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Abstract

Wind turbine bearings play a crucial role in ensuring the safe and efficient

operation of wind turbines. Accurate estimation of the remaining useful life

(RUL) of bearings can significantly reduce operating and maintenance costs.

In this paper, we propose three advanced data‐driven models to predict the

RUL of high‐speed shaft bearings in wind turbines. These models combine the

sparrow search algorithm (SSA) with three different regression models,

namely support vector machine, random forest (RF) regression and Gaussian

process regression. The models are based on features extracted from the

vibration signal analysis, and the features are selected based on their

monotonicity to evaluate bearing degradation. To optimize the performance

of the regression models, all model parameters are tuned using the SSA

algorithm. The proposed models are validated using vibration data collected

from a real 2MW commercial wind turbine. Our results demonstrate that the

proposed models are effective in predicting the RUL of wind turbine bearings,

and the SSA algorithm improves the accuracy of the predictions.
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1 | INTRODUCTION

Wind power is a renewable and clean source of energy,
and with the ongoing climate crisis, many countries are
turning to wind power generation facilities. The wind
power industry has experienced significant growth in
recent years, with wind turbines getting larger in size and
installed at higher heights to capture stronger winds.
According to data provided by the European Wind
Energy Association (WWEA),1 the installed wind power

capacity reached 650.8 GW by the end of 2019. However,
most of these turbines are located in remote mountain-
ous areas or offshore, which poses significant challenges
in transporting and hoisting the large components. The
traditional method of waiting for system failure before
replacing failed parts results in long downtime and puts
enormous pressure on maintenance staff and standby
parts inventory, increasing operating costs and ultimately
affecting the Levelized Cost of Energy (LCoE).2 The cost
of operation and maintenance (O&M) is a significant
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portion of the total annual wind turbine cost, with O&M
accounting for 20%–25% of the LCoE.3,4 To address this
issue, improving the reliability of key components and
predicting failures by improving maintenance strategies
are currently the main ways to reduce O&M costs and
lower the LCoE of wind power.

The growing size of wind turbines, their remote
location, and the unpredictability of wind patterns
necessitate efficient maintenance strategies. Maintenance
strategies for wind turbines typically include corrective
and proactive maintenance, the latter being further
classified into scheduled and predictive maintenance.5

Proactive maintenance is essential to prevent failures,
and determining when maintenance is required requires
knowledge about the current state of system degradation
and an estimate of the Remaining Useful Life (RUL) of
the system. RUL represents the useful life of an asset
during a specific period of operation, and predicting it is
a critical concept in Prediction and Health Management
(PHM) to ensure high system availability over their life
cycles gain lots of attention in recent years in addressing
wind turbine challenges.6 The data used in wind turbine
RUL estimation can be categorized as recorded run‐to‐
failure data and condition monitoring (CM) data.

CM data is particularly crucial for machines that
cannot be allowed to run to failure. Any data associated
with the degradation process, such as vibration, temper-
ature, loading, rotating speed, current and voltage data,
can theoretically be used to predict RUL. For example,
Cheng et al.,7 predicted gearbox fault and RUL by
extracting features from generator current signals, while
Sivalingam et al.,8 used temperature variation signals to
predict wind turbine power converter RUL. Hu et al.,9

shows the distribution of temperature characteristic
parameters of critical bearings in a wind turbine, which
could be utilized to predict RUL after processing rotor
speed and bearing temperature data obtained through
the SCADA system.

Currently, most literature focuses on predicting the
remaining life of wind turbine gearbox bearings. Vibra-
tion analysis is the most commonly used technique for
monitoring wind turbines and diagnosing bearing faults.
Vibration signals carry essential dynamic information
related to fault characteristics and can be analyzed using
time domain, frequency domain and time‐frequency
methods. Saidi et al.,10 proposed technique to predict
the RUL of wind turbine high‐speed shaft bearings by
extracting time domain indices from the spectral kurtosis
of vibration signals. Furthermore, Djeziri et al.,11 devel-
oped a physical model of wind turbines and collected
data during normal and faulty operation for clustering.
RUL is calculated in three steps: (1) projecting data in the

remaining space using principal component analysis of
normal operating data, (2) projecting all data into this
remaining space resulting in normal and faulty clusters,
and (3) calculating RUL as the ratio of Euclidean
positions between the clusters and degradation velocity.
Rommel et al.,12 estimated wind turbine remaining life
by evaluating load profiles at blade roots, rotor hub
centre, and tower head using physical models.

Due to the availability of data and the rise of AI
techniques, data‐driven models have also been applied in
recent years to estimate the RUL of wind turbines such as
Pattern recognition methods (e.g., exponential degrada-
tion, stochastic filtering‐based, Markov deterioration and
so on), machine learning methods [e.g., artificial neural
networks (ANN), support vector machines (SVM),
Convolutional Neural Network (CNN) and so on]. Pan
et al.,13 used Gaussian process (GP) and Bayesian
inference methods to predict bearing failures 1 month
in advance by abstracting the state of bearing tempera-
ture residuals. Teng et al.,14 used an artificial neural
network to train data‐driven models and then fit a
polynomial curve to reflect the long‐term degradation
process of bearings. Hu et al.9 further established a
performance degradation model using temperature
characteristic parameters and Wiener process. Author
of7 used an ANFIS‐based PF method to predict RUL
using one‐phase stator current of the generator. Nielsen
et al.,15 calibrated a Markov deterioration model using
past inspection data and updated it using real‐time data.
Rezamand et al.,16 proposed a real‐time prediction
approach for wind turbine bearings in varying operating
conditions using vibration signals and an adaptive
Bayesian algorithm.

Wind turbines are complex systems with many
components and structures, making it difficult to
accurately build a physics‐based model for predicting
failures. Wang et al.,17 proposed a hybrid prognostic
prediction method for RUL of rolling element bearings,
using a correlation vector machine regression with
different kernel parameters for sparse representation of
the bearing regression data, and then employing the
exponential decay model combined with the Fraser
distance for adaptive estimation. Sun et al.,18 proposed
a method for predicting the remaining service life of
hybrid cutting tools based on empirical mode decompo-
sition and back‐propagation neural networks. SVMs have
been shown to be effective in solving problems that
consider structural risk and have better generalisation
capabilities than traditional machine learning methods
such as ANN.19 Detailed recent research relevant to wind
turbine maintenance optimisation can be found in Yang
and colleagues.20–22
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1.1 | Novelty and contribution to
knowledge

Wind turbines are known to experience high‐speed shaft
bearing failures that result in significant downtime and
maintenance costs, ultimately leading to increased
Levelized Cost of Energy (LCoE). To mitigate these
costs, it is imperative to improve the reliability of key
components or predict failures through better mainte-
nance strategies. This study proposes a novel approach
for predicting the RUL of high‐speed shaft bearings in
wind turbines using a regression model‐based approach.
We utilize a sparrow search algorithm (SSA) to optimize
the regression model's parameters, thus improving the
model's prediction accuracy. A series of time and
frequency domain parameters are generated from the
analysis of the vibration signal of a high‐speed wind
turbine shaft, and the regression model is trained after
feature processing. The trained model is then used to
predict the RUL of the high‐speed shaft bearing. The
effectiveness of our proposed method is confirmed
through the analysis of vibration signals obtained from
a real high‐speed shaft bearing in a 2MW wind turbine.
To the best of our knowledge, this is the first study to
apply the SSA algorithm to predict the RUL of wind
turbine bearings. Our proposed models can help wind
farm operators to optimize maintenance schedules and
reduce downtime, ultimately leading to increased profit-
ability and sustainability of wind energy production.

2 | DATA DESCRIPTION

In this section, detailed description of the data used for
constructing RUL model for wind turbine high‐speed
shaft bearing discussed. The technical framework for the
model is presented in Figure 1, which includes data
collection, processing, feature selection, machine learn-
ing model training and RUL estimation. The data
set used in this study was collected from a 2MW
wind turbine shaft in the United States.23 Specifically,

50 vibration signals were recorded from 7 March to 25
April, each of which is 6 s in length. These signals were
collected by a monitoring system after an inner race fault
caused the failure of a high‐speed shaft bearing that was
driven by a 20‐tooth pinion gear. Figure 2 shows the 50
raw vibration trends that were used in the analysis.

2.1 | Preprocessing

The vibration signal carries the basic dynamic informa-
tion related to the fault characteristics. By using time and
frequency domain analysis techniques we can obtain the
underlying characteristics of the signal. In addition to the
traditional statistical features in the time domain such as
root mean square, kurtosis and so forth. Other statistical
features in the frequency domain are also widely used for
the prediction of the RUL of bearings. Spectral kurtosis
(SK), for example, is considered to be a powerful tool that
has proven to find successful applications in vibration‐
based CM.24 It can indicate the presence of series of
transients and their locations in the frequency domain.
For the signal x, its SK value K f( ) can be calculated
based on the short‐time Fourier transform of the signal
using the following equations.25

 
 K f
S t f

S t f
f( ) =

| ( , )|

| ( , )|
− 2, 0,

4

2 2
 (1)

S t f x t w t τ e t( , ) = ( ) ( − ) ,πft

−

+

−2





(2)

where w t( ) is the window function used in STFT. Then
SK is taken as signal x , and its mean standard deviation,
std, Skewness and kurtosis are calculated.

2.2 | Feature selection

The process of feature selection was meticulously
executed on the ensemble of 15 features extracted in

FIGURE 1 Proposed framework for wind turbine high‐speed shaft bearing RUL prediction. RUL, Remaining Useful Life.
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the preceding section. The time and frequency domain
features, pivotal to our analysis, are succinctly enumer-
ated in Table 1, accompanied by their corresponding
mathematical expressions. The representation of these
features and their respective expressions is provided
below.

To improve the prediction accuracy, it was necessary
to filter out the features that did not contribute
significantly to the RUL prediction model. The filtering
process involved selecting the most important features
based on their relevance to the RUL prediction. This was
achieved by using a feature selection algorithm, which

evaluated each feature based on its contribution to the
prediction model. The algorithm ranked the features
according to their relevance and selected the most
important features for further analysis. By eliminating
the less important features, the prediction accuracy of the
model was significantly improved as shown in Figure 3.
This illustrative visualization unveils the comprehensive
evaluation of these features, revealing certain elements—
such as SK kurtosis and SK skewness—that demon-
strated less‐than‐anticipated efficacy in their predictive
capacity. Conversely, the efficacy of kurtosis as a
representative marker of the overarching degradation
process emerged as particularly noteworthy.

To improve the accuracy of RUL estimation, it is
important to carefully select and identify suitable
indicators. Indicators that are suitable for RUL estima-
tion should have certain characteristics, such as mono-
tonicity, prognosability and trendability.

Monotonicity, as a defining characteristic, signifies an
indicator's behaviour of consistently and uniformly
increasing or decreasing in value as the machinery
undergoes degradation. A well‐defined monotonic indi-
cator is instrumental in manifesting a distinct and
coherent degradation trend, thereby substantially facili-
tating the accuracy of RUL predictions. This characteris-
tic is formally defined by the following equation:

Monotonicity x

positive diff x negetive diff x

n

( )

=
( ( )) − ( ( ))

− 1
,

i

i i

(3)

where n is the number of measurement points, in this
case n = 50.

FIGURE 2 The vibration signals.

TABLE 1 Relevant time and frequency domain features.26

Features Expression

Skewness 
m i

m x x

p

1
=1

( − ̅)i
3

3

Kurtosis 
m i

m x x

p

1
=1

( − ̅)i
4

4

Crest factor x

RMS
max

Shape factor

RMS

|x |
m i

m
i

1
=1

Impulse factor 
x

|x |
m i

m
i

max
1

=1

Margin factor
( )
x

|x |
m i

m
i

max

1
=1

2

SK mean  skx
m i

m
i

1
=1

SK std ( )skx skmean−
m i

m
i

sk1
=1

SK skewness 
m i

m skx skx

p

1
=1

( − ̅ )i
3

3

SK kurtosis 
m i

m skx skx

p

1
=1

( − ̅ )i
4

4
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The degradation of the bearings is an irreversible
process, so for this study, monotonicity as the
criterion of feature selection is chosen. Figure 4
shows the monotonicity metric of 15 features
obtained in the previous section. To obtain the best
prediction results, features with a score larger than
0.2 are selected for the next step.

3 | METHODS THEORETICAL
DESCRIPTIONS

This paper employs three distinct regression models to
predict the RUL of high‐speed shaft bearings in wind
turbines. The SVM regression, random forest regres-
sion (RFR) and Gaussian process regression (GPR)

FIGURE 3 Evolution of 15 features over the 50 days.
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models are utilized. Furthermore, a SSA is implemen-
ted to fine‐tune the model parameters during the
training process. The following section provides a
detailed description of these regression models and the
optimization algorithm.

3.1 | SVM

SVM is a type of generalized linear classifier that
utilizes supervised learning for binary data classifica-
tion.27 The decision boundary is set as the maximum‐
margin hyperplane over the learned samples. SVMs
have gained popularity in engineering due to their
effectiveness in handling nonlinear mapping prob-
lems and their ability to determine the final decision
function by several support vectors. In situations
where only a limited number of samples are available,
SVMs are particularly useful in achieving this
objective. As a result, SVMs are increasingly
being employed for predicting RUL, owing to their
efficacy in processing small data samples.
The principle of SVM is: Given a sample set
S x y x R y R= {( , ) | , , }i i i

n
i

n
i=1 ∈ ∈ , where xi is the input

variable and yi is the predicted value for, the
regression function f x( ) is

f x w x b( ) = < > + ,∙ (4)

where w is the weight vector, w Rn∈ ; b is the bias
threshold, b R∈ . w and b can be obtained by solving the
following optimal problem.

w C ξ ξmin
1

2
‖ ‖ + ( + *),

i

n

i i
2

=1

(5)








S t

w x b y ξ ε

y w x b ξ ε

ξ ξ

. .

< > + − +

− < > − * +

, * 0

,

i i i

i i i

i i

∙ ≪

∙ ≪

≫

(6)

where C is the penalty factor, ξi and ξ*i are the relaxation
factors and ε is the insensitivity factor.

When the data exhibit a nonlinear relationship with
each other, a kernel function is introduced into the SVM
to map the original data into a high‐dimensional space,
transforming the nonlinear problem into a linear
problem to solve.28 The RBF kernel function is the most
commonly used, and its expression is:







K x y

x y

p
( , ) = exp −

‖ − ‖
,

2

2 (7)

where p is kernel function indices.
The Lagrangian function is introduced to transform

the optimization problem into a convex quadratic
programming problem27,28:

FIGURE 4 Monotonicity metric of features.
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i i j j

i j
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∙ (8)
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a a

a C

a C

. .

− * = 0
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0 < * <

,i

n

i i

i

i

=1 (9)

where a a, *i i is the Lagrangian operator and ( )W a a, *i i is

the function that solves for a a, *i i . According to the KKT
condition, the SVM regression function is:

 ( )f x a a K x x b( ) = − * ( , ) + .
i

n

i i i

=1

(10)

3.2 | Random forest

The RFR model is comprised of several regression trees
that have no correlation with one another. The output of
the model is ultimately decided by the collective
decisions of all the decision trees in the forest. The
randomness of the random forest is manifested in two
distinct ways29:

○ The randomness of the samples, where a specific
number of samples are randomly selected from the
training set to serve as the root node samples of each
regression tree.

○ The randomness of the features, where a specific
number of candidate features are randomly chosen to
construct each regression tree. The most appropriate
features are then selected as split nodes.

The principle of the algorithm is described as
follows.30 Randomly draw m sample points from the
training sample set Sto obtain a new subtraining set
S S, … , n1 . Then after using the subtraining set, train a
CART regression tree (decision tree), here in the training
process, the cut rule for each node is to select k features
at random from all features, and then select the optimal
cut point from these k features before dividing the left
and right subtrees. Note that the obtained decision trees
here are all binary trees. By the second step, many CART
regression tree models can be generated and final
prediction of each CART regression tree is the mean
value of the leaf nodes reached by that sample point.

Key Attributes of Random Forests in Constructing
Regression Trees: Sampling and Comprehensive Splitting
Approach. The underpinning methodology of random
forests entails two distinctive random sampling proce-
dures. Specifically, the random forest algorithm conducts
sampling across both the rows (samples) and columns
(features) of the input data. In terms of sample sampling,
a ‘put‐back’ strategy is employed, thereby allowing for
the potential inclusion of duplicates within the subset of
samples generated through the sampling process.

Assuming that the input samples are N , then the
samples sampled are also N . This makes it relatively easy to
avoid over‐fitting by not having all the samples in each
tree during training, and then sampling the features,
selecting m m M( << ) from the M features. This is
followed by a regression tree using a full split on the
sampled data. Each regression tree is a specialist in a
narrow field (because we selectm features from M features
for each regression tree to learn), so that there are many
experts in the random forest who are proficient in different
fields, and a new problem (new input data) can be viewed
from different perspectives, and eventually each expert will
come up with his or her own result, which will be averaged.
The base learner of a random forest is not a weak learner
but a strong learner, consisting of a strong decision tree
with a very high depth.

CART regression trees are based on the principle of
minimum mean squared error (MSE). That is, for any
division of feature A, corresponding to any division point
s on both sides of the division into data sets D1 andD2,
find the feature and eigenvalue division point that
minimises the MSE of the respective sets of D1 and D2,
while minimising the sum of the MSE of D1 and D2. The
expressions are,

     

  









 





min min y c

min y c

( − )

+ ( − ) ,

A s c
x D A s i

c
x D A s i

,
( , ) 1

2

( , ) 2
2

i

i

1

1

2

2





(11)

where c1 is the mean of the sample output for the D1 data
set and c2 is the mean of the sample output for the D2

data set. The prediction of the CART regression tree is
based on the mean of the leaf nodes, so the prediction of
the random forest is the average of the predicted values
of all the trees.29,30

3.3 | GPR

GPR is a powerful nonparametric model utilized for
regression analysis through a GP prior. The GPR model
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assumptions consist of noise, or regression residuals, and
a GP prior, which are resolved through Bayesian
inference.31 The process of solving GPR, also referred
to as hyper‐parameter learning, involves determining the
hyper‐parameters in the kernel function by learning
samples in accordance with the Bayesian approach. By
applying Bayes' theorem, the hyper‐parameter posterior
of GPR is expressed as a function of the likelihood, which
is obtained by marginalizing the output of the GPR, and
the prior distribution of the hyper parameters. From
Bayes' theorem, the hyper‐parameter posterior of GPR is
expressed as follows31:

p θ X y
p y X θ p θ

p y X
( | , ) =

( | , ) ( )

( | )
, (12)

where θ denotes the hyperparameters of the GPR,
including the hyperparameters of the kernel function and
the variance of the residuals σn

2 . p y X θ( | , ) is the likelihood,
which, as a non‐parametric model, is the marginal
likelihood obtained by marginalising the output of the GPR:

p y X θ p y f X θ p f X θ df( | , ) = ( | , , ) ( | , ) . (13)

The GPR likelihood follows a normal distribution
when the residuals adhere to an iid normal distribution
using following equation.

( )p y X θ N y K σ I( | , ) = 0, + .n
2 (14)

The GPR's optimal solution is a maximum likelihood
estimate, which involves nonlinear optimization. when
its common solution is a great likelihood estimate that
includes nonlinear optimization.4

3.4 | SSA

A revolutionary swarm intelligence optimisation tech-
nique called the SSA was proposed in 2020 and was
primarily motivated by the foraging and anti‐predatory
behaviour of sparrows.32 In the study, SSA was employed
to discover the most suitable hyperparameters for the
proposed machine learning models, namely SVM, GPs,
and RF. The primary goal of using the SSA was to fine‐
tune the hyperparameters of these models to align the
characteristics of the data with the structure of each
model. This process aimed to create prediction models
for RUL that exhibit high levels of accuracy.

In the foraging behaviour of sparrows, there are two
distinct roles, the finder and the follower. Finders usually

have high energy reserves and are responsible for finding
food‐rich areas, and when they find food, they provide
foraging directions for the entire species. Followers
forage based on the information provided by the finder.
In SSA, finders with better fitness values prioritise access
to food during the search. During each iteration, the
discoverer's position is updated as described below33:














X

X
i

α iter
if R ST

X Q L if R ST

=
exp

−
<

+ >

.x j
t x j

t

x j
t

,
+1 ,

max
2

, 2

∙
∙

∙

(15)

Where t represents the number of current iterations and
itermax is a constant indicating the maximum number of
iterations. Xx j, represents the position information of the
i‐th sparrow in the j‐th dimension. α [0,1)∈ is a random
number. R [0,1]2 ∈ and ST [0.5,1]∈ denote the warning
and safety value. Q is a random number that obeys a
normal distribution. L denotes a d1 × matrix, where each
element in the matrix is all 1. When R ST<2 , this means
that there are no predators around the foraging environ-
ment at this time and the finder can perform an extensive
search operation. When R ST2  , this means that some
sparrows in the population have spotted a predator and
alerted the rest of the population, and all sparrows need to
fly quickly to other safe places to forage. The updated
description of the follower's location is as follows.
















X
Q

X X

i
if i

n

X X X A L otherwise

=
exp

−
>

2

+ −

,x j
t

worst
t

x j
t

P
t

i j
t

P
t

,
+1

,

2

+1
,

+1 +

∙

∙ ∙

(16)

where XP is the optimal position currently occupied by
the discoverer and Xworst denotes the current global
worst position. A+ denotes a d1 × matrix where each
element is randomly assigned a value of 1 or −1 and
A A AA= ( )T T+ −1. When i >

n

2
, this indicates that the i‐th

joiner with a low fitness value is not getting food and is in
a very hungry state, at which point it needs to fly to
elsewhere to forage for more energy.32 When aware of
challenges, sparrow populations engage in antipredatory
behaviour, which is mathematically expressed as follows.
















X

X β X X if f f

X K
X X

f f ε
if f f

=

+ − >

+
−

( − ) +
=

,x j
t

best
t

x j
t

best
t

i g

x j
t x j

t
worst
t

i w
i g

,
+1

,

,
,

∙

∙

(17)
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where Xbest is the current global optimum. β, the step
control parameter, is a random number with a normal
distribution with mean 0 and variance 1. K [−1,1]∈ is a
random number and f is the current fitness value of the
individual sparrow. fg and fw are the current global best

and worst fitness values, respectively. ε is the smallest
constant to avoid zero in the denominator.

For simplicity, when f f>i g means that the sparrow is
at the edge of the population and is extremely vulnerable
to predators. f f=i g means that sparrows in the middle of
the population are aware of the danger and need to move
closer to other sparrows to minimise their risk of
predation. K indicates the direction of movement of the
sparrow and is also the step control parameter.

The concept behind hyperparameter tuning is that
adjusting certain settings or parameters of a machine
learning model can significantly impact its perform-
ance and ability to make accurate predictions. The
SSA, in this case, served as the mechanism for
systematically exploring and determining the optimal
combination of hyperparameters for the SVM, GP and
RF models.

To achieve improved training outcomes, it is impera-
tive to divide the training set in the most random manner
possible while ensuring that the data incorporates all
phases of the degradation process. Furthermore, the
model parameters are optimized using a SSA, and the
optimal parameter settings of the SSA are obtained after
several debugging iterations.30,31 In this study, 80% and
70% of the available data were selected as the training set
to train the model, and the results will be elaborated
upon in the subsequent section.

4 | RESULT AND DISCUSSIONS

Mean Absolute Error is used to evaluate the training
process. MAE, which may accurately depict the actual
situation of the predicted value error and be used as an
evaluation metric for the training model's performance,
is the average of the absolute error between the true
value and the predicted value. Its expression is:

MAE
m

p y y=
1

| ( ) − |,
i

m

i i
=1

(18)

where m is the number of training samples, yi is the
expected RUL of the i‐th sample and p y( )i is the
predicted RUL of the i‐th sample. The final training
results are shown in Table 2.

Here, MAE is not a criterion for evaluating the
merits of the three models. The value of MAE is only
used as a criterion for evaluating the same model after

each training, the smaller the value of MAE, the better
the training result of the model. Since the GRP model is
different from the other two, the training results are not
evaluated here. After selecting the best training results,
the three trained regression models were tested using
the same test set to compare the predicted remaining
lifespan with the actual lifespan. The results are shown
below. Figure 5 shows the prediction results of the
model trained with 70% of the data as the training set,
and the following three figures show the prediction
results of the model trained with 80% of the data as the
training set.

Figure 5 demonstrates that although each model
deviates somewhat from the genuine RUL curve, they
can all forecast the remaining life to some extent. We
offer four parameters to evaluate the regression models:
MSE, RMSE, MAE, and R2. To more accurately assess
each regression model's performance. The other three
metrics are shown below, and the definition of MAE has
already been discussed in the evaluation of the results of
the model training.

MSE is a popular error metric for regression models,
which measure the variance of the residuals. It repre-
sents the mean of the squared differences between the
original and predicted values in the data set and is
calculated as:

MSE
m

p y y=
1

( ( ) − ) ,
i

m

i i
=1

2 (19)

where m is the number of training samples, yi is the
expected RUL of the i‐th sample and p y( )i is the
predicted RUL of the i‐th sample.

Root Mean Squared Error (RMSE) is an extension of
the MSE, which is the square root of MSE. It measures
the standard deviation of residuals and is calculated as:

RMSE MSE= . (20)

The R‐squared, also known as the coefficient of
determination, is the square of the correlation coefficient
R. It is an important statistical parameter in a linear
regression model. It indicates how well the regression

TABLE 2 Models training results.

Models 70% 80%

SVM 1.46 1.87

RF 2.31 2.36

GPR \ \

Abbreviations: GPR, Gaussian process regression; RF, random forest; SVM,
support vector machines.
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model fits the actual values, with R close to 1 indicating a
better fit, and is expressed as:


R
y p y

y y
= 1 −

( − ( ))

( − ̅)
,i i

i

2
2

2 (21)

where yi is the expected RUL of the i‐th sample, p y( )i is
the predicted RUL of the i‐th sample and y ̅ is the mean
value of y.

The results indicated that the SVM model achieved
the highest accuracy among the three, suggesting that
the fine‐tuned hyperparameters obtained through the
SSA allowed the SVM model to more effectively
capture the underlying patterns and relationships in
the data. Following the SVM model, RF model
demonstrated the second‐best accuracy, while the
GPs model achieved comparatively lower accuracy.
Tables 3 and 4 show the evaluation parameters for the
models obtained by training with 80% of the data as the
training set and the model obtained by training with
70% of the data as the training set, respectively. It can
be seen that the models obtained using 80% of the data
as the training set are more accurate than those
obtained using 70% of the data. When 80% of the data
was used as the training set, the coefficients of

determination of the models obtained were all greater
than 0.9, at which point the SVM model reached a
coefficient of determination of 0.97, which can indicate
that the SVM can predict the remaining life of this

FIGURE 5 RUL estimation results. RUL, Remaining Useful Life.

TABLE 3 Evaluation parameters for models when training
data sets is 80%.

Models MSE RMSE MAE R2

SVM 15.00 3.87 3.14 0.97

RF 14.76 3.84 3.30 0.93

GPR 27.13 5.21 0.20 0.90

Abbreviations: GPR, Gaussian process regression; RF, random forest; SVM,
support vector machines.

TABLE 4 Evaluation parameters for models when training
data sets is 70%.

Models MSE RMSE MAE R2

SVM 20.51 4.53 3.54 0.91

RF 19.21 4.38 3.68 0.90

GPR 34.94 5.91 0.51 0.83

Abbreviations: GPR, Gaussian process regression; RF, random forest; SVM,
support vector machines.
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bearing very well. In both cases, the SVM regression
model is rated better than the other two regression
models, followed by RF. when the regression curves of
the three models are placed in the same graph, it can
also be seen that the SVM regression curve is closer to
the true value.

SVM strengths in handling complex data distribu-
tions, regularization, high‐dimensional data, hyperpara-
meter sensitivity, and balancing bias‐variance trade‐offs
likely contributed to its superior performance in our
study. Furthermore, the synergy between the SSA's
optimization capabilities and SVM's sensitivity to hyper-
parameters, complex interactions, and data distribution
adaptation likely resulted in SVM's significant out-
performance over RF and GPs in our study. While all
three algorithms benefited from SSA's optimization,
SVM's unique characteristics allowed it to derive maxi-
mum advantage from the fine‐tuned hyperparameters
produced by the algorithm as shown in Figures 6, 7 and
Tables 3 and 4.

5 | CONCLUSION

In conclusion, predicting the RUL of wind turbine high‐
speed shaft bearings has always been a daunting task.
This paper addresses this challenge by proposing three
highly promising methods for RUL prediction based on
vibration signal analysis with feature selection based on
monotonicity to evaluate the degradation of high‐speed
shaft bearings. Our results demonstrate that the proposed
feature extraction method is highly effective. Further-
more, we leverage a SSA to optimize the parameters of a
SVM, RFR model, and MAE values to evaluate the model
training outcomes. These models are validated using
vibration data collected from a real 2 MW commercial
wind turbine. Our findings reveal that the proposed
models combined with SSA algorithm are efficient in
predicting the RUL, and the performance of the models
improves with an increase in the proportion of the
training set to the data set. Among the three models
proposed, SVM model, after optimization of parameters

FIGURE 6 RUL estimation models
performance comparison when 80% of the
data is the training set. GPR, Gaussian
process regression; RF, random forest;
RUL, Remaining Useful Life; SVM, support
vector machines.

FIGURE 7 RUL estimation models
performance comparison when 70% of the
data is the training set. GPR, Gaussian
process regression; RF, random forest;
RUL, Remaining Useful Life; SVM, support
vector machines.
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using the SSA algorithm, outperforms the others.
Proposed research of this paper demonstrates the
potential of these methods for RUL prediction of wind
turbine high‐speed shaft bearings and can have signifi-
cant implications for the wind power industry.
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