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Bacteria pollution closures of Maine’s coastal shellfish harvest areas have substantial negative 

consequences for coastal businesses and communities. Sustainability solutions for Maine’s shellfish 

harvesting areas and businesses require new types of knowledge and information to protect water quality 

and public health while avoiding unnecessary fishery closures. Coastal management agencies have 

interests in tools to support science-based management decision-making related to pollution and 

sustainability solutions for businesses and communities. 

Prior research into land-sea connections has demonstrated uses of geographic information and 

statistical methods to facilitate management and science communication. Research in Maine has focused 

on identification and comparison of attributes influencing coastal conditions. Examinations of coastal 

settings based on proxy spatial data metrics for pollution sources, delivery, and residence time (SDR) 

attributes have demonstrated capacity to identify locations with varied pollution vulnerability when paired 

with water quality sampling data. 

This research starts from the proof of concept from previous work and cogeneration of knowledge 

with stakeholders in Maine. Advancements include the strategic process for selecting and assembling 



 

 

proxy spatial data metrics, procedures to identify coastal pollution response units (CPRUs), and 

approaches used to document associations of CPRU settings with pollution problems. Outcomes include 

delineations of land-sea connection domains and identification of seven CPRU setting types. Results 

indicate similarity among locations derived from proxy metrics and bacteria sampling data based on 

selected pollution attributes and equal weighting of SDR attribute categories. Lands adjacent to tidal 

boundaries, “margin watershed areas” (MWAs), comprise 9.8% of the CPRU land area. However, MWAs 

were not found to increase the predictability of vulnerability to bacteria pollution. 

Multiple information gaps are assumed to influence results and limit direct applications from the 

analyses, including: 1) Biases in bacteria sampling from management activities, 2) Static nature of proxy 

metrics describing land-sea connection processes, 3) Domain outlet specifications, 4) Influence of large 

river flows and ocean input, 5) Stochastic events, 6) Equal weighting of SDR pollution culprit categories. 

However, research outcomes provide a defensible framework for coastal pollution vulnerability 

evaluations, guidance for targeting pollution problems, and new information to support research and 

management decisions related to coastal planning and monitoring activities. 
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CHAPTER 1 

BACKGROUND AND INTRODUCTION 

1.1. Introduction 

Decision science, the scientific basis for decision-making when addressing complex or intractable 

problems, is a growing field (Marcot et al., 2012; Barnes et al., 2019; Yahara, 2021; Baker et al., 2022; R. 

Smith et al., 2022; Martin et al., 2023). Decision science in natural resource management targets the 

connection of data and knowledge of biophysical processes to sustainability goals and objectives. The 

inspiration for the research is often to parameterize problem spaces and identify optimal management 

solutions (Figure 1.1). Scientific knowledge and theory are thereby linked to policy needs and objectives 

to identify a problem domain, specify metrics to describe the problem, analyze relations between metrics, 

and develop decision support tools. The interdisciplinary research activities are completed in a process 

that involves knowledge co-generation with collaborators and stakeholders (Kates et al., 2001).  

 

Figure 1.1. A decision science framework diagram.  
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Research supported by the National Science Foundation (NSF) has focused on strengthening of 

the scientific basis for decision-making related to sustainability solutions in New England in recent years 

(National Science Foundation, 2015, 2016). One body of work was attentive to pollution problems 

governed by complex land-sea connections and coupled human-environmental system dynamics with 

implications to shellfisheries and coastal communities. 

The problem of coastal bacteria pollution and water quality in the northeastern United States is 

not new. The National Shellfish Sanitation Program (NSSP) was introduced in 1925 in response to 

outbreaks of illness related to consumption of shellfish that was ultimately attributed to sewage-polluted 

oysters (US Food and Drug Administration, 2019). The knowledge that water quality at the coast is 

greatly affected by land-sea connections is similarly well-established. Pollutants originating on the 

landscape are delivered to coastal waters through mechanisms such as precipitation runoff and wastewater 

conveyances, often remaining in those coastal waters until they are evacuated by tidal currents and 

freshwater runoff dynamics (Alonso Roldán et al., 2019; Brown et al., 2019). The Clean Water Act of 

1972 was the landmark law regulating the discharge of pollutants into navigable waters in response to 

fundamental observations of pollution-related societal problems. The legislation had roots established 

earlier in the twentieth century in the 1948 Federal Water Pollution Control Act (US EPA, 2013) and 

evolved into regulatory responses to both point and nonpoint source pollution.  

The importance of land-sea connections to water quality conditions and ecosystem sustainability 

has been generally recognized in policy through the framing of a “coastal zone” and related governance 

tools (Maine Department of Marine Resources, 2023a; NOAA Office for Coastal Management, no date). 

However, the delineation and characterization of such zones has thus far been jurisdictional rather than 

based on physical processes such as the distinction between overland and channelized runoff transport. 

Coastal management agencies such as the Maine Department of Marine Resources (MEDMR) remain 
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constrained by the predictive capacity of current decision-making tools to assess how land-sea 

connections manifest in varied coastal settings.  

The causes and effects of water pollution are commonly tied to the concept of vulnerability. The 

vulnerability of a place or community to pollution problems is complicated by land-sea connection 

dynamics coupled with human activities. Vulnerability in a specified domain is governed by complicated 

interactions of processes that act upon heterogeneous physiographic spaces. Human activities on the 

landscape and in coastal waters may both contribute to and ameliorate these dynamics.  

Turner et al. (2003) identify several elements important to performing vulnerability analyses 

relevant to sustainability. These include consideration of the following: a) sequencing of multiple 

stressors, b) sensitivity of coupled systems to exposure to hazards, and c) nested scales of hazards, 

coupled systems, and dynamics. They also suggest emphasis on elements useful to vulnerability analyses 

for sustainability purposes, including the following measures: i) elevation of stakeholder input to identify 

responses to pollution outcomes that should be avoided, ii) profiling of unequal vulnerability of system 

subcomponents, and iii) identification of suspect causal structures that affect vulnerability, and iv) 

development of methods for assessments and tests. Accordingly, the research described in this 

dissertation focuses on the development of the problem domain, metrics, and spatial data and the 

formation of vulnerability analyses to create an expert system framework for scientific assessment of 

coastal pollution affecting estuarine shellfisheries to support management decision-making.  

1.2. Research and Management Problems 

Estuarine bacteria pollution is a multifaceted problem, making it complex to manage. It is first a 

biophysical problem. Maine’s clams, mussels, oysters, and scallops are filter feeders that derive 

sustenance by drawing water through their gills and trapping and ingesting plankton and other 

microscopic particles present in the water. As such, they are predisposed to ingestion of potentially 
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harmful substances such as microplastics (Woods et al., 2018; Zhao et al., 2018), toxic algae (Thomas et 

al., 2010; Clark et al., 2019), toxic chemicals, and bacteria (Jones, 2011). A particular concern related to 

shellfish harvested for human consumption are feces-borne pathogens that may be present in coastal 

waters in association with fecal coliform bacteria and can cause severe illness in consumers (Jones, 2011). 

Because of these dangers, bacteria pollution represents a coastal sustainability problem that threatens a 

traditional food source and harvesting industry with economic implications for harvesters and coastal 

communities. 

The MEDMR is responsible for overseeing the safety of intertidal shellfish resources, including 

making the decision to close harvesting areas when potentially harmful levels of bacteria are in the water. 

Policy challenges can arise due to competing goals between reopening shellfisheries quickly to minimize 

impact on harvesters and ensuring closures are long enough for bacteria evacuation so that consumer 

health is not compromised. Bacteria pollution is therefore also a knowledge and information problem. 

Since bacteria testing cannot be performed at all times in all places, managers must have adequate 

knowledge and information about varied coastal settings to make informed, scientifically-based decisions 

surrounding bacteria pollution closure timing.  

1.3. Background and Study Area 

The Maine coastline is at the western boundary of the Gulf of Maine, a ~93,000 km2 body of 

water on the North Atlantic Ocean (Figure 1.2). Maine’s coast is deeply indented, a result of the 

interaction between bedrock controls and Late Wisconsinan glaciation that induced isostatic sea level 

adjustments (Schnitker, 1974; Kelley, 1987; Borns et al., 2004; Uchupi and Bolmer, 2008; Kelley, 

Belknap and Claesson, 2010). The modern coastline features a total of ~5,600 km of tidal shoreline 

(including islands) over less than 400 km of straight-line distance between the borders with New 

Hampshire and Canada (Kelley, 1987). Nestled among the many embayments and tidal rivers of the rocky 
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coastline is an extensive series of sand- and mudflats formed from reworked outwash and marine 

sediment, which are regularly inundated and exposed by semidiurnal tides with mean ranges varying from 

2.5 m at Kittery in the south (NOAA station #8419870) to 5.6 m at Eastport in the northeast (NOAA 

station #8410140). These intertidal zones are home to a variety of wildlife species, including molluscan 

shellfish. 

Shellfishing, like logging, boat building, and lobstering, is a quintessential traditional Maine 

industry with social and economic impacts in the coastal communities that practice it and the state at large 

(Ellis and Waterman, 1998). The harvesting of mussels, oysters, and various species of soft- and hard-

shell clams provides a low barrier income source for more than 1500 licensed harvesters who ply Maine’s 

tidal flats, bringing tens of millions of dollars of direct revenue (Evans et al., 2016; Maine Department of 

Marine Resources, 2019b). Maine’s commercial soft-shell clam fishery, the most valuable of the state’s 

mollusk fisheries, accounted for over 70% of total 2015 US domestic soft-shell landings and 79% of total 

US commercial landings value at more than $22.8 million (National Marine Fisheries Service, 2016; 

Maine Department of Marine Resources, 2019b).  

In addition to the direct benefits to harvesters and communities, income from shellfishing has a 

cascading effect on the economy. In 2006, a year in which direct output value of all Maine molluscan 

shellfishing was $29.9 million and direct labor income to harvesters was $21.5 million, the estimated total 

economic impact on the Maine economy was $56 million (Athearn, 2008). Shellfishing also represents an 

aspect of cultural heritage on the Maine coast, where harvesters may be engaging in a multi-generational 

family tradition.  

Bacteria pollution-related closures of mud flats can reduce the economic vitality of shellfishing 

businesses. Most Maine shellfishers are independent harvesters (Evans et al., 2016). It is not an industry 

in which harvesters draw salaries or can even be sure of steady paychecks, amplifying the effects of 
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Figure 1.2. Gulf of Maine and surrounding land, with marine high stand transgression line within Maine 

(foam green) and modern 60 meter bathymetry contour (blue) representing general approximation of 

shoreline at marine low stand. (Map background adapted from Esri World Ocean Base, other data from 

Maine GeoLibrary). 
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closures on their daily earnings. The work is physically demanding – “hard on the whole body” – and it is 

not uncommon for shellfish harvesters to seek treatment for chronic pain, leading to an estimated opiate 

addiction rate of at least 10-20% among harvesters (McGreavy, 2015). This further intensifies the closure 

effects on coastal individuals and communities. The implications of closures to shellfishing businesses 

and communities provides a strong rationale for management decision tools to guide deployment of 

monitoring resources and avoid unnecessary closures.  

Bacteria and pathogens originate at point and non-point sources on the landscape and within 

estuaries, and the hydrologic connection between landscape and coastal waters facilitates the transport of 

these pollutants into shellfishing areas via runoff (Jones, 2011). Identification of particular sources has 

been accomplished through DNA source tracking in individual Gulf of Maine estuaries. A DNA marker 

analysis of fecal coliform bacteria in one southern Maine system found ubiquitous incidence of avian 

droppings throughout the sampling period and spikes in human DNA at development-adjacent sites 

during months with peak seasonal populations (Sims and Kaczor, 2017). This study and others that are 

similar indicate that while bacteria sources within a watershed can be multiple and diverse, some may be 

positively correlated with particular land use characteristics and thus predictive of vulnerability to high 

bacteria levels in their associated embayments. 

1.4. Prior Work 

1.4.1. Management 

Coastal managers must be aware of the varied coastal conditions in the state’s widely scattered 

shellfishing flats in order to meet the objective of keeping temporary pollution closures to the minimum 

lengths required to ensure consumer safety. This management requirement inherently involves 

consideration of the factors influencing bacteria production, transport, and estuarine residence time. The 

sustainability targets can be advanced through attention to the elements identified by Turner et al. (2003), 
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as well as through consideration of how coastal attributes driving land-sea connections operate 

independently and collectively to produce water pollutions outcomes. 

 The MEDMR does not have capacity to continuously monitor bacteria levels at every mud flat in 

the state. Managers proactively and automatically execute temporary mudflat closures after high-

magnitude rain events based on general knowledge of the links between precipitation runoff and estuarine 

bacteria pollution and with National Shellfish Sanitation Program (NSSP) practices and standards. A 

closure length of two weeks after a precipitation event of two inches or more in twenty-four hours is a 

general rule of thumb.  

Mapping of shellfish closure areas and monitoring outcomes has been a consistent method 

through which coastal management agencies have communicated to the public (Figure 1.3). The maps 

that are now online generally respond to agency knowledge of conditions and history of bacteria 

sampling. They contain some assumptions related to land-sea connection processes anchored on 

associations of bacteria sources and delivery mechanisms. Outflows of wastewater from pipe outfalls and 

increased runoff production and delivery from urban landscapes are two prominent examples (US Food 

and Drug Administration, 2019). Ambitions to advance the consideration of land-sea connection 

processes in vulnerability analyses inspired recent research on pollution management decision tools in 

Maine coastal areas. Part of that pursuit is related to expanded capacity to consider water pollution 

attributes operating independently and collectively. Another part relates to interest in a more detailed 

delineation of the coastline relative to land-sea connection processes influencing pollution outcomes and 

potentially guiding management solutions.  
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Figure 1.3 Screen capture of Maine Dept. of Marine Resources (MEDMR) online shellfish closures and 

monitoring data map showing the area of Saco Bay, south of Portland, ME. Red hatched areas indicate 

growing areas where shellfishing is prohibited; growing area WG-P2 highlighted here is closed due to the 

influence of discharge from wastewater treatment plants (WWTPs) from three surrounding towns. Blue 

hatched areas indicate growing areas conditionally open to shellfishing, and coastal areas with no 

hatching have no harvesting restrictions. Circles represent MEDMR bacteria monitoring locations. Colors 

indicate 90th percentile (P90) fecal coliform counts for samples taken at each site over the year 2022 as 

shown in the legend at upper right. (Maine Department of Marine Resources, 2023c) 
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1.4.2. Research 

Research into land-sea connections and identification of coastal settings has taken varied forms 

depending on research goals and associated coastal management needs. Research in the Maryland portion 

of Chesapeake Bay with a goal of better defining the relations between climate factors and fecal coliform 

bacteria focused on linear regressions and the clustering of temporal data groupings. Results revealed that 

precipitation and air temperature are good predictors of bacteria levels with seasonally variable strengths 

of climate-bacteria relations (Leight et al., 2016). 

Detailed modeling has been used in locations such as Hawai’i, where coupled groundwater and 

coral reef models incorporating nutrient flux and wave power were developed and calibrated for 

individual sites to identify priority management targets for reef resilience (Delevaux et al., 2018). 

Hydrodynamic numerical modeling of pollutant particle transport in Galveston Bay, TX revealed that the 

timing of pollutant release into estuarine waters in relation to storm events is an important factor in 

determining pollution flushing times.  

In contrast to the detailed modeling approach, Bartley et al. (2001) tested the applicability of a 

single proxy metric for marine and terrestrial forcing processes, coastline complexity (map-view 

tortuosity), to classify coastal settings. Their case study in Baja California suggested that a global 

coastline dataset could be used to identify clusters of coastline type based on complexity at multiple 

scales. Other unsupervised cluster analyses based on different sets of embayment morphometry and 

hydrologic attributes resulted in the identification of nine emergent estuarine setting types for large 

estuaries in the contiguous United States (Engle et al., 2007) and the Australian state of Tasmania (Edgar 

et al., 2000).  

Other setting identification has been performed using decision tree analysis. Hume et al. (2007) 

proposed a multi-level classification tree for New Zealand estuaries for conservation management 
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combining expert judgment with environmental factors at scales ranging from global climate variations to 

local catchment properties. Van Niekerk et al. (2020) similarly developed a rules based ecosystem 

classification tree for large and small estuaries in South Africa based on regional setting, estuary 

morphometry and hydrodynamics, and biota. Both studies identified twenty or more estuary settings, and 

each relied on expert judgment and interpretation for developing classification rules. Decision trees have 

also been developed as management support tools for identifying how important land-based drivers of 

pollution are in a particular system for prioritizing conservation strategies (Fredston-Hermann et al., 

2016).  

Research in coastal Maine over the past decade has assessed coastal landscape conditions and 

developed decision support tools in accordance with management needs related to bacteria pollution 

(Taylor, 2018a). The previous work has had a primary goal of identifying a scientific basis for making 

management decisions regarding bacteria pollution closures along the Maine coast. Researchers and 

stakeholders identified a number of available coastwide spatial datasets to serve as proxies for processes 

involved in bacteria production (sources), delivery methods/efficiency from landscape to estuary, and 

residence time before eventual evacuation from an estuary (Smith et al., 2016; Roy et al., 2018; Taylor, 

2018b). These data layers were overlaid against delineated watersheds of 535 rivers and streams draining 

to Maine's tidal coastline and a k-means unsupervised cluster analysis was performed to group the 535 

watersheds into a limited number of Landscape Pollution Response Units (LPRUs) with similar metric 

values (Gerard, 2018). Watersheds in each cluster could be expected to behave broadly similarly during 

and after two-inch precipitation events, allowing MEDMR to use data from monitored watersheds to 

make informed management decisions about an unmonitored watershed in the same cluster.  

The LPRU identification served as a successful proof of concept for a coast-wide bacteria 

pollution vulnerability analysis using source, delivery, and residence time (SDR) proxy metrics to identify 

similarly-behaving landscape unit settings (Figure 1.4). The study identified five LPRUs and found they  
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Figure 1.4. Map of Maine Landscape Pollution Response Units (LPRUs). Prior k-means cluster analysis 

of 535 nontidal watersheds based on source, delivery, and residence time proxy metrics resulted in the 

identification of five LPRUs for coastal Maine (adapted from Smith et al. 2016). 
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Figure 1.5. Median fecal coliform bacteria counts at watershed outlet monitoring stations, by Landscape 

Pollution Response Unit (adapted from Smith et al. 2016). 

 

 

exhibited “statistically different bacteria pollution responses” (Smith et al., 2016; Gerard, 2018) (Figure 

1.5). Regressions of single SDR proxy metrics against bacteria counts revealed that some metrics showed 

better correlations with high bacteria levels than others. However, no individual metric can be looked at 

as a reliable predictor of vulnerability to bacteria pollution in all locations. This implies that bacteria 

vulnerability in a coastal setting is a result of the interaction of multiple attributes related to land-sea 

connection processes. The research outcomes also illuminated a potentially important gap in the 

consideration of attributes in land areas immediately adjacent to tidal waters. 
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1.4.3. Research and Management Gaps 

Outcomes from research in Maine and other locations revealed several prominent gaps related to 

domain delineations, attribute selection, and analytical approaches. A major limitation of prior coastal 

Maine LPRU identification was the omission of ~2,800 km2 of coastal land not included in the delineated 

non-tidal watersheds. The immediate coastal landscapes between non-tidal watershed outlets, which are 

referred to here as “Margin Watershed Areas” (MWAs or “margins”), do not support perennial stream 

networks but instead contribute runoff directly as overland flow. These areas include parts of some of the 

state’s most densely populated cities and towns, including the Portland peninsula (Figure 1.6). 

 

 
Figure 1.6. Maps of Portland peninsula showing extensive development within Margin Watershed Areas 

(MWAs). MWAs, the coastal regions between the boundaries of nontidal watersheds (green) and coastal 

waters, contribute surface runoff directly as overland flow. Red shades indicate low (lightest), medium, 

and high (darkest) intensity developed spaces. 
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1.5. Research Questions 

The research described in this dissertation seeks to advance the capacity to guide coastal 

management decisions related to pollution affecting shellfish industries. The focus is on identification of 

land-sea connection attributes driving water pollution problems in varied coastal settings in Maine, 

selection of metrics to evaluate the drivers, and development of an expert system to evaluate vulnerability 

of Maine coastal settings to pollution problems.  

The approach relies on spatial data and existing knowledge of land-sea connection processes 

related to pollution sources, watershed delivery mechanisms, and estuary residence time to guide 

shellfishery pollution management decisions in a sustainability solutions framework (Kates et al., 2001). 

Geographic information system (GIS) resources and machine learning approaches are used to 

parameterize coastal settings and identify land-sea connection conditions, identifying locations with 

similar attributes related to pollution problems, then relating each of the identified settings to bacteria 

pollution sampling results. The goal of this research is thereby the development of a scientifically based 

approach to identifying coastal setting types and where they occur in Maine. It then evaluates the 

associations between land-sea connection attributes operating independently and collectively in the 

identified settings with long term pollution problems documented from bacteria sampling by MEDMR. 

The research is carried out using spatial and statistical analysis, machine learning, and widely available 

spatial information from customized terrain analysis and widely available datasets.  

The central question targeted by this research is, “How can an expert system domain, metrics, and 

analysis approach be framed to identify coastal settings and land-sea connections influencing pollution 

problems affecting shellfish harvesting areas?” An expert system designed to assess the vulnerability of 

varied coastal settings to bacteria pollution requires that several related practical and theoretical research 
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questions be addressed. This provides the strategic objectives of the research summarized in this 

dissertation. These have been framed in the research questions listed below. 

1. What are the appropriate proxy metrics related to source, delivery, and residence time that 

capture the processes leading to bacteria pollution problems in estuaries? 

2. How can coupled land-sea connection settings be compared using spatial data information to 

evaluate their relative vulnerability to bacteria pollution? 

3. What role do the coastal margin watershed areas play in bacteria pollution vulnerability (i.e., 

does proximity of certain pollution-related factors to the estuary matter)?  

4. What are the implications of the estuary outlet pour line placement on the outcome from the 

expert system to identify coastal vulnerability in varied settings? 

The dissertation is organized into five chapters summarizing research activities aligning with the 

above four research questions. Chapter 1 has been an introduction to the coastal bacteria pollution 

problem in the Gulf of Maine and land-sea connection research surrounding it. Chapter 2 describes the 

identification and parameterization of attributes describing pollution source, delivery, and residence time 

processes in coastal settings. Chapter 3 describes the development and demonstration of an expert system 

for aggregating and clustering coastal attributes to identify settings with similar vulnerability to bacteria 

pollution. Chapter 4 describes the research focused on associations of coastal pollution attributes and 

settings with pollution problems. An overarching summary of observations, outcomes, and conclusions is 

provided in Chapter 5. Explanations for the research outcomes and suggestions for future work are also 

provided.  
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CHAPTER 2 

COASTAL MAINE LAND-SEA CONNECTION DOMAIN DEVELOPMENT 

2.1. Introduction 

There is an extensive body of literature on water pollution problem causes, predictions, and 

solutions in coastal areas (Dheenan et al., 2016; Tyre et al., 2023; Mallin et al., 2001; Shahidul Islam and 

Tanaka, 2004; Roy et al., 2018, 2016). Identifying the vulnerability of different coastal areas to water 

pollution problems requires the selection, creation, organization, and analysis of spatial information 

related to land conditions, estuary morphometry, and precipitation runoff patterns. Data and analyses 

typically relate to land conditions, estuary morphometry, and precipitation runoff patterns (Leight et al., 

2016; Delevaux et al., 2018; Alonso Roldán et al., 2019).  

Pollution problems in estuarine waters are fundamentally a relation between system inputs that 

generate a pollution concentration, processes that transport pollutants, and tidal hydrodynamics that 

influence the residence time of contaminated water. A proof of concept study using proxy spatial data 

metrics to represent land-sea connection attributes influencing pollution problems was demonstrated with 

a focus on 535 coastal Maine streams and rivers discharging into the Gulf of Maine (Smith et al., 2015, 

2016; Smith, 2016). Outlet locations were based on National Hydrography Dataset (NHD) data. Coastal 

settings were identified based on the nontidal watersheds and corresponding attributes derived from proxy 

spatial data metrics representing source, delivery, and residence time (SDR) processes influencing 

pollution outcomes. The approach resulted in the identification of five setting types, referred to as 

“landscape pollution response units” or LPRUs (Figure 1.4) (Smith et al., 2016).  

The LPRU analyses revealed several research gaps. One was in the specification of attributes 

influencing land-sea connections governing pollution problems. Another was related to a major spatial 

data gap in the land areas considered, specifically 2,771 km2 of coastal land area situated between the 
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boundaries of the nontidal watersheds and the Gulf of Maine shoreline. This portion of the coastal 

landscape forms a relatively narrow band along the immediate near-coast that lacks stream networks and 

contributes runoff to the tidal zone directly as overland flow over short distances (Van Dam, Smith and 

Beard, 2019). This portion of the landscape has been referred to as “margin watershed areas” (MWAs) in 

the context of this research. MWAs along the Maine coast comprise both ecologically important areas, 

with over 10% classified as wetlands, and some of the state’s most densely populated and paved areas in 

close proximity to tidal waters, including the entire Portland peninsula.  

 This chapter describes the process of developing strategic revisions to the LPRU approach to 

evaluating settings with varied land-sea connection attributes influencing coastal pollution. Specific 

targets include new attributes describing SDR processes influencing pollution outcomes and new 

procedures for delineation of the domains of coastal settings under consideration. The settings identified 

with the revised approach will be referred to as Coastal Pollution Response Units (CPRUs). The 

delineations of the CPRUs provide a basis for comparison of “estuary units” under evaluation to capture 

the influence of varied coastal landscape areas and the SDR processes governing pollution vulnerability. 

Contributing areas within an “estuary unit” that establishes the grain scale of CPRU analysis 

include nontidal stream and river watersheds that were a focus of the LPRU analysis as well as margin 

watershed areas and tidal embayment areas defined by estuary outlet pour lines (Figure 2.1). The 

intellectual structure of this research is framed around the pollution closure problem, knowledge of 

processes influencing the problem, gaps in the delineation and attribution of estuary units to define 

settings, and the design of solutions to convert knowledge of pollution drivers into actions for stakeholder 

applications based on a sustainability science framework (Kates et al., 2001; Turner et al., 2003; Maxwell, 

Hubbell and Eisenhauer, 2019; Weaver and Miller, 2019; Canfield, Mulvaney and Chatelain, 2022). 

Accordingly, four primary functional objectives frame the research summarized in this chapter to support  



19 

 

 
Figure 2.1 Example of an "estuary unit," the grain scale of analysis for this research. The single unit 

indicated with bold borders and hatching consists of nontidal watershed areas (purple), margin watershed 

areas (yellow), and the estuarine embayment (blue) above a defined outlet line (red). Jordan River 

estuary, Trenton, ME. 
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the overarching objective of establishing protocols to define complete land-sea connection domains 

(Figure 2.2).  

The four functional research objectives are: 

1. Identification of surface water runoff flow paths for Maine’s coastal areas. 

2. Delineation of estuary units that include non-tidal watersheds and margin watershed areas 

based on flow path delineations, as well as estuary embayment areas. 

3. Identification and assembly of spatial datasets relevant to surface water runoff and pollution 

sources and delivery.  

4. Application of proxy source and delivery metrics to nontidal watersheds and margin 

watershed areas to identify and compare pollution vulnerability and culprit causes. 
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Figure 2.2. Work flow of functional objectives for definition and parameterization of the land-sea 

connection analysis domain.  
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2.2. Methods 

2.2.1. Flow Pathways 

The foundation for understanding coastal land-sea connections is dependent on the determination 

of where and how surface runoff sources influence conditions in specific estuarine water bodies. 

Assuming surface water runoff is the prominent bacteria transport vehicle, this necessitates identifying the 

problem domain and mapping the coastal landscape areas that contribute surface flows to estuaries along 

the tidal coastline. Sources for data layers used here are reported in Table B.1 (APPENDIX B). 

Landscape surface flow path delineation is predicated on the observation that with rare 

exceptions, water flows down slope. Surface water runoff seeks to follow a pathway with the steepest 

energy gradient from areas of high hydraulic head to areas of low hydraulic head. For overland flow the 

pressure gradient is negligible and flow is driven by gravitational potential energy. Although flow 

resistance from surface roughness and obstructions can have influence on the energy gradient, the steepest 

gradient is typically the steepest downhill surface slope (Drucker and Williams, 2003).  

Multiple algorithms have been developed to partition flow across digital elevation models 

(DEMs), modeled land surfaces represented by gridded elevation data (Peckham 1998; Jenson 1985; 

Tarboton 1997) (Figure 2.3a). One of the more commonly applied approaches is the D8 method, where 

each  EM cell’s elevation is compared to those of its eight immediate neighbors with all flow routed out 

of the cell along the steepest descending slope ( ’Callaghan and Mar , 1984) (Figure 2.3b, c). From D8 

flow direction, a flow accumulation algorithm calculates the cumulative number of upstream cells that 

direct flow into each cell, facilitating visualization of flow networks (Jenson and Domingue 1988) (Figure 

2.3d). 
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Figure 2.3. Illustration of D8 flow paths across a gridded digital elevation model (DEM). Elevations are 

represented by cell color throughout the figure. a) Two-dimensional map view of a DEM, with cell 

elevations labeled numerically. b) Three-dimensional perspective view showing arrows representing 

steepest flow paths from each DEM cell to one of its eight (fewer for edges) neighboring cells. c) Flow 

direction map for the DEM, with arrows and numeric values representing flow directions out of each cell. 

ArcGIS represents calculated flow directions as powers of 2, with 20 indicating grid east, 21 indicating 

grid southeast, 22 indicating grid south, and so forth for the eight directions. d) Flow accumulation map 

for the DEM, with arrow weight and numeric values representing total area contributing surface flow to a 

given cell. 
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2.2.1.1. Terrain Data Assembly 

Boundaries: The official Maine Town and Townships Boundaries layer was used as the definitive 

shoreline for this research. Per the source layer metadata, this boundary corresponds to the mean high tide 

elevation. In practice, the actual location of the data layer boundary relative to tidal stage is not entirely 

consistent along the coast. Areas where the shoreline has been corrected to high-resolution satellite and 

elevation data are well-fitted, while original lines digitized from 1:24,000 U G  7.5” quadrant maps have 

some lateral variation. For medium (e.g., York, Webhannet, Scarborough Rivers) to large (e.g. Saco, 

Kennebec, Penobscot Rivers) river estuaries, the inland extent of this boundary line is the river’s tidal 

limit, which may fall at a higher elevation.  

An outer boundary of the study region into the Gulf of Maine waters was set as a simplified shell 

corresponding generally to the seaward jurisdictional boundary of the Maine Coastal Zone (Maine 

Department of Marine Resources, 2023a). The study boundary encompasses major islands off the Maine 

coast, with Isle Au Haut and Frenchboro at the outer limit (Figure 2.4). Some small islands beyond this 

limit, including Isle of Shoals, Monhegan Island, and Matinicus and Ragged Islands, were omitted despite 

hosting permanent or seasonal populations. 

Elevation Data: Detailed flow path delineation for this project was performed using a two meter 

(2 m) bare earth DEM from aerial LiDAR. No hydro-conditioning and limited hydro-enforcement were 

performed on these data before public release (see next section). In order to ensure adequate flow path 

delineation for current and future near-coast research needs and check the 535 existing nontidal watershed 

boundaries and outlets, for which some minor discrepancies had been discovered, the inland extent of the 

flow path delineation area was established by creating a 1,500 m buffer around the margin area identified 

by Smith et al. (2016) (Figure 2.4). Due to the large size of this DEM (2x109 raster cells and 63.64 GB) 

and limited available computing power, it was split into twelve smaller rasters for delineation. 
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Figure 2.4. Map of Maine coast showing extent of two-meter digital elevation model (DEM) used for 

updated flow path delineation. The DEM was clipped to a 1.5 km buffer (shaded) inland of the margin 

watershed area (green), which was defined as the area between shoreline and the previously delineated 

535 nontidal watersheds (yellow polygons) of Smith et al. (2016), as well as a 100 m buffer seaward of 

the shoreline. The coastal waters considered in the study domain are also shown (light blue polygon). 
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2.2.1.2. Data Preparation 

Flow path delineation cannot immediately be performed on raw digital elevation models, 

particularly the increasingly high resolution remotely sensed DEMs now available that capture 

microtopography and other small storage features. The pre-processing steps of hydro-conditioning and 

hydro-enforcement must first be performed to remove surface irregularities and artificial impediments to 

flow that result in interruptions to natural hydrologic connectivity or erroneous flow delineations. Pre-

processing more than 5,200 km2 of 2 m DEM was performed using ArcMap hydrology tools and routines 

as described in Van Dam (2022) (APPENDIX A). 

Hydro-Conditioning: Because the D8 and other flow direction algorithms execute computations 

cell by cell, any cell lower than all its neighbors (a “pit” cell) cannot find a downhill slope and fails to 

calculate a flow direction. To counteract this, bare earth DEMs must go through a process of hydro-

conditioning in which all pits or depressions are filled to their spill-over levels, the elevation of the lowest 

neighboring cell, ensuring that every cell has a monotonically-decreasing path to a watershed outlet 

(Jenson and Domingue, 1988). This largely involves filling small natural local depressions captured in the 

DEM that would fill with water and spill over during two inch rainfall runoff events (Van Dam and 

Smith, 2023).  

Flow Path Enforcement: A limitation of flow path delineation from surface DEMs is the inability 

of LiDAR and other remote sensing technology to identify or detect flow paths below solid overhanging 

surfaces, including under bridges and through road-spanning culverts. The locations appear as artificial 

dams in the DEM, causing backfills, often extensive, during hydro-conditioning and often leading to 

incorrect delineations as flow is routed along roadside ditches or other alternative paths (Poppenga et al., 

2014). It is necessary to “burn in” culverts to correct the problem, lowering a line of cells through the 
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artificial impediment in the DEM to allow the flow direction algorithm to correctly route flow through to 

the downstream end.  

This process was complicated by missing culvert location data for most roads along the Maine 

coast. The Maine Department of Transportation (DOT) has publicly-available crossing point data for 

three structure types (i.e., bridges, cross culverts, and large culverts) along state roadways. However, 

these represent only a fraction of the total number of road-crossing culverts in the study region, making it 

necessary to first identify culvert locations along local (non-DOT) roads, railroads, and other engineered 

structures before proceeding with the burning process. A common solution to this problem is to find 

intersections in existing spatial data layers for roads and stream networks, but alignment issues between 

the available NHD stream lines and LiDAR-derived DEM terrain led to inaccurate imposition of flow 

paths in the study domain (Poppenga, Gesch and Worstell, 2013). Additional culvert lines were manually 

placed and burned into the coastal Maine DEM following the methodology of Van Dam (2022).  

2.2.2. Watershed Drainage Divides 

Watersheds constitute the physical spaces in which runoff processes governed by fundamental 

drivers deliver surface water and transported constituents, including pollutants sourced on the landscape, 

to coastal waters in spatially predictable patterns. As such, they represent meaningful units for 

consideration during spatial analyses and ecosystem management decision-making (Montgomery, Grant 

and Sullivan, 1995; Buzzelli, 2020). Described here is the partitioning of the landscape into nontidal 

watersheds that deliver runoff through single channelized outlets and margin watershed areas that deliver 

runoff as overland flow. 
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2.2.2.1. Watershed Delineation  

The D8 flow accumulation data for a domain allows the visualization of flow patterns and 

networks and the proper placement of “pour points” coincident with watershed outlets ( ’Callaghan and 

Mark, 1984). A watershed algorithm uses a selected pour point in conjunction with a flow direction raster 

to identify all cells that contribute flow to that outlet, which can then be converted to a polygon feature 

representing the watershed boundary (Esri, 2016). Pour points can be placed anywhere in a DEM to 

delineate the contributing drainage area to a particular cell, but in practice they are most often placed at 

physically meaningful locations such as stream outlets. In this case, they are positioned at the confluence 

of nontidal channel networks and tidal water bodies. 

 he U. . Geological  urvey’s National Hydrography  ataset (NH ) “Flowline” dataset was used 

as the definitive set of rivers and streams reaching the Maine coast for this research. While the NHD 

includes watershed boundaries at multiple scales, these were not delineated at sufficiently high resolution 

nor with sufficient accuracy to be usable for our analyses, leading to the need to delineate our own 

watersheds from the outlet points to ensure proper association of contributing watershed areas to the 

coast’s many small inlets.  uring the analyses of Smith et al. (2016) the dataset contained 535 stream 

lines that intersected with the coastline boundary, leading to the delineation of 535 nontidal watersheds. 

Subsequent densification of the dataset by the USGS added a further 1,660 small coastal streams, for a 

total of 2,195 nontidal watershed outlets for the current analysis.  

 he term “pour point” denotes the outlet of a watershed, i.e. the point from which surface flow 

“pours” out of an area (Esri, 2016). When delineating a nontidal watershed (i.e., the landscape 

contributing flow to a stream above its tidal limit) from a DEM, the pour point is located where a stream 

meets the shoreline boundary layer. Using the updated NHD dataset as the authoritative set of coastal 

Maine streams, the theoretical implementation of this would be the intersection of the NHD flow lines 



29 

 

with the shoreline of the Maine townships boundary layer. However, NHD lines do not align perfectly 

with the DEM-derived flow direction and accumulation rasters used for watershed delineation. 

Accordingly, it was necessary to manually place a pour point for each of the 2,195 NHD outlets at the 

intersection of the shoreline boundary and the nearest major flow accumulation line present in the D8 

flow accumulation raster. Pour points were used in conjunction with the hydrologically enforced 2 m flow 

direction raster to update the boundaries of the 535 original nontidal watersheds and delineate 1,660 new 

small nontidal watersheds that fell within the original margin areas.  

2.2.2.2. Margin Watershed Area Delineation  

The updated Margin Watershed Area (MWA) comprises the coastal landscape falling between the 

shoreline and the boundaries of the 2,195 nontidal watersheds and was delineated as a polygon clipped to 

those two data layers. Unlike stream and river watersheds that function as ‘natural units’ (Dungan et al., 

2002) with distinct individual boundaries and surface flow that exits through single outlets, surface water 

runoff flow paths from margin watershed areas do not converge into single channel outlets but rather 

enter estuarine waters as non-channelized overland flow or shallow concentrated flow, where the total 

margin area contributing runoff to a coastal embayment is dependent on the placement of the outlet line 

for that embayment. The MWA polygon was split into a regular grid of 30 x 30 m polygon “cells” to 

support parameterization of margin watershed areas for later aggregation and analysis using variable 

embayment outlet locations. 

2.2.3. SDR Parameterization 

An exhaustive accounting of all the bacteria pollution along the Gulf of Maine coast would 

require direct bacteria source tracking, comprehensive modeling of the overland and channelized flow 

that transports the bacteria, and detailed three-dimensional modeling of the complex, temporally variable 

flow paths through tidal embayments. Some of these types of information have been produced 
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independently for limited subsets of the problem domain (Sims and Kaczor, 2017; Cronin, Smith and 

Fisher, 2022; Casella et al., 2023; Alahmed, Ross and Smith, 2022; Ross et al., 2021), but their 

acquisition for the entire coast is beyond the current capacity of the researchers working in this domain or 

their partner stakeholder agencies. In order to understand relations between landscape conditions and 

estuarine bacteria pollution levels to support scientific decision-making, both nontidal watershed units 

and margin watershed areas required parameterization with proxy metrics from spatial data corresponding 

to the bacterial SDR culprit categories. 

Proxy metrics are used across the sciences as stand-ins for processes or parameters that cannot be 

measured directly or for which obtaining data would be prohibitively difficult (Sutton et al., 2009; Wei 

Luo et al., 2009; Chen and Nordhaus, 2011; Maina et al., 2012; Schilling et al., 2014; Demattê et al., 

2020; Jennings, McCormack and Sheane, 2020; Royer-Gaspard, Andréassian and Thirel, 2021; Stirpe et 

al., 2021; Roydhouse et al., 2022). The choice of specific proxy metrics for analysis was guided by theory 

and knowledge of processes related to coastal bacteria SDR, prior research findings in the Gulf of Maine 

coastal domain, and expert stakeholder input through collaboration engagement with Maine DMR 

managers to identify processes relevant to decision science objectives. Metric selection was constrained 

by the public availability of relevant spatial data. General rationale for selecting source, delivery and 

residence time metrics are outlined in this section.  

Source Metric Categories: Source proxy metrics are chosen to capture processes related to the 

generation of bacteria and pollutants. The pathogens under particular consideration for this research are 

sourced from the feces of warm-blooded animals, including humans, with sewage being a known 

problem. Source categories fall into two types, point sources and nonpoint (distributed) sources. One set 

of selected source proxy metrics encompasses known outfall point sources, which can deposit waste 

directly into estuarine waters. A second set relates population distribution in the landscape to the nonpoint 

source generation of waste from humans and their pets. A distinction here was made between year-round 
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residents captured by census data and the large seasonal (primarily summer, for the coastal zone) tourist 

population addressed as the distribution of addressable structures, including vacation homes that may 

stand empty during the off-season. A third set relates land use and cover to other nonpoint sources 

aggregated at the landscape scale. These sources include anthropogenic influences such as agriculture as 

well as source processes related to wild animal populations.  

Delivery Metric Categories: Pollutant delivery metrics are proxies for the transport of bacteria 

and pollutants from the landscape into estuaries through surface water runoff. These processes can be 

divided generally into two primary categories related to the generation of runoff during precipitation 

events and the efficiency of movement of that runoff across the landscape. Runoff generation, which 

governs the capacity to wash pollutants from their sources in the landscape, is addressed using proxy 

metrics related to soil types that determine partitioning of precipitation between infiltration and runoff 

during storm events. (A land use metric considered in the Sources category, percent developed/urban, also 

serves as a proxy metric for total impervious surface in a landscape). Runoff efficiency is addressed with 

proxy metrics related to the density of channelized and engineered drainage networks, landscape slope 

and terrain that governs drivers of overland flow, and proximity of generated runoff to coastal waters.  

Residence Time Metric Categories: Residence time metrics are proxies for processes that control 

the length of time polluted water remains in an estuary unit. The processes driving pollutant evacuation 

fall primarily into two broad categories, freshwater forcing from landscape sources and physical forcings 

from external sources such as tidal action, currents, and wind. For freshwater forcing, proxy metrics were 

selected to account for embayment size and the ratio of runoff volume to estuary volume during high-

magnitude precipitation events. External forcings are more challenging to capture with proxies at a 

coastwide scale due to the complex, three-dimensional and temporally variable movement of water within 

embayment settings. Three plan-view morphology measures were selected as proxies for processes that 

affect external forcings and within-estuary mixing. Estuary openness, a measure of how enclosed an 
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embayment is in relation to the waters beyond outlet, was chosen to address the ease of exchange of 

estuary water with the waters of the greater Gulf of Maine. Estuary circularity, a measure of the 

compactness vs branching of an embayment, was chosen as a proxy for the relative amount of mixing 

within an estuary. Outlet bearing, a measure of embayment orientation, was selected to account for the 

effect of prevailing wind and wave direction on estuary forcings. 

2.2.4. Proxy Spatial Data Metrics 

Watershed area metrics: Proxy spatial data metrics related to bacteria sources and delivery can be 

preemptively applied to nontidal watershed and margin cell polygons for later selection and aggregation, 

preventing the need to re-calculate metric values from the various source data layers every time an estuary 

unit is delineated. Most of these metrics are applied using simple overlays of watershed polygons against 

their respective data layers to calculate the fraction of overall polygon area within the relevant metric data 

class or total counts of points within the polygon; the latter is easily divided by polygon area to calculate 

density. Exceptions to the simple overlays are described below. 

Geomorphically-derived (non-engineered) drainage density within watershed polygons was 

calculated using stream networks extracted from the 2 m flow accumulation raster due to 

underrepresentation of first-order and zero-order flow paths in available NHD data. Due to lack of data 

about channel head locations across the study domain, three sets of polylines representing stream 

networks based on source area to channel initiation of 0.30, 0.20, and 0.05 km2 were delineated from the 

flow accumulation raster following the methodology of Van Dam (2022). Total stream network length 

within each polygon was calculated and divided by the corresponding watershed drainage area. 

Geomorphic + Engineered drainage density was similarly calculated by adding in the total length of the 

road network to the stream network. 
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Population data were derived from aggregated data at the census block level, the finest level of 

detail available. Population totals within census blocks were converted to population densities, which 

were then aggregated for watershed area polygons using area-weighted overlays of census block 

polygons. Performing these overlays required the assumption that population density within individual 

census blocks was uniform, which is not always true in a rural state with geographically large blocks. 

Estuary area metrics: Residence time proxy metrics for estuary areas require the specific 

embayment polygon to be delineated before they can be calculated. While this precludes the possibility of 

pre-parameterizing the estuary space with proxy metrics, calculations can be described. Estuary mean 

depth and volume are calculated by overlaying the delineated embayment polygon against bathymetric 

raster data. Estuary openness is calculated as the ratio of the length of the outlet line (i.e., the width of the 

embayment mouth) to the perimeter of the embayment. Estuary circularity is calculated as the ratio of the 

embayment area to the area of a circle with the same perimeter using the Polsby-Popper score (Polsby and 

Popper, 1991; Cox, 1927). Outlet bearing is calculated as the azimuth of an outward-pointed line 

perpendicular to the estuary outlet line.  

2.3. Results 

2.3.1. Flow Pathways  

Flow path delineation for this project resulted in the creation of several new data layers spanning 

the length of Maine’s coastal landscape at two meter resolution. These runoff pathway layers provide the 

necessary data for nontidal watershed and margin watershed area delineation for this research, as well as 

for subsequent delineations of estuary units. 

• Culvert polylines – for non-State roads without DOT culvert point data, this data layer represents 

the most complete set of georeferenced culvert locations for coastal Maine. 
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• Hydrologically enforced bare earth DEM – this raster, the product of burning culvert polylines 

into the raw 2 m DEM for coastal Maine, served as the base layer from which high resolution 

flow path data were derived. 

• D8 flow direction raster – this layer, derived from the hydrologically enforced DEM, contains 

flow direction data necessary for delineating watershed areas at higher resolution and with more 

accuracy than existing NHD watersheds. 

• D8 flow accumulation raster – this layer, derived from the D8 flow direction raster, contains flow 

pattern data (location and relative amount) necessary for the placement of “pour points” (outlets) 

for delineating watershed areas. 

A total of 6,097 DOT culvert points fell within the footprint of the coastal Maine DEM. An 

additional 29,056 culvert lines were manually placed and burned into the DEM. Without this extensive 

hydro-enforcement, runoff from sections of the landscape would be erroneously routed into the wrong 

watersheds and thus wrong coastal estuaries (Figure 2.5). In the two most extreme examples, inland 

regions of 30.1 and 232.4 km2 were incorrectly assigned due to single missing breach lines until proper 

flow paths were enforced. 

2.3.2. Watershed Delineations 

In the approximately five years between initial LPRU nontidal watershed delineation by Smith et 

al. (2016) and the re-delineation of nontidal watersheds for this research, the number of coastal stream 

and river outlets represented in the National Hydrography Dataset increased from 535 to 2,195. The 

updated nontidal watershed dataset accounts for a total of 16,625 km2 of drainage area all falling within 

the borders of the State of Maine, with median watershed area 0.52 km2, minimum 0.005 km2, and 

maximum 1,660.5 km2. 
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Figure 2.5. Flow lines at Cadillac Mountain on Mount Desert Island delineated from non-hydro-enforced 

(left) and hydro-enforced (right) versions of two meter resolution digital elevation model (DEM). Missing 

culverts in the non-hydro-enforced DEM result in artificial fills (teal regions) forming behind some road 

crossings and in runoff (red flow lines) from the northwest side of the mountain being incorrectly routed 

along the mountain access road to the Kebo Brook stream network to the east, ultimately entering coastal 

waters at Cromwell Cove southeast of Bar Harbor. Hydro-enforcement of the DEM by burning in road-

crossing culvert lines (black) results in delineated flow pathways (blue lines) that more accurately 

correspond to the actual channel network on the ground, with runoff from the northwest side of the 

mountain correctly routed into the Duck Brook watershed that enters coastal waters northwest of Bar 

Harbor, more than 3 km from Cromwell Cove and separated by a headland. 
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Because the 2 m DEM used for delineations extended only 1.5 km inland from the original 

margin boundaries, any of the 535 previously nontidal watershed boundaries that extended farther inland 

remained unchanged. Of a total of 8,640 km of boundary length for those watersheds, 4,195 km across 

417 nontidal watersheds were beyond the re-delineation area and were retained unaltered. Where 

discrepancies from original delineations appeared, they were most often caused by the addition of a road-

crossing culvert that had been missed during the original delineation process, swapping generally tenths 

of a square kilometer from one nontidal watershed to another (Figure 2.6).  

2.3.3. Margin Watershed Areas 

The addition of 1,660 coastal nontidal watersheds associated with NHD densification resulted in a 

decrease in apparent margin watershed area in the coastal domain by 964 km2, or almost 35%, as all new 

watersheds fell within what had previously been considered MWA (Figure 2.7). The total of 1,807 km2 of 

MWA was split into ~2.1 million 30 m by 30 m polygon “cells” for parameterization with SD proxy 

metrics (Figure 2.8). Where the grid of cells intersects with nontidal watershed or shoreline boundaries, 

MWA cell drainage area is as low as 10.0 m2. A small proportion of polygons (<2.67%) along nontidal 

watershed boundaries were merged to alleviate technical issues with selection and aggregation arising 

from their particular shapes and dimensions (Chapter 3), resulting in drainage areas greater than 900 m2. 
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Figure 2.6. Typical minor changes between Smith et al. 2016 (dashed red) and re-delineated (solid black) 

boundary lines for the Jones Creek nontidal watershed, Scarborough River estuary. The Jones Creek 

watershed (yellow) absorbed a total of 0.42 km2 (white) that had previously been delineated into adjacent 

nontidal watersheds (tan) or margin watershed areas (green). 



38 

 

 
Figure 2.7. Maps showing nontidal and margin watershed areas on Mount Desert Island. These appear 

here as delineated for “landscape pollution response unit” analysis by Smith et al. (2016) (left) and after 

updated delineations including additional stream outlets (right). Coastal margin watershed area extents 

(green) are defined by the absence of previously delineated (yellow) and newly-delineated (purple) 

nontidal watersheds.  
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Figure 2.8. Partitioning of Margin Watershed Areas (MWAs). The MWA, shown in brown in the inset 

map of Mount Desert Island, was divided into a regular grid of 30 meter polygon cells to accommodate 

parameterization with proxy metrics. Cell size and alignment was chosen to correspond with the 30 m 

resolution National Land Cover Database raster, the coarsest proxy metric data raster used in the analysis.  

 

2.3.4. SDR Parameterization and Proxy Metrics 

Spatial data proxies were identified for seven general types of coastal processes within the three 

SDR pollution culprit categories: point sources (S), population-related nonpoint sources (S), land use-

related nonpoint sources (S), surface water runoff generation (D), runoff delivery mechanisms (D), 

freshwater forcing in estuaries (R), and controls on estuary circulation patterns (R). A full list of processes 

and associated metrics selected for analysis with references (Table B.2) and publicly available sources for 

the data used in proxy metric calculation (Table B.3) can be found in APPENDIX B. 

All nontidal watersheds and MWA cell polygons were parameterized with a total of 36 proxy 

metrics within source and delivery culprit categories. Size distributions of polygons have been presented 
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in sections 2.3.2 and 2.3.3. Drainage density values including both terrain-based and engineered drainage 

structures range as high as 33.98 km-1 among nontidal watersheds (drainage area (DA) = 6.45 km2) and 

178.5 km-1 among full-size (DA = 900 m2) MWA cells. Median values are 5.2 km-1 and 0 km-1 for 

nontidal watersheds and MWA cells, respectively. Among nontidal watersheds population density ranges 

as high as 2,280.54 persons/km2 (DA = 0.20 km2) with median value 25.85/km2 and mean value 

66.86/km2, while among full-size MWA cells it reaches 96,989.5/km2 with median value 20.93/km2 and 

mean value 104.02/km2. Highest values for both watershed area types occur on or adjacent to the densely 

populated Portland peninsula in southern Maine.  

All but three proxy metrics related to proportions of land use (e.g., fraction rural) and soil 

drainage class (e.g., fraction poorly drained) are represented along the full range from 0% to 100% 

coverage among nontidal watersheds. The exceptions are fraction developed (maximum 97.2%), fraction 

farmed (86.2%), and fraction moderately well drained (96.5%). All land use and drainage class metrics 

were represented along their full range among MWA polygons.  

2.4. Discussion 

The accomplishment of the four functional objectives targeted by the research presented in this 

chapter establishes the spatial data necessary to facilitate setting identification and pollution vulnerability 

analyses in the coastal Maine problem domain. The outcomes provide a roadmap for researchers seeking 

to parameterize spatial domains related to runoff-borne constituents. Delineation of surface runoff flow 

paths in the problem domain resulted in the creation of highly detailed flow maps and watershed 

boundary delineations for partitioning runoff from land areas into tidal embayments that are components 

of estuary units. This process included the development of protocols for the identification of road-

crossing culvert locations from digital elevation models in the absence of other available spatial data. The 

research outcomes also provide the first comprehensive treatment of coastal margin watershed areas with 
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delineations based on physical runoff processes rather than previous approaches to the coastal zone that 

relied on jurisdictional boundaries. 

Methodological choices in the design of this research were driven by deficiencies of the National 

Hydrography Dataset, the only existing hydrography data layers encompassing our entire study domain, 

for representation of features at the scale of small coastal watersheds. The highest resolution catchment 

data available for the state of Maine at the time hydrographic data preparation was completed for this 

study were HUC-12 hydrologic units (Seaber, Kapinos and Knapp, 1987) from the NHDPlusV2. HUC 

polygons are convenient units of analysis and have been used in Maine for setting identification from 

aggregated proxy metric data in upland settings (Gerard, 2018). However, the HUC-12 dataset is not high 

enough resolution to include a separate watershed polygon for each small stream meeting the coast, 

instead featuring individual polygons for larger rivers and coastal “margin” catchments that span multiple 

adjacent embayments and encompass several streams. This limitation led Smith et al. (2016) to delineate 

nontidal watersheds from LiDAR DEMs, a choice mirrored in this research.  

The latest generation of the NHD, NHDPlus High Resolution (NHDPlus HR), does not have this 

limitation (Buto and Anderson, 2020). Each segment in the Flowlines stream network has an associated 

sub-catchment polygon. Sub-catchments along a stream network may be selected and aggregated to create 

a single nontidal watershed polygon for a stream meeting the coast. This generation of the NHD was not 

released for Maine until after delineations from LiDAR for this research had been completed but would 

have provided an attractive alternative to extensive DEM preparation and delineations for defining 

watershed boundaries. However, a separate remaining limitation of the NHDPlus HR is inconsistent 

stream line density for different areas of the state depending on data source resolution. The use of NHD 

stream networks to calculate drainage density values gives inconsistent results compared to DEM-derived 

networks as a result, supporting the use of the latter for this research. Additionally, the NHDPlus HR 

stream network still underrepresents the number of channelized drainage networks reaching the Maine 
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coast, so the total margin area delineated from the current data continues to be an overrepresentation of its 

true extent. 

Several lessons were learned during the course of coastal domain identification and 

parameterization. The first is a cautionary note about diminishing marginal returns and increased costs in 

the use of increasingly high resolution data sources (Zhang and Montgomery, 1994). The delineation of 

flow paths from 2 m LiDAR DEMs produced the highest resolution surface flow maps currently available 

for the coastal Maine landscape, compared to the 1:24,000 and 1:12,000 scale stream lines of the USGS 

NHDPlus dataset. Examinations of the role of DEM resolution in the accuracy of stream network and 

watershed delineations have revealed that high-resolution (1 m and 2 m) DEMs provide greater accuracy 

in hydrologic delineations than lower-resolution (10+ m) DEMs (Li and Wong, 2010; Lidberg et al., 

2017). However, this came at the expense of considerable time and effort addressing the issue of hydro-

enforcement. Separate delineation of flow for sections of the coastal domain using lower resolution 1/3 

arc-second (~10 m) DEMs does not capture small-amplitude features at the same level of detail. 

However, it does produce substantially similar overall flow path patterns at the landscape scale with only 

a fraction of the hydro-enforcement being necessary. While the use of high-resolution LiDAR DEMs is 

appropriate for areas and analyses where high levels of detail are needed, a lower-resolution DEM may 

have sufficed for the specific objectives of this project.  

The process of parameterizing the Gulf of Maine coastal domain also revealed data gaps related 

to flow path delineation, watershed outlet identification, and spatial data for proxy metrics. The accuracy 

of overland flow path delineation was potentially limited by two primary data gaps, both related to human 

engineering. The lack of location data for culverts on non-DOT (i.e., local) roads added considerable time 

to the length of the project and introduced potential sources of error (both of omission and commission), 

as potential road crossing locations had to be identified and delineated manually through DEM 

interpretation and, where available, photographic evidence. There is also a dearth of available data across 
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the study domain for storm sewers, which remove precipitation runoff from the land surface and reroute it 

through subsurface engineered networks. In many cases, storm drain runoff will be discharged from an 

open pipe back into the nearby stream system or water body (or a constructed ditch or swale which 

connects with same) into which the runoff would have flowed pre-development, allowing it to complete 

largely the same journey to the tidal coastline and generally not affecting watershed boundaries. In more 

complex cases, storm sewer systems may be spatially extensive or boundary-crossing, requiring more 

work to identify network connectivity. Deficient representation of these networks results in a potentially 

distorted view of delineated flow paths as they relate to where concentrated flow reaches coastal waters.  

Residence time-related processes were the most difficult of the pollution culprit categories to 

capsulize with proxy metrics. Metrics intended to address external forcing processes relied on plan-view 

morphometry, which do not fully capture the three-dimensional morphology of the estuarine water body. 

An additional factor not captured was the influence of outer islands or peninsulas beyond delineated 

embayment outlets that might moderate the effects of ocean swells and similar energetic forcings. 

Other metrics were considered for this research but ultimately omitted due to lack of available 

data or concerns about data reliability. Septic systems, most commonly found in rural and semirural areas, 

are known to be potential contributors to water quality issues including fecal contamination in nearby 

water bodies when poorly sited or maintained (Reay, 2004; Sowah et al., 2014; Withers et al., 2014; 

Geary and Lucas, 2019). However, publicly available compiled data on septic system locations for the 

state of Maine was not available at the time of this study. Available biota-related data layers such as 

seabird nesting islands and shorebird areas were considered as source proxy metrics. Bird DNA markers 

were found in feces at 100% of sampling sites throughout the year during source tracking at Goosefare 

Brook in southern Maine (Sims and Kaczor, 2017). Gulls have also been implicated as a common fecal 

bacteria source in shellfish growing areas in New Zealand (Campos, Kelly and Banks, 2023) and at sites 

within the Great Lakes in the US and Canada (Staley and Edge, 2016; Brown et al., 2017), although at a 
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lower level than other sources including human waste. Despite their prevalence in DNA tracking results, 

avian habitat was omitted from this study due to expert input from MEDMR shellfish program managers 

over concerns with reliability of the available spatial data for coastal Maine. 

2.5. Conclusions 

This chapter addressed the process of defining a land-sea domain relevant to bacteria pollution 

vulnerability in coastal estuaries. This process involved first the separation of the coastal landscape into 

categories of physical space based on differences in surface water runoff processes. A key scientific 

advancement of this portion of the research was the consideration of margin watershed areas immediately 

adjacent to the coast based on flow path delineation and runoff modality rather than jurisdictional 

boundaries, filling a research and management data gap in the Gulf of Maine. The flow path delineation 

process also highlighted the importance of proper flow routing for accurate connectivity of landscape 

areas to tidal embayments and resulted in the highest-resolution flow path data currently available for the 

coastal Maine domain. Selection of spatial data layers to serve as proxy metrics for processes related to 

bacteria pollution sources, delivery, and residence time revealed gaps among publicly available data 

layers and highlighted the importance of collaboration with expert stakeholders for identification and 

vetting of metric categories and data sources. The research produced a workflow for domain 

parameterization for identification of culprit processes and proxy metrics, coastal surface runoff 

pathways, watershed drainage areas, and proxy metrics representing attributes relevant to pollution 

problems. The outcomes provide a roadmap for researchers and managers to approach coastal 

management problems related to waterborne pollutants that can be applied to both coastal and inland 

landscapes. 
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CHAPTER 3 

DIAGNOSTIC FRAMEWORK FOR COASTAL SETTINGS IDENTIFICATION 

3.1. Introduction 

Bacteria pollution problems in coastal estuarine systems are governed by physical processes 

related to pollution production in a landscape, transport of pollutants through coastal watersheds into tidal 

waters, and delays in the evacuation of pollution from estuarine waters through the combined influence of 

freshwater discharge and tidal exchange (Smith et al., 2022). Previous analyses using stream and river 

watersheds along the western Gulf of Maine indicate that proxy metrics derived from spatial data 

representing pollutant source, delivery, and residence time (SDR) processes can be used to identify and 

characterize coastal settings (Smith et al., 2016; Roy et al., 2018). The identification of varied conditions 

based on attributes related to pollution dynamics is important for coastal resource managers such as the 

Maine Department of Marine Resources (MEDMR) who support public health by ensuring that shellfish 

harvested from estuary mud flats are not contaminated by bacteria and are safe for consumers. This is 

accomplished primarily by temporarily closing harvest areas after high-magnitude precipitation events. 

Knowledge of the coastal settings associated with individual mud flat harvest areas provides a basis for 

the development of customized management strategies related to coastal planning, deployment of 

monitoring resources, and the design of setting-specific harvest closure policies.  

Research designed to identify and distinguish coastal settings ideally clarifies the conditions of 

coastal landforms and attributes governing pollution problems in a manner useful to targeted management 

objectives such as shellfish sanitation and public health. Merriam-Webster (2023) defines a “setting” as 

the “time, place, or circumstances under which something occurs or develops,” which aligns with the goal 

of developing tools to support coastal management decisions in response to pollution problems affecting 

shellfisheries under varied conditions. The term has been widely used as a spatially framed description of 
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physical conditions and in other cases to describe human activities, both of which are relevant to coastal 

pollution management and solutions (Lichter, Zviely and Klein, 2010; Van Den Berg, Jorgensen and 

Wilson, 2014; Lischeid et al., 2017). 

There has been interest in dividing and classifying Maine’s extensive coastline into different 

settings for at least 180 years. A four-compartment schema based on coastal morphology was first 

published by the state’s inaugural  tate Geologist (Jackson, 1837). Kelley’s (1987) comprehensive coastal 

census formalized this four-compartment schema based on principal component analysis of landscape 

physiography that identified marsh, ledge, and mudflat-dominated components. Fractal analysis of coastal 

shoreline plan-form complexity further supported the classifications by Kelley (Tanner, Perfect and 

Kelley, 2006). The broad distinctions in coastal settings included broad, arcuate beaches in the southwest, 

deeply indented coastline in the south central, island-bay complex in the north central, and rocky cliffs in 

the northeast. These coastal conditions are familiar to Maine residents and visitors, but it is important to 

note that they do not prescriptively describe conditions at individual sites within each compartment. 

Kelley (1987) cautions that “[a] ledge-dominated [site] from the northeast [compartment], for example, 

more closely resembles ledge environments in other compartments than marsh or flat-dominated [sites] 

from the northeast.”  

Pathogenic water pollution problems can occur in local areas. High bacteria counts or closures 

sometimes occur at monitoring sites immediately adjacent to sites with safe bacteria counts (Maine 

Department of Marine Resources, 2021). This observation indicates that attempts to define and classify 

coastal settings in relation to bacteria pollution problems must work at local rather than regional scales. It 

is necessary that the scales of consideration account for the physiographical and land use characteristics 

of individual estuaries or sub-estuaries and their contributing watersheds. 
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A range of approaches to classify estuarine setting types have been used around the world. The 

research efforts have ranged from primarily embayment-focused to holistically considerate of land-sea 

connections in coastal areas. Cluster analyses of moderate to large coastal estuaries in Tasmania and the 

United States have identified nine validated estuarine setting types based on overlapping sets of 

embayment specific geomorphic and hydrologic variables using unsupervised k-means clustering (Edgar 

et al., 2000; Engle et al., 2007). Multi-level hierarchical decision tree classifications for different estuary 

settings have been developed and applied in New Zealand (Hume et al., 2007) and South Africa (Van 

Niekerk et al., 2020). The classification approach broadly combined expert judgment rules for estuary 

morphologies and land cover characteristics to create ecosystem classification subtypes. Simenstad et al. 

(2011) incorporated ecoregion and ecosystem data, hydrogeomorphology, and land cover into a six-tier 

classification hierarchy within the Columbia River estuarine system in Washington. 

When working in a coastal study domain with a tidal shoreline as complex as in Maine, a 

substantial ontological challenge that precedes setting identification is the establishment of a working 

definition for an embayment (Smith and Mark, 2003). Terrestrial watersheds have discrete boundaries and 

single outlet points through which gravity-driven surface water discharges to estuaries, making them ideal 

‘natural units’ for spatial analyses (Dungan et al., 2002). In contrast, the outer boundary of tidal estuary 

embayments are not as clearly defined. The physical significance of an embayment outlet line used in the 

context of a delineated setting identification is to provide a partition between two bodies of water such 

that the embayment above the outlet and its contributing watershed can be considered as a unit. However, 

water flow within an estuary system is driven by multiple processes including freshwater forcing, tidal 

actions, and wind, leading to complex flow paths, including net movement of water inward from beyond 

the outlet in some locations within the study domain (Ross et al., 2021; Alahmed, Ross and Smith, 2022; 

Hillyer et al., 2022; Bailey et al., 2023).  
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Some published resources, such as the U  Geological  urvey’s (USGS) National Hydrography 

Dataset (NHD), include embayment limits. These are primarily at the outlets of large embayments and 

where riverine estuaries meet a broadly sweeping coastline, without subdivisions useful for identifying 

settings to enable pollution prediction surrounding individual mud flats where shellfishing occurs. The 

USGS Geographic Names Information System (GNIS) contains points for almost 1,000 named “bay” 

type features along Maine’s tidal coastline but poses the opposite problem, often defining very small 

embayments without consistency of naming convention. Consultation with coastal researchers familiar 

with Gulf of Maine morphometry suggests that there has been no definitive mapping of coastal Maine 

embayments, nor a robust definition or delineation rules for “embayment” in this ria coastal setting (J. 

Kelley, pers. comm.). 

The project objective being pursued is the identification of coastal setting types using SDR proxy 

metrics for estuary units delineated from a static set of outlet lines as Smith et al. (2016) had done for the 

study domain with nontidal watersheds to identify Landscape Pollution Response Units (LPRUs). 

However, outcomes from the stakeholder engagement focused on estuary units indicate that a flexible 

system to identify coastal settings without a priori determination of what a relevant coastal unit looks like 

is a necessary and important research component. Two primary objectives thereby guided the process of 

setting identification for pollution management decision support tool development: 1) the development of 

an intellectual framework for delineating estuary units comprising nontidal watersheds, margin watershed 

areas, and embayment areas with associated SDR proxy metrics using any embayment outlet line drawn 

on a map, and 2) the establishment of rules for identifying a set of archetypical coastal setting types, or 

Coastal Pollution Response Units (CPRUs), for the Gulf of Maine study domain.  
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3.2. Methods 

3.2.1. Stakeholder Collaboration 

Stakeholder engagement activities were organized to establish criteria for embayment 

delineations on the Maine coast. A meeting to address the topic was convened with faculty and graduate 

students from the University of Maine and University of New Hampshire and shellfish program managers 

from the MEDMR, a key stakeholder group for this research with expertise and insight into the coastal 

sites under consideration. In a collaborative mapping exercise using a large print-out of the Maine coast, 

researchers and stakeholders collectively attempted to identify outlets to delineate embayment areas of 

particular importance to shellfishing management and ecological research (Figure 3.1).  

There was a general consensus of what an embayment looks like relative to coastal geomorphic 

conditions and clear agreement on the outer limits of large embayment complexes and riverine estuary 

mouths delineated with a set of outlet lines similar to that of the NHD. However, there was surprisingly 

little agreement on outlet placement for sub-embayments within larger complexes and other edge cases, 

primarily due to uncertainty about surface water flow path connectivity at the local scale. Management-

focused delineation suggestions were sometimes at odds with what coastline morphology would suggest 

due to focus on site-specific factors and field observations.  

The exercise failed to establish comprehensive rules for delineating smaller subdivisions to 

identify settings at a more local level useful for management of individual mud flats. As a result, it was 

necessary to develop an alternate approach to the problem that did not rely on the predetermination of a 

static set of estuary outlets for setting delineation.  
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Figure 3.1. Results of embayment outlet mapping exercise for study domain. a) Coastal researchers, 

students, and sta eholders from the Maine  epartment of Marine Resources drawing on a 3.05 m (10’) 

map of the Maine coast collaboratively placed embayment outlets (black lines) where b) riverine estuaries 

met the sweep of the coastline and c) between the seaward ends of long peninsulas, but could not 

establish comprehensive scaling rules for the delineation of nested sub-embayments. 
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3.2.2. Classification System Conceptualization 

In order to meet research needs, any setting identification system framework had to fulfil a set of 

primary design requirements (Simenstad et al., 2011). These requirements suggest the design of an expert 

system framework in which a knowledge base is combined with decision-making rules to convert 

relatively simple user input into expert knowledge about a setting (Jackson, 1986; Shu-Hsien Liao, 2005). 

The problem lends itself to a geographic information system (GIS) based approach, where a user-drawn 

outlet line on a map is used in conjunction with a spatial database to automatically delineate an 

embayment and contributing terrestrial watershed area (an “estuary unit”), aggregate relevant SDR proxy 

metric data for the delineated unit, and then apply a set of setting identification rules to sort the unit into 

one of several CPRUs (Figure 3.2). This is implemented in the form of the software tool developed for 

this research referred to as the “Estuary Builder” which runs as an add-on tool for the popular ArcGIS 

mapping program.  

3.2.3. Study Domain and Estuary Units 

The study domain for this research is the coastal landscape and waters of the state of Maine on 

the western Gulf of Maine. Maine’s ~5,600  m of tidal coastline is drained by 2,195 coastal stream or 

river networ s with outlets recognized in the U G  NH  “Flowline” dataset, as well as six large rivers 

(Saco, Androscoggin, Kennebec, Penobscot, Piscataqua, and St. Croix) that drain the interior of the state. 

The latter two rivers also mar  the state’s southwestern and northeastern coastal borders, respectively. 

These six rivers and their downstream areas are a data gap remaining from the LPRU analyses of Smith et 

al. (2016). They are omitted from this analysis due to their very large size in comparison to other 

watersheds under consideration. Between the boundaries of the 2,195 non-tidal watersheds and the Gulf 

of Maine shoreline is a total of 1,807 km2 of “Margin Watershed Area” (MWA) that does not support the 

natural formation of stream channel networks such that all precipitation runoff occurs as overland flow.  
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Figure 3.2. Simplified flowchart illustrating steps the expert system tool uses to identify coastal setting 

type for estuary unit delineated from user-defined outlet line. S, D, and R refer to bacteria source, 

delivery, and residence time, and GoM refers to the Gulf of Maine domain. 
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The seaward boundary of the study domain is a simplified shell encompassing the many islands off the 

mainland coast, with an outer extent at Isle Au Haut (Figure 3.3). 

Polygons delineated from two meter resolution LiDAR digital elevation models (DEMs) by Van 

Dam (Chapter 2) identify 2,195 nontidal watersheds gridded 30 m cell polygons for MWAs. The coastal 

land areas within the nontidal watersheds and MWA sub-components of each “estuary unit” were 

parameterized with proxy spatial data metrics related to bacteria sources in the landscape and delivery 

efficiency processes, and additional proxy metrics relating embayment morphometry to flushing 

processes that affect estuarine residence time were identified.  

Previous LPRU delineations used 2 m DEMs as the base layers for delineating watershed areas. 

However, their large file size led to slow processing times and strained available computer resources 

during geoprocessing operations. As a result, a lower-resolution one-third arcsecond (1 3”, ~10 m)  EM 

from NOAA incorporating both landscape and seafloor elevations throughout the study domain was 

selected to act as the base layer for embayment delineation and watershed area selection in the expert 

system tool. Due to lack of in-estuary flow pattern data for most of the study domain and limitations of 

static map-based geoprocessing tools for watershed delineation that require unidirectional, converging 

flow paths, the decision was made to route flow out of embayments based on bathymetry by treating the 

sea floor as a landscape surface. To ensure consistency with flow paths from 2 m data, raised ridge lines 

representing nontidal watershed boundaries and road-crossing culvert breach lines delineated during data 

preparation summarized in Chapter 2 were burned into the 1 3”  EM and  8 flow direction and 

accumulation rasters were prepared from the hydro-enforced DEM following methodology of Van Dam 

(2022).  
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Figure 3.3. Coastal Maine study domain for coastal setting diagnostic analysis. The domain comprises 

coastal nontidal watersheds (purple), margin watershed areas (brown), and coastal waters (blue) along the 

western Gulf of Maine. 

 

 

 

 

 



55 

 

3.2.4. Estuary Units - Data Aggregation and Classification 

A spatial data tool was developed for Esri’s ArcMap (ArcGI  Desktop) to aggregate spatial data, 

delineate estuary units, and identify the estuary setting classification. Automated routines were written as 

a “script tool” in the Python (version 2.7) computer language. The tool incorporates functions from the 

ArcPy library that replicate individual geoprocessing functions found in ArcGIS software (Esri, 2022, 

2021a). This allows a series of operations to be strung together to perform more complex tasks such as 

selecting and combining data layers intersecting a delineated watershed. Version 0.18.2 of the scikit-learn 

module containing machine learning and statistical tools was used for setting identification workflows 

(Pedregosa et al., 2011; Buitinck et al., 2013). During the course of the project it was announced by Esri 

that ArcMap would be discontinued and State of Maine agencies and the University of Maine System 

began to move to the replacement software, ArcGIS Pro. A parallel version of the code was adapted for 

the Python (version 3.8) computer language used by ArcGIS Pro as a result. Scikit-learn version 1.0.2 

was used for this update. 

Estuary units are delineated from user-defined outlet lines and a spatial database in a sequence of 

geoprocessing steps. Users may either load a data layer containing pre-drawn outlet lines or interactively 

draw one or more desired estuary outlets on a map. As an initial step, a new polygon type shapefile for 

output data is created from a template included in the tool geodatabase. This output layer is structured 

with an attribute table containing a column for each SDR proxy metric to be calculated and a row for each 

estuary unit outlet.  

For each outlet line, a temporary “selector” watershed polygon is delineated from the D8 flow 

direction raster (Van Dam, 2022). This polygon comprises the embayment area above the outlet and all 

landscape area that contributes flow to the embayment, with an upper limit at the edge of the DEM 1.5 

km inland of the MWAs. The selector polygon is used to select all nontidal watershed and MWA cell 
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polygons it intersects within the delineated area. Because each of these watersheds is pre-parameterized 

with proxy metrics that can be accessed by the tool script, the tool can aggregate the attribute data of the 

selected polygons to calculate whole-watershed, margin-only, and highest high tide-only values for source 

and delivery proxy metric categories. Proxy metric values and a merged watershed polygons representing 

the entire terrestrial contributing area for the delineated estuary unit are then added to the output 

shapefile. The full set of SDR proxy metrics calculated by the spatial data tool and their aggregation 

methods can be found in Table C.1. 

A small subset of residence time proxy metrics related to estuary morphometry cannot be 

aggregated from pre-parameterized data and must be calculated at the time of tool run. The selector 

polygon is clipped to include only the embayment area to calculate these metrics. Mean estuary depth is 

calculated by overlaying the resulting embayment polygon against bathymetric raster data (Esri, 2021b). 

Mean depth is multiplied by embayment polygon area to calculate total estuary volume. Estuary openness 

is calculated as the ratio of the length of the embayment outlet line to the length of tidal shoreline within 

the embayment. Estuary circularity, a measure of compactness, is calculated as the ratio of the 

embayment area to the area of a circle with the same perimeter (Polsby and Popper, 1991; Cox, 1927). 

Outlet bearing is calculated as the azimuth of an outward-pointed line perpendicular to the user-defined 

estuary outlet line.  

Setting identification rules are based on unsupervised Gaussian mixture model (GMM) clustering 

of estuary units delineated with the initial, data-aggregation version of the spatial data tool. Model fitting 

was performed on a matrix of SDR proxy data for 500 delineated units using the scikit-learn Python 

library. Clustering rules were then integrated into the second iteration of the tool. 

Unsupervised machine learning methods do not require labeled data or target variables and are 

used to find patterns and groupings in datasets. The unsupervised learning approach was deliberately 
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chosen for the setting analysis over supervised approaches because MEDMR bacteria sampling 

techniques produce bias in the bacteria count record. This produces several outcomes that affect the 

analysis. First, areas with known long-term pollution problems are closed to shellfishing and never 

sampled. Second, sites where one test result triggers a temporary closure are retested until they are safe to 

reopen, expanding the dataset in certain locations. A third and potentially more important reason relates to 

equifinality (Beven and Freer, 2001). Two watershed units with very different SDR characteristics – for 

example, one with a source problem and one with a residence time problem – may coincidentally have 

similar bacteria counts as their SRD processes collectively create similar outcomes but for entirely 

different reasons. Accordingly, it is important that setting types reflect the particular combinations of 

SDR processes independent of bacteria counts at a particular site.  

Past setting identification analyses using proxy metrics for Maine watersheds have used k-means 

unsupervised clustering (Smith et al., 2016; Gerard, 2018). The k-means clustering algorithm uses 

iterative expectation-maximization steps to find the centroids of k clusters and partitions points to the 

nearest centroids in d-dimensional parameter space. A limitation of this clustering method is that it tends 

to create circular clusters with the same radius regardless of underlying data structure. In contrast, the 

Gaussian mixture model (GMM) unsupervised clustering algorithm with similar calculation steps relaxes 

some of the limiting assumptions of the k-means algorithm such as allowing full covariance to identify 

clusters with different shapes or densities. This provides a modest improvement for many real-world data 

scenarios (Vanderplas, 2016). The unsupervised approach was thereby pursued using GMM to better 

account for outliers and a larger range of cluster constellations.  

A principal component analysis (PCA) was first performed on standardized (centered by 

subtracting the mean and scaled to unit variance) metric values to identify linear combinations of metrics 

that describe the greatest variation in the data and reduce dimensionality (Ding and He, 2004; Vanderplas, 

2016; scikit-learn developers, 2023d). This approach responded to the high degrees of collinearity among 
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some sets of proxy metric columns. Selection of the final number of principal components was based on 

“marginal explained variance” (MEV) for each additional PC using the Rule N-criterion (Lipscomb, 

1998; Preisendorfer, Zwiers and Barnett, 1981; Gerard, 2018). MEV for each PC in the SDR metrics 

dataset was compared to mean MEV values from 10,000 PCAs of random data matrices with the same 

dimensions (e.g., 500 rows and 107 columns). PCs were retained for analysis as long as their MEV 

outperformed the random dataset (Figure 3.4). 

The GMM requires that the user specify the number (k) of clusters for the algorithm to identify. 

GMM clustering runs on the PC dataset were performed for 3-10 clusters using 100,000 initial random 

centroid initiations for each k (scikit-learn developers, 2023e). Optimum number of clusters was 

determined using the Bayesian Information Criterion (BIC), a selection criterion that penalizes model 

overfitting (Schwarz, 1978; Vanderplas, 2016). The fitted GMM model with the lowest BIC was selected 

as the final setting identification model exported along with the PCA rules into a single Python “pic le” 

file (Python Software Foundation, 2023; scikit-learn developers, 2023c). Pickling is used to package 

Python objects including trained models. This allows the model and its underlying setting identification 

rules to be read into other code such as that of the spatial data tool used for data aggregation and estuary 

unit classification. 

The outcome from the spatial data analysis combines aggregated SDR proxy metrics and the 

trained GMM model to identify coastal setting classification for an estuary unit delineated from a user-

defined outlet line. The aggregated SDR proxy metric data for a delineated estuary unit is first run 

through the imported PCA transformation. The PCs are then input into the fitted GMM model that uses 

fitting rules to assess which of the k defined clusters (setting classifications) the estuary unit belongs. The 

tool is designed to output the cluster identity in the aggregated proxy metric attribute table for each 

estuary unit under consideration.  
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Figure 3.4. Plot describing selection of principal components (PCs) for analysis. An appropriate number 

of PCs for a dataset can be determined by assessing the marginal explanatory value of additional PCs for 

the dataset against a random data matrix with the same dimensions. 
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3.3. Results  

Research results start from decisions with stakeholders to develop an expert system focused on 

proxy spatial data uses and estuary unit delineations to identify coastal settings related to bacteria 

pollution problems. They include the expert system creation and implementation as a interactive GIS tool 

and methodology to identify coastal settings. The final result is a thematic map of coastal Maine 

identifying CPRUs assumed to be relevant to pollution vulnerability. 

3.3.1. Expert System Framework 

The four primary requirements identified for the coastal Maine setting diagnostic system are 

listed below. These constitute research decisions that developed from consideration of the stakeholder 

interests and research objectives. 

1. Flexibility – the system must be able to identify coupled land-sea settings based on any desired 

embayment outlet line. 

2. Comprehensiveness – in recognition of the interconnected role of SDR processes in coastal 

pollution, the system must incorporate proxy metrics for the entire “estuary unit” consisting of 

contributing landscape areas, including margin watershed areas, as well as the embayment itself. 

3. Adaptability – the system design must be able to incorporate new or updated data layers or 

clustering rules without modifying the core software framework.  

4. Accessibility – the implementation of the expert system as a decision support tool should not 

require special technical knowledge from users to operate or to interpret output, and the tool 

should be well-documented with a user guide. This final requirement was not strictly necessary 

for the research itself but ensures that the tool remains useful beyond the initial life of the project 

by allowing other coastal researchers and resource managers to use it without needing to become 

experts in its use. 
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The tool was developed in two stages corresponding with its two primary functions, spatial data 

aggregation and setting identification. The initial spatial data aggregator tool was used to delineate a set 

of estuary units using outlet lines representing embayments and sub-embayments at multiple scales. Each 

estuary unit is then parameterized with the SDR proxy metrics determined from the research summarized 

by Van Dam (Chapter 2). Parameterized estuaries were used to develop setting identification rules using 

unsupervised machine learning methods (section 3.3.2). Setting identification rules were then integrated 

into the expert system that aggregates SDR spatial data and uses those data to identify the coastal setting 

type for an estuary unit above a user-defined outlet. A user guidance manual written for the expert system 

tool covering technical details is provided in APPENDIX D. 

3.3.2. Setting Identification 

Unsupervised Gaussian mixture model clustering of 500 delineated estuary units based on all 

columns of SDR proxy metrics (18 PCs explaining 79.6% of variance) resulted in the identification of 

seven coastal setting types for the Maine coastal domain, labeled A-G in order of decreasing membership 

count (Table 3.1). There is considerable variation in cluster size, with 87% of estuary units assigned to the 

largest three clusters and more than 50% to the single largest cluster, while the smallest three clusters 

each contained 2% or fewer of the delineated units.  

Clustering was performed using principal components of SDR proxies rather than raw SDR data. 

However, histograms of original proxy metric values within each cluster can be used to identify 

characteristic attributes ( 
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Figure 3.5) and describe the coastal settings. Clusters E-G had a membership of ten or fewer sites 

and tended to show the clearest distinctions from other sites. Almost all delineated units containing point 

source outfalls were assigned to one of those three clusters. Cluster E is also notable for containing sites 

with very large terrestrial drainage areas with a 25th percentile drainage area value of over 125 km2, well 

above the maximum non-outlier value of all other clusters but C. The relatively large sizes  

Table 3.1. Attributes of seven coastal setting types identified using a GMM clustering approach.  

 

Cluster 

Designation 

Site 

Count 

Percent 

Total Notable Attributes 

A 251 50.2% 
Wide distributions of values for many proxy metrics relative to 

other clusters; “median conditions” 

B 106 21.2% 

Wide distributions of values for many proxy metrics relative to 

other clusters; high fraction in margins, rural; high fraction well-

drained soils 

C 78 15.6% Large drainage area to estuary area ratios; low fractions margins 

D 37 7.4% 

Large drainage area inundated by highest high tide; high natural and 

engineered drainage densities in margins; average estuary circularity 

<10% with very low estuary openness; highest percentage 

conserved lands and storage in margins and high high tide areas; 

very poorly drained soils 

E 10 2.0% 

Very large landscape drainage areas, estuary areas and volumes; 

presence of point source outfalls (CSOs, PDES-Os); average estuary 

circularity <10% with very low estuary openness; large range of 

mean embayment depth (1 - 16 m, avg. ~7 m); large maximum 

elevation and slope 

F 9 1.8% 
100% Margins; high engineered drainage densities; highest average 

estuary circularity; very high fraction developed (mean >60%) 

G 9 1.8% 
Large range of mean embayment depth (2 - 16 m, avg. ~7 m); 

presence of point source outfalls (OBDs) and PDES facilities 
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Figure 3.5. Example violin plot 

showing distribution of proxy 

metric values (here, for the 

fraction of margin watershed area 

with well-drained soils) for 

delineated estuary units within 

each of seven setting types 

identified by GMM clustering 

using source, delivery, and 

residence time proxy metric data. 

 

 

  

present a confounding variable when looking at count-based metrics such as population or structure 

count. Cluster E is a clear standout in this regard despite having population and structure densities in line 

with other clusters. Cluster F, which does feature markedly higher population and structure densities, 

contains small urban estuary units consisting only of MWAs, most notably Back Cove in Portland. 

The larger clusters predictably tend to show wider ranges of values for most proxy metrics. 

Nevertheless, distinctions among even the largest two clearly emerge from the data. No clearly urban 

cluster defined by population density, structure density, and fraction developed areas emerges among the 

four largest clusters. The smallest of these clusters, D, does have slightly higher values for these urban 

metrics than the other three. Cluster D also clearly contains the highest median fraction of conserved 

lands overall and within margin watershed areas of all seven clusters. The outcome suggests the presence 

of suburban parks and similar lands that would not be present in more rural areas.  
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Of the four large clusters, the highest fraction of MWAs are associated with Cluster B with a 

median value of ~0.7. Clusters C and D both contain comparatively small fractions of land as MWAs. 

Cluster A, the largest cluster, does not clearly stand out in any category but along with Cluster B features 

high median percentage rural lands and low population density. Clusters A and B are separated mostly 

clearly by differences in soil drainage, with Cluster B featuring a higher percentage of well drained soils, 

whereas Cluster A contains on average more soil storage depth. 

GMM clustering was also carried out with subsets of the full suite of proxy metrics to test the 

effect of proxy metric inclusion in the cluster analysis on cluster membership assignment. Comparison 

with clusters derived by dropping point source columns (CSOs, OBDs, PDES-Fs, PDES-Os) is shown in 

Figure 3.6. The general trend of seven identified setting types persists with the truncated list of attributes 

related to water treatment infrastructure. GMM cluster analysis using five different proxy metric subsets 

also yielded seven settings. These included analyses of estuary unit sub-components, MWAs and 

embayment morphometry. The unequal cluster sizes also persisted but analysis of membership pairings 

between clusters from the two runs indicates that while some cluster assignments remain stable, others 

experience considerable rearrangement.  

Hierarchical agglomerative clustering (HAC) of the 500 estuary units was also performed using 

the full set of SDR metrics to investigate the effect of clustering algorithm choice on setting 

identification. HAC is an unsupervised machine learning algorithm that iteratively finds pairs of points 

with the smallest Euclidian distance between them and merges them into increasingly large clusters, 

creating a hierarchical tree of cluster memberships (Nielsen, 2016). Examination of the resulting 

dendrogram indicated a strong model preference for two main clusters of unequal size plus one small 

cluster of just two estuary units, effectively suggesting that coastal Maine can be divided into just two 

setting “types.” 
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Figure 3.6. Illustration of shared membership among GMM clusters obtained using all source, delivery, 

and residence time metrics for 500 delineated estuary units (blue, top) and those obtained by dropping 

pollution elimination outfall points from analysis (orange, bottom). Strength of shared membership (as 

percentage of total sites in clusters) is indicated by thickness of connecting line between clusters.  
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3.4. Discussion  

3.4.1. Assessment of Expert System Tool 

The expert system approach developed for this research provides a novel and flexible diagnostic 

framework for site-specific coastal settings identification based on proxies for bacteria SDR processes in 

the Gulf of Maine study domain. The framework largely met the four primary design requirements set out 

for its design.  

The primary requirement for flexibility in the line placement that drove the design of the expert 

system was met. The GIS tool is able to accept one or more lines for any coastal plan-form concavity as 

an input file or drawn interactively by the user at the time of tool run, delineate estuary unit(s), and return 

a polygon layer with aggregated SDR proxy metric data describing the space as well as calculated CPRU 

setting type designation. This flexibility allows the setting identification framework to be applied to sites 

without pre-defining embayment ontologies, although it also introduces potential for misleading results if 

line placement conflicts with actual estuary circulation conditions. 

The requirement for comprehensiveness was also largely met. The analytical framework 

incorporates data for the entire contributing area comprising nontidal watersheds, margin watershed areas, 

and embayment areas above outlets in its identification of settings, providing a fuller understanding of 

sites within the coastal study domain. Some geographic areas of the coast could not be accurately 

represented within the tool due to data issues (Figure C.1). These were primarily areas downstream of the 

six large interior watersheds omitted from the analysis. An interconnected system of bays at the 

intersection of multiple tidal rivers results in unclear or temporally variable flow patterns incompatible 

with the unidirectional down-bathymetry flow routing employed by the tool in a portion of the study 

domain. 
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Minor tradeoffs arose in the requirement for adaptability, primarily in deference to processing 

time. For full modularity, any source data layer subject to change over time (for example, decennial 

census data or NLCD land cover, which is updated every five years) would be able to be swapped directly 

from the tool’s geodatabase. However, repeated overlay operations with multiple data layers is 

computationally costly at the time of tool operation compared to accessing pre-parameterized watershed 

polygons and performing simple aggregation calculations with those data, supporting the choice to use the 

latter design. The inconvenience of occasionally re-parameterizing watershed polygons is particularly 

minor in light of the fact that any changes to input data already inescapably requires a full re-aggregation 

and re-clustering of the 500 embayments used to define the setting identification rules with the updated 

data. The setting identification rules themselves are among the most modular components of the tool since 

they are read from a separate file rather than being integrated directly into tool code. Direct incorporation 

of residence time rasters using modeled estuary circulation data has been completed in the Frenchman 

Bay portion of the study domain (Alahmed, Ross and Smith, 2022). Observations from this indicate that 

other data linking flow dynamics to coastal landforms represented in spatial datasets can be incorporated 

into the tool and analysis if it becomes available for the whole coast (Figure 3.7). 

The final requirement for user accessibility is also judged to have been met. From a user 

standpoint, the only information necessary to retrieve spatial data information describing a setting is a 

drawn estuary outlet pour line. Beta versions of the Estuary Builder tool for both ArcMap 10 and ArcGIS 

Pro 3 were released at a workshop in spring 2023 to positive feedback from researchers and from shellfish 

managers, who indicate intention to use the expert system as a decision support tool for better 

understanding site conditions in the absence of bacteria monitoring data.  

As a coastal spatial data aggregator and setting identification tool, the expert system represented 

by the Estuary Builder tool is not limited to bacteria pollution-specific research. Since its completion, the 

tool has been used for other coastal research in the Gulf of Maine study domain, including to identify and  
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Figure 3.7. Example of incorporation of residence time rasters into the expert system tool using residence 

time maps for eight tidal estuaries surrounding Blue Hill and Frenchman Bays from Alahmed, Ross, and 

Smith (2022). For each embayment, pixel colors represent the evacuation time before water in that 

location reaches the lower embayment limits at Blue Hill or Frenchman Bay. Residence time for several 

sub-embayments defined by example outlet lines (black) is calculated here by comparing mean pixel 

values inboard of the outlet with the minimum value along the line. 

 

delineate stream and river watersheds draining to large embayments for calibration of water models 

(Braun et al., 2021), estimation of other pollutant loads (Goodwin et al., 2021; Casella et al., 2023), and 

as freshwater inputs for large embayment hydrodynamic models (Alahmed, Ross and Smith, 2022; Bailey 

et al., 2023). Due to the modularity of the setting identification rules within the expert system framework, 

new rules featuring different unsupervised clustering methods or using supervised machine learning 

algorithms with specific data targets can also be incorporated into the tool, allowing researchers to adapt 

the framework to additional purposes. 
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3.4.2. Coastal Setting Identification 

Unsupervised GMM and hierarchical agglomerative clustering suggest that the coastal Maine 

study domain can be divided into a small set of core setting types based on SDR proxy metrics. The 

assignment of a majority of sites to either three (GMM) or two (HAC) clusters seems surprising, but can 

be explained through a deeper examination of the approach driving the outcome.  

Figure 3.8 shows a three-dimensional scatter plot with the first three principal components 

calculated from the full set of SDR proxy metrics for the 500 delineated estuary units. GMM cluster 

assignments are indicated by point colors. This plot is not a full visualization of the multi-dimensional 

structure of the data since it depicts only three of 18 dimensions considered in the principal component 

space. However, it shows that a clear majority of sites fall into one large grouping rather than occupying 

separate clusters across the first three axes of principal components selected to represent the greatest 

distinctions among the data. 

This lack of clear separation among clusters can also explain the sensitivity of membership 

groupings to inclusion or omission of different metrics in the analysis. Because there is so much inter-

group proximity even with non-collinear axes, a change in the included metrics that shifts points only 

slightly in Euclidean space may cause major realignment of cluster memberships. This can be observed in 

the plot space (Figure 3.6). This has implications to the selection of proxy metrics when building a setting 

identification framework, as inclusion of metrics unrelated to the targeted process or outcome may result 

in the identification of settings with less reliable relevance to the target outcome. The relevance of SDR 

proxy metrics used here to identify settings relevant to bacteria pollution is explored in Chapter 4. 

The results of the unsupervised cluster analyses illustrate that setting identification can be 

accomplished using the expert system framework. They also suggest that most sites are more alike than 

different across the Gulf of Maine study domain. While this may be a challenging conclusion from a 
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Figure 3.8. Multiple perspectives of a scatter plot of the first three principal components describing 

source, delivery, and residence time proxy metrics for the 500 delineated estuary units. Colors correspond 

to assigned Gaussian mixture model (GMM) cluster. 
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management perspective, it provides a useful set of observations about how SDR attributes collectively 

manifest along the coast to define settings. The increase identified settings from five LPRUs (Smith et al., 

2016) to seven CPRUs does provide coastal managers with expanded opportunities to attempt to tailor 

strategies in accordance with certain emergent site attributes, particularly for the smallest clusters with 

stronger characteristic SDR proxy metric signals. 

Comparisons can be made between CPRU results indicating coastal settings based on SDR 

attributes and the four coastal Maine regional compartments defined by Kelley (1987) based on coastal 

morphometry. A map of CPRU distribution along the coast (Figure 3.9) illustrates a distinct difference in 

the Southwest (SW) compartment compared to the South Central (SC), North Central (NC), and 

Northeast (NE) compartments. Stacked bar charts showing relations between CPRU cluster membership 

and compartment position (Figure 3.10) confirm a clear affinity between CPRU cluster D and the SW 

compartment. Cluster D contains estuary units with the highest proportions of tidal wetlands among the 

seven CPRUs, and the SW compartment was defined in part by a high proportion of marsh along its 

coastline. Closer investigation of the individual Cluster D sites within the compartment confirms that 

these estuary units correspond to the sites of the extensive salt marshes of the southern Maine coast, 

including the state’s largest salt marsh in  carborough adjacent to the border between the  W and  C 

compartments. The SW notably also contains only one estuary unit from Cluster A, fewer than any CPRU 

other than the ten-member Cluster E. 

No similar affinities occur between other CPRUs and compartments. Within the other three 

compartments, CPRU counts conform to the overall distribution of estuary unit memberships within 

CPRUs, with most estuary units in Cluster A, a lesser number in Cluster B, and so forth. This outcome for 

most of the state’s coastline corroborates Kelley’s (1987) observation that regional compartment setting 

does not dictate conditions at individual sites and supports the classification and management of estuary  
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Figure 3.9. Map of identified Coastal Pollution Response Units (CPRUs) for the Maine coast. Dashed 

lines separate the four coastal compartments of Kelley (1987). 
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Figure 3.10. Stacked bar charts showing membership breakdowns between CPRUs and the coastal Maine 

regional compartments of Kelley (1987). Numbers within each bar section are estuary unit counts. 
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units based on combinations of local site attributes, while also inviting particular focus on marsh-related 

SDR processes in the SW compartment. 

3.4.3. Remaining Data Gaps 

The CPRU setting analysis performed here filled coastal spatial data gaps identified by Smith et 

al.'s (2016) LPRU analysis of nontidal watersheds by incorporating margin watershed areas and 

embayment areas into the identification framework. Other data gaps for the coastal Maine problem 

domain noted by Smith et al. (2016) remain, and additional gaps were identified. These include omission 

of data from the six largest watersheds in Maine and no consideration of stochastic events such as truck 

spills and infrastructure failures. The latter gap highlights the important point about the setting 

identification system that any implementation of the system presents a snapshot of conditions at a 

moment in time defined by its data sources. This points to the importance of updates to land use, 

demographic, and civil infrastructure data represented in DEMs. 

Another important data gap is the absence of spatial data describing dominant in-estuary water 

circulation patterns across the study domain. This gap necessitates the use of bathymetry to route flow 

unidirectionally out of embayments and prevented the tool from being used in the Hockomock Bay and 

lower Sheepscot River region of the study domain (Figure C.1d). This complicates evaluations of 

estuarine water interaction and mixing within individual embayments, introducing potential error in 

delineations of the contributing watershed area that affects an embayment or sub-embayment of interest. 

The effect of changing pour line placement to address this issue is explored more fully in Chapter 4. 

3.5. Conclusions 

This chapter addressed the development of a diagnostic strategy for identification of coastal 

settings based on proxy metrics for bacteria SDR processes. Ontological challenges in establishing rules 
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for estuary outlet placements resulted in the need and opportunity to develop a flexible framework for 

delineating estuary units from any outlet line and identifying their coastal setting type based on 

aggregated SDR proxy metric data. The successful implementation of this framework as a map-based 

expert system tool incorporating unsupervised GMM clustering rules created multiple scientific advances. 

The expert system facilitated delineation and setting identification for 500 estuary units along the length 

of the coastal Maine study domain, allowing for comparison of local settings based on SDR attributes 

against regional settings identified in previous research and setting up subsequent investigation of 

relations between setting and bacteria vulnerability. It also provides a platform for testing the outcomes 

from different assemblages of SDR metrics and clustering algorithms on cluster membership assignment. 

The research also identified multiple data gaps that future researchers can address, most notably 

inadequacy of existing spatial data layers to account for complex in-estuary tidal water circulation 

patterns across the Gulf of Maine study domain. 
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CHAPTER 4 

COASTAL SETTING VULNERABILITY ASSESSMENT 

4.1. Introduction 

Information, data, and management decision tools are necessary to address contemporary coastal 

pollution problems in a sustainability solutions framework (Kates et al., 2001). Vulnerability analyses in 

sustainability solutions should strive to consider linkages between human and biophysical environmental 

conditions operating in coupled human environmental systems (Turner, et al. 2003). Coastal resource 

management thereby requires knowledge of diverse settings shaped by varied geomorphic processes and 

experienced interventions from human activities over the past two centuries. Related coastal management 

decision support tools should ideally be designed with an underlying scientific basis built on knowledge 

of land-sea connections and clear organization strategies to adapt the knowledge into management actions 

(Taylor, 2018a). These considerations were fundamental to the research presented here with a focus on 

land-sea connections in Maine, coastal attributes influencing pollution problems, and the development of 

decision support tools to evaluate vulnerability of coastal settings to pollution problems. Outcomes from 

the research provide new perspectives on the capacity of spatial data, machine learning approaches, and 

monitoring data from government agencies to predict the vulnerability of coastal settings to water 

pollution contamination events. 

4.1.1. Background  

Prior research on land-sea connections influencing coastal conditions had a goal of informing 

coastal resource managers of estuary and near shore water quality conditions. Extensive spatial data 

inventories have been developed to support modeling of watershed hydrology, estuary hydraulics, and 

biochemical processes in the Chesapeake Bay (Studds et al., 2012; Hood et al., 2021). The complexity of 

coastal areas influencing biogeochemical fluxes has been evaluated using a clustering and upscaling 
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approach to highlight and compare coastal energy regimes and water residence times (Bartley, 

Buddemeier and Bennett, 2001). Geographical analyses of bacteria pollution affecting shellfish harvesting 

areas has been evaluated with respect to seasonal and climatic variables in the Mid-Atlantic region 

(Leight et al., 2016). Unsupervised cluster analyses based on embayment morphology have been used to 

identify validated estuary setting types in both the United States and Tasmania (Edgar et al., 2000; Engle 

et al., 2007).  

The Maine coast study location has been the focus of previous work focused on land-sea 

connections affecting shellfish sanitation and harmful algae blooms (Smith et al., 2016; Gerard, 2018; 

Alahmed, Ross and Smith, 2022). Non-tidal stream and river watersheds have been used as the unit of 

analysis to identify “ andscape Pollution Response Units” ( PRUs) in Maine based on proxy spatial data 

metrics to represent coastal attributes influencing bacteria pollution (Smith et al., 2016; Gerard, 2018; 

Roy et al., 2018). Fecal coliform samples collected from Maine Department of Marine Resources 

(MEDMR) monitoring sites near the outlets of watersheds evaluated in the study show differences in 

median bacteria counts among the five LPRU settings identified in the analysis. Elevated bacteria counts 

were associated with the LPRU with the most extensive urban conditions (Figure 1.5) (Smith et al., 

2016).  

Beyond the association of bacteria counts with LPRU settings, the previous coastal Maine 

research brought attention to several information and data gaps of concern to stakeholders because of the 

potential influence on bacteria pollution in tidal waters. One prominent information gap was related to 

land areas immediately adjacent to estuary boundaries that do not fall within the non-tidal stream and 

river watersheds considered in the initial analyses. The Margin Watershed Areas (MWAs) are assumed to 

have considerable influence on bacteria pollution in tidal waters for several reasons. The land areas are in 

close proximity to tidal waters, have short runoff and subsurface flow pathways, coincide with shore bird 
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populations that can defecate in intertidal areas, and they are locations with relatively high human 

populations that generate wastewater.  

The coastal pollution vulnerability analysis that is the target of this research relates coastal 

settings defined by SDR proxy spatial information to outcomes from bacteria sampling in tidal waters 

over decadal time scales. Maine DMR maintains water quality testing programs for the purpose of 

managing shellfish harvest activities relative to sanitation goals (Maine Department of Marine Resources, 

2023d). Bacteria data used in these analyses are from more than one thousand MEDMR water quality 

monitoring stations along the length of the Maine coast. The MEDMR Bureau of Public Health conducts 

water sampling for fecal coliform bacteria levels at designated locations within shellfish growing areas in 

accordance with National Shellfish Sanitation Program (NSSP) standards (Maine Department of Marine 

Resources, 2023b). In addition to systematic random sampling at all stations, sampling may be conducted 

in conditionally open growing areas during “adverse pollution conditions” historically associated with 

elevated fecal coliform levels, such as after high-magnitude precipitation events (US Food and Drug 

Administration, 2019). 

4.1.2. Vulnerability Research Objectives  

The identification and parameterization of coastal Maine settings using bacteria source, delivery, 

and residence time (SDR) proxy spatial data metrics related to coastal bacteria pollution is described by 

Van Dam (Chapter 2). Coastal Maine setting domain and attributes derived from the setting evaluations 

are referred to as Coastal Pollution Response Units (CPRUs) by Van Dam (Chapter 3) and include non-

tidal watersheds, MWAs, and estuary metrics not considered in previous studies of Maine’s coast. 

Bacteria data used for the analysis is comprised of fecal coliform bacteria sampling results collected and 

archived by the MEDMR (see e.g., Maine Department of Marine Resources 2019). Relations of the 

sampling outcomes to coastal settings is performed using estuary pour line delineations to identify the 
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domain of pollution sample outcomes quantified by statistical summaries of sample results. The 

associations are then used as a basis to identify and compare SDR attributes and coastal Maine settings in 

terms of vulnerability to bacteria contamination events. 

The advancements pursued by this research relates to the assembled information and approaches 

used for analyses. A more is a more extensive diagnostic collection of proxy spatial data variables 

representing SDR attributes driving pollution problems has been considered. Machine learning 

approaches have been selected to improve accommodation of data outliers and clarify the relative 

influence of individual attributes and SDR pollution culprit categories. A spatial data tool has also been 

developed to provide more capacity to perform hypothesis testing exercises related to SDR attributes and 

the grain scale of setting evaluations. Four primary research questions frame the research tasks related to 

determining associations between coastal attributes, settings, and bacterial pollution vulnerability: 

1. Can static proxy spatial data metrics describing SDR drivers of bacterial contamination problems 

be strategically assembled and related to bacteria sampling data to assess and compare coastal 

pollution vulnerability? 

2. Does equal weighting of SDR pollution culprit categories dilute the capacity to compare coastal 

bacteria pollution vulnerability compared to evaluations limited to source and estuary attributes? 

3. Does the proximity of SDR pollution-related factors in margin watershed areas have a detectable 

influence in coastal pollution vulnerability analyses?  

4. What are the implications of estuary outlet pour line placement on the coastal pollution 

vulnerability analysis outcomes? 

4.2. Methods 

Settings represented as whole estuary units, margin watershed areas (MWAs), and estuarine areas 

defined by SDR attributes were evaluated for associations with bacteria sampling outcomes. Six 
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permutations of coastal setting identification outcomes are considered using different subsets of SDR 

proxy spatial data metrics and CPRU subunits. Setting identification outcomes are related to MEDMR 

bacteria data statistics with an added sensitivity analysis to highlight the implications of estuary pour line 

selection on setting identification. Proxy metric relationships to bacteria vulnerability are also examined 

using linear regressions and supervised decision tree regression analysis. The relative influence of margin 

watershed areas on bacteria vulnerability is examined through assessment of results of these analyses. 

4.2.1. Bacteria Data 

Bacteria levels for each delineated estuary unit must be estimated from sampling data before 

analysis of coastal settings bacteria vulnerability can occur. DMR fecal coliform count data for 

monitoring sites are publicly available through the Maine GeoLibrary. Data are presented as yearly 

aggregate summaries of sample count, geometric mean, geometric standard deviation, maximum, and 90th 

percentile (P90) bacteria counts, geolocated to the latitude and longitude of each sampling location. Data 

for calendar years 2016-2018 were selected for analysis to correspond to the general time period in which 

many of the spatial data layers behind the SDR proxy metrics were gathered.  

An estuary unit is intended to represent a contiguous space where SDR processes throughout the 

contributing area collectively act to affect water quality within the embayment waters. As such, bacteria 

levels for these analyses are based on all DMR monitoring stations within each unit. Bacteria samples 

were associated with estuary units by performing a spatial join of delineated estuary unit polygons against 

sample location points using geographic information system (GIS) software (Figure 4.1). Of the 500 

delineated estuary units delineated for analysis, 480 had usable bacteria records. Selected records were 

exported as a spreadsheet with rows containing an estuary ID number, DMR monitoring station number, 

year, and bacteria summary data for each joined station point.  
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Geometric mean (GM) of fecal coliform count (/100 ml water) was selected as the summary 

statistic for the vulnerability analyses. The NSSP uses GM as a measure of central tendency in the 

bacteria data (US Food and Drug Administration, 2019). It has the advantages of being less prone to bias 

from a small number of high-magnitude events than P90. This makes it useful for analysis of long-term 

vulnerability. It is also easily recoverable from the aggregated summary data available. The geometric 

mean of a set of n values is the nth root of their product. The total product for that point’s bacteria subset 

is then its GM to the nth power with GM and number of samples known for a monitoring station point. 

Overall GM for the set of all monitoring stations within an estuary unit is calculated by finding the 

product of all subset products and taking its Nh root, where N is the total number of bacteria samples taken 

across all sampling sites and years. Total GM across monitoring stations was calculated in this way for all 

480 estuary units. 

A histogram of GM bacterial counts for the 480 estuary units is right-skewed with a median of 

3.7, mean of 4.21, and maximum of 27.7 counts/100 ml (Figure 4.2). For some statistical purposes this 

would invite an evaluation of outliers and removal of high values from the dataset before proceeding with 

further analyses. However, it is less likely that they are outliers in the sense of erroneous data because 

these values are geometric means of many samples over multiple years and not individual sample data 

points. As a result, data for all 480 estuary units are retained here for analysis. 
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Figure 4.1. Map showing selection of bacteria monitoring stations for a delineated estuary unit. Maine 

Dept. of Marine Resources (MEDMR) bacteria monitoring sites along the coast are shown as black dots, 

with nontidal watersheds in yellow and margin watershed areas in brown. For the delineated estuary unit 

encompassing Joy Bay (purple), bacteria counts are aggregated from all monitoring stations within the 

estuary unit (highlighted green). Gouldsboro Bay, Gouldsboro and Steuben. 

 



83 

 

 
Figure 4.2. Histogram of geometric mean bacteria counts for 480 delineated estuary units included in the 

analysis. 

 

4.2.2.  Bacteria Vulnerability by Cluster 

The first research question addressed in this chapter relates to whether identified coastal setting 

types, based on proxies for SDR processes, display differences in bacteria pollution vulnerability. Van 

Dam (Chapter 3) described the identification of different setting types for the Gulf of Maine problem 

domain using Gaussian mixture modeling (GMM) unsupervised clustering of 500 estuary units. The 

primary set of seven Coastal Pollution Response Units (CPRUs) identified for the research and 

incorporated into the expert system GIS tool is based on GMM clustering using all SDR proxy metrics, 

labeled as clusters A-G in Chapter 3 (Figure 3.6). “ ignatures” of bacteria pollution vulnerability for each 

CPRU are assessed as distributions of geometric mean bacteria counts among delineated estuary units 

within the setting type and presented as box and whisker plots (Smith et al., 2016). 
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Five additional sets of coastal setting types based on clustering with subsets of the total SDR 

proxy metrics are also presented. Proxy metrics included in each are given in Table E.1, with the original 

CPRU analysis listed as (i). The first additional set (ii) omits proxy metric columns related specifically to 

margin watershed areas, such that the GMM cluster analysis to identify settings incorporates only proxy 

metrics related to the entire terrestrial contributing watershed area and embayment area morphometry. 

The next (iii) includes only margin-specific and embayment morphometry proxy metrics. The third (iv) is 

based only on the nine proxy metrics that relate specifically to estuary morphometry. These first three 

additional sets of clusters were selected to assess the extent to which coastal settings defined by subsets of 

SDR proxy metrics focused on different physical spaces within estuary units, including margin areas, are 

predictive of bacteria pollution vulnerability. 

A second assessment is of the role of equal weighting of SDR proxy metrics in bacteria 

vulnerability prediction. This assessment incorporates set (i), which weights all metrics equally, set (iv), 

which by focusing on embayment morphometry includes only residence time metrics, and the final two 

additional permutations, sets (v) and (vi). Set (v) incorporates only proxy metrics for bacteria sources. Set 

(vi) incorporates only source proxy metrics specifically within MWAs. Assessments are completed 

through visual comparison of box and whis er plots of bacteria vulnerability “signatures.”  

4.2.3. Proxy Metric Linear Regression 

There is interest in investigating the influence of individual coastal attributes on bacteria sample 

counts, partly to explain the associations of bacteria problems with specific CPRU settings. The 

evaluation of individual attributes involves the examination of linear regression relations between bacteria 

counts and individual proxy metrics (Yan and Su, 2009). Linear regression fits a straight line, defined as y 

= mx + b, through a set of points by calculating a residual distance between the actual y value of each 

point and predicted y value along the line for the same x, then minimizing the sum of the squares of all 
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residuals (Kenney, 1939). Linear regressions are not expected to indicate that any one metric exerts a 

controlling effect on bacteria levels in coastal waters in the Gulf of Maine problem domain (Smith et al., 

2016). However, the approach provides an easily interpretable method of assessing both direction and 

strength of correlation between proxy metrics and bacteria. 

Regressions were performed in Python using the Scikit-learn statistical module for the 480 

delineated estuary units with aggregated bacteria data (scikit-learn developers, 2023a). A best fit line for 

the response variable of GM bacteria counts is predicted using the explanatory variable of a single proxy 

metric column for each regression. Regression fit is assessed using the coefficient of determination R2, to 

assess the proportion of variance in the response variable that is explained by the independent variable. 

An R2 value of 1 indicates perfect fit and R2 = 0 indicates zero correlation (Chicco, Warrens and Jurman, 

2021). 

4.2.4. Proxy Metric CART Analysis 

A more sophisticated method for assessing the relative explanatory power of different proxy 

metrics on bacteria vulnerability in estuaries is through a classification and regression tree (CART) 

analysis (Breiman, 1984). CART is a type of supervised machine learning approach that constructs rules 

to iteratively split a dataset in order to predict a response variable, creating a tree of greater-than / less-

than decisions. Hierarchical decision tree approaches have been used in estuarine setting identification, 

bacteria dynamics research, and other ecological modeling in diverse settings to better capture the 

complex non-linear interactions among sets of variables than parametric regression approaches ( e’ath 

and Fabricius, 2000; Louis et al., 2003; Smeti et al., 2009; Aertsen et al., 2010; França and Cabral, 2015; 

Krishna et al., 2021). 

CART regression analysis was performed in the Python (version 3.8) computer language using 

the Scikit-learn (version 1.0.2) statistical module for the 480 delineated estuary units with aggregated 
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bacteria data (scikit-learn developers, 2023b). The target response variable for the CART regression 

analysis was the geometric mean bacteria counts. The independent variables for this multivariate analysis 

were the set of all proxy metric columns, such that the model could choose to split a branch on any one at 

a time. The total dataset of 480 estuary units was split into a training dataset (X_train, y_train) with which 

to fit the decision tree regressor and a test dataset (X_test, y_test) with which to assess the performance of 

the fitted model. A new random subset of 30% (144 estuary units) was retained as the test dataset for each 

run sequence. 

The CART regressor is trained to predict response variables y_train from independent variables 

X_train for each model run. A maximum tree depth d may be set to limit how many times the tree splits 

to prevent model overfitting. For this analysis, d was allowed to vary between 1 and 20 for each random 

training subset. Performance of the model is assessed by passing the test independent variables X_test to 

predict test response variable y_test. Regression model fit for the test dataset is assessed using the 

coefficient of determination R2. The resulting tree can be visualized to identify independent variables on 

which splits occur, with higher splits indicating variables with greater explanatory power for variation in 

the dataset related to prediction of the response variable. 

4.2.5. Margin Watershed Influence on Vulnerability 

Evaluation of the influence of land areas immediately adjacent to estuaries on bacteria pollution 

vulnerability is approached through comparison of outcomes of the analyses described above for MWA-

specific proxy metrics and combinations of metrics describing other spatial components of the estuary 

units. The suite of analyses have provided highlighted attention to the comparison between outcomes for 

CPRU permutation ii for the fully estuary units and permutation iii that includes only MWA and estuary 

morphometry metrics. For simple linear regressions, comparisons are made between the MWA-specific 

attributes and their estuary unit equivalents. These include the pair of soil drainage scores 
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  I  RAIN _M and   I  RAIN  and the fit of the regression for the for “fraction margins” attribute. 

The test with the CART analysis is focused on the relative prominence of margin-specific versus other 

metrics among the splits chosen by the model as the most significant for explaining variance in the 

dataset. A comparison of setting identifications produced here with the setting identification outcome of 

Smith et al. (2016) is also considered because of the omission of MWAs in that analysis.  

4.2.6. Outlet Line Placement Case Study 

An important consideration is the sensitivity of proxy metric values and cluster assignment to line 

placement because the expert system tool for coastal setting identification allows the delineation of 

estuary units from any user-defined outlet line. The implications of the pour line placement decisions is 

investigated through a case study of a bay with relatively simple plan form and multiple plausible 

embayment and sub-embayment outlet delineations.  

Baileys Mistake is a colorfully named embayment in Washington County, along the rural 

northeastern section of Maine’s coastline popularly referred to as the Bold Coast.  he roughly rectangular 

bay is bordered on land by the town of Lubec to the north and east and the unorganized territory of East 

Central Washington to the west (Figure 4.3a). Its mouth at a constriction between two headlands is 

slightly protected by small islands along Baileys Ledge, and is otherwise open to the wider Gulf of Maine 

to the south-southeast. The embayment has a water surface area of 1.74 km2 and terrestrial watershed area 

of 8.66 km2, of which 33.0% is in MWAs, at this outer limit (Figure 4.3b). There is a second constriction 

approximately 500 meters into the embayment and two semicircular lobes or sub- embayments positioned 

farther landward. The western sub-embayment receives freshwater discharge from two nontidal 

watersheds separated by a roughly 500 m long beach where DMR maintained a sampling site during the 

2016-2018 period of record under consideration for this analysis. 
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Figure 4.3. Baileys Mistake case study. a) Map of Baileys Mistake, an embayment in Washington County 

in the northeastern section of Maine's coast that receives surface water runoff from nontidal watersheds 

(light green) and margin watershed areas (MWAs) (brown). The Maine Department of Marine Resources 

(DMR) maintains a bacteria monitoring site (white circle) between two watershed outlets in the northwest 

of the embayment. b) An estuary unit delineated from an outlet line at the outer extents of the embayment 

has an estuary area of 1.74 km2 and terrestrial watershed area of 8.66 km2, 33.0% of which is MWAs. c) 

A series of overlapping watersheds (labeled I-V from outer to inner) represent potential estuary unit 

delineations for Baileys Mistake to attempt to capture the coupled land-sea dynamics affecting bacteria 

counts at the single monitoring site. Note that unit I encompasses the area of units II-V as shown in (b), 

unit II encompasses III-V, etc. d) A plot of aggregated MWA drainage density for each delineated estuary 

unit vs mean bacteria count from the DMR site monitoring data illustrates how changing outlet line 

location affects calculated proxy metric values and confounds the relationships between proxy metrics 

and bacteria data. Black points represent a selection of other delineated embayments in the northeastern 

region of the Maine coast. 

a. b. 

c. d. 

Baileys 

 Mistake 

Gulf of 

Maine 
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Hydrodynamic patterns and extent of mixing within the embayment are unknown due to the 

unavailability of spatial data pertaining to currents in the embayment. Estuary units were delineated for 

five different embayment or sub-embayment outlet lines to assess the effect of outlet line placement on 

calculated proxy metric values and setting identification output from the expert system. Each delineation 

represents a plausible separation of the space to isolate land and water that influences bacteria conditions 

at the sampling site. Selected outlet lines were at the embayment outer extent, the first constriction, across 

the mouth of the northwest sub-embayment, offshore of the beach to capture discharge from both non-

tidal watersheds, and at the sample site capturing discharge from the innermost nontidal watershed 

(labeled I-V in Figure 4.3c).  

4.3. Results 

4.3.1. Cluster Associations with Bacteria 

Setting clusters based on SDR culprit categories show relatively little variation in their 

associations with bacteria count “signatures” (Figure 4.4). This holds true for the original CPRUs based 

on all SDR proxy metrics (i) as well as the additional permutations associated with different spatial 

components of the estuary unit and bacteria culprit categories. Among large clusters (clusters with 

relatively high membership counts, such as Clusters A-D of the original CPRUs) median GM bacteria 

counts per 100 ml generally fall between 3 and 4, with no large cluster median above 5. Clusters (iii) 

identified from only MWA and embayment morphometry proxy metric columns do not show substantial 

differences in their associations with the bacteria signatures. All of the six clusters containing bacteria 

sampling stations had median GM bacteria counts within 1 per 100 ml of each other. Clusters (ii) that 

excluded margin-specific proxy metrics showed greater variability than the margin-focused clusters. 

Clusters developed solely from source attributes (v, vi) show little difference in their associations with the 

bacteria count signatures used in the initial evaluation compared to CPRUs based on equal weighting of 
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SDR (i). Clustering of source attributes did notably produce more identified setting types than any of the 

other permutations tested. 

Results suggest that setting types defined by unsupervised clustering based on SDR attributes are 

poor predictors of bacteria contamination vulnerability because of the similar bacteria count signatures 

associated with CPRUs. However, the consistency in the bacteria signatures among the tested 

permutations do not support a conclusion that the different collections of attributes considered in the full 

estuary units, MWAs, or estuary water bodies have no influence on bacteria contamination vulnerability. 

The initial outcome with full estuary units and all SDR attribute categories indicate that there is a 

mismatch between metric values important to bacteria pollution levels and the variations in metric values 

the Gaussian mixture models found important for differentiating clusters. Concern with dilution of the 

influence from source attributes, MWAs, and estuary conditions within the CPRUs is addressed in the 

analyses through completed permutations. The similarity of bacteria signatures is consistent among all 

sets of attributes and subdomains considered. This implies that the limited capacity of the approach to 

distinguish vulnerable coastal settings by the SDR attributes is constrained by the bacteria sampling data.  

For all permutations of proxy metric combinations representing different physical spaces or SDR 

culprit categories within estuary units, the least variation in bacteria vulnerability signatures among 

clusters is associated with the largest clusters. Van Dam (Chapter 3) shows that GMM clustering of 

estuary units based on SDR proxy metrics results in identified settings with uneven member counts. Large 

clusters tend to exhibit greater ranges of values for individual proxy metrics and more “average” 

conditions overall. Small clusters (some with fewer than ten members) were generally defined by notable 

deviations from the others in one or more metrics. The smallest clusters exhibit more unique bacteria 

signatures across all four GMM sets, and the three clusters with the highest median bacteria counts (ii-5,  
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Figure 4.4. Box and whisker plots of bacteria count distribution for four sets of seven coastal setting types 

based on Gaussian Mixture Model (GMM) clustering of different subsets of source, delivery, and 

residence time (SDR) proxy metrics. Boxes mark 25th and 75th data percentiles, orange lines 50th 

percentiles, and red Xes outliers. Underlain violin plot width corresponds to relative membership count 

for clusters. Clusters are numbered in in order of descending member count for each set of settings. The 

smallest cluster for the “Margins + Embayment” set of settings (iii) did not have any member sites 

containing bacteria monitoring stations and thus does not appear. 
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iv-4, and the one-member iv-6) are all in this group. The outcomes provide useful knowledge for coastal 

managers because of the greater clarity of the associations related to the smaller clusters, although it is 

less helpful for the locations included in the large clusters. 

4.3.2. Proxy Metric Linear Regression 

Simple linear regressions of geometric mean fecal coliform counts against SDR proxy metric 

values revealed little strength of correlation between bacteria values and individual metrics (Figure 4.5, 

Table E.2). No metric had a coefficient of determination greater than 0.16. The metrics with the highest 

correlation with bacteria counts were combined sewer overflow counts and density in overall estuary 

units, within MWAs, and in areas inundated during highest high tide. These point source attributes related 

to wastewater had positive regression coefficients (slopes), indicating that higher values for these metrics 

within an estuary unit are correlated with higher bacteria vulnerability. Regressions for population count 

and addressable structure count also had relatively high R2 for the dataset (0.14) but with correlation 

coefficients (regression line slopes) of zero. Fraction margin had a negative coefficient, indicating that 

watersheds with a high fraction of MWAs show less vulnerability to bacteria pollution, although with an 

R2 value of only 0.04. 

Coefficient directions for metrics with R2 > 0 generally conform to assumptions based on 

knowledge of source, delivery, and residence time processes. Nonpoint source attributes related to 

increased bacteria generation, such as fraction of the landscape in developed conditions and fraction 

farmed, were positively correlated with bacteria counts. Attributes expected to associate with relatively 

lower bacteria counts, such as fraction rural and fraction under conservation status, had negative 

coefficients. Along with CSO count and density, point source metrics of pollution discharge elimination 

system facilities (PDES-F) and outfalls (PDES-O) both had positive correlations with bacteria counts. 

Increases in the capacity for surface runoff to transport bacteria through runoff generation captured 
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Figure 4.5. Examples of simple linear regression plots of bacteria counts against proxy metrics. 

Regressions show wea  correlations between individual proxies and bacteria levels in estuary units. “ ut” 

and “In” here refer to estuary units delineated for outer embayments whose mouths open directly to Gulf 

of Maine waters vs inner sub-embayments whose mouths open into larger outer embayments (Figure E.1) 

and are included for visual reference. Regressions were performed on the unified set of 480 estuary units 

for each metric.  
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using soil drainage estimates was positively correlated with bacteria counts. Soil conditions associated 

with lower rates of runoff generation were negatively correlated. All proxy metric columns for 

geomorphically-derived and engineered drainage densities with R2>0 were slightly positively correlated 

with bacteria vulnerability (coeff. < 1), corresponding to more efficient transport of bacteria from land 

areas into tidal waters. Among residence time proxies, mean estuary depth, estuary openness, and estuary 

circularity were negatively correlated with bacteria vulnerability; regressions for other metrics were flat 

or had R2 of zero. 

Some proxy metrics produced counterintuitive results. The fraction of land cover representing 

surface water storage was positively correlated with bacteria counts despite the assumption that storage 

would correlate with less efficient transport and delivery of contaminated to tidal waters. Average 

watershed surface slope was negatively correlated with bacteria vulnerability. Soil storage depth 

indicating the capacity of the soil to store water before generating runoff during a precipitation event was 

positively correlated with bacteria vulnerability in contradiction to the trend of other soil drainage 

metrics. This particular result may be an artefact of poor overall soil depth data in the USDA Soil Survey 

Geographic Database (SSURGO). Incorrect soil storage values would also affect the Qmin_m3 metric 

representing the volume of runoff produced during a two-inch precipitation event for an estuary unit after 

filling soil storage and the ratio of Qmin to estuary volume. Both are calculated using soil storage depth 

for an estuary unit.  he metrics and Qmax_m3 and Qmax_Ev_r calculated only from 2” rainfall without 

subtracting soil storage had coefficients of 0.00.  

4.3.3. Proxy Metric CART Analysis 

CART regression analysis to predict bacteria counts from all proxy metric columns was run with 

maximum tree depths ranging from 1 to 20 splits for 10,000 permutations of the training and test datasets, 

producing a best fit tree with a maximum depth of just two splits and R2 of 0.63 (Figure 4.6). This model 
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identified a top-level split on the density of addressable structures in the MWA, separating the training 

dataset into a group of 318 and a group of 18. Second-level splits were on the ratio of drainage area to 

estuary area and the fraction of moderately drained soils in the MWA, respectively. The largest of the 

four training data subsets created by the regression analysis contained 235 (of a total of 336) estuary units, 

meaning that the best-fit model of 200,000 model initiations resulted in 69.9% of the dataset being 

assigned a single bacteria count value (GM = 3.67). This appears at first to be an unreasonable result, but 

revisiting the histogram of bacteria counts for estuary units (Figure 4.2) shows that it is in line with the 

general data distribution. 

Two additional sets of 200,000 model initiations were subsequently run. The first achieved an R2 

value of 0.64 with a maximum tree depth of 6 splits. The second set achieved an R2 of 0.66 with 

maximum tree depth of 4 splits. The splits for the first four levels of each analysis are given in Table 4.1. 

All three best-fit models produced through the CART analyses have different maximum tree depths and 

arrangement of splits. Several commonalities in proxy metrics selected by the models to explain data 

variation emerged. The density of addressable structures within margin watershed areas, a proxy for 

bacteria sources related to human population during the summer tourist season, was selected as a first or 

second level split by all three models; overall watershed structure density also appeared as a fourth level 

split in two models. Poorly drained soils in the overall estuary units and in the highest high tide zone, also 

emerged as common splits as well as multiple variations of drainage density. The ratio of maximum 

potential surface water runoff volume to estuary volume during a two-inch precipitation event, a proxy 

metric for freshwater flushing in embayments, was identified by two models as the top-level split. 

Interestingly, this metric had not emerged as an important explanatory variable for bacteria in simple 

linear regressions with a coefficient of 0.00 and R2 of 0.01. 
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4.3.4. Margin Watershed Influence on Vulnerability 

The examination of outcomes from the three analyses revealed mixed results about the extent to which 

margin watersheds drive variation in estuarine bacteria pollution vulnerability measured as the geometric 

mean bacteria count in the estuary. Assessment of bacteria distributions by setting types indicated that 

unsupervised GMM clustering based only on margin and embayment metrics produced clusters that were 

least sensitive to bacteria. The fraction margin watershed area within an estuary unit explained only 4% of 

variance in bacteria levels, although this is relatively high explanatory value among a set of metrics where 

only 25 (of 107) had R2 of 0.04 or better. Overall, the thirty-two margin specific proxy metrics had a 

slightly lower R2 than their corresponding whole-watershed metrics (means of 0.022 and 0.026, 

respectively). For CART regressions, margin-specific metrics featured in two of the three splits for the 

first model. The SDR attributes of MWAs or areas inundated by highest high tide (which may be part of 

either margin or nontidal watershed areas) featured in eight of thirteen splits for the second model and 

seven of thirteen for the third model, approximately in line with their proportional representation among 

the whole set of proxy metrics. 
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Figure 4.6. Decision tree produced by initial CART regression analysis. This tree had a maximum split 

depth of 2, producing four subsets from the original training dataset with a maximum subset population of 

235 estuary units, and had an R2 of 0.63 when evaluated against the test dataset. 

 

 

Table 4.1. Top four decision tree levels for second and third versions of CART regression analysis. 

Metrics that appear as splits in both analyses are shown in bold. 

Decision Tree Level Second Analysis Third Analysis 

Top Qmax_Ev_r Qmax_Ev_r 

Second FDEVELO_HH; StrDens_M Zmax; StrDens_M 

Third DD_05_HH; FRURAL_HH; 

DD_05_Rds; POORDRAIN 

DD_2_M; POORDR_HH; 

DD_3_HH; FHighHigh 

Fourth POORDR_HH (x2); StrDens_HH; 

SSTORME_HH; DD_2_Rds; 

StructDens 

Bear_Out; FMargin; Est_Circ; 

DD_05_Rds; StructDens; 

POORDRAIN; Pop_Dns_M 
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4.3.5. Outlet Line Placement Case Study 

The Baileys Mistake case study reveals that proxy metric values for estuary units delineated to 

represent a single embayment can vary widely depending on outlet line placement (Table E.3). From the 

five outlet lines delineated at Baileys Mistake, forty proxy metric columns had percent changes of at least 

100% between their lowest and highest values, twenty-five over 200%, thirteen over 500%, and five over 

1,000%. The largest changes were among metrics related to estuary size, with the greatest change for any 

single metric an over 80,000% (800-fold) increase in embayment volume from the innermost (V) to 

outermost (I) delineated estuary unit. These variations also affect CPRU assignment because 

identification of coastal setting type for an estuary unit is based on SDR proxy metric values. The estuary 

units delineated from the five outlet lines were assigned to four different CPRU clusters, with only the 

two innermost lines assigned to the same cluster.  

The pour line case study is simplified by having only one DMR bacteria monitoring station 

within the embayment. The bacteria count signature for all five potential outlet lines remains constant and 

only proxy metric values change. Figure 4.3d illustrates an approximately threefold difference in MWA 

drainage density between the innermost and outermost delineated estuary unit for Baileys Mistake in a 

plot of bacteria counts vs drainage density. Changing outlet line location would also affect the subset of 

monitoring stations within the delineated estuary unit and would thus result in movement along both axes 

of the plot in a more complex situation with multiple bacteria monitoring stations distributed throughout 

the embayment (Figure 4.1). This would further complicate efforts to assess relations between setting and 

bacteria pollution vulnerability. 

4.4. Discussion 

The research presented in this chapter used multiple approaches to evaluate relations between 

coastal settings defined by bacteria pollution SDR attributes and MEDMR bacteria sample data. 
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Outcomes from the analyses suggest the pursued approach has limited capacity to distinguish the 

vulnerability of Maine’s varied coastal settings to bacteria contamination problems. CPRU bacteria 

distributions and linear regressions of bacteria counts against SDR proxy spatial data metrics show 

surprisingly limited correlations between SDR conditions and bacteria counts. Four permutations 

evaluating setting associations with bacteria contamination were pursued using all SDR attributes to 

describe either estuary units, non-tidal watersheds, MWAs, or estuary water bodies. Two additional 

permutations were examined to evaluate associations between estuary units and MWAs described by only 

runoff and bacteria source attributes with MEDMR bacteria sample counts. The consistently similar 

bacteria count signatures among settings considered in each permutation provide evidence that the limited 

predictive power may be related to bacteria sample data and not the settings described by SDR attributes 

or estuary subdomains. Exploratory CART regression analyses provided more promising results by 

indicating some similarities in the groupings of proxy spatial data metrics that can explain variations in 

bacteria levels.  

The investigation of the associations between coastal settings and MEDMR bacteria count 

signatures produced several important outcomes. The relatively small difference in bacteria count 

signatures among tested combinations of coastal setting domains and attributes places heightened 

attention towards the potential weaknesses in bacteria sampling data when used for vulnerability analyses. 

The approaches used to scrutinize the influence of the coastal setting domains and attribution choices 

demonstrate a procedure through which data gaps might be closed to enhance the vulnerability 

predictions. Spatial information and data analysis tools created for the research operations provide support 

for decision-making by investigators. The flexibility of the created platform for coastal setting 

identification can also offer utility to coastal managers by adding geographic information data and 

capacity for setting determinations based on factors governing water pollution problems.  
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The accommodation of research and management interests fulfills the central research ambition to 

design an expert system to identify coastal settings and land-sea connections influencing pollution 

problems affecting shellfish harvesting areas. Development of the expert system designed to assess the 

vulnerability of varied coastal settings to bacteria pollution required that practical and theoretical research 

questions be addressed, one of which is the feasibility of using existing bacteria sampling data for the 

vulnerability analyses. The four related research questions framing this component of the research can 

now be revisited. 

Question 1:  Can static proxy spatial data metrics describing SDR drivers of bacterial contamination 

problems be strategically assembled and related to bacteria sampling data to assess and compare coastal 

pollution vulnerability? 

Limitations in research outcomes related to this question can be explained by several information 

gaps constraining the capacity of the approach to consider dynamics and processes linked to bacteria 

pollution to distinguish the vulnerability of varied settings to pollution problems in coastal estuaries. 

1. Estuary hydrodynamics. There were difficulties in the analysis with the placement of outlet lines 

to delineate estuary units that act as contiguous land-sea connection domains. The analysis is 

sensitive to pour line placement because it influences both CPRU determination and bacteria 

sampling outcomes. Detailed hydrodynamic modeling has revealed prevailing circulation patterns 

in a small number of coastal Maine bays (Alahmed, Ross and Smith, 2022; Bailey et al., 2023), 

but such data do not currently exist for the majority of the coast. The ability of proxy spatial data 

metrics to describe coastal morphology has limits related to spatial and temporal dynamics at 

varied scales. 

2. Spatial and temporal variation in runoff production. Runoff production in a landscape is a 

product of precipitation input and infiltration losses governed by soil types and impervious 
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surface (Dunne and Leopold, 1978; Gupta, 2017; Bierman and Montgomery, 2020). The 

analytical approach lumped proxy spatial data within watersheds and estuary units despite 

awareness that the factors related to runoff production vary spatially and temporarily. Spatial data 

can represent large differences in runoff based on land cover. The detection of more subtle 

differences across a domain and over time can be much less certain. Spring freeze/thaw and snow 

pack dynamics create added complexity, including spring freshet runoff. 

3. Bacteria reproduction and die-off dynamics. Fecal coliforms and other culprit bacteria are living 

organisms which feed, reproduce, and die in aquatic environments with dynamics dependent on 

local environmental conditions, affecting the magnitude and length of pollution problems. These 

conditions include nutrient availability, salinity, temperature, ultraviolet radiation, and predation, 

which vary in space and time (Jones, 2011; Leight et al., 2016; Rothenheber and Jones, 2018; 

Korajkic et al., 2019).  

4. Stochastic events. Stochastic bacteria pollution events constitute random occurrences that 

introduce bacteria to the system, particularly in large quantities. Examples include pipe breaks 

(Sutton, Sczesny and Cone, 2023), sewage truck spills (Blakely, 2018; Walsh, 2022), and animal 

waste spills (PCD Live Briefs, 2023). Inclusion of these events was outside of the scope of the 

research presented here, but their potential importance has been suggested for the problem 

domain (Smith et al., 2016; Roy et al., 2018). 

5. Large river and ocean influences. Large rivers were identified as a data gap by Smith et al. 

(2016), who noted that during high magnitude discharge events their outflow plume may “drape” 

the coast and carry transported constituents along shorelines and into adjacent embayments (Cole 

et al., 2020; Du et al., 2020). Figures Figure 4.7 and Figure 4.8 illustrate the difference in extent 

between turbidity plumes from the Union River, the second-largest (1,380 km2) nontidal 

watershed included in the current analysis, and the 15,200 km2 Kennebec River, one of six very 

large watersheds excluded from analysis. Large river plumes and other landward movement of 
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contaminants from ocean or gulf waters into estuaries causes a potential disconnect between 

pollution levels and estuary unit SDR conditions, confounding efforts to assess bacteria pollution 

vulnerability based on static spatial data representations of setting conditions. 

6. Bias in bacteria sampling datasets. The MEDMR water quality sampling regimens are dictated 

by management goals related to NSSP standards rather than random sampling of the full Maine 

coastal domain. Sampling is focused on areas known to have occasional pollution issues where 

conditional shellfish flat closures are more likely to be needed to maximize management efficacy 

of limited sampling capacity. Areas with historically low risk of adverse pollution events receive 

less targeted sampling. Much of the tidal shoreline in “prohibited” harvesting status due to  nown 

persistent bacteria problems or proximity to certain points sources is rarely or never tested, 

including areas adjacent to the urbanized landscape of the state’s largest city, Portland, and other 

developed areas with high seasonal populations such as Old Orchard Beach, Boothbay Harbor, 

Rockland, Camden, and Belfast (Maine Department of Marine Resources, 2022), limiting the 

ability of analyses to identify proxy metrics that correlate with persistently high bacteria levels. 
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Figure 4.7. Sediment plume from Union River (Ellsworth, ME). The plume from the Union River, the 

second-largest nontidal watershed included in analysis for this research, spilling through Union River Bay 

into Western Bay and greater Blue Hill Bay after large December rain event. (left) Satellite image from 

Copernicus Sentinel-2A. (right) Image of turbidity levels post-processed by author from Sentinel-2A data. 
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Figure 4.8. Turbidity plume from the Kennebec River draping over eastern Casco Bay. The Kennebec is 

one of six very large Maine rivers excluded from analysis (adapted from Ross and Smith, 2020; 

University of Maine Satellite Oceanography Data Lab). 
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Question 2:  Does equal weighting of SDR pollution culprit categories dilute the capacity to compare 

coastal bacteria pollution vulnerability compared to evaluations limited to source and estuary attributes? 

Comparison of CPRUs derived from equal weighting of all SDR pollution culprit categories 

against clusters derived from only source or residence time categories did not indicate major differences 

in bacteria count distribution patterns. This indicates that equal weighting of SDR culprit categories for 

coastal setting identification did not diminish the capacity of clustering outcomes to predict bacteria 

pollution vulnerability. Relatively poor predictive capacity among clusters derived from all permutations 

of proxy metrics must therefore be a result of a different data gap, such as issues with bacteria sampling 

data biases. A difference that did arise from the use of source-only proxy metrics was the expansion of the 

number of coastal setting types selected by the GMM cluster analysis, from seven clusters for CPRUs 

with equal SDR weighting to twelve for source-only metrics and thirteen for source metrics specifically 

within MWAs. This may be useful from a management standpoint by allowing finer discrimination of 

source culprits within clusters. This warrants further exploration of the possibility of incorporating 

separate clustering of source, delivery, and residence time proxy metrics into the decision support tool 

rather than calculating a single setting type based on equal SDR weighting. This would be in line with the 

general strategies for coastal setting classification used in decision support tools such as that of (Hume et 

al., 2007), which reports estuary site classification as a combination of hydrodynamic class, geological 

category, and land cover category rather than as a single combined category. 

Question 3:  Does the proximity of SDR pollution-related factors in margin watershed areas have a 

detectable influence in coastal pollution vulnerability analyses? 

The evaluation of margin watershed influence on coastal bacteria pollution vulnerability analyses 

indicates that, based on the statistical methods used here, margin watershed areas do not appear to play a 

dominant role in pollution vulnerability. This is an unexpected result that should be interpreted with 
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caution. Connections of coastal land areas to tidal waters have been recognized as being important to 

estuary habitat and water quality over the past century, inspiring the US Coastal Zone Management Act in 

1972 and the establishment of coastal zone management programs and regulations at state levels 

(Anderson, 1975; Davis, 1987; Maine Coastal Program, 2023; NOAA Office for Coastal Management, no 

date). Physical attributes of the MWAs such as close proximity to tidal waters, susceptibility of low lying 

areas to flooding, and even seabird bacteria sources in tidal marsh environments suggest that these areas 

should play an important role in bacteria vulnerability. These unexpected outcomes may be explained by 

the confounding factors related to deficiencies in the bacteria sampling data in coastal areas and capacity 

of the reliance on spatial data to describe dynamic processes driving estuary vulnerability. Future work 

should focus on filling these data gaps to test these results before major changes in coastal management 

strategies are considered. 

Question 4: What are the implications of estuary outlet pour line placement on the coastal pollution 

vulnerability analysis outcomes? 

The question of the effect of changing outlet line pour placement for delineating estuary units 

involved an investigation of the modifiable areal unit problem (MAUP) for the coastal Gulf of Maine 

problem domain. MAUP is a problem in spatial statistics where changing the size, shape, or orientation of 

the spatial units used for aggregation or sampling of underlying data changes the results of the sampling 

output, potentially even the direction of trends observed from sampled data (Openshaw, 1984; Dungan et 

al., 2002; Buzzelli, 2020). This is a concern for analyses using spatial units delineated by the expert 

system framework for setting identification developed for this research, which allows users to make 

delineations based on any drawn line. A defense against MAUP is the use of spatial meaningful units 

(Buzzelli, 2020). However, without accurate estuary flow pattern data it is difficult to assess a priori to 

what extent an estuary unit delineated from a given outlet line does act as a meaningful unit for SDR 

processes and selection of bacteria monitoring stations. 
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The Baileys Mistake case study clarifies some of the outcomes from the vulnerability analyses 

relating coastal settings to bacteria sampling data by showing the effect of outlet line placement on 

calculated metric values. Line placement has an effect both on aggregated proxy metric values and on the 

selection of bacteria monitoring stations that affects calculated bacteria levels. All areas may not interact 

equally to collectively drive bacteria conditions in delineated estuaries that are too large or have complex 

branching structures. Conversely, small estuaries and sub-embayments with high openness values may be 

subject to tidal exchange influences from an encompassing embayment or the ocean that cannot be 

accounted for in the analysis. 

4.5. Conclusions 

The analytical approach and expert system derived from this research advance the capacity to 

consider and evaluate spatial information relative to available pollution sampling data. Outcomes are not 

intended to serve as a forecast model over short time scales such as a single coastal storm event. The 

approach provides a framework for the identification and comparison of settings based on proxy metric 

spatial data to support both research and management decision-making. The system meets the demands 

for decision support tools to guide watershed and coastal land-sea connection research investigations 

related to water pollution. It also addresses coastal management needs in its capacity to support decision-

making related to deployment of monitoring resources, development of regulations for seafood 

harvesting, and guidance for comprehensive planning of coastal areas.  

Conclusions about bacteria pollution vulnerability for different setting types in the Gulf of Maine 

problem domain are ultimately constrained by the available spatial information and bacteria sampling 

data. The absence of spatial information that describes complex circulation patterns within estuaries was 

identified as one of the factors limiting comparisons of the coastal settings. Associations of bacteria 

sample signatures with outcomes from multiple permutations of coastal setting attributes and estuary unit 
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subdomains indicate that equal weighting of pollution SDR culprit categories are not the primary reason 

the system does not reveal substantially varied vulnerability by location along the Maine coast. The 

problem lies in the inadequacies of the bacteria sampling dataset designed for shellfish sanitation 

management operations and not vulnerability research purposes. Suggestions for addressing the bacteria 

sampling deficiencies to accommodate coastal bacteria pollution vulnerability assessments are provided. 
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CHAPTER 5 

COASTAL POLLUTION VULNERABILITY RESEARCH OUTCOMES 

5.1. Introduction 

Understanding linkages between human and environmental systems and conditions is at the heart 

of sustainability science to meet societal and ecosystem needs (Turner et al., 2003). The vulnerability of 

coupled human–environment systems is a central consideration in the communication between science 

and decision-making necessary for modern coastal resources management. Research in sustainability 

science by (Alonso Roldán et al., 2019) draws attention to boundaries between social and ecological 

systems operating at the land-sea interface that produce deficiencies in collaborative research, science 

communication, and governance. The authors point out that the generation of scientific knowledge is 

often not approached integrally across land-sea boundaries. Failure to do so can place constraints on the 

successes of approaches based on ecosystem services and interconnected whole systems to support 

decision-making and governance related to coastal resources management.  

Determining vulnerabilities of systems to environmental and human changes and identifying 

where the vulnerabilities occur is central to the sustainability solutions that are the inspiration for this 

research. Several problems related to bacteria pollution vulnerability are posed by the social-ecological 

system at the Gulf of Maine land-sea boundary. The original research framed around the scientific basis 

for decision-making with a focus on shellfish harvesting area closures in Maine was inspired by a coastal 

sustainability problem related to shellfishing business and communities. Complex land-sea connections 

and human influence on modern conditions create the biophysical problem of illness-causing fecal-borne 

pathogens in harvested shellfish. Coastal resource management agencies working in complex social-

ecological systems at the land-sea interface face policy problems related to competing needs among 

shellfish harvesters, consumers, and other community members. Addressing these problems can be 
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complicated by boundaries separating decision-making processes involving academic research groups and 

staff implementing policies within terrestrial or marine environments. A knowledge and information 

problem is at the center of the other three problems, which provided an inspiration for the focus of this 

research on applications of spatial data proxies for solutions to coastal pollution problems. 

 Ambition to address the problems led to the overarching question driving the research: “How can 

an expert system domain, metrics, and analysis approach be framed to identify coastal settings and land-

sea connections influencing pollution problems affecting shellfish harvesting areas?” It was an added 

challenge to recognize and address the boundaries in the social-ecological systems at the land-sea 

boundary in support of an approach to coastal management that incorporates ecosystem services and 

connected whole systems. Strategic objectives of the research were framed by four research questions 

listed below: 

1. What are the appropriate proxy metrics related to source, delivery, and residence time (SDR) that 

capture the processes leading to bacteria pollution problems in estuaries? 

2. How can coupled land-sea connection settings be compared using spatial data information to 

evaluate their relative vulnerability to bacteria pollution? 

3. What role do the coastal margin watershed areas play in bacteria pollution vulnerability (i.e., does 

proximity of certain pollution-related factors to the estuary matter)?  

4. What are the implications of the estuary outlet pour line placement on the outcome from the 

expert system to identify coastal vulnerability in varied settings? 

The research presented in this dissertation approached land-sea connections related to coastal 

bacteria from a decision science framework that sought to link data with stakeholder needs and policy 

objectives. Chapter 1 identified goals and objectives related to identification of SDR proxy metrics, 

identification and comparison of coastal settings, evaluation of margin watershed area roles in pollution 



111 

 

vulnerability, and evaluation of implications of pour line placement on expert system outcomes. Chapter 2 

addressed the identification and parameterization of spaces within a domain using SDR attributes related 

to pollution problems. Chapter 3 addressed the development of an expert system framework for 

identification and comparison of coastal setting types (“coastal pollution response units,” CPRUs) based 

on SDR metrics in the parameterized problem domain. Chapter 4 summarized the testing of expert system 

outcomes and the coupling of analysis outcomes with Maine Dept. of Marine Resources (MEDMR) 

bacteria data in relation to bacteria pollution vulnerability.  

5.2. Research Outcomes 

5.2.1. Expert System Development 

A key outcome of the research was the development of an expert system for identifying coastal 

setting types. This was not an original objective during project conceptualization, but instead emerged as 

an important research goal through collaboration with stakeholders. Achieving this outcome required the 

accomplishment of several functional objectives related to the development of the necessary spatial data 

needed to facilitate setting identification and pollution vulnerability analyses in the coastal Maine 

problem domain (Figure 5.1). Data development presented in this dissertation provides a roadmap for 

researchers seeking to delineate and parameterize spatial domains with proxy metrics related to runoff-

borne constituents. 

Development of the expert system provided advancements of two different types. The first 

narrowly relate to the system’s implementation as interactive geospatial tool (Figure 5.2). This tool had 

direct uses as a delineator and data aggregator for researchers and as a decision support tool for coastal 

managers. More broadly, the research also represents scientific advancements in the form of the set of 

decisions that were made regarding the parameterization of the space, organization of data, choice of 

analytical approaches, and formatting of output. The tool also provides a scientific platform for  
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 Figure 5.1 Illustration of major data assembly steps supporting development of the expert system for 

coastal setting identification. 

 

 

 
Figure 5.2 Desktop interface for the expert system for coastal setting identification. The implementation 

of the expert system as a GIS tool relies on a geodatabase containing spatial data (left) and expert rules 

for assembling and interpreting data in the form of computer code (right). 
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assessment of additional setting identification approaches and testing of research questions such as the 

implications of flexible estuary outlet line placement on aggregated proxy metric values and resulting 

setting identification. 

5.2.2. Coastal Setting Identification 

 Results from experimental analyses conducted with the expert system customized for coastal 

bacteria pollution targets produced a new specialized map of the Maine coast (Figure 5.3). This is the first 

thematic map for coastal Maine with a focus on bacteria contamination vulnerability that incorporates the 

entire coastal subdomains of nontidal watersheds, margin watershed areas, and estuarine waters. It builds 

on many different forms of thematic and reference maps that have been produced for these coastal areas, 

including the geomorphologically-based coastal compartments of Kelley (1987) and the SDR 

categorizations of Gerard (2018) and Smith et al. (2016). 

 
Figure 5.3 Map of Maine’s coastline with polygons identifying CPRUs related to estuary unit subdomains 

and attributes describing pollution source, delivery, and residence time of bacteria pollution. 
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5.2.3. Pollution Vulnerability 

 Experimental evaluations of the association of identified coastal settings and SDR attributes with 

bacteria data signatures highlighted approaches to compare collections of attributes linked to pollution 

problems and estuary unit subdomains. The investigation of different permutations of attributes and 

subdomains demonstrated methods for evaluation of how individual SDR attributes or varied collections 

of attributes describing source, delivery, and residence time influence coastal pollution. Attention towards 

whole land-sea connection domains or exclusive focus on subdomains such as land areas adjacent to tidal 

waters or estuary water bodies allowed for comparisons of different coastal locations. Examination of a 

suite of permutations indicate that standard monitoring protocols used for shellfish sanitation and 

management are inadequate for bacteria pollution vulnerability analyses. 

 

 

Figure 5.4 Example violin plot with box and whiskers showing bacteria count signatures derived from 

sampling stations in identified coastal settings. 
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5.3. Research Conclusions 

The outcomes of the research presented in this dissertation advance the relations between coastal 

attributes influencing pollution problems, spatial information systems, and bacteria sampling data 

collected by a coastal resource management agency. The work creates the most comprehensive coastal 

spatial dataset related to land-sea connections and coastal pollution problems for Maine. The evaluation 

of the associations of settings with bacteria data provides a framework for distinguishing locations based 

on spatial data proxies with relevance to pollution problems. Aside from tangible products, this research 

contributed several intellectual advancements. These include the establishment of problem domains, the 

expansion of the amount and type of land area included in the analysis, and research decisions related to 

the use of spatial data proxy information to address problems. The research tested individual attributes 

and the cumulative influence of collections of attributes related to SDR processes. It required the 

development of an intellectual framework for putting together the components of the solutions to 

pollution problems related to complex land-sea connections. Finally, it identified potential applications 

and critically assessed shortcomings and limitations of the research outcomes. 

The expert system created as part of this research investigation provides a flexible framework to 

evaluate land-sea connections and identify coastal settings based on drivers of bacteria pollution 

problems. It also provided a platform for stakeholder access to spatial data and determinations of coastal 

setting characteristics to support decisions related to monitoring and land use planning. The platform 

offers a consistent mechanism for communication of information and results from statistical evaluations 

of coastal conditions related to pollution problems. The observations derived from use of the platform 

have addressed the four problems inherently connected to social-ecological systems at the land-sea 

interface by focusing on knowledge and information. In particular, the sustainability problem is addressed 

through attention to multiple conditions influenced by humans and biophysical processes with 

advancements directed towards ecosystem services and whole connected land-sea systems in coastal 



116 

 

areas. The manner in which coupled coastal land-sea system produce pollution problems and their 

sensitivity to pollution problems through scenario evaluations has been demonstrated, conforming to 

suggestions by Turner, et al. (2003). Components of the coupled system have also been examined to test 

the influence of equal weighting of pollution culprit categories first conceptualized by Smith et al. (2016). 

The created expert system establishes a new linkage between information, knowledge, and decision-

making for coastal resource managers. 
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APPENDIX A 

TECHNICAL MANUAL: HYDROLOGY GEOPROCESSING WORKFLOWS 

The following pages are a reproduction of the “  E , H w    I…?” Q   k G               H         

Toolset (Van Dam, 2022). This technical document was developed to fill a literature gap in described 

workflows and established methodology for performing geospatial operations important to accomplishing 

the research work described in this dissertation, particularly related to protocols for the identification of 

road-crossing culvert locations. 
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APPENDIX B 

SUPPLEMENTAL MATERIAL FOR CHAPTER 2 

Data Sources: The Maine GeoLibrary (https://geolibrary-maine.opendata.arcgis.com) was the primary 

state-level spatial data source for this research. Some of these data were originally obtained through its 

since-deprecated predecessor spatial data clearinghouse, the Maine Office of GIS 

(https://www.maine.gov/megis/catalog); GeoLibrary has been indicated as the source here as long as an 

equivalent file is currently hosted. 

Table B.1 Descriptions and sources of elevation, boundary, and hydrology data used for coastal flow path 

delineation. 

Data Layer Description Data Type Source 

2 m DEM Two-meter cell length topographic 

digital elevation model of Maine 

coast. 

Raster 

(2 m) 

Maine GeoLibrary; 

Todd Metzler (pers. 

comm., May 2019) 

Shoreline 

Boundaries 

(METWP24P) 

1:24,000 scale town and township 

boundaries for the State of Maine, 

corresponding to shoreline (mean 

high water) 

Polygon Maine GeoLibrary 

Highest High Tide  Highest astronomical high tide for 

the state of Maine 

Polyline Maine GeoLibrary 

MaineDOT 

Bridges, Cross 

Culverts, Large 

Culverts 

Point features for the locations of 

three road-crossing structure types 

along state roadways 

Point Maine GeoLibrary 

NHD Flowlines 1:24,000 scale or larger “flow 

network consisting predominantly 

of stream/river and artificial path 

vector features” 

Polyline USGS  

https://www.usgs.gov/ 

national-hydrography 
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Table B.2. Bacteria source, delivery, and residence time proxy metrics selected for analysis of Coastal 

Pollution Response Units. *Denotes metrics considered in Smith et al. (2016) analysis of Landscape 

Pollution Response Units. 

 

 

Pollution 

Culprit 

Category 

Coastal Process Proxy Metric References 

Source Point source direct 

discharge of waste into 

coastal waters under 

system failures 

• Overboard Discharges (OBDs) 

• Combined Sewer Overflows (CSOs) 

• Pollutant discharge elimination 

system outfalls (PDES-O) 

• Pollutant discharge elimination 

system facilities (PDES-F) 

(Maine Department of 

Environmental 

Protection, 2018; Wood, 

2021; Riley, 2022) 

Nonpoint source 

generation by humans, 

pets (year-round and 

seasonal populations) 

• Population count, density * 

• Structure count, density * 

(Raquet, Williams and 

Kucken, 2008; Jones, 

2011; Sims and Kaczor, 

2017) 

Nonpoint source 

generation related to 

land use practices and 

animal populations 

• Drainage area (terrestrial) * 

• Fractions developed, farmed, rural * 

• Fraction conserved 

• Fraction tidal wetlands 

(Jones, 2011; Studds et 

al., 2012; Hood et al., 

2021) 

Delivery Generation of surface 

water runoff during 

precipitation events 

• Soil drainage score * 

• Fractions well, moderately, poorly 

drained soils * 

• Soil water storage capacity *  

• Est. runoff volume from 2” 

precipitation * 

(Jones, 2011; Gupta, 

2017) 

Efficiency of pollutant 

delivery from 

landscape to estuarine 

waters 

• Drainage density (geomorphically-

derived) * 

• Drainage density (engineered) * 

• Fraction surface storage * 

• Maximum elevation 

• Mean, maximum slope 

• Fraction margins 

(Bierman and 

Montgomery, 2020) 

Residence 

Time 

Freshwater forcing of 

estuary water 

evacuation 

• Estuary area, depth, volume 

• Drainage area / Estuary area ratio * 

• Runoff volume / estuary volume 

ratio  

(Dyer, 1973; Wan et al., 

2013; Smith et al., 2019) 

Controls on estuary 

circulation patterns 

and external forcings 

• Estuary circularity * 

• Estuary openness 

• Estuary outlet bearing 

(Dyer, 1973; Bartley, 

Buddemeier and Bennett, 

2001; Ralston and Stacey, 

2007; Schulz et al., 2020; 

Ross et al., 2021; Bailey 

et al., 2023) 
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Table B.3. Descriptions and sources of Source, Delivery, and Residence Time (SDR) proxy metric data. 

Data Layer Description Data Type Source 

CSO  Location of combined sewer 

outfall pipes licensed under 

Maine Pollution Discharge 

Elimination System 

Point Maine DEP; Maine GeoLibrary 

OBD Location of overboard 

discharge outfalls licensed 

with Maine  EP’s 

Overboard Discharge 

Program 

Point Maine DEP 

https://www.maine.gov/dep/gis/datama

ps/ 

PDES-F Location of permitted 

Pollution Discharge 

Elimination System 

facilities 

Point Maine DEP; Maine GeoLibrary 

PDES-O Location of permitted 

Pollution Discharge 

Elimination System outfalls 

Point Maine DEP; Maine GeoLibrary 

NLCD National Land Cover 

Database thematic 

classification of land cover 

data (2016) 

Raster  

(30 m) 

USGS 

https://www.mrlc.gov/data/nlcd-2016-

land-cover-conus 

Conserved 

Lands 

Boundaries of properties 

protected under 

conservation easements 

Polygon Maine GeoLibrary 

NWI National Wetlands 

Inventory area 

classifications 

Polygon US Fish & Wildlife Service 

https://www.fws.gov/program/national

-wetlands-inventory 

SSURGO Soil Survey Geographic 

Database soils data with 

drainage classes 

Polygon USDA 

https://www.nrcs.usda.gov/resources/d

ata-and-reports/soil-survey-

geographic-database-ssurgo 

E911 Roads Official roads layer for state 

of Maine 

Polyline Maine GeoLibrary 

E911 

Addresses 

Location of all addressable 

structures in Maine 

Point Maine GeoLibrary 

Pop10 Population by census block 

(2010) 

Polygon US Census Bureau 

Bathymetry One-ninth arc-second cell 

length bathymetric-

topographic digital 

elevation model of Maine 

coast, resampled to 1/3” 

Raster 

(1 3”) 

NOAA 

www.ncei.noaa.gov/maps/bathymetry 
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APPENDIX C 

SUPPLEMENTAL MATERIAL FOR CHAPTER 3 

Table C.1. Descriptions of source, delivery, and residence time metrics incorporated into expert system 

tool for coastal setting identification.  

Category Name Metric Description Units Aggregation 

Identifiers Est_ID_ Unique ID number n/a - 

Watershed 

size and 

shape 

 

 

Da_km2 Watershed (landscape) drainage area km2 Total sum 

Da_km2_M  …w              km2 Total sum 

Da_km2_HH  …w      H       H    T         km2 Total sum 

FMargin 
Fraction of total watershed that is in Margin 

watershed areas 
decimal Da_km2_M/Da_km2 

FHighHigh 
Fraction of total watershed that is inundated 

by highest high tide 
decimal 

Da_km2_HH/ 

DA_km2 

FHighHi_M  …w              decimal 
Da_km2_HH/ 

Da_km2_M 

Qmax_m3 
Estimated total runoff discharge from 

watershed based on 2 inches of rainfall 
m3 2” *  a_ m2 

Qmin_m3 
Minimum runoff discharge based on 2” of 

rainfall and total soil storage capacity 
m3 

Qmax_m3 - 

SSTORAGEME 

Zmax Maximum elevation within watershed m Maximum 

EstA_km2 Estuary water surface area km2 
Calculated from estuary 

polygon  

EstD_m Mean estuary water depth m 
Calculated from 

bathymetry raster 

EstV_m3 Estuary water volume m3 EstA_km2 * EstD_m 

Channel 

Network 
DD_3 

Natural drainage density, channel initiation at 

0.3 km2 
1/km Area-weighted mean 

DD_3_M  …w              1/km Area-weighted mean 

DD_3_HH  …w      H       H    T         1/km Area-weighted mean 

DD_2 Natural drainage density, init. at 0.2 km2 1/km Area-weighted mean 

DD_2_M  …w              1/km Area-weighted mean 

DD_2_HH  …w      H       H    T         1/km Area-weighted mean 

DD_05 Natural drainage density, init. at 0.05 km2 1/km Area-weighted mean 

DD_05_M  …w              1/km Area-weighted mean 

DD_05_HH  …w      H       H    T         1/km Area-weighted mean 

DD_3_Rds 
Natural and engineered (based on roads) 

drainage dens., channel initiation at 0.3 km2 
1/km Area-weighted mean 

DD_3_R_M  …w              1/km Area-weighted mean 

DD_3_R_HH  …w      H       H    T         1/km Area-weighted mean 

DD_2_Rds 
Natural and engineered (based on roads) 

drainage dens., channel initiation at 0.2 km2 
1/km Area-weighted mean 

DD_2_R_M  …w              1/km Area-weighted mean 

DD_2_R_HH  …w      H       H    T         1/km Area-weighted mean 

DD_05_Rds 
Natural and engineered (based on roads) 

drainage dens., channel initiation at 0.05 km2 
1/km Area-weighted mean 

DD_05_R_M  …w              1/km Area-weighted mean 

DD_05_R_HH  …w      H       H    T         1/km Area-weighted mean 
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Table C.1 continued. 

Category Name Metric Description Units Aggregation 

Land 

Cover 
FDEVELOPED 

Fraction of developed (urbanized, impervious) 

land in watershed 
decimal Area-weighted mean 

FDEVELO_M  …w              decimal Area-weighted mean 

FDEVELO_HH  …w      H       H    T         decimal Area-weighted mean 

FFARM 
Fraction of land that is used for non-forestry 

agriculture in watershed (livestock, crops, etc) 
decimal Area-weighted mean 

FFARM_M  …w              decimal Area-weighted mean 

FFARM_HH  …w      H       H    T         decimal Area-weighted mean 

FRURAL 
Fraction of land that is low development, 

forested, barren rock, shrubland in watershed 
decimal Area-weighted mean 

FRURAL_M  …w              decimal Area-weighted mean 

FRURAL_HH  …w      H       H    T         decimal Area-weighted mean 

FSTORAGE 
Fraction of land that is open water or marsh in 

watershed 
decimal Area-weighted mean 

FSTORAG_M  …w              decimal Area-weighted mean 

FSTORAG_HH  …w      H       H    T         decimal Area-weighted mean 

FConserve 
Fraction of land that is in permanently-

secured non-ag conservation 
decimal Area-weighted mean 

FConser_M  …w              decimal Area-weighted mean 

FConser_HH  …w      H       H    T         decimal Area-weighted mean 

FTidalWet 
Fraction of estuary land/water that is any tidal 

wetlands 
decimal Area-weighted mean 

Soil 

SOILDRAINS 

Soil drainage score based on the average soil 

drainage class by area in the watershed, 

normalized 0-1, where 1 is well drained.  

decimal Area-weighted mean 

SOILDRS_M  …w              decimal Area-weighted mean 

SOILDRS_HH  …w      H       H    T         decimal Area-weighted mean 

GOODDRAIN 
Fraction area has well to excessively well 

drained SSURGO drainage classification. 
decimal Area-weighted mean 

GOODDR_M  …w              decimal Area-weighted mean 

GOODDR_HH  …w      H       H    T         decimal Area-weighted mean 

MODDRAIN 
Fraction area has moderately well drained 

SSURGO drainage classification. 
decimal Area-weighted mean 

MODDR_M  …w              decimal Area-weighted mean 

MODDR_HH  …w      H       H    T         decimal Area-weighted mean 

POORDRAIN 

Fraction area has somewhat poorly to very 

poorly drained SSURGO drainage 

classification. 

decimal Area-weighted mean 

POORDR_M  …w              decimal Area-weighted mean 

POORDR_HH  …w      H       H    T         decimal Area-weighted mean 

SSTORAGEME 

Mean available soil water storage in the 

watershed, based on the available water 

capacity and soil thickness from SSURGO. 

cm Area-weighted mean 

SSTORME_M  …w              cm Area-weighted mean 

SSTORME_HH  …w      H       H    T         cm Area-weighted mean 
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Table C.1 continued. 

Category Name Metric Description Units Aggregation 

Population 

Patterns 
Pop_Dnsity 

Population density (population/watershed area) 

from 2010 US Census Bureau data 
1/km2 Area-weighted mean 

Pop_Dns_M  …w              1/km2 Area-weighted mean 

Pop_Dns_HH  …w      H       H    T         1/km2 Area-weighted mean 

POP10 Total human population in watershed count Total sum 

POP10_M  …w              count Total sum 

POP10_HH  …w      H       H    T         count Total sum 

StructCnt Number of addressable structures in wshed d count Total sum 

StrCnt_M  …w              count Total sum 

StrCnt_HH  …w      H       H    T         count Total sum 

StructDens 
Number of addressable structures divided by 

watershed area 
1/km2 Area-weighted mean 

StrDens_M  …w              1/km2 Area-weighted mean 

StrDens_HH  …w      H       H    T         1/km2 Area-weighted mean 

Point 

Sources 
OBDcnt 

Number of overboard discharge sites within the 

watershed 
count Total sum 

OBDcnt_M  …w              count Total sum 

OBDcnt_HH  …w      H       H    T         count Total sum 

OBDdens 
Number of overboard discharge sites within the 

watershed divided by watershed area 
1/km2 Area-weighted mean 

OBDdens_M  …w              1/km2 Area-weighted mean 

OBDdens_HH  …w      H       H    T         1/km2 Area-weighted mean 

CSOcnt Number of ombined sewer overflow sites count Total sum 

CSOcnt_M  …w              count Total sum 

CSOcnt_HH  …w      H       H    T         count Total sum 

CSOdens 
Number of combined sewer overflow sites 

within the watershed divided by w’shed area 
1/km2 Area-weighted mean 

CSOdens_M  …w              1/km2 Area-weighted mean 

CSOdens_HH  …w      H       H    T         1/km2 Area-weighted mean 

PDES_Fcnt 

Number of active MaineDEP Pollutant 

Discharge Elimination System Facilities within 

watershed 

count Total sum 

PDES_Fc_M  …w              count Total sum 

PDES_Fc_HH  …w      H       H    T         count Total sum 

PDES_Fdens 

Number of active MaineDEP Pollutant 

Discharge Elimination System Facilities within 

watershed divided by watershed area 

1/km2 Area-weighted mean 

PDES_Fd_M  …w              1/km2 Area-weighted mean 

PDES_Fd_HH  …w      H       H    T         1/km2 Area-weighted mean 

PDES_Ocnt 

Number of active MaineDEP Pollutant 

Discharge Elimination System Outflows within 

watershed 

count Total sum 

PDES_Oc_M  …w              count Total sum 

PDES_Oc_HH  …w      H       H    T         count Total sum 

PDES_Odens 

Number of active MaineDEP Pollutant 

Discharge Elimination System Outflows within 

watershed divided by watershed area 

1/km2 Area-weighted mean 

PDES_Od_M  …w              1/km2 Area-weighted mean 

PDES_Od_HH  …w      H       H    T         1/km2 Area-weighted mean 
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Table C.1 continued. 

Category Name Metric Description Units Aggregation 

Estuary 

Mixing 

 

Da_Ea_r Watershed area divided by estuary area 
unitless 

(ratio) 
Da_km2/EstA_km2 

Qmax_Ev_r 
Ratio of maximum watershed runoff volume 

to estuary volume 

unitless 

(ratio) 
Qmax_m3/EstV_m3 

Qmin_Ev_r 
Ratio of minimum watershed runoff volume 

to estuary volume 

unitless 

(ratio) 
Qmin_m3/EstV_m3 

Est_open 

Openness of the estuary to the surrounding 

water body (ratio of estuary mouth length to 

total estuary perimeter) 

unitless 

(ratio) 

Calculated from 

outlet line and 

estuary polygon 

Bear_Out Bearing of the estuary mouth 
decimal 

degrees 

Calculated from 

outlet line 

Est_circ Shape factor: circularity of the estuary. 
unitless 

(ratio) 

Calculated from 

estuary polygon 
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Areas Omitted from Analysis: Some areas of the coast were omitted from the analysis due to the 

influence of large interior watershed runoff or the inability of unidirectional flow delineations to capture 

complex or temporally variable in-estuary flow paths. These regions are described in the following 

figures and table. 

 

Figure C.1. Maps of Maine highlighting caution areas where the expert system tool returns incorrect (red) 

or potentially misleading (yellow) results. Nontidal watersheds included in tool are shown in green. Six 

large interior watersheds omitted from tool are shown in purple. See following pages for inset box figures. 

a. 

b. 

c. 

d. 

e. 

f. 
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Figure C.1a. Map of lower Piscataqua River estuary where the expert system tool returns incorrect (red) 

or potentially misleading (yellow) results. Nontidal watersheds included in tool are shown in green. Large 

interior watersheds omitted from tool are shown in purple. See Table C.2 for caution area descriptions. 

  

a. 

PQ-2 

PQ-1 
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Figure C.1b. Map of lower Saco River estuary where the expert system tool returns incorrect (red) or 

potentially misleading (yellow) results. Nontidal watersheds included in tool are shown in green. Large 

interior watersheds omitted from tool are shown in purple. See Table C.2 for caution area descriptions. 

 

 

b. 

SA-1 

SA-2 

SA-3 



157 

 

 

Figure C.1c. Map of Merrymeeting Bay and surroundings where the expert system tool returns incorrect 

(red) or potentially misleading (yellow) results. Nontidal watersheds included in tool are shown in green. 

Large interior watersheds omitted from tool are shown in purple. See Table C.2 for caution area 

descriptions. 

  

  

 

c. 

MM-2 

MM-7 

MM-1 

MM-3 

MM-4 

MM-8 

MM-9 

MM-5,6 

MM-10 

MM-11 

(MC-11) 
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Figure C.1d. Map of ria estuaries of Midcoast Maine where the expert system tool returns incorrect (red) 

or potentially misleading (yellow) results. Nontidal watersheds included in tool are shown in green. See 

Table C.2 for caution area descriptions. 

 

 

(MM-4) 

d. 

MC-1 

MC-2 

MC-3 

MC-4 

MC-5 

MC-6 

MC-7 
MC-8 

MC-9 

MC-10 

MC-11 MC-12 

MC-13 

MC-14 

MC-15 

MC-16 

MC-17 
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Figure C.1e. Map of lower Penobscot River estuary where the expert system tool returns incorrect (red) or 

potentially misleading (yellow) results. Nontidal watersheds included in tool are shown in green. Large 

interior watersheds omitted from tool are shown in purple. See Table C.2 for caution area descriptions. 

 

 

 

e. 

PB-1 

PB-2 
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Figure C.1f. Map of Lubec Channel where the expert system tool returns potentially misleading (yellow) 

results. Nontidal watersheds included in tool are shown in green. See Table C.2 for caution area 

descriptions. 

 

 

 

 

 

 

 

f. 

LU-1 
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Table C.2. Explanations for advisory areas in which expert system tool may return incorrect or potentially 

misleading results.  

Site # Advisory Note 

MC-1 Warning – 

Incorrect 

Results 

This area directly receives flow from the Kennebec and Androscoggin River 

watersheds, large Maine river watersheds not included in this dataset. Use of 

tool here will result in incorrect returns, including drastically underrepresented 

runoff volume. 

MC-2 

- 

MC-9 

Caution – 

Potentially 

Misleading 

This area may be affected by flow from the Kennebec and Androscoggin River 

watersheds, two of six large Maine river watersheds not included in this 

dataset. Use of tool here may result in misleading returns, depending on river 

stage and flow dynamics. 

MC-10 

- 

MC-13 

Caution – 

Potentially 

Misleading 

Flow directions through this area may be temporally variable. Delineations are 

best estimates of normal drainage during ebb tides, based on mud flat channel 

curvatures. Use of tool in Hockomock Bay / Montsweag Bay region may result 

in misleading returns. 

MC-14 Caution – 

Potentially 

Misleading 

Contributing watershed area to this section of the Sheepscot River may be 

temporally variable. Use of tool here may result in misleading returns. 

MC-15 Caution – 

Potentially 

Misleading 

Flow directions through this area may be temporally variable. Delineations are 

best estimates of normal drainage during ebb tides, based on mud flat channel 

curvatures. Use of tool here may result in misleading returns. 

MC-16 Caution – 

Potentially 

Misleading 

Flow mixing from the Sheepscot River main channel is not captured in flow 

path delineations in this area. Use of tool here may result in misleading returns. 

MC-17 Caution – 

Potentially 

Misleading 

Net flow directions through this area are unclear and may be temporally 

variable. Use of tool here may result in misleading returns. 

MM-1 Warning – 

Incorrect 

Results 

This area directly receives flow from the Kennebec River watershed, one of six 

large river watersheds not included in this dataset. Use of tool here will result 

in incorrect returns, including drastically underrepresented runoff volume. 

MM-2 Warning – 

Incorrect 

Results 

This area directly receives flow from the Androscoggin River watershed, one 

of six large Maine river watersheds not included in this dataset. Use of tool 

here will result in incorrect returns, including drastically underrepresented 

runoff volume. 

MM-3 Warning – 

Incorrect 

Results 

Merrymeeting Bay receives flow from the Kennebec and Androscoggin River 

watersheds, large Maine river watersheds not included in this dataset. Use of 

tool here will result in incorrect returns, including drastically underrepresented 

runoff volume. 
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Table C.2 continued 

Site # Advisory Note 

MM-5 

MM-6 

Caution – 

Potentially 

Misleading 

This area may be affected by flow from the Kennebec River watershed, one of 

six large Maine river watersheds not included in this dataset. Use of tool here 

may result in misleading returns, depending on river stage and flow dynamics. 

MM-7 Caution – 

Potentially 

Misleading 

This area may be affected by flow from the Androscoggin River watershed, 

one of six large Maine river watersheds not included in this dataset. Use of tool 

here may result in misleading returns, depending on river stage and flow 

dynamics. 

MM-8 

- 

MM-11 

Caution – 

Potentially 

Misleading 

This area may be affected by flow from the Kennebec and Androscoggin River 

watersheds, two of six large Maine river watersheds not included in this 

dataset. Use of tool here may result in misleading returns, depending on river 

stage and flow dynamics. 

PB-1 Warning – 

Incorrect 

Results 

This area directly receives flow from the Penobscot River watershed, one of six 

large Maine river watersheds not included in this dataset. Use of tool here will 

result in incorrect returns, including drastically underrepresented runoff 

volume. 

PB-2 Caution – 

Potentially 

Misleading 

This area may be affected by flow from the Penobscot River watershed, one of 

six large Maine river watersheds not included in this dataset. Use of tool here 

may result in misleading returns, depending on river stage and flow dynamics. 

PQ-1 Warning – 

Incorrect 

Results 

This area directly receives flow from the Piscataqua River watershed, one of 

six large Maine river watersheds not included in this dataset. Use of tool here 

will result in incorrect returns, including drastically underrepresented runoff 

volume. 

PQ-2 Caution – 

Potentially 

Misleading 

This area may be affected by flow from the Piscataqua River watershed, one of 

six large Maine river watersheds not included in this dataset. Use of tool here 

may result in misleading returns, depending on river stage and flow dynamics. 

SA-1 Warning – 

Incorrect 

Results 

This area directly receives flow from the Saco River watershed, one of six 

large Maine river watersheds not included in this dataset. Use of tool here will 

result in incorrect returns, including drastically underrepresented runoff 

volume. 

SA-2 

SA-3 

Caution – 

Potentially 

Misleading 

This area may be affected by flow from the Saco River watershed, one of six 

large Maine river watersheds not included in this dataset. Use of tool here may 

result in misleading returns, depending on river stage and flow dynamics. 
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APPENDIX D 

TECHNICAL MANUAL: EXPERT SYSTEM IMPLEMENTATION 

The following pages are a reproduction of the “  E , H w    I…?” Q   k G            “E       

B      ” GI  T    – ArcGIS Pro 3 Version. This document and its companion for the ArcMap 10 version 

were written as user manuals for the “Estuary Builder” GI  tool that is the software implementation of the 

coastal setting identification expert system framework developed for this dissertation research. The 

manual gives additional technical detail not included in the chapter text. 
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APPENDIX E 

SUPPLEMENTAL MATERIAL FOR CHAPTER 4 

Table E.1. Table showing inclusion of proxy metrics in the six sets (i-vi) of Gaussian mixture model 

(GMM) clusters identified for setting vulnerability analysis. Proxy metric descriptions are available in 

Appendix C. 
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Table E.1 continued. 
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Table E.2. Coefficients and R-squared values for linear regressions of geometric mean bacteria counts 

within estuary monitoring stations vs individual metric values. 
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Table E.3. Proxy metric values and cluster assignment for five possible estuary unit delineations within 

the Baileys Mistake embayment. 

Metric I II III IV V 
Max Pct. 

Change 

Da_km2 8.66 8.09 3.67 3.56 1.62 434% 

Da_km2_M 2.86 2.30 0.50 0.40 0.39 636 

Da_km2_HH 0.08 0.07 0.06 0.05 0.03 155 

FMargin 0.33 0.28 0.14 0.11 0.24 196 

FHighHigh 0.01 0.01 0.02 0.01 0.02 141 

FHighHi_M 0.01 0.01 0.03 0.03 0.02 161 

Qmax_m3 439,782.0 411,175.0 186,334.0 181,076.0 82,304.3 434 

Qmin_m3 290,563.0 270,716.0 12,4814.0 120,821.0 52,455.2 454 

Zmax 71.40 71.40 71.40 71.40 62.17 15 

EstA_km2 1.74 1.15 0.35 0.11 0.08 2,113 

EstD_m 5.29 3.40 1.11 0.22 0.14 3,669 

EstV_m3 9,233,220.0 3,905,130.0 388,060.0 25,763.4 11,068.8 83,317 

DD_3 1.08 1.13 0.92 0.95 0.63 79 

DD_3_M 0.72 0.81 0.25 0.31 0.12 587 

DD_3_HH 14.07 17.33 19.75 21.00 16.54 49 

DD_2 1.48 1.53 1.30 1.34 0.89 72 

DD_2_M 0.97 1.03 0.36 0.46 0.27 281 

DD_2_HH 15.90 19.58 22.40 23.82 21.18 50 

DD_05 2.88 2.97 3.03 3.11 2.98 8 

DD_05_M 2.09 2.22 1.25 1.58 1.42 77 

DD_05_HH 18.12 22.32 24.99 26.58 23.96 47 

DD_3_Rds 2.09 2.21 2.61 2.67 2.44 28 

DD_3_R_M 1.64 1.96 1.63 1.97 1.82 21 

DD_3_R_HH 14.66 18.05 20.37 21.66 17.62 48 

DD_2_Rds 2.49 2.61 2.99 3.06 2.70 23 

DD_2_R_M 1.89 2.17 1.75 2.12 1.97 24 

DD_2_R_HH 16.48 20.30 23.02 24.48 22.26 49 

DD_05_Rds 3.89 4.05 4.72 4.84 4.79 24 

DD_05_R_M 3.01 3.37 2.64 3.24 3.12 27 

DD_05_R_HH 18.71 23.04 25.61 27.23 25.04 46 

FDEVELOPED 0.01 0.01 0.02 0.02 0.03 184 

FDEVELO_M 0.01 0.02 0.03 0.04 0.04 238 

FDEVELO_HH 0.05 0.06 0.06 0.06 0.10 118 

FFARM 0.00 0.00 0.00 0.00 0.00 229 

FFARM_M 0.00 0.00 0.00 0.00 0.00 172 

FRURAL 0.85 0.85 0.89 0.89 0.91 8 

FRURAL_M 0.83 0.83 0.86 0.87 0.89 7 

FRURAL_HH 0.16 0.15 0.11 0.07 0.11 123 

FSTORAGE 0.14 0.14 0.09 0.09 0.05 176 

FSTORAG_M 0.15 0.15 0.11 0.08 0.07 124 
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Table E.3 continued. 

Metric I II III IV V 
Max Pct. 

Change 

FConserve 0.16 0.16 0.02 0.02 0.02 923% 

FConser_M 0.21 0.23 0.06 0.08 0.08 255 

FConser_HH 0.10 0.05 0.02 0.02 0.02 436 

FTidalWet 0.01 0.01 0.03 0.03 0.05 310 

SOILDRAINS 0.57 0.57 0.53 0.52 0.45 27 

SOILDRS_M 0.53 0.51 0.48 0.45 0.45 18 

SOILDRS_HH 0.19 0.17 0.14 0.12 0.09 103 

GOODDRAIN 0.73 0.72 0.63 0.63 0.50 47 

GOODDR_M 0.65 0.59 0.54 0.49 0.50 32 

GOODDR_HH 0.17 0.11 0.08 0.04 0.06 287 

MODDRAIN 0.04 0.04 0.02 0.02 0.03 103 

MODDR_M 0.08 0.10 0.04 0.00 0 - 

MODDR_HH 0.02 0.03 0.00 0.00 0 - 

POORDRAIN 0.23 0.24 0.35 0.35 0.47 104 

POORDR_M 0.27 0.31 0.42 0.51 0.50 85 

POORDR_HH 0.80 0.86 0.92 0.95 0.94 18 

SSTORAGEME 1.72 1.74 1.68 1.69 1.84 10 

SSTORME_M 1.84 1.91 1.57 1.66 1.66 22 

SSTORME_HH 1.99 2.33 2.62 2.73 3.06 53 

Pop_Dnsity 5.65 5.78 4.51 4.38 4.24 36 

Pop_Dns_M 6.38 7.02 5.34 4.38 4.45 60 

Pop_Dns_HH 1.92 1.50 0.53 0.20 0.28 838 

POP10 49 47 17 16 7 600 

POP10_M 18 16 3 2 2 800 

StructCnt 35 34 18 17 8 338 

StrCnt_M 18 17 3 2 2 800 

StrCnt_HH 1 1 1 1 1 0 

StructDens 4.04 4.20 4.91 4.77 4.94 22 

StrDens_M 6.30 7.41 5.98 5.02 5.15 47 

StrDens_HH 1.63 2.01 1.06 1.13 1.85 89 

Da_Ea_r 4.96 7.06 10.50 31.03 20.55 525 

Qmax_Ev_r 0.05 0.11 0.48 7.03 7.44 15,511 

Qmin_Ev_r 0.03 0.07 0.32 4.69 4.74 14,959 

Est_open 0.08 0.04 0.15 0.14 0.14 291 

Bear_Out 161.86 275.35 121.16 119.72 95.56 188 

Est_circ 0.22 0.23 0.24 0.20 0.20 22 

Slope_Mean 7.40 7.01 7.47 7.22 8.31 19 

Slp_Mean_M 8.71 7.65 11.52 10.32 10.39 51 

Slope_Max 115 84 84 60 60 92 

Slp_Max_M 115 84 84 56 56 105 

Cluster 5 1 3 4 4 - 
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Figure E.1. Illustration of sub-embayments. Examples of delineated watershed areas for nested sub-

embayments, or “inner” embayments (hatched), within larger embayment complexes (“outer” 

embayments) (solid) in a riverine estuary system (Webhannet River, Wells; left) and a bay system (Dyer 

Bay, Steuben; right). 
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