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A B S T R A C T

There has been a rise of use of Autonomous Vehicles on public roads. With the predicted rise of road traffic
accidents over the coming years, these vehicles must be capable of safely operate in the public domain. The
field of pedestrian detection has significantly advanced in the last decade, providing high-level accuracy,
with some technique reaching near-human level accuracy. However, there remains further work required for
pedestrian intent prediction to reach human-level performance. One of the challenges facing current pedestrian
intent predictors are the varying scales of pedestrians, particularly smaller pedestrians. This is because smaller
pedestrians can blend into the background, making them difficult to detect, track or apply pose estimations
techniques. Therefore, in this work, we present a novel intent prediction approach for multi-scale pedestrians
using 2D pose estimation and a Long Short-term memory (LSTM) architecture. The pose estimator predicts
keypoints for the pedestrian along the video frames. Based on the accumulation of these keypoints along
the frames, spatio-temporal data is generated. This spatio-temporal data is fed to the LSTM for classifying the
crossing behaviour of the pedestrians. We evaluate the performance of the proposed techniques on the popular
Joint Attention in Autonomous Driving (JAAD) dataset and the new larger-scale Pedestrian Intention Estimation
(PIE) dataset. Using data generalisation techniques, we show that the proposed technique outperformed the
state-of-the-art techniques by up to 7%, reaching up to 94% accuracy while maintaining a comparable run-time
of 6.1 ms.
1. Introduction

In recent years, significant improvements have been made in the
field of pedestrian detection, with state-of-the-art techniques reaching
an accuracy of over 90% (Ahmed et al., 2019a, 2019b; Fang & López,
2018; Galvao et al., 2021). Although, these technologies are yet to
achieve human-level accuracy, they have allowed for an increased focus
on higher-level tasks such as intent prediction. Intent prediction refers
to predicting the future movements of the pedestrians with respect to
the vehicle’s current path and whether the vehicle will have adequate
time to react to the pedestrian’s future location. Intent prediction is
another crucial aspect for the safety of Vulnerable Road Users (VRUs),
especially for autonomous vehicles applications. This is made evident as
per a recent report published by Google, which found that most failures
tend to occur in busy streets, where 10% of errors are due to incorrect
intent prediction of other road users (Google, 2015).
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Predicting the future movements and locations of VRUs has been a
challenging task, particularly in urban environments (Keller & Gavrila,
2014; Keller et al., 2011; Rasouli et al., 2019; Saleh et al., 2019b). By
predicting pedestrian intentions, the vehicle can perform manoeuvres
such as slowing down, switching lanes or stopping if need be; thus
limiting or even avoiding any vehicle-pedestrian incidents. Techniques,
such as dynamical motion modelling and motion planning (Saleh et al.,
2017b), have been suggested in the past for pedestrian intent predic-
tion. Although these techniques can be powerful, they both rely on
hand-crafting a set of scene-specific features, which in return affects
their generalisation in unseen scenes. In more recent studies, techniques
based on Deep Learning have been implemented for improved pedes-
trian detection methods, such as 3D convolution neural network (CNN)
and spatio-temporal Long Short-term Memory (LSTM) for behaviour
prediction (Liu et al., 2020; Saleh et al., 2019b). According to Razali
et al. (2021), methods for predicting future pedestrian intentions can be
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either trajectory-based (e.g., Chen et al. (2021), Huang et al. (2021), Li
et al. (2020a, 2020b), Quan et al. (2021), Wu et al. (2019)) or treated
as a classification task (Gujjar & Vaughan, 2019; Rasouli et al., 2017;
Saleh et al., 2019b, 2020). Trajectory-based pedestrian future intent
prediction involves using temporal and spatial information to predict
future movements of pedestrians. Treating future pedestrian intent
prediction as a classification task involves classifying the movements
of pedestrians (e.g., crossing, not crossing, standing, walking, etc.).
Previously, before intentions can be predicted, the pedestrian needed
to be detected. However, in Cheng et al. (2020), an approach that does
not require a detector was proposed. This method improves upon the
run-time of previous approaches. The time taken by the Autonomous
Vehicles to predict pedestrian intention based on raw sensor data and
actually performing manoeuvres is a vital consideration. Ideally, these
systems should be working in real-time.

In this paper, we propose a novel data-driven approach for multi-
scale pedestrian intent prediction. This approach combines trajectory-
based and classification tasks discussed previously. Using on a state-
of-the-art pose estimator, keypoints are generated. The accumulation
of these predicted keypoints over time (along the frames) is fed into
an LSTM-based classifier for classifying their crossing behaviour (i.e.,
whether the pedestrian will cross or not cross). These architectures
will be further discussed in Section 3. A challenge facing current
pedestrians intent predictors is pedestrian scale variance. Typically,
keypoints are more difficult to predict for smaller pedestrians due to
their lower resolution. This is caused by the pedestrian being blurred
by the background (Kim et al., 2021). For this reason, many previous
approaches focused on larger pedestrians, such as in, Fang and López
(2018), Fang et al. (2017), Liu et al. (2020). We also consider heavily
occluded pedestrians. As far was we are aware, this is the first multi-
scale intent prediction approach, that focuses on multiple classes of
scales and occlusions. We also implement a bottom-up approach, which
does not require a standalone detector. This is to improve upon run-
times as compared to similar intent prediction approaches. To the
best of our knowledge, this is also the first time the PIE (Rasouli
et al., 2019) dataset has been used for evaluation. Previously, most
techniques, such as the one previously mentioned and in Section 2,
use the JAAD dataset. The PIE dataset is a larger-scale dataset than
the JAAD dataset, providing an increased number of unique pedestrian
samples. This provides more data for training and evaluation of our
proposed model. Methodology in Section 3 will discuss the individual
components of the proposed architecture. Sections 4 and 5 will discuss
the experimentation and results for the proposed method. We also
apply a technique for improved dataset generalisation in Section 5. The
original contributions of the paper are as follows:

• An approach for multi-scale pedestrian intent prediction utilising
a 2D pose estimation+LSTM architecture.

• Unlike previous methods, the proposed approach also considers
small and occluded pedestrians.

• A novel approach using predicted keypoints to generate bounding
boxes, which are utilised for the evaluation of datasets that do not
contain ground-truth keypoint annotations.

• Exploration of data generalisation techniques for improved gen-
eral performance over two datasets (i.e., JAAD and PIE datasets).

. Related works

A pedestrian-centric approach was introduced in Liu et al. (2020),
here the pedestrian’s pose, location and velocity were used to predict

uture intentions. Although a simple technique, these features can be
seful for inferring pedestrian intent. However, these features do not
onsider scene context or elemental interactions (e.g., interaction with
ther pedestrians, zebra-crossings, traffic lights, etc.). Furthermore,
ead orientation can also be necessary for predicting the pedestrian’s
2

ntent. Based on this information, the authors proposed an approach
for generating a pedestrian-centric dynamic scene graph using an off-
the-shelf segmentation model. Using graph convolution techniques,
relationships between the pedestrian(s) and the scene context and in-
teractions were recorded with each pedestrian having a corresponding
graph. The contextual visual information is aggregated over time to rea-
son temporal relations with the environmental relations. This allows for
subtle actions to be captured, which are vital for predicting intent (Liu
et al., 2020). This approach outperformed previous state-of-the-art
techniques by nearly 9% with an accuracy of 76.98%.

In Fang and López (2018), Fang et al. (2017), a fully vision-based
(using a monocular camera) approach for pedestrian intent prediction
was proposed. The studies proposed a pipeline consisting of an off-
the-shelf detector, tracker and poses estimator. The pipeline’s output
would feed into a classifier to determine whether a pedestrian would
cross or not cross. Their approach used a sliding time window for
accumulating skeletons generated by the pose estimator. The classifier
architecture was based on Random Forest. The aim of the model
was to accurately predict whether the pedestrian would cross or not
cross. In Fang and López (2018), the authors achieved an accuracy of
88% on the JAAD dataset, which was 25% improvement compared to
baseline work in Rasouli et al. (2017). This approach is based purely
on monocular-based data and does not require complicated methods
of information gathering, such as stereo, optical flow or ego-motion
compensation. Also, this method does not require knowledge of head
or body orientations. The authors suggest that it is not made clear in
previous studies how the pedestrian’s head or body orientations would
aid in improving the reaction time of an intent prediction system. A
previous study in Rasouli et al. (2017) concluded that head-orientated
and body-orientated information do not improve effectiveness and the
reactionary time for pedestrian intent prediction.

The pedestrian intention estimation (PIE) dataset was introduced
in Rasouli et al. (2019). It is a large-scale dataset for pedestrian tra-
jectory prediction. Prior to the PIE dataset, other than the JAAD
dataset (Rasouli et al., 2017), there were very few datasets that centred
around predicting pedestrian trajectory with the point-of-view from a
moving vehicle. Previous datasets for pedestrian trajectory prediction
included videos from surveillance camera perspective (Benfold & Reid,
2011; Oh et al., 2011; Zhou et al., 2012) and top-down view (Pelle-
grini et al., 2009; Robicquet et al., 2016). According to Rasouli et al.
(2019), widely used pedestrian detection datasets, such as Dollár et al.
(2012), Geiger et al. (2012), Zhang et al. (2017) could possibly be
utilised for the purpose of pedestrian intent prediction, however, the
datasets do not contain pedestrian behaviour annotations. In 2017, the
JAAD dataset was introduced. JAAD is also a large-scale dataset with
behavioural information. However, it should be noted that the majority
of the pedestrian samples with behaviour annotations are ‘‘crossing’’
samples, meaning the dataset is imbalanced. There is approximately
450 crossing samples and 200 not crossing samples. This could cause
biases when training a model to learn the ‘‘crossing’’ and ‘‘not crossing’’
behaviours. These behaviours are better balanced in the PIE dataset
with 512 and 430 of ‘‘crossing’’ and ‘‘not crossing’’ behaviour annota-
tions respectively. The PIE dataset is also a larger dataset than the JAAD
dataset, with over 900,000 frames compared to around 82,000. Of these
frames, approximately 1800 frames include pedestrians with behaviour
annotations while JAAD contains 686 frames with pedestrians with
behaviour annotations.

In Minguez et al. (2019), the authors proposed method using bal-
anced Gaussian process dynamical models (B-GPDMs) for pedestrian
intent prediction. The B-GPDMs reduce the 3D spatio-temporal infor-
mation extracted from keypoints over a number of frames to low-
dimensional spaces. The proposed approach consists of four distinct
models, each for learning a different behaviour. These behaviours
include walking, stopping, starting and standing. The authors mention
that having a single model to learn multiple pedestrian behaviours

provides less accurate intention predictions. The model achieved 80%
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accuracy on the CMU Graphics Lab Motion Capture Database (CMU,
2017).

A bottom-up pose estimator was proposed in Cheng et al. (2020),
referred to as HigherHRNet. It is a novel approach that utilises high-
resolution feature pyramids for representing varying pedestrian scales.
The HigherHRNet aims to overcome the challenge of scale variation
faced by many bottom-up pose estimation approaches so that key-
points are more accurately localised, particularly for smaller pedes-
trians. Higher HigherHRNet outperformed the previous state-of-the-art
bottom-up approach by 2.5%, reaching the accuracy of 70.5% AP (aver-
age precision) on the COCO (Lin et al., 2014) dataset for a medium per-
son. Higher HigherHRNet also outperformed current top-down meth-
ods, reaching 67.6% AP on the CrowdPose (Li et al., 2019) dataset.
These results demonstrate the quality and robustness of the High-
erHRNet for multi-scale pedestrian detection, even in crowded scenes.
Refer to Cheng et al. (2020) for further information on bottom-up and
top-down approaches.

In this work, we present a novel approach for data-driven pedestrian
intent prediction. We take inspiration from the modular architectures
introduced in Fang and López (2018), Fang et al. (2017), Saleh et al.
(2017b). We implement a tracking-by-detection approach using a 2D
pose estimation for generating pedestrian keypoints and LSTM-based
classifier to predict pedestrian crossing intentions. Based on the gen-
erated keypoints, we can predict the future movements and speed of
change of those movements to determine whether a pedestrian is going
to cross or not cross. These keypoints represent the evolution of the
pedestrian over time (spatio-temporal information), but unlike other
similar approaches, this approach does not require any additional envi-
ronmental or contextual information (traffic lights, traffic signs, relative
location of other pedestrians) to predict intentions. In Fang and López
(2018), Fang et al. (2017), 14 frames are required for accurate predic-
tion of pedestrian intentions. The papers do not discuss performances of
any occluded pedestrian instances that result in unusable frames. In our
proposed method, frames where the pedestrian is partially occluded can
be skipped without sacrificing the accuracy of making intention predic-
tions. This allows for a more robust and effective method for pedestrian
intent prediction. This approach requires only RGB data collected by a
monocular camera. We improve upon the limitations of previous works,
as far as we know, by (1) introducing a novel multi-scale pedestrian
intent predictor (2) improving upon current state-of-the-art techniques
in terms of accuracy and (3) implementing a robust design capable of
working with limited keypoint information.

3. Methodology

We propose a novel approach using 2D pose estimation with an
LSTM-based classifier for multi-scale pedestrian intent prediction. A de-
tailed flowchart of the proposed method is provided in Fig. 1. The pose
estimator predicts keypoints for the pedestrians in the image. Based
on the predicted keypoints, associated bounding boxes are generated.
The bounding boxes are used to track the pedestrian along the images.
The tracked pedestrian’s keypoints are stored and concatenated. These
concatenated keypoints are sent the LSTM-based classifier to predict
whether the pedestrian will cross or not cross. As far as we are aware,
this implementation has not been used previously. Fig. 2 further il-
lustrates this flowchart. We will now proceed to discuss three main
components of the proposed method. These components are the 2D
pose estimator, tracking-by-detection and intent classification.

3.1. Pose estimation

The input data is fed into the 2D pose estimator to generate key-
points. Keypoints, also referred to as joints, are points of interest in
an image. In this case, these points of interest represent the location
3

of joints, such as shoulders, elbows, ankles etc. The key points them-
selves provide spatial information in terms of their location in the
image, while the changes of these key points over a number of frames
represent the temporal information. Over time, predicted keypoints
provide spatio-temporal information, which can be used to calculate
the trajectory and velocity of the pedestrians. This information is for
predicting the crossing intentions of the pedestrian. As the proposed
approach in this work is designed for multi-scale pedestrian intent
prediction, the HigherHRNet (Cheng et al., 2020) is employed. The
HigherHRNet was proposed to overcome the challenge of pedestrian
scale variance, particularly, smaller pedestrians. Smaller pedestrians
typically are of low-resolution then larger pedestrians, and therefore,
can blur into their background. This makes it difficult to detect key-
points for smaller pedestrians. The HigherHRNet architecture will be
discussed in Section 4.2.

3.2. Tracking-by-detection

Based on the predicted keypoints, associated bounding boxes can
be generated. The process of generating the keypoint-based bound-
ing boxes is discussed in Section 4.3. Bounding boxes provide two
useful purposes. The JAAD and PIE datasets are popular datasets for
training and evaluation of pedestrian intention prediction models. Al-
though they provide annotations, such as bounding boxes and crossing
behaviours, they do not include keypoint information. So, the first
purpose of the keypoint-based generated bounding boxes is to compare
them to the ground-truth bounding boxes provided by the datasets.
By comparing them, the accuracy of the predicted keypoints can be
established. This will justify the use of the 2D pose estimator used in
Section 4. This allows for fine-tuning the 2D pose estimator further
(see Section 4.4). Also, with the use of these generated bounding
boxes, a standalone pedestrian detector is not required as in Fang and
López (2018), Fang et al. (2017). This leads to a reduced system with
less computational cost and complexity, resulting is faster run-times.
The comparison of the run-times will be discussed in Section 4. The
generated bounding boxes are sent to a tracker. This is the second
purpose for using keypoint-based bounding boxes. In this way, the pre-
trained 2D pose estimator does not need to be adjusted to learn to
predict bounding boxes. Instead, the generated bounding boxes are fed
into the tracker.

For the detection and tracking components, we utilise the tracking-
by-detection approach as in Bewley et al. (2016), Ess et al. (2009),
Saleh et al. (2017b), Yu et al. (2016). Which simply means as a pedes-
trian is detected, they are also tracked. The popularity of this approach
is due to its maintaining a high accuracy while not hindering real-
time performance. For the tracking, we implement a variation of the
SORT (Simple Online and Real-time Tracking) as in Wojke et al. (2018),
originally introduced in Bewley et al. (2016). Using Kalman filtering,
SORT tracks pedestrians along the frames based on generated bounding
boxes. We use the tracker as-is, and therefore, we will not discuss the
SORT tracker in further detail in this work. For more information on
SORT tracker architecture, please refer to Wojke et al. (2018). Each
new tracked pedestrian is given a unique ID. Each time the pedestrian
is detected and tracked along the frames, its keypoint information is
stored. Once the stored keypoint instances reach a certain number,
the information is concatenated and sent to the intent classifier. Each
instance refers to a frame. Using the changes in the keypoints over
time, we were able to determine the movement of the pedestrian
(e.g., the pedestrian moving from left to right or remaining to the left
or right with respect to the vehicle) and speed of these movements.
Using this information, the future behaviour can be predicted. We
focus on ‘‘crossing’’ and ‘‘not crossing’’ behaviours. This can provide
an Autonomous Vehicle enough information to decide (e.g., slow down,
maintain speed, switch lanes).
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Fig. 1. Flowchart for proposed intent prediction system. The data is fed into the pose estimator, to predict key points and generate bounding boxes. The bounding boxes are used
for tracking. When the pedestrian is tracked for N of frames, it is fed into the intent classifier to classify the crossing/not crossing behaviours.
Fig. 2. In this example a pedestrian is crossing the road. Each frame is set 5 frames apart to demonstrate the evolution of the skeleton over time (along frames). In each frame,
keypoints are generated from the pose estimator. Using the keypoints, bounding boxes are calculated, allowing to track the pedestrian along the frames. Using the changes of each
keypoint, the velocity and direction can be observed to predict the future actions of the pedestrian.
3.3. Intent classification

We use the spatio-temporal information provided by the concate-
nated keypoints. Both Fig. 4 and Fig. 5 illustrate the skeletons for
pedestrians crossing and not crossing, respectively. The skeletons are
generated by connecting various keypoints. For illustration purposes,
we use only 5 frames with 5 frames between frame in both figures. The
figures illustrate the differences between pedestrians crossing and not
crossing. The movements of the joints, such as arms and legs vary, and
this information is used to predict the pedestrian’s future behaviour.

We employ the PV-LSTM architecture introduced in Bouhsain et al.
(2020) for intent classification. The original PV-LSTM uses bounding
4

boxes to calculate positional and speed information of a moving pedes-
trians. This information is passed to a LSTM-based feature extractor to
predict crossing intentions based on predicted future bounding boxes.
Essentially, it uses bounding boxes along a number of frames, and based
on the movements and velocity of those boxes over times, predicts the
future bounding boxes. In this way, it predicts the future trajectory and
location of a pedestrian. Based on that information, it predicts whether
the pedestrian will cross or not cross with respect to the vehicle. This
approach is simpler than other similar state-of-the-art approaches as
it requires fewer parameters while obtaining a comparable or higher
accuracy. This approach achieved an accuracy of 91.45% for multi-
tasking, which is 5.32% better than the next best intent prediction
model.
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Fig. 3. Multiple pedestrians are being tracked. This is based on the keypoint-generated bounding box (red). The predicted keypoints are connected to create a skeleton for
illustration purposes (blue). The ground-truth boxes (green) are for comparison with the generated boxes. The ‘‘C’’ represents the confidence score of the generated bounding box
compared to the ground-truth box. The higher the score, the closer the generated bounding box coordinates is to the ground-truth bounding box coordinates (i.e., more accurate).
Each tracked pedestrian is given a unique ID to track them along frames.

Fig. 4. Example of a pedestrian crossing in front of the vehicle.

Fig. 5. Example of pedestrian walking perpendicular to vehicle.
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Fig. 6. (left) Skeleton generated using all keypoints. (right) Skeleton using only
shoulders, hips, knees and ankles.

In this work, we customise the PV-LSTM to use keypoints instead
of the bounding boxes. We found that keypoints offer more useful
and accurate information in terms of the speed and position of the
pedestrians. The evolution of pedestrian joints provides information of
the joints with respect to other joints (e.g., left and right shoulders,
left and right knees), and the speed at which those joints move help to
predict the trajectory. (Refer to Fig. 6, where the aforementioned key
points are used to generate the pedestrian skeleton.)

4. Experimentation

4.1. Datasets

For the task for training and evaluation, the JAAD (Rasouli et al.,
2017) and PIE (Rasouli et al., 2019) datasets were utilised. The JAAD
dataset has been widely used for pedestrian intent prediction task,
particularly crossing predictions, as in Bouhsain et al. (2020), Fang
and López (2018), Gesnouin et al. (2020), Liu et al. (2020), Yang
et al. (2021). Unlike other publicly available large datasets, the JAAD
dataset provides behavioural information, such as crossing behaviour,
as well as bounding boxes and occlusion information. The JAAD dataset
consists of 346 videos with a resolution of 1920 × 1080 running at 30
fps (frames per second). It consists of 2200 unique pedestrian samples
with 337,000 corresponding bounding boxes in a total of 8200 frames.
There are 81 ’’not crossing’’ and 234 ’’crossing’’ samples (when omitting
heavily occluded samples). PIE dataset was introduced by the same
authors as the JAAD dataset. It is a larger-scale dataset then the JAAD
dataset. Like the JAAD dataset, the PIE dataset also consists of videos
of pedestrians portrayed naturally. The dataset also includes bounding
box information for the pedestrians as well as behavioural information.
There is a total of 911,000 frames, of which 293,000 are annotated
with 1800 unique pedestrian samples and 740,000 bounding boxes.
Both datasets also include contextual information, such as road width,
traffic signs and traffic lights. Although this information is not used
in our proposed method, this can be used for further improvement. In
this work, we focus on the JAAD dataset as it has been widely used
for pedestrian intent prediction. This is to provide direct comparability
with previous works. We also use the PIE dataset as it is provided by
the same authors as the JAAD dataset. It is of the same format as JAAD
in terms of image resolution and behavioural annotations, however it
is a larger dataset.
6

4.2. HigherHRNet architecture

There are two main approaches for pose estimation: top-down and
bottom-up and. The top-down approach uses a detector to locate the
pedestrians in an image. For each detected pedestrian, pose estimation
is applied within boxing bound coordinates to generate keypoints.
Examples of the top-down approaches can be found in Fang and López
(2018), Fang et al. (2017). In contrast, bottom-up approach predicts
the keypoints in an image and then groups them together for each
pedestrian. This means that the bottom-up approach does not require a
standalone detector. This makes the bottom-up approach faster, allow-
ing for the capability of real-time application (Cheng et al., 2020). The
ability for the bottom-up approach to reach real-time run-times is crit-
ical, especially for time-dependent applications, such as Autonomous
Vehicles. Therefore, in this work we focus on the HigherHRNet, which
is both a bottom-up approach and a multi-scale pose estimator.

The HigherHRNet employs the HRNet (Sun et al., 2019) as the
backbone. The HRNet architecture consists of a high-resolution branch,
which subsequently followed by additional branches in parallel. The
additional branches are 1∕2 the resolution of the lowest resolution of
the current branches. In this way, as the network branches increase,
the number of parallel branches also increases, providing different res-
olutions while preserving all the resolutions. According to Cheng et al.
(2020), for smaller pedestrians, the resolution of the heat-map is vital.
However, most current pedestrian pose estimators predict keypoints
using Gaussian-smoothing techniques and a Gaussian kernel for each
keypoint. Although this approach is useful during training, it causes an
uncertainty as to the precision localisation of the predicted keypoints.
This can be determinate for smaller pedestrians. As Cheng et al. (2020)
mentions, a simple solution could be to reduce the Gaussian kernel’s
standard deviation. However, they found this approach negatively
impacted the performance of the keypoint prediction. Therefore, for
the HigherHRNet, Cheng et al. (2020) proposed using multiple high-
resolutions feature maps without changing the standard deviation for
each feature map for predicting heat-maps. This was achieved using a
deconvolution module, which generated high-resolution feature maps.
Deconvolution module uses both the features maps and heat-maps
generated by the HRNet and outputs feature maps with double the reso-
lution. This provides a feature pyramid, with two resolutions, one from
the HRNet and one from the deconvolution module. The benefit of this
architecture is that if higher resolution is required, more deconvolution
modules can simply be added. For smaller pedestrians, typically larger
resolution features maps were required.

4.3. Keypoint-based bounding box coordinates

As discussed, the JAAD and PIE datasets do not include ground-truth
keypoint However, the datasets do include ground-truth bounding box
information. Therefore, the keypoints predicted using the HigherHRNet
cannot be evaluated with ground-truth annotations. To overcome this
challenge, we propose a technique whereby the predicted keypoints
are used to generate bounding boxes. By comparing the generated
bounding boxes with the ground-truth bounding boxes, the quality
of the bounding boxes can be evaluated. In this way, the predicted
keypoints are evaluated, as the generated boxes are calculated using
the predicted keypoints. We will now proceed to discuss this proposed
approach.

The predicted keypoints by the HigherHRNet are in the format of
either 14 × 3 or 17 × 3 for CrowdPose and COCO formats, respectively.
The rows represent the 𝑥, 𝑦 coordinates and confidence score (see
Fig. 7). We omit any columns with a confidence score less than 0.8.
Using the 𝑥 and 𝑦 coordinates remaining keypoints, the associated
bounding box is generated for each predicted pedestrian. The bounding
box (1) is calculated by (2)–(5) based on the predicted keypoints.
These generated bounding boxes can be compared with the ground-
truth bounding boxes provided by the datasets. Thus, the predicted
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Fig. 7. HigherHRNet keypoint predictions format.

Table 1
Multi-scale settings.

Setting Height(h)a Occlusion(o)b

Reasonable h ≥ 50 o ≤ 75%
Reasonable (small) 50 ≤ h ≤ 75 o ≤ 75%
Heavy occlusion h ≥ 50 o ≥ 75%
All h ≥ 20 o ≤ 75%

aPixel height of pedestrian.
bVisibility of pedestrian.

Table 2
Multi-scale performance.

Setting JAAD PIE

Reasonable 89% 91%
Reasonable (small) 78% 81%
Heavy occlusion 40% 43%
All 87% 89%

keypoints were evaluated without ground-truth keypoint information.
As far as we are aware, this approach is a novel approach for keypoint
evaluation without the need for ground-truth keypoints.

𝑏𝑜𝑥 = [𝑙𝑒𝑓 𝑡, 𝑡𝑜𝑝, 𝑟𝑖𝑔ℎ𝑡, 𝑏𝑜𝑡𝑡𝑜𝑚] (1)

𝑙𝑒𝑓 𝑡 = min(
[

𝑥1, 𝑥2 … 𝑥𝑛
]

) (2)

𝑟𝑖𝑔ℎ𝑡 = max(
[

𝑥1, 𝑥2 … 𝑥𝑛
]

) (3)

𝑡𝑜𝑝 = min(
[

𝑦1, 𝑦2 … 𝑦𝑛
]

) (4)

𝑏𝑜𝑡𝑡𝑜𝑚 = max(
[

𝑦1, 𝑦2 … 𝑦𝑛
]

) (5)

Both the JAAD and PIE datasets have a very minimal number of
smaller pedestrians. Therefore, we implemented a strategy to scale
down the images to 30% of the original size. We found that sufficient
samples were not generated if we used a large-scale value. This method
generated more smaller pedestrian samples without significantly reduc-
ing the quality of the images. Using this strategy, we were able to
increase the number of smaller pedestrian samples by approximately
a magnitude of 7 for the JAAD dataset. For the PIE dataset, we nearly
doubled the amount of smaller pedestrian samples.

4.4. Training & evaluation protocols

We fine-tune the pre-trained Higher HigherHRNet using images
from the JAAD and PIE datasets as the pedestrians in these datasets
are more challenging to detect than the COCO dataset. As discussed, the
JAAD and PIE datasets do not have ground-truth keypoint annotations.
Therefore, we implemented the following strategy. We evaluated the
keypoints using the generated boxes (Section 4.3) and comparing them
with the ground-truth boxes. Those keypoints with an accuracy of over
80% (threshold) were used to fine-tune the HigherHRNet model. As
we did this, accuracy of those boxes with previously lower accuracy
7

improved. We this several times, each time adding further images.
We stopped this process when the accuracy of the model achieved
70% as this was close to the multi-scale results in the original work
(see Cheng et al. (2020)). We used the default training settings for the
HigherHRNet provided in Cheng et al. (2020). The model was trained
for a total of 300 and Adam optimiser with a base learning rate set to
1e−3. After 200 epochs, the learning rate is dropped to 1e−4 and after
260, it was further dropped to 1e−5.

Once the HigherHRNet was fine-tuned, we proceeded to train the
PV-LSTM model for intent prediction. We followed the settings in Bouh-
sain et al. (2020) for the JAAD dataset for data splitting training and
evaluation. There are a total of 346 videos, where 300 were used for
training and the remaining 46 were used for testing. We also split the
PIE dataset in a similar manner. The PIE dataset is a larger dataset and
is split into sets, with each set containing several videos. There are a
total of 6 sets, we used the first 4 sets of training and the 2 remaining
sets for testing. For training, we used the Adam optimiser and set
the initial learning rate at 1e−4 and use an adaptive scheduler to
automatically reduce the learning rate when the loss began to plateau.
The model was trained for 100 epochs on an NVIDIA RTX 2080 Ti GPU.
We set the hidden states of the PV-LSTM model to 256.

During the training of the custom PV-LSTM model, we follow the
settings from Fang et al. (2017) and Fang and López (2018), where
they use specific keypoints instead of using all the predicted keypoints.
This is because not all the predicted keypoints are useful for the task
of intent prediction. The keypoints for the shoulder, hips, knees and
ankles are the most important keypoints as the legs perform the act
of walking/stopping while the shoulders provide a global orientation
of these pedestrians. However, unlike in Fang and López (2018), Fang
et al. (2017), we do not connect the key points to create a skeleton.
The skeleton was used to provide information, such as distances and
angles between pairs of key points. Instead, we feed the raw key points
into the custom PV-LSTM model. The changes of the position and the
rate of those changes along the frames provided useful information for
predicting pedestrian crossing intentions. For example, if the keypoints
are moving from left to right with a high velocity, the pedestrian is
most likely crossing (refer to Fig. 4). If the key points remain to the
left or right of the vehicle with a slower velocity, the pedestrian is most
likely moving perpendicular to the vehicle and does not intend to cross
in front of the vehicle (refer to Fig. 5). To further illustrate this point,
the figures in this section and following sections will include pedestrian
skeletons based on the predicted keypoints. These skeletons are strictly
for illustrative purposes for visualising the movement of the keypoints
with respect to one another from frame to frame. During training and
evaluation, the proposed technique requires only the raw keypoints.

5. Results & discussions

5.1. Comparison with state-of-the-art

We use the settings from Dollár et al. (2012) and Zhang et al.
(2017) for multi-scale intent prediction evaluation (see Table 1). Ta-
ble 2 compares the accuracy for different multi-scale settings as set in
Table 1. The accuracy is calculated by (6), as in Bouhsain et al. (2020).
True Positives refers to those correctly predicted samples. Accuracy
calculated in throughout this section uses this metric, unless stated
otherwise. Our proposed method performs with a high level of accuracy
for both the reasonable and reasonable (small) categories. As such, we
cannot compare our results with current state-of-the-art approaches.
Even combining all the settings yields high accuracy results, with JAAD
and PIE achieving 87% and 89%, respectively. We compare our results
and settings with current state-of-the-art techniques in Table 3. The
results in Table 3 compares the results for the reasonable setting. As
far as we are aware, the approach proposed in this paper is the first
for multi-scale intent prediction. Previous papers exclude smaller and
heavily occluded pedestrians, focusing on medium to larger pedestrians
with minimal occlusion (i.e., reasonable setting.) We use 12 frames,
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Fig. 8. This figure shows a pedestrian going from a state of not crossing to crossing. The frames go from left to right with each frame being a time-step of 10 frames from the
previous frame. The bounding box (red rectangle) is generated using the predicted keypoints (circles of assorted colours).
Table 3
Performance comparison.

Method Description Dataset No. Frames Accuracy

AlexNeta Ground-truth bounding boxes + Environmental JAAD 15 63%
3D CNNb Predicted bounding boxes JAAD 20 85%
PV-LSTMc Predicted bounding boxes JAAD 14 82%
2D pose estimationd Predicted keypoints JAAD 14 88%
This work Predicted keypoints JAAD 12 89%
This work Predicted keypoints PIE 12 91%

aRasouli et al. (2018).
bSaleh et al. (2019b).
cBouhsain et al. (2020).
dFang and López (2018).
Table 4
Run-time performance comparison.

Method Performance

ConvNet-Softmax (Saleh et al., 2017a) 28 ms
ConvNet-SVM (Rasouli et al., 2017) 27 ms
ConvNet-LSTM (Carreira & Zisserman, 2017) 40 ms
C3D (Carreira & Zisserman, 2017) 27 ms
ST-Dense-Net (Saleh et al., 2019b) 10 ms
This work 6.1 ms
Trajectory-LSTM (Bouhsain et al., 2020) 4.9 ms
Multi-Task PV-LSTM (Bouhsain et al., 2020) 4.9 ms

which is 2 less than the next best method. This reduces the amount
of input data required to predict the pedestrian’s crossing intentions.
Although the model did not perform as well for the heavy occlusion
categories, the performance for the ‘‘all’’ setting (see Table 1) is highly
accurate as there was a limited number of heavily occluded pedestrians.
We will look to improve this category in Section 5.2. Refer to Fig. 8 for
illustration of the predictions made by our proposed method.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑇 𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

(6)

In Table 4, we compare the run-time of our architecture with similar
state-of-the-art techniques. We calculate a single run-time based on
the amount of time it takes for the model to predict keypoints, track
and predict the crossing intention for a pedestrian over 12 frames.
We take the average run-time for all intent predictions made by the
model. We found that we could achieve comparable run-time, even
considering our proposed method uses more data points. However, as
illustrated in Table 2, these data points provide improved multi-scale
intent prediction results. Our proposed method is only 1.1 ms slower
than the approach in Bouhsain et al. (2020), while outperforming. It
should be noted that the technique in Bouhsain et al. (2020) uses
ground-truth bounding boxes to make intent predictions. Whereas, our
proposed method consists of keypoint prediction, tracking and intent
classification.
8

5.2. Data generalisation

In Hasan et al. (2020), a novel approach for data generalisation was
proposed. The authors referred to this approach as progressive training.
Progressive training involves using multiple datasets to improve model
generalisation. Generalisation refers to the ability to maintain a high
level of performance when seeing previously unseen data. In Hasan
et al. (2020), progressive training was used for pedestrian detection.
By combining numerous widely used and publicly available datasets. In
some cases, they were able to achieve improvements of approximately
10%. We applied the same progressive training to improve upon the
previous results (see Table 2). Overall (all categories), we improved
the accuracy by 3% and 2% for JAAD and PIE evaluation sets, respec-
tively, compared to results from Table 2. (See Table 5 for full results.)
Although the pipeline improved accuracy results, we predict that more
datasets would further improve results, particularly for smaller and
heavy occluded pedestrians.

5.3. Performance, efficiency and robustness

As illustrated in Table 3, the proposed method outperformed previ-
ous state-of-the-art intent prediction techniques while also reducing the
amount of spatio-temporal information (i.e., requiring fewer frames) to
achieve those levels of performance. When operating an autonomous
vehicle in public, speed and efficiency (run-time) is vital, so having
an approach that is capable of making accurate predictions in a short
amount of time can significantly improve the safety for both the
passengers as well as other road users.

In terms of robustness, although the model requires a specific
number of frames to make predictions, those frames are not required
to be directly subsequent to one another. This is achieved by utilising
a variation of the SORT tracker which implements a convolutional
neural network (CNN) as introduced by Wojke et al. (2018). This
version of the SORT tracker has been pre-trained on a large-scale person
re-identification dataset to overcome issues of tracking a pedestrian
tracking through occlusions along frames. This means that even if the
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Table 5
Dataset generalisation benchmarking.

Method JAAD

Reasonable Reasonable (small) Heavy occlusion All

JAAD 89% 78% 40% 87%
PIE 91% 79% 39% 89%
JAAD + PIE 90% 81% 61% 90%
JAAD → PIE 89% 78% 59% 89%
PIE → JAAD 89% 79% 61% 89%

Method PIE

Reasonable Reasonable (small) Heavy occlusion All

JAAD 92% 78% 65% 92%
PIE 91% 81% 43% 89%
JAAD + PIE 95% 82% 69% 94%
JAAD → PIE 94% 79% 69% 93%
PIE → JAAD 93% 80% 71% 92%

+ refers to merging the datasets and → refers to pre-training on the first dataset and
fine-tuning on the second dataset.

pedestrian is not visible along some frames, those frames are skipped.
Once the pedestrian is again visible in the frames, the tracking contin-
ues. As long as the number of keypoint instances is 12, the model is
able to make predictions. Even in extreme circumstances, such as the
heavy occlusion setting, our approach achieves an accuracy of 40% and
43% for JAAD and PIE datasets, respectively. This accuracy is further
improved by progressive training by between 20%–30%. In these cases,
several frames may be skipped and yet the MS-PIP model was able
to achieve accuracy of 71%. This demonstrates the robustness of our
approach. We are unaware if other techniques, such as those in Table 5,
which also provide such robustness. However, we should mention that
this type of robustness can affect the accuracy of intention prediction
as if too many frames are missing, it could lead to a lack of usable
information to accurately predict whether a pedestrian is going to cross
or not cross.

It is worth noting that our approach is a multi-task approach, unlike
some of the previous works that we previously discussed. In works,
such as Fang and López (2018), Fang et al. (2017), they predicted
the intentions of a single pedestrian as a time. This is referred to a
single-task approach. However, our multi-task approach considers all
the pedestrians in the image (see Fig. 3). This approach is more complex
as pedestrians could be varying sizes moving at different speeds and in
different directions. There are two distinct reasons why we employed
the multi-task approach in this work. The first being that the HigherHR-
Net is not designed for single-task pose estimation. This is due to the
architecture of the bottom-up technique we have previously discussed.
The bottom-up approach predicts keypoints for all the pedestrians in
the image and then groups the keypoints per pedestrian. This meant
we could not focus on one pedestrian at time. The second reason is
speed (i.e., run-time). We aim for real-time performance. Single-task
intent prediction is slower than multi-task as each pedestrian in an
image is considered individually, adding to the run-time. Whereas,
considering multiple pedestrians are a time improves on run-time as
all the pedestrians in the image are considered at the same time. We
discuss and compare the run-time of our proposed method with other
techniques in Section 5.1.

5.4. Limitations

As discussed in Section 4.1, there are two relevant datasets which
contain pedestrian behaviour annotations: the JAAD and PIE datasets.
The JAAD has been widely utilised, whereas the PIE dataset is newer
and have not be employed as widely. Due to this, we are limited by
the quality of these datasets. Although we have presented state-of-the-
art results for multi-scale pedestrian intent prediction, we believe our
proposed method could potentially perform better. This is because we
9

are limited by smaller and heavily occluded samples in both datasets.
As most previous methods focus on reasonable pedestrians, it is under-
standable that the datasets focus on these settings. Another aspect to be
considered is the run-time. Although the performance is comparable
to similar technique, it can still be further improved. This could be
resolved by removing the dependence on generating keypoint-based
bounding boxes for tracking. An approach that uses the keypoints to
track the pedestrians is an aspect that will be investigated in future
works.

5.5. Ablation study

To justify the settings used in Section 4, we perform an ablation
study. This ablation study involved the replacing and/or removing
certain aspects from the proposed method and adjusting model param-
eters. In this way, we demonstrate the effectiveness of the contributions
made by this work. During discussions of the results, we focus on
reasonable settings as other similar models focus on this setting. This
provided a direct comparability with those techniques. For this section,
only the PIE dataset it utilised. It provides a larger number of samples
as well as more balanced crossing and not crossing instances. The
following aspects will be ablated:

1. Compare the various pre-trained HighHRNet architectures and
hyperparameters

2. Number of keypoints used by the LSTM model to predict pedes-
trian speed and velocity

3. Number of frames used for prediction
4. Hidden States for LSTM model

Defaults Settings For our results in Section 5, we initialised the
HigherHRNet model with the COCO-w48 backbone, where w48 refers
to the model capacity. Based on the keypoints predicted by the High-
erHRNet model, we only used specific keypoints (i.e., shoulders, hips,
knees and ankles). These 8 keypoints are sent to the custom PV-LSTM
model for intention classification.

1: Pose Estimator Weights The HigherHRNet includes pre-trained
model weights trained the COCO dataset. The accuracy is calculated
by (6) (see 5.1). The model has two parameter capacities, w32 and
w48 (i.e., number of parameters in the model). For more information
with regards to these model capacities, refer to Cheng et al. (2020). In
6, we compare these capacities. We were unable to achieve compara-
ble results using the HigherHRNet trained on the CrowdPose dataset
when compared to the COCO dataset. Therefore, we do not include
the HigherHRNet pre-trained on CrowdPose in 6. We found that the
larger capacity COCO backbone generally provides better results, when
compared to the smaller capacity backbone with reduced accuracy by
at least 1%.

2: Keypoints In Table 6, we compare the performance of our pro-
posed method using all the keypoints and using only the keypoints that
represent shoulder, hips, knees and ankles (as in Section 5). We found
that using all the keypoints (i.e. 17 for COCO) negatively affects the
model accuracy. We suspect that this is caused by keypoints, such as
elbows, eyes, etc., do not provide useful information with regards to
the crossing behaviour of the pedestrians and actually over-complicate
the task.

3: Number of Frames The number of frames refers to the number
of videos frames used as input and output. We evaluate 16 frames and
10 frames to compare with 12 frames used in 5. 16 frames provide
improved results over 10 frames, which can be attributed to the amount
of information provided by the increased number of frames. However,
these are negligible and do not justify the increased number of frames
when compared to the 12 frames used in 3. Increased frames results in
increased run-time, which affects the model to function in real-time.

4: PV-LSTM Settings We adjust the hyper-parameters to verify that
the settings used in the final results are the optimal for the proposed
method. For this aspect, we focus mainly on the hidden state. The hid-

den state is what allows the PV-LSTM to store information, functioning
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Table 6
Ablation results.

Model weights No. Keypoints No. Frames Hidden states Reasonable Reasonable (small) Heavy occlusion All

COCO (w32) 17 16 128 87% 71% 39% 86%
COCO (w32) 8 16 128 88% 74% 40% 87%
COCO (w32) 17 10 128 83% 69% 37% 84%
COCO (w32) 8 10 128 85% 71% 39% 86%
COCO (w32) 17 16 512 85% 72% 40% 86%
COCO (w32) 8 16 512 87% 73% 41% 88%
COCO (w32) 17 10 512 84% 73% 38% 86%
COCO (w32) 8 10 512 88% 76% 39% 87%
COCO (w48) 17 16 128 88% 77% 40% 87%
COCO (w48) 8 16 128 90% 79% 41% 89%
COCO (w48) 17 10 128 84% 74% 38% 85%
COCO (w48) 8 10 128 86% 77% 40% 86%
COCO (w48) 17 16 512 86% 76% 39% 86%
COCO (w48) 8 16 512 89% 80% 40% 91%
COCO (w48) 17 10 512 87% 75% 39% 84%
COCO (w48) 8 10 512 90% 80% 41% 90%
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as the memory unit. It stores the information from the concatenated
keypoints. As this allows for the PV-LSTM to predict future pedestrian
crossing behaviours, the optimal size of the hidden state is vital. It
needs to be able to store enough information to make predictions, while
also not being too large or complex, thereby slowing the overall intent
prediction system with unnecessary computational complexity.

6. Conclusions and future works

Advancements in pedestrian detection are only the first step in
ensuring safety for pedestrians. In this paper, we propose multi-scale
pedestrian intent prediction approach. The proposed approach com-
prises of a combination of 2D pose estimation and LSTMs for predicting
pedestrian crossing behaviours. Based on concatenated keypoints over
time generated by the pose estimator, the LSTM is able to predict
whether a pedestrian will cross or not cross with respect to the Au-
tonomous Vehicle. The concatenated keypoints represent the changes
to the pedestrian’s joints over time, thus providing the LSTM-based
classifier relevant spatio-temporal information to make accurate inten-
tion predictions. Based on our proposed method, we have outperformed
previous state-of-the-art techniques, achieving 88% and 92% for JAAD
and PIE datasets, respectively, while maintaining a comparable run-
time of 6.1 ms. For the multi-scale implementation, we achieved an
overall accuracy of 87% for the JAAD and 93% for the PIE dataset when
including smaller pedestrians (20-pixel height) and heavily occluded
pedestrians (visibility <75%). We also apply a technique for data gen-
ralisation referred to as progressive training, which provides improved
eneralisation over multiple datasets. We improved our initial multi-
cale results by 3% and 1% for the JAAD and PIE datasets, respectively,
hile outperforming previous methods by up to 7%.

.1. Future works

For future works, we intend to utilise colour images with 3D CNNs
or improved performances. Colour images provide significant scenes
nd contextual information, such as traffic lights, traffic signs and other
bjects, adding to further spatio-temporal information. However, this
nformation increases the overall complexity to our proposed method.
owever, it may also provide significant gains in accuracy and ro-
ustness. Annotations, such as looking, nodding or waving may also
e considered for improving the accuracy. Cyclist intent prediction is
nother aspect that would be useful to explore. Concurrent pedestrian
nd cyclist detection would provide further safety for both the vehicle’s
assengers and other road users. However, both the JAAD and PIE
atasets focus on pedestrians and do not consider cyclists. There are
ther datasets, such as in Saleh et al. (2021, 2019a), but those datasets
10

o not provide crossing or not crossing annotations.
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