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Abstract—With the increasing deployment of IoT and Industry
4.0, the federated learning system was presented to preserve the
privacy between the third-party IoT systems and the security
operation center in smart airports. Nonetheless, the extremely
skewed distribution of cyber threats increases the complexity
of intrusion detection system (IDS) in smart airports, while
privacy preservation limits the utility of IDS in the process
of server model update. In this article, we have devised a
knowledge distillation (KD)-based Convolutional Neural Network
and Gated Recurrent Unit (CNN-GRU) model to improve the
accuracy of multiple intrusion detection. In addition, the trade-
off between privacy and accuracy is achieved by denoising the
adaptive parameter update mechanism to upgrade the optimizer
of Differentially-Private (DP) Federated IDS. The results indicate
high effectiveness and robustness of DP Federated KD-based IDS
for third-party IoT systems of a smart airport.

Index Terms—Federated Learning, KD-based IDS, CNN-GRU,
Smart Airport, ICPSs, Trade-off between Privacy and Accuracy

I. INTRODUCTION

The massive adoption of IoT and Industry 4.0 has led

to the appearance of smart airports [1]. Unfortunately, the

expanded vulnerability of airport network is introduced due to

the susceptibility of industrial cyber physical systems (ICPSs).

There are two main problems about intrusion detection in

smart airport. On the one hand, the frequency of cyber-

attacks in smart airports is too low to provide enough labelled

abnormal data required for deep learning. On the other hand,

the cybersecurity datasets may contain sensitive information,

such as Personally Identifiable Information (PII). Types of

services are shown as Fig. 1 in smart airport eco-system.

It is crucial to handle the above database under a user-level

privacy. Imbalanced learning is a popular learning method for

intrusion detection where some of classes occupy most of the

examples while the remaining classes are trained from a few

supervised samples. Differential-Privacy (DP) is regarded as a

superb strategy for privacy guarantee in smart airport ICPSs.

Generally, Gaussian noise mechanism is applied to satisfy

(ε, δ)-DP with δ ≥ 5

4
exp(−(σε)2/2) and ε ∈ (0, 1), so that

the unanimous noise type can be understood and corrected

easily [21]. DP-Federated Learning (FL) is a new kind of

distributed learning framework in which multiple users or

devices cooperatively train the server model without sharing

the local dataset [2].

In this paper, we design a DP-Federated IDS and deploy

them via a knowledge distillation (KD) based CNN-GRU

model to increase the test accuracy of the minority cyber-

attack. Moreover, we put forward an adaptive parameter up-

date mechanism to keep balance between privacy and utility.

Section II presents related work. Section III and IV explain

our system architecture and algorithms. Section V analyses

our experimental results, and Section VI concludes.

Fig. 1: Smart Airport Ecosystem

II. RELATED WORK

Imbalanced classification is generally referred as an es-

sential problem of intrusion detection. In the field of cy-

bersecurity, some traditional machine learning research has

been conducted by [3]. However, with the emerging 6G

communication and IoE, imbalanced classification in cyber-

attacks may be more effectively dealt with using a deep

learning structure, including data-level, algorithm-level and

hybrid method [4]. For data-level, [5] mixed random sampling

method with transfer learning for plankton classification. At

algorithm-level, MFE loss and focal loss were introduced by

[6] and [7] separately. Hybrid-method is a special method that

combines data-level and algorithm-level, such as LMLE by

[8]. Unfortunately, most of the current imbalanced learning

methods are only acceptable to image recognition and natural

language processing, which demands high data dimension.

Nevertheless, some breakthroughs are still made by semi-

supervised learning and knowledge distillation for intrusion

detection. [9] proposed a lightweight semi-supervised learning
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method based on consistency regularization for intrusion de-

tection, but that method can only identify normal and abnormal

rather than detailed types of malicious action.

The concept of differential privacy was proposed to quantify

the disclosure about private information of some datasets

during running of a federated deep learning architecture. To

analyse the privacy cost, [10] develops a differentially private

SGD algorithm, which calculates the privacy budget by the

momentum accountant. [11] adds Laplacian noise to each

client of a federated learning framework for user-level privacy.

However, the above privacy preservation always works along

with the degradation of learning accuracy. Therefore, [12]

update norm clip online to maintain the learning accuracy

without the significant deterioration of privacy. Regardless, the

current trade-off strategy requires longer to converge.

III. SYSTEM DESIGN

A. DP Federated IDS in Smart Airport

A typical federated IDS consists of three layers, including

cloud, fog nodes and IoT devices [13]. Likewise, our system is

divided into security operation center, IDS nodes and aviation

operation system in Fig. 2.

Security Operation Center: This block ochestrates the

cyber-security of all IoT systems of smart airports by updating

the model parameter from the third-party IoT system, so

this block can be regarded as server in the cross-device

federated learning system [14]. As a service provider, the

security operation center coordinates FL training processes [2]

by the following steps. Firstly, this center trains a series of

benchmark dataset to generate the initial model parameter.

Then, the intrusion detection nodes download the current

model parameter from the security operation center to build

up the initial local intrusion detection model. When the local

training stops due to convergency, the local updated model

parameter will be uploaded to the security operation center,

where the uploaded parameters will be aggregated for the

construction of a top-stage IDS in smart airport.

IDS Node: They are the bridge between the security oper-

ation center and the aviation operation block [15]. With better

performance in storage and computation, IDS nodes allocate

their privacy budgets to the corresponding airport operation

system, such as the airport management system and automated

baggage handling system. In return, noise is generated from

the relevant aviation operation system. Meanwhile, IDS nodes

will add the above noise to local model parameters during

each training epoch, while uploading the model parameters to

the security operation center for aggregation [13].

Aviation Operation System: These IoT systems represent

the clients in the federated learning system, which will insert

additive noise to protect user-level privacy. Moreover, in

comparison with ensemble learning, there is no need to align

the amount of data in each third-party system, because each

third-party system trains their deep learning model in their

own intrusion detection node. Thus, the deployment of them

will improve the robustness of smart airport operation [16].

In our DP Federated IDS, the intrusion detection model is

the key element to guarantee the utility of the whole IDS

system. To this extent, the details of our KD-based intrusion

detection model will be described in the following sub-section.

B. KD-based CNN-GRU Model

The KD-based deep intrusion detection model is devised

with a pre-trained teacher model and a lightweight student

model as Fig. 3. For one thing, the teacher model is configured

by CNN-Module and GRU-Module, where CNN-Module con-

sists of three 1D convolutional layer along with MaxPooling

to avoid overfitting issues. Furthermore, two-phase Gated

Recurrent Unit (GRU) layers together with Dropout layers are

connected with Repeat Vector layer in series within GRU-

Module. Each module is responsible for different kinds of

feature extraction during the deep intrusion detection, after

which all feature parameters will be reshaped by the specific

concatenation layer. In the end, the feature parameters will be

trained and updated via 4-layer fully connection. Essentially,

the skewed data distribution is the root reason why cyber-

attack classification is so complicated, so it is necessary to

randomly under-sample the input data for higher performance

of our deep classifier. For another, student model is just the

simple version of teacher model, by learning from which

student model can acquire the prior knowledge of teacher

model. Therefore, KD-based deep intrusion detection model

updates the model parameters by referring to both student

loss and distillation loss. For distillation module, we figure

out soft targets [17] instead of hard targets to distill more

information and configuration from the transfer learning within

the teacher model, so it will improve the accuracy of student

model efficiently even with a basic structure.

Moreover, a new GRU-based seq2seq framework is de-

scribed as Fig. 4 in GRU-Module, where encoder and decoder

are linked with the bottleneck called repeat vector layer, where

we transform the dimension of the output sequence from

encoder into the category of target label, which will fit each

target separately before flattening, in order to outperform the

direct link with two vanilla GRU layers.

IV. DENOISING ADAPTIVE PARAMETER UPDATE

MECHANISM

In this section, we will discuss the impact of noise in the

security operational center. When the updated parameters are

uploaded to the security operation center, all of them have

been injected with Gaussian noise for the purpose of privacy

preservation. However, these noised parameters will confuse

the model update of server port, which is the core of DP

federated learning. It is important for intrusion detection to

complete within an acceptable period of time, because both

the failure and chaos of IoT system will result in much lower

operational efficiency and even the disorder or service disrup-

tion in smart airport, which is detrimental to the extension of

IoT/IoE in the promising 6G networks.

To mitigate the noise from the uploaded parameters,

DPFedAvg-M with adaptive clipping was offered to enable the
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Fig. 2: Overview of DP-Federated IDS in Smart Airport

trade-off between privacy and accuracy of federated learning

[12], where clipping bound C was applied to flexibly control

the rate of parameter update and the magnitude of noise.

Despite that, the obvious performance degradation can be

observed in DPFedAvg-M, where our deep intrusion detection

algorithms request more time to achieve convergency. In addi-

tion, it is notable that the rising noise multiplier will cut down

the validation performance identified by the gradient, and

convergency value of accuracy and loss function. As a result,

we adopt a denoising adaptive parameter update mechanism

based on Adam Optimizer [18] for server port, by which the

balance between accuracy and privacy will be accomplished

throughout the intrusion detection in smart airports.

In traditional Adam Optimizer, all model parameters are

updated by the original gradient, while the situation is so

different in DPFedAvg-M for the sake of DP noise. In fact, the

model parameter of DPFedAvg-M is updated based on both

gradient and noise multiplier, where we propose a denoising

adaptive parameter update mechanism as Algorithm 1 to avoid

the effect of noise multiplier during server update.

At the case of our algorithm, a penalty for noise regu-

larization has been introduced to the model parameters up-

date, which will correct the error resulting from DP noise.

According to decoupled weight decay regularization [19], L2

regularization is not equivalent to weight decay in adaptive

gradient descent, so we also decouple our noise correction

into gradient descent field and parameter update field.

Proposition 1. Gaussian noise regularization factor λn ≤

Algorithm 1 Denoising Adaptive Parameter Update Mecha-

nism

Given: learning rate ϵ = 0.001, exponential decay rates

for moment estimates ρ1 = 0.9, ρ2 = 0.999, small

constant for numerical stabilization δ = 10−8, DP noise

regularization factor λn ∈ R, DP noise multiplier σ ∈ R,

clipping bound C ∈ R

Notification: All operators are element wise

1: Initialize: time step t = 0, parameter vector θt=0 ∈ R
n,

1st moment variable s = 0, 2nd moment variable r = 0
2: while stopping criterion not met do

3: Sample a minibatch of m examples from the training

set with label

4: t← t+ 1
5: gt ←

1

m
Σi▽Jθ(xi, yi) + λn · C

t ·N(0, σ2)
6: st ← ρ1 · st−1 + (1− ρ1) · gt
7: rt ← ρ2 · rt−1 + (1− ρ2) · g

2
t

8: ŝt ←
st

1−ρt

1

9: r̂t ←
rt

1−ρt

2

10: θt = θt−1 − ϵ( ŝt√

r̂t+δ
+ λn · C

t ·N(0, σ2))
11: end while

sum2
+max2

2
, where sum and max represent the total sum and

maximum of input data separately.

Proof. The original parameters update can be denoted as

θt ← θt−1−ϵ·st·▽Jθ(hθ(x), y) without denoising mechanism,
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where st represents a complex iteration amount, and hθ(x)
stands for the prediction of each iteration process. Apart

from that, y is defined as the true label, while ▽Jθ(hθ(x), y)
represents the original gradient.

In this proof, we only consider the non-bias prediction

function as a matter of convenience. The current prediction

function is created by adding Gaussian noise to each param-

eter. The original and current prediction function have been

shown in Equation 1 and 2.

hθ(x) =
n∑

i=1

θi · xi (1)

hθ(x)new =
n∑

i=1

(θi + Ct ·N(0, σ2))xi

=
n∑

i=1

θi · xi + Ct ·N(0, σ2) ·
n∑

i=1

xi

(2)

Considering Equation 2, the previous θt can be refreshed as

θjt ← θjt−1−ϵ·st ·(▽Jθ(hθ(x), y)+Ct ·N(0, σ2)·xj ·
∑n

i=1
xi),

where θjt and θjt−1 are the jth parameters from step t and

step t− 1. As Algorithm 1, xj ·
∑n

i=1
xi is expressed by λn.

Referring to Cauchy-Schwarz inequality, the upper bound of

λn can be set as sum2
+max2

2
.

V. RESULT AND ANALYSIS

In this section, we evaluate the performance of our algo-

rithms with NSL-KDD and a real-world dataset from Smart

PiCar testbed [20]. A variety of metrics are exploited to ana-

lyze the accuracy of our IDS, as well as the trade-off between

accuracy and privacy. The experiments are carried out via

Keras API and Tensorflow-Federated framework, executed on

Ubuntu 20.04.5 LTS with Intel® Core™ i7-10750H CPU and

NVIDIA Quadro T1000 with Max-Q Design (RAM 32GB).

A. Intrusion Detection via Knowledge Distillation

1) Tuning of Hyper-parameters: According to [17], it is

undeniable that the weighted factor λ and temperature T play

the main role for the tuning of hyper-parameter. In terms of

the results of multiple experiments, we denote λ = 0.05 and



T = 3 as the hyper-parameters in NSL-KDD, while λ = 0.007
and T = 2 in the real-world data. The Adam optimizer is

employed as a reference to assess our denoising Adam in

Section V-B. Categorical cross entropy and KL divergence

are assigned as the loss function of student/teacher model and

distiller respectively.

2) Evaluation of KD-based Intrusion Detection Algorithm:

Under the above configuration of hyperparameter, the loss

function of training set and validation set are shown in Fig.

5, where validation student loss was guided to approach

distillation loss by teacher model. Consequently, results of

validation student loss will shrink to minima with much less

time, which is easier for deployment in smart airport.

(a) NSL-KDD (b) Real-World

Fig. 5: Loss Function Comparison

To verify the performance of imbalanced classification, the

confusion matrix generated by our algorithms is analysed with

the current imbalanced learning algorithms in Fig. 6 and Fig.

7, which indicate RUS, Focal Loss and our algorithm can

extract more features from the minority class, including R2L,

U2R and MITM. In contrast to RUS and Focal Loss, our

algorithm holds more properties from the majority classes, the

classification accuracy of which won’t be reduced too much

even with the undersampling data.

B. Trade-off between Privacy and Accuracy

To validate the trade-off performance of denoising adaptive

parameter update mechanism, our approaches are compared

against the state-of-the-art via different noise multiplier. As

an assumption, the local data source will be handled under

independent identity distribution (IID) due to the character-

istics of the third-party IoT system and the prerequisite of

DP-federated learning.

Our experiments are conducted on some pre-configuration,

where our datasets are divided into 10 clients and one server,

which intend to pursue the private budget up to (0.1, 10−5)−
DP . In that case, the communication round will be set as 50 to

examine whether our mechanism outperforms the conventional

Adam optimizer.

The merit of our denoising parameter update mechanism is

revealed by Fig. 8 and Fig. 9, which analyse the performance

of our mechanism with original adaptive quantile clipping

and zero-noise condition. According to Fig. 8 and Fig. 9, our

proposed mechanisms improve the convergency efficiency of

the original Adam optimizer. Moreover, the adverse impact on

converging value is relieved by timely denoising, especially for

(a) MLP (b) CNN+Focal Loss

(c) MLP+RUS (d) Our Algorithm

Fig. 6: Confusion Matrix with NSL-KDD

(a) MLP (b) CNN+Focal Loss

(c) MLP+RUS (d) Our Algorithm

Fig. 7: Confusion Matrix with Real-World Data



high noise multiplier. Therefore, our mechanism is expected to

be more appropriate for future target application environments

that are time-sensitive, such as smart airports.

(a) NSL-KDD (b) Real-World

Fig. 8: Training Accuracy with Different Noise Multiplier

(a) NSL-KDD (b) Real-World

Fig. 9: Loss Function with Different Noise Multiplier

VI. CONCLUSIONS

In this paper, we design a KD-based DP-federated IDS and

denoising parameter update mechanism. In contrast with the

existing IDS, our system increases the effectiveness to recog-

nize the potential malicious actions. In addition, better trade-

off between privacy and utility is achieved by our proposed

optimizer for DP-federated learning, which can converge the

value close to the non-noise situation even with a high noise

multiplier. In our experiments, the accuracy improvement can

be achieved up to 30% for detection of the minority malicious

actions, while we can ensure the accuracy to converge within

10 rounds even enhancing noise. As a conclusion, our novel

IDS is more applicable to detect the cyber-security of smart

airport that is stringent to efficiency and accuracy. In the

future, we intend to upgrade the trade-off performance of local

differential privacy and design a new learning mechanism for

knowledge distillation structure.
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