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Breast cancer is the second most occurring cancer type and is ranked �fth in terms of

mortality. X-ray mammography is the most common methodology of breast imaging and

can show radiographic signs of cancer, such as masses and calci�cations. From these

mammograms, radiologists can also assess breast density, which is a known cancer risk

factor. However, since not all dense tissue is cancer-prone, we hypothesize that dense tissue

can be segregated into healthy vs. risky subtypes. We propose that risky dense tissue is

associated with tissue microenvironment disorganization, which can be quanti�ed via a

computational characterization of the whole breast to provide an image-based risk

assessment. The two-dimensional wavelet transform modulus maxima (2D WTMM)

method is a strategy previously utilized on mammographic images to characterize the loss

of tissue homeostasis and tissue disorganization. A sliding window protocol is used within

the 2D WTMM method to analyze thousands of overlapping subregions of size 256 × 256

pixels from the original mammogram. This approach starts in the top left corner and ends

in the bottom right corner in a step size of 32-pixel increments. The subregions of

mammographic breast tissue are categorized according to Hurst exponent (H) values and

colors based upon these values: fatty (H ≤ 0.45, blue), healthy dense (H ≥ 0.55, red), and

risky dense tissue (0.45 < H < 0.55, yellow) [24, 25]. To decrease computational time and



cost, an investigation into the e�ciency of the sliding window approach was conducted by

considering di�erent pixel step size increments. Increments of 32 pixels, 64 pixels, 128

pixels, and 256 pixels were compared using the percent composition of each tissue type and

a statistical Wilcoxon Rank Sum test. Optimized iterations of color representations can be

created and compared to accompany the statistical analysis of tissue composition. The

creation and comparison of multi-layer intensity, single-layer maxima intensity, and

single-layer raw intensity heatmaps provide the conclusion that the multi-layer intensity

heatmaps show the most accurate visual representation of the proposed tissue types.

Through this investigation, we conclude that setting the increment of the sliding window

protocol to 128 pixels provides the best comparison of mammograms using multi-layer

heatmaps as a visual tool. The optimization of these images will allow the multi-layer

intensity heatmaps created at an increment of 128 pixels to aid medical professionals in

their identi�cation of patients at a higher risk of developing invasive cancer.
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CHAPTER 1

INTRODUCTION

1.1 Background

Breast cancer is the most common cancer and is ranked �rst in mortality due to cancer

in the female population around the world [1, 2]. Currently, between one in eight to one in

twelve females are diagnosed with breast cancer [3]. The recognition and screening of

breast cancer have both improved as a result of an increase in public awareness and

advancements in breast imaging [4]. Due to this, major medical organizations, such as the

American Cancer Society and the Society of Breast Imaging, recommend guidelines for

breast cancer detection and screening practices [5].

Cancer in the breast causes cells within the breast tissue to change and divide

uncontrollably, resulting in a lump or a mass. There are many types of breast cancer,

determined by the speci�c cells within the breast that become cancerous and whether the

cancer has spread or not [6]. One category is called in situ breast cancer and describes a

pre-cancer that starts in the milk ducts and has not spread to the rest of the breast tissue.

An example is ductal carcinoma in situ (DCIS), a non-invasive or pre-invasive breast

cancer where the cells lining the ducts have changed into cancer cells, but have not spread

through the duct walls into the nearby breast tissue [4].

Another category of breast cancer is invasive breast cancer, which describes those that

have spread into the surrounding breast tissue. The most common types are invasive

ductal carcinoma (IDC) and invasive lobular carcinoma (ILC). IDC is the most common,

accounting for 70-80% of all breast cancers [6]. IDC starts in the cells that line the milk

duct and can break through the duct wall, allowing the cancer cells to grow into the

neighboring breast tissue. ILC starts in the breast glands that make milk, known as

lobules, as seen in Fig. 1.1. Similarly to IDC, it can metastasize to other body parts [4].
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Breast conditions that are benign (non-cancerous) are also very common. These

conditions are not life-threatening, but some can be linked to a higher risk of developing

cancer. Fibroadenomas (�b_a) are benign breast tumors that are mostly made up of

glandular and stromal tissue. They can often feel like a marble in the breast and may need

to be removed from the breast tissue to gauge complexity [6]. Another category of benign

change in the breast can be classi�ed as �brocystic changes. These changes can lead to a

cyst (�uid-�lled scar within the breast) that can grow from microcysts to macrocysts. If a

woman or clinician notices these changes, a patient could be diagnosed with �brocystic

mastopathy (�b_m) [6].

Figure 1.1: Normal breast anatomy showing the chest wall, ribs, pectoral muscle, ducts,
areola, nipple, lobules, and stroma. Figure adapted from [7].

Typically, benign conditions and breast cancers are detected during screening or after a

woman or clinician notices a lump or abnormal change in the breast [7]. Screening for

2



breast cancer is o�ered via many di�erent modalities, including magnetic resonance

imaging, clinical breast examinations, and digital mammography. Mammography is the

most commonly utilized tool for visualizing the tissue environment within the breast and is

often used as an early detection tool [5]. Most screen-detected masses are benign, but a

biopsy is needed to establish a diagnosis if cancer is suspected. Via a microscopic analysis

of the cells within the tumor to establish if they are cancer and where they came from, a

diagnosis can be made for a patient from a biopsy [7].

When a mammogram is ordered for a patient, the breasts are imaged in the

craniocaudal (CC) view and mediolateral oblique (MLO) view. The CC view images the

breast tissue from a top-down view and may include some pectoral muscle (Figure 1.2 (C,

D)). The MLO view shows the most amount of breast tissue from a side view and

demonstrates a portion of the pectoral muscle (Figure 1.2 (A, B)) [8]. The resulting images

appear in shades of black, gray, and white, depending on the density of the tissue. Fatty

breast regions appear dark gray whereas dense breast regions, made of epithelial and

stromal tissues, appear white on a mammogram. This is due to how the X-rays are

absorbed by tissues of di�erent densities. Denser tissue has a higher atomic number than

fatty tissue and can more readily absorb X-rays. As a result, they appear more white on a

mammogram. Tumorous regions also appear white due to their density. With an elevated

presence of epithelial and stromal tissue, a tumor may be obscured from view in the

mammogram [9].

From these four images, a visual assessment of the breasts is conducted to check for

signs of change in the tissue environment. Breast lesions, which can sometimes be

indistinguishable from the surrounding tissue, can cause benign or malignant changes

within the tissue environment. A slight misinterpretation of a lesion can lead to a greater

number of false positive breast cancer cases [10]. These false positive cases a�ect the

patient's emotional state and can create additional costs for extra medical visits and

unneeded biopsies [11].
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Figure 1.2: Grayscale MLO (top row) and CC (bottom row) mammographic views for a
patient's opposite (A, C) and tumorous (B, D) breast. Varying grayscale intensities can be
seen in these images, which represent the underlying fatty tissue, dense tissue, and lesion.
Breast lesions are not easily discernable in some cases since both dense tissue and lesions
appear white on screening mammograms.

Due to the frequency of false positive cases and their negative e�ects, computer-aided

detection (CAD) algorithms have been developed to aid radiologists in their diagnoses. By

processing and analyzing mammogram images, CAD can act as a tool for radiologists in

lesion detection and classi�cation. Today, there are several commercially available CAD

systems used in clinical settings, including ImageChecker, SecondLook (CADx Medical

Systems, Laval, Quebec, Canada), and MammoReader (Intelligent Systems Software,

Clearwater, Fla) [10]. Advancements in these computer algorithms have led to their

4



implementation to scan a digital mammogram and mark suspicious areas of potential

cancer features, such as masses and microcalci�cations. After making their interpretations,

radiologists will review these CAD marks and compare them to reach a conclusion about a

patient's diagnosis [12]. The hope for this implementation is to decrease the number of

false positives, as well as the mortality rate, and to advance early detection methods.

1.2 Literature Review

The �elds of machine learning (ML) and image processing are becoming increasingly

developed and their applications to analyzing medical images are becoming more

widespread. Due to this, more e�cient CAD systems and ML algorithms have been

developed for cancer detection and classi�cation from mammographic images [13].

CAD systems require the development of computational algorithms to process medical

images [13]. Current conventional CAD systems present algorithms that utilize di�erent

techniques for tumor detection and classi�cation in mammographic images[13, 14]. There

are two main CAD systems: Computer-Aided Detection (CADe) systems and

Computer-Aided Diagnosis (CADx) systems. CADe is mainly utilized for localization and

detection of masses and abnormalities present in medical images, letting radiologists make

interpretations about them. CADx can provide a classi�cation for a mass within an image

and can provide aid in the decision-making of a radiologist. These CAD systems are often

utilized as a second opinion for radiologists [14].

With various CAD systems being developed and adapted over the years, the bene�ts

and limitations of the proposed image processing techniques have been studied [14]. The

bene�ts of CAD systems are that they can classify mammograms in real-time [15], can aid

in the segmentation of blurry tissue within a mammogram [16], and can be designed to

minimize computational power [17]. Some of the limitations surrounding CAD systems

include the investigation into their utilization on a limited sample of data [16], whereas

others may require manual region of interest (ROI) cropping [18] or can only classify a
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microcalci�cation [19]. CAD systems have proven to be reasonably good at detecting

invasive cancers, but may still pose the same level of danger for false positive cases [13].

The use of arti�cial intelligence (AI) for classifying breast images in clinical settings is

increasing. AI is the ability of computer-controlled systems to copy human behaviors such

as learning, reasoning, perception, and action. AI includes the sub�elds of ML, where

computers are learning from images without being programmed, and deep learning (DL),

where neural networks can extract high-level features from data [20]. Since 2017, DL

methods have been developed and adopted in breast cancer CAD [14]. DL can learn and

extract characteristics directly from a dataset using non-linear computation layers [13]. DL

risk models based on mammography have been able to identify 42% of women who would

develop cancer in �ve years as high risk, whereas a model based on traditional risk factors,

the Tyrer-Cuzik model, identi�ed 23% of this group (p ≤ 0.001) [20].

The incorporation of AI and CAD into breast imaging demonstrates the potential to

improve the accuracy of image classi�cation and risk prediction in breast cancer patients.

However, many concerns arise with the utilization of CAD and AI for radiologists. These

concerns include, but are not limited to, properly understanding complex algorithms,

assigning responsibility for decisions, a�ording costs associated with the technology, and

interpreting the results with con�dence [21, 22]. In recent years, algorithm transparency

and a better understanding of working AI principles have been requested by both academic

publishers and practitioners. As their concerns have been addressed, healthcare providers

are still unsure which algorithm is suitable for their populations [22]. Doctors are also held

accountable if unnecessary harm comes to the patient due to deviation from the standard

of care. AI and CAD technology are regulated before they are available on the market, yet

the issues of legal responsibility for the decisions of AI are controversial [22]. The

interpretability of these systems is also an area of concern for radiologists. Current

developments in visual representations of breast features and tissue types are the �rst steps
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in providing a more easily interpretable recommendation to clinicians, backed by medical

�ndings based on patient data [21].

To address the concerns of radiologists surrounding CAD and AI for breast imaging,

the Two-Dimensional Wavelet Transform Modulus Maxima (2D WTMM) method is

utilized to create visual representations of proposed tissue types. These color

representations relate directly to the biophysics of the underlying breast environment and

are intelligible, once the necessary background information is understood.

In 2001, an exploratory analysis of digital mammograms was conducted using the

multifractal formalism, the 2D WTMM method. This study introduced the possibility of

utilizing the Hurst exponent, H, to quantify the global roughness of a mammogram's

density �uctuations [23]. It concluded that the 2D WTMM method can be utilized to

quantify background tissue properties associated with breast cancer. Fatty and dense

breast tissue were assessed and displayed anti-correlated density �uctuations (H ∈

[0.20,0.45]) and long-range roughness correlations (H ∈ [0.55,0.75]), respectively [23]. Since

then, The Computational Modeling, Analysis of Imagery and Numerical Experiments

(CompuMAINE) Laboratory has deployed this methodology on mammographic images to

classify three proposed ranges of density �uctuations. Areas of fatty tissue can be classi�ed

as monofractal anti-correlated (H < 0.45), whereas areas of dense tissue show both

uncorrelated and long-range correlated density �uctuations (H > 0.45). A sliding window

protocol is utilized on these images to analyze thousands of subregions (a 360× 360 pixel

box) in a given mammogram. These subregions are then categorized based on their

H-value into three proposed tissue types: fatty tissue (H ≤ 0.45), healthy dense tissue

(H ≥ 0.55), and risky dense tissue (0.45 < H < 0.55) [24, 25]. Following this

characterization scheme, color representations, referred to as matrix heatmaps, are created

for the analyzed tissue, with fatty tissue in blue, healthy dense tissue in red, and risky

dense tissue in yellow (Figure 1.3). These matrix heatmaps take each subregion and

represent its assigned color as one pixel.
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Figure 1.3: Matrix heatmaps for a patient's MLO opposite (A) and tumorous (B) views,
where each 360 × 360 pixel subregion is represented by one pixel. Fatty tissue (H ≤ 0.45)
is depicted in blue, healthy dense tissue (H ≥ 0.55) in red, and risky dense tissue (0.45 <
H < 0.55) in yellow.

From previously studying these mammographic subregions, it has been found that there

are statistically signi�cant di�erences between cancerous breasts and breasts with a benign

lesion [24, 25]. Cancerous patients, diagnosed with either ILC or IDC, are compared to

benign patients, diagnosed with either �b_a or �b_m, to show statistically signi�cant

di�erences between the proposed tissue types. Three main metrics are utilized when

comparing cancer and benign breasts: the percentage of blue subregions per mammogram

(percent fatty), the percentage of red subregions per mammogram (percent healthy dense),

and the percentage of yellow subregions per mammogram (percent risky dense). Using the

non-parametric Wilcoxon Rank Sum test, p-values are calculated to demonstrate

statistically signi�cant di�erences, signi�ed by a value ≤ 0.05, and similarities between the

compared populations. The metrics used for comparison have been gathered from the

mammographic subregions analyzed with a sliding window approach of 32-pixel increments

between images of size 360× 360 pixels, keeping the central 256× 256 pixels for analysis to

account for edge e�ects [25]. As a suggestion from past studies, further investigation into
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the increment for the image sliding window and how this a�ects the creation of heatmaps

should be revisited [24, 25].

This thesis aims to explore the tuning of parameters utilized within the sliding window

approach and to create a novel quantitative visual tool to aid radiologists in breast cancer

screening. The previously validated procedure of the sliding window protocol outlines

splitting a mammogram into thousands of 360× 360 pixel subregions separated by

increments of 32 pixels [24]. The e�ects of altering the increment by which the sliding

window is slid across the mammogram will be explored to provide insight into the proposed

tissue percentages that make up di�erent populations of patients, i.e. cancer and benign.

Along with exploring the increment, optimization of matrix heatmaps is explored in

multiple ways to reveal previously obscured tissue types. This approach will aid in

decreasing the computational power it takes to assess mammograms and, most

importantly, provide a powerful, easily interpreted visual tool that can aid in the early

detection of breast cancer.
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CHAPTER 2

THE WAVELET TRANSFORM MODULUS MAXIMA METHOD

Gaps within current CAD systems and AI solutions for breast imaging have sparked the

motivation for the CompuMAINE Laboratory to think outside of the box to develop an

image-analysis-based approach that can be utilized to quantitatively characterize the tissue

microenvironment for a patient's whole breast. The Wavelet Transform Modulus Maxima

(WTMM) method is a multifractal analysis previously utilized to analyze roughness in

complex 1D signals [26, 27], 2D images [23, 28, 29, 30], and 3D images [31]. The 2D

WTMM method is well-suited to analyze self-a�ne rough surfaces such as mammograms

by identifying density �uctuations and spatial correlations [24, 25].

2.1 Two-Dimensional Wavelet Transform

The CompuMAINE Laboratory divides mammographic images into numerous 360 ×

360 pixel subregions due to the complexity of the monofractal signatures within a

mammogram. For the analysis of these mammographic subregions, the 2D WTMM utilizes

a wavelet transform (WT) as a mathematical microscope to characterize the roughness of

an image. A subregion image, f , is convolved with a wavelet ψ1(x, y) =
∂ϕ(x,y)
∂x

and

ψ2(x, y) =
∂ϕ(x,y)
∂y

. The 2D smoothing function can be represented by ϕ(x, y) [33]. The WT

can be described as:

Tψ[f ](b, a) =

Tψ1 [f ] = a−2
∫
d2xψ1(a

−1(x− b))f(x)

Tψ2 [f ] = a−2
∫
d2xψ2(a

−1(x− b))f(x)

 . (2.1)

The 1st-order Gaussian smoothing function can be described as:

ϕGau(x, y) = e−(x2+y2) = e−|x|2/2, (2.2)

Application of higher-order wavelets, where the number nϕ of vanishing moments of ϕ

determines the order of the wavelet nψ = nϕ + 1 and allows the WTMM methodology to

characterize images with H > 1 [29, 32].
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The WT can also be represented in terms of its modulus Mψ[f ](b, a) and argument

Aψ[f ](b, a), de�ned as:

Tψ[f ](b, a) = (Mψ[f ](b, a),Aψ[f ](b, a)), (2.3)

where

Mψ[f ](b, a) =
[
(Tψ1 [f ](b, a))

2 + (Tψ2 [f ](b, a))
2
]1/2

, (2.4)

Aψ[f ](b, a)) = Arg(Tψ1 [f ](b, a) + iTψ2 [f ](b, a)). (2.5)

2.2 WTMM and WTMMM

WTMM are points within f , represented by b, where Mψ[f ](b, a) is a local maximum

in the angular direction of Aψ[f ](b, a) for a given wavelet scale, a. By connecting maxima

chains of WTMM, an organization of the gradient changes within the underlying rough

surface is captured. This process is repeated across all scales a > 0.

Points along the maxima chains where Mψ[f ](b, a) is locally maximum are known as

the WTMM maxima (WTMMM), which can be seen as the colored dots on the black

WTMM lines in Figure 2.1 (B-D, 1-3). These WTMMM are connected across all scales,

a > 0, forming individual maxima lines. The space-scale WT skeleton L(a) is made up of

all these individual maxima lines, as illustrated in Figure 2.1 (B4, C4, D4). Along a

maxima line pointing to the singularity x0 in the rough surface as a→ 0+, denoted Lx0(a),

the WTMMM follow [33]

Mψ[f ](Lx0(a)) ∼ ah(x0), a→ 0+, (2.6)

where h(x0) is the Holder roughness exponent. It is important to note that Eq. (2.6) holds

only if the wavelet order is greater than the Holder exponent being estimated, i.e., when

nψ > h(x0). This is a safe assumption when deploying the 2D WTMM method on

mammographic subregions, as they almost always have roughness exponents of less than 1.

When employing this methodology on mammographic subregions, the range of possible
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Figure 2.1: Matrix heatmaps of the opposite breast (left) and tumorous breast (right), where
each pixel represents a 360 × 360 pixel subregion color-coded based on its corresponding
H-value (A). Gray pixels correspond to no-scaling subregions (A). Sample subregions where
H ≤ 0.45 (fatty) are depicted as blue (B), H ≥ 0.55 (healthy dense) are red (C), and
0.45 < H < 0.55 (risky dense) are yellow (D). For each category, the WTMM maxima
chains are black and the WTMMM with arrows representing the argument of the WT vector
are seen in their respective colors, shown at small (B1-D1), medium (B2-D2), and large
(B3-D3) scales. The WT skeleton can be formed by chaining the WTMMM across every
scale (B-D4). Reproduced from [13].

Hurst values is restricted between −0.2 and 1. Values outside of this range were not

encountered and obtaining very low values (high roughness) or high values (low roughness)

could be a sign of abnormally high noise levels or arti�cially smooth processes, respectively

[24].

A partition function can be de�ned for a set of maxima lines L(a) at scale a [29, 33]:

Z(q, a) =
∑

l∈L(a)

(
sup

(b,a′)∈l,a′≤a
Mψ[f ](b, a

′)

)q

, (2.7)

where q are the statistical order moments. Negative q values give more weight to smaller

modulus values whereas positive q values give more weight to larger modulus values. From

the following power-law relationship of Z(q, a), the τ(q) exponents can be de�ned as [28]:

Z(q, a) ∼ aτ(q), a→ 0+. (2.8)
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2.3 Extracting Roughness Exponent

This τ(q) spectrum is a linear function of q for monofractal rough surfaces. The τ(q)

slope gives an estimate for the Hurst exponent, H [33]. τ(q) is de�ned as:

τ(q) = qH − 2, (2.9)

However, the τ(q) spectrum will show nonlinear behavior for multifractal surfaces. This

highlights the varied roughness exponents in the underlying rough surface [34]. To obtain

the D(h) singularity spectrum of a rough surface, a Legendre transform is applied to the

partition function scaling exponent [28, 29, 33]

D(h) = min
q
(qh− τ(q)). (2.10)

Computational instabilities related to utilizing the Legendre transform [35] can be

avoided by alternatively using h and D(h) as mean quantities de�ned in a canonical

ensemble, i.e., concerning their Boltzmann weights computed from the WTMMM [33]:

Wψ[f ](q, l, a) =
|sup(b,a′)∈l,a′≤aMψ [f ](b,a

′)|q
Z(q,a)

. (2.11)

The expectation values can be computed through:

h(q, a) =
∑
l∈L(a)

ln

∣∣∣∣∣ sup
(b,a′)∈l,a′≤a

Mψ[f ](b, a
′)

∣∣∣∣∣Wψ[f ](q, l, a), (2.12)

and

D(q, a) =
∑
l∈L(a)

Wψ[f ](q, l, a) lnWψ[f ](q, l, a). (2.13)

This gives the following:

h(q) =
dτ(q)

dq
= lim

a→0+

h(q, a)

ln a
, (2.14)

D(q) = lim
a→0+

D(q, a)

ln a
. (2.15)

from which the D(h) singularity spectrum is obtained. Here, D(h) represents the fractal

dimension of the set of points within the rough surface where the local Holder roughness
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exponent is h. If the Holder exponent is identical throughout the rough surface, then the

global Hurst exponent, H, is utilized to characterize the monofractal scaling properties.

For these analyses, mammographic subregions almost always display monofractal scaling

properties, meaning that a single Hurst exponent value is assigned to each [23, 24].

2.4 Sliding Window Analysis

A sliding window analysis is used to investigate monofractal density �uctuations using

the 2D WTMM method on mammograms. Before this method is deployed on

mammographic images, a window of size 360× 360 pixels is shifted across the mammogram

to split it into numerous overlapping subregions. From this 360× 360 pixel window, the

central 256× 256 pixel box is kept for analysis (Figure 2.2). This is done to account for

edge e�ects within the sliding window 2D WTMM method. These mammogram subregions

are separated by 32-pixel increments. This increment size was initially chosen to account

for artifacts or calci�cations interrupting the analysis. Artifacts or calci�cations within a

subregion can a�ect the linearity of the τ(q) spectrum (Eq. 2.9), classifying them as

no-scaling, when they may not truly be. By using an increment of 32 pixels between the

360× 360 pixel window, oversampling was completed to account for this interruption

within the 2D WTMM method.

Each subregion can be fed into the 2D WTMM method when the sliding window

mechanism is complete. The WT skeleton (Eq. (2.1)) is calculated at 50 size scales, from

a ∼ 7 pixels (∼ 0.30mm) to a ∼ 120 pixels (∼ 5.0mm) for each subregion where the central

256× 256 pixel box was completely contained by the respective mask (Figure 2.2). The

WTMM chains can then be created for wavelet scales a and the WTMMM can be

acquired, leading to the creation of the WT skeleton, L(a), as well as the calculation of the

partition function (Eq. (2.7)), h(q, a) curves (Eq. (2.12)), and D(q, a) curves (Eq. (2.13)).

The scaling parameters of the 2D WTMM method are set automatically, but in

subregions where this automated method is unable to identify scaling parameters that
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Figure 2.2: A sample mammographic subregion of size 360×360 pixels. The red box indicates
the central 256× 256 pixel region kept for 2D WTMM analysis to avoid edge e�ects.

satisfy minimal threshold values, it will be rejected from the analysis. These cases are

classi�ed as a no-scaling region and are shown in gray in Figure 2.1 (A). The resulting H

calculation from the 2D WTMM method leads to the classi�cation of mammographic

subregions into three proposed categories: H ≤ 0.45, H ≥ 0.55, 0.45 < H < 0.55, each with

corresponding color codes. From here, matrix heatmaps can be created to visualize tissue

types. Subregions where H ≤ 0.45 correspond to anti-correlated density �uctuations, which

were found to be associated with fatty tissue and are seen in Figure 2.1 (A) as blue.

Regions where H ≥ 0.45 correspond to long-range correlated density �uctuations, which

were found to be associated with the proposed healthy dense tissue (red in Figure 2.1 (A)).

The last category, where 0.45 < H < 0.55, indicates a mammographic subregion

corresponding to uncorrelated density �uctuations, which are referred to as the proposed

risky dense tissue can be seen in matrix heatmaps as yellow (Figure 2.1 (A)) [24, 25].
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CHAPTER 3

IMPROVEMENTS TO THE SLIDING WINDOW ANALYSIS

As previous studies have done [23, 24, 25], the 2D WTMM method will be utilized to

quantitatively characterize tissue from mammographic images. The sliding window

pre-processing step utilized before the 2D WTMM method uses a window of size 360× 360

pixels, separated by 32 pixels. The e�ects of altering the step size increment to 64 pixels,

128 pixels, and 256 pixels are investigated and compared visually and analytically.

Presented here is the methodology used to create the di�erent increments, as well as a

discussion of the dataset being analyzed, pre-processing steps, and analytical comparisons

of the dataset utilizing the four di�erent sliding window increments.

3.1 The Perm Dataset

Investigations into the sliding window methodology increment were completed for a

dataset previously acquired by the CompuMAINE Laboratory. This dataset will be

referred to as the Perm mammographic dataset. The Perm dataset is made up of cancerous

and benign subsets, containing 80 and 22 patients, respectively. The data consists of

mammograms with pathology-proven diagnoses [25], which come from a pathology report

based on biopsy �ndings [7]. Within the cancerous subset are 37 cases of invasive ductal

carcinomas (IDC) and 43 cases of invasive lobular carcinomas (ILC) (Figure 3.1). The

benign subset consists of 12 cases of �broadenomas (�b_a) and 10 cases of �brocystic

mastopathies (�b_m) [25]. Patients were considered for comparison if all four views (CC

and MLO, opposite and tumorous) were present [24, 25]. The MLO views were primarily

considered for comparison in this research due to their ability to show more of the breast

tissue over the CC view.
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Table 3.1: Overview of Perm mammographic dataset.

Mammographic Dataset Group Pathology Number of Cases

Perm

Cancer IDC 37
ILC 43

Benign �b_a 12
�b_m 10

3.2 Pre-processing Steps

Before the 2D WTMM sliding window method is deployed, a binary mask is created for

the breast region within the respective mammogram. For both image views, CC and MLO,

the breast region can be segmented from the pectoral muscle. This is done to exclude

subregions containing pectoral muscle from the analysis. This process can be done by

manual extraction of the region or by using an automated segmentation method. Further

implementation of the 2D WTMM methodology was developed and utilized for the

automatic segmentation of the pectoral muscle from the breast region [36].

The breast region was manually segmented to create the masks utilized in this study.

Figure 3.1 demonstrates two sample binary masks created from the manual segmentation

of the pectoral muscle from the breast region, one for the opposite (A) and one for the

tumorous (B) breast. These masks are created manually in FIJI (Fiji Is Just ImageJ) by

loading in the respective mammogram, selecting the polygon tool, and creating a selection

by tracing along the pectoral muscle and around the outside contour of the breast. Once

the selection is �nalized, the contents of the original image outside the selection are

removed from the image. This allows for the removal of the mammographic label as well as

other image artifacts contained within the mammogram that are not pertinent to the

breast environment. As a last step, this selection area is �lled with white to create a mask

and saved as a portable network graphics (PNG) image.

For each mammogram, the manually generated binary mask is used to feed subregions

into the sliding window analysis. If even one of the four corners of the central 256× 256

pixel portion of the 360× 360 pixel subregion is not contained within the mask, it is
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Figure 3.1: Sample manual binary masks for MLO opposite (A) and tumorous (B) views.

rejected. Only the subregions where all four corners of this box are contained within the

white portion of the mask are passed along for analysis using the 2D WTMM sliding

window method [24]. After each patient's mammograms have been analyzed using this

scheme, comparisons between the cancerous and benign groups, as well as between their

respective subgroups, can be conducted.

3.2.1 Preliminary Analytical Results

Previously, it was discovered that there is a statistically signi�cant di�erence in the

percent fatty tissue (p-value ∼ 0.0026), percent risky dense tissue (p-value ∼ 0.003), and

percent healthy dense tissue (p-value ∼ 0.0169) when comparing benign and cancer patients

within the Perm dataset, using a sliding window analysis increment of 32 pixels [25]. These

tissue groups were compared by taking the number of subregions per proposed group

(fatty, risky dense, healthy dense) and dividing them by the total number of subregions

within a mammogram, not including no-scaling subregions. Breasts diagnosed with either

ILC or IDC showed higher levels of disrupted tissue than benign breasts, utilizing the

percent risky dense metric and corresponding p-value. Between the subgroups of cancer
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patients, there were no statistically signi�cant di�erences found between any of the tissue

types. Comparing the percent tissue metrics between the two benign groups, �b_a and

�b_m, there was no statistical di�erence between the percent fatty or healthy dense tissue.

However, when comparing the percent risky dense, a p-value of ∼ 0.0426 was seen [25].

Similarly to the study conducted by CompuMAINE in 2021, the Perm dataset was �rst

utilized to discover di�erences in the breasts of cancerous and benign patients for a sliding

window increment of 32 pixels. For this analysis, the same methodology of comparison used

in 2021 was mimicked. The boxplot presented in Figure 3.2 compares patients that had all

four views present (CC and MLO, opposite and tumorous). The percent tissue metrics for

the patient's respective tumorous MLO view were used for comparison. These results di�er

slightly from those published in 2021 due to advancements in the analysis utilized by the

laboratory and the addition of patients' views that were not previously accessible.

The results of this comparison o�er similar conclusions about the percent fatty, risky

dense, and healthy dense tissue found in cancerous versus benign breasts, as well as

between their subgroups (Figure 3.2). For the comparison of benign and cancerous breasts,

a statistically signi�cant di�erence was found in the percent fatty tissue metric (p-value ∼

0.0386) and the percent risky dense tissue metric (p-value ∼ 0.0125). For the percent

healthy dense metric, no statistically signi�cant di�erence was found between the

cancerous and benign subgroups (p-value ∼ 0.2301). When moving to compare the percent

tissue between cancerous subgroups (IDC and ILC), there was no statistically signi�cant

di�erence between the percent fatty, healthy dense, or risky dense tissue metrics, shown by

p-values greater than 0.05. Similarly, there were no statistically signi�cant di�erences

found between tissue percentages when moving to compare the benign subgroups (�b_a

and �b_m).

The results seen in Figure 3.2 were expected given the results of the previous

comparison of the Perm dataset using the sliding window increment of 32 pixels [25]. The

increment of the sliding window analysis is an area that has not been investigated yet. If
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Figure 3.2: Comparison of the percent fatty (blue), percent risky dense (yellow), and percent
healthy dense (red) for a sliding window increment of 32 pixels. In the top row, all cases
that had all four views (CC and MLO, opposite and tumor) are included for both cancer
and benign patients. In the middle and bottom rows, the IDC population is compared to the
ILC population and the �b_a population is compared to the �b_m population, respectively.
A non-parametric Wilcoxon Rank Sum test was used to compute the p-values shown at the
top left of each box plot.

the same statistical signi�cant di�erences between cancerous and benign cases can be

replicated at a di�erent step size increment, the e�ciency of the 2D WTMM sliding

window analysis could be altered. Computational time could be reduced if the same

statistical signi�cance can be achieved when comparing tissue types using a larger sliding

window increment.
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3.3 Altering the Sliding Window Increment

As a �rst step, the output summary �les from the 2D WTMM method were altered to

mimic di�erent sliding window increments. To create the new summary �les for each

increment, subregions from the 32-pixel increment summary �les were removed. Each

subregion is indexed by the top left X-Y pixel location. Ordering them by X allows for

easier removal of unwanted data. Within each unique X, there are numerous amounts of Y

inputs. To mimic a 64-pixel increment, every other unique X value and corresponding Y

entries are deleted. Every other unique Y value is deleted within the leftover unique X

values. Altering the increment from 32 pixels to 64 pixels means that a summary �le that

was once 4,280 rows long becomes 1,080 rows long. These �les are then saved and used

further for the analysis of tissue types and the creation of heatmaps. This process is

adapted for the creation of these summary �les for an increment of 128 pixels and 256

pixels, leading to summary �les that are 280 and 70 rows long, respectively. Each time the

step size is increased, i.e. from 32 pixels to 64 pixels, the summary �le should shrink in row

size by a factor of 4.

By altering the sliding window analysis increment, the power used to deploy the 2D

WTMM method on mammograms can be decreased, the analysis of the tissue types can be

conducted quicker, and the heatmaps created from these new �les can be optimized. To

investigate the e�ects of altering the increment of the sliding window analysis, matrix

heatmaps are constructed and the percent tissue types are compared for each increment.

Similarly to the preliminary results, these metrics are compared for benign and cancerous

groups and their respective subgroups. The results of the creation of images as well as the

comparison of tissue types are presented here.

3.4 Creation of Matrix Heatmaps at Each Increment

For each increment, matrix heatmaps were created to outline di�erences between the

sliding window analysis increments. The sliding window schemes for these di�erent
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increments, 32-pixels, 64-pixels, 128-pixels, and 256-pixels, are shown in Figure 3.3 column

1, (A-D), respectively. This is the scheme used at each increment to �slice� the

mammogram into numerous images of size 360 × 360 pixels. Images that demonstrate each

subregion's assigned color in the centermost pixel of the 256× 256 pixel window can be

seen in Figure 3.3 (column 2), for increments of 32 pixels (A), 64 pixels (B), 128 pixels (C),

and 256 pixels (D). Within these images, it is demonstrated that as the increment increases

from 32 pixels to 256 pixels (across Figure 3.3 (A-D2)), the number of dots (representing

subregions) within the breast area of the mammogram decreases. In Figure 3.3 (A-D3),

matrix heatmaps can be seen for each increment. These images take each subregion and

represent its respective color as one pixel. For a sliding window analysis increment of 32

pixels, this image will be of size 101 × 134 pixels. For an increment of 64 pixels, 128 pixels,

and 256 pixels, the matrix heatmap shrinks to the size of 50 × 67 pixels, 25 × 33 pixels,

and 12 × 16 pixels, respectively. A scaled-up version of the matrix heatmaps at each

increment can be seen in Figure 3.3 (column 4). These images have been scaled up from

their original size to a size that visually matches their respective MLO view mammogram.

These matrix heatmaps at each sliding window increment are helpful in understanding

how altering the magnitude of the increment can change the expression of tissue types.

The optimization of the matrix heatmaps will be discussed in the next chapter. The results

of analytically comparing the cancerous and benign cases at each increment are discussed

here to o�er an initial insight into the most e�cient sliding window increment.
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Figure 3.3: The same scheme of images for sliding window analysis increments of 32 pixels
(A), 64 pixels (B), 128 pixels (C), and 256 pixels (D) can be seen. In column (1), the
respective increment's sliding window scheme can be seen. In the following images, fatty
tissue is depicted as blue, risky dense tissue as yellow, and healthy dense tissue as red.
Column (2) shows image representations where each 256× 256 pixel subregion is expressed
as one pixel in the center of this box. Column (3) shows matrix heatmaps, where one pixel
represents one subregion, for each increment. In column (4), this matrix heatmap scaled up
to visually match the size of the MLO view is seen for each increment. All of these images
were created for an ILC patient's tumorous MLO view.
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3.4.1 Comparison of Benign and Cancer Cases

For the comparison of cancer (IDC and ILC) and benign (�b_a and �b_m) cases, the

percent fatty (Figure 3.4 in blue), risky dense (Figure 3.4 in yellow), and healthy dense

(Figure 3.4 in red) tissue metrics showed promising trends. Across all sliding window

analysis increments, a statistically signi�cant di�erence was found between the percent

fatty tissue and the percent risky dense tissue (Figure 3.4). For the percent fatty tissue,

the best p-value was seen for an increment of 128 pixels (p ∼ 0.0063). The percent risky

dense tissue showed the greatest statistically signi�cant di�erence at an increment of 64

pixels (p ∼ 0.0048). There were no statistically signi�cant di�erences found between the

percent healthy dense tissue within these groups, but the lowest p-value was seen for an

increment of 128 pixels (p ∼ 0.0607). These results con�rm what was discovered in the

preliminary results and show promising trends for an increment of 128 pixels.

3.4.2 Cancer Subgroup Cases Comparison

For the cancerous subgroups, cases with IDC and ILC, a comparison of the percent

fatty (Figure 3.5 in blue), risky dense (Figure 3.5 in yellow), and healthy dense (Figure 3.5

in red) tissue were conducted (Figure 3.5). Across all increments, there were no

statistically signi�cant di�erences found for any of the percent tissue types. This was an

expected result, as there were previously no signi�cant di�erences found between IDC

breasts and ILC breasts [25]. When comparing the percent risky dense tissue, the p-values

for IDC cases compared to benign cases at each step size increment are ∼ 0.0194 for 32

pixels, ∼ 0.0127 for 64 pixels, ∼ 0.0121 for 128 pixels, and ∼ 0.0875 for 256 pixels. For this

same comparison between ILC cases and benign cases, the p-values at each increment are

∼ 0.0258 for 32 pixels, ∼ 0.0082 for 64 pixels, ∼ 0.0125 for 128 pixels, and ∼ 0.0726 for 256

pixels. These results indicate that this methodology is well-suited to di�erentiate cancerous

cases from benign cases, showing statistically signi�cant di�erences at an increment of 128

pixels.
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Figure 3.4: Comparison of the percent fatty tissue (in blue), percent risky dense tissue (in
yellow), and percent healthy dense tissue (in red) for cancerous and benign groups at sliding
window analysis increments of 32 pixels (�rst column), 64 pixels (second column), 128 pixels
(third column), and 256 pixels (fourth column). p-values seen in the top left corner of each
plot represent statistically signi�cant di�erences between tissue percents if ≤ 0.05.

3.4.3 Benign Subgroup Cases Comparison

The benign subgroups, �b_a and �b_m, were compared next. Similarly to the

comparison between the cancerous subgroups, across all increments (32-pixels, 64-pixels,

128-pixels, and 256-pixels), there were no statistically signi�cant di�erences found between

any of the percent tissue types (Figure 3.6). These results were expected, as the

methodology can discern between cancerous and benign cases, but shows similarities

between those subgroups themselves, demonstrated by preliminary results and past

research [24, 25].

The results of comparing the tissue types between the cancerous and benign cases and

their subgroups are exciting, as they o�er evidence that an increment of 128 pixels could
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Figure 3.5: Comparison of the percent fatty (in blue), percent risky dense (in yellow), and
percent healthy dense (in red) tissue between the IDC and ILC cases, which are cancerous.
Shown for increments of 32 pixels (�rst column), 64 pixels (second column), 128 pixels (third
column), and 256 pixels (fourth column). The p-values seen were calculated using a Wilcoxon
Rank Sum test.

reduce the amount of computational power and time needed to process and analyze

mammograms using the 2D WTMM method. Across all step size increments, there was a

statistically signi�cant di�erence found in the percent fatty and risky dense tissue types

between cancer and benign cases. However, the smallest p-value for fatty tissue was found

for an increment of 128 pixels (p ∼ 0.0063) and for risky dense tissue was found for an

increment of 64 pixels (p ∼ 0.0048). The increment closest to showing a statistically

signi�cant di�erence between these two cases percent healthy tissue was 128 pixels, with a

p-value ∼ 0.0607. The matrix heatmaps (Figure 3.3 (A-D4)) are a useful tool for

visualization of the proposed tissue types at di�erent sliding window increments, but

further optimization of them is required. The matrix heatmaps are a simple representation
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Figure 3.6: Comparison of the percent fatty (in blue), percent risky dense (in yellow), and
percent healthy dense (in red) tissue between the �b_a and �b_m cases, which are benign.
Shown for increments of 32 pixels (�rst column), 64 pixels (second column), 128 pixels
(third column), and 256 pixels (fourth column). The p-values in the top left of each plot
were calculated using the non-parametric Wilcoxon Rank Sum test.

of each subregion within a mammogram. If more information can be extracted from the

sliding window analysis, leading to the optimization of heatmaps, these images could be

more helpful to radiologists.
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CHAPTER 4

OPTIMIZATION OF QUANTITATIVE VISUALIZATION TOOL

4.1 Improvements to the Creation of Matrix Heatmaps

The creation of matrix heatmaps (Figure 4.1 (A)) for the Perm dataset has been done

using a method that converts each 360 × 360 pixel subregion into one pixel. Sparked by

the nature of the sliding window analysis, a new iteration of heatmaps that contain more

information about tissue composition can be created. These images will be referred to as

multi-layer intensity heatmaps (Figure 4.1 (B)). From these images, further optimization is

explored to reveal tissue types that could be obstructed in the previous iterations of

heatmaps. These new iterations of the heatmap, called single-layer maxima intensity

heatmaps (Figure 4.1 (C)) and single-layer raw intensity heatmaps (Figure 4.1 (D)), o�er

new insight into the percent of proposed tissue types found within cancerous and benign

populations. The creation of these various visualization tools will be discussed for each

sliding window analysis increment. The results of comparing tissue percents within both of

the single-layer heatmaps will be reported as well.

4.1.1 Multi-layer Intensity Heatmaps

To create the multi-layer intensity (MLI) heatmaps, a patient's mammogram is used to

extract the width and height of the image, which is then used to create four new black

images of the same size: one for fatty tissue, one for healthy dense tissue, one for risky

dense tissue, and one for no-scaling subregions. A white image of size 256× 256 pixels is

also created. The script iterates over the output summary �le from the 2D WTMM sliding

window method to extract the location of the subregion and the color it is assigned. For

each subregion, the small white image is added to the corresponding large black image in

the location speci�ed. The result is four images that can be color-coded to represent each

tissue type. These images can then be combined to create a 3-channel RGB (red, green,
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Figure 4.1: Sample matrix heatmap (A), multi-layer intensity heatmap (B), single-layer
maxima intensity heatmap (C), and single-layer raw intensity heatmap (D), shown for an
ILC patient's tumorous MLO view and a sliding window analysis increment of 32 pixels. For
all of these heatmaps, fatty tissue is illustrated in blue, risky dense in yellow, and healthy
dense in red.

and blue) image, named MLI heatmaps, of the tissue types presented within a respective

breast. This process can be completed for each sliding window analysis increment, seen in

Figure 4.2 (A-D).

Due to the nature of the sliding window, the 256× 256 pixel boxes representing a

subregion will begin to overlap more as the step size increment decreases. In Figure 4.2

(D), which demonstrates an MLI heatmap created using an increment of 256 pixels, the

outline of these individual subregions can be seen, as there are only about 90 of them. For

this increment, none of the subregions will overlap. Due to this, the intensity of images

created at this increment will be decreased, demonstrated by dim colors. Decreasing the

increment to 128 pixels creates some overlaps for these subregions, seen in Figure 4.2 (C).

Further decreasing the increment to 64 pixels and 32 pixels increases the number of
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Figure 4.2: Sample MLI heatmaps for an IDC patient's tumorous MLO view at a sliding
window increment of 32 pixels (A), 64 pixels (B), 128 pixels (C), and 256 pixels (D). The
intensity of the image and the number of overlaps between subregions increases as the
increment decreases, signi�ed by brighter colors in (A) and dimmer colors in (D). Fatty
tissue is pictured in blue, risky dense in yellow, and healthy dense in red.

overlaps between these subregions ((Figure 4.2 (B) and (A), respectively). The increased

intensity seen in these images is demonstrated by colors that look lighter. These images

provide a more optimized MLI heatmap than the previously utilized matrix heatmaps

shown in Chapters 2 and 3. However, the number of overlaps seen in these MLI heatmaps

may lead to the obstruction of tissue as the increment decreases. To investigate this

further, two new iterations of heatmaps are explored.

4.1.2 Single-layer Intensity Heatmaps

The overlapping demonstrated within the MLI heatmaps can be investigated by

creating single-layer heatmaps. The MLI heatmaps are RGB images, where each pixel in

the image has a red, blue, and green intensity value. The mixture of these three numbers
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creates the di�erent colors and intensities seen within the MLI heatmaps. As a �rst step in

the optimization of the MLI heatmaps, the RGB channel values were investigated.

4.1.2.1 Analysis of RGB Channel Value Ties

When creating images, there are many di�erent ways to specify color. In the matrix

and MLI heatmaps, the RGB color model is utilized. Color in an RGB image is de�ned by

the intensity of red, green, and blue light. When combined, the intensity of light creates a

colored pixel on an image. These values range from 0 to 255, with a lower intensity color

seen for a value of 0 and a higher intensity color seen for a value of 255. In the matrix

heatmaps, each pixel within the image is only assigned one value: 255. If a subregion is

red, the channel value is set to (255, 0, 0). In the MLI heatmaps, there are numerous

combinations of red, green, and blue intensity values that make up each pixel within the

image. Sample channel values for an MLI heatmap for a pixel that presents as blue could

be (4, 4, 244). This is a result of the sliding window analysis increment and the number of

overlaps between subregions. Given the RGB nature, the yellow color seen in the heatmaps

comes from a combination of red and green intensity. For example, in the matrix

heatmaps, a subregion assigned yellow will have an RGB channel value of (255, 255, 0). To

allow for easier creation of new heatmaps, the yellow color seen in the MLI heatmaps is set

to green. This allows the three color categorizations to be separated and sifted through to

�nd the channel with the highest value. Post analysis, this color can be set back to yellow

to easily translate with the �nalized color scheme seen for the heatmaps.

To explore the RGB channel values demonstrated within the MLI heatmaps for each

increment, an investigation into the individual red, green, and blue intensity values for each

pixel within each mammogram was conducted. The pixel locations where two of the three

intensity channels share the same value are extracted and are referred to as �ties�. If a

pixel within an image has channel values of (8, 8, 32) it would be considered a red and

green channel (RGC) tie. There are three cases possible for this pattern to occur: the given
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RGC tie, the red and blue channel (RBC) tie, and the green and blue channel (GBC) tie.

The percentage of ties within an MLI heatmap is important to investigate due to the

methodology utilized to create the single-layer intensity heatmaps. This method extracts

the channel that has the greatest value in it as the �winner� and makes the other two

channels equal to 0. This channel value is passed on and plotted in intensity values of 255

and the raw winning value. If there is a �winner� that has a �tie� with another channel,

both of these values will be plotted, leading to new colors in the single-layer heatmaps that

will be discussed in the next section.

As the sliding window analysis increment increases to 128 pixels, the percent ties that

are also winners increase for each channel combination, demonstrated by Table 4.1. This is

proof that the MLI heatmaps created with an increment of 32 pixels are more complex, as

they contain more channel combinations where the values are not the same. This leads to

di�ering intensities and elaborate colors. For an increment of 256 pixels, there are no ties

between any of the channel combinations. This is due to the parameters within the sliding

window analysis leading to no overlaps between subregions for this increment.

Table 4.1: The percent of pixels that had winning values that were also ties between two
of the channels (either red and green, green and blue, and red and blue) for each sliding
window analysis increment investigated.

Increment RGC Ties GBC Ties RBC Ties Total Ties

32-pixels 3.01 % 1.10 % 0.67% 4.78%
64-pixels 5.04 % 2.87% 1.87% 9.78%
128-pixels 5.31% 7.41% 5.07% 17.79 %
256-pixels 0% 0% 0% 0%

4.1.2.2 Single-layer Maxima Intensity Heatmaps

As was described brie�y, the single-layer intensity heatmaps are made in two iterations.

The general scheme of creation for these two images is identical besides one step that

speci�es the magnitude of RGB intensity displayed in the �nal image. First, the MLI
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heatmap is converted to RGB by converting the yellow channel into the green channel.

Then, it is utilized to extract the greatest channel value whether that be red, blue, or

green. The winning channel is set to an intensity value of 255 and the other two are set to

0, i.e. if the MLI heatmap channel for a given pixel is (4, 32, 8), the single-layer maxima

intensity heatmap channel for that same pixel would be set to (0, 255, 0). As described in

the previous section, pixel locations where the channel value may be (32, 8, 32) will be set

to (255, 0, 255). This process is completed for each colored pixel contained within the MLI

heatmap.

The single-layer maxima intensity heatmaps are named this way because they aim to

simplify the multi-layer nature of the MLI heatmaps while keeping the winning channel set

to a maximum intensity value of 255. For each channel (red, green, blue), a separate image

of the winners set to 255 is saved. From here, the images are color-coded to align with the

previously utilized method. The blue image becomes the blue channel, the green image

becomes the yellow channel, and the red image becomes the red channel. These single-layer

intensity heatmaps are created for each sliding window analysis increment, seen in Figure

4.3 (A-D). In these images, fatty tissue is depicted in blue, risky dense in yellow, and

healthy dense in red. The new colors seen are magenta (255, 0, 255) and white (255, 255,

255). Magenta represents the locations where the healthy dense and fatty tissue are both

depicted (meaning that there is a tie between the red and blue channels). Locations that

are depicted as white represent where the risky dense and fatty tissue types are shown,

which signi�es a tie between the yellow and blue channels. Lastly, some of the yellow pixels

seen within this image will represent ties between risky dense and healthy dense tissue

because the channel value will end up as (255, 255, 0) once converted from RGB to red,

yellow, and blue.

Both the risky dense tissue, as well as the case where the yellow and red channels are

equal, are depicted in the �nal visuals as yellow. This is an area that requires improvement

and further investigation. For this reason, the raw winning intensity values are investigated
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Figure 4.3: Sample single-layer maxima intensity heatmaps for a �b_a patient's tumorous
MLO view at a sliding window increment of 32 pixels (A), 64 pixels (B), 128 pixels (C), and
256 pixels (D). This image represents the winning color for each pixel set to the maximum
intensity value of 255. Fatty tissue is depicted in blue, risky dense in yellow, and healthy
dense in red. Ties between the healthy dense and fatty tissue are depicted in magenta,
between the risky dense and fatty tissue are white, and between the risky dense and healthy
dense tissue are also yellow.

to visualize these areas better and make conclusions about the analytical and visual

comparisons of these heatmaps.

4.1.2.3 Single-layer Raw Intensity Heatmaps

Similarly to the single-layer maxima intensity heatmap, the single-layer raw intensity

heatmap uses the color that has the greatest intensity value from reading in the respective

MLI heatmap. Using almost the same methodology, the MLI heatmap is converted to RGB

and used to obtain the greatest channel value. This value, assigned to either the red, green,

or blue channel, will be kept and the other two will be set to 0. For example, if a pixel's

RGB intensity channel values are (32, 4, 64), then for the single-layer raw intensity
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heatmap that pixel will be set to (0, 0, 64). Sparked by the winning ties methodology

utilized above, in pixel locations where the MLI heatmap channel has two equal winning

intensity values, i.e. (8, 2, 8), the new single-layer raw intensity heatmap channel value in

that location will be set to (8, 0, 8). Again, this combination of channels will lead to new

colors and may give insight into the overlapping of tissues.

This iteration of the heatmap is named the �raw intensity� versus the �maxima

intensity� due to keeping the magnitude of the original RGB intensity channel value from

the MLI heatmap. Again, these single-layer raw intensity heatmaps can be created for a

sliding window analysis increment of 32 pixels, 64 pixels, 128 pixels, and 256 pixels (Figure

4.4 (A-D), respectively). Similarly to the single-layer maxima intensity heatmaps, for

locations where there are winning ties, new colors can be seen in the single-layer raw

intensity heatmaps. These new colors are orange, magenta, and gray. In places where

orange is seen, there is a tie between the yellow and red channels, meaning that both risky

dense and healthy dense tissue is found. Magenta represents locations where healthy dense

and fatty tissue are found (tie between red and blue) and gray represents locations where

risky dense and fatty tissue are found (tie between yellow and blue channels). The goal of

changing the yellow color presented when ties between risky dense and healthy dense tissue

was reached using this methodology.

4.2 Creation of All Heatmaps at Each Increment

For each sliding window increment previously tested, heatmaps can be made to o�er

both analytical and visual comparisons between the di�erent increments, as well as the

di�erent heatmaps. In Figure 4.5 column 1, the sliding window scheme for increments of 32

pixels (A), 64 pixels (B), 128 pixels (C), and 256 pixels (D) is shown. From this scheme,

each subregion is assigned a color, which is then plotted in the middle pixel. Full-color

representations, called matrix heatmaps, can be seen for each increment in column 2

(A-D). The sliding window scheme can aid in the understanding of the multi-layered nature
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Figure 4.4: Sample single-layer raw intensity heatmaps for a �b_m patient's tumorous MLO
using 32-pixel (A), 64-pixel (B), 128-pixel (C), and 256-pixel (D) increments. This image
represents the winning color for each pixel set to the greatest intensity value within the
winning channel. Here, fatty tissue is portrayed as blue, risky dense as yellow, and healthy
dense as red. Ties between the healthy dense and fatty tissue are depicted in magenta,
between the risky dense and fatty tissue are gray, and between the risky dense and healthy
dense tissue are orange.

of the MLI heatmaps created for each increment, seen in Figure 4.5 column 3 (A-D). Using

information from the MLI heatmaps at each increment, both single-layer maxima intensity

(column 4 (A-D)) and single-layer raw intensity (column 5 (A-D)) heatmaps can be created.

It is interesting to compare these visuals side by side at each increment. For all of these

images, the tumorous breast of a patient diagnosed with ILC was used. When comparing

the matrix (column 2 (A-D)) and MLI (column 3 (A-D)) heatmaps, it is interesting to see

the more complex intensities and colors created by the overlapping of subregions caused by

the sliding window in the MLI heatmaps. As the increment increases, the overlapping in

these images decreases, leading to more simplistic MLI heatmaps at an increment of 256

pixels. Moving on to compare the MLI heatmaps to the single-layer maxima intensity

(column 4 (A-D)) and single-layer raw intensity (column 5 (A-D)) heatmaps, it is
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interesting to see where the expression of fatty, risky dense, and healthy dense tissue stays.

It is also interesting to see the magnitude of the winner by looking at the single-layer raw

intensity heatmaps. Towards the edges of the images, the winning color is seen in lower

intensities, which is also due to overlapping subregions. In the middle of the image, there

will be more overlaps between subregions, leading to more intense colors. This is also

a�ected by the increment at which the image is made.

Just based on visual comparisons, the 64-pixel increment heatmaps present the di�erent

tissue types in the best manner. These images contain more information than those created

at an increment of 128 pixels, which may be bene�cial to clinical applications. The images

created at an increment of 32 pixels contain too many overlapping subregions, which may

lead to the obstruction of tissue. When looking to make a conclusion about which iteration

of the heatmap at what sliding window increment is the most e�cient and intelligible, an

analytical comparison of the tissue types presented in the single-layer heatmaps was

conducted. Similarly to the results presented when comparing the percent tissues presented

within the matrix heatmaps, boxplots were constructed to compare the benign and

cancerous cases.
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Figure 4.5: The same scheme of images for sliding window analysis increments of 32 pixels
(A), 64 pixels (B), 128 pixels (C), and 256 pixels (D) can be seen. For the following
images, fatty tissue is depicted in blue, risky dense in yellow, and healthy dense in red.
In column (1), the sliding window scheme is depicted for each increment. In column (2) are
the matrix heatmaps scaled up to visually match the MLO view size for each increment.
Column (3) contains MLI heatmaps at each increment. In columns (4) and (5), single-layer
maxima intensity and single-layer raw intensity heatmaps can be seen, respectively, for each
increment. Similarly to the MLI heatmaps, the color intensity of the single-layer raw intensity
heatmaps decreases as the increment increases. All of these images were created for an ILC
patient's tumorous MLO view.
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4.3 E�ects of Optimization of Heatmaps on the Comparisons of Populations

Similarly to the analytical comparison conducted on the matrix heatmaps (Figure 3.4),

a comparison of the percent tissue types between cancerous and benign patients was

conducted for the single-layer maxima intensity heatmaps, shown in Figure 4.6. These

metrics were calculated by tallying up the total number of pixels per channel set to 255.

These values, divided by the total number of pixels per image, give the percent fatty (in

blue), risky dense (in yellow), and healthy dense (in red) tissue. These values were then

compared using sliding window increments of 32 (column 1), 64 (column 2), 128 (column

3), and 256 (column 4) pixels. These heatmaps are best suited to distinguish between fatty

(p ∼ 0.0229) and risky dense (p ∼ 0.0297) tissues for cancerous versus benign cases at an

increment of 128 pixels. Overall, the comparison of tissue percentages from the matrix

heatmaps shows more statistically signi�cant di�erences across all sliding window

increments for percent fatty and risky dense tissue. It is still exciting to see that an

increment of 128 pixels performs the best for the single-layer maxima intensity heatmaps, as

it con�rms that this increment is well suited to pick up di�erences in percent tissue types.

The same comparison of percent tissue was conducted for the single-layer raw intensity

heatmaps. Since the magnitude of the winning RGB channel value is passed to these

images, these magnitudes are added up for each channel. Then, by dividing the individual

channel values by the total intensity value for the image, the percent fatty (in blue), risky

dense (in yellow), and healthy dense (in red) tissues can be calculated for each increment

tested (32 pixels in column 1, 64 pixels in column 2, 128 pixels in column 3, and 256 pixels

in column 4), seen in Figure 4.7. Looking at the results from comparing percent tissue

types from the single-layer raw intensity heatmaps between cancerous and benign cases,

the greatest statistically signi�cant di�erences were found between fatty and risky dense

tissues at an increment of 128 pixels, validated by p ∼ 0.0305 and p ∼ 0.0195. Again, this

methodology did not show a greater statistically signi�cant di�erence between any of the

tissue types at any increment when compared to the results from the matrix heatmaps.
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Figure 4.6: Comparison of the percent fatty tissue (in blue), percent risky dense tissue (in
yellow), and percent healthy dense tissue (in red) within the single-layer maxima intensity
heatmaps for cancerous versus benign cases at sliding window analysis increments of 32 pixels
(�rst column), 64 pixels (second column), 128 pixels (third column), and 256 pixels (fourth
column). A Wilcoxon Rank Sum test was utilized to calculate the p-values seen in the top
left corner of each plot.

Interestingly, the single-layer raw intensity heatmaps perform as well in distinguishing

di�erences between fatty and risky dense tissue at an increment of 128 pixels that the

matrix heatmaps do at an increment of 32 pixels (p ∼ 0.0386 and p ∼ 0.0125).

When comparing the results between the two single-layer intensity heatmaps, it is

interesting to see how similarly they perform. For the percent fatty tissue, the single-layer

maxima intensity heatmaps outperform the single-layer raw intensity heatmaps at an

increment of 128. When looking at the percent risky dense tissue rows (in yellow) for each

of these boxplots (Figure 4.6 and Figure 4.7), the single-layer maxima intensity heatmaps

perform better than the single-layer raw intensity heatmaps for an increment of 64 pixels
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Figure 4.7: For benign and cancer cases, a comparison of the percent fatty tissue (in blue),
percent risky dense tissue (in yellow), and percent healthy dense tissue (in red) within the
single-layer raw intensity heatmaps at sliding window analysis increments of 32 pixels (�rst
column), 64 pixels (second column), 128 pixels (third column), and 256 pixels (fourth column)
was conducted. A Wilcoxon Rank Sum test was utilized to calculate the p-values seen in the
top left corner of each plot.

(p ∼ 0.0321 and p ∼ 0.0486, respectively). However, it is interesting to note that this trend

switches when altering the increment to 128 pixels (shown by p ∼ 0.0297 for single-layer

maxima intensity and p ∼ 0.0195 for single-layer raw intensity).

Overall, the investigation into the single-layer intensity heatmaps percent tissue did not

perform as well as the matrix heatmaps. However, these results o�er further proof that an

increment of 128 pixels should be utilized within the 2D WTMM sliding window analysis.

The results using an increment of 128 pixels show the greatest statistically signi�cant

di�erences between the percent fatty and risky dense tissue between cancerous and benign

cases for all heatmaps. These analytical results prove that computational time can be
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saved when conducting an initial analysis on the percent tissue types within patients

diagnosed with cancerous tumors and benign lesions by using a sliding window increment

of 128 pixels, rather than 32 pixels. However, after visually inspecting the heatmaps

created for each increment, the 64-pixel increment may be better for translating the results

of this analysis to radiologists.

To prepare these heatmaps to be utilized in clinical settings, another step is needed.

Overlaying the heatmaps onto their respective mammogram can o�er new insight into the

location of tissue types within the breast, the correlation between tissue types and tumor

location, and the overall health of the breast. The comparison of overlaying the four

iterations of the heatmap will be presented in the next section to aid in the conclusions of

their applicability.

4.4 Overlaying Heatmaps Onto Mammograms

To provide a more useful, comprehensive quantitative tool to radiologists, heatmaps can

be compared for cancerous and benign cases and can then be overlaid onto the respective

mammogram. Overlaying these images onto masked mammograms can provide a more

accurate representation of where the proposed tissue types lie within a respective breast, as

demonstrated by Figure 4.8. Here, we can see the di�erent iterations of heatmaps created

at each sliding window increment previously investigated. Seen in rows A-C of Figure 4.8

are MLI heatmaps, single-layer maxima intensity heatmaps, and single-layer raw intensity

heatmaps overlaid onto a tumorous mammographic MLO view. These are made for each

sliding window increment to compare the visual compatibility of these images with the

mammograms.

The MLI heatmaps (Figure 4.8 (row A)), single-layer maxima intensity heatmaps

(Figure 4.8 (row B)), and the single-layer raw intensity (Figure 4.8 (row C)) overlaid onto

the mammogram provide a useful tool in understanding how the proposed tissue types

correlate to the tissue environment. Analytically speaking, the MLI heatmap created at an
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Figure 4.8: A scheme of heatmaps overlaid onto the grayscale mammogram, to relate
underlying tissue environment to proposed tissue types. Seen for sliding window increments
of 32 pixels (column 1), 64 pixels (column 2), 128 pixels (column 3), and 256 pixels (column
4), are the MLI heatmaps (row A), single-layer maxima intensity heatmaps (row B), and
single-layer raw intensity heatmaps (row C).

increment of 128 pixels (Figure 4.8 (A3)) is the best tool to distinguish between cancerous

and benign tissue types (p ∼ 0.0063 for fatty, p ∼ 0.006 for risky dense, and p ∼ 0.0607 for

healthy dense). However, all of the heatmaps are optimized at an increment of 128 pixels,

demonstrated by Figures 3.4, 4.6, and 4.7.
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The heatmaps overlaid onto the mammogram provide a useful, comprehensive tool to

aid radiologists in their diagnoses. The aim of the creation of quantitative tools of this

nature is to negate the negative e�ects of false positive diagnoses, such as emotional strain

on the patient and unnecessary costs for extra appointments [11]. By providing an extra

tool to clinicians, this tool may aid in the early detection of breast cancer.

Another useful conclusion that can be made from these images is that there is a visual

di�erence between the opposite and tumorous breasts for cancerous versus benign cases

[25]. It was previously found from studying matrix heatmaps that there is an evident visual

di�erence in the amount of dense tissue found in a cancer patient's tumorous and opposite

breasts. However, this visual di�erence is not seen for benign breasts, which appear to

contain similar amounts of dense tissue subtypes between their opposite and tumorous

breasts [25]. This trend can be further con�rmed by comparing the opposite and tumorous

MLI heatmaps (made with an increment of 64 pixels) for patients diagnosed with cancerous

tumors and benign lesions. This increment and type of heatmap were chosen for this

comparison due to providing the most statistically signi�cant di�erence between risky

dense tissue for cancer versus benign patients (p ∼ 0.0048). In the top row of Figure 4.9 an

invasive lobular carcinoma patient's opposite (A) and tumorous (B) MLI heatmaps can be

seen. The bottom row presents the MLI heatmaps of the opposite (C) and tumorous (D)

breasts for a patient diagnosed with �broadenoma. There is a distinct di�erence between

the dense tissue (red and yellow) expression in images A and B, whereas images C and D

express similar levels of risky dense (yellow) and healthy dense (red) tissue. Just from

completing a visual inspection of these images, the cancerous breast that contains a tumor

can be picked out (Figure 4.9 (B)).

The di�erent iterations of the heatmap are important to investigate, especially at each

sliding window increment, due to their potential applications to clinical settings. From this

investigation, it can be concluded that utilizing a sliding window increment of 128 pixels

provides the same, if not better, statistically signi�cant di�erences between the percent
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Figure 4.9: MLI heatmaps made with an increment of 64 pixels for cancerous and benign
patients opposite (A, C) and tumorous (B, D) breasts. For the cancer patient (top row),
comparing the opposite (A) and tumorous (B) MLO views demonstrates evident di�erences
in terms of risky dense (yellow) and healthy dense (red) tissue types. This same visual
di�erence between breasts is not seen for the benign patient (bottom row), whose opposite
(C) and tumorous (D) MLO views present similar amounts of these subregions.

tissue types seen in cancerous versus benign breasts. The multi-layer intensity heatmaps

showed the greatest performance out of all iterations of heatmaps, but may at times

obstruct tissue types depending on the increment used. Similarly to the MLI heatmaps,

both iterations of the single-layer heatmaps show the best statistical signi�cance at an

increment of 128 pixels. These �ndings can lead to a decrease in computational power and

time required to analyze mammograms in the future.
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CHAPTER 5

DISCUSSION

5.1 Conclusions

In 2017 and 2021, the CompuMAINE Lab released studies indicating that there are

three proposed tissue types found from deploying the 2D WTMM method on

mammographic subregions [24, 25]. These three proposed categories are based on H-value

calculation and relate to the underlying density �uctuations seen within the tissue. From

these studies, fatty and dense tissue is categorized, with two proposed subtypes of

mammographic dense tissue [24]. Fatty tissue demonstrates H ≤ 0.45, healthy dense tissue

with H ≥ 0.55, and risky dense tissue where H is between 0.45 and 0.55 (0.45 < H < 0.55)

[24, 25]. Using these proposed categorizations, signi�cant di�erences in the percent

proposed tissue types between breasts diagnosed with cancer when compared to those

diagnosed with benign conditions [25]. This process is done by splitting the mammogram

into numerous windows of size 360× 360 pixels, separated by an increment of 32 pixels

[24, 25].

The increment at which the sliding window pre-processing step is deployed at was

investigated due to the potential to save computational time, while still providing the same

statistical results. Before the results presented in this research, an increment of 32 pixels

was utilized. This number was chosen based on the underlying breast tissue environment.

Microcalci�cations and other artifacts within mammograms can interrupt the 2D WTMM

method, causing subregions to be labeled incorrectly. A window of size 360 × 360 pixels

separated by 32 pixels was decided on to counter the e�ects of these interruptions.

Using the Perm mammographic dataset, it was demonstrated that an increment of 128

pixels could provide the same, if not better, statistical results when comparing the percent

fatty, risky dense, and healthy dense tissue in cancerous and benign breasts. When

comparing the percent fatty tissue (p ∼ 0.0063), percent risky dense tissue (p ∼ 0.006), and
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percent healthy dense tissue (p ∼ 0.0607) within the MLI heatmaps, an increment of 128

pixels produces the best results overall (Figure 3.4). Whereas, when utilizing an increment

of 32 pixels, a statistically signi�cant di�erence is found in the percent fatty (p ∼ 0.0386)

and risky dense (p ∼ 0.0125) tissue (Figure 3.4). When comparing the percent tissue types

from the single-layer maxima intensity and single-layer raw intensity heatmaps, a

statistically signi�cant di�erence is found for the fatty tissue and risky dense tissue for

cancerous versus benign mammograms (Figure 4.6 and 4.7). It is also important to note

that when evaluating the percent risky dense tissue for cancerous and benign cases MLI

heatmaps, a p-value ∼ 0.0048 was seen for an increment of 64 pixels. This shows a smaller

p-value than the same analysis at an increment of 128 pixels. Due to how close these two

values are, we consider them equal and place emphasis on the greater decrease in

computational time correlated with choosing an increment of 128 pixels. These results are

exciting as they indicate that we can reduce the computational power required to assess

mammograms by 1600% by altering the increment from 32 pixels to 128 pixels.

The analytical and visual comparison of the heatmaps at each sliding window increment

lead to the conclusion that for analysis an increment of 128 pixels should be utilized. The

heatmaps created at an increment of 64 pixels may provide better results when visually

distinguishing between dense tissue subtypes and fatty tissue. We are able to conclude that

an increment of 128 pixels should be integrated into the 2D WTMM sliding window

methodology and that the MLI heatmaps provide the best quantitative tool for clinical

applications.

5.2 Future Research

As a �rst step in the investigation of the sliding window pre-processing step, the

increment at which the window is slid across the mammogram was tested at four di�erent

increments. As discussed previously, an increment of 128 pixels should be integrated into

this process and can still provide the same statical signi�cance di�erences between

47



proposed tissue types in patients diagnosed with cancerous tumors and benign lesions. In

the future, the size of the window (now set to 360 × 360 pixels, keeping the central 256 ×

256 pixels for 2D WTMM method analysis) should be investigated. Altering this window

to sizes of 180 × 180 pixels or 512 × 512 pixels could provide interesting results at each

sliding window increment. This investigation could allow for another iteration of the

heatmap to be made, more precise tracking of tissue types, and the potential to better

distinguish between cancerous and benign tissue types. The feedback of radiologists on

these images would also be a useful tool in distinguishing which visual is the easiest to

interpret, which relates back to the algorithm the best, and which o�ers the best

compatibility with the mammograms.

The application of statistical comparison between cancer and benign groups using the

Wilcoxon Rank Sum test is only performed on patients' MLO view mammograms. Further

validation of the conclusions presented in this thesis can be reached by performing this

investigation on the CC view mammograms. The implementation of utilizing both views in

the 2D WTMM sliding window methodology may lead to a more accurate analysis of the

di�erences and similarities in proposed tissue types between the two groups and their

subgroups.
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