers (Mitchell et al. 2006). For example, seed dispersal by native 

frugivores is a key contributor to the spread of many invasive plant species (Bartuszevige & 

Endress 2008; Padrón et al. 2011). 
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As spread operates over longer timescales than the initial establishment phase, evolutionary 

changes in the introduced species and the native community can play an increased role; several 

hypotheses focus on the role of post-establishment evolution in biological invasions (Atwood 

& Meyerson 2011), including the well-known evolution of increased competitive ability 

hypothesis (Blossey & Notzold 1995). Evolutionary changes have also been invoked as an 

explanation for a common observation about the spread phase: spread often follows 

establishment after a considerable time lag, which may last several decades (Crooks 2005). 

Numerous other non-mutually exclusive explanations for this phenomenon have also been 

proposed, including Allee effects (e.g., Drake & Lodge 2006), feedback loops between multiple 

invasive species (“invasional meltdown”; Simberloff 2009), post-establishment changes in 

environmental characteristics such as land use (e.g., Strum et al. 2015), and the introduction of 

new genotypes due to continuing propagule pressure (Simberloff 2009).  

Invasive species can have profound impacts on ecosystems and humans. While some 

frameworks conceptualise impact as a separate stage which follows establishment and spread 

(e.g., Levine et al. 2003), impacts can occur at any time from the point of initial introduction 

(Ricciardi et al. 2013). The ecological impacts of invasive species range widely in scale. At the 

levels of individual native organisms and populations of native species, invaders can affect 

variables including fitness, growth, behaviour, and abundance (Vilà et al. 2011; Anton et al. 

2019). The impacts of biological invasions on native species echo through evolutionary time, 

as invasive species divert the evolutionary trajectory of native species through hybridisation, 

niche displacement, and a host of other mechanisms (Mooney & Cleland 2001). Ultimately, 

invasive species can drive native species to local or global extinction; invasive species 

contributed to a third of the animal extinctions and a quarter of the plant extinctions recorded 

in the 2017 IUCN red list (Blackburn et al. 2019). At broader scales, invasive species can 

impact biodiversity, disrupt interactions between native species (e.g., mutualisms) and alter the 

structure of interaction networks (e.g., pollination networks, frugivory networks), alter nutrient 

cycling and its constituent processes (e.g., nitrification), and drive regime shifts (Traveset & 

Richardson 2006; Vilà et al. 2011; Kotta et al. 2018; Anton et al. 2019). These broad-scale 

impacts may be driven by fine-scale impacts (e.g., changes in biodiversity as a consequence of 

local extinctions) and vice versa (e.g., disruption of interaction networks affecting the 

abundance of native species), illustrating the interconnectedness of impacts at different scales.  

Invasive species can also negatively affect people, either directly or as a result of ecological 

impacts. The human impacts of invasive species include negative effects on human health, 
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either because the invasive organism itself is dangerous (e.g., giant hogweed (Heracleum 

mantegazzianum) sap causes burns; Baker et al. 2017) or because the invader facilitates other 

dangerous organisms such as pathogens or parasites (Hulme 2014). Furthermore, invasive 

species can disrupt ecosystem services (e.g., food and water provision, wildfire regulation) 

upon which people depend, with consequences for well-being (Pejchar & Mooney 2009). In 

some cases, disruption can be so severe that people are displaced from an area, as in the case 

of people from the Lake Baringo area in Kenya who were displaced from their homes by the 

invasive tree Prosopis juliflora (Mwangi & Swallow 2005; Witt 2010). Another perspective 

on invasive species’ human impacts can be adopted by estimating the costs of biological 

invasions in financial terms. These estimates have included the total global cost of invasive 

species (e.g., USD ≥ 1.288 trillion; Zenni et al. 2021) as well as estimates restricted to specific 

geographic regions (e.g., USD 9.8 billion for Germany; Haubrock et al. 2021), taxa (e.g., USD 

63.7 billion for freshwater macrofouling bivalves; Haubrock et al. 2022), or management 

interventions (e.g., USD 1.3 to 11 per square metre to remove invasive Miscanthus species; 

Lowry et al. 2022). Furthermore, invasive species can disrupt cultural traditions. For example, 

First Nations Australians from the Borroloola region have been negatively affected by the loss 

of culturally important animal species caused by cane toads (Rhinella marina; van Dam et al. 

2002). Invasive species can also affect people in less tangible ways, such as by changing how 

people perceive the aesthetic value of a landscape (Kueffer & Kull 2017).  

Predicting, detecting, and intervening to mitigate the impacts of invasive species are key goals 

in invasion ecology (Ricciardi et al. 2013; Simberloff et al. 2013). Ideally, any impacts which 

are not entirely avoided by preventing the initial introduction are dealt with through early 

detection and decisive intervention (Simberloff et al. 2013). This ideal is facilitated by having 

a mechanistic understanding of impact. Knowledge of the mechanisms by which impacts occur 

can allow for better predictions of future impacts, detection of impacts which are already 

occurring, and the design and implementation of management interventions which are effective 

and avoid unintended consequences (van Riel et al. 2000; Levine et al. 2003; Ricciardi et al. 

2013; Crystal-Ornelas & Lockwood 2020).  

While recent decades have seen a substantial level of research into the impacts of invasive 

species and advances in our understanding of the mechanisms involved (Levine et al. 2003; 

Ricciardi et al. 2013; Crystal-Ornelas & Lockwood 2020), there remain major obstacles to 

reaching a strong mechanistic understanding of impact. One of these obstacles is the limited 

scope in which invasive species’ impacts are studied; not only are studies of impact restricted 
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to relatively short temporal scales, but also to certain spatial scales (Crystal-Ornelas & 

Lockwood 2020). To date, the majority of studies have focused on impacts at the levels of 

populations (e.g., abundance, average fitness) and communities (e.g., biodiversity), while 

studies of individual-level (e.g., growth, behaviour) or genetic impacts are relatively rare 

(Crystal-Ornelas & Lockwood 2020). This restricted understanding is problematic not only 

because it inhibits our understanding of fine-scale impacts, but also because the interconnected 

nature of impacts at different scales implies that a lack of understanding at one scale affects 

our understanding at other scales. Consequently, improving our knowledge of the finer-scale 

impacts of invasive species is a vital research problem. Given the central importance of 

behaviour in many biotic interactions, and the fundamental importance of biotic interactions in 

invasion ecology (Mitchell et al. 2006), the impacts of invasive species on animal behaviour 

represent a particularly important topic for investigation. To address this outstanding research 

gap, I will be exploring the behavioural impacts of invasive Opuntia cacti in Laikipia County, 

Kenya.  

 

Opuntia invasions in Laikipia County, Kenya 

Opuntia is a genus of the cactus family (Cactaceae), commonly referred to as prickly pear cacti 

(Majure et al. 2012). Native to the Americas, Opuntia species are found in arid habitats 

throughout Central America, the south-western United States, the Caribbean, and the 

Galápagos Islands (Hamann 2001; Rebman & Pinkava 2001; Reyes-Aguero et al. 2006; Majure 

et al. 2014). This widespread distribution, coupled with their high level of diversity – modern 

estimates place the number of extant species at around 180 to 200, making Opuntia one of the 

most speciose genera of cacti (Nyffeler & Eggli 2010; Novoa et al. 2015; Martínez-González 

& Morales-Sandoval 2021) – has garnered Opuntia a reputation as one of the most successful 

groups of cacti (Rebman & Pinkava 2001). Unfortunately, the success of Opuntia has not been 

confined to its native range; Opuntia species have also been introduced to every continent 

except Antarctica and are invasive in regions including East and Southern Africa, Australia, 

the Mediterranean, and parts of South-East Asia (Pasiecznik 2007, Pasiecznik & Rojas-

Sandoval 2007, Pasiecznik 2015). In fact, Opuntia may be regarded as the archetypal invasive 

plant – prickly pears are the first invasive plant named in Elton’s (1958) foundational book on 

invasion ecology. The impacts of Opuntia invasions have been severe, and one species – 
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Opuntia stricta – is considered to be one of the world’s most damaging invasive species (Lowe 

et al., 2000).  

Several species of Opuntia are invasive in Laikipia County, Kenya. In total, six Opuntia species 

(O. stricta, O. engelmannii, O. ficus-indica, O. monacantha, O. microdasys, and O. elatior) 

were introduced to Laikipia in the 20th century, with three of these (O. stricta, O. engelmannii, 

and O. ficus-indica) becoming invasive (Witt 2017). In common with most invasive vascular 

plants worldwide (Hulme et al. 2008), Opuntia species were deliberately introduced to Laikipia 

County (Strum et al. 2015; Githae 2019). O. stricta (Fig. 1A) and O. ficus-indica were 

introduced to the town of Doldol in the 1950s by the British colonial administration for 

ornamental purposes and to act as live fences (Strum et al. 2015; Githae 2019). Both species 

are now widespread in Laikipia; O. stricta is particularly abundant in the north-eastern areas 

close to Doldol, while O. ficus-indica is present at higher densities in the south of the county 

(Witt 2017; Witt et al. 2020a). O. engelmannii (Fig. 1B) was introduced to the area that is now 

Loisaba Conservancy in the 1970s, also to serve as an ornamental plant and live fence (Loisaba 

Conservancy 2019a); the source of the invasion is thought to be a quarry where unwanted plants 

were discarded (Witt et al. 2020a). At the time of introduction, land managers were apparently 

unaware of the potential for Opuntia to become invasive (Loisaba Conservancy 2019a), 

perhaps because O. stricta experienced a lag phase of several decades before undergoing rapid 

expansion (Strum et al. 2015). Although O. engelmannii is far less widespread than the other 

invasive Opuntia species – the invasion is currently confined to Loisaba Conservancy and some 

adjacent areas, including the northern region of Mpala Research Centre (Witt 2017) – the 

density of O. engelmannii in invaded areas is very high. 
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Figure 1. A) Opuntia stricta and B) Opuntia engelmannii.  

  

A) 

B) 
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The factors underlying Opuntia’s establishment and spread in Laikipia are not fully understood, 

but two key aspects of Opuntia’s biology are likely to be important contributors to its success. 

The first is related to Opuntia’s climatic niche. The climate of Laikipia – which is mainly semi-

arid, with a highly variable pattern of rainfall – closely matches the estimated climatic niche of 

Opuntia (Witt et al. 2020a). The second is related to Opuntia’s reproductive biology. Many 

Opuntia species, including the three which are invasive in Laikipia, can reproduce vegetatively 

(Reyes-Aguero et al. 2006). This form of reproduction occurs when cladodes (i.e., pads) are 

detached from the parent plant and fall on the ground, where they subsequently take root and 

grow to form new stands (Reyes-Aguero et al. 2006). This mode of dispersal can be facilitated 

by animals, especially large herbivores like elephants (Loxodonta africana; (Foxcroft & 

Rejmánek 2007), that detach and scatter the cladodes. While the majority of vegetative 

dispersal is expected to occur in the immediate vicinity of the parent stand, cladodes can 

sometimes be transported in rivers (Dance et al. 2003) resulting in longer-range dispersal. 

However, most Opuntia species are not restricted to vegetative dispersal – they also produce 

large numbers of fleshy fruits which are consumed by a diverse array of animals (Mellink 2002; 

Reyes-Aguero et al. 2006). The dispersal of seeds resulting from the consumption of Opuntia 

fruits is thought to have been instrumental in the success of Opuntia invasions in other regions 

(e.g., Foxcroft et al. 2004; Padrón et al. 2011), and is also likely to have played a critical role 

in the invasion of Laikipia (Strum et al. 2015). However, investigations into the role of animals 

in dispersing Opuntia in Laikipia have mostly focused on elephants and olive baboons (Papio 

anubis) – whether other animals play a role is unclear, because frugivory has not been 

systematically studied. 

In addition to Opuntia’s climatic niche and reproductive biology, environmental factors may 

also influence the spread of Opuntia in Laikipia County. For example, soil characteristics are 

likely to be important. Laikipia County includes both red soils (Ferric and Chromic Luvisols) 

and black cotton soil (Pellic vertisol), as well as transitional soils which separate the two main 

types (Augustine et al. 2011; Mutuku & Kenfack 2019; Kimuyu et al. 2021). However, 

Opuntia appears to be confined to red soil areas; in the field, I never observed any Opuntia 

growing on black cotton soil or on transitional areas such as the Mpala plateau. This pattern is 

unlikely to be driven by dispersal limitation as, in some areas, invaded red soils and uninvaded 

black cotton soils are separated by only a few hundred metres, and potential dispersers are 

likely to move between the areas (e.g., elephants from the same family group have been 

observed on both transitional plateau soils and low-lying red soil areas; Oduor et al. 2020). A 
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more plausible explanation is that the black cotton and transitional soils are somehow 

unsuitable for Opuntia growth, perhaps because they are prone to waterlogging.  

Biotic resistance conferred by native herbivores may also act to slow the spread of Opuntia in 

Laikipia County (Wells et al. 2023). The evidence for this point comes from long-term 

herbivore exclusion experiments at Mpala Research Centre; unfenced (i.e., herbivore-

accessible) plots have significantly fewer Opuntia plants than plots which exclude herbivores 

(Wells et al. 2023). However, it is currently unclear whether these results are due to herbivores 

consuming Opuntia, or indirectly result from herbivores’ effects on the native plant 

community. Furthermore, other effects of the herbivore exclusion plots – such as reduced 

frugivore access, leading to less fruit removal and hence increased fruit deposition inside the 

exclusion plots – may explain the observed results. Our ability to assess these competing 

explanations is hampered by the lack of published natural history information concerning 

interactions between Opuntia and native animals.  

Changes in human land use may influence the Opuntia invasion. In particular, Strum et al. 

(2015) argued that the rapid expansion of O. stricta, which occurred more than 50 years after 

the initial introduction, was driven by the sedentarisation of pastoralist communities and 

consequent increase in livestock grazing pressure. The subsequent invasion areas including 

Mpala Research Centre, where livestock grazing pressure is relatively low, may be ascribed to 

propagule pressure from adjacent grazing areas. However, it seems unlikely that changes to 

grazing practices explain the invasion of O. engelmannii, which originated within the area that 

is now Loisaba Conservancy. One possibility is that another type of disturbance – such as 

wildfire – facilitated the invasion. Another possible explanation is that differences in the 

Opuntia species’ biology may explain why O. engelmannii was able to invade without 

facilitation from grazing – for example, O. engelmannii may be more resistant to herbivory 

than O. stricta, and hence better able to invade conservancy areas where wild herbivores are 

abundant.  

Finally, the spread of Opuntia is influenced by land managers’ efforts to contain and reverse 

the invasion through the use of biological and mechanical control. Cochineal (Dactylopius 

opuntiae), a sap-sucking insect, is currently the main biological control agent in use in Laikipia 

County; preliminary analyses indicate that cochineal is effective against O. stricta, destroying 

the cactus’ cladodes and reducing flowering and fruiting (Witt et al. 2020). Following the 

success of a pilot study conducted in 2014, cochineal has been introduced to several areas of 
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Laikipia, and continues to form a key part of the management of O. stricta (Shackleton et al. 

2017). However, the effectiveness of cochineal against other Opuntia species – particularly O. 

engelmannii – appears to be limited. Consequently, work is ongoing to find and introduce new 

D. opuntiae biotypes which may be more effective against O. engelmannii. In the absence of 

an effective biocontrol option, most management of O. engelmannii is achieved via mechanical 

control (Loisaba Conservancy 2019b).  

The rapid spread of Opuntia has been linked to a variety of impacts on people living in Laikipia 

County. Heavily invaded areas are unsuitable for livestock and crops; consequently, the 

invasion has resulted in loss of livelihoods, food insecurity, and the displacement of local 

people (Shackleton et al. 2017; Witt 2017). In areas where people live alongside Opuntia, the 

sharp spines result in injuries and often blind livestock (Shackleton et al. 2017). Furthermore, 

ingestion of Opuntia fruit also poses a threat to livestock; the fruit is coated in small spines 

which cause infection in the mouth and intestines, reducing livestock value (particularly as 

tripe is a valued delicacy) and increasing mortality (Ueckert et al. 1990; Hanselka & Paschal 

1991; Shackleton et al. 2017). These impacts result in substantial economic losses: O. stricta 

alone resulted in annual losses averaging $500-1000 USD per household for many residents of 

the Doldol area (Shackleton et al. 2017).  

While the socio-economic impacts of Opuntia are well-established, the ecological impacts are 

not as well understood. Although the Opuntia invasion is often assumed to negatively affect 

biodiversity and the abundance of native species in Laikipia (Githae 2019), and such effects 

have been demonstrated in other systems (e.g., Tesfay & Kreyling (2021) for O. ficus-indica 

in Eritrea), empirical data on Opuntia’s ecological effects in Laikipia are lacking. This lack of 

information is particularly problematic because Laikipia County is a key stronghold for 

biodiversity, with the region supporting key populations of endangered species including 

Grevy’s zebra (Equus grevyi; Rubenstein et al. 2016), reticulated giraffe (Giraffa reticulata; 

Muneza et al. 2018) and African wild dog (Lycaon pictus; O’Neill et al. 2022). Consequently, 

investigating the ecological impacts of Opuntia is an urgent priority for research.  
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Thesis overview 

In this thesis, I examine the behavioural impacts of invasive plants, with particular reference 

to the invasion of Laikipia County, Kenya, by Opuntia cacti. As discussed above, impacts 

which are mediated through changes to native animal behaviour represent a neglected, yet 

tremendously important, aspect of invasive species’ impacts. In the second chapter, I address 

this topic by reviewing the impacts of invasive plants on animal behaviour. To promote a 

mechanistic understanding of these impacts, I synthesise the disparate literature within a novel 

mechanistic framework. In so doing, I aim to facilitate the prediction, detection, and design of 

effective interventions to mitigate invasive plants’ behavioural impacts.  

The impacts of biological invasions on animal behaviour can manifest as changes in the 

patterns of animal species’ occurrence. However, the patterns and drivers of occurrence are 

intrinsically difficult to study; ecologists are often constrained to the use of observational data, 

due to the logistical and ethical challenges associated with manipulating ecological systems at 

scale. A common approach to overcoming this hurdle is to use models, such as occupancy 

models, which relate variation in species occurrence to one or more environmental covariates. 

This presents a new challenge: how do we choose between competing models, each with a 

different set of environmental covariates? In the third chapter of my thesis, I use simulations 

to explore model selection in occupancy models. The results from these simulations 

subsequently guide my analytical approach in Chapter 4.  

In the fourth and fifth chapters of my thesis, I turn to the case of the ongoing Opuntia invasion 

in Laikipia County. In these chapters, I use a dataset which I collected at Mpala Research 

Centre and Loisaba Conservancy in 2021. The dataset contains over one million camera trap 

images from 101 sites, in addition to measurements of Opuntia cover and volume at multiple 

spatial scales, morphological measurements of several hundred Opuntia stands, and data on 

other habitat characteristics (e.g., native vegetation). These data are supplemented by additional 

data provided by Mpala Research Centre, including GIS layers and weather data. To process 

the camera trap images, I created Prickly Pear Project Kenya 

(https://www.zooniverse.org/projects/peter-dot-stewart/prickly-pear-project-kenya) on the 

Zooniverse platform, where members of the public were able to view and classify the camera 

trap images. Ultimately, the project engaged over 8000 volunteers; the volunteers’ 

classifications for the camera trap images also form part of the data generated as part of my 

thesis.  

https://www.zooniverse.org/projects/peter-dot-stewart/prickly-pear-project-kenya
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The ecological impacts of Opuntia are not well understood. However, it is likely that 

behavioural impacts comprise a key part of Opuntia’s ecological impacts, because Opuntia 

profoundly alters the physical structure of the habitat and provides resources via its abundant 

fruit. In the fourth chapter of my thesis, I explore Opuntia’s behavioural impacts by quantifying 

the effects of Opuntia on the occupancy and activity of eight key mammal species. My 

approach in this chapter is directly informed by the mechanistic framework from Chapter 2 and 

the results from Chapter 3. The appendices of Chapter 4 contain supplementary analyses 

including prior predictive simulations, simulation-based model validation, analysis of the 

volunteers’ classification accuracy for the camera trap images, and results obtained under 

alternative modelling assumptions to those used in the main text. 

Biotic interactions, particularly seed dispersal by native frugivores, are thought to be 

instrumental in the success of Opuntia’s invasion in Laikipia. However, our understanding of 

these interactions is limited by a lack of fundamental biological information. To address this 

problem, I use my dataset to address two key knowledge gaps. First, I quantify the relationship 

between height and fruiting in O. stricta and O. engelmannii, and how both height and fruiting 

are related to local habitat characteristics. Second, I document the interactions between animals 

and Opuntia using my camera trap images. The appendices of Chapter 5 contain supplementary 

analyses including prior predictive simulations, and analyses to explore the robustness of my 

results to unobserved site-level confounds.  
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Chapter 2 

Impacts of Invasive Plants on Animal Behaviour 

 
This chapter is published as: Stewart, P.S., Hill, R.A., Stephens, P.A., Whittingham, M.J. & 

Dawson, W. (2021). Impacts of invasive plants on animal behaviour. Ecology Letters, 24, 

891–907. 
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Abstract 

The spread of invasive species is a threat to ecosystems worldwide. However, we know 

relatively little about how invasive species affect the behaviour of native animals, even though 

behaviour plays a vital role in the biotic interactions which are key to understanding the causes 

and impacts of biological invasions. Here, I explore how invasive plants – one of the most 

pervasive invasive taxa – impact the behaviour of native animals. To promote a mechanistic 

understanding of these behavioural impacts, I begin by introducing a mechanistic framework 

which explicitly considers the drivers and ecological consequences of behavioural change, as 

well as the moderating role of environmental context. I then synthesise the existing literature 

within this framework. I find that while some behavioural impacts of invasive plants are 

relatively well-covered in the literature, others are supported by only a handful of studies and 

should be explored further in the future. I conclude by identifying priority topics for future 

research, which will benefit from an interdisciplinary approach uniting invasion ecology with 

the study of animal behaviour and cognition. 
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Introduction 

Every continent harbours invasive species (Dawson et al. 2017), and their global accumulation 

shows little sign of slowing (Seebens et al. 2017). The ecological impacts of invasive species 

range from the level of individual native organisms to wide-scale ecosystem patterns and 

processes (Vilà et al. 2011), yet ecologists have largely focused on impacts at population and 

community levels, such as on biodiversity and abundance; the fine-scale impact of invasive 

species on native animal behaviour is less-studied, but of particular concern (Crystal-Ornelas 

& Lockwood 2020).  

Animal behaviour is central to many biotic interactions, and biotic interactions are key to 

understanding the causes and impacts of biological invasions (Mitchell et al. 2006). While the 

importance of animal behaviour has long been recognised in explaining the causes of invasions 

(Holway & Suarez 1999), we have only recently begun to consider the impacts of invasive 

species on native animals’ behaviour, and the resulting ecological consequences (Sih et al. 

2010; Wong & Candolin 2015; Langkilde et al. 2017; Wilson et al. 2020). Previous syntheses 

covering the behavioural impacts of invasive species have largely focused on invasive animals, 

which affect native animals’ behaviour by acting as novel predators, competitors, and prey (Sih 

et al. 2010; Langkilde et al. 2017). However, relatively little progress has been made towards 

a general understanding of how invasive plants affect native animal behaviour, despite recent 

research and conceptual advances in the field. Given the urgent conservation challenge posed 

by plant invasions, and the fact that this challenge is only likely to increase in the foreseeable 

future (Vilà et al. 2011; Dawson et al. 2017; Seebens et al. 2017), this lack of coherent 

understanding requires attention. 

Plant invasions can impact animal behaviour in many ways, with myriad ecological 

consequences. Here, I synthesise existing research on these impacts within a mechanistic 

framework that outlines the factors which generate and moderate them (Fig. 1), and offer 

directions for future research (Table 1). My aims are twofold. First, I aim to promote 

mechanistic thinking about invasive plants’ behavioural impacts. Not only would a mechanistic 

understanding enable informed, effective action to mitigate impacts while avoiding unintended 

harm (van Riel et al. 2000), but it may also facilitate both the detection and prediction of 

impacts, enabling proactive management which accurately prioritises key invaders and targets 

them before they become unmanageable. To this end, I have organised my review around the 

mechanistic framework (Fig. 1). Second, the study of animal behaviour offers insights and 
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powerful tools for tackling the conservation challenges presented by invasive plants 

(Sutherland 1998; Buchholz 2007; Greggor et al. 2019a; Greggor et al. 2020), and I aim to 

stimulate both behavioural and conservation biologists to work towards a better understanding 

of the multiple impacts of invasive plants. I propose key questions for future research (Table 

1) with this interdisciplinarity in mind. 
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Figure 1. Mechanistic framework (top panel) outlining the impacts of invasive plants on animal 

behaviour, with examples presented in bottom panels. Plant invasion generates a suite of changes within 

a habitat or ecosystem (modes of impact), driving behavioural changes in native species. These 
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behavioural changes impact the native species, the wider community and ecosystem, and human beings, 

and generate feedback loops which influence the future spread of invasive plants. How modes of impact 

translate to behavioural change, and the wider impacts of behavioural change, is influenced by 

environmental context. Solid lines represent causal links, dashed lines represent moderating factors. 

Numbers in top panel refer to key questions for future research discussed in Table 1. *TMII’s = trait-

mediated indirect interactions. Image credits and descriptions are given in Appendix A, Table S1. 
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Table 1. Priority questions for future research, with explanation of the rationale and the implications of 

understanding each question for predicting and managing the behavioural impacts of invasive plants. 

The place of each question within my mechanistic framework is shown by the circled numbers in the 

top panel of Fig. 1.  

Question Rationale Implications 

1. How do behavioural 

impacts and their 

ecological consequences 

scale with invader 

abundance, extent, and 

density? 

 

The shape of the relationship 

between abundance/extent/density 

and impact influences how impacts 

will change in magnitude as the 

invasion progresses, and determines 

the proportion of the invasive 

population that must be removed to 

mitigate these impacts. 

 

Improved prediction of future impacts 

under different scenarios of invasion. 

Management can be optimised so that 

enough of the invader is removed to 

mitigate behavioural impacts, while 

minimising financial and opportunity 

costs associated with unnecessary 

additional removal efforts.  

2. Are certain modes of 

impact or types of 

invasive plant more likely 

to induce certain types of 

behavioural change? 

Predicting behavioural impacts is 

important for proactive management, 

but it has not yet been possible to 

identify commonalities or general 

patterns in how modes of impact 

translate to behavioural change. As 

the literature continues to grow, it 

may be possible to address this 

question by meta-analysis or other 

approaches. 

 

Potential future impacts of recently 

introduced species can be estimated, 

and management can be targeted at the 

most probable and problematic modes 

of impact.  

3. What is the role of 

native animals’ 

behavioural constraints 

in the behavioural 

impacts of invasive 

plants? 

Constraints shape the behavioural 

response of native animals, and also 

partly determine which underlying 

mechanism dominates this response. 

There may be general rules 

underlying the role of constraints 

(e.g., behavioural plasticity may 

dominate in sink populations because 

selection is constrained by the 

immigration of animals from non-

invaded habitats), but these are yet to 

be tested. Alternatively, the role of 

constraints may turn out to be highly 

taxon- or guild-specific.  

 

Behavioural impacts and their 

ecological consequences can be better 

predicted. 

Management can be targeted at the 

specific underlying mechanism.  

4. How can we account 

for environmental 

context when predicting 

the behavioural impacts 

of invasive plants?  

The behavioural impacts of invasive 

plants are highly context-dependent, 

so, where possible, this context must 

be accounted for in modelling and 

other approaches designed to predict 

these impacts. 

 

Predictions of impacts from newly 

introduced or emerging invasive 

species can be tailored to the specific 

species and habitat involved. 

5. What mitigation 

strategies are effective at 

reducing the behavioural 

impacts of invasive 

plants? 

The behavioural impacts of invasive 

plants can have profound ecological 

effects. Effective strategies for 

mitigating these impacts will likely 

depend on the modes of impact and 

mechanisms behind the behavioural 

Testing and documenting the results of 

management strategies is vital for 

informing and improving evidence-

based conservation (Sutherland et al. 

2004).  
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change, as well as in different 

environmental contexts.  

 

6. How do we identify 

selected-dependence 

traps? 

Selected-dependence traps can be 

triggered by well-meaning 

management efforts, threatening the 

survival of the species they are 

intended to protect. A method for 

identifying these traps before they 

are triggered would help to prevent 

this from occurring. 

 

Once identified, traps could be 

targeted by management efforts aiming 

to ‘defuse’ them. 

7. How can we ‘disarm’ 

selected-dependence 

traps? 

 

Freeing the native animal from its 

dependence on the invasive plant 

would permit control of the invader 

without harming the native. Devising 

and testing methods to achieve this 

goal is a key topic for future 

research. 

Management practices would be more 

effective and avoid unintended harm. 
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Modes of impact – how invasive plants drive behavioural change 

When a plant invader becomes established in a habitat, it generates an array of effects that can 

alter animal behaviour, which I call modes of impact. These can be grouped into two general 

categories: habitat alteration, and plant-animal communication. 

A plant invasion will usually generate multiple modes of impact simultaneously. For example, 

the dense vegetation of invasive Rhododendron ponticum affords wood mice (Apodemus 

sylvaticus) protection against their key predator, the tawny owl (Strix aluco), but also decreases 

local food availability by preventing the growth of native food plants (Malo et al. 2013). 

Therefore, how Rhododendron affects mouse behaviour depends on the interplay between 

these modes of impact. While animals should behave to maximise their fitness based on the 

information available to them, this behavioural response is likely to be imperfect – and may 

even be maladaptive – because animals do not possess perfect knowledge about the 

environment. This issue is exacerbated by native animal naïveté (Carthey & Banks 2014).  

 

(a) Habitat alteration 

Invasive plants can drastically alter the physical structure of environments they invade (Crooks 

2002; Asner et al. 2008), introducing novel structural elements (Crooks 2002), or altering pre-

existing structures by outcompeting or facilitating (Vitousek et al. 1987; Oduor et al. 2018) 

native plants and influencing the dynamics of succession (Vitousek et al. 1987). Furthermore, 

effects on fire regimes (Brooks et al. 2004) and nutrient cycles (Vilà et al. 2011) both drive 

and are driven by further habitat shifts. Temporal changes in structure also occur. For instance, 

the invasive shrub Rhamnus cathartica has an extended phenology relative to native plants in 

the community, extending vegetation cover into the Autumn (Bartowitz & Orrock 2016). 

Synergistic effects between multiple invasive plant species can also cause structural changes 

that are not observed where either species invades alone (Asner et al. 2008). 

Plant invasions can also alter the distribution, availability, and quality of resources – typically 

food, but sometimes water (Le Maitre 2004) or construction material (Heckscher et al. 2014). 

Invasive plants may increase local food availability, usually by providing fruit (Gleditsch & 

Carlo 2011; Padrón et al. 2011; Mokotjomela et al. 2013) or nectar (Ghazoul 2004), or else 

decrease food availability by outcompeting or physically restricting access (Oduor et al. 2018) 

to native food plants. Temporal changes to food availability may occur due to phenological 
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differences between invasive and native plants (Carson et al. 2016). Where invasive plants do 

provide resources, these may not be accessible to all native animals. For example, nectar 

viscosity can restrict consumption to appropriately adapted species (Willmer 2011). Novel 

foods may also differ from native foods in their energetic or nutritional content (Mokotjomela 

et al. 2013). Thus, even food-providing invaders can decrease overall food availability, if they 

replace more accessible or nutritious native food plants. Furthermore, where these foods 

contain novel compounds, they may alter behaviour directly (Tiedeken et al. 2016), or 

indirectly by affecting physiology or morphology (Witmer 1996; Jones et al. 2010; Hudon et 

al. 2013). 

Finally, invasive plants affect a variety of other abiotic characteristics which can influence 

behaviour. These include effects on temperature (Stellatelli et al. 2013; Carter et al. 2015) and 

light availability (Crooks 2002; Asner et al. 2008) due to shading, alteration of the habitat’s 

chemical properties by leachates (Watling et al. 2011; Hickman & Watling 2014; Iglesias-

Carrasco et al. 2017) or leaf litter (Tuttle et al. 2009), changes to  soil properties (Kourtev et 

al. 1998; Crooks 2002), and effects on hydrology and oxygen availability in aquatic systems 

(Crooks 2002). Furthermore, signals and cues emitted by invasive plants, often as volatile 

chemicals, change the informational background against which native species communicate 

(Harvey & Fortuna 2012). These signals and cues can, however, affect native animals more 

directly: through the mode of plant-animal communication. 

 

(b) Plant-animal communication 

Information is transmitted from plants to animals both as signals selected to benefit the plant, 

and as incidental cues which animals detect (Schaefer & Ruxton 2011). Such plant-animal 

communication is central to key plant-animal interactions, including pollination, frugivory, and 

herbivory (Schaefer & Ruxton 2011), and is an important path through which invasive plants 

can affect native animal behaviour (Harvey & Fortuna 2012). These signals and cues can be 

visual, chemical, structural, and occasionally acoustic (Schaefer & Ruxton 2011; Schöner et 

al. 2016). 

As invasive species often share no recent evolutionary history with the native species they 

encounter, we might expect native species to be naïve towards the signals and cues emitted by 

the invader (Carthey & Banks 2014). This naïveté is not always absolute, as native animals 

may have experience with native plants which are functionally similar to the invader, or with 
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previous invaders. Rather, naïveté is likely a continuum of experience ranging from complete 

unfamiliarity to a degree of familiarity which may allow for a behavioural response similar to 

that observed with native plants (Banks & Dickman 2007; Carthey & Banks 2014).  

 

Behavioural changes in native animals 

 (a) Mechanisms and constraints 

The modes of impact generated by plant invasion drive animals to alter their behaviour. 

Animals change their behaviour through three distinct but non-mutually exclusive types of 

mechanism, which interact with environmental context to determine the behavioural 

consequences of plant invasion (Fig. 2). First, behaviour changes within an individual’s 

lifetime through behavioural plasticity. Learning processes, including associative, recognition, 

and social learning (Shettleworth 2010) play a fundamental role in this plasticity. Second, 

several non-genetic mechanisms operate between generations, including epigenetic effects 

(Langkilde et al. 2017), parental effects (Reddon 2012; Donelan et al. 2020), and cultural 

transmission through inter-generational social learning (Barrett et al. 2019; Whiten 2019). 

These mechanisms are less studied in the context of behavioural impacts of invasive species, 

although epigenetics in particular has received attention recently (Langkilde et al. 2017). 

Finally, behaviour evolves through natural selection. The selection pressure can be the invader 

itself (e.g., a poisonous invader selecting for avoidance), or other native or invasive species 

(e.g., predators selecting for native prey sheltering in invasive plants).  
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Figure 2. Mechanisms underlying native animals’ behavioural responses to plant invasion. Animals 

respond to the invader’s modes of impact by three non-mutually exclusive types of mechanism (upper 

panels), each of which is subject to a variety of constraints (lower panels). The relative importance of 

different mechanisms and constraints is influenced by environmental context (examples in left-side 

panels).  
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Explicitly considering these mechanisms can inform effective management practices. For 

instance, where behavioural change occurs through plasticity, the field of animal cognition 

offers techniques that conservationists can use to reduce maladaptive or ecologically harmful 

behaviours (Greggor et al. 2020), such as habituating native animals to the novel cues of an 

invader (Greggor et al. 2014). However, where behavioural change has arisen through selection 

these methods will be ineffective, and different management techniques will be required.  

Considering mechanisms is also important to avoid management causing unintended harm. For 

instance, animals which develop preferences for resources provided by an invasive plant may 

revert to pre-invasion behaviour after removal of the invader if these preferences are learned, 

but reversion may not be possible if the preferences arose due to natural selection (Singer & 

Parmesan 2018), causing harm if the invader is removed. 

Animal behaviour is not infinitely flexible; multiple constraints influence how modes of impact 

translate to behavioural change (Fig. 2). Accounting for these constraints could enable 

improved predictions of the behavioural changes caused by plant invasions (Table 1). The 

behavioural response of an individual animal is constrained by its physiology, morphology, 

sensory and cognitive traits. For example, animals may be unable to detect novel cues emitted 

by an invader, or may misidentify novel cues if their sensory systems are not sufficiently 

attuned to distinguish them from other cues. These sensory constraints could be accounted for 

in predictions using approaches such as state-dependent detection theory (Trimmer et al. 2017; 

Ehlman et al. 2019). Importantly, constraints can vary throughout an animal’s life, so that 

invasive plants affect behaviour differently at different ages (Langkilde et al. 2017). Likewise, 

inter-generational non-genetic mechanisms are subject to constraints (Fig. 2). Epigenetic 

change typically involves switches between a limited repertoire of phenotypes (Rando & 

Verstrepen 2007) which will limit adaptation. Parental effects can be limited by the offspring’s 

learning ability and further restricted by parent-offspring evolutionary conflict, so are generally 

subtle (Uller et al. 2013). Finally, cultural transmission is likely subject to sensory and 

cognitive constraints which limit how animals obtain and process information from 

conspecifics. 

The effects of selection on behaviour are also constrained (Fig. 2), by factors including 

generation time, available genetic variation in the population (Futuyma 2010), immigration of 

animals from non-invaded habitats (Bourne et al. 2014) and the genetic underpinnings of 

adaptive behavioural phenotypes which influence how easily they are selected for (Futuyma 
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2010). Additionally, genetic correlations between behavioural traits – behavioural syndromes 

– can further constrain the evolution of behaviour (Sih et al. 2004). Finally, behavioural 

plasticity can itself constrain evolution, because in some circumstances plasticity can shield the 

genotype from selection (Ghalambor et al. 2007).  

Accounting for constraints is also useful for determining the underlying mechanisms involved. 

For instance, in species with a long generation time, populations with low genetic variation, 

sink populations, or when genes underlying a behaviour are shielded from selection, 

behavioural plasticity – rather than selection – is expected to dominate behavioural change. 

Mathematical models could be used to further explore these predictions and generate others, as 

has been done for other aspects of environmental change (e.g., Botero et al. 2015; McNamara 

et al. 2016); modelling and testing these predictions to uncover whether general rules govern 

how constraints influence the mechanisms of invader-induced behavioural change is an 

important topic for future research (Table 1). 

Finally, a focus on constraints can provide insight into the ecological consequences of 

behavioural change (Greggor et al. 2019b). For example, constraints imposed by behavioural 

plasticity on the evolution of host preferences may explain why native Pieris macdunnoughii 

butterflies continue to oviposit on invasive Thlaspi arvense, even though no larvae laid on T. 

arvense survive to adulthood (Steward & Boggs 2020).  

 

(b) Foraging behaviour 

Much of the research into invasive plants’ effects on foraging behaviour has focused on animals 

which are involved in pollination and dispersal mutualisms with plants. From the perspective 

of these pollinators and frugivores, invasive plants can be viewed as a novel food resource, 

with the plant providing fruit, nectar, or pollen, advertised by the signals associated with fruit 

or flowers (Traveset & Richardson 2006; Bartomeus et al. 2016; Russo et al. 2019). For native 

animals to access these resources, they must recognise and respond to the plant’s signals, and 

be morphologically and physiologically equipped to handle the resource (Bartomeus et al. 

2016). Social learning, which is present in key animal mutualist taxa such as social bees (Jones 

& Agrawal 2017), can facilitate recognition and handling of these novel resources: individuals 

may learn where to direct existing foraging behaviours by observing conspecifics (Galef 1981) 

or conspecific cues (Laland & Plotkin 1991) around the novel resource, refine handling 

behaviours by stealing and consuming partially handled foods (Terkel 1995), or learn entirely 
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new handling behaviours from experienced conspecifics (Palameta & Lefebvre 1985). 

Additionally, social learning can sometimes occur from observing heterospecific individuals, 

not just conspecifics (Dawson & Chittka, 2012).  

Most effects of invasive plants on the behaviour of frugivores and pollinators occur via 

resource provision and signals, although some other modes of impact may be involved. First, 

invasive plants can affect frugivore behaviour by outcompeting native fruiting plants (Oguchi 

et al. 2017). Second, toxic secondary metabolites present in nectar may drive behavioural 

change. For instance, grayanotoxins in Rhododendron ponticum nectar cause solitary bees 

(Andrena carantonica) to exhibit malaise behaviours including excessive grooming and 

paralysis (Tiedeken et al. 2016). However, whether metabolites drive changes in foraging 

behaviour has not yet been investigated.  

Behavioural impacts of invasive plants on pollinators and frugivores are usually examined as 

changes in visitation behaviour. Native pollinators and frugivores may visit invasive plants 

more than native plants either because the animals prefer the novel food resource (Sallabanks 

1993; Chittka & Schürkens 2001; Mokotjomela et al. 2013) or simply because the invader is 

more abundant (Williams et al. 2011). These changes in visitation behaviour vary among native 

animals and are likely influenced by the degree of native naïveté (King & Sargent 2012). 

However, predicting effects of invasion on visitation has been challenging. For example, 

Gibson et al. (2012) were unable to predict visitation changes from invasive/native floral trait 

dissimilarity, perhaps because the traits measured were only related to overall floral display 

size (Gibson et al. 2012). Consideration of other traits, and the dietary breadth and flexibility 

of native pollinators, may yield better predictions.  

Invasive plants can also affect the foraging behaviour of native herbivores. Invasive plants are 

often well-defended against herbivory, which can deter herbivores from foraging in an area. In 

North American grasslands, areas invaded by Euphorbia esula, which exudes a toxic latex, are 

avoided by bison (Bos bison) and deer (Odocoileus sp.) (Trammell & Butler 1995). In 

Euphorbia-invaded pasture, cattle similarly avoid the area (Lym & Kirby 1987). This effect 

was driven by associative learning (Kronberg et al. 1993), which might also underlie the 

avoidance displayed by bison and deer.  Invasive plants can also cause avoidance by affecting 

access to native food plants, such as by physically restricting access through physical defences 

or by outcompeting the native plants (Valtonen et al. 2006).  
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Native predators’ foraging behaviour can also be affected. Changes in habitat structure can 

reduce predators’ ability to catch prey, causing predators to avoid invaded areas (Carniatto et 

al. 2013; Hardesty-Moore et al. 2020), alter their microhabitat use (Valley & Bremigan, 2002), 

or roam further (Julian et al. 2012) and forage faster (Theel & Dibble, 2008) to obtain 

resources. Conversely, invasive plants can cause a local increase in predators, even when they 

protect prey from predation (Dutra et al. 2011; Wolf et al. 2018), perhaps because the reduced 

chance of a predator catching an individual is outweighed by the increased abundance of prey. 

More complex interactions involving native predators and prey can also arise. For instance, a 

native herbivore foraging on an invasive plant can stimulate the plant to release volatiles which 

attract the herbivore’s predators (Harvey & Fortuna 2012). 

Invader-induced changes in habitat structure could also drive shifts in the foraging strategy of 

predators. For instance, seahorses (Hippocampus erectus) shift from active to sit-and-wait 

predation when structural complexity is experimentally increased by adding artificial seagrass 

(James & Heck 1994). That similar effects driven by invasive plants have not yet been 

documented (Appendix A, Table S2) might reflect an apparent tendency in studies of invasive 

plant impacts on foraging behaviour – to focus on space use (e.g., visitation, habitat use) instead 

of finer-scale behaviours (e.g., handling behaviours, foraging strategies). 

 

(c) Anti-predator behaviour 

Most animals are prey for other animals, and invasive plants can affect these species’ anti-

predator behaviour. First, by changing habitat structure invasive plants can affect the spatial 

distribution of predation risk, as well as how prey perceive the distribution of this risk – the so-

called “landscape of fear” (Laundre et al. 2010) – which are key determinants of prey space 

use (Fortin et al. 2005; Laundre et al. 2010). Numerous studies demonstrate that where 

invasions form dense, structurally complex stands, small mammals aggregate in abundance 

(Braithwaite et al. 1989; Edalgo et al. 2009; Mattos & Orrock 2010; Dutra et al. 2011; Malo et 

al. 2013; Johnson & de León 2015; Sommers & Chesson 2016; Wolf et al. 2018; Utz et al. 

2020; Wei et al. 2020), and these effects are at least partly driven by changes in native species’ 

perception of predation risk (Johnson & de León 2015; Utz et al. 2020). These refuge effects 

have also been documented in other taxa, such as fish (Figueiredo et al. 2015) and zooplankton 

(Montiel-Martínez et al. 2015). Although less-often documented, the converse has also been 
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observed, where native species perceive patches of invasive vegetation as risky and hence 

avoid them (Ceradini & Chalfoun 2017b). 

By altering habitat structure invasive plants can also influence how predation risk varies over 

time, and so affect prey activity. Effects can be on a diurnal scale, for instance when invasive 

plants provide cover for prey during the day (Bogacka-Kapusta & Kapusta 2013) or on moonlit 

nights (Guiden & Orrock 2019), or they can occur over longer timescales, such as when 

invasive plants senesce later than native plants and so extend the seasonal pattern of prey 

activity (Bartowitz & Orrock 2016). So far, these effects and their ecological implications have 

received relatively little attention. 

As with foraging behaviour, the effects of invasive plants on anti-predator behaviours other 

than space use remain under-explored. Studies on invasive animals have shown that prey can 

modify their behaviour where formerly effective anti-predator strategies are ineffective against 

an invasive predator (Langkilde et al. 2017); conceivably, invasive plants could induce similar 

effects. For example, anthropogenic changes in habitat structure can alter vigilance behaviour 

(Tellería et al. 2001), and similar changes could arise from plant invasion. 

Sometimes, invasive plants can interfere more directly with native animals’ anti-predator 

behaviour. Lonicera maackii leachates cause tadpoles (Anaxyrus americanus and Lithobates 

blairi) to swim to the surface – a behaviour which exposes them to predation risk – likely by 

interfering with their respiratory physiology (Watling et al. 2011). Leachates can also cause A. 

americanus tadpoles to surface even in the presence of predator cues, and slow movement 

responses to those cues, further increasing predation risk (Hickman & Watling 2014). 

 

 (d) Movement 

As well as structuring space use through affecting animals’ foraging and anti-predator 

behaviour, invasive plants can affect movement more directly. Typically, this happens when 

invader-generated structural changes either facilitate (Cronin & Haynes 2004) or hinder animal 

movement (Habel et al. 2016). Structural changes can also make an area dangerous for an 

animal to move through, causing animals to avoid invaded areas – the Dungeness crab (Cancer 

magister) avoids patches of invasive cordgrass (Spartina alterniflora) because the grass’s rigid 

structure increases stranding risk (Holsman et al. 2010). Furthermore, invasive plants can 
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structure movement patterns by affecting abiotic conditions, such as ground-level temperature 

(Stellatelli et al. 2013; Carter et al. 2015) or water clarity (Sammons et al. 2003). 

 

(e) Communication and reproductive behaviour 

Habitat properties influence the ability of animals to communicate with one another, affecting 

how signals and cues travel through the environment (Randlkofer et al. 2010) and changing 

the informational background against which these signals and cues are presented (Harvey & 

Fortuna 2012). Therefore, by altering the habitat or emitting their own signals and cues, 

invasive plants can interfere with animal communication. However, only one study (Appendix 

A, Table S2) appears to have demonstrated an invasive plant disrupting communication like 

this – leachates released by Eucalyptus globulus interfere with mate detection in palmate newts 

(Lissotriton helveticus; Iglesias-Carrasco et al. 2017).  

Invasive plants can also interfere with communication and mating by affecting species’ traits. 

Alteration of avian plumage caused by ingestion of invasive honeysuckle (Lonicera spp.) fruits, 

which contain high levels of carotenoids (Witmer 1996; Jones et al. 2010; Hudon et al. 2013), 

can decouple individual quality from colouration and potentially interfere with assortative 

mating (Jones et al. 2010; Rodewald et al. 2011).  

Invasive plants also affect other aspects of reproductive behaviour. Oviposition is a critical part 

of the life cycle of many insects, which can be affected through several mechanisms. Invasive 

plants can emit volatiles that interfere with native insects’ ability to locate their native host 

plants (Harvey & Fortuna 2012), affect habitat structure so that access to native hosts is 

restricted (Severns 2008), or alter abiotic conditions which influence oviposition (Ellingson & 

Andersen 2002). The cues emitted by an invader may also drive native insects to switch from 

ovipositing on native hosts to the invader (Singer et al. 1993). 

 

 (f) Construction behaviour 

Constructed artefacts such as nests, traps, bowers, and tools play an important role in the life 

history of many species. Animals build using materials either collected from the environment 

or secreted by themselves (Hansell et al. 2014), and in both cases construction behaviour can 

be affected by plant invasions. 
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Invasive plants can become important sources of construction material (Heckscher et al. 2014), 

potentially releasing builder populations from limitations imposed by the scarcity of materials. 

The novel materials provided by invasive plants potentially have quite different properties to 

native materials, although the consequences of these differences are rarely investigated. In the 

only study I know to have done so (Appendix A, Table S2), Heckscher et al. (2014) found no 

relationship between use of invasive plant material and the probability of nest failure in veeries 

(Catharus fuscescens). However, studies on other novel materials incorporated into nests raise 

some intriguing possibilities. For instance, some birds incorporate cigarette butts into their 

nests to deter parasites (Suárez‐Rodríguez & Garcia 2017). Perhaps, if invasive plants carry 

unique and potent chemical defences (Cappuccino & Arnason 2006), then plant material could 

be used similarly. Social learning potentially plays a key role in transmitting preferences for 

novel materials throughout a population; work on nest-building in zebra finches (Taeniopygia 

guttata) has shown that first-time builders’ preference for materials is influenced by social 

information acquired through observing a familiar conspecific building a nest (Guillette et al. 

2016), or observing a vacant nest which has been constructed previously (Breen et al. 2019).  

While few studies have examined the role of novel materials in construction behaviour, several 

studies show how habitat alteration by invasive plants affects where construction – particularly 

nest-building – occurs. Species build nests in (Schmidt & Whelan 1999; Schmidt et al. 2005; 

Nordby et al. 2009; Gleditsch & Carlo 2014; Lambert et al. 2016) or around (Salmon et al. 

1995) invasive plants, but invaders may be avoided where they make vegetation structure or 

abiotic conditions unsuitable for nest construction (Feare et al. 1997; Leslie & Spotila 2001; 

Ortega et al. 2006; Miller & Jordan 2011).  

Invasive plants can also affect builders which secrete their own materials by altering habitat 

structure. For instance, changes in vegetation structure caused by invasive knapweed 

(Centaurea maculosa) allowed web-building Dictyna spiders to construct larger webs, 

improving their foraging efficiency (Pearson 2009). Furthermore, where limits on building-site 

availability for populations of building species may be removed by the introduction of new 

substrates associated with invasive plants, such as the siliques (fruit structures) of invasive 

Garlic mustard (Alliaria petiolata) which provide web-building sites for spiders (Smith‐

Ramesh 2017). 
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Impacts of behavioural change 

The alteration of native animals’ behaviour by invasive plants can have profound ecological 

effects, which range widely in scale (Fig. 1). These impacts can broadly be divided into: 1) 

species-level impacts on the animal species which had its behaviour altered; 2) impacts on the 

wider community and ecosystem; 3) impacts on humans; and 4) feedback loops which 

influence invasive plants. These impacts can also interact with one another, such as when 

species-level changes alter the interactions of one native species with other species, affecting 

community-level processes.  

A key question from a conservation perspective is how behavioural impacts and their 

ecological consequences scale with invader abundance, extent and density, as the invader 

progresses from initial establishment to full-blown invasion (Table 1). The answer determines 

whether mitigation can be accomplished by reducing the invader’s abundance to a lower level, 

or whether complete eradication is required. Some progress on this question has been made for 

pollinator behaviour. Two studies have observed a simple scaling effect where low densities of 

an invader facilitated visitation and increased the seed set of nearby native plants by attracting 

pollinators, while higher densities negatively affected visitation and seed set as pollinators were 

co-opted by the invader (Muñoz & Cavieres 2008; Iler & Goodell 2014). However, in other 

cases scaling can be complex, involving interplay between the scale of invader presence and 

individual responses of different pollinator taxa (Albrecht et al. 2016). Similar studies in non-

pollinator systems would help us better understand how behavioural impacts scale. 

 

(a) Species-level impacts 

Where an invasive plant causes a native animal species to change its behaviour, the animal can 

be negatively affected. Behavioural change may pose energetic costs, for example where 

animals travel longer distances (Julian et al. 2012; Lenda et al. 2013), spend more time moving 

over foraging (Valtonen et al. 2006), or forage less successfully (Maerz et al. 2005). However, 

these costs are rarely quantified. Behavioural changes can also impact abundance and 

population dynamics (Cronin & Haynes 2004; Lenda et al. 2013). Importantly, these impacts 

are scale-dependent; even where invasive plants increase animal abundance locally, at a wider 

scale abundance may still decrease. For example, invasive Mimosa pigra protects small 

mammals from predators but provides little food, so although mammals are abundant beneath 
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Mimosa their total population will be reduced if Mimosa is widespread (Braithwaite et al. 

1989).   

When an environment is altered abruptly, cues which once provided information about the 

environment can suddenly become uninformative. Animals, constrained by their evolutionary 

history, respond as if these cues were still reliable, and thus make maladaptive behavioural 

choices – they are caught in an evolutionary trap (Box 1; Schlaepfer et al. 2002). Invasive 

plants can cause native animals to become evolutionarily trapped when their modes of impact 

decouple environmental cues from environmental quality (Schlaepfer et al. 2005). They can do 

this by possessing attractive cues unassociated with quality, diminishing the fitness benefits of 

currently preferred behavioural options without altering the associated cues, or a combination 

of these (Robertson et al. 2013). However, while several studies claim to have revealed an 

evolutionary trap (Appendix A, Table S2), relatively few provide evidence of preference for 

the lower-fitness outcome over higher-fitness alternatives (Keeler & Chew 2008; Rodewald et 

al 2011; Augustine & Kingsolver 2018; Steward & Boggs 2020; Sun et al. 2020), which is a 

prerequisite for an evolutionary trap (Robertson et al. 2013). One study (Hawlena et al. 2010) 

has also demonstrated an equal-preference trap, where the maladaptive option is not preferred 

but is treated as equal to higher-fitness alternatives (Robertson et al. 2013). The results of other 

studies, which do not examine preference (Schmidt & Whelan 1999; Borgmann & Rodewald 

2004; Rodewald et al. 2009; Nordby et al. 2009; Harvey et al. 2010; Nakajima et al. 2013, 

Davis & Cipollini 2014), are consistent with an evolutionary trap but fall short of being 

diagnostic. A further issue is that studies to-date have almost exclusively focused on avian 

nesting and insect oviposition behaviour, making it unclear how widespread invasive-plant-

induced evolutionary traps are. 

Schlaepfer et al. (2005) recognised that the behavioural response of a native to an invader can 

sometimes result in increased fitness for the native, rather than maladaptation. More recently 

however, it has emerged that these so-called “evolutionary releases” (Schlaepfer et al. 2005) 

can pose a trap in their own right. In a long-term investigation of the interaction between 

invasive Plantago lanceolata and a population of native Euphydryas editha butterflies, Singer 

and Parmesan (2018) observed a phenomenon they termed the “eco-evolutionary trap”, and 

which I prefer to call the “selected dependence trap” (Box 1). E. editha evolved to become 

dependent on P. lanceolata, eventually leading to its local extinction when conditions changed 

to make oviposition on the invader unsuitable for larval survival (Box 1). The selected-
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dependence trap concept essentially formalises the long-standing notion that native species 

becoming dependent on invaders is a dangerous situation (van Riel et al. 2000).  

Selected-dependence traps can be sprung by changes in environmental context such as 

agricultural practices (Singer & Parmesan 2018), but there is also a risk that conservation 

practitioners could unwittingly spring these traps by removing invasive plants on which native 

animals now depend (van Riel et al. 2000). Endangered species may even depend on invasive 

plants for their survival, as do the critically endangered Mahoenui giant wētā (Deinacrida 

mahoenui) (Ewers 2008) and the Ogasawarana snails (Chiba 2010). If these dependencies are 

selected and obligate, then the animals will be less able to adapt to removal of the invader, and 

attempts to translocate the animals to other habitats may be thwarted. 

Two key questions emerge for conservation ecologists (Table 1). First, how do we identify 

selected-dependence traps, so that management of invasive plants does not inadvertently 

eradicate native animals? The criteria I propose in Box 1 encapsulate the key features of 

selected-dependence traps, and may provide a starting point for identification. Second, how do 

we ‘disarm’ the selected-dependence trap, freeing the native from its dependency on the 

invader? Strategies similar to those used for mitigating evolutionary traps (Greggor et al. 

2019b; Robertson & Blumstein 2019) – such as reducing physical access to the invader or 

manipulating environmental cues to reduce preference for the invader relative to alternative 

options – may avoid selected-dependence traps by preventing preference for the invader from 

becoming fixed. Introducing native plants with similar cue sets to the invader may also be an 

option, provided the cues are similar enough that animals dependent on the invader are able to 

switch to using the native (Gosper & Vivian‐Smith 2006). However, work is clearly needed to 

devise and test management options, particularly for animals which have already evolved 

dependence on invasive plants.  
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Box 1: Evolutionary, ecological, and selected-dependence traps 

Singer and Parmesan (2018) observed that Euphydryas editha offspring laid on Plantago lanceolata 

experienced far higher survival than those laid on the native host plant Collinsia parviflora. Because E. 

editha display heritable oviposition preferences (Singer et al. 1988) this preference rapidly became fixed 

so that Euphydryas was completely dependent on Plantago and refused to oviposit on Collinsia (Singer et 

al. 1993, Singer & Parmesan 2018). When grazing cattle were withdrawn from the site, grasses grew to 

cover the Plantago (but not Collinsia), cooling the microclimate and rendering conditions unsuitable for 

larval survival; the Euphydryas, now dependent on Plantago, were unable to alter their behaviour and were 

driven to local extinction (Singer & Parmesan 2018). The authors described the phenomenon as an “eco-

evolutionary trap”, arguing that it is distinct from an evolutionary or ecological trap. 

In an evolutionary trap, an organism prefers one behavioural option (e.g., consume a resource, choose a 

mate) relative to other options available, even though the preferred option results in reduced fitness 

(Schlaepfer et al. 2002; Robertson et al. 2013). If the behaviour in question is habitat selection then the 

phenomenon is called an ecological trap, and therefore ecological traps are a specific type of evolutionary 

trap (Schlaepfer et al. 2002; Robertson et al. 2013). Evolutionary traps arise when environmental cues are 

decoupled from their associated fitness outcomes, so the organism’s evolved response drives it to pursue 

now-maladaptive behaviours even when higher-fitness options are available (Schlaepfer et al. 2002). For 

example, cue similarity between invasive Alliaria petiolata and the native plant Cardamine diphylla causes 

late-season flights of Pieris virginiensis butterflies to oviposit preferentially on the invader, even though 

their larvae can only develop on the native (Augustine & Kingsolver 2018).  

In contrast to an evolutionary trap, the “eco-evolutionary trap” described by Singer and Parmesan (2018) 

does not involve organisms preferring maladaptive behavioural options, nor does it involve decoupling of 

environmental cues from fitness outcomes. Instead, the authors observed the use of a novel resource 

(oviposition on Plantago) conferring increased fitness to a native animal (Euphydryas) than that conferred 

by the alternative (oviposition on Collinsia). Here, the environmental cues accurately conveyed information 

about the higher-quality choice, and the Euphydryas responded to those cues adaptively. The trap occurred 

because Euphydryas evolved complete dependence on Plantago and therefore on the agricultural 
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practices suppressing grass growth at the site; when these practices ceased, Euphydras could not adapt and 

local extinction ensued (Singer & Parmesan 2018).While it could be said that, in both this case and an 

evolutionary trap, the animal is “trapped by its evolutionary response” (Schlaepfer et al. 2002), an 

evolutionary trap differs because the response evolved in the context of the organism’s ancestral 

environment, leading to maladaptation in a novel (e.g., invaded) system, while Euphydryas’ response 

evolved in the context of the novel system and was adaptive. Therefore, I agree that the phenomenon 

described by Singer and Parmesan (2018) cannot be described as an evolutionary (or ecological) trap.  

Despite operating by a fundamentally different mechanism to an evolutionary trap, Singer and Parmesan’s 

paper has been cited as an example of an evolutionary trap (e.g., Robertson & Blumstein 2019). To help 

prevent confusion in the future, I propose “selected-dependence trap” as a new term to replace “eco-

evolutionary trap”. My rationale is as follows: selected, to emphasise natural selection as the mechanism 

underlying the dependency whilst avoiding terms like “evolutionary” that could generate confusion; 

dependence, because the relationship with the novel resource is obligate, meaning the animal cannot switch 

to other available resources; and trap because it evokes negative connotations of both hidden danger and a 

situation from which it is difficult to escape.  

Inspired by the strict criteria for demonstrating the existence of an evolutionary trap (Robertson & Hutto 

2006; Robertson et al. 2013), I propose that an association with a novel resource must meet the following 

criteria, all of which were demonstrated in the case of E. editha and P. lanceolata (Singer et al. 1988, 1993; 

Singer & Parmesan 2018), to be classified as a selected-dependence trap: 

1. The novel resource must confer increased fitness (measured by a reasonable measure or index) 

relative to other available resource options. 

2. Individuals should exhibit a preference for the novel resource, relative to other available resource 

options. 

3. This preference must be heritable. 

4. If the resource is removed or becomes unsuitable (confers decreased fitness), then individuals with 

a preference for the resource must not switch to other available resources. 
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(b) Community and ecosystem-level impacts 

The effects of behavioural change can also manifest at larger scales. For instance, changes in 

space use can alter the patterning and dynamics of ecosystem processes (Johnson & de León 

2015; Guiden & Orrock 2017) and affect biodiversity (Lambert et al. 2016; Sommers & 

Chesson 2016). Where invasive plants provide refuges (Orrock et al. 2010a,b; Dangremond et 

al. 2010; Pardini et al. 2017) or food subsidies (Orrock et al. 2015), the local aggregation of 

seed predators or other consumers can suppress the local abundance of native plants. This is a 

form of apparent competition between invasive and native plants (Orrock et al. 2010a,b) which 

threatens at least one endangered plant species (Dangremond et al. 2010). Modelling suggests 

that this effect will be greatest when invasive and native plants are closely matched 

competitors, or when productivity is high (Orrock et al. 2010b). Additionally, the effect may 

be exacerbated where native animals prefer to consume native over invasive seeds (Connolly 

et al. 2014). Behavioural changes could also influence important ecosystem functions such as 

carbon storage, although currently evidence for this only comes from interactions between 

invasive plants and invasive animals (Kourtev et al. 1999).  

Interspecific interactions are not only influenced by interacting species’ densities – traits, 

including behaviour, also influence the per-capita effect of one species on another (Werner & 

Peacor 2003). Therefore, an invasive plant’s effects on a native animal’s behaviour can 

indirectly affect other native species with which the animal interacts – a trait-mediated indirect 

interaction (Werner & Peacor 2003). As I described above, Pearson (2009, 2010) documented 

the effects of spotted knapweed (Centaurea maculosa) on web-building Dictyna spiders in 

North American grasslands. Knapweed transformed the grassland’s physical structure, greatly 

increasing the availability of substrates for web construction. Consequently, the spiders altered 

their web-building behaviour to construct larger webs, doubling their per-capita effect on their 

native Urophora prey and driving a decline in Urophora’s population (Pearson 2010). 

Additionally, the release of spiders from constraints once imposed by competition for web sites 

caused their abundance to explode by 46-74 times, which was not only enough to impact 

Urophora’s abundance and fecundity but also the fecundity of Urophora’s host plant (Pearson 

2010). Similarly, invasive A. petiolata’s effects on web-building spiders in forest understories 

were strong enough to affect soil phosphorus availability (Smith‐Ramesh 2017).  

Behavioural changes can disrupt vital mutualisms between native species. Many native plants 

depend heavily on native pollinator mutualisms, and changes in pollinator visitation behaviour 



46 
 

can affect native seed set, with consequences for population dynamics (Traveset & Richardson 

2006). There are two potential consequences of changes in pollinators’ visitation behaviour: 

facilitation, where the invader draws more pollinators to the area, increasing native species 

visitation; and competition, where invasive plants co-opt native pollinators, reducing native 

visitation (Bjerknes et al. 2007; Stout & Tiedeken 2017). Examples exist of both facilitation 

(Moragues & Traveset 2005; Lopezaraiza–Mikel et al. 2007; Bartomeus et al. 2008) and 

competition (Chittka & Schürkens 2001; Brown et al. 2002; Moragues & Traveset 2005; 

Bartomeus et al. 2008; Ojija et al. 2019) affecting native species, and also other invasive plants 

(Molina‐Montenegro et al. 2008; Yang et al. 2011). While an early meta-analysis concluded 

that competition is the more common outcome (Morales & Traveset 2009), a later meta-

analysis concluded that this result is probably an artefact of publication bias and certain 

experimental designs (Charlebois & Sargent 2017). While the outcome probably depends on 

environmental context (Mitchell et al. 2009; Bartomeus et al. 2016) and scaling (Muñoz & 

Cavieres 2008; Iler & Goodell 2014; Albrecht et al. 2016), certain mutualisms are likely more 

vulnerable to disruption than others (Traveset & Richardson 2006). For instance, mutualisms 

between specialist plants and generalist animals are more likely to be disrupted because the 

animal responds to a greater range of signals and cues, so is more readily co-opted by the 

invader (Traveset & Richardson 2006). 

 

(c) Impacts on humans 

Invasive plants that alter animal behaviour can have negative consequences for people. Many 

animals are hosts for disease, and their behaviour plays an important role in the dynamics of 

emerging infectious diseases (Hoverman & Searle 2016). By affecting behaviour, invasive 

plants can increase the risk of transmission to humans. For instance, areas with invasive 

Lonicera maackii are often used by white-tailed deer (Odocoileus virginianus), which carry 

lone star ticks (Amblyomma americanum). Consequently, in invaded areas human exposure to 

tick-borne ehrlichiosis is increased (Allan et al. 2010). Similar cases driven by other invasive 

plants have been documented for the vectors of malaria, trypanosomiasis, Lyme disease, 

Hantavirus, West Nile virus, scrub typhus, and spotted fever (Mack & Smith 2001; Gardner et 

al. 2017; Wei et al. 2020). Changes to daily activity patterns may also facilitate disease spread 

by increasing animal encounter rates disease vectors (Guiden & Orrock 2019). Finally, even if 

plant invasions suppress disease vectors and so reduce transmission, failing to account for the 
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invader’s presence can undermine efforts to predict the spatial distribution of disease risk 

(Conley et al. 2011).  

The behavioural impacts of invasive plants can also affect people by intensifying human-

wildlife conflict. I found only one example (Appendix A, Table S2), in which several invasive 

plant species on Mauritius reduce fruit availability by outcompeting native plants, thus 

promoting the raiding of commercial fruit trees by flying foxes (Pteropus niger; Krivek et al. 

2020). However, behavioural impacts likely drive conflict with other species as well. For 

instance, large mammalian herbivores’ space use has important implications for human-

wildlife conflict (Sitati et al. 2003), and can be altered by plant invasions (Rozen‐Rechels et 

al. 2017). Furthermore, where invasive plants drive avoidance in both livestock and native 

herbivores (Lym & Kirby 1987; Trammell & Butler 1995) there may be increased conflict as 

the two are forced to coexist in ever-smaller areas.  

 

(d) Feedback to plant invasion 

Where an invasive plant alters behaviour, the effects can feed back to affect the invader. These 

feedbacks may be positive, facilitating future invasion. Positive feedbacks can arise from 

mutualisms between invasive plants and native animals facilitating the invader’s dispersal, 

reproduction, and establishment in new areas (Milton et al. 2007; Bartuszevige & Endress 

2008; Brochet et al. 2009), or when behavioural changes inhibit native plant species (Sommers 

& Chesson 2016). An invasive plant species can also facilitate other invasive plants, for 

instance by attracting native pollinators (Molina‐Montenegro et al. 2008). Positive feedbacks 

have been invoked to explain why particular invasions succeed (Callaway et al. 2004), and as 

a possible solution (Schlaepfer et al. 2005) to the so-called “paradox of invasion” (Sax & 

Brown 2000) – that invasive plants are often able to outcompete locally adapted native plants. 

This is supported by theoretical work (Orrock et al. 2010a) which suggests that invasive plants, 

even those which are weaker competitors than native plants, can nevertheless spread through a 

feedback loop in which consumers seeking refuge in dense stands of invasive vegetation clear 

native seeds and vegetation from the surrounding habitat. The invader then spreads to occupy 

these cleared areas, and the process repeats (Orrock et al. 2010a). 

Conversely, negative feedback loops are also conceivable, in which future invasion is inhibited 

by invasive plants’ behavioural effects. For instance, behavioural changes in native animals 

can indirectly increase the competitive ability of native plants, reducing the future spread of 
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the invader (Smith & Schmitz 2015). Similarly, in some circumstances invader-induced 

changes in herbivore or seed predator behaviour may inhibit the invader’s own recruitment 

(Orrock et al. 2015). As with positive feedbacks, negative feedbacks can also occur between 

different species of invasive plants (Yang et al. 2011).  

 

Environmental context 

A key theme emerging from research into the behavioural impacts of invasive plants is the 

moderating role of environmental context (Fig. 1), a point raised previously by reviews 

focusing on how invaders affect insect foraging behaviour (Mitchell et al. 2009; Harvey & 

Fortuna 2012; Bartomeus et al. 2016). By environmental context, I mean the characteristics of 

interacting invasive and native species and of the environment in which they interact, including 

other species, abiotic conditions, and human activities. The prevalence of context-dependence 

means that accounting for context is important for understanding and predicting the impacts of 

invasive plants on behaviour (Table 1), and recent research in other aspects of invasion ecology 

has progressed toward this goal. For instance, a study on invasive Pinaceae demonstrated how 

multiple measures of context can be incorporated into a modelling framework to predict (non-

behavioural) impacts (Sapsford et al. 2020). Similar approaches could be applied to the 

behavioural impacts of invasive plants.  

Environmental context operates at two stages in my framework (Fig. 1). First, context 

influences how modes of impact generated by an invader translate to behavioural changes. The 

characteristics of different animal species can result in different responses; thus, one invasive 

species often affects multiple native animal species in different ways (Braithwaite et al. 1989; 

Sogge et al. 2008; Kapfer et al. 2013; Mokotjomela et al. 2013; Montiel-Martínez et al. 2015; 

Rozen‐Rechels et al. 2017; Ranyard et al. 2018). Comparative studies considering multiple 

animal species (Braithwaite et al. 1989; Sogge et al. 2008; Rozen‐Rechels et al. 2017; Ranyard 

et al. 2018), multiple invasive plant species, or both (Trammell & Butler 1995) can provide 

insight into how native and invasive species’ traits interact to shape the effects of invasive 

plants on behaviour, especially when traits are explicitly considered in predictions and analyses 

(Ceradini & Chalfoun 2017a; Rozen‐Rechels et al. 2017). For instance, the responses of 

mammalian herbivores to Chromolaena odorata invasion are partly explained by whether the 

mammals are browsers or grazers, because C. odorata mostly affects food availability in the 

grass layer (Rozen‐Rechels et al. 2017). The advent of comprehensive, high-quality functional 
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trait data (Gallagher et al. 2020) and advances in trait-based models of species interactions 

(e.g., Pichler et al. 2019) provide promising opportunities to improve our understanding of how 

different animals respond to plant invasion.  

Differences between populations of a native species can also influence responses to invasion. 

For instance, naïveté can explain differences in populations’ responses. Palmate newts’ (L. 

helveticus) ability to detect conspecific alarm cues is impaired by eucalypt leachates, but only 

populations from areas where Eucalyptus is absent are affected; newts sourced from areas 

where Eucalyptus is present are unaffected (Iglesias-Carrasco et al. 2017). These differences 

may reflect evolutionary adaptations to the invader (Keeler & Chew 2008), or cognitive 

changes such as habituation to novel cues.  

Context can also mean that the behavioural effects of an invasive plant vary among 

environments, or between times within an environment. This context can take the form of biotic 

(i.e., other species present in the habitat; Ceradini & Chalfoun 2017b; Cheeseman et al. 2018) 

or abiotic factors (Mattos & Orrock 2010; Dutra et al. 2011; Johnson & de León 2015; 

Sommers & Chesson 2016) which moderate the effects of invaders’ modes of impact. For 

instance, the effect of signals and cues emitted by an invasive plant depends on what signals 

and cues other species are emitting, and on the sensory properties of the environment (Harvey 

& Fortuna 2012). Additionally, human activities play an important contextual role. For 

instance, invasive Australian pines (Casuarina equisetifolia) can impede loggerhead turtle 

(Caretta caretta) nesting by affecting beach erosion so that shorelines are steeper (U.S. 

Congress, Office of Technology Assessment 1993). However, on beaches near towns the pines 

instead promote nesting by blocking lights that would otherwise illuminate the beach (Salmon 

et al. 1995). 

The second role of environmental context in my framework is in influencing the ecological 

impacts of invader-induced changes in animal behaviour (Fig. 1), as exemplified by the 

context-dependency of evolutionary traps. First, the animal’s characteristics can influence the 

strength and timing of traps.  For example, early and late-season flights of Pieris virginiensis 

butterflies exhibit different oviposition preferences, with late-season females preferring the 

unsuitable invasive Alliaria petiolata while early-season females use both invasive and native 

hosts equally (Augustine & Kingsolver 2018). Consequently, only late-season females are 

caught in a severe evolutionary trap (Robertson et al. 2013). Second, biotic factors may 

influence the invader’s effect on the native animal’s fitness – results reported by Rodewald et 
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al. (2009), while not diagnostic of an evolutionary trap, suggest the possibility that trap severity 

can change seasonally due to shifts in predation risk from native predators. Finally, abiotic 

factors are important, and may lead to emerging traps driven by climate change. Monarch 

butterflies (Danaus plexippus) currently thrive on invasive Asclepias curassavica, but fare 

poorly under experimental simulations of future climatic conditions (Faldyn et al. 2018). The 

monarchs will therefore become evolutionarily trapped if they continue to respond to 

Asclepias’ cues as if they indicate a high-quality host.   

 

Conclusion 

Plant invasions are a conservation challenge that threaten the integrity of ecosystems 

worldwide, and one of the ways that they do so is by altering the behaviour of native animals. 

I have synthesised the disparate literature within a novel mechanistic framework, showing that 

the behavioural changes wrought by plant invasions, and the resulting ecological consequences, 

are varied and often profound. Importantly, these changes and consequences are also highly 

context-dependent. Priorities for future research include understanding how behavioural 

impacts scale with invasive plant abundance and distribution, and how different modes of 

impact, environmental context, and behavioural constraints affect the likelihood, magnitude, 

and type of behavioural impact. Progress in these areas will yield a greater ability to predict 

how, when, and where an invasion results in behavioural changes, enabling better targeting of 

management efforts to reverse, mitigate, or prevent those changes. The formation of selected-

dependence traps is of particular concern and deserves further study, so that traps can be 

identified and carefully disarmed, or avoided in the first instance so that the survival of native 

animal populations and species is not jeopardised by well-meaning management of invasive 

plants. Tackling the key questions I have identified (Table 1) will require an interdisciplinary 

approach which brings together invasion ecology with the study of animal behaviour and 

cognition. 
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Appendix A: Supplementary tables 

Table S1. Image credits and descriptions for Fig. 1. For full references, see reference list in main 

text. 

Image Credit Description 

Physical structure Frank Vincentz Invasive cacti (Opuntia spp.), which form dense, 

impenetrable stands.  

 

Resources Matthieu Sontag Berries of Lonicera maackii. In its invasive 

range, L. maackii berries are consumed by native 

animals (e.g., Rodewald et al., 2011).  

 

Abiotic characteristics Gyrobo A plant casts shade on the ground. Some reptiles 

avoid areas where invasive plants cast shade, 

lowering the ground temperature (Carter et al., 

2015; Stellatelli et al., 2013).  

 

Signals and cues Alvesgaspar Flower of Oxalis pes-caprae with visiting 

hoverfly. In the Balearic Islands O. pes-caprae is 

invasive, and affects the visitation behaviour of 

native pollinators (Albrecht et al., 2016).  

   

Foraging  Jack Dykinga An American bison (Bos bison) foraging. 

Foraging bison avoid areas invaded by leafy 

spurge (Euphorbia esula) (Trammell and Butler, 

1995).  

 

Anti-predator behaviour BlueBreezeWiki A wood mouse (Apodemus sylvaticus), which 

uses patches of invasive Rhododendron ponticum 

as cover from its predators (Malo et al., 2013). 

 

Movement D. Gordon E. 

Robertson  

A red rock crab (Cancer productus) moving on a 

rocky shore. A congeneric species, Cancer 

magister, avoids patches of invasive cordgrass 

(Spartina alterniflora) which increase the risk of 

stranding (Holsman et al., 2010). 

 

Communication and 

reproduction 

Minette Layne A pair of cedar waxwings (Bombycilla cedorum), 

apparently engaged in courtship behaviour. 

Consumption of ivasive nLonicera morrowii 

fruits alters waxwing colouration and may 

interfere with assortative mating (Witmer, 1996). 

  

Construction behaviour Seney Natural 

History Association 

A veery (Catharus fuscescens) nest with eggs. 

Some veeries incorporate invasive plant material 

into their nests (Heckscher et al., 2014).  

 

Human activity  Phil Catterall A tractor working in a field. A sudden shift in 

agricultural practices were the trigger for a 

selected-dependence which caused the local 

extinction of a population of E. editha (Singer 

and Parmesan, 2018).  

 



52 
 

Traits of invader and 

native 

Alvesgaspar The flowers of Acacia saligna, which is invasive 

in the Cape Floristic Region, S. Africa. Gibson et 

al. (2012) studied whether A. saligna’s floral 

traits could predict its impact on visitation 

behaviour in native pollinators.  

 

Spatial scale USDA Forest 

Service 

 

Mimosa pigra vegetation. The effects of this 

invader on mammals depends on spatial scale 

(Braithwaite et al. 1989). 

 

Other native & invasive 

species 

Ragesoss An eastern cottontail (Sylvilagus floridanus), 

which is invasive in the Hudson Valley, NY. 

Native New England cottontails (S. 

transitionalis) use invasive shrubs more often 

only when the eastern cottontail is present 

(Cheeseman et al., 2018).  

 

Native naïveté  Luis Miguel 

Bugallo Sánchez 

A palmate newt (Lissotriton helveticus). The 

newt’s behavioural response to leachates exuded 

by invasive Eucalyptus globulus depends on 

whether the newt is sourced from a population 

where Eucalyptus is present (Iglesias-Carrasco et 

al., 2017). 

 

Surrounding habitat 

matrix & environmental 

variables 

Pixabay A moonlit night. Moonlight influences the space 

use of small mammals foraging in invaded areas 

(Johnson and de León, 2015).  

 

Fitness and abundance Gilles San Martin A pair of ants (Myrmica sp.). Ants in areas 

invaded by goldenrods (Solidago sp.) have to 

travel further in search of food, negatively 

affecting their fitness and reducing colony sizes 

(Lenda et al., 2013).  

 

Evolutionary & 

selected-dependence 

traps 

Fcb981 An Edith’s checkerspot butterfly (Euphydryas 

editha). A population of E. editha became caught 

in a selected-dependence trap caused by invasive 

Plantago lanceolata, and became locally extinct 

(Singer and Parmesan, 2018). 

 

Biodiversity Brett Donald The Bell Miner (Manorina melanophrys). This 

despotic passerine nests in invasive Lantata 

camara, and causes declines in avian diversity in 

areas it inhabits (Lambert et al., 2016).   

 

Disrupted mutualisms & 

processes 

Ivar Leidus A bee (Bombus sp.) on purple loosestrife 

(Lythrum salicaria). L. salicaria invasions in 

Ohio disrupt mutualisms between native 

pollinators and the native plant Lythrum alatum 

(Brown et al., 2002).  

 

TMII’s (trait-mediated 

indirect interactions) 

G. Kirkland A web-building spider, species unknown. 

Changes in the web-building behaviour of 

Dictyna spiders caused by spotted knapweed 

(Centaurea maculosa) invasions increased the 
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per-capita effect of Dictyna on their Uphora prey, 

driving a decline in Uphora’s population 

(Pearson, 2010). 

 

Human-wildlife conflict 

& disease transmission 

James Gathanay A lone star tick (Amblyomma americanum), 

which carries ehrlichiosis. Changes in the space 

use of white-tailed deer (Odocoileus virginianus) 

due to honeysuckle (Lonicera maackii) invasions 

increase tick densities and disease transmission in 

invaded areas (Allan et al., 2010).  
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Table S2. Results for targeted literature searches used to confirm apparent gaps in the literature. All 

searches were carried out on the Web of Science core collection database (www.webofknowledge.com). 

Results were screened manually at title and abstract level to determine relevance. Only primary research 

articles were included. Searches were conducted most recently on 26th August 2020 except for the 

search marked (*), which was conducted on 19th December 2020. 

Search terms Number of 

relevant results 

References 

TOPIC: ("invasive plant" OR "alien plant" OR 

"introduced plant" OR "plant invasion" OR "exotic 

plant" OR "weed" OR "non-native plant" OR 

"introduced plant")  

AND TOPIC: ("evolutionary trap" OR "eco-

evolutionary trap" OR "ecological trap") 

 

6 (Keeler & Chew 2008; 

Rodewald et al. 2011; 

Nakajima et al. 2013; 

Augustine & 

Kingsolver 2018; 

Singer & Parmesan 

2018; Sun et al. 2020) 

 

TOPIC: ("invasive plant" OR "alien plant" OR 

"introduced plant" OR "plant invasion" OR "exotic 

plant" OR "weed" OR "non-native plant" OR 

"introduced plant")  

AND TOPIC: ("human-wildlife conflict" OR "human 

wildlife conflict" OR "human-animal conflict" OR 

"human animal conflict") 

 

1 (Krivek et al. 2020) 

TOPIC: ("invasive plant" OR "alien plant" OR 

"introduced plant" OR "plant invasion" OR "exotic 

plant" OR "weed" OR "non-native plant" OR 

"introduced plant")  

AND TOPIC: (impact* OR effect* OR alter*)  

AND TOPIC: ("communication" OR "animal 

communication" OR "communication behaviour" OR 

"mate-finding" OR "mate search*" OR "mate locat*") 

 

1 (Iglesias-Carrasco et 

al. 2017) 

TOPIC: ("invasive plant"  OR "alien plant"  OR 

"introduced plant"  OR "plant invasion"  OR "exotic 

plant"  OR "weed"  OR "non-native plant"  OR 

"introduced plant")  

AND TOPIC: ("construction"  OR "construction 

behaviour"  OR "nest-building"  OR "plant parts") 

AND TOPIC: ("fitness"  OR "survival"  OR 

"fecundity"  OR "failure"  OR "nest failure") 

1 (Heckscher et al. 

2014) 

   

TOPIC: ("invasive plant" OR "alien plant" OR 

"introduced plant" OR "plant invasion" OR "exotic 

plant" OR "weed" OR "non-native plant" OR 

"introduced plant")  

AND TOPIC: (impact* OR effect* OR alter*)  

0 n/a 
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AND TOPIC: ("predator foraging" OR "mode of 

predation" OR "foraging mode" OR "hunting mode" 

OR "hunting strategy" OR "predation strategy") 

   

(*) TOPIC: ("invasive macrophyte"  OR "alien 

macrophyte"  OR "introduced macrophyte"  OR 

"macrophyte invasion"  OR "exotic macrophyte"  OR 

"non-native macrophyte"  OR "introduced 

macrophyte") AND TOPIC: (impact*  OR effect*  OR 

alter*) AND TOPIC: ("behaviour"  OR "foraging"  

OR "refuge"  OR "nesting"). 

4 (Valley & Bremigan 

2002; Theel & Dibble 

2008; Bogacka-

Kapusta & Kapusta 

2013; Figueiredo et al. 

2015) 
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Chapter 3 

Model Selection in Occupancy Models:            

Inference versus Prediction 

 
This chapter is published as: Stewart, P.S., Stephens, P.A., Hill, R.A., Whittingham, M.J. & 

Dawson, W. (2023). Model selection in occupancy models: inference versus prediction. 

Ecology. 104, e3942. 
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Abstract 

Occupancy models are a vital tool for ecologists studying the patterns and drivers of species 

occurrence, but their use often involves selecting among models with different sets of 

occupancy and detection covariates. The information-theoretic approach, which employs 

information criteria such as Akaike’s Information Criterion (AIC) is arguably the most popular 

approach for model selection in ecology and is often used for selecting occupancy models. 

However, the information-theoretic approach risks selecting models which produce inaccurate 

parameter estimates due to a phenomenon called collider bias, a type of confounding that can 

arise when adding explanatory variables to a model. Using simulations, I investigated the 

consequences of collider bias (using an illustrative example called M-bias) in the occupancy 

and detection processes of an occupancy model, and explored the implications for model 

selection using AIC and a common alternative, the Schwarz Criterion (or Bayesian Information 

Criterion, BIC). I found that when M-bias was present in the occupancy process, AIC and BIC 

selected models which inaccurately estimated the effect of the focal occupancy covariate, while 

simultaneously producing more accurate predictions of the site-level occupancy probability 

than other models in the candidate set. In contrast, M-bias in the detection process did not 

impact the focal estimate; all models made accurate inferences, while the site-level predictions 

of the AIC/BIC-best model were slightly more accurate. My results show that information 

criteria can be used to select occupancy covariates if the sole purpose of the model is prediction, 

but must be treated with more caution if the purpose is to understand how environmental 

variables affect occupancy. By contrast, detection covariates can usually be selected using 

information criteria regardless of the model’s purpose. These findings illustrate the importance 

of distinguishing between the tasks of parameter inference and prediction in ecological 

modelling. Furthermore, my results underline concerns about the use of information criteria to 

compare different biological hypotheses in observational studies. 
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Introduction 

The patterns and drivers of species occurrence are of fundamental interest to ecologists. 

Predicting where species occur enables ecologists to tackle key problems such as understanding 

the spread of invasive species (Gormley et al. 2011), assessing the distributions of key species 

within protected areas (Midlane et al. 2014), and estimating the range size of populations and 

species to evaluate their extinction risk (Breiner & Bergamini 2018) and recovery (Akçakaya 

et al. 2018). Understanding the drivers of occurrence is also important; interventions to mitigate 

the factors which threaten species must be informed by the diagnosis of those factors (Caughley 

1994). Many studies have aimed to infer how occurrence is driven by factors including forest 

degradation (Zimbres et al. 2018), wildfires (Hossack et al. 2013), and anthropogenic noise 

pollution (Chen & Koprowski 2015).  

A key challenge in studying species occurrence is that experimental manipulations of 

ecological systems may be physically impossible, logistically unfeasible, or unethical; 

consequently, ecologists are often constrained to the use of observational data. One approach 

to this challenge is to use a model which relates observed variation in species occurrence to 

one or more environmental covariates. The model can then be used to predict, or to explain 

(Shmueli 2010): we can predict species occurrence at new sites, or examine the effect of each 

covariate to explain the drivers of occurrence. Occupancy models are often used because they 

deal with imperfect detection (MacKenzie et al. 2002). They do so by modelling the probability 

that a species occupying the site is detected, often including environmental covariates to 

explain variation in detectability among sites (MacKenzie et al. 2002). Occupancy models 

therefore contain one set of covariates for occupancy probability, and a second set for detection 

probability; the challenge is to select suitable sets of covariates to include in the model. This 

challenge can be framed as a problem of model selection (Robins & Greenland 1986; Forster 

2000; Burnham & Anderson 2004; Johnson & Omland 2004). 

 

The information-theoretic approach to model selection 

The information-theoretic approach (Anderson et al. 2000; Burnham & Anderson 2001, 2004; 

Lukacs et al. 2007; Burnham et al. 2011) compares models in terms of their relative Kullback-

Leibler (KL) divergence – the relative distance between each model and “full reality”, in units 

of information entropy (Forster 2000; Burnham & Anderson 2001; McElreath 2021, p. 207). 

Information criteria, of which Akaike’s information criterion (AIC; Akaike 1973) is the most 
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commonly used, estimate the relative KL divergence of each model using the sample data 

(McElreath 2021, p. 219). AIC is calculated by taking the in-sample deviance (a measure of 

how well the model fits the data), and adding an overfitting penalty proportional to the number 

of parameters in the model (Akaike 1973; Burnham et al. 2011). Consequently, AIC favours 

parsimonious models which balance underfitting and overfitting, with the aim of producing 

better out-of-sample predictions (McElreath 2021, p. 192).  

 

Causal inference 

An alternative approach to model selection which has gained recent traction in ecology and 

evolution (e.g., Laubach et al. 2021; Arif & MacNeil 2022) is causal inference. Causal 

inference is concerned with predicting the consequences of intervening in a system, as well as 

inferring counterfactual outcomes – events which might have happened, under hypothetical 

unrealised conditions (Pearl et al. 2016, p. 89). Importantly, causal inference is not about 

‘inferring causation from correlation’ – conclusions about causality cannot be made from the 

data alone, but require causal assumptions about the process which generated the data (Pearl et 

al. 2016, p. 5).  To illustrate the key concepts and terminology of the causal inference approach 

I will discuss a hypothetical example, in which our goal is to infer how the density of an 

invasive plant affects the occupancy of a native animal (Fig. 1).  

 

Figure 1. Directed acyclic graph for a hypothetical example in which we are interested in estimating 

the direct effect of the density of an invasive plant on animal occupancy.  

 

In the causal inference approach, the first step is to employ subject expertise and the literature 

to identify variables which could be important in the system. This step closely resembles the 

“hard thinking” which is an essential part of the information-theoretic approach (Burnham et 
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al., 2011). In our hypothetical example, we know of a native food plant which is regularly 

consumed by the animal species, and may therefore influence the animal’s occupancy. 

Furthermore, there is evidence to suggest that the invasive plant tends to outcompete the native 

food plant, particularly on certain soil types. Finally, as our hypothetical study is conducted 

along an urban-rural gradient, the degree of urbanisation is likely to be important. 

The next step is to make assumptions about how these variables might be related to one another 

– these are known as “causal assumptions” (Pearl et al. 2016, p. 5). A key principle of causal 

inference is that these assumptions should be communicated clearly so that they are open to 

scrutiny, debate, sensitivity analysis, and verification (Pearl 1995). Consequently, it is common 

to express causal assumptions graphically, usually as a directed acyclic graph (DAG; Pearl 

1995). In a DAG, variables are represented as nodes. The edges (arrows) linking each node 

represent the assumed mechanistic links between the variables (Pearl 1995; Greenland et al. 

1999). The sequence of edges linking one variable to another, regardless of which direction 

these edges are pointing in, is called a path (Pearl 1995).  In our example (Fig. 1), we have 

assumed that the invasive plant, the native food plant, and urbanisation all exert direct 

influences on the animal’s occupancy. We have also assumed that the invasive plant affects the 

density of the native food plant through competition. Furthermore, we have assumed that 

urbanisation also influences the densities of both the invasive and native plants. Finally, we 

have assumed that soil type does not influence occupancy directly, but that it does affect the 

densities of both the invasive and native plants.  

Once we have specified a DAG, we must identify which effects we are interested in estimating. 

In our example, we could estimate the direct effect (invasive plant → animal occupancy) or 

the total effect (invasive plant → animal occupancy and invasive plant → native food plant → 

animal occupancy) of the invasive plant; in our example, the focal effect will be the direct 

effect. Once we have decided on a focal effect, we can analyse the DAG directly to identify a 

set of variables to condition on (i.e., include as covariates) which will allow us to estimate the 

effect. One strategy is to condition on the variables which satisfy the ‘back-door criterion’, in 

which the aim is to ‘close all back-door paths’ linking the focal explanatory and response 

variables (Pearl 1995). A back-door path is defined as any path which has an arrow entering 

the focal explanatory variable (Pearl 1995). Our example contains four back-door paths: 1) 

invasive plant ← soil type → native food plant → animal occupancy; 2) invasive plant ← soil 

type → native food plant ← urbanisation → animal occupancy; 3) invasive plant ← 
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urbanisation → animal occupancy; 4) invasive plant ← urbanisation → native food plant → 

animal occupancy.  

Whether a path is open or closed depends on the direction in which arrows along the path are 

pointing. Paths which are a “fork” (e.g., X ← Z → Y) or “pipe” (e.g., X → Z → Y) are open 

by default, and conditioning on the middle variable (Z) closes them (Greenland 2003; Pearl et 

al. 2016, p. 46; McElreath 2021, p. 184-185). In contrast, paths which are a collider (e.g., X → 

Z ← Y) are closed by default, and conditioning on the middle variable (Z) opens the path 

(Greenland et al. 1999; Greenland 2003; Pearl et al. 2016, p. 46; McElreath 2021, p. 185). A 

path with more than three variables only needs to be closed in one place to be closed overall 

(e.g., X ← W → Z ← Y is closed by the collider at Z). 

In our example, the back-door paths 1 and 2 are closed by default because native food plant is 

a collider. However, as we are interested in the direct effect invasive plant → animal occupancy 

we need to close the indirect path, invasive plant → native food plant → animal occupancy, 

by conditioning on native food plant. This opens paths 1 and 2, but we can close both paths 

again by conditioning on either soil type or urbanisation. If we condition on urbanisation, then 

doing so also closes paths 3 and 4, meaning that all four back-door paths will be closed. 

Consequently, we can use the model: animal occupancy ~ invasive plant + native food plant 

+ urbanisation because it closes all of the back-door paths, satisfying the back-door criterion. 

We could also condition on soil type, but doing so is not required to estimate the direct effect. 

As DAG-based approaches are non-parametric in the sense that the forms of the functions 

represented by edges do not have to be specified (Pearl 1995; Greenland et al. 1999), we would 

also be free to incorporate linear interactions between these covariates, or model their effects 

as nonlinear functions.  

Finally, we can explore the consequences of changing the assumptions embodied in our DAG, 

to see whether our inferences hold under different sets of assumptions. For instance, we could 

ask “what if urbanisation does not affect the density of the invasive plant?”, remove the arrow 

urbanisation → invasive plant, and re-analyse the DAG. Doing so, we see that our model still 

satisfies the back-door criterion; our conclusions are robust to altering this assumption. We can 

also modify the DAG to answer questions such as “what if there was an unmeasured 

confounding variable affecting the densities of both the invasive and native plants?”. By adding 

a new variable invasive plant ← unmeasured variable → native food plant and re-analysing 

the DAG, we can see again that the same model structure is supported because it satisfies the 
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back-door criterion, and thus our conclusions still hold. Where a modified DAG supports a 

different model structure, we can run the new model and compare the effect estimates with 

those of the original model.  

 

Collider bias and the information-theoretic approach 

Proponents of the information-theoretic approach have argued that each model in the candidate 

set should represent a different biological hypothesis, and that the models’ relative AIC scores 

indicate the strength of evidence for each hypothesis (Burnham et al. 2011). However, insights 

from causal inference reveal a potential problem: collider bias. Collider bias arises when back-

door paths are opened due to conditioning on collider variables (Greenland 2003), and is a form 

of included-variable bias or “bad control” (Cinelli et al. 2022). This is in contrast to the classical 

notion of confounding (Fig. 2A), which is a form of omitted variable bias (Clarke 2005). As 

collider covariates and classical confounds exhibit a similar degree of correlation to the focal 

explanatory variable (Fig. 2A), and these correlations may be masked or otherwise distorted 

by the action of other variables or non-linear relationships between the covariates, it is not 

possible to avoid collider bias by checking the explanatory variables for multicollinearity. 

As AIC and other information criteria select models based on their expected predictive 

performance, they are vulnerable to collider bias: including a collider covariate tends to 

improve a model’s AIC score, while simultaneously resulting in an estimated effect which is 

far from the true value (Fig. 2A-C; Luque-Fernandez et al. 2019). Consequently, recent studies 

have argued that it is essential to consider whether the purpose of a model is inference (i.e., 

explanation) or prediction when deciding on a model selection strategy (e.g., Laubach et al. 

2021; Arif & MacNeil 2022). However, the implications for models like occupancy models, 

which contain multiple sub-models, are unclear.  

To address this topic, I investigated the consequences of a form of collider bias (using an 

illustrative example known as “M-bias”; Greenland 2003; Cinelli et al. 2022) in an occupancy 

modelling framework, and explored the implications for model selection using the information-

theoretic approach (using AIC). I also examined the performance of a common alternative to 

AIC, the Schwarz criterion (or Bayesian Information Criterion, BIC; Schwarz 1978). BIC is 

built upon different philosophical foundations to AIC, and is not based upon information theory 

(Johnson & Omland 2004); some authors have suggested BIC can be used for selecting the 

“true” model from the candidate set (Aho et al. 2014). In my simulation-based approach, I 
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generated datasets where M-bias was present in the occupancy process, the detection process, 

or both. I then fitted occupancy models with different sets of covariates to these datasets, and 

evaluated them on the accuracy of their parameter inferences, the accuracy of their site-level 

occupancy predictions, and their level of support from AIC and BIC. 
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Figure 2. Luque-Fernandez et al. (2019) presented simulations illustrating classical confounding and 

collider bias in a linear model. I extended their example by conducting 10000 iterations for each 

example, using effect sizes drawn from a uniform distribution between -2 and 2. In classical 

confounding (A), including the variable Z reduces the absolute bias when estimating the effect of X on 

Y. Conversely, in the collider example (B), including Z increases the absolute bias. However, in both 

cases Akaike’s Information Criterion (AIC) favours the model which includes Z (C), illustrating that 

AIC does not always favour models which produce accurate parameter estimates. Furthermore, the 

absolute correlation between X and Z is similar in both scenarios (D), meaning that checking for 

multicollinearity cannot reliably help to select the model which estimates βXY more accurately, and that 

adding highly collinear explanatory variables can sometimes improve inferential accuracy. Code to 

reproduce the simulations is available at: https://doi.org/10.5281/zenodo.7043335 

  

Scenario: 

Classical confounding 

Collider bias 

Y ~ X + Z better Y ~ X better 

https://doi.org/10.5281/zenodo.7043335
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Methods 

M-bias as an illustrative example 

M-bias is a common illustrative example in the causal inference literature (e.g. Greenland 2003; 

Cinelli et al. 2022), in which an “M”-shaped back-door path (e.g., Fig. 3A, left panel) is opened 

by conditioning on the collider variable (D in Fig. 3A), confounding the estimate of the focal 

effect (X → ψ in Fig. 3A). When the back-door path contains latent (unobserved) variables (A 

and C in Fig. 3A), it is impossible to condition on them to close the path because they are 

unobserved, meaning the correct approach is to not condition on the collider. 

 

Simulation study 

To explore the effects of M-bias in both the occupancy and detection components of an 

occupancy model, I simulated three different scenarios (Fig. 3) in which the focal effect was 

the effect of variable X on occupancy probability (ψ).  In the first scenario (Fig. 3A), ψ was 

part of an M-graph while the detection probability (p) was fixed at 0.5. In the second scenario 

(Fig. 3B), ψ depended only on X, and p was now part of an M-graph. In the final scenario (Fig. 

3C), both the occupancy and detection probabilities were part of M-graphs.  

All three simulations followed the same process: 1) generate a dataset with known parameter 

values, using the relationships between variables embodied in the relevant DAGs (Fig. 3); 2) 

fit a number of occupancy models to the dataset (Fig. 3); 3) evaluate each model’s accuracy in 

parameter estimation and prediction; 4) evaluate each model’s quality under the information-

theoretic framework. Each simulation was repeated 1000 times. I conducted my simulations in 

R (v 4.0.5; R Core Team, 2021), and provide code to reproduce my simulations and analyses 

at: https://doi.org/10.5281/zenodo.7043335 
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Figure 3. Data generating processes and model structures for the three scenarios: a) M-bias in the 

occupancy process, b) M-bias in the detection process, c) M-bias in both the occupancy and detection 

processes. Data-generating processes are represented as directed acyclic graphs (DAGs). ψ is the 

occupancy probability, p is the detection probability, X is the focal explanatory variable, and A, C, D, 

Q, U, R and V represent other explanatory variables. Circled variables are latent. All models included 

intercept terms for occupancy and detection. 

 

1) Generating a dataset 

Data were simulated for 3000 sites with two surveys each. The number of sites was deliberately 

high to ensure that any inaccuracy was not primarily driven by an underpowered design. 

Repeating the simulations with 40 simulated surveys yielded qualitatively similar results 

(Appendix A: Figs. S7-S9).  

To generate the data, I first drew effect sizes for each arrow in the DAG from a uniform 

distribution (min = -1, max = 1). Values for explanatory variables with no ingoing arrows on 

the DAG were then drawn from a normal distribution (mean = 0, sd = 1). I then generated 

values for the other explanatory variables from the appropriate variables and effect sizes (i.e., 

those from ingoing arrows on the DAG; Fig. 3), plus a “disturbance term” (sensu Pearl 1995) 

drawn from a normal distribution (mean = 0, sd = 0.025). I then calculated the log-odds of 

occupancy and detection as a linear combination of the effect sizes and explanatory variables 

with ingoing arrows on the DAG (Fig. 3), and took the inverse-logit to obtain the probability. 

The true occupancy state of each site was then simulated as a Bernoulli trial with probability 
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of success equal to the occupancy probability. Finally, detection histories for each site were 

generated as a sequence of Bernoulli trials, with probability of success equal to the true 

occupancy state multiplied by the detection probability.  

 

2) Fitting models 

Occupancy models were fitted to each dataset using the occu function in the R package 

unmarked (v.1.0.0; Fiske & Chandler, 2011), which implements the single-season occupancy 

model developed by MacKenzie et al. (2002). The models used the logit link function. I fitted 

models with various combinations of observed variables (i.e., excluding latent variables) for 

each scenario (Fig. 3).  

 

3) Evaluating model performance 

In each scenario, all models were evaluated on the accuracy of their parameter inferences and 

predictions. To quantify how accurately each model estimated the effect of covariate X on the 

occupancy probability ψ, I calculated the bias and absolute bias: 

𝐵𝑖𝑎𝑠 =  𝛽̂𝑋𝜓 − 𝛽𝑋𝜓 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐵𝑖𝑎𝑠 =  |𝛽̂𝑋𝜓 − 𝛽𝑋𝜓| 

where 𝛽̂𝑋𝜓 and 𝛽𝑋𝜓 are the estimated and true effects of X on ψ, respectively. Additionally, 

checked whether the true value, 𝛽𝑋𝜓, was found within the 95% confidence interval 

surrounding the 𝛽̂𝑋𝜓 estimate, and checked whether the sign (positive or negative) of 𝛽̂𝑋𝜓 was 

the same as that of 𝛽𝑋𝜓. 

To evaluate each model’s predictions, I used the predict function in R predict the occupancy 

probability value for each site in two datasets. I first made predictions for the data to which the 

model was fitted, to examine how the model retrodicted the sample. I then examined the 

model’s performance in out-of-sample prediction by making predictions for a new dataset (also 

3000 sites), which was generated using the same true parameter values as the original dataset. 

To assess the accuracy of the model retrodictions and predictions, I calculated the mean 

absolute error: 

𝑀𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 =  
1

𝑛
∑|𝜓̂𝑖 −  𝜓|

𝑛

𝑖=1
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where 𝜓̂𝑖 and 𝜓𝑖 are the estimated and true occupancy probabilities for site i, respectively, and 

n is the number of sites. Additionally, I calculated the proportion of sites for which the true 

occupancy probability was within the prediction’s 95% confidence interval. 

 

4) Evaluating models under the information-theoretic framework 

To examine the degree of support for each model under the information-theoretic framework I 

obtained the AIC value for each model from the model’s summary table. Proponents of the 

information-theoretic approach have advocated for multimodel inference (e.g., Burnham & 

Anderson 2004), in which inferences are made using the entire candidate set of models, each 

weighted using Akaike weights derived from AIC. I calculated Akaike weights (w) for each 

model m as:  

𝑤𝑚 = 
exp (−0.5 × Δ𝐴𝐼𝐶𝑚 )

∑ exp (−0.5 × Δ𝐴𝐼𝐶𝑟 )
𝑅
𝑟=1

 

where Δ𝐴𝐼𝐶𝑚 is the difference between the AIC of model m and lowest AIC value for the set 

of models in the scenario, and R is the number of models in the scenario.  

I also considered BIC (Schwarz 1978) as an alternative to AIC. I calculated BIC and BIC 

weights for each model using the R package AICcmodavg (Mazerolle, 2020).   
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Results 

Scenario 1: M-bias in the occupancy process 

When M-bias was present in the occupancy process, model 1 (ψ ~ X) estimated the true effect 

of X on ψ much more accurately than model 2 (ψ ~ X + D) (Fig. 4A,B, Appendix A: Table S1). 

However, comparing the models’ predictive accuracy showed the opposite picture; model 1 

generally produced worse predictions than model 2 (Fig. 5A,B, Appendix A: Table S1), and 

similar results were observed for retrodictive accuracy (Appendix A: Fig. S1). AIC and BIC 

both showed clear support for model 2 in the majority of simulations (Fig. 6A,B); in 80.4% of 

simulations model 2 received an Akaike weight of >0.99, and in 52.2% of simulations it 

received the entire weight (Fig. 6B). The few simulations in which model 1 received more 

weight were mostly those in which βCψ was small (Appendix A: Fig. S2). A similar pattern of 

results was observed for BIC (Appendix A: Fig. S2), although when BIC assigned weight to 

model 1 it generally assigned more weight than AIC (Fig. 6A).  

 

Scenario 2: M-bias in the detection process 

When M-Bias was present in the detection process, both models 1 (ψ ~ X, p ~ U) and 2 (ψ ~ X, 

p ~ U + R) accurately estimated the effect of X on ψ (Fig. 4C,D, Appendix A: Table S1). Both 

models also made accurate predictions, although those of model 2 were more accurate (Fig. 

5C,D, Appendix A: Table S1). Similar results were observed for retrodictive accuracy 

(Appendix A: Fig. S1C,D). Both AIC and BIC assigned more weight to model 2 in most 

simulations (Fig. 6C,D). 

 

Scenario 3: M-bias in the occupancy and detection processes 

When M-Bias was present in both the occupancy and detection processes, models 1 (ψ ~ X, p 

~ U) and 3 (ψ ~ X, P ~ U + R) estimated the effect of X on ψ much more accurately than models 

2 (ψ ~ X + D, P ~ U) and 4 (ψ ~ X + D, P ~ U + R) (Fig. 4E-H, Appendix A: Table S1). In 

general, the 95% confidence interval around the estimate in models 2 and 4 only contained the 

true value when βAD and βCψ (and to a lesser extent βAX) were relatively small (Appendix A: 

Figs. S4,5). In contrast, models 2 and 4 made more accurate predictions than models 1 and 3 

(Fig. 5E-H, Appendix A: Table S1), and similar results were obtained for retrodictive accuracy 
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(Appendix A: Fig. S1E-H). Both AIC and BIC showed clear support for model 4 in the majority 

of simulations (Fig. 6H); the model received an Akaike weight of >0.99 in 63.0% of the 

simulations. While model 3 did occasionally receive weight, this mostly occurred when βCψ 

was small (Appendix A: Fig. S6) and it still never received the entire weight (Fig. 6G). BIC 

weights were similar to the Akaike weights, although BIC assigned more weight to model 3 in 

some simulations (Fig.4G), again generally when βCψ was small (Appendix A: Fig. S6). 

  



71 
 

 

Figure 4. True versus estimated effect of X on occupancy probability (ψ), for the following occupancy 

models: A) scenario 1, model 1; B) scenario 1, model 2; C) scenario 2, model 1; D) scenario 2, model 

2; E) scenario 3, model 1; F) scenario 3, model 2; G) scenario 3, model 3; H) scenario 4, model 4. Each 

point represents the result from one simulation, with 1000 simulations in total. The y-axis is truncated 

at -10 and 10; plots B, F, G and H omit 34, 33, 1 and 45 points respectively which lay outside this range. 

Blue points indicate that the true value was contained within the estimate’s 95% confidence interval, 

while unfilled circles indicate that the true value was not contained within the interval. The dashed black 

line indicates equality between the true and estimated effect. Each model’s covariates for ψ and the 

detection probability (p) are shown above their respective plot.  
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Figure 5. Kernel density estimate contours showing two measures of predictive accuracy when 

predicting site-level occupancy probability (ψ), for 1000 simulations. The x-axis shows the proportion 

of sites (out of 3000) for which the 95% confidence interval around the model’s prediction contained 

the true occupancy probability. The y-axis shows the mean absolute error. Thus, the bottom right of 

each plot indicates higher predictive accuracy, while the top left indicates lower predictive accuracy. 

The density of simulations is shown by the contours, with lighter colours indicating a higher density of 

simulations. Results are displayed for the following occupancy models: A) scenario 1, model 1; B) 

scenario 1, model 2; C) scenario 2, model 1; D) scenario 2, model 2; E) scenario 3, model 1; F) scenario 

3, model 2; G) scenario 3, model 3; H) scenario 4, model 4. Each model’s covariates for ψ and the 

detection probability (p) are shown above their respective plot.  
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Figure 6. Akaike weight (yellow area) and BIC weight (blue area) for 1000 simulations of eight 

occupancy models. Simulations are shown ranked by weight, with higher Akaike and BIC weights 

shown on the right. The panels display: A) scenario 1, model 1; B) scenario 1, model 2; C) scenario 2, 

model 1; D) scenario 2, model 2; E) scenario 3, model 1; F) scenario 3, model 2; G) scenario 3, model 

3; H) scenario 4, model 4. Each model’s covariates for the occupancy probability (ψ) and the detection 

probability (p) are shown above their respective plot. Dashed horizontal lines are shown for weights of 

0, 0.5, and 1.  
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Discussion 

I investigated the consequences of M-bias (a specific form of collider bias) for occupancy 

modelling, and explored the implications for model selection using AIC and BIC. In my 

simulations, I observed that when M-bias was present in the occupancy process, AIC and BIC 

favoured a model which produced a highly inaccurate estimate of the focal effect but produced 

more accurate predictions and retrodictions of the site-level occupancy probability. This 

reflects the fact that AIC and BIC aim to select models which produce better out-of-sample 

predictions (McElreath 2021, p. 192). In contrast, M-bias in the detection process did not result 

in inaccurate estimates of the focal effect. However, the AIC/BIC-best models made better 

predictions and retrodictions. I observed the same results when M-bias was present in both the 

occupancy and detection processes: the model favoured by AIC and BIC produced inaccurate 

inferences but more accurate predictions, while models made similarly accurate inferences 

regardless of M-bias in the detection process. These results have important implications for 

model selection in occupancy models, as well as for how the information-theoretic approach is 

applied in ecological modelling more generally. 

 

Information criteria select models which produce poor parameter inferences, but good 

predictions  

When M-bias was present in the occupancy process, the model which received the greatest 

support from AIC and BIC produced highly inaccurate estimates of the effect of the variable 

of interest (X) on the occupancy probability (ψ). The models that received the majority of the 

AIC and BIC weight were only able to estimate the direction of the focal effect correctly in 

65.8% of cases at best – little better than the accuracy we would expect from guessing. Such 

biased estimates are not informative about the drivers underlying the observed pattern, nor do 

they accurately predict the consequences of intervening in the system – in a real conservation 

problem where decisions are informed by occupancy models (e.g. Hossack et al. 2013; Chen 

& Koprowski 2015; Zimbres et al. 2018), the results could be disastrous.  

While the models supported by AIC and BIC produced biased parameter estimates, they also 

produced more accurate predictions and retrodictions of the occupancy probability at each site. 

This is because these models include the variable D which has an open path to ψ; including D 

provides additional information about the variation in ψ, improving prediction. From the 

perspective of AIC and BIC, including D results in a reduced in-sample deviance which 
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typically outweighs the penalty for adding the additional variable; this reduction must be 

greater to outweigh BIC’s larger penalty term, which is why BIC was more conservative in its 

tendency to select confounded models in my simulations (Fig. 6). This also explains why AIC 

and BIC gave more weight to the non-confounded model (omitting D) when βCψ was close to 

zero (Appendix A: Figs. S2, S6); the near-zero effect of C on ψ meant that the path from D to 

ψ through C was almost blocked (the other path from D to ψ was blocked by conditioning on 

X), and therefore D explained relatively little variation in ψ.  

In contrast to the effects of M-bias in the occupancy process, M-bias in the detection process 

did not affect inferences about the effect of X on ψ. Additionally, including the collider variable 

R in the detection sub-model improved the accuracy of the model’s predictions of the site-level 

occupancy probability. These results can again be explained by considering how the path 

structure between variables will affect the change in deviance when a variable is included; as 

the variable R has an open path to p, including R explains additional variation in the detection 

probability, reducing the deviance and allowing the model to better account for imperfect 

detection when estimating the occupancy probability. As the detection probability is generally 

regarded as a nuisance parameter (Karavarsamis 2015), it is inconsequential that the effect of 

the other detection covariate (U) will be confounded. Therefore, information criteria can be 

used for selecting detection covariates. 

The tendency for information criteria to favour confounded models with greater predictive 

ability is not confined to collider bias. For example, simulations by McElreath (2021, pp. 226-

228) showed that information criteria tend to select models which condition on the mediator 

(M) in a pipe (e.g., X → M → ψ), inducing post-treatment bias (Rosenbaum 1984). This occurs 

because adding M explains additional variation in ψ, while also blocking the causal path which 

runs from X to ψ (McElreath, 2021, p. 228). I also expect these results to apply in other 

scenarios, such as case control bias (Cinelli et al. 2022). Finally, the M-bias example illustrates 

that latent variables can result in information criteria favouring confounded models, and hence 

that considering these variables is critical when drawing inferences. 

 

Inference and prediction are separate tasks 

The key point supported by my results is that inference and prediction are separate tasks which 

should not be conflated in model selection (Shmueli 2010; Laubach et al. 2021; McElreath 

2021, p. 226). I echo Gelman and Rubin’s (1995) criticism of selecting “a model that is 
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adequate for specific purposes without consideration of those purposes”. In the context of 

occupancy models, both explanation and prediction are important objectives, and conflating 

the two does justice to neither. Furthermore, my results emphasise the importance of 

considering not only the model’s purpose, but also the purpose of sub-models within the model; 

the purpose of the occupancy sub-model depends on whether we are interested in predicting 

the occupancy state or inferring its drivers, while the detection sub-model’s purpose is usually 

prediction of the detection probability. Consequently, how occupancy covariates are chosen 

depends on the purpose of the model – information criteria are suitable if the purpose of the 

model is prediction, but are unlikely to be if the purpose is parameter inference – while 

detection covariates can generally be selected using information criteria. This advice also 

applies to cross-validation; the choice of model made by AIC is asymptotically equivalent to 

that made by leave-one-out cross validation (Stone 1977).  

 

Using information criteria to compare biological hypotheses in observational studies is risky 

The importance of distinguishing between inference and prediction has wider implications for 

how information-theoretic model selection is applied in ecology. Proponents of the 

information-theoretic approach have argued that it is possible to compare multiple a priori 

specified models, each representing a different biological hypothesis, with the relative AIC 

scores indicating the strength of evidence for each hypothesis (Johnson & Omland 2004; 

Richards 2005; Burnham et al. 2011). However, using information criteria in this way conflates 

inference and prediction; information criteria select models which make better predictions, but 

these same models can contain spurious effect sizes which hold no biological meaning, while 

the effects of biologically important covariates are confounded. This is not only the case for 

occupancy models; the occupancy models I employed are just an extension of logistic 

regression (Clark & Altwegg 2019), and these points apply to other forms of linear model as 

well (Luque-Fernandez et al. 2019; McElreath 2021, pp. 226-228). The implication is that 

using information-theoretic model selection to compare biological hypotheses in observational 

studies carries substantial risks.  
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The information-theoretic approach and causal inference are complementary 

While I argue that comparing biological hypotheses using the information-theoretic approach 

is risky, and that I prefer a causal inference-based approach for this purpose, I must emphasise 

that I am not arguing that the information-theoretic approach is flawed or useless for model 

selection. Information criteria select models from the “predictive point of view” (Akaike 1998), 

while causal inference is concerned with estimating the effects of covariates, so I see the two 

approaches as complementary. In the case of occupancy models the two approaches may be 

used side-by-side in a single analysis, where occupancy covariates are chosen based on causal 

assumptions embodied in a DAG, while the detection covariates are selected using the 

information-theoretic approach. 

I also argue that causal inference and the information-theoretic approach are complementary 

because they share philosophical underpinnings. In the information-theoretic approach, it is 

vital to employ subject expertise and “hard thinking” to develop hypotheses which are 

compared as models (Lukacs et al. 2007; Burnham et al. 2011); in causal inference, subject 

expertise and a priori thought are vital in making the causal assumptions which are embodied 

in the DAG (Pearl 1995; Greenland et al. 1999). Causal inference thus provides a framework 

to support the “hard thinking” required in ecological modelling (Grace & Irvine 2020). 

Proponents of the information-theoretic approach also recognise that “a proper analysis must 

consider the science context and cannot successfully be based on ‘just the numbers’” (Burnham 

& Anderson 2004). Similarly, proponents of causal inference argue that conclusions cannot be 

drawn from the data alone, but require causal assumptions which come from the scientific 

context of the model (Pearl et al. 2016, p. 5).  

Another feature of the information-theoretic approach is that Chamberlin’s (1890) method of 

multiple working hypotheses is often emphasised (Burnham & Anderson 2004; Elliott & Brook 

2007). I argue that causal inference is very compatible with Chamberlin’s method; constructing 

a causal model forces us to consider multiple explanations for a phenomenon, guarding against 

the threat of “parental affection for a favourite theory” which concerned Chamberlin. Due to 

the relatively static nature of causal models, I argue they are especially suited to the case of 

multiple working hypotheses in parallel (Elliott & Brook 2007), in which causation operates 

through multiple factors simultaneously. Moreover, the tools of causal inference allow this 

parallel case to be extended to more complex situations with indirect effects, rather than 

constraining our thinking to simple additive terms and interactions.  
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A caveat: model selection is more than selecting covariates 

I have focused on the choice of covariates, which is a key aspect of model selection, but another 

vital part of model selection is selecting specific mathematical functions to relate these 

variables to one-another (Johnson & Omland, 2004). However, as the rules of causal inference 

are non-parametric (Pearl 1995; Greenland et al. 1999) my conclusions hold irrespective of 

what functional forms are chosen, and I consider any role of information criteria in selecting 

these functions to be beyond the scope of this chapter. 

 

Summary 

I have demonstrated that when a form of collider bias known as M-bias is present in the 

occupancy process, occupancy models which are favoured by AIC and BIC produce inaccurate 

parameter estimates but accurate predictions. In contrast, M-bias in the detection process does 

not affect the accuracy of parameter estimates. The key conclusion supported by these results 

is that inference and prediction are separate tasks which should not be conflated during model 

selection. The correct choice of model selection procedure depends on the purpose for which 

the occupancy model will be used. Information-theoretic approaches are suitable for selecting 

occupancy covariates if the model is to be used for predicting the site-level occupancy 

probability. However, if the goal is instead to infer the effect of environmental covariates on 

occupancy, then the use of information criteria carries significant risks; I advocate for an 

approach based on causal inference in this situation. My results support the use of information-

theoretic methods to select detection covariates regardless of the model’s purpose, as long as 

detection probability is treated as a nuisance parameter. As single-season occupancy models 

are in essence a form of logistic regression, my results have wider implications for the use of 

information-theoretic model selection in ecology. In particular, I argue that my results, 

alongside those of others (Luque-Fernandez et al. 2019; McElreath 2021; Arif & MacNeil 

2022), underscore the risks associated with using the information-theoretic approach to 

compare biological hypotheses in observational studies. Causal inference and the information-

theoretic approach share similar philosophical underpinnings, and should be seen as 

complementary tools that accomplish different tasks.  
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Appendix A: Supplementary figures and tables 

Table S1. Inferential and predictive accuracy of occupancy models across all simulations (n=1000) for 

each of the three scenarios (see Fig. 3). 

  M-bias in 

occupancy process 

M-bias in detection 

process 

M-bias in occupancy and detection 

processes 

 

ψ ~ X ψ ~ X+D ψ ~ X 

p ~ U 

ψ ~ X 

p ~ U+R 

ψ ~ X  

p ~ U 

ψ ~ X+D 

p ~ U 

ψ ~ X 

 p ~ U+R 

ψ ~ X+D  

p ~ U+R 

Inference 

        

Bias  

Q1 -0.07 -0.91 -0.05 -0.04 -0.10 -0.9 -0.09 -0.98 

Mean -0.01 -0.06 0.001 -0.002 -0.02 -0.10 0.0002 -0.10 

Q3 0.08 0.90 0.04 0.04 0.10 0.80 0.09 0.82 

Absolute 

bias  

Q1 0.04 0.33 0.02 0.02 0.05 0.30 0.04 0.31 

Median 0.08 0.91 0.04 0.04 0.10 0.85 0.09 0.91 

Q3 0.17 2.70 0.08 0.07 0.20 2.55 0.18 2.70 

True value 

in 95% C.I. 

 92.1% 24.7% 89% 95.6% 86.8% 26.9% 91.1% 27.2% 

Sign correct  92.1% 65.4% 97.7% 97.7% 92.6% 66.0% 93.3% 65.8% 

 

Prediction 

         

Mean 

absolute 

error  

Q1 0.05 0.01 0.01 0.01 0.06 0.02 0.05 0.01 

Median 0.09 0.02 0.02 0.01 0.10 0.03 0.09 0.02 

Q3 0.13 0.03 0.04 0.02 0.14 0.05 0.13 0.03 

Proportion 

of sites with 

true ψ in 

95% C.I. 

Q1 0.17 0.77 0.22 1.00 0.14 0.32 0.16 0.72 

Median 0.24 0.96 1.00 1.00 0.20 0.63 0.24 0.94 

Q3 0.47 1.00 1.00 1.00 0.32 0.95 0.43 1.00 
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Figure S1. Kernel density estimate contours showing two measures of retrodictive accuracy when 

predicting site-level occupancy probability (ψ), for 1000 simulations. The x-axis shows the proportion 

of sites (out of 3000 total sites) for which the true occupancy probability was contained within the 95% 

confidence interval around the model’s prediction. The y-axis shows the mean absolute error of the 

predictions. Consequently, the bottom right of the plot indicates higher predictive accuracy, while the 

top left indicates lower predictive accuracy. The density of simulations within this area is shown by the 

coloured contours, with lighter colours indicating a higher density of simulations. Results are displayed 

for the following occupancy models: A) scenario 1, model 1; B) scenario 1, model 2; C) scenario 2, 

model 1; D) scenario 2, model 2; E) scenario 3, model 1; F) scenario 3, model 2; G) scenario 3, model 

3; H) scenario 4, model 4. Each model’s covariates for ψ and the detection probability (p) are shown 

above their respective plot. For explanation of the scenarios, see Table 1 and main text. 
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Figure S2. Pairs plot showing the relationship between the effect sizes (β values), Akaike weight, and 

BIC weight for model 1 in scenario 1 (see Table 1 for model definition).   
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Figure S3. Histograms showing distribution of true parameter values for the simulations in scenario 1, 

model 2 (see Table 1 for model definition) for which the focal effect was estimated accurately (i.e., the 

true effect of X on ψ (βXψ) was within the 95% confidence interval around the estimate).  
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Figure S4. Histograms showing distribution of true parameter values for the simulations in scenario 3, 

model 2 (see Table 1 for model definition) for which the focal effect was estimated accurately (i.e., the 

true effect of X on ψ (βXψ) was within the 95% confidence interval around the estimate).  
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Figure S5. Histograms showing distribution of true parameter values for the simulations in scenario 3, 

model 4 (see Table 1 for model definition) for which the the focal effect was estimated accurately (i.e., 

the true effect of X on ψ (βXψ) was within the 95% confidence interval around the estimate).  
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Figure S6. Pairs plot showing the relationship between the effect sizes (β values), Akaike weight, and 

BIC weight for model 3 in scenario 3 (see Table 1 for model definition).   
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Chapter 4 

Impacts of invasive Opuntia cacti                                 

on mammalian habitat use  
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Abstract 

Prickly pear cacti (Opuntia spp.) are among the world’s most pervasive plant invaders, invasive 

in arid regions throughout the world. Opuntia are invasive in Laikipia County, Kenya, a key 

stronghold for biodiversity and vital populations of endangered mammals. Consequently, 

understanding Opuntia’s impacts on mammals in Laikipia is an urgent priority. As Opuntia 

invasions profoundly alter the physical structure and resource availability of the habitat, 

behavioural changes – particularly changes to habitat use – potentially comprise a key aspect 

of Opuntia’s impacts. I addressed this topic by using camera traps to explore the relationship 

between Opuntia and the occupancy and temporal patterns of activity of eight key mammal 

species, examining how these effects varied with spatial scale. I found that Opuntia exerted 

effects on occupancy and activity which varied among mammal species and depended on the 

spatial scale of the Opuntia cover covariate. These estimated effects were robust to altering the 

models’ assumptions to allow for Opuntia to indirectly influence occupancy and activity by 

affecting native vegetation cover. My key findings include a negative effect of broad-scale 

Opuntia volume on the occupancy of the endangered reticulated giraffe (Giraffa reticulata). I 

also observed generally positive effects of Opuntia on the occupancy and activity of elephants 

(Loxodonta africana), olive baboons (Papio anubis), and vervet monkeys (Chlorocebus 

pygerythrus), all of which are thought to be important dispersal agents for Opuntia. My 

findings have important implications for the conservation of endangered mammal species in 

the region, the future spread of Opuntia through seed dispersal, and interactions between 

wildlife and local communities. 
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Introduction 

Plant invasions are a rapidly expanding threat to ecosystems and human well-being worldwide 

(Dawson et al. 2017; Seebens et al. 2017). Understanding the impacts of these invasive plants 

is vital if we are to take informed and effective action to mitigate them. Until relatively recently, 

our understanding of the impacts of invasive plants has been focused on invaders’ effects on 

biodiversity and the abundance of native species (Crystal-Ornelas & Lockwood 2020), and the 

evidence for these impacts is now well-established (Vilà et al. 2011). However, a growing body 

of evidence indicates that invasive plants can cause profound ecological impacts by altering 

the behaviour of native animals (Chapter 2; Stewart et al. 2021). Developing a mechanistic 

understanding of these behavioural impacts is a key avenue for research in invasion ecology 

(Chapter 2; Stewart et al. 2021).  

Prickly pear cacti (Opuntia spp.) are one of the world’s most pervasive plant invaders: native 

to the Americas, they are invasive in arid regions throughout the world, including East and 

Southern Africa, Australia, the Mediterranean, and parts of South-East Asia (Pasiecznik 2007, 

Pasiecznik & Rojas-Sandoval 2007, Pasiecznik 2015). Several species of Opuntia were 

introduced to Laikipia County, Kenya, in the latter half of the 20th century, to serve as live 

fences and ornamental plants (Strum et al. 2015; Witt 2017, Loisaba Conservancy, 2019). Since 

their introduction, three of these Opuntia species (O. stricta, O. engelmannii, and O. ficus-

indica) have become invasive, spreading rapidly to cover large areas of the landscape (Strum 

et al. 2015; Witt 2017; Githae 2019). As Laikipia County is a key stronghold for biodiversity 

and hosts vital populations of endangered mammals including Grevy’s zebra (Equus grevyi; 

Rubenstein et al. 2016), reticulated giraffe (Giraffa reticulata; Muneza et al. 2018) and African 

wild dog (Lycaon pictus; O’Neill et al. 2022), understanding the impacts of Opuntia on 

Laikipia’s mammals is an urgent priority.  

Behavioural impacts potentially comprise a key aspect of Opuntia’s effects on mammals in 

Laikipia County. In particular, Opuntia may alter mammalian habitat use. If these effects occur, 

they may have impacts on individual native species, the wider ecosystem, and local 

communities. For instance, restriction of movement may result in effects on individual species’ 

population dynamics analogous to those resulting from other forms of habitat fragmentation 

(O’Neill et al. 2022). At a larger scale, changes to the movement of mammal species may affect 

the patterning of vital ecological processes within the system. For example, large ungulate 

herbivores exert powerful direct and indirect effects on the plant community and are likely to 
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influence processes such as decomposition and nutrient cycling (Pringle et al. 2011). 

Furthermore, the movements of large mammals such as elephants (Loxodonta africana) are a 

key determinant of human-wildlife interactions (Sitati et al. 2003), and changes to their habitat 

use may exacerbate negative impacts on local communities (Shackleton et al. 2017). There is 

also the potential for impacts on wildlife tourism – a cornerstone of Laikipia’s economy 

(Laikipia Wildlife Forum, 2012) – if charismatic species are displaced or tourists’ perception 

of the landscape as a “natural environment” (Nzomo et al. 2020) is jeopardised.   

Opuntia is likely to primarily alter mammalian habitat use through two non-mutually exclusive 

modes of impact (Chapter 2; Stewart et al. 2021). The first of these modes is alteration of the 

physical structure of the habitat; Opuntia forms large, impenetrable stands which may restrict 

the movement of some mammals around the habitat and result in their displacement from an 

area (Witt 2017). The dense stands may also affect patterns of actual or perceived predation 

risk. For small mammals, such as dik-dik (Madoqua spp.), which may be able to move between 

the stands, Opuntia may afford cover. By contrast, the movement of larger-bodied prey species, 

such as impala (Aepyceros melampus), might be impeded, hindering escape and thus increasing 

predation risk. These effects on predation risk may result in changes to mammalian habitat use.  

Opuntia may also affect mammalian habitat use by altering the availability of food within the 

landscape. Large Opuntia stands provide a year-round supply of fruit which is consumed by 

species including elephants (L. africana), olive baboons (Papio anubis), and vervet monkeys 

(Chlorocebus pygerythrus; Strum et al. 2015; Witt 2017; Githae 2019). Consequently, 

frugivores may be attracted to heavily invaded areas (Shackleton et al. 2017). Opuntia’s effects 

on the physical structure of the habitat may also indirectly alter resource availability, for 

instance by affecting access to vegetation or water sources (Oduor et al. 2018; Githae 2019). 

The resource-mediated behavioural impacts of Opuntia will likely exhibit seasonal patterns of 

variation as the availability of other resources varies. In particular, the effects are likely to be 

strongest after extended dry periods when little other forage is available, making the 

omnipresent Opuntia fruit a potentially important part of frugivores’ diets and strengthening 

the displacement of grazers and other herbivores that are unable to feed on it.  

In this chapter, I explored the effects of Opuntia on mammalian habitat use. Using camera 

traps, I quantified the total effects of Opuntia on the occupancy and temporal patterns of 

activity for eight key mammal species. These total effects, which represent the probable effects 

of Opuntia invading new areas or being removed from currently invaded areas, assume that 
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Opuntia affects occupancy and activity through structurally mediated and resource-mediated 

pathways. To explore whether the estimated total effects were sensitive to this assumption, I 

also ran models which assumed that Opuntia could influence occupancy and activity indirectly, 

through affecting native vegetation cover. Finally, as the behavioural impacts of invasive plants 

can be strongly scale-dependent (Chapter 2; Stewart et al. 2021), I examined how the effects 

on occupancy and activity depended on the spatial scale of the Opuntia covariate.  
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Methods 

Study system 

I conducted my study at Mpala Research Centre and Loisaba Conservancy, in Laikipia County, 

Kenya. These two areas lie adjacent to one another immediately to the west of the Ewaso Ng’iro 

River and are separated by the Ewaso Narok River (Fig. 1). The study area is predominantly 

unfenced, except for small-scale electric fencing surrounding the Mpala ranch house and tourist 

accommodation at Loisaba (Crego et al. 2021). The area contains numerous private roads 

which are used to a varying degree by rangers, researchers, tourists, and other conservancy 

personnel. Additionally, a public road runs from the north-west corner of Mpala, traversing the 

Mpala plateau and exiting the property close to the research centre in the South-East. Both 

Mpala and Loisaba maintain working herds of cattle, sheep, and goats; camel herds are also 

present in the northern parts of Mpala.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Map of the study region. Black points represent camera trap sites, light blue lines are rivers, 

and brown lines are roads. Camera trap sites are clustered within three regions: Loisaba (top), Mpala 

north (middle) and Mpala south (bottom). Canvas extends from longitude 244165 to 271026, latitude 

28814 to 78171. 
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The habitat is a semi-arid savanna, with varying densities of woodland and shrubland 

dominated by Vachellia and Senegalia (formerly Acacia) species, including V. etbaica, S. 

brevispica, S. mellifera, and V. gerrardii (Young et al. 1995; Augustine 2003; Augustine et al. 

2011; Mutuku & Kenfack 2019). The habitat also contains other tree and shrub species 

including Boscia augustifolia, Croton dichogamus, and Grewia spp. (Young et al. 1995; 

Augustine 2003; Augustine et al. 2011; Mutuku & Kenfack 2019). Grasses belonging to the 

genera Cynodon, Pennisetum, Digitaria and Sporobolus are common in the understory layer, 

and a variety of forbs including Plecranthus spp., Pollichia campestris, Portulaca spp. and 

Blepharis spp. are also present (Young et al. 1995). Euphorbia nyikae and other succulents are 

also present in some areas, particularly in the northern region of Mpala (Augustine 2003).  

The soil is predominantly red sandy loam (Ferric and Chromic Luvisols) except for the Mpala 

plateau, which is dominated by black cotton soil (Pellic vertisol) (Augustine et al. 2011; 

Mutuku & Kenfack 2019; Kimuyu et al. 2021). The two soil types are separated by a zone of 

transitional soils on the Mpala escarpment and parts of the plateau (Mutuku & Kenfack 2019). 

As I only observed Opuntia on the red soils, and the red soil and black cotton soils differ 

substantially in their vegetation structure (Wells et al. 2023) and mammal assemblages, I 

restricted my investigation to eliminate the potential confounding effects of soil variation. 

For the purposes of my investigation I divided the study area into three main regions: Mpala 

south, Mpala north, and Loisaba (Fig. 1). I selected these regions because they contained 

varying densities of Opuntia (from scattered individual plants to heavily invaded areas where 

Opuntia covered the majority of the ground). I further subdivided the Loisaba region into three 

blocks (A, B, and C) to ensure that I sampled across the breadth of this area. Due to logistical 

constraints imposed by the COVID-19 pandemic, the majority of my cameras were situated in 

the Mpala regions. 

I focused my investigation on eight key mammal species. I selected elephants (L. africana), 

olive baboons (P. anubis) and vervet monkeys (C. pygerythrus) because they commonly feed 

on Opuntia fruit and are likely to be important dispersal agents (Strum et al. 2015; Witt 2017; 

Githae 2019). Impala (A. melampus) and dik-dik (Madoqua spp.) were selected because they 

are among the most common herbivore species in the area, particularly in red soil regions 

(where Grant’s and Thomson’s gazelles, Nanger granti and Eudorcas thomsonii, are generally 

absent), and thus their habitat use is likely to have important implications for herbivory in the 

region. I also selected Grevy’s zebra (E. grevyi) and reticulated giraffe (G. reticulata) because 
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they are of significant conservation concern (Rubenstein et al. 2016), Muneza et al. 2018). 

Finally, I selected spotted hyena (Crocuta crocuta), one of the key mammalian carnivores in 

the system.   

 

Camera trap deployment 

To explore the effects of Opuntia on mammalian occupancy, I deployed camera traps from 

January-April and October-November 2021. I initially deployed 30 cameras (20 × Browning 

Dark Ops Pro, 5 × Browning Recon Force Extreme, and 5 × Reconyx Hyperfire 2); two 

cameras were lost to damage, leaving 28 still operational at the end of the study period. 

Cameras were operational at each location for between 3 and 56 days (Q1 = 18, median = 23, 

Q3 = 26 days) before being moved to a new location; I aimed to leave cameras in place for at 

least one week before they were moved, but on a small number of occasions (n = 5) cameras 

were moved earlier for logistical reasons.  

I defined a site as the area immediately adjacent to one camera trap. To maximise variation in 

Opuntia density while minimising variation in confounding variables, I employed a paired-site 

design. I divided the study area into 500 × 500m grid squares, and then randomly selected grid 

squares for sampling. I placed one pair of cameras within each of these grid squares; the first 

camera was deployed in an area visually identified as high Opuntia density, and the second 

was deployed in a random direction 50-70m away. If the second site was found to have a 

density of Opuntia equal to or higher than the first site, I generated a new random direction 

until the Opuntia density at the second site was lower. As some grid squares were sampled 

more than once and camera traps at some sites were lost due to damage, my total sample 

comprised 101 sites within 46 grid squares. 

I mounted the camera traps on tree trunks, positioning them so that they had good visibility of 

the area 10m in front of the camera. I verified that animals in this area would be visible by 

taking photos of a research assistant at 2m, 4m, 6m, 8m, and 10m from the camera. I deployed 

the cameras at an average height of 81cm (measured from the ground to the lens), but some 

cameras were deployed slightly higher or lower to ensure a good view given the site’s 

topography (min = 34cm, Q1 = 72cm, Q3 = 89cm, Q4 = 137cm). I set the camera traps to take 

images with a five second cool-down between captures. I used the “long range” infrared flash 

setting on my Browning cameras as I wanted to maximise species detections and was less 

concerned about blur, which could inhibit the identification of specific individuals. I set the 
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infrared flash of the Reconyx cameras to the default “optimised” setting. To reduce the number 

of false detections, I cut back long grass and other vegetation close to the camera which would 

otherwise trigger the sensor.  

 

Habitat and Opuntia surveys 

To collect information on the local-scale habitat features that could affect site usage, I 

conducted habitat surveys at each camera trap site. I surveyed a circular area within a 10m 

radius of the camera trap. I divided this area into two parts: the field of view (FOV), defined 

as the area in which I could see the camera’s lens, and the rest of the area located beside and 

behind the camera.  

Within the FOV and remaining area, I estimated the percentage of ground covered by Opuntia 

stricta, other Opuntia species, grasses, shrubs, forbs, succulents, trees, bare ground, and other 

cover (e.g., rocks) with the aid of a cover estimator chart (Anderson 1986). These percentages 

were not required to sum to 100%, as vegetation types could grow under/over one another (e.g., 

grass growing under shrubs). I also identified and counted the number of standing trees in the 

FOV and area. I defined a tree as a woody plant standing taller than 2m; woody plants shorter 

than 2m were classified as shrubs. 

I assumed that the FOV comprised one quarter of the total site, and calculated the percentage 

cover for the total site by averaging the FOV and area values: 

𝑇𝑜𝑡𝑎𝑙 % 𝑐𝑜𝑣𝑒𝑟 =  (
(𝐹𝑂𝑉 % 𝑐𝑜𝑣𝑒𝑟 +  3(𝐴𝑟𝑒𝑎 % 𝑐𝑜𝑣𝑒𝑟)

4
)  

To quantify the use of each site by livestock, I calculated the proportion of days in which 

livestock (cows, sheep, goats) or camels were detected by the camera trap. 

I also calculated the straight-line distance from each site to the nearest river and road using 

QGIS (v2.28.25; QGIS Development Team, 2018).  

 

Estimation of grid-square-level Opuntia volume 

To measure the abundance of Opuntia across the grid squares sampled by my camera traps, I 

performed distance sampling (Kéry & Royle, 2015). Due to logistical constraints imposed by 

the COVID-19 pandemic, I only sampled 41 of the 46 grid squares in which camera traps were 
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deployed. I performed the distance sampling along transects which ran from one edge of the 

square to the other, typically following a road if one was present. If no road was present, I 

instead walked from one side of the square to the other in as straight a line as possible. Each 

transect was approximately 500m long; I took GPS coordinates for the start/end points to 

determine the exact length. I looked for Opuntia lying perpendicular to the transect in either 

direction. When I observed a stand of Opuntia I recorded the species, size category (small = 

<1m, medium = 1-2m, large = >2m height) and whether ripe fruit was visible, and then 

measured the distance to the stand. I measured distances using a tape measure for stands up to 

10m from the transect, and used a laser range finder (Leica Rangemaster CRF 2400-R, accurate 

to ±1m) for stands 10-80m from the transect. I did not count stands that lay more than 80m 

away to avoid accidentally counting stands situated outside of the grid square.  

To obtain Opuntia abundance estimates for each grid square, I used a Poisson-binomial 

multinomial distance sampling model with half-normal detection function (Kéry & Royle, 

2015), using code from Joseph (2021). I converted the resulting abundance estimates into an 

estimate of the total Opuntia volume in each grid square by first estimating the abundance of 

each Opuntia size class separately, and then combining the estimates for different size classes 

by assuming (based on the volume of a hemisphere where the height is equal to the radius) that 

the volume of a large stand (h = 2.5m) was 32.725 m3, a medium stand (h = 1.5m) was 7.07m3, 

and a small stand (h = 0.5m) was 0.26m3. I multiplied the median estimated abundance for each 

size class by these volume values, and then added them together. I performed this calculation 

for the fruiting and non-fruiting Opuntia separately, and then summed them to get the total 

Opuntia volume per grid square. Finally, I adjusted for the unequal transect lengths by dividing 

each grid square’s estimate by the respective transect length.  

 

Processing of camera trap images 

To process the images obtained from the camera traps, I first used the machine learning tool 

Megadetector (v.4.1.0, Beery et al. 2019) to classify images as containing an animal (any 

species), human, or vehicle. I manually screened all images with probability of 0.10 (the 

minimum probability Megadetector assigns to a classification) or higher of containing a human 

or vehicle, discarding all images which I identified as containing a human/vehicle and retaining 

images which contained animals. I also retained all images which Megadetector classified as 

containing at least one animal with probability of 0.98 or higher. I selected this relatively high 
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threshold because I observed that many lower-probability classifications were in fact false 

detections (e.g., pieces of vegetation classified as “animal”). Furthermore, my occupancy 

models (Appendix A) assumed no false positive classifications, but were able to account for 

the possibility that a species was photographed but missed by Megadetector, through modelling 

the imperfect detection process.   

I uploaded all of the retained images to my project on the Zooniverse platform (Prickly Pear 

Project Kenya: https://www.zooniverse.org/projects/peter-dot-stewart/prickly-pear-project-

kenya), where members of the public were able to view and classify the camera trap images 

(see Appendix D). Each image was classified by at least 12 volunteers before retirement from 

the active image pool, except for when an image was classified as “human”, in which case the 

image was immediately retired and flagged for checking by the research team.  

I generated consensus classifications for each image using a threshold-based approach. For a 

species to be consensus classified, at least 8 of the 12 volunteers had to classify the species as 

being present. I also quantified volunteer agreement by calculating the Shannon entropy 

(Shannon 1948) of the distribution of classifications for each image. Images with entropy 

values of greater than one were also discarded. Classifications made by an expert (either P.S.S. 

or the Prickly Pear Project Kenya moderator) were accepted automatically regardless of 

volunteer disagreement, and the remaining volunteer classifications were used to assess 

volunteer classification accuracy (Appendix D). I found that my consensus classification 

method resulted in highly accurate consensus classifications, with sensitivity ≥ 0.972 and 

specificity ≥ 0.999 for all focal species (Appendix D, Table S1). 

 

Statistical models 

To explore the effects of Opuntia on mammalian occupancy, I fitted occupancy models which 

incorporated a Gaussian process to model spatial autocorrelation in sites’ occupancy 

probability (see Appendix A for model structure). As my objective was to infer the effect of 

Opuntia on occupancy, I selected covariates for the occupancy sub-model based on causal 

assumptions about the data-generating process (Chapter 3; Stewart et al. 2023); I represent 

these assumptions in Fig. 2. My assumptions imply that Opuntia may have a direct effect on 

occupancy (the structurally mediated pathway), and an indirect effect which operates through 

the provision of ripe fruits (the resource-mediated pathway). If Opuntia only affects occupancy 

through these pathways, then together they comprise the total effect of Opuntia on occupancy. 

https://www.zooniverse.org/projects/peter-dot-stewart/prickly-pear-project-kenya
https://www.zooniverse.org/projects/peter-dot-stewart/prickly-pear-project-kenya
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However, if Opuntia also affects the native vegetation (represented by the percentage cover of 

grasses, shrubs, forbs, and succulents, and the number of trees), then the total effect also 

includes this vegetation pathway. My objective was to estimate these total effects because these 

inform us about the likely consequences of Opuntia expanding to invade new areas.  

To estimate the total effects of Opuntia on occupancy I fitted two statistical models (Table 1): 

one omitting the vegetation pathway, and the other assuming an indirect pathway through 

vegetation. For the detection sub-model, I included daily mean temperature as a covariate, as 

changes to the thermal environment can affect the performance of the camera’s passive infrared 

sensor (Welbourne et al. 2016), and I also included a separate intercept for each model of 

camera trap. I standardised all covariates, including the Opuntia covariates, by subtracting the 

mean and dividing by the standard deviation. I rescaled the distances by converting them into 

kilometres and then dividing by 6; this placed the distances between sites on a more convenient 

scale for the specification of prior distributions. 

I estimated the total effects of Opuntia on occupancy at two spatial scales, resulting in a total 

of four statistical models per species (Table 1). In the fine-scale models, I used the site-level 

Opuntia cover and the total number of ripe fruits. In the broad-scale models, I instead used the 

median estimate of the total Opuntia volume for each grid square.  

In both the fine-scale and broad-scale models, I examined the effects of Opuntia on occupancy 

by plotting marginal effects with all other covariates set to their average value (i.e., zero for 

standardised covariates). In my plots, I display multiple highest posterior density compatibility 

intervals (i.e., credible intervals) ranging from 95% to 50%, as the choice of any one interval 

is arbitrary (McElreath 2021). 

To explore the effects of Opuntia on the temporal patterns of animal activity, I fitted circular 

kernel density functions to the detection data for each species using the R package activity (v. 

1.3.2; Rowcliffe et al. 2014; Rowcliffe 2022). As this approach does not allow for the inclusion 

of environmental covariates, I instead used two separate approaches to infer the effects of 

Opuntia on activity. First, I split the data into two parts based on my paired site design: one 

part contained the sites with the higher Opuntia density in each pair, and the other contained 

the sites with lower Opuntia density. I then qualitatively compared the activity kernels for the 

two datasets to examine how the timing of activity differed between high and low-Opuntia 

sites. Second, I split the activity data by site, fitted a separate kernel for each site, and then 

calculated the area under each kernel; this represents the total level of activity at each site 
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(Rowcliffe et al. 2014). I then fitted a log-normal hurdle model (see Appendix A for model 

structure) to these data to explore the effects of Opuntia on the total level of activity at each 

site. I elected to use this type of model because activity has a non-negative continuous value, 

but there are many sites with zero activity. I based my choice of environmental covariates 

(Table 1) on the same assumptions as I made for the occupancy models (Fig. 2). I used the 

same environmental covariates in both of the hurdle model’s sub-models. Additionally, to 

control for differences in sampling effort among sites, I included the number of days for which 

the site’s camera trap was deployed as a covariate. As the structure of the hurdle model does 

not readily allow for plotting how the posterior median/mean and compatibility intervals 

change over the values of a covariate, I instead explored the effect of Opuntia on total activity 

by simulating new observations using the effect sizes’ (βOPUNTIA, γOPUNTIA) posterior 

distributions and plotting the distribution of these simulated data against the Opuntia covariate. 

I fitted all models in a Bayesian framework using Stan (Stan Development Team, 2022), 

implemented in R (v.4.1.2; R Core Team, 2021) with the rethinking (v.2.21; McElreath, 2021) 

and cmdstanr (v.2.30.1; Gabry & Cesnovar, 2021) packages. I chose weakly regularising prior 

distributions for my models with the aid of prior predictive simulations (Appendix B) and 

validated my occupancy model on synthetic data (Appendix C) to ensure that it was capable of 

accurately recovering parameter values. To improve the sampling of the models’ Markov 

chains I employed a non-centred parameterisation, which uses Cholesky decomposition to 

break the covariance matrix down into a Cholesky factor and z-scores for sampling, which are 

then multiplied to give the varying intercept ki (McElreath 2021).  

I ran each occupancy and hurdle model with four Markov chains, each with 4000 iterations. 

For each chain, the first 3000 samples constituted the warmup phase and were not used for 

inference, while the following 1000 samples were used for inference; as I had four chains, a 

total of 4000 samples were used for inference. I ran the distance sampling models with four 

chains of 3500 iterations, of which the first 1500 were used for warmup, giving a total of 8000 

samples across the four chains. For all models, I ensured that the chains had converged by 

checking that the Gelman-Rubin convergence diagnostic (𝑅̂; Gelman & Rubin 1992) was equal 

to 1.00 for all key parameters. I also assessed the performance of the Markov chain Monte 

Carlo (MCMC) algorithm by inspecting the effective sample size, trace plots, and trace rank 

plots for each parameter. Additionally, I ensured that the models did not exhibit divergent 

transitions and checked that histograms of the Markov chain energy transition density and 

marginal energy distribution showed a close match (Betancourt 2018).  
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Code to fully reproduce my analyses and simulations is available at https://github.com/Peter-

Stewart/Zooniverse_processing, and a complete list of the R packages I used can be found in 

Appendix F, Table S2.  

 

 

Figure 2. Directed acyclic graph representing assumptions about the ways in which Opuntia cover and 

other environmental variables might affect mammalian occupancy and activity. Nodes represent 

variables, while arrows represent possible mechanistic links between variables. “Human use” is a latent 

variable and is therefore displayed in a circle.  

  

https://github.com/Peter-Stewart/Zooniverse_processing
https://github.com/Peter-Stewart/Zooniverse_processing
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Table 1. Choice of habitat covariates and estimands (parameters targeted for inference) in my models. 

βOPUNTIA represents the effect sizes for Opuntia percentage cover and Opuntia grid square volume in the 

fine-scale and broad-scale models respectively, while γOPUNTIA represents these effects for the zero 

component of my hurdle model (Appendix A). “Native plant community” is shorthand for the total 

percentage cover covariates for grass, shrubs, forbs and succulents, and the total number of trees.  

Model Habitat covariates Estimands 

Fine (site) scale 

occupancy model 

  

1. Total effect (assuming 

no vegetation pathway) 

Opuntia cover, distance to river, distance to road, 

proportion of days with livestock, native plant 

community 

βOPUNTIA 

   

2. Total effect (assuming 

vegetation pathway) 

Opuntia cover, distance to river, distance to road, 

proportion of days with livestock 

βOPUNTIA 

   

Broad (grid square) scale 

occupancy model 

  

1. Total effect (assuming 

no vegetation pathway) 

Opuntia total volume, distance to river, distance to 

road, proportion of days with livestock, native plant 

community 

βOPUNTIA 

   

2. Total effect (assuming 

vegetation pathway) 

Opuntia total volume, distance to river, distance to 

road, proportion of days with livestock 

βOPUNTIA 

   

Fine (site) scale activity 

hurdle model 

  

1. Total effect (assuming 

no vegetation pathway) 

Opuntia total volume, distance to river, distance to 

road, proportion of days with livestock, native plant 

community 

βOPUNTIA, 
γOPUNTIA 

2. Total effect (assuming 

vegetation pathway) 

Opuntia total volume, distance to river, distance to 

road, proportion of days with livestock 

βOPUNTIA, 
γOPUNTIA 

   

Broad (grid square) scale 

activity hurdle model 

  

1. Total effect (assuming 

no vegetation pathway) 

Opuntia total volume, distance to river, distance to 

road, proportion of days with livestock, native plant 

community 

βOPUNTIA, 
γOPUNTIA 

2. Total effect (assuming 

vegetation pathway) 

Opuntia total volume, distance to river, distance to 

road, proportion of days with livestock 

βOPUNTIA, 
γOPUNTIA 
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Results 

Effects of Opuntia on mammalian occupancy 

The effects of Opuntia on mammalian occupancy varied among mammal species and by the 

spatial scale of the Opuntia covariate. The occupancies of olive baboons, elephants, and vervet 

monkeys were positively affected by Opuntia (Figs. 3A-C, 4A-C). For olive baboons, the effect 

of Opuntia on occupancy was stronger for the broad-scale model, with the posterior median 

occupancy probability for this species increasing from around 0.25 to almost 1 over the range 

of grid square-scale Opuntia volumes that I observed (Fig. 4A). The effects for elephants and 

vervet monkeys were also slightly stronger in the broad-scale model, but the differences were 

not very pronounced (Figs. 3B,C, 4B,C).  

My models revealed a variety of effects of Opuntia on the occupancy of the non-frugivorous 

herbivore species. For Grevy’s zebra, I did not observe a clear relationship at a fine scale (Fig. 

3D), but I did find a positive relationship at the broad scale (Fig. 4D). The effects for impala 

were probably negative at both spatial scales (Figs. 3E, 4E), with the relationship being slightly 

stronger at the broad scale (Fig. 4E). By contrast, the effects for dik-dik were positive at both 

spatial scales (Figs. 3F, 4F), although there was more uncertainty in the broad-scale 

relationship, as evidenced by the wider compatibility intervals. The effects for giraffes were 

highly scale-dependent; the relationship between site-level Opuntia cover and giraffe 

occupancy was positive (Fig. 3G), but the effect of grid square-level Opuntia volume on 

occupancy was strongly negative (Fig. 4G). For spotted hyena, I observed that the relationship 

between hyena occupancy and Opuntia was scale-dependent; the relationship was positive for 

the site-level Opuntia cover (Fig. 3H), but negative for the grid square-level Opuntia volume 

(Fig. 4H).  

For all my focal species, the results were qualitatively similar for models which included 

measures of the native plant community (Figs. 3, 4) and for models which omitted them 

(Appendix E, Figs. S18, S19). 
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Figure 3. Marginal total effect of site-level Opuntia percentage cover (standardised) on occupancy 

probability (ψ) for: A) olive baboon, B) elephant, C) vervet monkey, D) Grevy’s zebra, E) impala, F) 

dik-dik, G) giraffe, and H) spotted hyena. The models assume that Opuntia does not indirectly affect 

occupancy through altering the composition of the native plant community; for model structure, see 

Table 1. Shaded areas represent (from outside) 95%, 89%, 80%, 70%, 60%, and 50% compatibility 

intervals. Black lines indicate the posterior median marginal effect.  
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Figure 4. Marginal total effects of grid square-level Opuntia volume (standardised) on occupancy 

probability (ψ) for: A) olive baboon, B) elephant, C) vervet monkey, D) Grevy’s zebra, E) impala, F) 

dik-dik, G) giraffe, and H) spotted hyena. The models assume that Opuntia does not indirectly affect 

occupancy through altering the composition of the native plant community; for model structure, see 

Table 1. Shaded areas represent (from outside) 95%, 89%, 80%, 70%, 60%, and 50% compatibility 

intervals. Black lines indicate the posterior median marginal effect.  
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Effects of Opuntia on mammalian temporal activity 

Some of my focal species had different activity patterns in the high-Opuntia and low-Opuntia 

site pairs (Fig. 5). Olive baboons tended to have a higher level of activity in the morning in 

high-Opuntia sites (Fig. 5A). Elephants tended to be more active at high-Opuntia sites at night, 

while low-Opuntia sites had more elephant activity during the day (Fig. 5B). Impala were less 

active at high-Opuntia sites at night (Fig. 5E). Likewise, dik-dik were less active at high-

Opuntia sites at night but were also more active at high-Opuntia sites during the day (Fig. 5F). 

Finally, I observed a spike in giraffe activity at high-Opuntia sites in the early afternoon (Fig. 

5G). 

The effects of site-level Opuntia cover on total activity levels were generally small and, for 

some species, the distribution of observations predicted by my model did not closely match the 

observed data (Fig. 6). However, the median site-level activity predicted by my models did 

slightly increase for olive baboons (Fig. 6A), elephants (Fig. 6B), and vervet monkeys (Fig. 

6C), and slightly decrease for impala (Fig. 6E), dik-dik (Fig. 6F), and giraffe (Fig. 6G), as 

Opuntia cover increased.  

In contrast to the effects of site-level Opuntia cover, the effects of grid square-level Opuntia 

volume were apparent for several of my focal species (Fig. 7). I observed clear increases in the 

median predicted activity with increasing Opuntia volume for olive baboons (Fig. 7A) and 

elephants (Fig. 7B), and for both of these species the distribution of observations predicted 

from the model closely matched the observed data. I also observed a positive effect of Opuntia 

on dik-dik activity (Fig. 7F), but this effect was weaker than for baboons and elephants. 

Conversely, my models revealed a negative relationship between Opuntia volume and activity 

for Grevy’s zebra (Fig. 7D), impala (Fig. 7E), and spotted hyena (Fig. 7H). There was also a 

slight decrease in the distribution of predicted activity for vervet monkeys (Fig. 7C), but the 

median predicted activity for this species remained at zero over the whole range of observed 

Opuntia volumes and the model’s predictions exhibited a poor fit to the observed data. I did 

not observe any clear relationship between Opuntia volume and activity for giraffe (Fig. 7G).  

I observed qualitatively similar relationships between Opuntia and activity for models which 

included measures of the native plant community (Figs. 6, 7) and for models which did not 

include these covariates (Appendix E: Figs. S20, S21). 
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Figure 5. Activity kernels for species detections at high-Opuntia (dark green) and low-Opuntia (light 

green) sites, for: A) olive baboon (n = 1930, 610), B) elephant (n = 2884, 1457), C) vervet monkey (n 

= 273, 515), D) Grevy’s zebra (n = 3114, 3141), E) impala (n = 17192, 24059), F) dik-dik (n = 6978, 

6835), G) giraffe (n=1735, 1244), and H) spotted hyena (n = 132, 270). Shaded areas represent 95% 

confidence intervals. Sample sizes (n) represent the number of detections at high and low sites 

respectively. 
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Figure 6. Relationships between total activity (rescaled) and site-level Opuntia percentage cover 

(standardised), for: A) olive baboon, B) elephant, C) vervet monkey, D) Grevy’s zebra, E) impala, F) 

dik-dik, G) giraffe, and H) spotted hyena. The models assume that Opuntia does not indirectly affect 

occupancy through altering the composition of the native plant community; for model structure, see 

Table 1. Shaded areas encompass (from outside) 95%, 89%, 80%, 70%, 60%, and 50% of observations 

simulated from the posterior distribution. The black line represents the median value of these simulated 

observations. Points represent individual sites. 
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Figure 7. Relationships between total activity (rescaled) and grid square-level Opuntia volume 

(standardised), for: A) olive baboon, B) elephant, C) vervet monkey, D) Grevy’s zebra, E) impala, F) 

dik-dik, G) giraffe, and H) spotted hyena. The models assume that Opuntia does not indirectly affect 

occupancy through altering the composition of the native plant community; for model structure, see 

Table 1. Shaded areas encompass (from outside) 95%, 89%, 80%, 70%, 60%, and 50% of observations 

simulated from the posterior distribution. The black line represents the median value of these simulated 

observations. Points represent individual sites. 
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Discussion 

I aimed to measure the impacts of invasive Opuntia cacti on the occupancy and activity of eight 

key mammal species in Laikipia County. I found that the direction and magnitude of Opuntia’s 

effects on occupancy and activity varied among mammal species and depended on the spatial 

scale of the Opuntia covariate. These results have important implications for the conservation 

of key mammal species in the region, as well as for the future spread of Opuntia through seed 

dispersal. 

A key finding was the negative effect of grid square-level Opuntia volume on the occupancy 

of the endangered reticulated giraffe (Muneza et al. 2018). This relationship may be due 

inhibited foraging, as I rarely observed giraffes feeding on vegetation growing in or around 

Opuntia stands (Chapter 5). Another possible explanation is that heavily invaded areas offer 

few suitable resting sites; recumbency is an important part of giraffes’ daily activities (Saito & 

Idani 2020). Invaded sites could be unsuitable for recumbency due to a lack of physical space, 

or due to increased predation risk. Furthermore, mothers with calves are known to avoid closed 

habitats, presumably because dense vegetation reduces visibility and thus increases the risk of 

the calf being predated (Young & Isbell 1991). Habitat loss and fragmentation are thought to 

be the key drivers of population decline in the reticulated giraffe (Muneza et al. 2018). I argue 

that my findings support the conclusion that Opuntia invasion is contributing to this habitat 

loss; over the range of grid square-level Opuntia volumes that I observed, the median posterior 

probability of a site being occupied by giraffes decreased from 0.59 to 0.08. Given that Laikipia 

and the neighbouring Isiolo and Samburu Counties host approximately 25% of the reticulated 

giraffe’s global population (see Supplementary Table 3 in Muneza et al. 2018), I argue that the 

rapid and continued expansion of Opuntia in the region poses a threat to the continued existence 

of this species. Consequently, strengthening the ongoing efforts to slow and reverse the spread 

of Opuntia through mechanical removal and biological control is critical. 

In contrast to the effects of Opuntia on reticulated giraffe, I observed positive effects of Opuntia 

on the occupancy of elephants, olive baboons, and vervet monkeys; the relationship between 

grid square-level Opuntia volume and occupancy for olive baboons was especially strong. I 

also observed positive effects of Opuntia on olive baboon and elephant activity, particularly in 

my broad-scale models. These findings are not surprising; baboons, elephants, and vervet 

monkeys all regularly consume Opuntia fruit (Chapter 5) and are thought to be important 

dispersal agents for the Opuntia (Strum et al. 2015; Witt 2017; Githae 2019). My findings for 
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elephants are also consistent with local communities’ observation that elephants are attracted 

to Opuntia fruit, resulting in elephants encroaching with increased frequency on grazing areas 

near Opuntia stands (Shackleton et al. 2017). The fact that I generally observed more 

pronounced effects of grid square-level Opuntia than site-level Opuntia is also consistent with 

the explanation that these species are attracted by fruit, as grid square-level Opuntia is likely 

to be more representative of the overall availability of fruit resources.  

The positive effects of Opuntia on the occurrence of mammalian frugivores may generate a 

positive feedback loop which facilitates the spread of the invasion. Frugivores are drawn to 

invaded areas, where they consume Opuntia fruits, and deposit the seeds in their faeces; this 

dispersal further increases the density or extent of the invaded area, which in turn attracts more 

frugivores. However, understanding how the habitat use of frugivores feeds back to influence 

the dynamics of the Opuntia invasion requires information which is currently lacking. In 

particular, it is unclear how far seeds are carried before they are deposited, or the proportion of 

deposition which occurs in currently invaded areas versus adjacent uninvaded habitat. This 

knowledge gap could be addressed by studying the habitat use of specific individuals or groups 

of frugivores to understand their movements in the hours following fruit consumption. If the 

frugivores generally remain within invaded areas, then seed dispersal will primarily increase 

the density of Opuntia in areas which are already invaded. However, if frugivores travel into 

uninvaded areas after feeding, then they will increase the invasion’s spatial extent. Identifying 

the species that are responsible for transporting Opuntia seeds into uninvaded areas, and then 

estimating the distance over which this transportation occurs, would allow for more effective 

monitoring of currently uninvaded areas to detect and remove plants before they begin to 

produce their own fruit.  

I also examined Opuntia’s effects on two of the most abundant herbivores in the region – 

impala and dik-dik – and found contrasting effects for the two species. For impala, I found 

negative relationships between Opuntia and occupancy at both spatial scales. One possible 

explanation for these effects is that Opuntia affects the foraging behaviour of the impala; 

Opuntia stands are not consumed by impala (Chapter 5), and the dense physical structure of 

Opuntia stands may prevent impala from accessing much of the other vegetation in an area. 

However, when I compared models with and without measures of the native plant community 

(percentage cover of grass, shrubs, forbs and succulents, and the number of trees), I observed 

similar results. This suggests that the effects on impala occupancy and activity are not driven 

by Opuntia affecting the native plant community. An important caveat is that I only examined 
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broad categories of native plants; for logistical reasons, I did not record all species of plants 

which were present. This may obscure any effects which are due to Opuntia altering 

composition within vegetation classes (e.g., by facilitating one species of forb over another) or 

effects mediated through key individual plant species (e.g., key food plants). Further insights 

could be gained by investigating how Opuntia invasion alters the local plant community, and 

by examining the diet of individual animals inhabiting areas with different levels of Opuntia. 

Another explanation for the effects of Opuntia on impala is that the effects are mediated by 

changes in actual or perceived predation risk. The presence of large Opuntia stands may block 

sightlines – reducing the distance at which an impala can detect an approaching predator – and 

impede escape, resulting in impala avoiding invaded areas. This explanation is supported by 

research which demonstrates that the interplay between habitat structure and predation risk is 

a key determinant of impala habitat use. Ford et al. (2014) found that impala at Mpala Research 

Centre tended to avoid closed wooded areas in favour of open glades, especially at night; 

notably, I also observed that impala activity was lower at night in high-Opuntia sites than in 

low-Opuntia sites. The authors also found that impala were more likely to encounter and be 

killed by predators in wooded areas, and used experimental manipulations of habitat structure 

to demonstrate that differences in forage quality between wooded areas and open glades could 

not explain the observed patterns (Ford et al. 2014). More recently, Epperly et al. (2021) not 

only confirmed the preference of impala for open habitats, but also showed that impala exhibit 

stronger antipredator responses in dense shrubby areas than in experimental clearings. 

Together, these findings strongly suggest that the effects of Opuntia on impala occupancy and 

activity are driven by changes in predation risk. Future research could confirm this mechanism 

through experimentally removing Opuntia stands, or by using the current Opuntia-removal 

programme as a natural experiment and examining the resulting changes in impala occurrence 

and antipredator behaviour. If changes to patterns of predation risk are found to be the main 

mechanism underlying Opuntia’s effects on impala habitat use, this suggests that Opuntia can 

moderate the trophic cascade through which impala influence native vegetation in the 

ecosystem (Ford et al. 2014). Investigating these potential herbivore-mediated impacts of 

Opuntia on native plants represents an important avenue for future research. 

In contrast to the results for impala, dik-dik occupancy was positively related to Opuntia in 

both my fine-scale and broad-scale models, and I also observed a positive relationship between 

total dik-dik activity and Opuntia in my broad-scale model. A plausible explanation for this 

result is that Opuntia stands afford dik-dik protection from predators; dik-dik are much smaller 
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than impala, meaning they may be able to move through and hide within Opuntia stands where 

impala cannot. Dik-dik are generally thought to prefer relatively closed habitats because they 

perceive open areas as risky (Otieno et al. 2019). Although dik-dik are known to decrease their 

short-term use of overstory cover (i.e., trees and shrubs) in response to exposure to predator 

scent cues, this may represent a relatively brief increase in vigilance behaviour and is not 

incompatible with a preference for closed habitats (Ford & Goheen 2015). However, it is 

unclear whether dik-dik perceive Opuntia stands as safe or risky, and whether this perception 

matches the actual level of predation risk in invaded areas. To mechanistically link Opuntia 

invasion, predation risk, and dik-dik habitat use, methods similar to those previously applied 

to impala (e.g., Ford et al. 2014; Epperly et al. 2021) could be employed to test whether 

predator encounter rate, predation rate, and dik-dik anti-predator responses are influenced by 

Opuntia. It will also be important to consider the role of territoriality, which may constrain 

changes in dik-dik habitat use (Ford & Goheen 2015). Investigating the constraints imposed 

by territoriality may also provide more general insights into the role of constraints in the 

behavioural impacts of invasive plants, which is a key outstanding research question in the 

field (Chapter 2; Stewart et al. 2021). 

Opuntia-driven changes to predation risk may also explain why dik-dik were more active 

during the day at high-Opuntia sites, and at night in low-Opuntia sites; I speculate that dik-dik 

are able to venture further from the cover of Opuntia stands under the cover of darkness. This 

hypothesis could be tested by examining how the relationship between Opuntia and dik-dik 

activity is moderated by moonlight and cloud cover. If predation risk explains the observed 

activity patterns, then I would expect the effect to be weaker on moonlight nights and when 

cloud cover is low – as is observed in small mammals such as rodents (e.g., Guiden & Orrock 

2019) 

The occupancy of my focal carnivore, the spotted hyena, was positively related to site-level 

Opuntia cover but negatively related to grid square-level Opuntia volume. I also observed that 

increasing grid square-level Opuntia had a negative effect on the total level of hyena activity 

but did not observe any clear relationship in my fine-scale activity model, nor did I observe 

any difference in activity timing between high-Opuntia and low-Opuntia site pairs. It is unclear 

whether these results are primarily driven by direct effects of Opuntia on spotted hyena hunting 

behaviour, or indirect effects through changes in the distribution of prey. Spotted hyenas are 

primarily cursorial predators (Périquet et al. 2015), so negative effects of broad-scale Opuntia 

volume on occupancy and activity may be due to Opuntia impeding the ability of hyenas to 
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pursue prey. However, these negative relationships could also be due to changes in the 

occupancy of prey species – particularly impala – which I also observed. Furthermore, spotted 

hyenas live in groups which undergo complex fission-fusion dynamics which are influenced 

by ecological factors such as prey availability (Smith et al. 2008); these group dynamics could 

conceivably manifest as changes in occupancy or activity as individuals disperse to different 

areas around the landscape. Consequently, resolving the specific mechanisms underlying 

Opuntia’s effects on spotted hyena habitat use will require further study, likely involving the 

detailed tracking of specific individuals and groups (e.g., using GPS tags).  

A potential limitation of my study is that I was unable to disentangle the structurally mediated 

and resource-mediated pathways (Fig. 2) through which Opuntia alters mammalian habitat use. 

While in principle it is possible to separate these pathways by conditioning on the quantity of 

ripe fruits present in a site or grid square, in practice this does not work in an observational 

setting. This is because Opuntia size and fruiting are very closely related; there are too few 

observations of small fruiting plants or large non-fruiting plants for the model to estimate the 

effects reliably. While this problem could possibly be addressed by experimental manipulation 

(e.g., removal of fruits from Opuntia stands) this is likely to be logistically infeasible for an 

invasion of this scale. Furthermore, an experimental approach may not work if the presence of 

large Opuntia stands, rather than presence of visible fruit, is the primary cue that drives the 

foraging behaviour of frugivorous mammals. This explanation is plausible since ripe fruits are 

commonly obscured among cladodes or have fallen to the ground, and are thus only visible at 

close range. More fundamentally, I argue that separating the structurally mediated and 

resource-mediated pathways is less important from a conservation perspective than estimating 

the total effect of Opuntia, which represents the expected effect of Opuntia expanding in range 

to invade new areas, as well as the likely effects of intervening to remove Opuntia from an 

area. Therefore, I do not believe that this limitation undermines the results of my investigation. 

A key assumption of my approach is that the relationship between Opuntia and mammalian 

habitat use is due to Opuntia affecting habitat use, and not habitat use affecting the distribution 

of Opuntia (Fig. 2). In the long-term, this assumption may not be strictly true. For instance, 

long-term herbivore exclosure plots have a higher density of Opuntia stricta than control sites 

which are accessible to herbivores, implying that wild herbivores suppress Opuntia growth 

either directly by feeding on Opuntia, or indirectly by influencing Opuntia’s interactions with 

the native plant community (Wells et al. 2023). However, these effects likely operate on much 

longer timescales – months to years – than changes in animal behaviour, which can occur over 



113 
 

a matter of hours and days. Therefore, I argue that the effects I observed over the relatively 

short timescale of my study are best interpreted as Opuntia’s effects on mammalian habitat use. 

However, it is clear that deepening our understanding of the complex interplay between the 

wild mammal community and Opuntia is an important avenue for future research; this is 

especially true for O. engelmannii, which has remained relatively unstudied to-date. These 

longer-term studies could aim to establish whether feedback loops – which are a common 

feature of the behavioural impacts of invasive plants (Chapter 2; Stewart et al. 2021) – are an 

important feature of the Opuntia invasion in Kenya. 

As Opuntia species continue to spread across the landscape of Laikipia County the potential 

for them to exert ecological impacts will increase. By using camera traps to investigate the 

effects of Opuntia on mammalian habitat use, I have provided new insights into these 

ecological impacts. Specifically, my results show that Opuntia affects the occupancy and 

activity of key mammal species; the strength and direction on these effects varies among 

mammal species and depends on the spatial scale of the Opuntia covariate. Notably, my results 

suggest that a species of key conservation concern – the endangered reticulated giraffe (G. 

reticulata) – is being threatened by the Opuntia invasion. My findings underscore the need for 

current management efforts to be intensified, to slow and ultimately reverse the spread of 

Opuntia in Laikipia County.  
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Appendix A: Model notation 

Gaussian process occupancy model 

I assume that a site i (defined as the area surrounding one camera trap) is either occupied (zi = 

1) or unoccupied (zi = 0) by a given species, with probability ψi of being occupied. However, 

the species is detected imperfectly – on a given visit t (defined as one day of camera trap 

deployment) the probability that a species is detected, conditional on its presence at the site, is 

pi,t. If a species is absent from a site, then it is never detected (i.e., I assume no false positives). 

Consequently, over a series of visits (a site receives vi visits) the observed data at a site (yi) 

follow a binomial distribution with vi trials and probability pi,t zi of success.  

The probabilities of occupancy (ψi) and detection (pi,t) at a site may depend on one or more 

environmental covariates – indeed, the objective of my study was to understand the relationship 

between Opuntia and the occupancy probability. To model these relationships I used a logistic 

regression framework, where logit(ψi) and logit(pi,t) are equal to a linear combination of 

measured environmental covariates (represented here by the generic covariates X and W) and 

their respective effect sizes (βX and βW), as well as intercept (k̅, ki, and αdet) parameters.  

I defined occupancy covariates at the site level (e.g., Xi), which I consider to be reasonable as 

variables such as vegetation structure are unlikely to change dramatically over the relatively 

short timescale over which my cameras were deployed. However, I defined detection 

covariates at the visit level (e.g., Wi,t) to allow for rapidly changing environmental conditions 

(e.g., weather) which may affect the probability that a species is detected on a given day. 

The simplest occupancy models assume that the occupancy states at different sites are 

independent of one another. However, patterns of species occupancy often display spatial 

autocorrelation: the occupancy state for nearby sites tends to be more similar than for sites 

which are further apart. To model this spatial autocorrelation, I used a Gaussian process 

(McElreath 2021). This technique assumes that the covariance between a pair of sites i and j is 

a function of the distance between them. Two parameters control the shape of this relationship 

– η2 defines the maximum covariance between a pair of sites, and ρ2 defines the rate at which 

covariance declines with increasing distance. I then used a multivariate normal distribution to 

turn the resulting covariance matrix into a varying intercept, ki, which I incorporated into my 

occupancy sub-model. This varying intercept can be viewed as an offset from the average 

intercept across all sites, k̅. 
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This narrative description corresponds to the following model structure: 

yi ∼ Binomial(vi, pi,t zi) 

zi ∼ Bernoulli(ψi) 

logit(ψi) = ln (
ψ𝑖

1 − ψ𝑖
) = k̅ + ki + βXXi 

(

k1
k2
⋮
ki

) ∼ MVNormal

(

 
 
(

0
0
0
0

) ,  𝐊

)

 
 
  

Ki,j = η
2exp(−ρ2Di,j

2 ) 

logit(pi,t) = ln (
pi,t

1 − pi,t
) = αdet  +  +βWWi,t 

Additionally, I used the following prior distributions, which I chose based on the results of 

prior predictive simulations (Appendix B):  

βX, βW ∼ Normal(0, 1) 

αdet ∼ Normal(0, 0.5) 

k̅ ∼ Normal(0, 0.5) 

η2 ∼ Exponential(2) 

ρ2 ∼ Log − normal(0, 1) 

Hurdle model 

I modelled the total level of a species’ activity at a site (indexed i) as a mixture of Bernoulli 

and normal distributions. Specifically, a site has a probability θ of showing no activity, which 

represents the probability that a site is not used or the site is used but the species is never 

detected. Consequently, a site has probability (1 – θ) of being used, in which case the level of 

activity is modelled as a log-normal distribution with parameters μ and σ.  

Both μ and θ are modelled as functions of one or more environmental covariates (represented 

here by the generic covariates X and W) in a linear modelling framework. As θ is a probability, 

and hence must lie between zero and one, I used the logit link function for its model. In addition 

to environmental covariates, both linear models incorporated Gaussian processes to account 

for spatial autocorrelation.  

p(Ai|θ, μ, σ) =  {
(1 − θi)𝐿𝑜𝑔­𝑛𝑜𝑟𝑚𝑎𝑙(μi, σ)    if 𝐴𝑖 > 0
 θ𝑖                                                          if 𝐴𝑖 = 0
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μi = 𝑘̅ + 𝑘𝑖 + β𝑋𝑋𝑖 

𝑙𝑜𝑔𝑖𝑡(θ𝑖) = 𝑙𝑛 (
θ𝑖

1 − θ𝑖
) = ω̅ + 𝑚𝑖 + γ𝑊𝑊𝑖 

(

k1
k2
⋮
ki

) ∼ MVNormal

(

 
 
(

0
0
0
0

) ,  𝐊

)

 
 
  

Ki,j = η
2exp(−ρ2Di,j

2 ) 

(

m1
m2
⋮
mi

) ∼ MVNormal

(

 
 
(

0
0
0
0

) ,  𝐌

)

 
 
  

Mi,j = τ
2exp(−φ2Di,j

2 ) 

For this model I used the following prior distributions: 

σ ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(5) 

𝑘̅, β𝑋 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.4) 

𝜔̅, γ𝑊 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) 

η2, τ2 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2) 

ρ2, ϕ2 ∼ 𝐿𝑜𝑔 − 𝑛𝑜𝑟𝑚𝑎𝑙(0, 1) 

I chose the priors for 𝑘̅, β𝑋 and σ with the aid of prior predictive simulations (Appendix B). 

Prior choice for the rest of the parameters was informed by the simulations I conducted for the 

occupancy models (Appendix B). 
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Appendix B: Prior predictive simulations 

Introduction 

Historically, ecologists have often employed extremely flat, so-called “uninformative” or “non-

informative” default priors (Banner et al. 2020). However, the use of flat default priors is poor 

statistical practice; flat priors can result in overfitting and may cause Markov chain Monte 

Carlo (MCMC) algorithms to sample inefficiently or, in the case of more complex model 

structures, totally fail to adequately explore the posterior distribution (McElreath 2021). 

Furthermore, flat priors which appear “uninformative” on the scale at which they are specified 

can prove to be strongly informative on the outcome scale, such as when intercept and slope 

parameters in logistic regression or occupancy models are transformed to the probability scale 

using the logit link function (Northrup & Gerber 2018; Banner et al. 2020; McElreath 2021). 

However, specifying better priors can be challenging, particularly for hyperparameters or for 

parameters which interact with one another. One method for understanding the consequences 

of different prior distributions, and thus making informed decisions about which priors to 

specify, is to conduct prior predictive simulations (McElreath 2021; Wesner & Pomeranz 

2021). In this appendix, I use prior predictive simulations to support the choice of prior 

distributions for the parameters in my models. Code to fully reproduce my simulations is 

available at https://github.com/Peter-Stewart/Zooniverse_processing.  

 

Gaussian process occupancy model 

Gaussian process parameters 

In a Gaussian process occupancy model (see Appendix A), the covariance between a pair of 

sites, i and j, is related to the distance between them by the kernel function: 

Ki,j = η
2exp(−ρ2Di,j

2 ) 

where Ki,j is the covariance, η2 is the maximum covariance between sites, ρ2 is the rate at 

which covariance declines with distance, and Di,j
2  is the squared distance between the sites 

(McElreath 2021). As Di,j
2  is observed data, the parameters which require priors are η2 and ρ2. 

For modelling purposes, I found it to be more convenient to re-scale the distances from their 

original units (metres) by first converting the distances into kilometres and then dividing by six 

(Fig. S1).  

https://github.com/Peter-Stewart/Zooniverse_processing
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Figure S1. The distribution of distances between camera trap sites, in metres (left panel) and rescaled 

by dividing by 6000 (right panel).  

 

Given that the values of the two parameters, η2 and ρ2, must be positive (McElreath 2021) one 

choice of prior is the exponential distribution. Varying the rate for these exponential priors 

alters the prior distribution for the relationship between covariance and distance. Based on 

visualisations of this relationship (Fig. S2), I concluded that an exponential(2) prior for η2 

strikes a reasonable balance, being moderately sceptical of large covariances between nearby 

sites while still (due to the long tail of the exponential distribution) permitting large covariances 

if demanded by the data. However, I also found that both choices of exponential prior for ρ2 

imply that the covariance between distant sites, such as those more than 3 units (~ 15km) apart, 

is high – especially relative to the covariance between neighbouring sites (Fig. S2). As the 

spatial autocorrelation between neighbouring sites (~ 50m apart) is likely to greatly exceed that 

between distant sites, I decided to consider prior distributions for ρ2 which better encapsulated 

that assumption.  

An alternative choice of prior for positive parameters is the log-normal distribution. When a 

log-normal prior is used for ρ2, covariance decreases rapidly with distance and is lower at long 

distances than when an exponential prior is used (Fig. S3). Consequently, I decided on an 

exponential(2) prior for η2 and a log-normal(0, 1) prior for ρ2. These priors represent the 

assumption that covariance between sites may be high between nearby sites (i.e., those within 

the same regions or in nearby parts of adjacent regions) but that there is probably little 
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covariance between sites which are more than ~ 15km apart (Fig. S4). I emphasise that the 

priors do not dictate that there is no covariance between distant sites (I have added the 99% 

compatibility interval to Fig. S4 to further emphasise this point), meaning that the model can 

accommodate higher covariances between distant sites if demanded by the data. The priors are 

also weakly regularising (i.e., slightly sceptical of very large covariances at all distances) which 

helps to guard against overfitting (McElreath 2021).  

 

 

Figure S2. Prior distributions of the relationship between covariance and distance when exponential 

priors are specified for the parameters η2 and ρ2. Panels represent these prior distributions under 

different choices of rate parameter for the exponential distributions. Grey shaded regions show 95%, 

89%, 80%, 70%, 60%, and 50% compatibility intervals (from light to dark respectively), with solid and 

dashed black lines indicating the prior median and mean respectively. Priors for the two covariance 

function parameters, η2 and ρ2, are displayed above each panel. 
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Figure S3. Prior distributions of the relationship between covariance and distance when an exponential 

prior is specified for η2 and a log-normal prior for ρ2. Panels represent these prior distributions under 

different choices of standard deviation parameter for the log-normal distribution. Grey shaded regions 

show 95%, 89%, 80%, 70%, 60%, and 50% compatibility intervals (from light to dark respectively), 

with solid and dashed black lines indicating the prior median and mean respectively. Priors for the two 

covariance function parameters, η2 and ρ2, are displayed above each panel. 
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Figure S4. Left panel: The distribution of (rescaled) distances between camera trap sites. Right panel: 

The prior distribution of the relationship between covariance and distance which I selected for my 

models (see Appendix A). Grey shaded regions show 99%, 95%, 89%, 80%, 70%, 60%, and 50% 

compatibility intervals (from light to dark respectively), with solid and dashed black lines indicating 

the prior median and mean respectively. Priors for the two covariance function parameters, η2 and ρ2, 

are displayed above the panel.  
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Occupancy and detection sub-model parameters 

The occupancy and detection sub-models of a Gaussian process occupancy model are in the 

form of a logistic regression. For instance, for a probability parameter q, the relationship 

between q and a covariate X is modelled as: 

logit(qi) = ln (
qi

1 − qi
) = α + βXi 

Where i is the site index, α is the intercept and β is the slope. When covariate X has been 

standardised by z-transformation (i.e., subtracting the mean of X from each value and then 

dividing by the standard deviation of X), α represents the value of logit(qi) when Xi equals the 

average value of X, and β represents the effect of changing X by one standard deviation.  

In situations where there is no prior information to suggest the direction of a covariate’s effect, 

a normal prior with a mean of zero is sensible for the β parameter because it is agnostic about 

whether the effect of the covariate is positive or negative. Likewise, a zero mean for the α 

parameter is sensible, as it means that when a standardised X is at its average value (i.e., X 

equals zero) the probability is 0.5.  

After choosing a mean, it is then necessary to choose a standard deviation for the normal priors. 

As mentioned above, in logistic regression priors which are flat on the linear model scale are 

strongly informative on the probability scale (Northrup & Gerber 2018; Banner et al. 2020; 

McElreath 2021). For instance, when I varied the standard deviation across three orders of 

magnitude, I observed that priors with a larger standard deviation (i.e., flat priors) result in the 

model assigning nearly all of the probability to values near zero and one (Fig. S5). I conducted 

further simulations with standard deviation values of 2, 1, and 0.5 for the α prior and a standard 

deviation of 1 for the β prior (Fig. S6). Based on these results, I chose a Normal(0, 0.5) prior 

for αdet, and a Normal(0, 1) prior for the β parameters in the detection sub-model. 

In the detection sub-model, the above simulations are sufficient to guide the choice of priors. 

However, in the occupancy sub-model, the varying intercept ki (which results from the 

Gaussian process) also plays a role: 

logit(ψi) = ln (
ψ

1 − ψ
) = k̅ + ki + βXXi 

Consequently, setting a sensible prior for k̅ additionally requires consideration of ki. I therefore 

conducted simulations with a range of normal priors for k̅ (Fig. S7). Based on the results of 
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these simulations, I decided on a Normal(0, 0.5) prior for k̅, and a Normal(0, 1) prior for the β 

parameters in the occupancy sub-model. 

 

 

Figure S5. 500 regression lines drawn from the prior distributions of α and β for three different choices 

of Normal prior. Priors are defined on the log-odds scale, while the regression lines are displayed on 

the probability scale.  

 

 

Figure S6. 500 regression lines drawn from the prior distributions of α and β for three different choices 

of Normal prior. Priors are defined on the log-odds scale, while the regression lines are displayed on 

the probability scale. 
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Figure S7. Regression lines drawn from the prior distributions of k̅, ki, and βX, for different values of  

k̅. A normal(0, 1) prior was used for βX, while ki was calculated using an exponential(2) prior for η2 

and a log-normal(0, 1) prior for ρ2 in combination with the actual distances between sites. Only the first 

four values of ki were retained for each value of η2 and ρ2 drawn from the prior distributions, to prevent 

the plots from becoming uninterpretable due to over-plotting. 500 values were drawn from the prior 

distributions of k̅ and βX, meaning that a total of 2000 regression lines are shown in each plot. 

 

Hurdle model 

In my hurdle model (see Appendix A), the parameter θ is modelled in a logistic regression 

framework, so I based my choice of priors on the results of the simulations which I conducted 

for the occupancy model. For the part of the model which comes into play when activity is 

observed (i.e., when 𝐴𝑖 > 0) I conducted further simulations. The structure of this section of 

the model is: 

p(Ai|θ, μ, σ) =  (1 − θi)𝐿𝑜𝑔­𝑛𝑜𝑟𝑚𝑎𝑙(μi, σ)    if 𝐴𝑖 > 0 

μi = 𝑘̅ + 𝑘𝑖 + β𝑋𝑋𝑖 

Where X is a covariate. I conducted my simulations using a simplified version of this model:  

𝑌i = 𝐿𝑜𝑔­𝑛𝑜𝑟𝑚𝑎𝑙(μi, σ) 

μi = 𝛼 + 𝛽𝑋𝑖 

Where X is a covariate and Y is the observed outcome. In this model, the parameters which 

require prior distributions are α, β, and σ. I checked various combinations of α, β, and σ priors, 

and decided on α ~ Normal(0, 0.4), β ~ Normal(0, 0.4), and σ ~ Exponential(5) as these priors 

allowed for both positive and negative relationships between X and Y, and the priors assigned 

more probability to small effects (i.e., they are weakly regularising) without ruling out stronger 

effects if supported by the data (Fig. S8). 
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Figure S8. Prior distribution of the relationship between variables X and Y for my choice of prior 

distributions for α, β, and σ. Grey shaded regions show 99%, 95%, 89%, 80%, 70%, 60%, and 50% 

compatibility intervals (from light to dark respectively), with solid and dashed black lines indicating 

the prior median and mean respectively.  
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Appendix C: Model validation on synthetic data 

My occupancy model structure (Appendix A) is justified based upon my assumptions about 

the underlying data-generating process, and my choice of prior distributions is supported by 

prior predictive simulations (Appendix B). However, implementing a model in a probabilistic 

programming language such as Stan is challenging, and it is important to ensure that errors are 

not accidentally introduced. To ensure that my occupancy model was operating as intended, 

and that it was capable of recovering accurate parameter estimates, I validated it by fitting it to 

synthetic data. Code to fully reproduce my analysis is available at https://github.com/Peter-

Stewart/Zooniverse_processing. 

I used the actual coordinates of the sites in my real data to construct the distance matrix used 

in the synthetic data, in order to diagnose any potential issues resulting from the spatial 

structure of the sites (e.g., numerical underflow and model failure resulting from the rescaling 

of inter-site distances). I also used the actual number of visits (i.e., camera trap days) each site 

received, to ensure that there were no issues resulting from some sites receiving relatively few 

visits. I included two covariates for occupancy, and one time-varying covariate for detection.  

In my model, I used the same prior distributions as in the models which were fitted to real data 

(Appendix A) – these priors were chosen based on the results of prior predictive simulations 

(Appendix B). I ran the model with four chains each with 4000 iterations, of which 3000 were 

used for warmup and 1000 were used for inference. As with the models which I fitted to the 

real data, I employed a non-centred parameterisation to improve sampling efficiency. 

Examination of my model’s diagnostic plots (Figs. S9, S10) and trace rank plots for the key 

parameters (Fig. S11) indicated that sampling was successful. The true values for all slope and 

intercept parameters lay well within their respective posterior distribution (Fig. S12), and the 

estimated occupancy probability at each site was generally close to the true value, particularly 

for sites with larger numbers of visits (Fig. S13). Finally, the inferred pattern of spatial 

autocorrelation closely resembled the true autocorrelation between sites (Fig. S14). Based on 

these results, I concluded that my model was suitable to be fitted to the real data.  

  

https://github.com/Peter-Stewart/Zooniverse_processing
https://github.com/Peter-Stewart/Zooniverse_processing
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Figure S9. Diagnostic plots for the test model. Top left: Gelman-Rubin convergence diagnostic (𝑅̂; 

Gelman & Rubin 1992) versus number of effective sample size for all parameters in the model (n = 

16807). Values of 𝑅̂ equal to 1.00 indicate that the Markov chains have successfully converged. The 

vertical line indicates the actual number of Markov chain samples used for inference. Top right: Kernel 

density plot of the HMC energy diagnostic (black line), which should follow a normal distribution (blue 

line). Bottom left: Number of divergent transitions. Bottom right: Trace rank plot for the log-

probability parameter, with number of effective samples (n_eff) displayed. 
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Figure S10. Histograms of the marginal energy distribution (πE) and energy transition density (πΔE) of 

the test model’s Markov chains. The close match between these two distributions indicates that that the 

chains should effectively explore the posterior distribution (Betancourt 2018).  
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Figure S11. Trace rank plots for the test model’s key parameters. Colours indicate separate Markov 

chains. 
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Figure S12. Kernel density plots of the posterior samples (n = 4000) for the test model’s key parameters, 

with each parameter’s true value represented as a vertical dashed line. Shaded regions represent 95%, 

89%, 80%, 70%, 60%, and 50% compatibility intervals (from light to dark respectively). 
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Figure S13. Estimated (ψ̂) versus true values for the occupancy probability (ψ) at each site. Points 

indicate the posterior median, and vertical lines represent compatibility intervals (at 95%, 89%, 80%, 

70%, 60%, and 50% from dark to light respectively). Points which are more transparent represent sites 

which were visited fewer times.  
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Figure S14. The true spatial autocorrelation present in the simulated dataset (left panel) and the 

posterior median spatial autocorrelation estimated by the model (right panel).   
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Appendix D: Volunteer classifications 

The Prickly Pear Project Kenya (project link: https://www.zooniverse.org/projects/peter-dot-

stewart/prickly-pear-project-kenya) user interface (Fig. S15) presented a volunteer with a 

randomly selected camera trap image – the user was then asked to select from a list all of the 

species which were present in the image, how many individuals of each species were present, 

and whether any individuals appeared to be interacting with the cactus. As the purpose of the 

latter question was only to flag images for further expert review, “interacting” was vaguely 

defined, with the example in the project tutorial being “eating the cactus or its fruits”. Clicking 

on a species in the list displayed an information panel to help the user to make their choice 

(Fig. S16). In addition to photos and diagnostic information for the selected species, the 

information panel contained the names of species which the selected species is likely to be 

confused with due to their physical similarity. For example, if “impala” was selected, then the 

user was informed that this species is often confused with bushbuck, Grant’s gazelle, 

Thompson’s gazelle, and gerenuk (Fig. S16). Clicking on these species’ names would bring up 

further information on the key diagnostic differences between the each species and the species 

that the user had originally selected, along with a prompt for the user to select one of the 

species.  

A subset (n = 23786) of my images were classified by an expert (either P.S.S. or the Prickly 

Pear Project Kenya moderator). I used this image subset to assess the accuracy of the volunteer 

classifications and the robustness of my consensus classification method by comparing the 

expert classification for each image to the classifications made by the other volunteers. I found 

that the volunteers produced highly accurate classifications, particularly once a consensus had 

been taken (Table S1, Fig. S17). 

  

https://www.zooniverse.org/projects/peter-dot-stewart/prickly-pear-project-kenya
https://www.zooniverse.org/projects/peter-dot-stewart/prickly-pear-project-kenya
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Figure S15. The classification panel. A randomly selected camera trap image is displayed on the left, 

and a list of species is displayed on the right. The user must classify an image as containing one or more 

species (or “no animals present”) before being allowed to continue. The user has the option to zoom 

and pan the photo, as well as invert the colours. The “field guide” tab is visible to the right – when 

clicked, it brings up a species ID guide as well as information about Opuntia and the Ewaso ecosystem. 

The user is also able to access the project tutorial (which is automatically displayed to all users on their 

first visit to the classification panel) by clicking the “tutorial” tab at the top-right.  
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Figure S16. The information displayed when a user clicks on a species in the list (here, the user has 

clicked “impala”). The user is able to view different example photos by clicking the black dots under 

the image. Also displayed are species with which the selected species is often confused – here, the 

options are bushbuck, Grant’s gazelle, Thomson’s gazelle, and gerenuk. Clicking one of these options 

brings up an information panel with example images of the second species, and text which explains the 

differences between the two species – the user is then able to select which of the two species they think 

is correct. The user is also prompted to answer how many individuals of their selected species are 

present, as well as whether any individuals are interacting with the cactus – the user must answer these 

questions to continue.  
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Table S1. Classification accuracy for volunteer classifications, based on 23786 images which were 

classified by both an expert and volunteers. Results are shown for both consensus classifications (see 

main text) as well as the raw non-consensus volunteer classifications. Sensitivity and specificity are 

defined as Pr(classified present | truly present) and Pr(classified absent | truly absent) respectively. 

Species marked with an asterisk (*) were not present in the expert-classified set of images, and therefore 

do not have sensitivity values as they were never truly present.  

 Consensus Raw 

 Sensitivity Specificity Sensitivity Specificity 

Focal species    
Dik-dik (Madoqua spp.) 0.992 1.000 0.838 0.985 

Elephant (Loxodonta africana) 0.995 1.000 0.942 0.999 

Grevy’s zebra (Equus grevyi) 0.972 0.999 0.761 0.995 

Impala (Aepyceros melampus) 0.996 0.999 0.826 0.990 

Olive baboon (Papio anubis) 0.995 1.000 0.875 0.999 

Reticulated giraffe (Giraffa 

reticulata) 0.994 1.000 0.902 0.999 

Spotted hyena (Crocuta 

crocuta) 0.989 1.000 0.715 1.000 

Vervet monkey (Chlorocebus 

pygerythrus) 1.000 1.000 0.853 0.999 

     
Other mammals    
Aardvark (Orycteropus afer)* NA 1.000 NA 0.999 

Aardwolf (Proteles cristata)* NA 1.000 NA 1.000 

African wild dog (Lycaon 

pictus)* NA 1.000 NA 1.000 

African wildcat (Felis lybica)* NA 1.000 NA 1.000 

Bat 0.941 1.000 0.500 1.000 

Black-backed jackal (Canis 

mesomelas) 1.000 1.000 0.699 1.000 

Buffalo (Syncerus caffer) 1.000 1.000 0.792 0.999 

Bushbuck (Tragelaphus 

sylvaticus) 1.000 1.000 0.479 0.999 

Camel (Camelus dromedarius) 0.991 0.999 0.857 0.999 

Caracal (Caracal caracal)* NA 1.000 NA 1.000 

Cheetah (Acinonyx jubatus)* NA 1.000 NA 1.000 

Civet (Civettictis civetta)* NA 1.000 NA 1.000 

Dog (domestic)* NA 1.000 NA 1.000 

Duiker (tribe Cephalophini)*  NA 1.000 NA 0.993 

Eland (Taurotragus oryx) 0.955 1.000 0.412 0.999 

Genet (Genetta spp.) 1.000 1.000 0.668 1.000 

Gerenuk (Lotocranius 

walleri)* NA 1.000 NA 0.994 

Grant’s gazelle (Nanger 

granti) 0.857 1.000 0.388 0.983 

Greater kudu (Tragelaphus 

strepsiceros) 1.000 1.000 0.567 0.999 

Hare (Lepus victoriae) 0.989 1.000 0.744 0.999 

Hartebeest (Alcelaphus 

buselaphus)* NA 1.000 NA 0.999 
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Hippopotamus (Hippopotamus 

amphibius) 1.000 1.000 0.916 1.000 

Honey badger (Mellivora 

capensis) 1.000 1.000 0.788 1.000 

Hyrax (family Procaviidae)* NA 1.000 NA 1.000 

Leopard (Panthera pardus) 1.000 1.000 0.686 1.000 

Lion (Panthera leo) 1.000 1.000 0.642 1.000 

Livestock (non-camel) 0.922 1.000 0.811 0.997 

Mongoose (family 

Herpestidae) 1.000 1.000 0.743 0.999 

Mouse/rat 1.000 1.000 0.570 1.000 

Oryx (Oryx beisa) 1.000 1.000 0.667 0.999 

Plains zebra (Equus quagga) 0.988 0.998 0.902 0.990 

Porcupine (Hystrix cristata) 1.000 1.000 0.304 1.000 

Squirrel (tribe Xerini)  0.973 1.000 0.729 0.999 

Steenbok (Raphicerus 

campestris)* NA 1.000 NA 0.997 

Striped hyena (Hyaena 

hyaena) 1.000 1.000 0.540 1.000 

Thompson’s gazelle (Nanger 

granti)* NA 1.000 NA 0.997 

Warthog (Phacochoerus spp.) 0.993 1.000 0.846 0.999 

Waterbuck (Kobus defassa) 0.987 1.000 0.527 0.999 

Zorilla (Ictonyx striatus) 1.000 1.000 0.472 1.000 

     

Birds and other taxa     

Bird (other) 0.971 0.999 0.792 0.995 

Helmeted guineafowl (Numida 

meleagris) 0.975 1.000 0.725 0.996 

Insect/spider 0.500 1.000 0.083 0.999 

Kori bustard (Ardeotis kori) 1.000 1.000 0.776 0.999 

Ostrich (Struthio camelus)* NA 1.000 NA 1.000 

Reptile/amphibian 1.000 1.000 0.545 1.000 

Secretary bird (Sagittarius 

serpentarius) 1.000 1.000 0.848 1.000 

Vulturine guineafowl 

(Acryllium vulturinum) 0.997 1.000 0.895 0.995 

     

Special categories     

Human 1.000 1.000 0.308 1.000 

Other 0.500 1.000 0.130 0.990 

No animals present 0.994 0.995 0.954 0.966 
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Figure S17. Confusion matrices for A) consensus classifications and B) raw volunteer classifications 

in the validation dataset, which comprises 23786 images which were classified by both an expert and 

volunteers. Lighter colours indicate a larger number of images which received each combination of 

expert and volunteer classifications. 
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Appendix E: Supplementary results 

 
Figure S18. Marginal total effects of site-level Opuntia percentage cover (standardised) on occupancy 

probability (ψ) for: A) olive baboon, B) elephant, C) vervet monkey, D) Grevy’s zebra, E) impala, F) 

dik-dik, G) giraffe, and H) spotted hyena.  The models assume that Opuntia indirectly affects occupancy 

through altering the composition of the native plant community; for model structure, see Table 1. 

Shaded areas represent (from outside) 95%, 89%, 80%, 70%, 60%, and 50% compatibility intervals. 

Black lines indicate the posterior median marginal effect. 
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Figure S19. Marginal total effects of grid square-level Opuntia volume (standardised) on occupancy 

probability (ψ) for: A) olive baboon, B) elephant, C) vervet monkey, D) Grevy’s zebra, E) impala, F) 

dik-dik, G) giraffe, and H) spotted hyena. The models assume that Opuntia indirectly affects occupancy 

through altering the composition of the native plant community; for model structure, see Table 1. 

Shaded areas represent (from outside) 95%, 89%, 80%, 70%, 60%, and 50% compatibility intervals. 

Black lines indicate the posterior median marginal effect. Points represent individual sites. 
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Figure S20. Relationships between total activity (rescaled) and site-level Opuntia percentage cover 

(standardised), for: A) olive baboon, B) elephant, C) vervet monkey, D) Grevy’s zebra, E) impala, F) 

dik-dik, G) giraffe, and H) spotted hyena. The models assume that Opuntia indirectly affects occupancy 

through altering the composition of the native plant community; for model structure, see Table 1. 

Shaded areas encompass (from outside) 95%, 89%, 80%, 70%, 60%, and 50% of observations simulated 

from the posterior distribution. The black line represents the median value of these simulated 

observations. Points represent individual sites. 
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Figure S21. Relationships between total activity (rescaled) and grid square-level Opuntia volume 

(standardised), for: A) olive baboon, B) elephant, C) vervet monkey, D) Grevy’s zebra, E) impala, F) 

dik-dik, G) giraffe, and H) spotted hyena. The models assume that Opuntia indirectly affects occupancy 

through altering the composition of the native plant community; for model structure, see Table 1. 

Shaded areas encompass (from outside) 95%, 89%, 80%, 70%, 60%, and 50% of observations simulated 

from the posterior distribution. The black line represents the median value of these simulated 

observations.  
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Appendix F: Software information 

Table S2. R packages used in my analyses. I used R version 4.1.2 and RStudio 2022.07.1 build 554 

throughout.  

Name Citation Version Link 

rethinking McElreath, R. (2021). rethinking: 

Statistical Rethinking book 

package. 

2.21 https://github.com/rmcelreath/rethinking 

cmdstanr Gabry, J. & Cesnovar, R. (2021). 

cmdstanr: R Interface to 

'CmdStan'. 

2.30.1 https://mc-stan.org/cmdstanr 

MASS Venables, W. N. & Ripley, B. D. 

(2002) Modern Applied Statistics 

with S. Fourth Edition. Springer, 

New York. ISBN 

  0-387-95457-0 

NA https://cran.r-

project.org/web/packages/MASS/index.html 

dplyr Wickham, H., François, R., 

Henry, L., & Müller, K. (2021). 

dplyr: A Grammar of Data 

Manipulation. 

1.0.7 https://CRAN.R-project.org/package=dplyr 

tidyr Wickham, H. & Girlich, M. 

(2022). tidyr: Tidy Messy Data. 

1.2.0 https://CRAN.R-project.org/package=tidyr 

lubridate Grolemund, G. & Wickham, H. 

(2011). Dates and Times Made 

Easy with lubridate. Journal of 

Statistical Software, 40(3), 1-25. 

NA https://www.jstatsoft.org/v40/i03/ 

bayesplot Gabry J, Mahr T (2021). 

bayesplot: Plotting for Bayesian 

Models. 

1.8.1 https://mc-stan.org/bayesplot/ 

viridis Garnier, S., Ross, N., Rudis, R., 

Camargo, A.P., Sciaini, M. & 

Scherer, C. (2021). Rvision - 

Colorblind-Friendly Color Maps 

for R. 

0.6.2 https://cran.r-

project.org/web/packages/viridis/index.html 

ggplot2 Wickham, H. (2016). ggplot2: 

Elegant Graphics for Data 

Analysis. Springer-Verlag New 

York. 

NA https://ggplot2.tidyverse.org 

ggdist Kay, M. (2022). ggdist: 

Visualizations of Distributions 

and Uncertainty. 

3.2.0 https://doi.org/10.5281/zenodo.3879620 

activity Rowcliffe, M. (2022). activity: 

Animal Activity Statistics. 

1.3.2 https://CRAN.R-

project.org/package=activity 
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Chapter 5 

Interactions between invasive Opuntia cacti                

and native animals 
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Abstract 

Biotic interactions are expected to play a key role in the invasion of Laikipia County, Kenya, 

by prickly pear cacti (Opuntia spp.). In particular, seed dispersal by native frugivores is thought 

to have been instrumental in allowing Opuntia to spread rapidly across the landscape, while 

biotic resistance imposed by native herbivores may have helped to slow the invasion in 

herbivore-rich areas. However, our understanding of the role of biotic interactions in Opuntia’s 

invasion of Laikipia County is limited by a lack of fundamental biological information; we 

know little about the fruiting dynamics of Opuntia under natural conditions, and the 

interactions between native animals and Opuntia have not been systematically documented. 

Here, I used morphological measurements and camera trap data to address these knowledge 

gaps for two of the main invasive Opuntia species – O. engelmannii and O. stricta. I found that 

the relationship between stand height and fruiting was positive for both Opuntia species, and 

that this relationship was stronger for O. engelmannii. I also found that other habitat variables 

affected height or fruiting in one or both Opuntia species. My camera trap images confirmed 

the importance of interactions that were previously thought to be important, such as frugivory 

by elephants (Loxodonta africana) and olive baboons (Papio anubis). In addition, my images 

revealed several interactions which have not previously been documented in the scientific 

literature and highlighted a potential key role for vulturine guineafowl (Acryllium vulturinum) 

as dispersers of O. engelmannii. These results have important implications for our 

understanding of the Opuntia invasions in Laikipia County.  
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Introduction 

Biotic interactions are fundamentally important in determining whether biological invasions 

succeed or fail, and can strongly influence the resulting ecological impacts (Mitchell et al. 

2006). Reflecting the predominant historical focus of ecologists in general (Bruno et al. 2003; 

Traveset & Richardson 2014; Valdovinos 2019), invasion ecologists have traditionally focused 

on the roles of competition and predation (e.g., Elton 1958; Keane & Crawley 2002) in 

explaining the establishment and spread of invasive species. However, in parallel with the 

growing recognition of the importance of mutualisms in ecology (Bruno et al. 2003; 

Valdovinos 2019), it has become increasingly clear that mutualistic interactions – such as seed 

dispersal and pollination – can play a critical role in biological invasions (Traveset & 

Richardson 2014). Consequently, understanding the breadth of interactions between invasive 

species and the native community is a key topic for research. 

Opuntia cacti, commonly called prickly pears, are invasive in arid regions worldwide 

(Pasiecznik 2007, Pasiecznik & Rojas-Sandoval 2007, Pasiecznik 2015). Several Opuntia 

species, including O. stricta and O. engelmannii, are invasive in Laikipia County, Kenya 

(Strum et al. 2015; Witt 2017; Githae 2019). Biotic interactions are likely to have played an 

important role in Opuntia’s invasion in Laikipia County. In particular, Opuntia’s ability to form 

seed dispersal mutualisms with a diverse range of animal species has almost certainly 

contributed to its rapid spread across the landscape.  

Opuntia stands bear large numbers of fleshy fruits; in other regions where Opuntia is invasive, 

these fruits are consumed by a range of taxa (Mellink & Riojas-López 2002) including primates 

(Lotter et al. 1999; Dean & Milton 2000), ungulates (Gimeno & Vilà 2002), rodents (López-

Darias & Nogales 2008a), mustelids (Padrón et al. 2011), birds (Dean & Milton 2000; Gimeno 

& Vilà 2002; Padrón et al. 2011), lizards, and tortoises (Padrón et al. 2011). The fruits are also 

consumed by a wide range of taxa in regions where Opuntia species are native, including birds, 

small and medium mammals, and tortoises (González-Espinosa & Quintana-Ascencio 1986; 

Mandujano et al. 1997; Montiel & Montaña 2000; Mellink & Riojas-López 2002; Gibbs et al. 

2008). Furthermore, now-extinct megafauna may have once dispersed Opuntia in its native 

range, as supported by the presence of Opuntia seeds in Pleistocene mammoth dung from Utah 

(Davis et al. 1984). In Laikipia County, olive baboons (Papio anubis) and elephants 

(Loxodonta africana) are thought to be the key dispersal agents for Opuntia; both baboons and 

elephants are commonly observed feeding at Opuntia stands, and seeds or other fruit remains 
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can be found in their faeces (Strum et al. 2015; Dyck 2017). Furthermore, O. stricta density is 

higher near baboon sleeping sites (Strum et al. 2015). However, it is currently unclear whether 

elephants and baboons are actually the main dispersers of Opuntia or merely the most 

conspicuous, and empirical data on the relative importance of different dispersal agents are 

sorely lacking.   

Opuntia fruiting is related to size; individuals must reach a size threshold before they begin 

producing ripe fruit, and larger individuals tend to produce a greater number of fruits (Reyes-

Agüero et al. 2006). Understanding the relationship between size and fruiting is useful from a 

management perspective; removing individuals before they reach fruiting size can prevent the 

Opuntia dispersing to new areas, thus reducing the spread of the invasion (Hoffmann et al. 

1998a). However, the relationship between size and fruiting has not been studied for Opuntia 

in Laikipia. For O. stricta, data from South Africa – where the species is also invasive – show 

that individuals with fewer than 28 cladodes do not produce fruits, and that above this size, the 

number of fruits increases as the number of cladodes increases (Hoffmann et al. 1998b). For 

O. engelmannii, data from its native range in the Sonoran Desert show that individuals with six 

or more cladodes are capable of sexual reproduction (Bowers 1996). However, it is unclear 

whether the results for either species are applicable to the Opuntia invasions in Laikipia.  

Other environmental variables also have the potential to influence Opuntia height and fruiting. 

For example, trees can create “fertility islands” – favourable microclimates with higher levels 

of soil moisture and nutrients, higher humidity, and altered microbial communities – which 

have been shown to facilitate O. stricta growth in South Africa (Novoa et al. 2021). Interactions 

with other plant species could also affect height and fruiting, for instance through competition. 

Finally, preliminary analyses indicate that the cochineal (Dactylopius opuntiae) biocontrol 

agent significantly reduces both the size and fruiting of O. stricta (Witt et al. 2020). Although 

cochineal is also found on O. engelmannii, its effects have yet to be quantified. However, my 

field observations suggest that O. engelmannii does not suffer the same high level of damage 

from cochineal as O. stricta.  

In addition to seed dispersal, other biotic interactions with Laikipia County’s animal 

community may play a role in Opuntia’s invasion. Wells et al. (2023) analysed Opuntia stricta 

densities in the long-term herbivore exclusion experiments at Mpala Research Centre, and 

revealed that Opuntia densities were significantly higher in plots where wild herbivores were 

excluded; this effect was primarily driven by the exclusion of megaherbivores such as elephants 
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(Loxodonta africana) and giraffe (Giraffa reticulata). However, the relative importance of 

direct herbivory versus indirect effects, including trampling and moderating the strength of 

competitive interactions with native plants, is not yet understood; quantifying the interactions 

between Opuntia and native mammals may provide insight into this topic. These observations 

may also provide insight into any role herbivores play in Opuntia’s vegetative dispersal. For 

example, herbivores may scatter cladodes while foraging (Foxcroft & Rejmánek 2007). 

Additionally, the dense Opuntia stands may provide refuge for small herbivores. For example, 

dik-dik (Madoqua spp.) site occupancy is positively related to the level of Opuntia in both the 

site and the broader landscape (Chapter 4), which may be due to dik-dik using Opuntia stands 

to hide from predators. One potential consequence of this effect is refuge-mediated apparent 

competition (Orrock et al. 2010) between Opuntia and native plants. Finally, there is a potential 

role for vertebrates in pollinating Opuntia; bird-pollinated Opuntia are common in regions such 

as the Galapagos (Reyes-Agüero et al. 2006). 

In this chapter, I explored two key topics with the aim of furthering our understanding of the 

biotic interactions between Opuntia (focusing on O. engelmannii and O. stricta) and the animal 

community in Laikipia County. First, I used morphological measurements of individual 

Opuntia stands to quantify the relationship between Opuntia height and fruiting, and how both 

height and fruiting are jointly influenced by local habitat characteristics as well as the cochineal 

biocontrol agent. As these estimates have the potential to be sensitive to unmeasured site-level 

characteristics (e.g., soil properties) I used Bayesian imputation to examine whether my results 

were robust to a latent site-level confound. Second, I used camera trap images to document the 

interactions between native animals and Opuntia. I identified an array of distinct interaction 

types and the animal species involved, and constructed interaction networks to summarise these 

observations. 
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Methods 

Study system 

I conducted my study at Mpala Research Centre and Loisaba Conservancy, in Laikipia County, 

Kenya, during the 2021 dry season (January to early April). The habitat in the region is semi-

arid savanna, with woodland and shrubland dominated by Vachellia and Senegalia (formerly 

Acacia) species; other trees and shrubs including Boscia augustifolia, Croton dichogamus, and 

Grewia spp. are also present (Young et al. 1995; Augustine 2003; Augustine et al. 2011; 

Mutuku & Kenfack 2019). The understory layer is mainly comprised of grasses from the genera 

Cynodon, Pennisetum, Digitaria and Sporobolus, alongside a variety of forbs including 

Plecranthus spp., Pollichia campestris, Portulaca spp. and Blepharis spp. (Young et al. 1995). 

The most common Opuntia species present at the study site are O. stricta and O. engelmannii; 

a few scattered O. ficus-indica individuals are also present, particularly on rocky outcrops in 

the central Mpala region. At the time of data collection, O. stricta was generally distributed at 

moderate densities in the southern Mpala region, with lower densities in the northern Mpala 

region and no individuals at Loisaba, while O. engelmannii was present at very high densities 

at Loisaba and moderate to low densities in the northern Mpala region, with no individuals 

present in the southern Mpala region. 

 

Measurement of Opuntia stands 

I measured Opuntia stands while deploying camera traps and conducting track-and-sign 

surveys. A camera trap site was defined as the circular area within a 10m radius of the camera 

trap, while each track-and-sign survey was carried out within a 20x20m square site. Sites were 

selected using a paired design: I first divided the study area into 500x500m grid squares, and 

then situated pairs of sites within a random subset of these grid squares. The first site in each 

pair was situated in an area visually identified as high Opuntia density, and the second was 

deployed in a random direction 50-70m away. If the second site was found to have an equal or 

higher density of Opuntia than the first site, I generated a new random direction until the 

Opuntia density at the second site was lower. In this way, I ensured that I sampled sites with a 

range of Opuntia densities. 

I measured all Opuntia stands which lay at least partly within the site boundary. For each stand, 

I recorded the species and used a tape measure to determine the maximum height of the stand; 
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I measured maximum height rather than counting the number of cladodes because of the 

difficulty in accurately determining the number of cladodes for extremely large and dense 

Opuntia stands. I then counted the number of ripe fruits and estimated the percentage of cladode 

surface covered by the cochineal (D. opuntiae) biocontrol agent with the aid of a cover 

estimator chart (Anderson 1986). I also recorded whether the stand was at least partly under a 

tree; trees were defined as woody plants standing taller than 2m (shorter woody plants were 

classified as shrubs). Finally, I noted which vegetation types (grass, forb, or shrub) were found 

in the area immediately adjacent to or within the Opuntia stand.  

 

Camera trap deployment and image processing 

I deployed camera traps (20 × Browning Dark Ops Pro, 5 × Browning Recon Force Extreme, 

and 5 × Reconyx Hyperfire 2) at sites throughout the study region. The cameras were set to 

take photographs with a five second cool-down period. For the Browning cameras I used the 

“long range” infrared flash setting, while I used the default “optimised” setting for the Reconyx 

cameras. I mounted the cameras on tree trunks at an average height of 81cm (measured from 

the ground to the lens); some cameras were deployed slightly higher or lower to ensure a good 

view given the site’s topography (min = 34cm, Q1 = 72cm, Q3 = 89cm, Q4 = 137cm). I verified 

that animals in the field of view would be visible by taking photos of a research assistant at 

2m, 4m, 6m, 8m, and 10m from the camera. I cut back long grass and other vegetation close to 

the front of the camera to reduce the prevalence of false detections which would otherwise 

consume the memory and battery life. 

To process the resulting camera trap images, I first used the Megadetector machine learning 

model (v.4.1.0, Beery et al. 2019) to classify images as containing an animal (any species), 

human, or vehicle. I manually screened all images with probability 0.10 (the minimum 

probability Megadetector assigns to a classification) or higher of containing a human or 

vehicle, discarding all images which I identified as containing a human/vehicle and retaining 

images which in fact contained animals. I also retained all images with probability 0.98 or 

higher of containing an animal. I then uploaded all retained images to my project, Prickly Pear 

Project Kenya, on the Zooniverse platform (https://www.zooniverse.org/projects/peter-dot-

stewart/prickly-pear-project-kenya), where volunteers were able to classify the camera trap 

images. Each image was classified by at least 12 volunteers before retirement from the active 

image pool, except for when an image was classified as “human”, in which case the image was 

https://www.zooniverse.org/projects/peter-dot-stewart/prickly-pear-project-kenya
https://www.zooniverse.org/projects/peter-dot-stewart/prickly-pear-project-kenya
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immediately retired. I assigned consensus species classifications to each image using a 

threshold-based approach in which at least 8 of the 12 volunteers had to classify the species as 

being present, and the Shannon entropy (Shannon 1948) of all classifications on the image 

could not exceed one. This method for generating consensus classifications resulted in highly 

accurate classifications being assigned to images (Chapter 4, Appendix D). For each image, 

volunteers were also asked “do you see any individuals interacting with the cactus?”; this 

question was used to help identify images containing interactions. 

 

Identification of candidate interaction images 

I identified candidate interaction images, which were taken forward for further analysis, 

through two methods. First, I selected all images where three or more volunteers had answered 

“yes” to the question “do you see any individuals interacting with the cactus?” on the 

Zooniverse classifier interface. Second, I searched the project’s discussion board for key terms 

which could signal that an image contained an interaction; my intention was to identify images 

with subtle or ambiguous interactions that were being discussed by the volunteers, as well as 

images where an animal was interacting indirectly with the Opuntia (e.g., a squirrel carrying 

Opuntia fruit but not being adjacent to an Opuntia stand) which may otherwise be missed. I 

used the following key terms: interact*, eating, fruit, feed*, forag*.  

 

Coding interactions 

Once candidate images had been identified, I manually viewed and coded the images. Each 

image was assigned an interaction identifier; images were assigned the same identifier when 

they contained the same individual animal or group of animals, and they interacted with the 

Opuntia over a period of time without leaving the area. Here, I refer to images with the same 

identifier as belonging to the same interaction event. While I did not assign a hard cut-off for 

the amount of temporal separation between images with different identifiers, I would generally 

only assign the same identifier to images after a two-minute gap if the animals were clearly the 

same individuals or part of the same group.  

I assigned one or more interaction categories (eating fruits/eating pads or roots/eating 

flowers/eating other vegetation/hiding under cactus/perching/other/none) to each image, along 

with a confidence rating (certain/probable/unsure) which represented how sure I was that the 
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specific interaction was occurring. For full definitions of interaction categories and examples 

of confidence ratings, see Table 1. Finally, for each interaction event, I calculated the maximum 

confidence rating for each observed category; only interactions where the maximum 

confidence was “certain” or “probable” were carried on for further analysis.  

Table 1. Definitions of interactions and examples of confidence ratings assigned to each camera trap 

image. Confidence rating examples are for olive baboon (P. anubis) eating Opuntia fruits. 

Behaviour Definition 

Eating fruits Animal consuming ripe Opuntia fruit directly from the plant, or fruit 

which has fallen on the ground.  

Eating pads or roots Animal consuming Opuntia cladodes or roots.  

Eating flowers Animal consuming Opuntia flowers. 

Eating other vegetation Animal consuming other vegetation growing within or immediately 

adjacent to the Opuntia.  

Hiding under cactus Animal in resting posture with body wholly or partly beneath or within 

the Opuntia stand.  

Perching Animal (typically bird) perching on Opuntia, but not obviously eating 

or otherwise interacting with the fruits/cladodes/flowers.  

Other Behaviour not covered by another category (e.g., mongoose apparently 

foraging underneath Opuntia stand).  

None Animal is not interacting with cactus. 

  

Confidence Example 

Certain Baboon with Opuntia fruit visible in hand or mouth.  

Probable Baboon standing on hind legs reaching towards Opuntia stand. 

Unsure Baboon sitting next to Opuntia stand in background, but too far away 

to determine what it is doing. 

 

Data analysis 

To examine the relationship between stand size (maximum height), fruiting, and other 

variables, I fitted two types of statistical model. First, I fitted a binomial model to explore the 

relationship between size and the probability of a stand producing any ripe fruit. Second, I 

fitted a negative-binomial (i.e., gamma-Poisson) model to examine the relationship between 

size and the number of ripe fruits produced. I also modelled how stand height and fruiting were 

affected by other variables: the proportion of cladode surface covered by the cochineal 

biocontrol agent, whether the stand was under a tree, and whether grasses, forbs, and shrubs 

were found growing within or immediately adjacent to the stand.   

In my models, I assumed that any effect of height on fruit is direct and operates through a single 

pathway (Fig. 1). I also assumed that the cochineal biocontrol agent could affect both height 

and fruiting (Fig. 1), as has been observed in preliminary surveys for O. stricta at the nearby 

Ol Jogi Conservancy (Witt et al. 2020). For the native vegetation variables – presence of 
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grasses, forbs, and shrubs – I assumed that the effects could be on both height and fruiting 

(Fig.1). These effects could represent competition or other biotic interactions between the 

native vegetation and Opuntia.  Likewise, I assumed that whether the Opuntia stand was under 

a tree could affect both height and fruiting (Fig. 1). One phenomenon this assumption could 

represent is a “fertility island” effect, in which trees create nutrient-rich microhabitats that 

benefit Opuntia stands in their vicinity; this phenomenon has been observed for O. stricta in 

Kruger National Park, South Africa (Novoa et al. 2021). I used an index variable approach and 

computed posterior contrasts to examine the effects of the binary vegetation and tree variables 

in my models.  

 

Figure 1. Directed acyclic graph representing the assumptions underlying my models of Opuntia height 

and fruiting. Nodes represent variables: H is maximum height, F is presence or number of ripe fruits, C 

is cochineal cover, and T, Gr, Fb, and S are tree, grass, forb and shrub presence/absence respectively. 

Each variable is modelled as a function of the variables which have arrows entering it. The circled 

variable (G) represents a latent site-level confound, and is shown in grey to indicate that it was only 

included in one of the two sets of models. Nodes indexed i represent variables measured at the level of 

the individual Opuntia stand; the latent variable (G) is not indexed i because it is defined at the site 

level.  

In both the binomial and negative-binomial models, I included a site-level varying intercept 

term. Furthermore, to explore the potential implications of unmeasured confounding variables 

which could affect stands from the same site (e.g., soil moisture or nutrient content) I ran a 

second set of models which accounted for a latent site-level confound (Fig. 1) using Bayesian 

imputation. I present the full notation for my models in Appendix A.  

I fitted all models in a Bayesian framework using Stan (Stan Development Team, 2022), 

implemented in R (v.4.1.2; R Core Team, 2021) with the rethinking (v.2.21; McElreath, 2021) 

and cmdstanr (v.2.30.1; Gabry & Cesnovar, 2021) packages. I used prior predictive simulations 

to aid in my choice of prior distributions (Appendix B). To improve the models’ sampling, I 

employed non-centred parameterisations for the site-level varying intercepts. I also 

standardised the maximum stand height and cochineal cover variables by subtracting the mean 
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and dividing by the standard deviation. I ran each model with four Markov chains, each with 

30000 iterations. The first 28000 samples from each chain constituted the warmup phase while 

the following 2000 samples were used for inference, resulting in a total of 8000 samples across 

the four chains. For all models, I ensured that the chains had converged by checking that the 

Gelman-Rubin convergence diagnostic (𝑅̂; Gelman & Rubin 1992) was equal to 1.00 for all 

key parameters. I also assessed the performance of the Markov chain Monte Carlo (MCMC) 

algorithm by inspecting the effective sample size, trace plots, and trace rank plots for each 

parameter. Additionally, I ensured that the models did not exhibit divergent transitions.  

To explore the structure of the interactions between Opuntia and the animal community I 

constructed interaction networks using the R package bipartite (Dormann et al. 2008). In these 

networks, the upper set of nodes represent animal species, and the lower set of nodes represent 

behaviours (e.g., eating fruit). I used unique identifier-behaviour-species combinations to 

construct the networks. Consequently, the width of each line between nodes represents the 

relative number of unique interactions, and the width of nodes represents the relative number 

of unique interactions in which that species or behaviour type was observed. I also constructed 

alternative networks in which I used all interaction observations (i.e., if a behaviour was 

observed multiple times within one interaction identifier, then the behaviour was counted 

multiple times).  I constructed a joint network for both Opuntia species, as well as separate 

networks for O. engelmannii and O. stricta; I present only the latter in the main text.  

To quantitatively examine how the O. engelmannii and O. stricta interaction networks were 

structured, I calculated network metrics using the functions available in the bipartite package 

(Dormann et al. 2008). At the animal species level, I calculated the degree (i.e., number of 

interactions) and the specialisation metric d’ (Blüthgen et al. 2006) to examine how generalist 

or specialist species were in the behaviours that they exhibited. At the network level, I 

calculated the number of compartments (unconnected subsets of the network; Lewinsohn et al. 

2006), the clustering coefficient (Watts & Strogatz 1998), the NODF nestedness metric 

weighted by interaction frequencies (Almeida-Neto et al. 2008), the Shannon diversity (i.e., 

information entropy) of the network (Shannon 1948), and the H2’ specialisation metric 

(Blüthgen et al. 2006). 

Code to fully reproduce my analyses can be found at https://github.com/Peter-

Stewart/Zooniverse_processing, and information on the R package versions used is presented 

in Appendix D, Table S1.   

https://github.com/Peter-Stewart/Zooniverse_processing
https://github.com/Peter-Stewart/Zooniverse_processing
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Results 

Opuntia height and fruiting 

In total, I found Opuntia stands at 114 sites – 93 camera trap sites, and 21 track-and-sign survey 

sites – out of the 125 sites I surveyed. I measured a total of 876 Opuntia stands: 132 Opuntia 

engelmannii, 742 Opuntia stricta, and two Opuntia ficus-indica; only the data for O. 

engelmannii and O. stricta were analysed.  

I found that in both Opuntia species, larger individuals had a higher probability of bearing ripe 

fruit, and also bore a larger number of fruits (Figs. 2, 3). The slope parameter relating maximum 

height to ripe fruit presence/absence was greater for O. engelmannii than for O. stricta (Fig. 3). 

This difference, coupled with the larger global intercept (𝛼̅) for O. engelmannii compared to 

O. stricta (median difference = 1.12, 95% PI = -1.07 to 3.50), was reflected in a steeper 

relationship for O. engelmannii over the range of heights that I sampled (Fig. 2). With other 

variables in the system set to their modal (for trees, grasses, forbs, and shrubs) or mean values 

(for cochineal), individuals attained a posterior median probability of 0.25 of fruiting at 37cm 

for O. engelmannii and 86cm for O. stricta, a probability of 0.5 at 54cm for O. engelmannii 

and 107cm for O. stricta, and a probability of 0.9 at 87cm for O. engelmannii and 148cm for 

O. stricta. While the parameter relating height to the number of fruits (i.e., the effect size, β) 

was similar for both Opuntia species (Fig. 3; median difference = 0.08, 95% C.I. = -0.39 to 

0.53) the global intercept (𝛼̅) was much greater for O. engelmannii than for O. stricta (median 

difference = 3.97, 95% C.I. = -0.01 to 7.90) which was reflected in a steeper curve for O. 

engelmannii (Fig. 2). Furthermore, the maximum height of O. engelmannii stands extended to 

higher values than for O. stricta stands, meaning that the largest O. engelmannii stands bore 

several times more fruit than the largest O. stricta stands.  

The relationship between the percentage of cladodes covered by the cochineal biocontrol agent 

and maximum stand height was positive for O. engelmannii, while no relationship was 

observed for O. stricta (Fig. 3). The direct relationship between cochineal and the number of 

fruits (i.e., conditional on height) was positive for O. engelmannii; the posterior median of the 

estimate was also positive for the probability of producing ripe fruit, but the 95% compatibility 

interval included negative effects (Fig. 3; lower value = -0.21). Similarly, for O. stricta the 

estimated effect was positive for the number of fruits, and likely positive but with less certainty 

for the probability of fruiting (Fig. 3). 
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The relationships between vegetation characteristics and stand height were generally positive 

or neutral. Specifically, there was no clear relationship between tree presence and stand height 

for O. engelmannii, and only a very weak positive relationship for O. stricta (Fig. 3). Similarly, 

I did not observe a clear relationship between grass presence and stand height for O. 

engelmannii, but I observed a clear positive relationship for O. stricta (Fig. 3). For both forb 

and shrub presence, I found a positive association with height for both O. engelmannii and O. 

stricta (Fig. 3). The estimates of these effects were consistent between the binomial and 

negative binomial models.  

In contrast to the effects I observed for height, the relationships between vegetation 

characteristics and fruiting (conditional on height) were much more uncertain than the 

relationships for height (Fig. 3). The only clear relationship I observed was a strong negative 

relationship between tree presence and both fruiting probability and number of fruits for O. 

stricta (Fig. 3). While the posterior median estimate of the relationship between tree presence 

and fruiting probability was also negative for O. engelmannii, positive relationships were still 

contained within the 95% compatibility interval, and the estimated relationship for the number 

of fruits was centred firmly around zero (Fig. 3). For grasses, forbs, and shrubs, the estimated 

relationships with fruiting probability and number of fruits had consistently positive posterior 

medians, but in all cases there was a substantial degree of uncertainty and negative values were 

contained within the compatibility intervals (Fig. 3). For O. stricta, the estimated relationships 

with grasses, forbs, and shrubs were centred around zero (Fig. 3).  

I observed qualitatively similar results in the models that assumed a latent site-level confound 

(Appendix C, Figs. S2, S3).  
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Figure 2. Relationship between maximum height and fruiting for A) Opuntia engelmannii and B) 

Opuntia stricta. Values for trees, grasses, forbs and shrubs are set to their respective modes (absent, 

present, present, and absent respectively). All plots assume that the value of cochineal cover is set to 

the average (i.e., zero). Solid lines and purple shaded areas represent the posterior median and 

compatibility intervals (i.e., credible intervals) for the average number of ripe fruits, while dashed lines 

and green shaded areas represent the posterior median and compatibility intervals for the probability of 

producing any ripe fruit. Shaded areas represent (from outside) 95%, 89%, 80%, 70%, 60%, and 50% 

compatibility intervals. Points represent maximum height and number of ripe fruit measurements for 

individual Opuntia stands.  
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Figure 3. Effect size estimates from models of height and fruiting for Opuntia engelmannii (left panel) 

and Opuntia stricta (right panel). Effects are represented by the y-axis labels; for example, H → F 

represents the effect of height on fruiting. These effects correspond to slope (β) parameters where height 

(H) and cochineal (C) are the explanatory variable, and contrasts between indicator variable levels 

where tree (T), grass (Gr), forb (Fb) and shrub (S) presence/absence are the explanatory variable. Points 

and lines represent posterior median values and 95% compatibility intervals (i.e., credible intervals) 

respectively. Points drawn as green circles represent estimates from the binomial model of fruit 

presence/absence, while purple squares represent estimates from the negative binomial model of the 

number of fruits. For full model structures, see Figure 1 and Appendix A.  
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Interactions between animals and Opuntia 

My search identified 9699 candidate images from 1733 distinct interaction events. After 

removing all images where I had ascertained that no animals were interacting with the cactus, 

or where the maximum confidence assigned to an interaction type within a sequence was 

“unsure”, I was left with 1542 images from 268 distinct interaction events.  

The interactions that I observed contained a total of 16 animal species and six distinct 

behaviours (Fig. 4). Dik-dik (Madoqua spp.) eating other vegetation growing amongst the 

Opuntia was the most common interaction for both O. engelmannii (Fig. 4) and O. stricta (Fig. 

4); impala (Aepyceros melampus) were also often observed feeding on other vegetation around 

both Opuntia species, as were zebra (Equus grevyi and E. quagga) for vegetation growing 

around O. engelmannii. I also observed other animals – warthog (Phacochoerus spp.), buffalo 

(Syncerus caffer), hippopotamuses (Hippopotamus amphibius), elephants (L. africana), and 

livestock – feeding on other vegetation (Fig. 4).  

Frugivory also accounted for a substantial proportion of the distinct interaction events that I 

observed, particularly for O. engelmannii (Fig. 4). A variety of species – olive baboons (P. 

anubis), vulturine guineafowl (Acryllium vulturinum), elephants (L. africana), vervet monkeys 

(Chlorocebus pygerythrus), domestic camels (Camelus dromedarius), and small birds (e.g., the 

superb starling, Lamprotornis superbus) – were observed feeding directly on O. engelmannii 

fruits. I also observed ground squirrels (either Euxerus erythropus or Xerus rutilus) carrying 

ripe O. engelmannii fruits on several occasions. Furthermore, I observed instances of elephants, 

dik-dik, and oryx (Oryx beisa) consuming the remains of O. engelmannii fruits which had been 

discarded on the ground by baboons. For O. stricta (Fig. 4) I observed fewer distinct frugivory 

events, and only olive baboons, vervet monkeys, and elephants were observed consuming O. 

stricta fruits. In networks where I used all observations (i.e., regardless of whether they came 

from distinct interaction events), frugivory was the most commonly observed interaction for 

O. engelmannii (Appendix C, Fig. S5b), illustrating that some frugivores – particularly olive 

baboons and vulturine guineafowl – tended to forage on fruit for long periods without leaving 

a site.    

I also observed a variety of other less common interactions (Fig. 4). Elephants were observed 

feeding on the pads and roots of O. stricta (Fig. 4); these feeding bouts were long, as reflected 

in the network for O. stricta which used all observations (Appendix C, Fig. S5c). I did not 

observe any species feeding on the pads or roots of O. engelmannii, but I did observe dik-dik 
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feeding on the flowers of O. engelmannii on several occasions (Fig. 4). I observed a variety of 

small bird species perching on both Opuntia species and hiding under O. stricta on one 

occasion (Fig. 4). Finally, I observed a ground squirrel hiding under O. engelmannii on one 

occasion. 

The network-level metrics that I calculated revealed that the network for O. engelmannii 

formed a single compartment, while the O. stricta network comprised two compartments 

(Table 2a, Appendix C, Fig. S6). Both networks exhibited the same level of clustering (Table 

2a). The O. engelmannii network was more diverse and nested, while the O. stricta network 

displayed a higher level of specialisation (Table 2a). Species-level metrics (Table 2b) indicated 

that of the main frugivore species, olive baboons were the most specialised overall (i.e., they 

exhibited few other behaviours); they were also the most specialised frugivore for the O. 

engelmannii network, and the second most specialised behind vervet monkeys for the O. stricta 

network (Table 2b). The other key frugivores were mostly relatively specialised, except for 

elephants, which were relatively generalised in their behaviours particularly for the O. stricta 

network (Table 2b). Most other species in the networks were relatively generalist except for 

dik-dik, where the majority of their interactions were eating other vegetation, and birds (not 

including guineafowl), which specialised almost entirely in perching on both Opuntia species. 
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Figure 4. Interaction networks for Opuntia engelmannii and Opuntia stricta. Nodes on left represent 

interaction types, while nodes on right represent animal species. Edges connecting nodes represent 

observed interaction-species combinations. Node and edge width represents the number of independent 

interaction events in which a given interaction/species was observed. For interaction category 

definitions, see Table 1.   

Eating other veg. 

Eating flowers 

O. engelmannii 

O. stricta 

Eating fruit 

Hiding 

Perching 

Eating fruit 

Eating other veg. 

Hiding 

Perching 

Eating pads/roots 

Olive baboon 

Bird (other) 

Buffalo 

Camel 

Dik-dik 

Elephant 

Vulturine guineafowl 

Impala 

Livestock 

Oryx 

Squirrel 
Vervet monkey 

Warthog 

Grevy’s zebra 

Plains zebra 

Olive baboon 

Bird (other) 

Buffalo 

Dik-dik 

Elephant 

Hippopotamus 

Impala 

Livestock 

Vervet monkey 



162 
 

Table 2. Interaction network metrics at A) network level and B) species level. NA values indicate that 

a species was not present in a given network, and hence no value was calculated. 

A) Network-level metrics 

Network Compartments Clustering 

coefficient 

Weighted 

NODF 

Shannon 

diversity 

H2’ 

O. engelmannii 1 0.2 17.9 2.3 0.8 

O. stricta 2 0.2 2.9 1.8 0.9 

    

B) Species-level metrics 

 O. engelmannii network O. stricta network 

Species Degree d' Degree d' 

Olive baboon (Papio anubis) 1 0.46 1 0.64 

Bird (other) 2 0.79 2  1.00 

Buffalo (Syncerus caffer)  1  0.00 1  0.00 

Camel (Camelus 

dromedarius)  
1  0.08 NA  NA 

Dik-dik (Madoqua spp.) 3 0.46 1  0.31 

Elephant (Loxodonta 

africana) 
2  0.15 3  0.42 

Vulturine guineafowl 

(Acryllium vulturinum) 
1  0.39 NA  NA 

Hippopotamus 

(Hippopotamus amphibius) 
NA  NA 1  0.00 

Impala (Aepyceros melampus) 1  0.29 1  0.16 

Livestock 1  0.00 1  0.04 

Oryx (Oryx beisa) 1  0.08 NA  NA 

Squirrel (tribe Xerini) 2  0.36 NA  NA 

Vervet monkey (Chlorocebus 

pygerythrus) 
1 0.25 1  0.81 

Warthog (Phacochoerus spp.) 1  0.12 NA  NA 

Grevy’s zebra (Equus grevyi) 1  0.12 NA NA 

Plains zebra (Equus quagga) 1 0.20 NA  NA 
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Discussion 

I aimed to address key knowledge gaps related to the biotic interactions between invasive 

Opuntia cacti and native animals in Laikipia County. Specifically, I quantified the relationship 

between Opuntia height and fruiting, measured how both height and fruiting are related to local 

habitat characteristics, and used camera traps to document the interactions between Opuntia 

and the animal community. I found that for both O. engelmannii and O. stricta, taller stands 

had a higher probability of producing ripe fruit, and also bore a greater number of fruits; these 

relationships were stronger for O. engelmannii than for O. stricta. Other variables – the 

presence of trees, grasses, forbs, shrubs, and the cochineal biocontrol agent – also affected 

height or fruiting in one or both Opuntia species. My camera trap images contained numerous 

instances of interactions between native animals and the Opuntia. Overall, the interaction 

network derived from these observations for O. engelmannii was more diverse than the network 

for O. stricta, whereas the latter displayed a higher level of specialisation. These results have 

important implications for the Opuntia invasion in Laikipia County.  

I confirmed that larger Opuntia stands are more likely to produce ripe fruit, and also bear a 

larger number of ripe fruits. Under the natural conditions in which I conducted my study, O. 

engelmannii started fruiting at smaller sizes than O. stricta. O. engelmannii stands also bore 

more fruits at a given size than O. stricta, and produced several times more fruit upon reaching 

their maximum size. Data from the native range of O. engelmannii have shown that the species 

can grow from a single cladode to a height of over one metre within a year (Gathaara et al. 

1989). In my results, individuals had a high probability of producing ripe fruit at this height. 

As differences in the climate, soil properties, and other factors may reduce the transferability 

of growth rate estimates from Opuntia’s native range, an important next step will be to measure 

the relationship between age and height for Opuntia species growing under natural conditions 

in Laikipia County. The information on growth rate and fruiting size can then be integrated 

into models to estimate the future dynamics of the Opuntia invasion.  

My analysis of the interaction networks for O. engelmannii and O. stricta revealed differences 

in network structure. One difference was that the O. engelmannii network was more diverse 

than the network for O. stricta. A plausible explanation for this difference is that O. 

engelmannii is far more dominant in areas where it is present than O. stricta is; O. engelmannnii 

tends to cover a greater proportion of the habitat, forms larger stands, and bears more fruit. 

This may force native animals to interact with it – either directly (e.g., consuming fruit) or 
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indirectly (e.g., consuming other vegetation around the Opuntia) – or else be displaced from 

the area. The O. engelmannii network was also more nested than the O. stricta network, 

meaning that the behaviours exhibited by relatively specialist species (e.g., olive baboons) were 

also exhibited by more generalist species (e.g., elephants). This may be due to the main 

behaviours in the O. stricta network being dominated by species which only engaged in that 

behaviour (e.g., dik-dik eating other vegetation) while in the O. engelmannii network, these 

species engaged in multiple behaviours (e.g., dik-dik also ate Opuntia flowers and fruit). This 

mechanism would also explain why the O. stricta network displayed a higher level of 

specialisation than the O. engelmannii network.  These findings are also consistent with an 

explanation based on dominance; where Opuntia stands are larger and bear more fruit, there 

may be more scope for multiple interaction types (e.g., both frugivory and herbivory).  

My camera trap data confirmed that elephants and olive baboons are key consumers of Opuntia 

fruit; vervet monkeys were also commonly observed feeding on the fruits of both Opuntia 

species. However, my results also revealed a potentially key role for vulturine guineafowl as 

dispersers of O. engelmannii; for this Opuntia species, I observed more frugivory interaction 

events for vulturine guineafowl than for any other species except olive baboons. I also observed 

several instances of ground squirrels carrying O. engelmannii fruits, small bird species (e.g., 

the superb starling) feeding on the fruits of both Opuntia species, and even domesticated camels 

consuming ripe O. engelmannii fruits on one occasion. My findings highlight key avenues for 

future research into the role of animals in Opuntia’s dispersal ecology. One immediate question 

is: what is the spatial patterning of Opuntia seed deposition for each potential disperser species? 

Understanding how far different species carry Opuntia seeds into currently uninvaded areas 

would be extremely useful for forecasting the future spread of the invasion and implementing 

proactive management to remove new stands before they begin fruiting. Additionally, it would 

be useful to know whether there are certain locations (e.g., resting sites; Strum et al. 2015) or 

habitats where each species tends to deposit seeds. Another key research topic concerns the 

fate of seeds deposited by different animal species. Currently, there is no information on the 

germination rates of Opuntia seeds in Laikipia County, and how this is affected by different 

animal dispersers. In several Opuntia species, germination is facilitated by passage through an 

animal’s gut (López-Darias & Nogales 2008b; Mokotjomela et al. 2013) but whether this is 

true for animals in Laikipia County is not yet known. Furthermore, secondary dispersal or seed 

predation by small mammals (Dudenhoeffer & Hodge 2018) or vulturine guineafowl 
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(Papageorgiou et al. 2019) may also influence the ultimate fate of seeds deposited in dung, and 

therefore of the future spread of Opuntia (Dudenhoeffer & Hodge 2018).  

My camera trap images also revealed several images of apparent secondary consumption of 

fruits which had been processed by olive baboons. Some of these cases involved elephants, but 

others involved species – dik-dik and oryx – which are not otherwise known to consume 

Opuntia fruits. I also observed instances where warthogs and helmeted guineafowl (Numida 

meleagris) may have been feeding on baboon-processed fruits, but could not verify these 

interactions to an acceptable degree of certainty. In other systems, primates facilitate secondary 

dispersal by processing fruits so that other species can access them; this processing can involve 

removing outer fruit layers which other animals cannot handle, or moving fruits to more 

physically accessible locations (Brockelman et al. 2022). My observations suggest that 

baboons may perform the same role for Opuntia by removing the spiny outer skin of the fruit 

and dropping the fruit remains on the ground, where other species can reach them. To determine 

whether this behaviour results in secondary dispersal, it is first necessary to establish that the 

remains of fruits which have been processed contain viable seeds. If the remains do contain 

viable seeds, it is then necessary to determine whether the seeds survive gut passage in the 

species that secondarily consume them. Another possibility which merits investigation is that 

ants disperse seeds from fruit remains; in other systems, birds partially consume Opuntia fruits, 

allowing for secondary dispersal by ants (Montiel & Montaña 2000).  

While I observed instances of elephants feeding on the pads and roots of O. stricta, I did not 

observe any species feeding on the pads or roots of O. engelmannii. Notably, I did not observe 

domestic camels feeding on O. engelmannii, even though I observed camels in the vicinity of 

O. engelmannii and camels are known to feed on O. stricta (Wells et al. 2023; I did not observe 

any camels at sites where O. stricta was present). This may suggest that O. engelmannii is less 

palatable to herbivores than O. stricta, which may explain why the former has been able to 

invade relatively undisturbed conservancy land with an abundance of wild herbivores. One 

approach to test whether wild herbivores confer biotic resistance to O. engelmannii invasion 

(either through direct herbivory or indirect interactions) would be to measure O. engelmannii 

densities in herbivore exclusion plots (as per Wells et al. 2023). An important caveat is that 

Opuntia are likely to be most vulnerable to herbivores while they are still seedlings (Reyes-

Agüero et al. 2006) and as most of the Opuntia stands visible to my camera traps were relatively 

large, I may have missed cases of herbivory on these seedlings. A longitudinal study following 
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the fates of O. engelmannii stands from seedling to fruiting size would be useful for addressing 

this knowledge gap.   

Although I did not observe any species feeding on the pads or roots of O. engelmannii, I did 

observe dik-dik eating O. engelmannii flowers on several occasions. To my knowledge, this 

interaction has not previously been documented in the scientific literature. Whether these 

flowers form an important part of the dik-dik’s diet in invaded regions is not yet known, and 

whether there are any implications for the reproduction of the Opuntia is currently unclear.  

I also observed numerous instances of herbivores – mainly dik-dik, impala and zebra, 

occasionally warthog, buffalo, hippopotamuses, elephants, and livestock – feeding on other 

vegetation which was growing amongst the Opuntia. As Opuntia expands to cover a greater 

degree of the habitat, the ability of animals to forage on this other vegetation is likely to have 

implications for their ability to persist in invaded areas. For example, I did not observe giraffes 

feeding on other vegetation, suggesting that inhibited foraging could partly explain the strong 

negative relationship between Opuntia volume and giraffe occupancy (Chapter 4).  

Surprisingly, and contrary to previous research (Witt et al. 2020), I did not observe negative 

relationships between the proportion of cladodes covered by the cochineal biocontrol agent and 

either height or fruiting for O. stricta. Instead, I observed no relationship between cochineal 

and height, and a weakly positive relationship between cochineal and fruiting. The likely 

explanation for this discrepancy is that the relationships I observed are artefacts of a selection 

effect. For example, if small O. stricta individuals are killed by cochineal – and thus not 

measured – more rapidly than larger individuals, then this will bias the estimated effect of 

cochineal on height. Viewed from a causal inference perspective, stand survival is a function 

of both cochineal cover and stand height, and is hence a collider; only measuring individuals 

which are alive conditions on survival, inducing collider bias. Such problems can be difficult 

to avoid in purely observational settings, and illustrate the importance of more sophisticated 

study designs – such as before-after control-impact (BACI) designs – in assessing the efficacy 

of management interventions (Christie et al. 2019). A further issue is that the effects of 

cochineal on height and fruiting may actually represent the aggregate of several biological 

effects. For instance, the estimated effect of cochineal on height may also capture the effect of 

height on the probability that an individual stand is initially infected with cochineal, and the 

effect of height on the spread of cochineal within the stand (and hence on the proportion of 

cladode coverage). Disentangling these effects could be accomplished by studying the spread 
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of cochineal through invaded areas over time, while incorporating information on the position, 

size/age, and survivorship of individual Opuntia stands.  

The observational nature of my investigation carries other limitations which also provide 

promising avenues for future research. For logistical reasons, I was constrained to an 

observational approach for my study of Opuntia’s morphology and how it is related to co-

occurrence with native plants. This approach makes it difficult to disentangle the causal 

pathways through which Opuntia and native plants interact. For example, the positive 

relationships between O. stricta height and the occurrence of grasses, forbs, and shrubs could 

reflect a facilitative effect of native plants on the growth of O. stricta, a facilitative effect of O. 

stricta on the growth of native plants (e.g., a refuge effect; Oduor et al. 2018), or a combination 

of both effects. Consequently, experimental approaches will be an important next step for 

disentangling the effects of Opuntia invasion on the composition of the native plant 

community, and for ascertaining whether certain native species facilitate or hinder the spread 

of Opuntia into new areas. 

A further limitation was the relatively crude way in which I classified native vegetation into 

broad categories. An important next step will be to conduct a comprehensive survey of plant 

species which co-occur with Opuntia in the field. Surveys conducted in Kenya’s Nairobi 

National Park have revealed high levels of native plant richness in plots invaded by O. ficus-

indica (Oduor et al. 2018), but it is not yet known whether these results generalise to the 

Opuntia invasion in Laikipia. If combined with experimental approaches, these detailed 

surveys could provide important insights into the effects of Opuntia on native plant 

biodiversity. 

Although camera traps are a powerful tool for documenting biotic interactions – particularly 

those involving elusive species or occurring at night – they too carry limitations. One such 

limitation is that the way in which a camera trap is deployed must be tailored to a given size of 

target species; a common rule of thumb is to deploy a camera at approximately the target 

species’ shoulder-height (Palencia et al. 2022). As my camera traps were originally deployed 

to study the occupancy of animals ranging in size from dik-dik to elephants, with the aim being 

to maximise species detections and identifiability, I deployed cameras at an average height of 

81cm. Consequently, my study design was not optimised for small mammals and birds, which 

may have been underrepresented in my sample. Conversely, in some images of giraffes and 

elephants, it was not possible to determine whether an interaction was occurring as only the 
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animal’s legs were visible. In addition, camera traps often fail to trigger for slow-moving 

species (Hobbs & Brehme 2017), which may explain the lack of tortoises in my images, even 

though I observed tortoises apparently feeding on Opuntia fruit on several occasions while in 

the field. These limitations could be addressed by technical modifications, such as the use of 

modified camera traps (e.g., Hobbs & Brehme 2017; Littlewood et al. 2021) or perhaps 

continuous video recordings, to further expand our knowledge of Opuntia’s interactions with 

native animals.  

Another key set of biotic interactions which my camera traps were unable to document are 

those with invertebrates. To my knowledge, the pollination ecology of Opuntia has not been 

studied in Kenya. This presents an important avenue for future research not only because of 

the implications for Opuntia’s dispersal ecology, but also for the potential impacts on native 

pollinators and other native plant species, such as through the disruption of native mutualisms 

and the formation of selected-dependence traps (Chapter 2; Stewart et al. 2021).  

Other interactions with invertebrates also present opportunities for future research. One key 

question is whether ants play a role in defending Opuntia from invertebrate herbivores. In its 

native range, several ant species feed at extrafloral nectaries on O. stricta while providing the 

cactus with defence against insect herbivores which translates into increased fruit production 

(Oliveira et al. 1999). In the field, I often observed ants crawling on the Opuntia and appearing 

to feed on the extrafloral nectaries, which suggests that a similar phenomenon may be occurring 

in areas where Opuntia is invasive. There is also the possibility that ants impede the cochineal 

biocontrol agent; investigating these interactions presents a promising avenue for future 

research. 

Finally, a complete picture of the interactions between Opuntia and Laikipia’s animals cannot 

be obtained without considering the interactions that occur belowground. These interactions 

can involve a wide range of invertebrates, vertebrates, and non-animal taxa (e.g., fungi) and 

can exert important influences on processes, including biotic interactions, that occur 

aboveground (Pendergast et al. 2013; Bardgett & van der Putten 2014). Whether belowground 

interactions play an important role in the Opuntia invasion in Laikipia County is not yet known, 

and investigating these interactions is a key topic for future research. 

Through a combined approach of morphological measurements and camera trap data, I have 

filled key knowledge gaps related to the biotic interactions between invasive Opuntia cacti and 

animals in Laikipia County. In particular, I have quantified the relationship between stand 
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height and fruiting for O. engelmannii and O. stricta under natural conditions. Using camera 

trap data, I have also confirmed the importance of biotic interactions – including frugivory by 

olive baboons and elephants – which were thought to be important in explaining the dynamics 

of the Opuntia invasion. I have also revealed interactions which were previously 

underappreciated or undocumented in the scientific literature, including the key role of 

vulturine guineafowl as frugivores and potentially dispersers of O. engelmannii. My findings 

suggest numerous avenues for future research to improve our understanding of Opuntia’s 

dispersal ecology, enabling forecasting and proactive management to halt the spread of this 

invasive species. 
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Appendix A: Model notation 

In my models, observations (Opuntia stands) are indexed i. F is the presence/absence (for 

binomial models) or number (for negative-binomial models) of ripe fruit. H is the maximum 

height. C is the proportion of cladode surface covered by the cochineal biocontrol agent. T is 

the presence/absence of a tree at least partially covering the stand. Gr, Fb, and S are the 

presence/absence of grasses, forbs, and shrubs respectively.  

Binomial model 

𝐹𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(θ𝑖) 

𝑙𝑜𝑔𝑖𝑡(θ𝑖) = 𝑙𝑛 (
θ𝑖

1 − θ𝑖
) = 𝛼𝐹 + α𝑆𝐼𝑇𝐸[𝑖] + β𝐻𝐹𝐻𝑖 + β𝐶𝐹𝐶𝑖 + 

α𝑇𝐹[𝑇[𝑖]] + α𝐺𝑟𝐹[𝐺𝑟[𝑖]] + α𝐹𝑏𝐹[𝐹𝑏[𝑖]] + α𝑆𝐹[𝑆[𝑖]] 

𝐻𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(μ𝑖, σ𝐻) 

μ𝑖 = α𝐻 + β𝐶𝐻𝐶𝑖 + α𝑇𝐻[𝑇[𝑖]] + α𝐺𝑟𝐻[𝐺𝑟[𝑖]] + α𝐹𝑏𝐻[𝐹𝑏[𝑖]] + α𝑆𝐻[𝑆[𝑖]] 

α𝑆𝐼𝑇𝐸 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, σ𝐹) 

σ𝐹 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 

𝛼𝐹, α𝑇𝐹 , α𝐺𝑟𝐹 , α𝐹𝑏𝐹 , α𝑆𝐹 , α𝑇𝐻,  α𝐺𝑟𝐻,  α𝐹𝑏𝐻,  α𝑆𝐻  ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

β𝐻𝐹 , β𝐶𝐹, β𝐶𝐹𝐻 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

 

Negative-binomial model 

𝐹𝑖 ∼ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒˗𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(λ𝑖, ϕ) 

𝑙𝑛(λ𝑖) = 𝛼𝐹 + α𝑆𝐼𝑇𝐸[𝑖] + β𝐻𝐹𝐻𝑖 + β𝐶𝐹𝐶𝑖 + 

α𝑇𝐹[𝑇[𝑖]] + α𝐺𝑟𝐹[𝐺𝑟[𝑖]] + α𝐹𝑏𝐹[𝐹𝑏[𝑖]] + α𝑆𝐹[𝑆[𝑖]] 

𝐻𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(μ𝑖, σ𝐻) 

μ𝑖 = α𝐻 + β𝐶𝐻𝐶𝑖 + α𝑇𝐻[𝑇[𝑖]] + α𝐺𝑟𝐻[𝐺𝑟[𝑖]] + α𝐹𝑏𝐻[𝐹𝑏[𝑖]] + α𝑆𝐻[𝑆[𝑖]] 

ϕ ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 

α𝑆𝐼𝑇𝐸 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, σ𝐹) 

σ𝐹 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 

𝛼𝐹 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.5) 

α𝑇𝐹 , α𝐺𝑟𝐹 , α𝐹𝑏𝐹 , α𝑆𝐹 , α𝑇𝐻,  α𝐺𝑟𝐻,  α𝐹𝑏𝐻,  α𝑆𝐻  ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

β𝐻𝐹 , β𝐶𝐹, β𝐶𝐹𝐻 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 
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Binomial model with latent site-level confound 

𝐹𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(θ𝑖) 

𝑙𝑜𝑔𝑖𝑡(θ𝑖) = 𝑙𝑛 (
θ𝑖

1 − θ𝑖
) = 𝛼𝐹 + α𝑆𝐼𝑇𝐸[𝑖] + β𝐻𝐹𝐻𝑖 + β𝐶𝐹𝐶𝑖 + 

α𝑇𝐹[𝑇[𝑖]] + α𝐺𝑟𝐹[𝐺𝑟[𝑖]] + α𝐹𝑏𝐹[𝐹𝑏[𝑖]] + α𝑆𝐹[𝑆[𝑖]]  +  𝛽𝐺𝐹𝐺𝑖  

𝐻𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(μ𝑖, σ𝐻) 

μ𝑖 = α𝐻 + β𝐶𝐻𝐶𝑖 + α𝑇𝐻[𝑇[𝑖]] + α𝐺𝑟𝐻[𝐺𝑟[𝑖]] + α𝐹𝑏𝐻[𝐹𝑏[𝑖]] + α𝑆𝐻[𝑆[𝑖]]  + 𝛽𝐺𝐻𝐺𝑖 

α𝑆𝐼𝑇𝐸 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, σ𝐹) 

σ𝐹 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 

𝛼𝐹, α𝑇𝐹 , α𝐺𝑟𝐹 , α𝐹𝑏𝐹 , α𝑆𝐹 , α𝑇𝐻,  α𝐺𝑟𝐻,  α𝐹𝑏𝐻,  α𝑆𝐻  ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

β𝐻𝐹 , β𝐶𝐹, β𝐶𝐹𝐻, β𝐺𝐹, β𝐺𝐻 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

𝐺𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

 

 

Negative-binomial model with latent site-level confound 

𝐹𝑖 ∼ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒˗𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(λ𝑖, ϕ) 

𝑙𝑛(λ𝑖) = 𝛼𝐹 + α𝑆𝐼𝑇𝐸[𝑖] + β𝐻𝐹𝐻𝑖 + β𝐶𝐹𝐶𝑖 + 

α𝑇𝐹[𝑇[𝑖]] + α𝐺𝑟𝐹[𝐺𝑟[𝑖]] + α𝐹𝑏𝐹[𝐹𝑏[𝑖]] + α𝑆𝐹[𝑆[𝑖]]  +  𝛽𝐺𝐹𝐺𝑖  

𝐻𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(μ𝑖, σ𝐻) 

μ𝑖 = α𝐻 + β𝐶𝐻𝐶𝑖 + α𝑇𝐻[𝑇[𝑖]] + α𝐺𝑟𝐻[𝐺𝑟[𝑖]] + α𝐹𝑏𝐻[𝐹𝑏[𝑖]] + α𝑆𝐻[𝑆[𝑖]]  + 𝛽𝐺𝐻𝐺𝑖 

ϕ ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 

α𝑆𝐼𝑇𝐸 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, σ𝐹) 

σ𝐹 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 

𝛼𝐹 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.5) 

α𝑇𝐹 , α𝐺𝑟𝐹 , α𝐹𝑏𝐹 , α𝑆𝐹 , α𝑇𝐻,  α𝐺𝑟𝐻,  α𝐹𝑏𝐻,  α𝑆𝐻  ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

β𝐻𝐹 , β𝐶𝐹, β𝐶𝐹𝐻, β𝐺𝐹, β𝐺𝐻 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

𝐺𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 
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Appendix B: Prior predictive simulations 

I used prior predictive simulations to aid my choice of priors for the α and β parameters in my 

negative-binomial models for fruit abundance. In my models, the relationship between a 

covariate (e.g., height, Hi) and the number of fruits (Fi) is given by: 

𝐹𝑖  ~ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒˗𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜆𝑖, 𝜙) 

𝑙𝑜𝑔(𝜆𝑖)  =  𝛼 +  𝛽𝐻𝑖 

I used simulations to explore the consequences of selecting different priors for α and β (Fig. 

S1), which informed the choice of priors in my final models (Appendix A).  

Code to fully reproduce my simulations is available: at https://github.com/Peter-

Stewart/Zooniverse_processing.  

 

Figure S1. 1000 regression lines drawn from the prior distributions of α and β for three different choices 

of normal prior.  

  

https://github.com/Peter-Stewart/Zooniverse_processing
https://github.com/Peter-Stewart/Zooniverse_processing


173 
 

Appendix C: Supplementary results  

 

Figure S2. Relationship between maximum height and fruiting for A) Opuntia engelmannii and B) 

Opuntia stricta, assuming a latent site-level confound. Values for trees, grasses, forbs and shrubs are 

set to their respective modes (absent, present, present, and absent respectively). All plots assume that 

the value of cochineal cover is set to the average (i.e., zero). Solid lines and purple shaded areas 

represent the posterior median and compatibility intervals (i.e., credible intervals) for the average 

number of ripe fruits, while dashed lines and green shaded areas represent the posterior median and 

compatibility intervals for the probability of producing any ripe fruit. Shaded areas represent (from 

outside) 95%, 89%, 80%, 70%, 60%, and 50% compatibility intervals. Points represent maximum 

height and number of ripe fruit measurements for individual Opuntia stands.  
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Figure S3. Effect size estimates from models of height and fruiting for Opuntia engelmannii (left panel) 

and Opuntia stricta (right panel), assuming a latent site-level confound. Effects are represented by the 

y-axis labels; for example, H → F represents the effect of height on fruiting. These effects correspond 

to slope (β) parameters where height (H) and cochineal (C) are the explanatory variable, and contrasts 

between indicator variable levels where tree (T), grass (Gr), forb (Fb) and shrub (S) presence/absence 

are the explanatory variable. Points and lines represent posterior median values and 95% compatibility 

intervals (i.e., credible intervals) respectively. Points drawn as green circles represent estimates from 

the binomial model of fruit presence/absence, while purple squares represent estimates from the 

negative binomial model of the number of fruits. For full model structures, see Figure 1 and Appendix 

A.  
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Figure S4. Joint interaction network for Opuntia engelmannii and Opuntia stricta. Upper-level nodes 

represent animal species, while lower-level nodes represent interaction types observed for O. 

englelmannii (dark green) and O. stricta (light green). Edges connecting nodes indicate observed 

species-behaviour combinations. Node and edge width represents the number of independent interaction 

events in which a given species/interaction was observed. For interaction category definitions, see main 

text table 1. 
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Figure S5. Interaction networks for A) both Opuntia engelmannii and Opuntia stricta, B) O. 

engelmannii only, and C) O. stricta only. Upper-level nodes represent animal species, while lower-

level nodes represent interaction types observed for O. englelmannii (dark green) and O. stricta (light 

green). Edges connecting nodes indicate observed species-behaviour combinations. Node and edge 

width represents the number of camera trap images in which a given species/interaction was observed. 

For interaction category definitions, see main text table 1. 

 

  

A) 

B) C) 
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A) 

 

B) 

  

Figure S6. Interaction matrices for A) Opuntia engelmannii and B) O. stricta. Rows represent 

interaction types, while columns represent animal species. Darker colours indicate a greater number of 

distinct interaction events; white cells indicate no observations. Individual compartments are delineated 

with a bold black border. For interaction category definitions, see main text table 1. 
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Appendix D: Software information 

Table S1. R packages used in my analyses. I used R version 4.1.2 and RStudio 2022.07.1 build 554 

throughout.  

Name Citation Version Link 

rethinking McElreath, R. (2021). 

rethinking: Statistical 

Rethinking book package. 

2.21 https://github.com/rmcelreath/rethinking 

cmdstanr Gabry, J. & Cesnovar, R. 

(2021). cmdstanr: R Interface to 

'CmdStan'. 

2.30.1 https://mc-stan.org/cmdstanr 

MASS Venables, W. N. & Ripley, B. 

D. (2002) Modern Applied 

Statistics with S. Fourth Edition. 

Springer, New York. ISBN 

  0-387-95457-0 

NA https://cran.r-

project.org/web/packages/MASS/index.html 

dplyr Wickham, H., François, R., 

Henry, L., & Müller, K. (2021). 

dplyr: A Grammar of Data 

Manipulation. 

1.0.7 https://CRAN.R-project.org/package=dplyr 

tidyr Wickham, H. & Girlich, M. 

(2022). tidyr: Tidy Messy Data. 

1.2.0 https://CRAN.R-project.org/package=tidyr 

lubridate Grolemund, G. & Wickham, H. 

(2011). Dates and Times Made 

Easy with lubridate. Journal of 

Statistical Software, 40(3), 1-25. 

NA https://www.jstatsoft.org/v40/i03/ 

viridis Garnier, S., Ross, N., Rudis, R., 

Camargo, A.P., Sciaini, M. & 

Scherer, C. (2021). Rvision - 

Colorblind-Friendly Color Maps 

for R. 

0.6.2 https://cran.r-

project.org/web/packages/viridis/index.html 

activity Rowcliffe, M. (2022). activity: 

Animal Activity Statistics. 

1.3.2 https://CRAN.R-project.org/package=activity 

stringr Wickham, H. (2022). stringr: 

simple, consistent wrappers for 

common string operations. 

1.4.1 https://CRAN.R-project.org/package=stringr 

forcats Wickham, H. (2022) forcats: 

tools for working with 

categorical variables (factors). 

0.5.2 https://CRAN.R-project.org/package=forcats 

bipartite Dormann, C.F., Gruber B. & 

Fruend, J. (2008). Introducing 

the bipartite Package: Analysing 

Ecological Networks. R news 

Vol 8/2, 8 - 11. 

2.18 https://cran.r-

project.org/web/packages/bipartite/index.html 
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Chapter 6 

Conclusion 
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Thesis summary 

In this thesis, I have explored the impacts of invasive plants on animal behaviour, using the 

invasion of Opuntia cacti in Laikipia County, Kenya, as a specific case study. In the opening 

chapter, I introduced the topic of biological invasions, addressing essential background 

material and identifying key knowledge gaps. 

In the second chapter (Stewart et al. 2021), I focused on the impacts of invasive plants on 

animal behaviour, an important – yet neglected – topic. I synthesised the disparate literature on 

invasive plants’ behavioural impacts within a novel mechanistic framework, revealing that 

invasive plants can cause profound behavioural changes in native animals, with ecological 

consequences at multiple scales. I also found that environmental context played an important 

role in moderating how an invader’s modes of impact translate into behavioural changes in 

native species, and how these behavioural changes then generate ecological impacts. Finally, I 

identified priority research questions relating to the behavioural impacts of invasive plants.  

Invasive plants’ behavioural impacts can manifest as changes to the occurrence patterns of 

native animals. In Chapter 3 (Stewart et al. 2023), I used simulations to explore model selection 

in occupancy models, which are a powerful tool for studying the patterns and drivers of 

occurrence. Specifically, I investigated the consequences of collider bias – a type of 

confounding that can arise when adding explanatory variables to a model – for model selection 

using the Akaike Information Criterion (AIC) and Schwarz Criterion (or Bayesian Information 

Criterion, BIC). I found that the effect of collider bias, and consequently the inferential and 

predictive accuracy of the AIC/BIC-best model, depended on whether the collider bias was 

present in the occupancy or detection data-generating process. My findings illustrate the 

importance of distinguishing between inference and prediction in ecological modelling and 

have more general implications for the use of information criteria in all linear modelling 

approaches.  

In Chapter 4, I applied the mechanistic framework from Chapter 2 and the modelling 

conclusions from Chapter 3 to the problem of understanding Opuntia’s behavioural impacts in 

Laikipia County. Specifically, I used camera traps to explore the effects of Opuntia on 

occupancy and activity for eight key mammal species. I found that the effects of Opuntia varied 

among mammal species and depended on the spatial scale of the Opuntia cover covariate. 

These findings have important implications for the conservation of endangered mammal 
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species in the region, the future spread of Opuntia through seed dispersal, and interactions 

between wildlife and local communities. 

In Chapter 5, I addressed key knowledge gaps pertaining to Opuntia’s biotic interactions with 

native animals. First, I quantified the relationship between height and fruiting in O. 

engelmannii and O. stricta, finding that height was positively related to fruiting for both 

species, and that the relationship was stronger for O. engelmannii than for O. stricta. I also 

found that local habitat variables were related to height and/or fruiting in both Opuntia species. 

Second, I documented the interactions between animals and Opuntia using camera traps. In so 

doing, I confirmed the importance of interactions that were previously thought to be important, 

while also highlighting interactions which have previously received little attention in the 

published scientific literature. 

  



182 
 

Implications for Opuntia invasions in Laikipia County, Kenya 

Our understanding of the Opuntia invasions in Laikipia County has previously been limited by 

a lack of empirical data. By collecting new camera trap data, alongside measurements of habitat 

characteristics and individual Opuntia stands, I have taken steps towards addressing this 

challenge. This has important implications for our understanding of the dynamics and impacts 

of the Opuntia invasions. Furthermore, my data can be used in future research on the Opuntia 

invasions in Laikipia County.  

I found that Opuntia can affect the behaviour of native animals, altering the occupancy and 

activity of key mammal species in the landscape. As discussed in Chapter 4, this finding raises 

important conservation concerns. In particular, I found a strong negative relationship between 

broad-scale Opuntia volume and reticulated giraffe (Giraffa reticulata) occupancy; in the most 

heavily invaded areas that I observed, the posterior median giraffe occupancy was just 0.08. 

This suggests that as Opuntia continues to spread, giraffes will be largely extirpated from the 

landscape. As around a quarter of the world’s reticulated giraffes live in Laikipia and the 

neighbouring Isiolo and Samburu counties (Muneza et al. 2018), the continued spread of O. 

stricta from the Doldol area, as well as the potential for O. engelmannii to spread from Loisaba 

Conservancy (which sits close to the Laikipia-Isiolo-Samburu border), poses a serious risk to 

the giraffe population, and thus the species as a whole.  

Although my investigation sheds light on the probable consequences of Opuntia invasion for 

reticulated giraffe occupancy, I was not able to determine the precise mechanisms underlying 

this result. However, as I briefly discussed in Chapter 4, there are several plausible explanations 

for the effect of Opuntia on giraffe occupancy. One possibility is that Opuntia invasion inhibits 

giraffe foraging by reducing access to food. In the region where I conducted my research, 

reticulated giraffes predominantly feed on Vachellia and Senegalia (formerly Acacia) species, 

mainly at a height of 2-3 metres (O’Connor et al. 2015). Therefore, it is plausible that tall O. 

engelmannii stands could interfere with giraffes’ ability to feed. Furthermore, the diameter of 

Opuntia stands could prevent giraffes – particularly small juveniles – from moving close 

enough to the base of trees to be able to forage. The conjecture that Opuntia affects giraffe 

occupancy through impeding their foraging is supported by my camera trap data; I did not 

observe any giraffes feeding on vegetation growing amongst Opuntia, nor did giraffes consume 

the Opuntia itself (Chapter 5). However, it should be noted that this observation could be an 

artefact of the height at which I deployed my camera traps, as my approach was not optimised 
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for observing giraffe foraging behaviour. Furthermore, evidence against a foraging-based 

explanation is provided by my comparison of occupancy models with and without measures of 

the native plant community, including shrub cover and the number of trees. I found similar 

results in both sets of models (Chapter 4), suggesting that the effects of Opuntia on occupancy 

are not mediated by changes to the native plant community. Consequently, other mechanisms 

– such as a lack of suitable resting sites in heavily invaded areas or changes to the risk of calf 

predation – may underly the effects of Opuntia on giraffe occupancy.  

The mechanistic basis of Opuntia’s effects on reticulated giraffe occupancy could be explored 

in future research. If Opuntia restricts giraffe foraging, we would predict that in invaded areas, 

giraffes would preferentially forage on trees growing in the open rather than those growing 

within Opuntia stands. Furthermore, we would expect this preference to be stronger for smaller 

giraffes, particularly juveniles. These predictions could be tested using behavioural surveys or 

upward-angled camera traps. These approaches could also be applied to test the resting site 

explanation for Opuntia’s effects on giraffes; if giraffes avoid heavily invaded areas due to a 

lack of resting sites, then we would expect that giraffes exhibit less recumbency among Opuntia 

stands than in open areas. Given that giraffe recumbency often occurs at night, camera traps 

would be more suitable than in-person behavioural surveys for testing this prediction. A camera 

trap-based approach would also have the benefit of minimising disturbance, which could alter 

the giraffes’ natural behaviour patterns. An alternative would be to use GPS collars fitted with 

accelerometers to follow specific individual giraffes. Hidden Markov models (McClintock et 

al. 2020) could then be employed to decode each giraffe’s probable activity state (i.e., whether 

it is recumbent) at each point in time from the accelerometer data, and to relate this to the level 

of Opuntia in the area where the giraffe is situated at that time. Furthermore, if the 

characteristics of a suitable resting site (e.g., an open area over a certain size) can be 

determined, then aerial photography or high-resolution satellite imagery could be used to map 

the distribution of resting sites in heavily invaded versus less-invaded areas. These data would 

allow us to test whether there are really fewer suitable resting sites in heavily invaded areas.  

Another important concern related to the effects of Opuntia on mammalian occupancy and 

activity patterns is the potential for indirect effects on other ecosystem characteristics. In 

particular, I observed negative effects of Opuntia on the occupancy and activity of one of the 

region’s most abundant herbivores, the impala (Aepyceros melampus). As discussed in Chapter 

4, these effects are likely due to changes in actual or perceived predation risk caused by Opuntia 

blocking escape routes and sightlines. Research on the avoidance of woody cover by impala, 
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which is also driven by predation risk (Ford et al. 2014; Epperly et al. 2021), illustrates the 

possible effects of Opuntia-driven changes to impala occupancy and activity for native 

vegetation. When impala avoid woody areas, plant species with relatively poor physical 

defences (e.g., Senegalia brevispica) are released from herbivory, and thus become more 

prevalent (Ford et al. 2014). Therefore, it is plausible that Opuntia invasion will favour native 

plants with reduced physical defences. This effect may be exacerbated by nurse plant effects, 

in which Opuntia stands physically shield other plant species from herbivory (Oduor et al. 

2018). There is also the potential for complex interplay between herbivore-mediated effects of 

Opuntia on native plants, and effects which are mediated through other pathways such as 

changes to soil properties. For example, in other systems, Opuntia is known to benefit from 

fertility islands created by some native trees, while simultaneously creating its own fertility 

islands that may influence the native plant community (Novoa et al. 2021). Consequently, 

herbivore-mediated effects of Opuntia on tree community composition could feed back to 

influence the growth of Opuntia plants in the area. Investigating whether Opuntia’s effects on 

impala habitat use result in indirect effects on native vegetation represents an important topic 

for future research.  

In addition to providing information about the effects of Opuntia on mammalian habitat use, I 

have provided insights into key aspects of the interactions between native animals and the 

Opuntia. For example, my data help us to interpret the results of experimental work by Wells 

et al. (2023), which aimed to establish whether wild herbivores confer biotic resistance to O. 

stricta invasion. The key finding of this work was that O. stricta densities are higher in plots 

where ungulate herbivores are excluded (Wells et al. 2023). However, this result is difficult to 

interpret in isolation because there are multiple possible explanations for the observed pattern; 

as I discussed in Chapter 1, the difference in Opuntia densities between experimental plots 

could be due to herbivores consuming Opuntia, indirect effects due to herbivory on native 

plants, or other effects of the exclusion plots (e.g., effects on Opuntia seed removal). By using 

my camera trap images to document interactions between native animals and the Opuntia, I 

have provided data to help assess these competing explanations. In preliminary data provided 

for the Wells et al. (2023) paper, I evidenced cases of elephants (L. africana) digging up O. 

stricta stands and consuming the cladodes and roots. This provides some support for the 

argument that elephant herbivory suppresses O. stricta densities. However, it is currently 

unclear whether the net effect of elephant digging events on O. stricta is to suppress growth 

through cladode consumption, or instead to facilitate the Opuntia by scattering viable cladodes 
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over the surrounding area, aiding vegetative propagation (Foxcroft & Rejmánek 2007). 

Measuring Opuntia growth in elephant feeding sites relative to nearby control areas could 

provide insight into the net effect of elephant herbivory on Opuntia. Notably, I did not observe 

any other animals feeding on the cladodes or roots of O. stricta (Chapter 5). This suggests that 

if the net effect of elephant herbivory is found to be neutral or positive, then the likely 

explanations for the herbivore-exclusion results are: 1) herbivores consuming or trampling 

Opuntia seedlings, which were not well-represented in my camera trap images; 2) indirect 

effects due to herbivores influencing native plants; 3) effects of the herbivore exclusion plots 

on Opuntia fruit and seed removal. Testing these competing explanations presents a promising 

avenue for future research.  

My camera trap data also provides insights into another key aspect of the interactions between 

native animals and the Opuntia – consumption of Opuntia fruits by frugivores. In Chapter 5, I 

confirmed that elephants (L. africana) and olive baboons (P. anubis) are among the main 

consumers of Opuntia fruit. I also found that vervet monkeys (C. pygerythrus) commonly 

consumed the fruits of both O. engelmannnii and O. stricta. As well as verifying the role of 

these species in Opuntia fruit consumption, my behavioural observations support the 

conjecture that the strong positive relationships between Opuntia and the occupancy and 

activity of these species (Chapter 4) is due to their attraction to Opuntia fruit. In addition, I 

found that a variety of other animals – particularly vulturine guineafowl (A. vulturinum) – 

consume the fruits of O. engelmannii. This finding suggests that a wide range of native animals 

potentially disperse O. engelmannii in Laikipia County; as I discussed in Chapter 5, 

determining whether frugivory translates to Opuntia dispersal will require additional 

information on the viability, germination rate, and transportation distance of ingested seeds.  

Once further data on Opuntia dispersal by native animals have been obtained, the findings can 

be incorporated into models with the aim of improving our understanding and management of 

the Opuntia invasion. As mentioned in Chapter 5, these models could also my data on Opuntia 

size and fruiting. One option would be to create a spatially explicit agent-based model; similar 

models have been successfully applied to other invasive plants, for example to model the spread 

of Rhododendron ponticum under different control scenarios (Travis et al. 2011). The agents – 

individual Opuntia stands – could transition between different states (e.g., height, diameter, 

fruiting), with the rates of these transitions informed by the biological data I have collected. 

For example, the number of fruits produced by a stand could depend on its height, following 

the relationships which I estimated in Chapter 5. The transition rate parameters could be further 
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refined when region-specific growth rate data are available. To model the spread of Opuntia 

through vegetative growth, new stands could be generated in areas adjacent to existing stands; 

the vegetative growth rate could be higher for large stands, which can drop more cladodes. To 

represent seed dispersal, fruiting stands could randomly disperse their fruit within a buffer 

zone, with the dispersed fruits then having a probability of germinating to form a new Opuntia 

stand. The relationship between distance from an Opuntia stand and the probability of fruit 

dispersal represents Opuntia’s dispersal kernel; until data on the actual dispersal kernel are 

available, a range of functions could be used to explore the role of seed dispersal in the 

invasion. Management interventions could be represented in the model by removing stands 

from defined areas at a cost, with this cost depending on the number and size of Opuntia stands 

removed, and possibly how accessible the area is by road. The model could be further extended 

to represent imperfect detection of small stands by removal teams, perhaps with the probability 

of detecting small stands being increased at a cost to represent the allocation of more resources 

to the search. The spatial and cost-explicit nature of the model would allow for a variety of 

important management questions to be addressed. For example, how much effort should be 

allocated to detecting small, non-fruiting stands far from the main invasion source? Should 

management be focused on the periphery of the invaded region, or is it also necessary to reduce 

the Opuntia density in areas at the invasion’s core in order to stop the spread? If multiple 

removal teams are available, should they allocate their efforts to nearby areas, or areas which 

are further apart?  

The data I collected also provide opportunities for studying ecological impacts of Opuntia 

which lie outwith the scope of my thesis. In particular, my camera trap data could be used to 

examine Opuntia’s effects on the population density of key animal species in Laikipia County, 

providing a complementary perspective to my results for occupancy and activity.  

 

Estimating effects of Opuntia on mammalian population density using camera trap data 

A variety of methods are available for estimating population density from camera trap images. 

For these approaches to be suitable for studying the effects of Opuntia using my camera trap 

data, they must allow for covariate effects to relate Opuntia cover to population density, and 

the model’s assumptions and data requirements must be met by my study design. One option 

is spatial capture-recapture (Efford 2004; Tourani 2022), which can be employed to estimate 

population density when individual animals can reliably be identified. In Laikipia County, this 
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approach would probably be most suitable for species like reticulated giraffe (G. reticulata) 

and zebra (E. grevyi and E. quagga), which have well-defined markings. Elephants (L. 

africana) would also be suitable, as individuals can be identified by their ear notches and tusks 

(Oduor et al. 2020). Individual leopards (Panthera pardus) can be identified by their rosette 

patterns, and the species is often studied using spatial capture-recapture (Tourani 2022). 

However, I suspect that the approach will be unsuitable for leopards in my dataset because the 

images taken at night often exhibit motion blur, making the rosettes difficult to distinguish. 

Consequently, leopards – along with the numerous species for which reliable individual 

identification from images is not possible – will need to be treated using methods designed for 

density estimation using unmarked data.  

For species where individuals cannot be readily distinguished, and thus spatial capture-

recapture cannot be used, several modelling options are available which allow for population 

density estimation using unmarked data (Gilbert et al. 2021). Site-structured models, such as 

Royle-Nichols and N-mixture models (Royle & Nichols 2003; Royle 2004), are one option. 

These models allow for the estimation of covariate effects (Gilbert et al. 2021), meaning they 

would be suitable for quantifying how Opuntia affects mammalian population density. The N-

mixture model requires counts of individual animals in each photo; although I obtained counts 

from the Zooniverse volunteers, it would be sensible to assess volunteer count accuracy using 

the expert-classified image subset (Chapter 4, Appendix D) and to develop a reliable method 

for generating consensus counts before employing the N-mixture model. However, two aspects 

of my study may be problematic for the application of site-structured models. First, several 

species in the dataset live in groups, which violates the N-mixture model’s assumption of 

individuals being independently detected; this challenge could be dealt with by extending the 

model as per Martin et al. (2011). A second, more challenging, issue is due to the paired design 

of my camera trap study; cameras in the same pair were situated close enough together that the 

same individual animals could be detected on neighbouring cameras, violating the key 

assumption of no overlap in cameras’ effective sampling areas (Gilbert et al. 2021). This 

problem could potentially be overcome by pooling data from neighbouring camera traps, which 

would still allow for estimation of the grid square-level effects of Opuntia on density.  

Another option for estimating Opuntia’s effects on animal population density is to employ 

distance sampling (Kéry & Royle, 2015; Howe et al. 2017). Although the formulation of 

distance sampling that is usually used for camera trap studies (Howe et al. 2017) does not allow 

for covariates (Gilbert et al. 2021), this issue could be overcome by using the hierarchical 
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model of Kéry and Royle (2015). The critical information required for distance sampling is an 

estimate of the distance from each detected animal to the camera (Gilbert et al. 2021). In 

principle, it is possible to obtain these data for my camera trap images by comparing them with 

the calibration images that I took in the field (Chapter 4). To use distance sampling, it is also 

necessary to censor times of day when animals are inactive (Gilbert et al. 2021). This could be 

accomplished by examining each species’ activity kernel using the methods I employed in 

Chapter 4.  

The random encounter model (REM; Rowcliffe et al. 2008) is a popular approach for density 

estimation from unmarked animal observations, but the model as originally formulated is not 

suitable because it does not allow for environmental covariates (Gilbert et al. 2021). However, 

an extension of the REM – the random encounter and staying time (REST) model (Nakashima 

et al. 2018, 2020) – does allow for covariates. An added advantage of the REST model is that 

the key information required – the mean number of detections by each camera during its survey 

period, and the mean staying time of individuals within the detection zone – can be derived 

directly from camera trap images (Nakashima et al. 2018). Furthermore, the model can be 

extended to account for spatial autocorrelation (Nakashima et al. 2020), which is necessary due 

to the short distances between paired sites in my study. However, several of my study’s 

characteristics necessitate that caution is exercised when applying the REST model to my data. 

First, Nakashima et al. (2018) recommend that no cool-down period is used for camera traps 

when the REST model is going to be applied, but my cameras were set with a five second cool-

down. Therefore, it would be prudent to use simulations to ensure that the cool-down period 

does not result in inaccurate inferences before applying the model. Second, features of animals’ 

daily activity patterns, such as extended periods of inactivity, can result in inaccurate density 

estimates (Nakashima et al. 2018). Consequently, for some species it will be necessary to use 

activity information derived from the camera trap data and natural history knowledge to correct 

the estimates (Nakashima et al. 2018). Finally, the REST model assumes are detected with 

certainty within a defined subset of the field of view (Nakashima et al. 2018). Consequently, 

may be necessary to restrict the analysis to animals sighted close to the camera; I suggest 

restricting the analysis to animals detected within 10 metres, as this was the range up to which 

I validated the camera’s field of view by taking calibration photos.  

Several other methods are available for estimating density from camera trap detections without 

individual recognition (Gilbert et al. 2021) but, for various reasons, these are unlikely to be 

suitable for studying the effects of Opuntia using my dataset. Space-to-event and instantaneous 



189 
 

sampling models (Moeller et al. 2018) are unsuitable because they require the use of time-lapse 

photos (Gilbert et al. 2021), which my cameras were not set to collect. Unmarked spatial 

capture-recapture models (Chandler & Royle 2013) require the array of camera traps to be 

spaced so that individual animals are detected at multiple cameras (Gilbert et al. 2021); 

although in my study it is likely that individual animals were detected on both cameras within 

a site pair, the distances between site pairs were probably too large for individuals to be 

detected in more than one pair. The time-to-event model (Moeller et al. 2018) is also unlikely 

to be suitable, principally because the model assumes perfect detection (Gilbert et al. 2021) 

and this assumption is extremely unlikely to hold; camera traps often miss animals due to 

limitations of the passive infrared sensor and the potential for unidentifiable photos (Findlay et 

al. 2020). Furthermore, in my volunteer-classified data the sensitivity of consensus 

classifications is less than one for most species (Appendix D, Table S1). Another issue is that 

the time-to-event model assumes that detections are spatially and temporally independent 

(Gilbert et al. 2021); the former assumption is unlikely to hold due to the short distance between 

camera traps within a pair, while the latter is likely to be violated because the cameras’ 5-

second cooldown period often resulted in multiple consecutive photos of the same individual 

animal. 

Regardless of whether marked or unmarked methods are used to estimate Opuntia’s effects on 

mammalian population density, the choice of model covariates will be a key consideration – 

just as it is when modelling occupancy (Chapter 3). Understanding how Opuntia affects 

population density is an inference problem, and although simulations analogous to those I 

conducted in Chapter 3 have not yet been conducted for population density models, there is no 

reason to expect that the results will be substantially different. Therefore, I suggest that the 

guiding principle should be to consider the purpose – inference or prediction – of each sub-

model within the main density model. This suggests that predictive tools, such as information 

criteria, should not be used to guide the choice of covariates for the density variable itself, but 

may be suitable for tasks such as guiding the choice of detection function for spatial capture-

recapture (Efford 2004). For the density covariates, I suggest that a causal inference approach 

– as detailed in Chapter 3 – could be applied.  
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Wider implications: mechanism and causal inference in invasion ecology 

The topics of mechanism and causal inference are among the main themes of my thesis. In my 

introductory chapter, I argued that a mechanistic understanding of invasive species’ impacts is 

important for facilitating proactive and effective management. In Chapter 2 (Stewart et al. 

2021), I aimed to further our mechanistic understanding of invasive plants’ impacts on animal 

behaviour by developing a mechanistic framework that explicitly considered the drivers and 

ecological consequences of behavioural change, as well as the moderating role of 

environmental context. In Chapter 3 (Stewart et al. 2023), I took a different approach to the 

understanding of mechanism, applying insights from the field of causal inference to the 

problem of modelling the patterns and drivers of species occupancy. In Chapter 4, I combined 

these two approaches by using the framework from Chapter 2 (Stewart et al. 2021) to help 

develop a directed acyclic graph (as per Chapter 3; Stewart et al. 2023), which I then used to 

inform my choice of covariates when modelling the effects of Opuntia on mammalian 

occupancy. I again applied a causal inference-based approach in Chapter 5, modelling the 

relationship between Opuntia height and fruiting. Through these chapters, I have illustrated 

how causal inference can be applied to help further our mechanistic understanding of the 

behavioural impacts of invasive species, and the Opuntia invasion in particular. In this section, 

I argue that causal inference has broader implications for the field of invasion ecology.  

Causal inference presents an exciting opportunity for invasion ecologists, arming us with a 

powerful array of quantitative tools. As argued in Chapter 3, causal inference allows us to deal 

with the problem of model selection and complements existing tools, like the widely used 

information-theoretic approach (Anderson et al. 2000; Burnham & Anderson 2001; Lukacs et 

al. 2007; Burnham et al. 2011). The functionality of causal inference is particularly relevant 

for invasion ecology because field-based studies are often limited in their scope for 

experimental intervention (e.g., deliberate addition of invasive species is generally unethical, 

while experimental removal at scale may be prohibitively expensive). Furthermore, invasion 

ecologists often begin studying the system only after the invasion has already spread, and are 

left trying to explain the factors underlying an invasion post hoc. This point fits well with the 

counterfactual perspective (Pearl et al. 2016, p. 89) of causal inference, as we are often asking 

whether an invasion would still have occurred had circumstances (e.g., land use, the traits of 

the invasive species, management efforts) been different. I argue that a specific case where 

causal inference could provide novel insights is in the study of the factors underlying the 

global-scale patterns of invasive species occurrence. The most recent work on this topic (e.g., 
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on the effects of land use; Liu et al. 2023) is largely reliant on information-theoretic methods, 

which limits the strength of conclusions that can be drawn. Further advances could be achieved 

by using directed acyclic graphs to simultaneously consider the direct and indirect drivers of 

biological invasions, and to examine whether the conclusions are robust to varying the 

assumptions about how these drivers operate.  

The quantitative tools provided by causal inference are not limited to the problem of model 

selection. A second area where the approach can be applied is to deal with cases where data 

are missing or measured with error (McElreath 2021, pp. 489-521). These situations are 

common in invasion ecology. For example, invasive species occurrence data which have been 

collected by the general public can form a vital part of the effort to monitor, understand, and 

predict the distributions of invasive species (Roy et al. 2015). However, these efforts can be 

vulnerable to spatial and temporal biases in data collection, as well as selective recording by 

the volunteers (van Strien et al. 2013). The application of causal inference methods may allow 

us to overcome these biases in cases where other methods (e.g., occupancy models; van Strien 

et al. 2013) are unsuitable, and could also allow for sensitivity analyses to explore whether the 

results are robust to different types of recording bias.  

As well as its uses in observational studies, causal inference also provides methods to examine 

the transportability of experimental results to observational settings (Pearl & Bareinboim 

2014). In particular, selection diagrams – a particular form of directed acyclic graph – can be 

used to explicitly state assumptions about ways in which the experimental and observational 

settings are similar or different, and to then determine whether a result from the experimental 

setting is likely to generalise to the observational setting (Pearl & Bareinboim 2014). Selection 

diagrams are potentially useful in invasion ecology because the field has a wide array of 

hypotheses (see Enders et al. 2018) which are often tested in experimental settings like bacterial 

microcosms (e.g., Jiang et al. 2010), greenhouses (e.g., Feng et al. 2019), and pond mesocosms 

(e.g., Fey & Herren 2014). Hypotheses which survive experimental testing in these relatively 

artificial conditions are not guaranteed to play an important role in the dynamics of real 

biological invasions. Therefore, it is important to understand the conditions under which 

experimental results are transportable to real biological invasions; causal inference has the 

potential to play an important role in addressing this research topic. 

Causal inference is not only important because it provides a powerful set of tools, but also 

because it broadens our perspective, illuminating previously unseen possibilities and allowing 
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us to view old problems from new angles. One of the most important ways in which causal 

inference adds to our perspective is by improving our understanding of included-variable bias. 

In ecology, the idea that including variables in a model can bias effect estimates has been 

discussed mostly in the context of multicollinearity (Graham 2003). However, a high 

correlation between explanatory variables is not a reliable indicator that adding them to the 

same model will induce bias; it is entirely possible for the inclusion of a highly correlated 

explanatory variable to improve inferential accuracy, and for the inclusion of a variable to harm 

accuracy even when its correlation with other explanatory variables is low (Chapter 3). This 

insight suggests that it is time to rethink how we approach multicollinearity in ecological 

modelling.  

A second important point which causal inference helps to clarify is that included-variable bias 

can arise not just through covariate choice in a model, but also through aspects of study design 

or the intrinsic features of the biological system under study. For example, Berkson’s (1946) 

eponymous paradox concerns a spurious association between two diseases in a study of hospital 

patients. A causal view of this paradox (Pearl & Mackenzie 2018, pp. 197-200) tells us that 

because both diseases influence the probability of hospitalisation, to study only hospitalised 

patients is to condition on a collider (i.e., hospitalisation), producing a spurious association 

between the two diseases. The explanatory power of causal inference is not limited to 

Berkson’s paradox, but also encompasses a diverse array of phenomena including Simpson’s 

and Lord’s paradoxes, post-treatment bias, case-control bias, and multicollinearity (Pearl 2014; 

Pear & Mackenzie 2018, pp. 189-217; McElreath 2021, pp. 163-175; Cinelli et al. 2022). By 

helping us to understand why these phenomena occur, causal inference allows us to avoid 

common pitfalls in our analyses and study designs.  

Finally, the causal inference perspective changes the way we interpret parameters, particularly 

in the linear models that are ubiquitous in ecology. In so doing, the approach helps us to avoid 

potential pitfalls during the model interpretation stage. It is tempting to interpret linear model 

effect sizes as estimates of the direct effect of each covariate on the response variable. 

However, after adopting a causal perspective we instead see that while some effect sizes can 

be reasonably interpreted as direct effects, some represent total effects, others are the 

combination of multiple direct and indirect pathways, and some ‘effects’ are in fact biologically 

meaningless (Westreich & Greenland 2013).  
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Until recently, causal inference approaches were rare in ecological studies (Laubach et al. 

2021). However, ecologists are increasingly recognising the power of the quantitative tools and 

novel perspectives offered by causal inference; the last two years have seen an explosion of 

papers discussing and applying causal inference methods to ecological problems (e.g., Kimmel 

et al. 2021; Addicott et al. 2022; Arif & MacNeil 2022, 2023; Dee et al. 2023; Hone & Krebs 

2023). By exploring model selection in occupancy models from a causal inference perspective 

(Chapter 3), and applying my findings to the problem of Opuntia invasions in Laikipia County 

(chapters four and five), I aimed to further this paradigm shift. In the coming years, I believe 

that causal inference will occupy a niche alongside complementary methods, like the 

information-theoretic approach, as an important part of the analytical toolbox available to 

invasion ecologists. 

 

Conclusion 

In the 65 years since Charles Elton’s foundational work (Elton 1958), the scale of the challenge 

posed by biological invasions has substantially increased. However, invasion ecologists have 

risen to the challenge; we have seen significant advances in our understanding of the invasion 

process, the impacts of invasive species, and how we can intervene to mitigate these impacts. 

Over the coming decades, we are likely to see the number of invasive species continue to rise 

as new introductions occur, and biological invasions will increasingly interact with other global 

change processes such as climate change (Pyšek et al. 2020; Seebens et al. 2021). Therefore, 

it is vital that our work continues towards developing a mechanistic understanding of biological 

invasions, so that we are well-situated to tackle the ongoing and emerging problems resulting 

from invasive species.  
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