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Abstract
Increased drone proliferation in civilian and professional settings has created new threat vectors for airports and national

infrastructures. The economic damage for a single major airport from drone incursions is estimated to be millions per day.

Due to the lack of balanced representation in drone data, training accurate deep learning drone detection algorithms under

scarce data is an open challenge. Existing methods largely rely on collecting diverse and comprehensive experimental

drone footage data, artificially induced data augmentation, transfer and meta-learning, as well as physics-informed

learning. However, these methods cannot guarantee capturing diverse drone designs and fully understanding the deep

feature space of drones. Here, we show how understanding the general distribution of the drone data via a generative

adversarial network (GAN), and explaining the under-learned data features using topological data analysis (TDA) can

allow us to acquire under-represented data to achieve rapid and more accurate learning. We demonstrate our results on a

drone image dataset, which contains both real drone images as well as simulated images from computer-aided design.

When compared to random, tag-informed and expert-informed data collections (discriminator accuracy of 94.67%, 94.53%

and 91.07%, respectively, after 200 epochs), our proposed GAN-TDA-informed data collection method offers a significant

4% improvement (99.42% after 200 epochs). We believe that this approach of exploiting general data distribution

knowledge from neural networks can be applied to a wide range of scarce data open challenges.

Keywords Air transport � Drones � Airport safety � Discriminative neural networks � Feature distribution �
Training data collection

1 Introduction

Increased proliferation of drones and autonomous air

vehicles can disrupt critical national services (e:g:; Gat-

wick Airport 2018). The economic damage for air transport

is estimated to be millions per day for airports and airlines

[1–3]. The growth of drone industry generates high con-

tributions to the economy (1.9% of UK GDP and supports

over 600,000 jobs, 5 million consumer drone shipments

worldwide in 2020 [4]), but also brings new threat factors

to air transport [5, 6]. While many are amateur drones that

pose no malicious intention, some may carry deadly

capability and cause severe economic damage to critical

infrastructure. Protection against drones is critical to

ensuring smooth operation of services, while safeguarding

it against the most severe threats. High-resolution cameras

can classify drones using deep learning (DL), but accurate

identification is critical for not disrupting normal day-to-

day operations and maintaining an efficient economy [7].
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As shown in Fig. 1, the feature of drones led to a high

data scarcity, and significantly challenged the accuracy and

reliability of data-driven DL drone identification. As shown

in Fig. 1I, while the upper limit of accuracy for image

classification has been increased by more complex deep

learning architectures, the upper accuracy of DL model

also limited by its logarithmic growth to the size of the

training dataset [8]. This often means a large amount of

resources and time is dedicated to broad data collection and

(re)training DL-based system models to achieve higher

drone discriminate accuracy. Simultaneously, high speed

and small size of drone challenge the image capture, while

multi-model and numbers of shooting angle also increase

the data scarcity of drone dataset. This scarce drone dataset

leads to optimization error and generalization error in DL

systems (see Fig. 1II). Recent methods for scarce data

learning (e.g., data augmentation, meta-learning) artifi-

cially create new data based on existing ones or transfer the

knowledge learned from other domains. But, these methods

cannot solve generalization errors related to out-of-sample

data. However, collecting extra training data could address

these errors as shown in Fig. 1III. (Re)training the model

on additional drone data can improve system accuracy, but

is also more costly than other methods that do not require

new data collection. However, a target of data collection

can reduce the amount of new data to be collected, saving

overall DL performance improvement costs. Accordingly,

it is a key open challenge to achieve extremely high

accuracy by sourcing sufficient, relevant but rare training

data sets (e:g:; rare drone design) [9].

In this paper, we show how understanding the general

distribution of the drone data via a generative adversarial

network (GAN), and explaining the under-learned data

features using topological data analysis (TDA) can allow

us to acquire under-represented data (data instances with

under-learned data features) to achieve rapid and more

accurate learning. The aim is to demonstrate how to find

the under-represented data for the DL model training by

understanding DL learning behavior, benefiting the effi-

ciency of improving model performance by more targeted

data collection.

1.1 Related work

One of the universal challenges in deep neural network

training is when there is a lack of data, the out-of-sample

performance cannot be guaranteed [10]. As shown in

Fig. 1II, the nature of discriminative NNs’ inference is to

map an high-dimensional input features into a label class

using the feature distribution (FD) generalized from the

training data [11] (convolutional layers extract latent fea-

tures maps of input images for further discriminative work

in NN). While lack of training data will result in the

generalization error on out-of-sample data [12–14], data

scarcity can also lead to the optimization error on known

training data (see - Fig. 1a). However, collecting extra

training data could address these error as shown in Fig. 1b.

In general discriminative NNs, the performance increases

logarithmically based on volume of training data size [8],

which means the marginal cost of training data for model

performance improvement boosts exponentially. Due to the

diminishing returns, exhaustive or randomly searching for

data is not applicable to the scenarios where data collection

is expensive (e:g:; aerospace, military). Therefore, there is

a need to create a method to identify which specific new

data would be important for discriminative NNs’ perfor-

mance improvement based on an existing dataset, as the

guidance to the new data collection work, so that to reduce

data collection cost. This is the motivation for this paper.

As shown in Fig. 1III, our aim is to detect the data that

is important for model training (e.g., hard-to-learn drone),

reduce the amount of new data required for model

improvement, and achieve a faster speed and higher

accuracy training of DL-based drone discriminator then

other data collection methods. There are related papers

addressing the aforementioned challenges in the discrimi-

native NNs training with limited data (scarce data learn-

ing). We summarize several research achievements below

and compare them in Table 1.

Data augmentation improve the training set by adding

slightly modified (e.g., translations, rotations and flips)

copies of existing data to strengthen the invariance of NNs

to the aforementioned modified data [15]. However, data

augmentation is only based on raw training data, hence

cannot offer additional generalization on the variation of

the object itself other than its position to NNs. Transfer

learning reduce the training cost of new DL model by

reusing the convolutional kernels from other related well-

trained DL models [16]. By doing so, NNs can partially

transfer the generalization ability got in the former relevant

training into the latter target inference. Similarly, meta-

learning tries to abstract more universal generalization

ability from multiple training domains and ‘‘learn to learn’’

fast [17], which lays the foundation for the few-shot

learning [18]. However, the performance gain via these two

methods are not guaranteed, since the transferred general-

ization ability is context-agnostic (i:e:; does not focus on

the properties of the new data), which may not match the

need to specific requirements. Physical-informed learning

is designed to embed given laws of physics (e:g:; general

nonlinear partial differential equations) into NNs to inform

its generalization [19, 20]. Hence, there is less need for the

diversity of the training data and more training data can be

generated numerically from the given laws of physics.

However, in most discriminative NNs applications, physi-

cal law is unknown.
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Although data augmentation enhances the training set by

adding augmented data based on observed data (auxiliary

variables method), there is no effect on unobserved data

(e.g., Drone images by un-observed angle). However,

newly collected training set could address this problem.

Transfer learning and meta-learning can save the training

time for new tasks, but cannot enhance a trained model and

are lack of explainability. Physical-informed learning

Fig. 1 Reasons for the scarcity of drone data, errors in CNN-based

drone discriminators, and methods for collecting new data. I The

upper limit of DL drone classification accuracy is affected by the

training data size, but various factors of drones lead to scarcity of

drone data and high acquisition costs. II the nature of discriminative

NNs’ inference is to map high-dimensional input features into a label

class using the feature distribution (FD) generalized from the training

data (convolutional layers extract latent features maps of input images

for further discriminative work in NN), while lack of training data

will result in the generalization error on out-of-sample data. III Our
aim is to detect the data that important for model training (e.g., hard-
to-learn drone), reduce the amount of new data required for model

improvement, and outperform randomly data collection method in

both learning speed and predication accuracy of trained model

Table 1 A comparison of methods for training deep learning models with scarce data

Data augmentation

[15]

Transfer learning [16] Meta learning [17] Physical-informed

learning [19]

Proposed GAN-TDA

Method

Methodology Add modified data

into dataset

Reuse Layers from other

well-trained DL

models

Reuse layers

trained in

previous tasks

Apply physical

properties in model

training

Purposefully collect new

data

Generalization

Ability

Modified dataset Other related data Other related data Data physical

properties

Newly collected data

Advantage No additional data

required

Wide applicability; fast

deploy speed

Learn to learn;

learn fast for new

tasks

Controllable

generalization

Explainability; less data to

be collected;

Disadvantage Limited

improvement; lack

of explainability

Context-agnostic, lack

of explainability

Context-agnostic,

lack of

explainability

Difficulties in

processing physical

properties

Need additional cost for

collecting targeted new

data
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needs expert experience which is abstract and uncontrol-

lable. Thus, we propose a method to reveal the relationship

between NN’s generalization ability and the composition

of training data, so that to provide a feature-based target for

new data collection to save the cost of collecting new data.

Although GAN-TDA method is with higher complexity in

calculations (needs training of new DL models) and

workloads (needs collecting new data) compared with the

aforementioned methods, it is still necessary for several

situations: when training dataset is not representative

enough, new data collection is necessary to achieve higher

DL performance; and when collecting certain types of data

is expensive (e.g., drone data), an explanation of DL errors

related to data is needed.

1.2 Innovation: GAN-TDA framework

In conventional work, methods focus on the generalization

ability of the model itself, which are general methods with

versatility for various applications. By contrast, the gen-

eralization ability brought by the training data attracts less

attention. In this paper, we aim to identify the required data

for discriminative NNs’ generalization error reduction, by

analyzing the existing training data through its potential

feature distribution (FD) and that generalized by NNs (see

Fig. 1b).

Generative adversarial network

Generative models are designed to generate data with

the same FD as that learned by NNs. In principle, most

common generative models, including variational auto-

encoder (VAE) and variations of generative adversarial

network (GAN), are trained to convert the initial distribu-

tion of latent variables into that learned by NNs with

training data [21–25]. For scarce data problems such as our

drone detection application, one might be interested in

using GAN with the following reasons: (1) GAN is proven

to be asymptotically consistent in FD approximation, while

VAE may have bias due to the variational lower bound,

thus the generated data from GAN would be more precise

in representing the FD learned by the NNs [26]; (2) With

the same training data, the discriminator in GAN gives

similar but more smooth convolution kernels as that in

CNN [27]. More specifically, kernels in GAN have the

same generalization way but weaker ability as CNN.

Accordingly, the analysis in GAN can be considered as the

representation of general CNN. (3) The discriminator in

GAN can be considered as the pre-trained target discrim-

inative NN for methodology validation so as to eliminate

generalization ability bias caused by another arbitrary NNs

[28].

In our experiment, color information in each pixel of

drone images are use as inputs, the viewing of raw feature

space built by pixel information will be over-dimensioned

and lacks practical interpretability. Thus, to build a more

informative feature space for image data, latent feature

learned and processed by convolutional layers in deep

learning models helps. Here, each latent feature is repre-

sented as the degree of response to a certain kernel feature

in different receptive fields of the image. However, GAN

does not give explicit expressions of the distribution, hence

Monte Carlo synthetic data from the generator would be

taken for the further FD analysis in the next step.

Topological data analysis

For high-dimensional data analysis, dimension reduction

approaches, such as PCA, MDS, t-SNE and etc:, are

commonly applied [29, 30]. However, due to existing of

generalization in NNs, the generated data may have more

complicated topology than raw dataset in the high-dimen-

sional feature space, while conventional methods fail to

capture any structure from the data, which cause catas-

trophic lose in high-dimensional distance information for

our analysis after dimension reduction. In our framework,

topological data analysis (TDA) mapper is proposed to

address this issue. With the key idea of multidimensional

persistence, TDA can capture data structure and then pre-

serve the high-dimensional distance information with

simplicial complex [31–33].

In our experiment, TDA is applied to tell the difference

between the potential FD of data from raw dataset and that

of synthetic data from the generator in GAN. With the

high-dimensional clustering in TDA, discrete nodes are

used to represent the original continuous feature distribu-

tion, while the connection between nodes indicates the

distance in feature space. Before we do TDA, we mix these

two dataset into one with data labels attached (i:e:; real,

synthetic), so that to maintain the consistency of the

topological space in TDA. Then, by analyzing the pro-

portion of real/synthetic data in each node, one can dis-

cover the weak nodes, which lack the synthetic data, and

then identify the required data by the real data tags in these

nodes to guide the new data collection.

It is worth noting that in our proposed methodology, the

description for required training data cannot exceed human

knowledge about the data. Although GAN-TDA approach

works on the feature space in NNs, the result is still

interpreted using the human feature space (tags), which

may not match the need of neurons. What we can do here is

to tag data with our best knowledge, so that to make the

data collection guidance more targeted.

Contribution and novelty

In this paper, we propose GAN-TDA to identify which

specific new data would be important for discriminative

NNs’ performance improvement based on an existing

drone dataset, as the guidance to the new data collection
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work. To our best knowledge, this paper is the first to

reveal the relationship between NN’s generalization ability

and the composition of training data, so that to improve the

model performance via newly collected data.

We make three major contributions:

(i) GAN-TDA framework is proposed to guide the

new data collection. Specifically, we use GAN to

capture the feature distribution in inference gen-

eralized by discriminative NNs from the training

data, and TDA to identify the generalization

weakness on the training data.

(ii) A drone image dataset using both real drone

images as well as simulated images in CAD is

established for our experiment. Each image is

tagged with the drone’s features (e:g:; model,

color, frame shape, camera position, etc.) as many

as we can.

(iii) We demonstrate our results on a drone image

dataset, which contains both real drone images as

well as simulated images from computer-aided

design. When compared to random, tag-guided

and expert-guided data collections (discriminator

accuracy of 94.67%, 94.53% and 91.07%, respec-

tively, after 200 epochs), our proposed GAN-

TDA-informed data collection method offers a

significant 4% improvement (99.42% after 200

epochs).

The remainder of this paper is organized as follows. In

Sect. 2, we demonstrate the working flow of our proposed

GAN-TDA framework. In Sect. 3, we apply our model on

drone picture data for evaluation and validation. Section 4

concludes this paper and proposes the ideas for future

work.

2 Method

Given a dataset with clear properties labeled in tags that

are detailed enough to guide the direction of new data

collectivity (e.g., images in a vehicle dataset labelled with

the vehicle’s maker, model, type, color, number of wheel

etc.), our methodology is to identify which kind of data the

discriminative model has weak generalization on by

viewing the data distribution in the dataset and distribution

learned by deep learning (DL) models.

2.1 Step 1) Learn data distribution by GAN

The first step is to find the high-dimensional distribution of

the raw dataset (drone images). According to the demon-

stration of Step 1Þ in Fig. 2, two networks named generator

G and discriminator D with different network structures

will be established and initialized with individual aim to

generate synthetic images and to recognize the input image

is real or synthetic. Before the training of GAN, all the

image from the raw dataset will firstly be pre-processed

into the same size (e.g., 64*64 pixels) and secondly be

normalized into the same scale. These steps are to ensure

each input parameter (pixel intensities in each color

channel) has a similar data distribution to guarantee the

convergence of DL models [34].

Processed images from the raw dataset (real image

dataset) will be divided into batches B ¼ fB1;B2:::Big with

a fixed size (e.g., 64 pictures per batch). During the train-

ing, a batch of initialized noise set n that follows a certain

distribution (e.g., Gaussian noise) will be generated whose

batch size is the same as data batch size (e.g., 64*[100

samples from Gaussian noise]). The initialized noise set

will be reproduced at the beginning of each training iter-

ation and then be processed into a set of synthetic images

G(n) by fractionally strided convolutions [35] in G. The

optimization of G is expressed by minimizing the genera-

tive loss, which could be quantified by the discriminative

result from D. And the optimization of D is to minimize the

discriminative loss on both synthetic images and raw

images.

During the quantification of model loss, raw images Bi

will be labeled asTrue and generated synthetic dataG(n) will

be labeled as False, and these information are stored into the

real and synthetic tags matrix TtagðGðnÞ;BiÞ (mixed dataset).

Dwill scoring the real and synthetic rate on bothBi andG(n),

the generated scores are stored in the real or synthetic score

matrix as TpredictionðGðnÞ;BiÞ ¼ ½DðGðnÞÞ;DðBiÞ�. The gen-
erative and discriminative loss could be further expressed by

the divergence between TtagðGðnÞÞ and TpredictionðGðnÞÞ and
that between TtagðGðnÞ;BiÞ and TpredictionðGðnÞ;BiÞ. The

divergence quantification uses Wasserstein distance to

guarantee the stability of model training and avoid the col-

lapse mode issue [24].

The processes of training a DCGAN with Wasserstein

distance is shown as Algorithm 1. During the model

training, optimizing model parameters by backpropagation

in both G and D will let the distribution of generated

synthetic data G(n) gradually approaching that of the real

dataset B. After the model converges, the distribution of the

raw dataset is considered to have been learned and captured

by GAN that the distributions of the GAN generated syn-

thetic image set and the raw dataset are in a high similarity.

Simultaneously, the ability to convert the given certain

distribution noise set into real-enough synthetic data which

follows the distribution of the raw dataset will be hiddenly

stored with the form of model parameters in the GAN

generator.
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2.2 Step 2) Latent feature maps extraction
and TDA

In CNN, convolutional kernels are designed with weight

sharing property, and each multidimensional kernel repre-

senting a unique hidden feature. So, in the convolution

process, the output of each convolutional kernel means the

degree of activation of an image property in a series of

adjacent receptive fields controlled by stride.

The latent feature map of an image contains a set of

activation degrees on different high-dimensional features

and each value in the latent feature map can be seen as the

activation intensity of different convolution kernels. It can

also be regarded as the expression of high-dimensional

image features to a low-dimensional space like the encoded

latent features by generative models like VAE. The latent

feature map can express the characteristics of the image to

a certain extent, and be used to reduce the image dimension

to facilitate the analysis of the image.

Certain data distribution will be expressed differently by

latent feature spaces formed from different convolutional

layers. To appropriately express the feature space for the

raw dataset distribution, a proper multi-dimensional scale

needs to be confirmed with a set of latent features learned

by convolutional kernels. According to the fact that front

convolutional layers tend to learn lower-dimensional visual

Fig. 2 Demonstration of method: Step 1) Find high-dimensional

(latent features) distribution of raw dataset by DCGAN; Step 2) Use

the convolutional layers of the DCGAN discriminator as the latent

feature maps extractor of both the synthetic dataset and the raw

dataset and use TDA to visualize their differences in data distributions
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features (e.g., line, Polyline, arc), later convolutional layers

trying to extract high-dimensional latent features which

contain complex information about positioning and rela-

tionship based on features extracted by the front layers.

The feature space formed by kernels from the last convo-

lutional layer is chosen to keep the deeply high-dimen-

sional global information used for feedforward layers

inferences. And this space could clearly express the dis-

tance between distributions of the synthetic dataset and raw

dataset.

As shown in Algorithm 2, the latent feature map of a

given image is defined as the output of GAN-discrimina-

tor’s last convolutional layer after feeding the image into D

(Step 2 of Fig. 2). Suppose the convolutional layers in D is

defined as a layer set C ¼ fc1; c2:::ckg and the generated

synthetic image from G as S ¼ fGðn1Þ;Gðn2Þ:::GðniÞg (i is

the batch number in B: to guarantee the generated synthetic

images have the same amount of data as raw dataset). The

tags of all synthetic image is set to False as

TtagsðSÞ ¼ ½S � False�, and True for all images from real

dataset B as TtagsðBÞ ¼ ½B � True�. As shown in Algorithm

2, the algorithm will return a dataset that contains both the

latent feature maps for synthetic images LS and real images

LB with their tags TtagsðSÞ and TtagsðBÞ for further TDA use.

The viewing of data distribution in the chosen feature

space is barricaded by its high dimensionality, where TDA

makes reasonable dimensionality reduction representation

to help the discovery of distance between two high-di-

mensional data distributions. We use Kepler mapper for

TDA visualization [33].

2.3 TDA interpretation

As shown in Fig. 2 (Step 2), the TDA mapper generates a

network representation of the feature space, in which each

node corresponds to a set of data with similar features. The

size of the node indicates the quantity of the data assigned

in it, while the color is used to distinguish whether the data

is real or synthetic in the node. In ideal conditions, the

synthetic data would have roughly equivalent proportion in

each node. Accordingly, the categories of nodes are listed

as follows:

• (a) No synthetic data are generated in this node

• (b) Both synthetic data and real data are placed in this

node

• (c) Synthetic data are generated anomalously outside of

the real data feature distribution

While (a) indicates the GAN (representation of DNN) is

failing to generalize the data with the feature a, b, (c)
indicates that the GAN is still incomplete convergence,

hence we will train the GAN further while (a) or (c) nodes

occur. Part of (b) nodes containing few generated synthetic

data with feature c, thus we propose to emphasize our data

collection procedure on data with c.
In perfect training, the percentage of synthetic data in

each node should be close, which means discriminative

NNs give roughly equivalent generalization to every

models. In practical, there always has bias on the gener-

alization to different models, which can be observed from

uneven percentage in each node. Low percentage indicates

the lack of generalization and vice versa.

2.4 Experimental setup

Recent deep learning drone detection models make infer-

ences mainly based on images and video information

captured by surrounding cameras. These captured visual

data will be processed to complex high-dimensional latent

features by convolutional layers based on image properties

of different receptive fields for further inference steps

completed by feed-forward layers. Therefore, various

appearance and shape factors of drones designed according

to different working environments and purposes challenge

CNN-based drone identification models in recognition

precision, generalization and robustness a lot.

To investigate which design property of drone is hard

for general CNN-based classifiers to learn and discrimi-

nate, an experiment is established to apply the GAN-TDA

method into a collected drone image dataset (raw image

dataset). This experiment aims to prove that the drone

discriminator trained using additional images collected

with the GAN-TDA method performs better than the model

using new images collected with the randomly method.
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During the experiment, the GAN-TDA model will analyze

the raw dataset and generate the guidance on which kind of

data should be collected additionally. Four models with the

same net settings will be trained using four different newly

collected datasets (see Method 1) and Method 2) in

Fig. 1III) in a control experiment to evaluate the feasibility

of GAN-TDA guidance. The datasets for four groups are:

Group GAN-TDA—data from the raw dataset and

additional data collected under guidance from GAN-TDA

(additional data for several drone models).

Group Random—data from the raw dataset and addi-

tional data collected averagely for all data categories

(additional data for all drone models).

Group Tag —data from the raw dataset and additional

data collected under the guidance of labels for misclassi-

fied data (additional data for several drone models).

Group Expert—data from the raw dataset and addi-

tional data collected under guidance from experts (addi-

tional data for several drone models).

During the validation, four models trained by Group

GAN-TDA, Group Random, Group Tag and Group Expert

datasets, respectively, will be tested on the same validation

dataset which contains images for all drone models distinct

from the images in training sets. According to the perfor-

mance comparison between the models trained with dif-

ferent Groups, the superiority of GAN-TDA-guided data in

improving general target CNN-based model generalization

could be viewed. Details are listed as follows.

2.5 The dataset and hardware

The raw dataset contains over 4000 pictures averagely

collected from 14 popular commercial drones’ 3D models1

(e.g., DJI Phantom 3, Phantom 4 and Phantom 4 pro). As

shown in Fig. 3, to simulate the real pictures of flying

drones caught by monitors and cameras with different

angles, we randomly rotate these 3D models on x-, y-, z-

axis and take screenshots with drone center-placed and

1800*1500 pixels resolution. During the data collection,

the background of each drone model is set into black

without ambient light effect to remove the high-frequency

information from the background. These images are store

in different folders named by their drone model’s name,

with an additional label file that contains a unique image

ID for each collected drone image with 18 different hard-

ware and appearance characteristics of these drones (e.g.,

shape of propellers, number of propellers, position of floor

stand). The synthetic dataset is generated by DCGAN

trained on the raw dataset, with the same amount of data as

the raw dataset. Each image in the synthetic dataset is

labeled with an index, for identification (synthetic image)

and trackback purpose.

The experiment environment is split into two part: the

training of DCGAN is transferred into Cloud served by

Google Cloud Platform with a VM (Ubuntu 16.04) estab-

lished and 1 Tesla V100 GPU (NVIDIA-SMI 450.102.04,

CUDA 11.0, 16 G Memory) embedded; the evaluation

experiment is processed by 8-Core Intel Core i9 (16G

Memory).

2.6 DCGAN settings

To accelerate the training speed of GAN and avoid the

missing of meaningful details in the appearance, each

image in the real dataset is resized into a resolution of

3*64*64 (R, G, B channels, 64*64 pixels) and processed

with pixel value normalization in each channel (mean =

0.5, standard deviation = 0.5). As shown in Table 2, the

DCGAN-generator is designed with five fractionally stri-

ded convolution layers to generate synthetic images with

the same resolution as the pre-processed real image

(3*64*64). The discriminator is designed with five con-

volutional layers which accept 3*64*64 images as input,

and the activation function of the last layer (Sigmoid in

original DCGAN [35]) is removed to meet the require-

ments of use Wasserstein Loss [24]. During the training of

DCGAN on the raw dataset, images from the dataset will

be split into batches with 64 images each and shuffled

before each training epoch. Gaussian noise is chosen to

provide GAN-generator with original input, and in each

batch training, a randomly initialized 64*100 noise set will

be processed in GAN-generator into 64 synthetic images.

According to the indications from [36], discriminator

should be trained before generator and with more epochs

than generator. The training rate is set to five that generator

will be trained once after five times training of discrimi-

nator [24] with the same training rate 3e�4 using Adam

optimizer. The generating quality of generator will be

checked every 400 epochs training, and part of the syn-

thetic images are sampled and shown in Fig. 3 to demon-

strate the generating quality of generator after 5000 epochs

training.

2.7 TDA settings

As raw TDA metrics cannot be directly visualized, the

Kepler mapper is developed to reveal the topological fea-

tures of the space by constructing a graph [37]. The Kepler

mapper is used in this paper to aid visual exploration. TDA

takes the latent feature map (4096 dimensions) of each

drone image as input. Within the mapper, a customized 2D

1 The datasets generated during and/or analyzed during the current

study are available in the figshare repository, DOI: https://doi.org/10.

6084/m9.figshare.21905094.v1.
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length is established with two individual distances (Isola-

tion Forest and L2̂-Norm) [33]. The simplicial complex is

created with the customized 2D length as well as the latent

feature map set, with number of intervals set to 15 and the

overlap is 20%. K-means cluster is used in this paper, but

any clustering algorithm could be used as advised in [37].

The number of intervals influence the number of TDA

nodes, while overlap influence the overlapping among

TDA nodes.

2.8 Validation settings

The evaluation of the method is to show the performances

of models trained with different additional datasets on

distinguishing the synthetic and real drone data.

To control the experiment variable (avoid influences

brought by different initialization ways), the network in

DCGAN-discriminator is chosen to be the identical network

initialization whose convolutional layers are pre-trained on

the raw dataset. During the training of DCGAN, the increase

Fig. 3 Generation of the raw dataset and synthetic dataset. Raw dataset is collected from 14 CAD drone models, with 18 design factors and drone

model name as labels. The synthetic dataset is generated by DCGAN trained on the raw dataset, with the same amount of data as the raw dataset

Table 2 DCGAN network training/validation settings

Generator Discriminator

Layer Type Size Layer Type Size

Input Gaussian noise 100 Input Image 3*64*64

ConvTranspose 1 4*4 fractionally strided convolutions 512 Convolution 1 4*4 convolutions 32

- Batch normalization 512 - Leaky ReLU 32*32*32

- ReLU 512*4*4 - – –

ConvTranspose 2 4*4 fractionally strided convolutions 256 Convolution 2 4*4 convolutions 64

- Batch normalization 256 - Batch normalization 64

- ReLU 256*8*8 - Leaky ReLU 64*16*16

ConvTranspose 3 4*4 fractionally strided convolutions 128 Convolution 3 4*4 convolutions 128

- Batch normalization 128 - Batch normalization 128

- ReLU 128*16*16 - Leaky ReLU 128*8*8

ConvTranspose 4 4*4 fractionally strided convolutions 64 Convolution 4 4*4 convolutions 256

- Batch normalization 64 - Batch normalization 256

- ReLU 64*32*32 - Leaky ReLU 256*4*4

ConvTranspose 5 4*4 fractionally strided convolutions 3 Convolution 5 4*4 convolutions 1

Output Tanh 3*64*64 Output None activation

function/Sigmoid

(validation)

1
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in discriminative ability in discriminator is suppressed by the

gradually increasing adversarial power from DCGAN-gen-

erator. Once the generator is fixed, the training of the dis-

criminator will no longer be limited and be seen as the

training of a general discriminative DNN model.

Based on the result from GAN-TDA (details are listed in

the Section: TDA Result), we collect four datasets for

Group GAN-TDA, Group Random, Group Tag and Group

Expert, respectively. The additional data for Group GAN-

TDA is evenly collected from the three detected hard-to-

learn drone models (DJI Phantom 3 Pro, DJI Phantom 4

and DJI Phantom 4 pro); Group Random additional data

are evenly collected from all drone models; Group Tag

additional data are evenly collected from three drone

models (3DR Solo, DJI Phantom 3 Pro and DJI Inspire 2)

which have the highest discrimination error rate on the

DCGAN discriminator (13.3%, 7.3% and 6.3%, respec-

tively); Group Expert additional data are evenly collected

from three drone models (Autel X-Star, DJI Inspire 1 and

DJI Spark) which are with higher complexity in canopy

structures other than others. In the practice environment,

data accessibility for different models varies. Therefore,

the evenly collected method is used in this experiment to

represent the general random collection of new data. To

control variables, we collect 100 additional images per

drone model for Group GAN-TDA, Group Tag and Group

Expert. Twenty-one additional images among all 14 drone

models are collected for Group Random. With the use of

discriminator as the initialization, the network structures of

models trained by different Groups are the same as shown

in Table 2, but Sigmoid activation function is added to the

last feed-forward layer for the binary classification task.

The validation set is collected on all drone models evenly

(25 images per drone model) and independent from the raw

dataset and any additional dataset. Each image in the vali-

dation set will be pre-processed as the training sets before

model inference. During training, model performance on the

validation set will be supervised in each epoch.

3 Results

3.1 TDA result

The outcome by TDA shows a topological analysis result

to the distribution of both synthetic data and real data. By

analyzing the TDA diagram shown in Fig. 4, we found

three drone models out of 14 are more difficult for deep

learning models to learn. The TDA result analysis is with

two steps:

Step 1—Summarize weak TDA nodes: According to the

mapper summary, we can see none (a) or (c) type TDA

node (clarified in Fig. 2) occurs that the trained GAN do

capture the data distribution of the raw dataset. There are

two kinds of type (b) TDA nodes: Balance TDA node (the

amount of real data and synthetic data is balance) and

Weak TDA node (few synthetic data in this node compared

with real data). The color of nodes reflects the internal

balance of data that dark color refers to weak TDA nodes

with low internal data balance. The rate of real data and

synthetic data in some selected TDA nodes are listed in

Fig. 4 for demonstration. According to the node distribu-

tion from the mapper summary, 8.9% TDA nodes are in

dark blue color so we will focus more on these weak nodes.

Step 2—Trace back to data labels: Tracing the tag of origin

data whose latent feature map is placed in weak TDA

nodes (which drone model are these data from) could

provide clear guidance for new data collecting. The col-

lection guidance in this paper only focused on drone model

names, while guidance by other information in tags (e.g.,

color and number of propellers) still remains for further

research (due to these pieces of information in the current

dataset being scarce). We list the details of an example

weak TDA node as shown in Fig. 4—Node Summary.

From here, the proportion of real data from different drone

models will be summarized (e.g., 16 out of 42 real data are

from drone model DJI Phantom 4 Pro, and count 38.1% of

real data in this node). By analyzing the data in all weak

TDA nodes (with dark blue color), we found that the

majority of real data placed in these nodes come from three

drone models—DJI Phantom 3 Pro (22.7%), DJI Phantom

4 (27.6%) and DJI Phantom 4 Pro (33.5%). The result

shows the DCGAN generalization ability on these drone

models is weak. The TDA result further forms the GAN-

TDA guidance that new data collection should focus on

these models. During the experiment, we found that the

TDA is with low sensitivity to the parameters (intervals

and overlap) under current experiment settings. (During the

changing of TDA parameters, DJI Phantom 4 and 4 Pro are

always recognized as hard-to-learn, while sometimes DJI

Mavic Pro replaces DJI Phantom 3 Pro.) However, the

parameters should be adjusted for the TDA result clarity.

3.2 Discriminator result

The discriminator result shows that on the designed vali-

dation dataset, the drone detection ability of the model

trained with GAN-TDA-guided additional data (Group

GAN-TDA) is better than the model trained by random, tag

and expert-guided additional data (Group Random, Group

Tag and Group Expert).
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The demonstration of the discriminator result is made in

two parts: A) Validation Loss in BCE; B) Discriminative

precision on the validation dataset.

As the models’ BCE losses on the validation dataset are

shown in Fig. 5A, the performance of model trained by

Group GAN-TDA dataset shows a significant advantage

than that of models trained by Group Random, Group Tag

and Group Expert dataset in BCE loss (Final loss: 0.0305,

0.1740, 0.2025 and 0.2755, respectively). This means the

models’ generalization ability on unseen new data could be

affected by the quality of additional data for training. In

other words, although different collection methods guar-

antee the learning of instances from the raw dataset, GAN-

TDA-guided additional data performs better in boosting the

model’s learning of data distribution, which leads to the

reinforcing of model generalization ability.

The result in B) demonstrates the models’ discriminative

precision on validation dataset. The model trained with

GAN-TDA-guided additional data shows a quicker rising

in inference precision of validation dataset, compared with

additional data collected with other methods (Group Ran-

dom, Group Tag and Group Expert). And by the end of our

training, GAN-TDA-guided model’s final precision on the

validation dataset achieves a 4.75%/4.89%/8.35% increase

in that of model trained by Group Random, Group Tag and

Group Expert additional data (99.42%–94.67%/94.53%/

91.07% on 350 images from verification dataset). GAN-

TDA-guided additional data could make the deep learning

model achieve high accuracy faster than other methods.

Fig. 4 TDA output and analysis

Fig. 5 Performance comparison of targeted data collection method,

random data collection method, tag-informed data collection method

and expert-informed data collection method
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4 Conclusion

High-resolution cameras using deep learning is challenged

by the lack of training data sets. This often means a large

amount of resources, and time is dedicated to broad data

collection and (re)training the neural network—without a

guaranteed convergence in improving accuracy. This paper

has used explainable deep learning to identify the under-

represented data and guide data collection and generation.

For high-dimensional image data, the GAN-TDA pro-

vide a solution to extract the latent features of each data

instance as feature maps and generate a demonstration of

the generalization ability of the convolution kernels on

different latent features. With the mapping relationship

among images, latent features and labels, the generalization

ability of kernels on latent features could indicate that on

different image properties (according to data labels). Dur-

ing model training, the training of hard-to-learned kernels

with slow improvement in generalization abilities needs

more training epochs and additional date feedings, which

means an image instance with properties of these hard-to-

learned kernels is more difficult for DL models to learn. (In

our experiment, images with these properties are hard for

GAN to generate.) Afterward, analyzing these learning-

hardly images with their tagged properties can indicate the

direction of new data collection. However, the GAN-TDA

method is not effective, while tags are scarce—the result is

not representative (e.g., GAN-TDA result: two out of two

canopy colors are hard-to-learn). Meanwhile, the com-

plexity of the GAN-TDA method is much higher than other

data collection methods (training the GAN model used in

this paper costs over 100 hours; random data collection and

expert-informed data collection do not require new models;

tag-informed data collection needs to train a DL discrim-

inator which costs much less time than GAN training). But

GAN-TDA is still worthwhile when collecting new data is

expensive in both time and money, or an explanation of DL

errors related to data is needed.

By applying GAN-TDA proposed in our paper, we

achieve a 4.75–8.35% precision boosting (99.42%) on

drone discriminative NN compared with control models

which use random, tag-informed and expert-informed

collection methods (94.67%, 94.53% and 91.07%).

Simultaneously, GAN-TDA-guided data make the dis-

criminative NN achieve the same inference performance

with less training time.

Appendix: Method verification on fashion-
MNIST dataset

To verify the effectiveness of the GAN-TDA method on

other datasets, we proposed a verification experiment that

applies the GAN-TDA method on the open-source Fash-

ion-MNIST2 dataset. The dataset contains grayscale images

(size: 28x28 pixels) of clothes and boots, with a label from

10 classes, 60k images for training and 10k images for

verification. Here, we divide the validation set into two

parts: the first part (0–5000 data instances) is used as a data

source for collecting additional datasets, while the second

part (5001–10000 data instances) still works as validation

dataset.

The GAN-TDA result shows classes 1, 8, 3 and 5 are

difficult to learn by convolutional layers (data rate: 35.8%,

32.3%, 9.5% and 7.4%, respectively, in weak TDA nodes).

From the test result of the GAN-discriminator, the wrong

discriminated data are mainly from classes 1, 6, 9 and 0

(data rate: 26.7%, 20%, 20% and 20%, respectively). Based

on the information above, we design four groups of addi-

tional datasets, which are:

Group GAN-TDA—data from the raw dataset (training

set) and additional data collected (from the validation set

0-5000) under classes 1, 8, 3 and 5.

Fig. 6 Performance comparison of targeted data collection method,

random data collection method (on all/selected classes) and tag-

informed data collection method

2 The Fashion-MNIST is an open-source dataset, available at: https://

www.kaggle.com/datasets/zalando-research/fashionmnist.
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Group Random-all-classes—data from the raw dataset

(training set) and additional data collected (from the val-

idation set 0-2000) under all classes.

Group Tag—data from the raw dataset (training set)

and additional data collected (from the validation set

0-5000) under classes 1, 6, 9 and 0.

Group Random-selected-classes—data from the raw

dataset (training set) and additional data collected (from

the validation set 0-5000) under random 4 classes (in this

paper: 4, 5, 6 and 7).

The discriminator result is shown in Fig. 6. From the

figure, we found that the discriminator re-trained with

GAN-TDA-guided additional data still shows a higher

converge speed (see BCE loss in sub-figure A)). At the

same time, from sub-figure b), the discriminator trained

with GAN-TDA-guided data reaches 100% accuracy

slightly faster than that trained with additional data col-

lected by other methods. However, the difference between

GAN-TDA methods and other methods is not as large as

that on the drone image dataset. The reason may be related

to the ratio of the original training set to the additional data.

(The amount of additional data for model training is about

7% of the original training set in the drone experiment,

while that of the Fashion-MNIST experiment is only 2%.)

The low ratio of additional data limits the difference in

representativeness among data collected with different

methods.
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