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The bridle shiner (Notropis bifrenatus) is a small minnow species native to the eastern 

United States and southeastern Canada. The species is declining dramatically throughout most of 

its native range and has legal protection or concern status in thirteen states and two Canadian 

provinces. In Maine, the bridle shiner is listed as a Species of Special Concern and considered a 

Species of Greatest Conservation Need, partially because we lack a basic understanding of their 

status and distribution within the state. Bridle shiners have historically been found in southern 

and western Maine in densely vegetated, shallow habitats along the shorelines of streams and 

ponds. Surveys performed at sites where the shiners were once abundant have yielded very few 

or none of these fish. This project informed the Maine Department of Inland Fisheries & Wildlife 

on the status of the species in Maine and provides a foundation for future long-term monitoring 

of bridle shiner populations in the State.  

We used a combination of both direct capture techniques and environmental DNA 

(eDNA) to locate bridle shiners. eDNA is increasingly being used to detect rare aquatic species 

such as bridle shiners because it is both highly sensitive and less invasive than direct capture. We 



 
 

 

 

designed a single-species primer-probe assay to detect bridle shiner DNA, then surveyed 32 sites 

with a record of historic bridle shiner occurrence. In addition to collecting eDNA samples (2021-

2022), we surveyed 29 sites using traditional seine netting techniques in 2021. In 2022, we used 

a preliminary habitat suitability model to select 46 locations with unknown bridle shiner 

presence to survey with eDNA. To refine eDNA methodology, we assessed trends in eDNA 

detection probability across seasons and compared DNA detection between three filter pore 

sizes. We rediscovered bridle shiner populations at 11 of 32 historically occupied sites and 

documented bridle shiners in four additional waterbodies. We determined that eDNA surveys 

were most effective in early or midsummer, and that larger filter pore sizes are a viable option 

for surveying bridle shiners. 

Species distribution modeling (SDM) statistically associates species occurrence data with 

environmental variables to evaluate habitat suitability. We used an ensemble species distribution 

modeling (SDM) approach to identify both the current and historic range of the bridle shiner 

within Maine and New Hampshire. We also investigated how local habitat characteristics 

influenced bridle shiner presence using generalized linear models. Both historic site surveys and 

ensemble SDMs suggest that there has been a substantial loss of historic bridle shiner habitat in 

Maine (-62%) and New Hampshire (-46%). At the landscape scale, we found significant effects 

of forest type, catchment position, soil composition, elevation, and slope on bridle shiners. 

Within a site, bridle shiners were associated with areas that had a higher proportion of complex-

leaved submerged aquatic vegetation and a lower proportion of persistent emergent and floating 

vegetation. We determined that both eDNA and seine net surveys are viable options for 

monitoring bridle shiners in Maine, and that such survey strategies can be used with species 



 
 

 

 

distribution models to focus future surveys and to identify areas of possible conservation, 

reintroduction, or restoration actions.
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CHAPTER 1 

AN INTEGRATIVE APPROACH TO ASSESSING BRIDLE SHINERS  

(NOTROPIS BIFRENATUS) USING ENVIRONMENTAL DNA  

AND TRADITIONAL TECHNIQUES 

1.1. Introduction  

Freshwater ecosystems are among the most critically threatened habitats on Earth, and 

within these ecosystems, freshwater fish are among the most imperiled animals (Dudgeon et al. 

2006; Jelks et al. 2008). As of 2008, nearly 40% of North America’s freshwater and diadromous 

fish species were considered vulnerable, threatened, or endangered (Jelks et al. 2008). Maine has 

a relatively low biodiversity of freshwater fish, with only 65 species in total (Everhart 2002; 

Wick 2007; Gallagher 2010a, 2010b). Nineteen of these species are introduced or exotic, and 46 

are native to at least a portion of the State (United States Geological Survey [USGS] 2021). 

Nearly one quarter of Maine’s native freshwater fish species are considered species of 

conservation concern (Maine Dept. of Inland Fisheries and Wildlife [MDIFW] 2021).  

Anthropogenic environmental impacts such as habitat loss, degradation, and 

fragmentation have increased in prevalence over recent decades (Paul and Meyer 2001; Walsh et 

al. 2005). Small-bodied fish species such as minnows and darters are especially vulnerable to the 

impacts of habitat alteration and destruction (Whittier et al. 1997; Olden et al. 2007). Changes to 

natural hydrologic regimes, increased turbidity and pollution, and the introduction of invasive 

species frequently pose threats to small-bodied freshwater fishes (Angermeier 1995; Bunn and 

Arthington 2002; Jelks et al. 2008; Gray et al. 2016). Recent declines and extirpations of native 

minnows in the northeastern United States and Canada have been linked to increased 

anthropogenic activity in a watershed and to the stocking of non-native predatory sport fishes 
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(Whittier et al. 1997). For example, Whittier et al. (Whittier et al. 1997) found that the 

introduction of predators such as largemouth bass (Micropterus salmoides), smallmouth bass (M. 

dolomieu), and northern pike (Esox lucius) was the most consistent factor related to declines in 

native minnow species richness in northeastern lakes.  

Small-bodied fish are especially threatened with extirpation when they occupy limited 

geographic ranges and narrow ecological niches. These specialist species likely already have 

lower populations to begin with and are thus especially vulnerable to disturbance and 

environmental stochasticity (Angermeier 1995). Shifts in water chemistry, temperature, and 

vegetation resulting from anthropogenic impacts can all result in local extirpations of specialist 

species (Angermeier 1995). One such small-bodied, specialist minnow is the bridle shiner 

(Notropis bifrenatus). Native to the eastern United States and Canada, bridle shiners inhabit 

clear, slow-moving waters in lakes, ponds, streams, and smaller rivers (Page and Burr 2011). 

They are commonly found in wetland habitats that support beds of submerged aquatic plants 

(Harrington 1948a; Jensen and Vokoun 2013). Bridle shiners grow to a maximum of 

approximately 60-mm in length and can live to be about two years old (Harrington 1948a; 

Committee on the Status of Endangered Wildlife in Canada [COSEWIC] 2013). Bridle shiners 

spawn between May and August when water temperatures are between 14 and 27°C (COSEWIC 

2013).  

Limited data suggest that the bridle shiner has been declining dramatically throughout 

most of its native range (Pregler et al. 2015), and probably has been extirpated entirely from the 

District of Columbia (Hammerson 2021) and Maryland (Kilian et al. 2011). This species now 

receives concern status or legal protection in thirteen states and two provinces (COSEWIC 2013; 
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Hammerson 2021). Bridle shiners are listed as a Species of Special Concern and considered a 

Species of Greatest Conservation Need in Maine (MDIFW 2015, 2021).  

Bridle shiner declines are likely due to the same factors that affect other minnow species, 

especially habitat loss and degradation. These fish are vulnerable to disturbances such as lake 

drawdowns and herbicide use because they live on the shoreline and require access to abundant 

vegetation (Pregler et al. 2019). Bridle shiners historically occurred in regions of Maine where 

freshwater systems are more heavily degraded and stressed by human population growth, habitat 

loss, and climate change. Bridle shiner declines are therefore suspected in the State, but we lack 

the basic ecological data on their distribution and abundance necessary to assess their status. 

Low detection probabilities are a concern when monitoring this and other rare, small-

bodied species. Traditional fisheries techniques such as backpack electrofishing tend to have low 

capture probabilities for rare organisms and are therefore more useful when trying to detect 

abundant species (Jerde et al. 2011). Because of their distinct habitat requirements, effective 

bridle shiner sampling presents unique logistical constraints. Seine nets have successfully been 

used to capture bridle shiners and other minnows in clear, slow-moving water with abundant 

vegetation (Jensen and Vokoun 2013; Pregler et al. 2015; Lamothe and Drake 2020), but seine 

netting is labor intensive.  

Environmental DNA (eDNA) offers an alternative technique. eDNA methods have been 

successfully applied in the study of other rare fish (e.g., Jerde et al. 2011; Hinlo et al. 2018; 

Robinson et al. 2019), and are both highly sensitive to the DNA of the target organism (Turner et 

al. 2014) and non-invasive (Valentini et al. 2016; Deiner et al. 2016). Once shed, DNA breaks 

down in the environment and has a limited period of availability for detection. Aquatic eDNA 

degrades relatively quickly, and provides a near-current snapshot of species presence (Dejean et 
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al. 2011; Thomsen et al. 2012; Agersnap et al. 2022). Therefore, the utility of eDNA depends on 

the sensitivity and specificity of the extraction method, but also on the sampling approach with 

regards to the location, timing, and extent of sampling. One way to increase eDNA detection 

probability is to collect samples during times of the year when eDNA quantities will be higher, 

such as during the spawning season (de Souza et al. 2016).  

There are tradeoffs associated with each season when sampling eDNA. During summer, 

bridle shiner habitat is more easily identifiable, and fish shed more DNA (Lacoursière‐Roussel et 

al. 2016b), but the collected water contains algae, bacteria, and plant material that is difficult to 

filter. eDNA also degrades faster at higher water temperatures (Barnes et al. 2014; Eichmiller et 

al. 2016; Goldberg et al. 2018). In winter, water samples filter quickly, but detection probability 

of DNA might be lower due to seasonal changes in fish behavior (de Souza et al. 2016; Thalinger 

et al. 2021), metabolism (Lacoursière‐Roussel et al. 2016b), and stream discharge (Thalinger et 

al. 2021).  

The goal of this study was to characterize the population status and distribution of the 

bridle shiner in Maine and provide a method for long-term assessment. Focal areas included 

watersheds in southern and western Maine that represent the northeastern extent of the species’ 

range in the US. The objectives of the study were to 1) survey areas that have previously 

supported bridle shiner populations in Maine using eDNA in conjunction with traditional seine 

netting methods, 2) use eDNA sampling to survey areas with unknown bridle shiner presence, 

and 3) refine eDNA methodology for future surveys.  
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1.2. Methods  

1.2.1. Study Area 

Bridle shiners were historically found in southern and western Maine in densely 

vegetated, shallow habitats along the shorelines of streams and ponds (Cooper 1939). The 

earliest MDIFW records of bridle shiners in the State were documented by Kendall (1914) and  

Cooper (1939), and subsequent records were the result of incidental captures during various 

stream and lake surveys (Doering et al. 1995; Yoder et al. 2009; Gallagher 2010a, 2010b; U.S. 

Environmental Protection Agency [USEPA] 2016).  

In total, bridle shiners were reported at 38 locations between 1937 and 2010 (Figure 1.1). 

All the lake and pond sites (n = 16) have been resurveyed at least once between 1939 and 2021, 

but bridle shiners have only been captured in two ponds since 1992 (USEPA 2016). Bridle 

shiners appear on the species list of four lakes in central and eastern Maine (open circles; Figure 

1.1), but MDIFW biologists consider these records to be misidentifications (most likely of the 

closely related blacknose shiner, N. heterolepis). Doering et al. (1995) found one bridle shiner 

during a survey of Marshall Brook at Acadia National Park and Stone et al. (2001) hypothesized 

that this may have been a bait-bucket introduction (Figure 1.1). 

Although bridle shiners are considered a lake-dwelling species (Whittier et al. 1997), 

almost all the recent (1990-2010) bridle shiner documentations in Maine have come from 

streams and rivers (n = 8 records). Road crossing coordinates were available for the 22 stream 

sites with records of bridle shiner presence, but historic survey coordinates were not available for 

the 12 lakes and ponds with credible records (Kendall 1914; Cooper 1939; Doering et al. 1995; 

Yoder et al. 2010; Gallagher 2010a, 2010b; USEPA 2016). Surveys performed at sites where the 



 
 

6 

 

shiners were once abundant have yielded very few or none of these fish, but surveys specifically 

targeting bridle shiners had not been conducted prior to this study.  

While bridle shiners have not been captured at any of their historically occupied sites in 

recent years, this may reflect biases in gear, sampled habitat, and survey goals rather than true 

absences. For example, MDIFW lake and pond surveys between 1950 and 1970 often did not 

distinguish between minnow species, and sampling equipment used sizes that allowed smaller 

fish to evade capture (Stone et al. 2001). Therefore, it is possible that bridle shiner populations 

remain at some or all of these historic sites, but the overall status of bridle shiner populations in 

Maine is unknown.  

We surveyed bridle shiners at 95 locations within 68 waterbodies in southwestern Maine, 

USA between June 2021 and November 2022. We visited an additional three sites where we 

were unable to sample with eDNA or a seine net (i.e., could not get permission to sample, n = 2; 

pond dried and could no longer support fish, n = 1). Sampling in both years focused on the Saco, 

Presumpscot, and Piscataqua-Salmon Falls Hydrologic Unit Code 8 (HUC8) sub-basins (USGS 

2021).  
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Figure 1.1 Locations of historic bridle shiner records in Maine. Confirmed records are 

represented by black circles, while likely misidentifications are represented by open circles. 

River basins (HUC6; USGS 2021) are depicted by light gray lines. 
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While bridle shiners have not been captured at any of their historically occupied sites in 

recent years, this may reflect biases in gear, sampled habitat, and survey goals rather than true 

absences. For example, MDIFW lake and pond surveys between 1950 and 1970 often did not 

distinguish between minnow species, and sampling equipment used sizes that allowed smaller 

fish to evade capture (Stone et al. 2001). Therefore, it is possible that bridle shiner populations 

remain at some or all of these historic sites, but the overall status of bridle shiner populations in 

Maine is unknown.  

We surveyed bridle shiners at 95 locations within 68 waterbodies in southwestern Maine, 

USA between June 2021 and November 2022. We visited an additional three sites where we 

were unable to sample with eDNA or a seine net (i.e., could not get permission to sample, n = 2; 

pond dried and could no longer support fish, n = 1). Sampling in both years focused on the Saco, 

Presumpscot, and Piscataqua-Salmon Falls Hydrologic Unit Code 8 (HUC8) sub-basins (USGS 

2021).  

1.2.2. Site Selection 

1.2.2.1. Identification of Historic Sites. We used Google Earth aerial imagery (Google LLC, 

Mountain View, CA) and in-person site surveys to identify shallow, vegetated habitats within 

waterbodies where we did not have historic survey coordinates. When river or stream road 

crossing coordinates were reported in historic records, we used aerial imagery or in-person 

surveys to search upstream and downstream of the coordinates for vegetated pools. It was not 

feasible for us to sample larger lakes and ponds in their entirety, so we delineated at least two 

potential sampling areas (typically the inlet and the outlet) at lakes and ponds. We referred to 

each historic lake, pond, or stream reach as a “site,” and each location where we collected a full 

sample (2 or 3-L) of water as a “subsite”. We chose sampling locations with abundant aquatic 
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vegetation (when present) that were shallow enough to sample with a 1.2-m high seine net, and 

split areas into subsites if fish would need to cross a barrier (e.g., expanse of open water or 

strong current) to move between habitat patches. Each subsite encompassed one patch of 

contiguous aquatic vegetation. We conducted site visits (n = 47 locations within 32 waterbodies) 

between June and July of 2021. In 2022, we visited three additional sites with historic bridle 

shiner records (CRESLK-01/02/03, MARRPD-01/02, SOKOLK-01/02/03; Table 1.1). 

Table 1.1 Maine bridle shiner survey sites in 2021-2022 (NAD83 / UTM Zone 19N). We 

validated 2021 eDNA results with seine net surveys and conducted only eDNA surveys in 2022. 

We sampled three sites every six weeks between October 2021 and November 2022 (PRESUM-

01, OSSIPE, WATBRK). We sampled two sites known to support bridle shiners with three 

different filter types in 2022 (BARKER, SACONO-03). 

 

Site Waterbody 
Year 

Sampled 
Easting Northing Method 

Present/ 

Absent 

BARKER Barker Pond 2021, 2022 359052 4860990 eDNA + seine Present 

BEARPD-01 Bear Pond 2021 362597 4890820 eDNA + seine Absent 

BEARPD-02 Bear Pond 2021 363317 4889350 eDNA + seine Absent 

BOOMBR Unnamed 

brook 

2021 377144 4819870 eDNA + seine Absent 

BROBRK Brown's 

Brook 

2021 554524 4967970 eDNA + seine Absent 

BURNPD-01 Burnt Meadow 

Pond 

2021 348493 4865680 eDNA + seine Absent 

BURNPD-02 Burnt Meadow 

Pond 

2021 348628 4865060 eDNA + seine Absent 

CROOKR Crooked River 2021 373952 4873110 eDNA + seine Absent 

GWORKB Great Works 

River/ Bauneg 

Beg Pond 

2021 359014 4801930 eDNA + seine Absent 

GWORKN Great Works 

River 

2021 357524 4805680 eDNA + seine Absent 

GWORKS Great Works 

River 

2021 358935 4797490 eDNA + seine Present 

HIGHLK-02 Highland Lake 2021 358466 4884480 eDNA + seine Absent 

HIGHLK-03 Highland Lake 2021 362817 4879480 eDNA + seine Absent 

HIGHLK-04 Highland Lake 2021 359879 4884760 eDNA + seine Present 

JORDAN Jordan River 2021 382444 4860640 eDNA + seine Absent 

JOSIES Josie's Brook 2021 369686 4840580 eDNA + seine Absent 

KIMBAL Kimball Brook 2021 341689 4887230 eDNA + seine Present 

LITTLP-01 Little Pond 2021 350779 4884460 eDNA Unknown* 
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Table 1.1 Continued. 

LITTLP-02 Little Pond 2021 350903 4884350 eDNA Unknown* 

LITTLR Little River 2021 350489 4803790 eDNA + seine Absent 

MARBRK Marshall 

Brook 

2021 551554 4902250 eDNA + seine Absent 

OCSACO Old Course 

Saco River 

2021 346256 4884460 eDNA + seine Absent 

OSSIPE Ossipee River 2021-2022 353209 4852140 eDNA + seine Present 

OSSIPM Ossipee River 2021 343737 4850670 eDNA + seine Present 

PISCAT Piscataqua 

River 

2021 394376 4847570 eDNA + seine Absent 

PRESUM-01 Presumpscot 

River 

2021-2022 383533 4845090 eDNA + seine Present 

PRESUM-02 Presumpscot 

River 

2021 383583 4845200 eDNA + seine Present 

PROCPD-01 Proctor Pond 2021 356431 4900500 eDNA + seine Absent 

PROCPD-02 Proctor Pond 2021 356592 4900260 eDNA + seine Absent 

SACONO-01 Saco River 2021 353424 4862040 eDNA + seine Absent 

SACONO-02 Saco River 2021 353642 4862300 eDNA + seine Absent 

SACONO-03 Saco River 2021, 2022 353523 4862370 eDNA + seine Present 

SACOSO Saco River 2021 356715 4851970 eDNA + seine Absent 

SEBAGO-01 Sebago Lake/ 

Songo River 

2021 373567 4863550 eDNA + seine Present 

SEBAGO-03 Sebago Lake 2021 370327 4864980 eDNA + seine Absent 

SEBAGO-04 Sebago Lake 2021 375361 4848550 eDNA + seine Absent 

SEBAGO-06 Sebago Lake 2021 381712 4861730 eDNA + seine Absent 

SFALLS Salmon Falls 

River 

2021 345364 4796430 eDNA + seine Present 

SPECPD Spectacle 

Ponds 

2021 346921 4853590 eDNA + seine Absent 

STANPD-01 Stanley Pond 2021 348533 4854720 eDNA + seine Absent 

STANPD-02 Stanley Pond 2021 348118 4854850 eDNA + seine Absent 

STANPD-03 Stanley Pond 2021 347764 4855830 Seine Absent† 

TRAFPD-01 Trafton Pond 2021 348270 4856280 eDNA + seine Absent 

TRAFPD-02 Trafton Pond 2021 347797 4856810 Seine Absent† 

WATBRK Unnamed 

brook 

2021-2022 368055 4845460 eDNA + seine Absent 

ANDROS Androscoggin 

River 

2022 405085 4877020 eDNA Absent 

BRADPD-01 Bradley Pond 2022 351426 4899890 eDNA Absent 

BRADPD-02 Bradley Pond 2022 351071 4899370 eDNA Absent 

BUCKBR Buck Meadow 

Brook 

2022 350874 4869460 eDNA Present 

BUFFBR Buff Brook 2022 356590 4828550 eDNA Absent 

CANCO Unnamed 

pond 

. 396733 4837540 None Absent‡ 
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Table 1.1 Continued. 

CARBRK Carsley Brook 2022 368265 4882340 eDNA Absent 

CHANBR Chandler 

Brook 

2022 401963 4862410 eDNA Absent 

COLCPD-01 Colcord Pond 2022 342804 4855520 eDNA Present 

COLCPD-02 Colcord Pond 2022 342639 4857680 eDNA Absent 

CRESLK-01 Crescent Lake/ 

Tenny River 

2022 382630 4867340 eDNA Present 

CRESLK-02 Crescent Lake 2022 383820 4869380 eDNA Present 

CRESLK-03 Crescent Lake 2022 382678 4871880 eDNA Absent 

CROOKN Crooked River 2022 357338 4900570 eDNA Absent 

CROOKS Crooked River 2022 374475 4870820 eDNA Absent 

DINGLY Dingley Brook 2022 378789 4863140 eDNA Absent 

DUCKIN Duck Pond 

Brook 

2022 358274 4884980 eDNA Absent 

DUCKNO Duck Pond 

Brook 

2022 357422 4889870 eDNA Absent 

EDDYBR Eddy Brook 2022 393679 4868000 eDNA Absent 

GRTBRK Great Brook 2022 346438 4846970 eDNA Absent 

HALEY Unnamed 

brook 

2022 353782 4844520 eDNA Unknown* 

HEATH-01 The Heath 2022 382068 4875170 eDNA Absent 

HEATH-02 The Heath 2022 381920 4874680 eDNA Absent 

INGALS-01 Ingalls Pond 2022 355979 4858140 eDNA Absent 

INGALS-02 Ingalls Pond 2022 356014 4857860 eDNA Absent 

MARRPD-01 Marr Pond 2022 476034 4999620 eDNA Absent 

MARRPD-02 Marr Pond 2022 476743 4999440 eDNA Absent 

MEADBR Meadow 

Brook 

2022 413718 4869180 eDNA Absent 

MERRIL Merrill Brook 2022 408744 4855850 eDNA Absent 

MOSQPD Mosquito 

Pond 

2022 356574 4906770 eDNA Absent 

MUDNO Mud Pond 2022 358926 4865650 eDNA Present 

MUDSO Mud Pond 2022 348484 4830530 eDNA Absent 

OSSIPR Ossipee River 2022 353408 4852070 eDNA Absent 

OTTER-01 Otter Ponds 

(Snake Pond) 

2022 378927 4846550 eDNA Absent 

OTTER-02 Otter Ponds 

(Half Moon 

Pond) 

2022 378321 4846660 eDNA Absent 

PANTHR-01 Panther Pond/ 

Tenny River 

2022 382062 4866260 eDNA Present 

PANTHR-02 Panther Pond 2022 381929 4863540 eDNA Absent 

PANTHR-03 Panther Pond 2022 383454 4864880 eDNA Absent 

PISCDN Piscataqua 

River 

2022 395387 4845110 eDNA Absent 
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Table 1.1 Continued. 

PISCUP Piscataqua 

River 

2022 394834 4850480 eDNA Absent 

PRESBG Presumpscot 

River 

2022 383487 4846940 eDNA Absent 

RACHEL Unnamed 

brook 

2022 396681 4827270 eDNA Absent 

RANGE-01 Middle Range 

Pond 

2022 389383 4877000 eDNA Absent 

RANGE-02 Middle Range 

Pond 

2022 388929 4874370 eDNA Absent 

REDBRK Red Brook 2022 391701 4831260 eDNA Absent 

RIDGEB Unnamed 

brook 

2022 363812 4826610 eDNA Absent 

ROYALR Royal River 2022 398071 4874310 eDNA Absent 

SHEPR Shepard's 

River 

2022 345344 4866430 eDNA Absent 

SOKOLK-01 Sokokis Lake 2022 356133 4839980 eDNA Absent 

SOKOLK-02 Sokokis Lake 2022 354643 4841400 eDNA Absent 

SOKOLK-03 Sokokis Lake 2022 354682 4841370 eDNA Absent 

SOPER Soper Mill 

Brook 

2022 402191 4875470 eDNA Absent 

SYMMES-01 Symmes Pond 2022 348917 4834440 eDNA Absent 

SYMMES-02 Symmes Pond 2022 348864 4834450 eDNA Absent 

*Sample unusable (algae) or lost.  

†Received landowner permission to sample post-eDNA surveys. Seine sample only. 

‡Pond dry, no water sample taken.  

 

1.2.2.2. eDNA Method Development. We selected three of the historic sites to survey for bridle 

shiner DNA across all four seasons (map labels A, B, and C, Figure 1.1; OSSIPE, PRESUM-01, 

and WATBRK; Table 1.1). One site (WATBRK) was a putative null: we did not detect bridle 

shiners there through either seine net or eDNA survey in 2021, so we did not expect to detect 

bridle shiner DNA there at any time of year. The second site (OSSIPE) was representative of 

sites where we detected very few bridle shiners via seine net survey and failed to detect bridle 

shiner DNA from water samples. We expected eDNA detections to peak during the spawning 

season at this site. The third site (PRESUM-01) was representative of sites where we 

successfully detected bridle shiner DNA and captured multiple individuals during a subsequent 
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seine net survey. We expected to detect bridle shiners with eDNA at this site regardless of 

season. We collected three replicate, 1-L samples of water from each site approximately every 

six weeks from 4 October 2021 until 10 November 2022. 

In addition to collecting repeated samples at three sites, we selected two sites (map labels 

D and E, Figure 1.1; BARKER and SACONO-03, Table 1.1) at which to compare three filter 

pore sizes (2022). We wanted to determine if future studies could use larger filter pore sizes 

without reducing bridle shiner detection probability as this would save valuable processing time 

and could potentially allow for filtration in the field. We had captured multiple bridle shiners at 

these sites in 2021 and expected that these subpopulations would still be present in 2022 and 

could be reliably detected using eDNA. On 25 September 2022, we collected three groups of five 

1-L replicates each at each site: we filtered replicates from Group A using Whatman GF/F 0.7-

µm filters (Cytiva, Marlborough, MA), replicates from Group B using Whatman 934-AHTM 1.5-

µm filters, and replicates from Group C using Tisch Scientific Grade D 2.7-µm filters (Tisch 

Scientific, Cleves, OH). We also collected one 1-L field control at each site using the methods 

described above and filtered the control with a Whatman 0.7-µm filter. 

Water collection followed the same strategy as our other 2022 eDNA sampling, except 

that three 500-mL bottles were held together and submerged as a group to collect each replicate 

(rather than filling each bottle separately). This ensured that we collected each group of 

replicates (e.g., A1, B1, and C1) from precisely the same location and at the same time. We used 

bleached rubber bands to hold the three bottles together and affixed them to a bleached fiberglass 

pole.  

1.2.2.3. Selecting Sites with Unknown Bridle Shiner Presence. In 2022, we endeavored to 

find additional bridle shiner subpopulations and to sample a variety of habitat types to inform 
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future species distribution modeling (Chapter 2). While wetlands classified as riverine or 

lacustrine aquatic bed (Cowardin et al. 1979) by the National Wetlands Inventory (U.S. Fish 

and Wildlife Service [USFWS] 2022) will likely identify bridle shiner habitat, these 

classifications are not always available at local scales. To target specific habitats in our bridle 

shiner surveys, we built a preliminary habitat suitability index model for the state of Maine 

using ModelBuilder in ArcGIS Pro (version 2.9.1; Esri, Redlands, CA). We included 

environmental variables such as land cover, catchment position, stream gradient, and wetland 

type because these variables have been shown to influence bridle shiner occurrence in 

Connecticut (Jensen and Vokoun 2013; Pregler et al. 2019). Other variables such as substrate 

type and plant cover are also predictive of bridle shiner habitat but are unavailable in spatial data 

repositories for water features in Maine. We ranked variable classes from low (1) to high (5) 

based on habitat data from Jensen and Vokoun (2013) and Pregler et al. (2015, 2019), added the 

layers together into a final suitability layer, and categorized the raw combined index scores as 

“least likely,” “likely,” and “most likely” to support bridle shiner habitat. We ran a binomial 

generalized linear model (GLM) to determine if suitability category influenced bridle shiner 

presence. We then calculated the χ2 analysis of deviance of the model to determine if the habitat 

suitability covariate significantly improved model fit.  

We overlaid a hexagonal grid over the state and used the R package spsurvey to select a 

subset of grid cells to sample (Dumelle et al. 2023, R Core Team 2021). We used a generalized 

random tessellation stratified (GRTS) survey design to select new water bodies to sample in 

2022. The GRTS sampling scheme allowed us to drop grid cells where sites were inaccessible or 

otherwise unfavorable for sampling while retaining a spatially balanced sampling effort (Brown 

et al. 2015).  
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We selected 64 random grid cells within the Saco, Presumpscot, and Lower 

Androscoggin River watershed units, and chose one waterbody to survey within each cell. We 

dropped four cells with large lakes that would have required more than three subsites to survey, 

as our goal was to survey a higher number of waterbodies. We divided the selected waterbodies 

into three groups based on the preliminary habitat model and planned to survey 20 waterbodies 

with high predicted habitat suitability, 20 with medium predicted suitability, and 20 with low 

predicted suitability.  

1.2.3. Seine Net Surveys 

In 2021, we seined 29 sites that produced a historical (1930s-1940s) or recent (1990s-

2010s) record of bridle shiner occurrence. We conducted a power analysis to determine the 

number of sampling events required to detect a rare fish species (assuming a density < 0.4 

fish/sample unit and a detection probability of 50%; Green and Young 1993) and determined that 

sampling eight locations at each waterbody would provide us with approximately 80% 

confidence in stating that bridle shiners were not present. Therefore, at each water body, we 

sampled up to eight locations within the habitat patches where we collected eDNA, as described 

below.  

In Connecticut, bridle shiner young-of-year are large enough to confidently identify 

beginning in August (Jensen and Vokoun 2013). We began seining in mid-August to avoid 

misidentifying young bridle shiners and the young-of-year of other minnow species. All fish 

were handled in accordance with University of Maine Institutional Care and Use Committee 

(IACUC) protocols (permit number A2021-03-01). Pilot capture efforts at one site showed that 

young-of-year minnow mortality was high when using a bag seine net, so we only used flat, 

bagless seines (1.6-mm mesh, 9.1-m length, 1.2-m height) for the remainder of the surveys. We 
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re-used nets within waterbodies but cleaned and sanitized nets (1% bleach dilution) between 

unconnected waterbodies to avoid spreading diseases and invasive variable-leaved watermilfoil 

(Myriophyllum heterophyllum). 

Because we were primarily interested in bridle shiner presence rather than abundance, we 

used an adaptive sampling approach (Bonar et al. 1997) and stopped sampling if we captured 

bridle shiners before the eighth seine sample. We sampled a minimum of three seine samples per 

site to characterize habitat and fish communities (See Appendix C for community composition 

methods and results). We fixed one end of the seine in place and dragged the other end to sweep 

through areas where we either saw minnows or identified patches of submerged or emergent 

aquatic vegetation. Each full seine drag – covering a surface area of at least 32.8 square meters – 

was approximately in the shape of a semi-circle and counted as one sample. We then pursed the 

seine and funneled fish towards the back end of the net, where we collected them and transferred 

them to an aerated bucket. We counted the number of captured fish in each seine haul and 

identified them to species, then batch-weighed them by species. We took voucher photos of each 

species, especially minnow species, using a micro photo tank (8.9 x 3.8 x 3.8 cm). When we 

caught bridle shiners, we measured up to ten individual fish lengths as well as batch-weighing 

them. We kept fish contained in buckets until we finished surveying the immediate area so that 

we did not recount individuals.  

1.2.4. Sampling eDNA 

In 2021, we began eDNA sampling in early summer to coincide with the start of the 

bridle shiner spawning period (late May through mid-July in New Hampshire; Harrington 1948). 

While water levels in May and June were higher due to spring rains, potentially diluting eDNA, 

the release of fish gametes (and later, the presence of schools of young-of-year fish) should have 
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increased our probability of capturing bridle shiner DNA during this period (de Souza et al. 

2016). In 2022, we ended all eDNA surveys (except for the long-term site surveys) before peak 

leaf senescence in the fall (mid-October), as humic substances leached from fallen leaves are 

known to inhibit PCR (Wilson 1997; Eichmiller et al. 2016).  

At each sampling location, we collected two 1-L replicates of water (divided between 

four 250-mL Nalgene bottles) and one 1-L field control following USFWS (2020) protocols. We 

modified collection protocols slightly in 2022 to include a third 1-L replicate of water at each 

sampling location to increase the likelihood of capturing bridle shiner DNA in the sample. We 

also collected each 1-L replicate in two 500-mL Nalgene bottles instead of four 250-mL bottles. 

We affixed the empty bottles to a 1.2-m PVC or fiberglass sampling pole with rubber bands to 

collect water. We used separate sampling poles and rubber bands among all replicates and 

controls at each site and between different sites. We decontaminated sampling poles and other 

sampling equipment by soaking them in a 10% bleach dilution for ten minutes (Collins et al. 

2019; USFWS 2020) and rinsing them with tap water.  

We followed several practices to increase our likelihood of detecting bridle shiner DNA 

and to minimize sample contamination. When sampling streams and rivers, we collected water 

from areas of low flow such as eddies and backwaters, as DNA in high flow areas may be 

flushed rapidly downstream (USFWS 2020). As suggested by Goldberg et al. (2018), we 

collected the sample replicates up to 60-m apart from one another within each subsite to increase 

the probability of capturing bridle shiner DNA in the sample. Where there was flow, we sampled 

from downstream to upstream (USFWS 2020; Wood et al. 2021). Some lakes, ponds, and river 

sites were only accessible by boat or with chest waders: in these instances, we rinsed the outside 

of a canoe or the waders away from or downstream of the eDNA collection area. When possible, 
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we collected samples from the shoreline, with only the sampling pole and Nalgene bottle 

touching the water.  

Each water body had a negative field control, which consisted of four 250-mL bottles 

filled with tap water (USFWS 2020; Wood et al. 2021). Following USFWS (2020) protocols, we 

opened each field control bottle and exposed the contents to the air for ten seconds. Then, we 

resealed the bottle and submerged it in the water at the site. We expected that controls would 

only contain bridle shiner DNA if there was cross-contamination between samples during 

transport or contamination from the outside of the bottle during filtering. 

1.2.4.1. Laboratory Methods. We transported water samples on ice to the University of Maine 

eDNA CORE lab, where we stored them at 4°C until filtration within approximately 24 hours of 

collection (Hinlo et al. 2017). We began the summer by using Whatman 7190-004 1.0-µm, 47-

mm diameter cellulose nitrate filters (Cytiva, Marlborough, MA) but switched to Whatman GF/F 

0.7-µm, 47-mm diameter glass fiber filters on 29 June 2021 (samples BURNPD-01/02, 

SPECPD, OSSIPE, JORDAN, PRESUM-01/02, SACONO-01/02, BARKER and MARBRK 

were filtered with cellulose nitrate filters; Table 1.1). Higher temperatures at the sites facilitated 

the growth of bacteria and algae, which quickly clogged the cellulose nitrate filters. We vacuum-

filtered as much of each 1-L replicate as possible through a 0.7-μm glass fiber filter to isolate the 

target DNA from the sample (Lacoursière‐Roussel et al. 2016a; Hinlo et al. 2017; Goldberg et al. 

2018; Plough et al. 2018). When necessary, we used up to three filters per replicate and 

combined them prior to quantitative PCR (qPCR). We stored the filters in a -20°C freezer, and 

eDNA CORE lab personnel extracted DNA from the filters using a modified DNeasy Blood & 

Tissue kit and associated Standard Operating Procedure (SOP; Appendix A).  
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We designed a species-specific bridle shiner qPCR primer-probe set based on the 

TaqMan MGB-NFQ chemistry, which amplifies a 149bp (base pair) portion of the cytochrome b 

(Cytb) gene (See Appendix B for primer development methods). We performed qPCR on a Bio-

Rad CFX96 Real-Time System thermal cycler (Bio-Rad Laboratories, Hercules, CA) using 

reaction chemistry: 10-µL TaqMan Environmental Master Mix 2.0, 3-µL template DNA, assay 

concentrations of 1-µM primers, 500nM probe, and nuclease-free water to bring the reaction 

volume to 20-µL. The thermal protocol for all qPCR reactions was as follows: 95°C for 10 

minutes followed by 50 cycles of 15 seconds at 95°C and 15 seconds at 60°C. Possible PCR 

inhibition was removed from samples using Zymo OneStep PCR Inhibitor Removal Kits (Zymo 

Research, Irvine, CA, USA) using the manufacturer’s protocol.  

We ran four technical replicates per eDNA sample, including field negative controls and 

PCR negative controls. We prepared the latter by using DNA-free water in place of extracted 

sample template when plating. We also included positive controls in the form of synthetic gene 

(gBlock) fragments corresponding to the Cytb gene region of our eDNA assay. These positive 

controls included 18 reactions across 13 well plates at concentrations of 10, 50, 250, 1,250, 

6,250, and 31,250 copies per µL (Wood et al. 2020) to provide a qPCR standard calibration 

curve (York 2016).  

Bio-Rad CFX Manager software was used to estimate Cq values from qPCR fluorescence 

curves. We considered a Cq value below 45 to be a positive bridle shiner DNA detection 

(Wilcox et al. 2013). We log-transformed the initial gBlock dilution series concentrations and 

plotted average Cq values at each concentration and used the resulting linear regression equation 

to estimate the initial DNA concentrations for each positive qPCR replicate. 
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1.2.5. Statistical Analyses 

1.2.5.1. Historic Sites: Comparing Seine Net and eDNA Detection Probability. Survey 

methods such as eDNA inherently have imperfect detection: the collected water sample may not 

capture target DNA from the environment, and DNA extraction and amplification techniques 

may not detect small quantities of DNA present in the sample (Dorazio and Erickson 2018; Mize 

et al. 2019). Occupancy models infer species occupancy while accounting for imperfect detection 

(MacKenzie et al. 2002; Lahoz-Monfort et al. 2016). We conducted two single-season 

occupancy models in the R (version 4.2.2; R Core Team 2022) package unmarked (version 1.2.5; 

Fiske and Chandler 2011) to compare seine net and eDNA detection probabilities. For these 

analyses, we only compared sites which we surveyed via both seine netting and eDNA sample 

collection (n = 29 sites). Seine net surveys can be divided into two levels of sampling: (1) fish 

presence within a waterbody and (2) fish detection within a seine net haul. To compare seine and 

eDNA surveys directly, we aggregated water samples by waterbody so that each waterbody had 

a maximum of eight seine net hauls and eight 1-L eDNA samples (from up to four subsites). We 

aggregated the results of the four technical PCR replicates from each eDNA sample so that we 

were only modeling the water sampling process and not the qPCR replicate detection probability, 

which we modeled in later analyses (Schmidt et al. 2013). Thus, we only modeled occupancy at 

the waterbody scale and not the subsite scale.  

We performed exploratory occupancy analyses using site area and upstream drainage 

area as covariates, but the null models were favored in all instances. As we were only comparing 

the 29 sites sampled in 2021, most models with covariates using this reduced dataset did not 

converge. This was determined by a warning message from unmarked stating that an individual 

model had not converged, likely because the standard errors of the coefficients were high. We 
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back-transformed coefficient estimates for each null model to obtain the mean detection 

probability (𝑝) and occupancy probability (ψ), along with their associated standard errors. Using 

the mean detection probability and standard error, we calculated the cumulative probability (𝑃∗) 

of detecting bridle shiner DNA in N samples:  

𝑃∗ = 1 − (1 − 𝑝)𝑁 (McArdle 1990). 

These analyses provided us with the probability of detecting bridle shiners at a site and, 

conversely, the probability of failing to detect bridle shiners at a site, given that they were 

present.  

1.2.5.2. eDNA Sampling Optimization. Our bridle shiner eDNA surveys inherently included 

three levels of sampling: (1) fish eDNA presence within a waterbody, (2) DNA presence within a 

sample, and (3) DNA detection within replicate subsamples. These data can be analyzed using 

multiscale occupancy models (Nichols et al. 2008; Dorazio and Erickson 2018) to refine future 

sampling techniques by determining the sample volume and number of replicates needed to 

achieve a threshold detection value (Dorazio and Erickson 2018). 

We fit the three-level occupancy model developed by Nichols et al. (2008) and Mordecai 

et al. (2011) using WinBUGS (Kéry and Royle 2016) to determine the occupancy, availability, 

and detection processes underlying our eDNA data (Schmidt et al. 2013; Appendix D). For this 

analysis, we used the first eDNA survey from each of our 2021 and 2022 sites and did not 

include any additional surveys from sites visited more than once (e.g., filter pore size or seasonal 

comparison sites). We conducted these analyses at the subsite (habitat patch) scale rather than at 

the whole waterbody scale because we could not survey lakes and ponds in their entirety. The 

habitat patch scale is also more biologically relevant, as patches were separated from one another 

by barriers to bridle shiner movement. 



 
 

22 

 

The multiscale model consists of three coupled Bernoulli trials (Schmidt et al. 2013): 

𝑧𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓𝑖), 

𝑎𝑖𝑗|𝑧𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑧𝑖𝜃𝑖𝑗), and 

𝑦𝑖𝑗𝑘|𝑎𝑖𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑎𝑖𝑗𝑝𝑖𝑗𝑘) 

The data (𝑦𝑖𝑗𝑘) are the binary indicators of detection and non-detection of bridle shiner 

DNA at site i (i = 1,…,93), in water sample j (j = 1,…,5), and in qPCR technical replicate k (k = 

1,…,4; Schmidt et al. 2013). Bridle shiners could be either present (𝑧𝑖 = 1) or absent (𝑧𝑖 = 0) 

from a subsite, and bridle shiner DNA could be either present (𝑎𝑖𝑗 = 1) or absent (𝑎𝑖𝑗 = 0) from 

a water sample taken at subsite i. Given that bridle shiners were present at subsite i and bridle 

shiner DNA was captured in water sample j, 𝑝𝑖𝑗𝑘 is the probability of detecting the DNA in 

qPCR replicate k. We used vague uniform priors for all model parameters as outlined by Kéry 

and Royle (2016): 

ψ ~ dunif(0,1), 

𝜃𝑗  ~ dunif(0,1), and 

𝑝𝑘 ~ dunif(0,1) 

We set the initial value of ψ at 0.5 (Kéry and Royle 2016). We derived the total number 

of occupied sites (∑𝑧𝑖), the total number of samples with presence (∑𝑎𝑖𝑗), the mean detection 

probability (𝑝̂), and the mean availability probability (𝜃). We ran a total of 25,000 model 

iterations and discarded the first 2,000 as burn-in. Finally, we used the mean detection 

probability (𝑝̂) to calculate the cumulative probability (𝑃∗) of detecting bridle shiner DNA after k 

qPCR replicates:  

𝑃∗ = 1 − (1 − 𝑝̂)𝑘 (McArdle 1990; Schmidt et al. 2013). 
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We repeated this process with the mean availability probability (𝜃) to determine the 

cumulative probability (𝜃∗) of detecting bridle shiner DNA in j water samples: 

𝜃∗ = 1 − (1 − 𝜃)𝑗 (McArdle 1990; Schmidt et al. 2013). 

1.2.5.3. eDNA Method Development 

1.2.5.3.1. Filter Pore Size. We conditioned a second hierarchical occupancy model using only 

sites with known presence (n = 17 sites with a total of n = 38 site visits). We determined that the 

cumulative probability of detecting bridle shiner DNA in two or three water samples was high 

enough to examine differences in filter pore size detection and seasonal patterns of bridle shiner 

eDNA availability using linear regressions rather than occupancy models. We e ran a series of 

binomial GLMs using DNA detection (1) and non-detection (0) as the response variable and site, 

pore size, sample replicate, and qPCR replicate as covariates. We performed model selection 

using the glmulti package (version 1.0.8; Calcagno 2020), which evaluates the Akaike 

Information Criterion (AIC; Akaike 1974) corrected for small sample sizes (AICc) for each 

linear combination of model covariates. We then performed a χ2 analysis of deviance on the top 

model to determine the significance of the retained covariates to bridle shiner presence. 

1.2.5.3.2. Seasonality of eDNA Sampling. To examine seasonal variability in bridle shiner 

DNA detection, we ran two sets of binomial GLMs: one set with all eDNA sites and one set 

including only the three year-round sites OSSIPE, PRESUM-01, and WATBRK. We included 

month, year, season (“fall,” “spring,” “summer,” “winter”), standardized day of year (1 January 

= 1, 31 December = 365), day of year squared, and period (“active” or “winter”) as covariates 

and tested all linear and quadratic combinations using glmulti. We considered the beginning of 

the spawning period (late May) through peak leaf drop (mid-October) to be the “active” period, 
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and the remainder of the year to be the “winter” period. We then calculated a χ2 analysis of 

deviance of the two models (all sites and long-term sites only) with the lowest AICc.  

1.3. Results  

1.3.1. eDNA Assay Performance 

The qPCR primer-probe set successfully amplified synthetic and in vitro bridle shiner 

DNA targets. The assay did not amplify any off-target species’ DNA (Appendix B). Serial 

dilutions of gBlock fragments confirmed that our qPCR assay detected eDNA at the lowest test 

concentration of 10 copies per reaction (average Cq = 36.2; Figure 1.2). The PCR efficiency was 

high (108.5%). We did not encounter any false positives when testing the field and laboratory 

controls.  

 

Figure 1.2 Log-transformed gBlock dilution series and corresponding Cq values. The x-intercept 

is estimated to be 38.4 log-copies and the slope of the line is -3.13. R2 = 0.95. 

 

1.3.2. Historic Sites: Comparing Seine Net and eDNA Detection Probability 

We sampled water at 50 locations within 33 sites with historic bridle shiner presence 

between 1 June and 16 July 2021 (n = 30 waterbodies) and between 9 July and 11 October 2022 
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(n = 3 waterbodies; Table 1.1). We conducted seine net surveys at 29 of the 30 sites sampled in 

2021 but were unable to seine in 2022. We detected bridle shiners or their DNA at 11 historically 

occupied sites and did not detect them with either method at 21 sites. We were unable to process 

water samples from one pond (LITTLP-01/02; Table 1.1).  

All but one Cq value fell below the 45-cycle threshold: one sample from KIMBAL (water 

sample replicate 2, qPCR technical replicate 4) had a Cq of 48.34, so we ran the sample a second 

time and observed a Cq value of 45.65 (Table 1.2). We considered this to be a positive detection 

because of the more definite amplification and because a qPCR replicate from the first water 

sample replicate also amplified (Cq = 39.43). The historic site detection with the lowest Cq value 

(Cq = 37.06) came from HIGHLK-04 (Table 1.2). 

Table 1.2 Cq values of all positive detections of bridle shiner eDNA in 2021 and 2022 by water 

sample replicate and qPCR technical replicate. An A, B, or C preceding the replicate number 

denotes samples taken for the filter pore size comparison in one of three sizes. All other 

replicates were filtered with a 0.7µm pore size. 

 

      Cq value 

Collection 

Date 
Site Replicate pcr1 pcr2 pcr3 pcr4 

6/14/2021 PRESUM-01* R1 (1st run) . . 38.91 41.09 

6/14/2021 PRESUM-01* R1 (2nd run) 39.31 . 40.00 . 

6/14/2021 PRESUM-02* R1 (1st run) . 41.37 . . 

6/14/2021 PRESUM-02* R1 (2nd run) 39.00 38.77 . 38.65 

6/16/2021 BARKER R1 39.30 39.22 40.04 40.28 

6/16/2021 BARKER R2 39.15 38.36 40.07 38.46 

6/30/2021 GWORKS R2 40.36 . . . 

7/6/2021 KIMBAL R1 . . 39.43 . 

7/6/2021 KIMBAL† R2 (1st run) . . . 48.34 

7/6/2021 KIMBAL† R2 (2nd run) . 45.65 . . 

7/8/2021 HIGHLK-04 R1 37.06 . 37.09 . 

7/14/2021 SEBAGO-01 R2 . . . 37.91 

7/16/2021 OSSIPM R1 40.73 . . 41.07 

6/16/2022 OSSIPE R2 . . . 38.18 

6/16/2022 OSSIPE R3 . 38.63 41.86 . 

6/16/2022 PRESUM-01 R1 . 38.04 38.62 . 
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Table 1.2 Continued. 

6/16/2022 PRESUM-01 R2 . 37.92 35.82 . 

7/15/2022 COLCPD-01 R1 . 38.46 . . 

8/3/2022 PANTHR-01 R1 36.21 . 38.09 . 

8/3/2022 PANTHR-01 R2 . . . 41.07 

8/3/2022 PANTHR-01 R3 . 36.20 . 40.24 

8/15/2022 BUCKBR R1 32.50 31.76 29.68 31.75 

8/15/2022 BUCKBR R2 38.20 36.13 35.06 42.61 

8/15/2022 BUCKBR R3 37.77 36.39 34.07 40.13 

8/15/2022 MUDNO R2 38.23 . 38.36 . 

9/25/2022 BARKER A-R1 . 37.54 . . 

9/25/2022 BARKER A-R2 . 37.22 38.62 . 

9/25/2022 BARKER A-R3 . 36.28 . 35.49 

9/25/2022 BARKER A-R4 . 38.29 . 36.87 

9/25/2022 BARKER A-R5 . . . 38.32 

9/25/2022 BARKER B-R1 . 36.50 40.71 . 

9/25/2022 BARKER B-R2 35.08 39.56 . . 

9/25/2022 BARKER B-R4 . 39.50 . 40.39 

9/25/2022 BARKER B-R5 . 37.93 39.46 . 

9/25/2022 BARKER C-R2 35.75 . 37.44 40.17 

9/25/2022 BARKER C-R3 . . 36.44 . 

9/25/2022 BARKER C-R4 . 38.37 37.20 40.22 

9/25/2022 SACONO-03 A-R4 . 38.86 . . 

9/25/2022 SACONO-03 A-R5 . 37.77 . . 

9/25/2022 SACONO-03 B-R1 35.60 . . 39.00 

9/25/2022 SACONO-03 B-R5 36.87 . 38.66 . 

9/25/2022 SACONO-03 C-R3 . . 38.70 . 

9/25/2022 SACONO-03 C-R5 . . . 41.50 

10/5/2022 CRESLK-01 R1 34.82 38.65 34.04 37.03 

10/5/2022 CRESLK-01 R2 . 37.94 37.63 39.35 

10/5/2022 CRESLK-02 R2 38.22 38.85 37.90 37.39 

10/5/2022 CRESLK-02 R3 39.48 42.84 . 39.50 
Note: *Used these samples from known positive sites to evaluate the bridle shiner assay. Following late-cycle 

amplifications, we used a higher starting template amount to rerun these samples and all subsequent samples. 

† Originally run and pcr4 had a late amplification (48.34). Reran and pcr2 had a more definite amplification 

(45.65), considered positive. 

 

 

We identified bridle shiner DNA in seven water bodies in 2021 and captured the fish at 

six of these (BARKER, GWORKS, HIGHLK-04, KIMBAL, OSSIPM, PRESUM-01/02, and 

SEBAGO-01; Figure 1.3). We also captured bridle shiners at two sites where we had not 
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detected them with eDNA (OSSIPE and SFALLS) and in one location where we did not collect 

eDNA samples (SACONO-03). There was one site (GWORKS; Figure 1.3) where we detected 

DNA but did not capture any bridle shiners with the seine. Overall, we captured bridle shiners at 

nine sites using seine nets, and at six sites using both methods (Table 1.1). In 2022, we detected 

bridle shiner DNA at two locations within one historic site (CRESLK-01 and CRESLK-02; 

Figure 1.3) and at two sites where we had not detected (OSSIPE) or had not collected 

(SACONO-03) DNA in 2021. As these eDNA surveys were not accompanied by seine net 

surveys, we excluded them from the single-season occupancy models.  
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Figure 1.3 We conducted bridle shiner surveys of historically occupied and new sites in 

southwestern Maine using seine netting (2021) and eDNA (2021-2022). We detected bridle 

shiner subpopulations using only eDNA (black circles, n = 7), only seine netting (blue circle, n = 

1), or with both methods (blue and black circles, n = 9). We were unable to conduct surveys at 

two historic sites and were unable to process samples from four additional locations (open 

squares, n = 6). We failed to detect bridle shiners with one or both survey methods at 78 sites 

(open circles).  
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We estimated the detection probability of a single seine net haul to be p = 0.20 ± 0.08. 

Our cumulative detection probability over eight hauls was 𝑃∗= 0.83 ± 0.14. We collected 

between two and eight 1-L eDNA replicates per site (mean = 2.7), depending on the size of the 

site and the number of habitat patches. There were seven sites with at least one eDNA detection. 

This translated to a detection probability of p = 0.25 ± 0.12 per 1-L sample replicate. The 

cumulative detection probability over eight sample replicates was 𝑃∗ = 0.90 ± 0.09.  

The seine net occupancy model estimated that 11 (38.0 ± 12.3%) of the 29 seined sites 

were occupied, and the eDNA occupancy model estimated that 14 (48.8 ± 23.7%) of these sites 

were occupied. The standard error of these estimates was high because the number of seine 

samples per site varied (detection error of 51.3% with three seine hauls) and because we 

collected a minimum of two eDNA replicates per site (detection error of 56.9% with two eDNA 

replicates). Our observed occupancy was 11 (37.9%) out of 29 modeled sites, which matched the 

seine net model estimate.  

We determined that we would need eight seine net hauls (Figure 1.4a) or six 1-L sample 

replicates (Figure 1.4b) per waterbody to obtain cumulative detection probabilities greater than 

𝑃∗ = 0.80. We would need 11 1-L eDNA samples and 14 seine net hauls per waterbody to obtain 

cumulative detection probabilities greater than 𝑃∗ = 0.95. 
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Figure 1.4 Cumulative probability of bridle shiner detection (𝑃∗) over 25 sample replicates for a) seine netting and b) eDNA at the 

waterbody scale. 

a) b) 
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While we spread out our seine net hauls across an entire waterbody (e.g., eight seine 

samples per lake), we took one eDNA sample from each subsite or habitat patch within a 

waterbody. If we had taken an equivalent number of seine net and eDNA samples at each 

waterbody, the eDNA detection probability would have been higher than that of seine netting (𝑃∗ 

= 0.90 for eight eDNA samples or 8-L of water), but we only collected one sample (2-L total) per 

habitat patch within a site. Therefore, at sites with three subsites, the probability of detection 

with eDNA was 81.6%, but at sites with two subsites the probability of detection was only 

67.7%. 

1.3.3. eDNA Sampling Optimization 

We detected bridle shiners at 17 total locations across both years of the study and did not 

detect them at 76 locations (Figure 1.3). Cq values across all samples ranged from 29.68 

(BUCKBR) to 48.34 (KIMBAL), with only the sample from KIMBAL passing the 45-cycle 

threshold (Table 1.2). The preliminary habitat model correctly assigned high habitat suitability 

index values to several waterbodies currently occupied by bridle shiners and to areas where 

habitat was abundant, but no bridle shiners were detected. The model also correctly assigned 

lower values to sites where bridle shiners were once reported, but which currently do not support 

bridle shiners or their habitat. It is possible that the habitat in these areas has changed since the 

original bridle shiner sightings in the 1930s, or that bridle shiners never occupied those sites to 

begin with. In 2022, we surveyed 19 locations with high habitat suitability index values, 26 

locations with medium index values, and 16 locations with low index values (57 total locations 

across 39 waterbodies). We detected bridle shiners with eDNA at 10 of these locations, including 

in four waterbodies where they were previously undocumented (BUCKBR, COLCPD-01, 

MUDNO, and PANTHR-01; Table 1.1, Figure 1.2). While the suitability indices appeared to 
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reliably distinguish between areas with suitable and unsuitable habitat, differences between the 

three model categories (high, medium, and low predicted suitability) were not statistically 

significant (p > 0.05). The χ2 analysis of deviance of the model showed that habitat suitability did 

not significantly improve model fit (p = 0.36).  

We found that the mean availability probability at the water sample level was 𝜃 = 0.58 

(95% CRI: 0.39, 0.74), and the mean detection probability at the qPCR replicate level was 𝑝̂ = 

0.57 (95% CRI: 0.46, 0.67). The cumulative detection probability (𝑃∗) of all four qPCR 

replicates was 𝑃∗ = 0.97 ± 0.02. The cumulative availability probability (𝜃∗) with two water 

sample replicates (2021 samples) was 𝜃∗ = 0.82 ± 0.08. With three water sample replicates 

(summer 2022 samples), the cumulative availability probability increased to 𝜃∗ = 0.92 ± 0.05. 

We plotted the cumulative detection (𝑃∗) and availability (𝜃∗) probabilities and determined that 

we would need two qPCR technical replicates and two 1-L water sample replicates to obtain 

cumulative probabilities greater than 0.80, and four qPCR technical replicates (Figure 1.5a) and 

four 1-L water sample replicates (Figure 1.5b) to obtain cumulative probabilities greater than 

0.95. 
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Figure 1.5 Cumulative probability of a) bridle shiner DNA detection over 10 qPCR replicates (𝑃∗) and b) cumulative probability (𝜃∗) 

of bridle shiner DNA availability over 10 (1-L) water sample replicates. 

a) b) 
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Overall, these results suggest that our eDNA survey effort gave us sufficient power to 

detect bridle shiners at the subsite (or habitat patch) scale. We detected bridle shiners at 17 out of 

93 subsites (18.3%), and the model predicted that 19 of the subsites were occupied (ψ = 0.20, 

95% CRI: 0.12, 0.32). The majority of our eDNA non-detections are therefore likely to reflect 

true absences. We were unable to detect bridle shiners at 21 of 32 (65.6%) historic sites, 

suggesting that bridle shiners may have become extirpated from a sizable portion of their historic 

range in Maine. 

1.3.4. eDNA Method Development 

1.3.4.1. Filter Pore Size. We did not detect a significant difference in bridle shiner DNA 

presence between filter pore sizes. This is likely a reflection of sample size, bridle shiner 

abundance, and eDNA distribution at the sites. In 2021, we captured 11 bridle shiners at 

BARKER and 29 at SACONO-03. eDNA detection was high at BARKER in 2021, with all four 

qPCR replicates in both water samples containing bridle shiner DNA.  

We found only minor differences in eDNA detection between filter pore sizes. In 2022, 

we detected bridle shiner DNA in 70% of water samples filtered with 0.7-µm filters, in 60% of 

water samples filtered with 1.5-µm filters, and in 50% of water samples filtered with 2.7-µm 

filters. We detected eDNA more reliably at BARKER than at SACONO-03, with 12 positive 

water samples at BARKER and six positives at SACONO-03. Fish may have been more 

concentrated in the middle and on the eastern end of the SACONO-03 site, as water samples R3 

and R5 (eastern end of pond) were consistently positive while samples R1 and R2 (western end 

of pond) only produced one positive detection between the three filter sizes.  

We fit a binomial GLM and found that only site significantly affected the presence of 

DNA in the sample (p = 0.003). Across filter sizes and sites, qPCR replicate 2 was significantly 
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more likely to contain bridle shiner DNA (p = 0.04) than other qPCR replicates. However, when 

we compared covariate combinations in glmulti, the most supported model did not include qPCR 

replicate as a covariate. The χ2 analysis of deviance of the full model revealed that including site 

in the model significantly improved model fit (p = 0.001), but that filter pore size did not (p = 

0.74). 

1.3.4.2. Seasonality of eDNA Sampling. We surveyed three sites (OSSIPE, PRESUM-01, and 

WATBRK) eleven times between 10 June 2021 and 10 November 2022. We detected bridle 

shiner DNA on only two of the eleven sampling occasions: twice at PRESUM-01 (14 June 2021 

and 16 June 2022), where bridle shiners were abundant in 2021, and once at OSSIPE, where we 

only caught one bridle shiner in 2021. This positive detection on 17 June 2022 coincided with 

the presence of many young-of-year fish of at least two species: a cyprinid species (likely bridle 

shiner) and a sucker species. We did not detect bridle shiner DNA at any time of year at 

WATBRK, corroborating the results of our seine net surveys and suggesting that bridle shiners 

were truly absent from the site. 

Among all sites, our earliest detection of bridle shiner DNA was 14 June 2021, and our 

latest detection was 5 October 2022 (Figure 1.6). We found that a quadratic effect on sampling 

date was best supported (p = 0.002), with considerably less support for other seasonal variables. 

We were more likely to detect bridle shiners when sampling closer to the average sampling day 

(24 July) rather than earlier or later in the year.  
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Figure 1.6 Proportion of positive (black) and negative (gray) bridle shiner eDNA surveys by 

month (2021-2022). Historic site, new/unknown site, long-term, and filter pore size surveys are 

all included. 

 

We repeated these steps using eDNA survey results from only the three long-term sites. 

The top model, as determined by glmulti, retained sampling day squared but not season. A χ2 

analysis of deviance revealed that the quadratic effect on sampling date significantly improved 

model fit (p = 0.001) over the null model. This model showed the same relationship between 

bridle shiner presence and sampling day squared as above: we were more likely to detect bridle 

shiners when sampling closer to the average sampling day (29 June) at long-term sites.  

1.4. Discussion  

This study demonstrated the viability of both eDNA and seine netting for detecting and 

monitoring bridle shiners in Maine. We developed and tested a targeted primer-probe assay for 

bridle shiner and found that it was capable of distinguishing bridle shiner DNA from closely 

related, sympatric species (Appendix B). We confirmed remnant bridle shiner subpopulations at 

11 of 32 historically occupied sites using eDNA and traditional fisheries techniques, then 
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documented their presence in four additional waterbodies using eDNA (Figure 1.3). We 

determined that bridle shiners can be detected using eDNA methods between June and October 

in Maine, but that surveys in early to midsummer have a higher likelihood of detecting this 

species (Figure 1.6). We also successfully detected bridle shiner DNA with three filter pore 

sizes, which could reduce sample processing time and cost in future surveys.  

Our eDNA and seine net survey efforts gave us sufficient power (>0.80) to detect bridle 

shiners at both the patch and waterbody scale. Therefore, most of our non-detections likely 

reflected true absences of bridle shiners at a site. This suggests that bridle shiners have become 

extirpated from approximately 65% of their historically occupied sites, and points to a significant 

decline of the species in Maine. These findings are consistent with the declines reported in other 

regions of the bridle shiner’s range (Kilian et al. 2011; Pregler et al. 2015; Geneva et al. 2018). 

While numerous studies have found that eDNA can be more sensitive than traditional 

survey methods when surveying rare species (e.g., Robinson et al. 2019; McColl‐Gausden et al. 

2020; Nester et al. 2023), we failed to detect bridle shiners with eDNA methods at two sites 

where we caught fish at low abundances (n = 1 to 3 fish). At one of these sites, OSSIPE, we 

successfully detected bridle shiners with eDNA the following year. We did not conduct seine and 

eDNA surveys within the same site visit due to logistical constraints, so it is possible that there 

were no bridle shiners present at the time of eDNA sampling. We discovered that, while we were 

able to detect bridle shiner DNA from June to October across all sites, we were only able to 

detect bridle shiner DNA in mid-June at our long-term sites OSSIPE and PRESUM-01 (Figure 

1.3). While we had expected detection probabilities to decrease in the winter due to increased 

water volume and decreased fish metabolic rate (USFWS 2020), we had also expected to be able 

to detect bridle shiner DNA throughout the summer at sites where the fish were abundant. It is 
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possible that bridle shiners were only using these two sites during the spawning period or 

moving between nearby habitat patches during the summer. Both sites were along river 

backwaters with variable flow, and it is unclear whether this may have influenced behavior.  

Little is known about bridle shiner movement patterns, but other small cyprinids travel 

both downstream and upstream to nearby habitat patches (Goforth and Foltz 1998; Johnston 

2000). Research on bridle shiner movement patterns in Maine would allow us to determine 

whether eDNA methods failed to detect bridle shiners when they were in fact present or whether 

these non-detections indicate periodic movements away from surveyed habitat patches. For 

example, bridle shiners may have been moving between nearby habitat patches in response to 

seasonal changes in plant cover. Further research is needed to determine the extent of bridle 

shiner movements between seasons and their overwintering behavior, and to explore potential 

behavioral differences between populations in pond and stream habitats. 

There are advantages and limitations to surveying with eDNA and seine netting, and 

determining which method to use will depend on multiple factors. The primary advantages of 

eDNA sampling are that it is non-invasive, is less destructive to habitat than seine netting, and 

minimally impacts sensitive or imperiled species with small population sizes (Valentini et al. 

2016; Nester et al. 2023). eDNA methods will also identify rare species regardless of age or body 

size (Nester et al. 2023). Seine netting surveys, however, are limited to times of the year when 

young-of-year fish are more easily identifiable (Jensen and Vokoun 2013). These surveys require 

more personnel than eDNA surveys and require at least one person who can distinguish bridle 

shiners from similar species, while eDNA surveys only require personnel who can broadly 

identify bridle shiner habitat.  



 
 

39 

 

Another advantage of using eDNA is that sampling kits can be sent to volunteers or 

landowners. Other studies have demonstrated that community scientists can collect high-quality 

eDNA samples, and that these surveys can be conducted over large spatial scales with little 

temporal variation (e.g., Biggs et al. 2015; Larson et al. 2020). This could be of particular use in 

Maine, where many smaller waterbodies are surrounded by private property and are only 

accessible from the shoreline or by canoe or kayak. We found that nearly all landowners were 

willing to allow us access to waterbodies for eDNA sampling. eDNA samples, however, are 

sensitive to cross-contamination, with even a slight contamination becoming amplified in later 

steps of sample processing (Quinn et al. 2018; McColl‐Gausden et al. 2020). When eDNA is 

collected from sites of unknown occupancy status, the prevalence of both false negative and false 

positive detections (e.g., from cross-contamination) is not known. Occupancy models provide 

unbiased estimates of occupancy and the probability of false negatives, but only when the 

probability of false presence is low (Lahoz-Monfort et al. 2016).  

We modeled differences in estimated occupancy and detection between survey methods 

and across all eDNA surveys. We were able to validate six of seven positive bridle shiner eDNA 

detections with seine net captures but were unable to verify results from the seventh site 

(GWORKS; Figure 1.3). Over the course of the study, we were able to visually confirm the 

presence (or likely presence) of bridle shiners at nearly every site where we detected them with 

eDNA, regardless of whether we surveyed with a seine. We did not see any bridle shiners at 

GWORKS, and only one qPCR replicate detected bridle shiner DNA at this site. This detection 

could therefore represent a false positive. However, we also only detected one positive qPCR 

replicate at site SEBAGO-01 (Figure 1.3) and we successfully verified this detection by 

capturing bridle shiners. Therefore, we cannot assume that samples with one qPCR detection are 
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false positives, especially since eDNA concentrations (and therefore detection probability) are 

expected to differ between sites (Lahoz-Monfort et al. 2016). Additionally, Ficetola et al. (2015) 

found that the practice of excluding such ambiguous samples from occupancy analyses can 

introduce significant bias to estimates of occupancy and detection probability.  

The GWORKS sample may have represented a false positive in another sense in that it 

could have contained bridle shiner DNA that had been transported downstream (Roussel et al. 

2015). While eDNA in still-water systems does not disperse far from its source (Eichmiller et al. 

2014; Goldberg et al. 2018), eDNA in streams and rivers can travel multiple kilometers 

downstream. Deiner and Altermatt (2014), for example, detected target DNA approximately 20-

km downstream of where the organisms were present. Such detections can be problematic when 

determining habitat use, as the habitat characteristics at the eDNA sampling location will not 

necessarily reflect the habitat the organism is using. 

There is no universal methodology for eDNA sampling because experimental designs and 

protocols must be adjusted to accommodate different study systems and target species 

(Takahashi et al. 2023). We chose a 0.7-µm filter pore size to survey bridle shiners because we 

needed to balance higher eDNA retention at smaller pore sizes (Eichmiller et al. 2014) with the 

increased time needed to filter larger sample volumes. While smaller filter pore sizes (e.g., 

0.2μm) capture a wider size range of eDNA particles, only low volumes of water can be passed 

through each filter (Turner et al. 2014; Goldberg et al. 2018). We have shown that collecting four 

1-L replicates (or 4-L total) of water per habitat patch will result in a greater than 95% 

probability of capturing bridle shiner DNA (given that bridle shiners are present) when using this 

filter type. However, collecting this volume of water, plus a 1-L control, from each site and 

transporting it to a filtering location can be challenging.  
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We were able to successfully detect bridle shiner eDNA with pore sizes as large as 2.7-

µm, so future studies may consider conducting hierarchical occupancy modeling on samples 

filtered with larger pore sizes. We saw no benefit from using finer pore sizes, and increasing 

filter pore size could allow for filtration of larger volumes of water in the field (Turner et al. 

2014; Hinlo et al. 2017; Takahashi et al. 2023), which would save processing time. While 

filtering water at a site can increase the risk of sample contamination, it also yields higher DNA 

copy numbers than filtering after short or long-term sample storage (Hinlo et al. 2017). 

Collecting multiple eDNA samples is less time-consuming than a seine survey. Using 

eDNA can enable more site visits per sampling day and accurate monitoring across broad spatial 

scales (Turner et al. 2014; Valentini et al. 2016; Deiner et al. 2016). Overall, however, we found 

that the combination of eDNA collection and processing (e.g., filtering samples and 

decontaminating sampling equipment) was more time consuming than seine netting. Increasing 

filter pore size and filtering in the field would eliminate the need for much of the sampling 

equipment we used in this study and would save processing time. Combining sample replicates 

taken from multiple locations across a site would also reduce the need for separate sampling kits 

and would decrease filtration time (Goldberg et al. 2018). 

Streamlining the eDNA survey protocol for bridle shiners will be highly beneficial, as 

these surveys can be conducted with fewer personnel than seine net or electrofishing surveys. 

Seine surveys can also result in mortality of both bridle shiners and other small-bodied or young-

of-year fish. Seine netting does, however, allow managers to monitor bridle shiner health and 

abundance at a site in real time (Nester et al. 2023). Determining relative abundance from eDNA 

is sometimes possible, but factors other than abundance affect the concentration of DNA in a 

sample. While studies have shown positive correlations between eDNA concentration and the 
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relative abundance of a species (e.g., Thomsen et al. 2012; Lacoursière‐Roussel et al. 2016a; 

Rourke et al. 2021), differences in eDNA transport, degradation, and production between study 

systems and organisms preclude us from reliably estimating abundance in all instances (Rourke 

et al. 2021; Wood et al. 2021). For example, eDNA concentration within a water body is 

determined by fish distribution as well as abundance and is not spatially homogeneous (Takahara 

et al. 2012; Eichmiller et al. 2014). Sites at which we detected bridle shiner DNA across multiple 

replicates may have supported higher abundances than sites where we only detected DNA in one 

replicate. Alternatively, differences in DNA concentration and detection could have resulted 

from sampling high-use areas of a habitat patch at one site and low-use areas at another 

(Eichmiller et al. 2014). 

This study provided a baseline for bridle shiner abundance at sites where we seine netted. 

Lake surveys conducted by G.P. Cooper (1939), which form the basis for most of our historic 

bridle shiner knowledge, only described relative abundance within a waterbody (“abundant,” 

“common”, “rare”, or absent). Few reports contained the number of bridle shiners caught, the 

precise location where they were found, and a quantification of survey effort. It is not known 

why bridle shiners are persisting in some of their historically occupied sites but not in others. 

Sites such as Stanley Pond (STANPD-01/02/03), Trafton Pond (TRAFPD-01/02), and Spectacle 

Pond (SPECPD) have abundant bridle shiner habitat, but we could not find evidence of current 

occupancy. Other sites, such as the Jordan River outlet (JORDAN) and Josie’s Brook (JOSIES), 

had been invaded by variable-leaved watermilfoil (Myriophyllum heterophyllum). Comparing 

habitat variables between historic bridle shiner sites and currently occupied locations could 

reveal shifts in habitat suitability over time and could allow us to predict other areas where bridle 

shiner populations are likely to persist.  
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1.4.1. Conclusions 

Collectively, our results provide evidence that bridle shiner populations are declining in 

Maine. Despite rediscovering bridle shiners at 11 of their historically occupied sites and 

documenting bridle shiners in four new waterbodies, we were unable to detect bridle shiners at 

21 of 32 sites known to have once supported the species. These results suggest a loss of 

approximately 65% of known Maine bridle shiner populations. We determined that both eDNA 

and seine net surveys are viable options for monitoring bridle shiners in Maine, and that the 

eDNA methods used in this study can be further streamlined to reduce the time and cost of future 

surveys.  
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CHAPTER 2 

USING LOCAL AND LANDSCAPE-SCALE HABITAT VARIABLES TO PREDICT 

BRIDLE SHINER (NOTROPIS BIFRENATUS) DISTRIBUTION IN  

MAINE AND NEW HAMPSHIRE 

2.1. Introduction  

Freshwater ecosystems are among the most critically threatened habitats on Earth, and 

within these ecosystems, freshwater fish are among the most imperiled animals (Dudgeon et al. 

2006; Jelks et al. 2008). As of 2008, nearly 40% of North America’s freshwater and diadromous 

fish species were considered vulnerable, threatened, or endangered (Jelks et al. 2008). 

Anthropogenic environmental impacts such as habitat loss, degradation, and fragmentation, have 

increased in prevalence over recent decades (Paul and Meyer 2001; Walsh et al. 2005). Small-

bodied fish species such as minnows and darters are especially vulnerable to the impacts of 

habitat alteration and destruction (Whittier et al. 1997; Olden et al. 2007). Changes to natural 

hydrologic regimes, increased turbidity and pollution, and the introduction of invasive species 

frequently pose threats to small-bodied freshwater fishes (Angermeier 1995; Bunn and 

Arthington 2002; Jelks et al. 2008; Gray et al. 2016).  

Recent declines and extirpations of native minnows in the northeastern United States and 

Canada have been linked to both habitat loss or degradation and the stocking of non-native 

predatory sport fishes (Whittier et al. 1997). For example, Whittier et al. (1997) found that the 

introduction of largemouth bass (Micropterus salmoides), smallmouth bass (M. dolomieu), and 

northern pike (Esox lucius) was the most consistent factor related to declines in native minnow 

species richness in northeastern lakes. Increased human activity within a watershed has also been 

related to decreased minnow species richness. The development of lake shorelines and stream 
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floodplains alters both the physical habitat and nutrient cycling (Scheuerell and Schindler 2004). 

This is due to practices such as clearing woody debris and vegetation from water bodies 

(Whittier et al. 1997). Anthropogenic effects are further compounded as catchment basins 

integrate threats and disturbance from their surrounding landscapes (Dudgeon et al. 2006; Olden 

et al. 2007).  

Small-bodied fish are especially threatened by extirpation when they occupy limited 

geographic ranges, have few occurrences, or have a highly fragmented distribution (Fagan 2002). 

These specialist species may already have lower populations and be especially vulnerable to 

disturbance and environmental stochasticity (Angermeier 1995). Shifts in water chemistry, 

temperature, and vegetation resulting from anthropogenic impacts can all contribute to local 

extirpations of specialist species (Angermeier 1995).  

 Protecting a species at the peripheral edge of its range can pose additional challenges, as 

populations may be more isolated than in the core of their range (Haak et al. 2010; Lamothe and 

Drake 2020). Populations at the northern edge of their range may also utilize different habitats 

than populations further south (Haak et al. 2010; Lamothe and Drake 2020). Northernmost 

peripheral populations may have a heightened importance to the persistence of a species as 

climate change shifts biomes poleward (Gibson et al. 2009). Spatially isolated peripheral 

populations of species with poor dispersal ability and short generation time have a higher 

likelihood of genetic divergence and differentiation (Lesica and Allendorf 1995).  

High-latitude states, such as Maine and New Hampshire, and the southern Canadian 

provinces support many temperate fish species at the northernmost limit of their range and boreal 

species at the southern limit of their range. Several of these species are locally at risk despite 

being common in other parts of their range (Gibson et al. 2009). Monitoring these peripheral 
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populations is critical to their species’ conservation as rising temperatures shift plant 

communities northward. Finding peripheral populations of rare or declining species, especially 

small-bodied and/or cryptic species, is challenging, and detection can be extremely low when 

sampling over large areas (Guisan et al. 2006). 

One strategy to develop targeted surveys for rare species is species distribution modeling 

(SDM). SDM statistically associates species occurrence data with environmental variables in 

order to evaluate habitat suitability (Riaz et al. 2020). SDMs can be used to discover new 

populations of rare species by identifying areas with suitable habitat (Riaz et al. 2020). Spatially 

explicit habitat models also result in greater survey efficiency when compared with simple or 

stratified random sampling over large areas (Guisan et al. 2006). Many modeling strategies have 

been implemented to predict species occurrences, including generalized linear models (“GLMs”; 

e.g., Carlos-Júnior et al. 2020), maximum entropy modeling (“Maxent”; Phillips et al. 2006, 

Elith et al. 2011), and random forests (“RF”; Breiman 2001, Hengl et al. 2018, Valavi et al. 

2021). Maxent is one of the most widely-used SDM techniques because it can be used to model 

presence-only data (Phillips et al. 2006), is robust to the small sample sizes typical of rare 

species surveys (Kaky et al. 2020), and can model non-linear relationships between species 

presence and predictor variables (Elith et al. 2011). The predictions of individual models can be 

highly variable, and the choice of modeling method is known to impact model outcomes and 

accuracy (Araújo and New 2007). Ensemble modeling, or combining model predictions, can 

amplify the patterns found across models and produces more robust predictions (Marmion et al. 

2009).  

The bridle shiner is a small-bodied, specialist minnow native to the eastern United States 

and Canada. Bridle shiners depend on clear, shallow water with abundant aquatic vegetation, and 
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are highly sensitive to the changes in water quality, turbidity, and plant cover that result from 

anthropogenic disturbance (Cooper 1985; Gray et al. 2016). Their distribution among reaches 

within a watershed is naturally patchy due to their specific habitat requirements. Because natural 

movement within bridle shiner metapopulations is already limited, additional anthropogenic 

barriers to movement can further isolate subpopulations and increase the risk of local extirpation 

(Johnston 2000). Historically, Maine’s Saco River watershed marked the eastern limit of the 

bridle shiner’s range. 

The bridle shiner is thought to be declining dramatically throughout most of its native 

range, and probably has been extirpated entirely from the state of Maryland (Kilian et al. 2011). 

Bridle shiners were once abundant in Delaware, Maryland, New Jersey, and Pennsylvania, but 

populations have declined as urbanization and industrial and agricultural development have 

increased (Cooper 1985). There are few or no known bridle shiner populations left in Virginia, 

North Carolina, and South Carolina (Geneva et al. 2018). This species now receives legal 

protection or concern status in thirteen states and two provinces (COSEWIC 2013; Hammerson 

2021). Bridle shiners are listed as state Threatened in New Hampshire (New Hampshire Fish and 

Game Dept. [NHFGD] 2015) and as a Species of Special Concern in Maine (Maine Dept. of 

Inland Fisheries and Wildlife [MDIFW] 2021). They are considered a Species of Greatest 

Conservation Need in both states (MDIFW 2015, NHFGD 2015). 

The two objectives of this study were to 1) assess small-scale bridle shiner habitat 

selection within a waterbody, and to 2) inform bridle shiner conservation at the regional scale by 

modeling their distribution across southern Maine and New Hampshire. Recent bridle shiner 

surveys in Maine (2021-2022; Chapter 1) present a unique opportunity to assess habitat selection 

at both the local and regional scale. Combining the Maine surveys with a presence-absence 
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dataset from New Hampshire allowed us to look at patterns of bridle shiner occupancy over time 

in the northeastern-most part of their range. We used an ensemble SDM approach to characterize 

both the current (2000-2022) and historic (1898-1999) ranges of the bridle shiner (Notropis 

bifrenatus) within these two states. 

2.2. Methods  

2.2.1. Study Area 

The historic bridle shiner range in Maine and New Hampshire falls within two Level III 

Ecoregions: the Northeastern Coastal Zone and the Northern Appalachian and Atlantic Maritime 

Highlands (Wiken et al. 2011). Much of this area was formerly glaciated, and most of the lakes 

were formed by glaciers (Wiken et al. 2011; Deeds et al. 2020). The Northern Appalachian 

region is dominated by mixed hardwood and spruce-fir forests and is transitional between the 

northern boreal forests and the deciduous forests of New England (Wiken et al. 2011). 

Waterbodies along the coast are impacted by marine-derived sediments known as the 

Presumpscot Formation, and coastal Maine contains much of the state’s agriculture and human 

population because of this (Deeds et al. 2020). This is significant because agricultural and 

developed land use lead to increased erosion, excess nutrient loading, and an influx of road salt, 

which can all be significant stressors on lake ecosystem health (Soranno et al. 2015; Sutherland 

et al. 2018; Deeds et al. 2020). The Coastal region defined by Deeds et al. (2020) has the 

warmest average temperatures in Maine, and therefore has the shortest period of winter ice-over 

and the longest period of summer bioproductivity. 

2.2.2. Maine Bridle Shiner Surveys 

We surveyed Maine bridle shiner populations using seine netting and environmental 

DNA (eDNA) over the summer and fall of 2021 and 2022. Environmental DNA and seine 
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netting protocols are described in Chapter 1. Prior to collecting water, we surveyed aerial 

imagery from locations where bridle shiners had been reported between 1937 and 2010. We 

chose water collection subsites based on qualitative habitat suitability (Jensen and Vokoun 2013; 

Pregler et al. 2015, 2019) and sampled 41 subsites within 30 sites between 1 June and 16 July 

2021. We then seined 29 sites that produced a historical (1930s-1940s) or recent (1990s-2010s) 

record of bridle shiner occurrence. In 2022, we created a preliminary habitat suitability model 

based on bridle shiner habitat preferences in published literature (Chapter 1) and surveyed 58 

locations in 46 waterbodies.  

We detected bridle shiners at 17 locations out of the 97 locations surveyed in Maine. We 

used the 80 locations where we failed to detect bridle shiners as absences in SDMs of the current 

bridle shiner distribution only, as we could not be certain that bridle shiners had never occupied 

those areas. We removed records (n = 4) from locations where MDIFW biologists suspected 

bridle shiners had been introduced (Marshall Brook in Acadia National Park; Doering et al. 

1995) or had been misidentified (i.e., areas well outside of the known bridle shiner range but 

within the range of the visually similar blacknose shiner, N. heterolepis).  

2.2.3. New Hampshire Bridle Shiner Surveys 

NHFGD conducted fisheries surveys between 2005 and 2022 as part of eight different 

projects (NHFGD 2015). Capture methods included seine netting, boat electrofishing, backpack 

electrofishing, dip netting, and minnow trapping (M. Carpenter, personal observation). Surveys 

conducted for other fish, such as brook trout, provided presence-only bridle shiner data, while 

surveys conducted specifically for bridle shiners also noted sites where bridle shiners were 

absent or extirpated. Surveys conducted specifically for bridle shiner mostly used dip netting, 

seine netting, and minnow traps.  
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We aggregated New Hampshire records by year in ArcGIS Pro (version 3.1.2, 

Environmental Systems Research Institute, Redlands, CA) so that locations with repeated 

surveys were only represented by one point (n = 147 locations). NHFGD recently introduced 

bridle shiners into a small pond, so we considered this site the only known historic absence and 

did not include it in the current population models. There were eight lakes or ponds where bridle 

shiners were reported as extirpated in New Hampshire’s Wildlife Action Plan (NHFGD 2015): 

we included these as historic presence locations in the SDMs and used the lake centroid 

coordinates. 

2.2.4. Local Habitat Variables 

2.2.4.1. Habitat Data Collection. We measured habitat characteristics at 98 sites in Maine in 

2021 and 2022. At sites where we seine netted (2021), we recorded water depth in three locations 

for each seine sample and measured total dissolved solids (ppm), water temperature (°C), and 

conductivity at each sampled habitat patch. We also determined the sediment type(s) and 

dominant plant species for each seine sample and took photos of the site and the deployed seine 

net for reference. We collected samples or recorded the name of all submerged, emergent, and 

floating plant species at each location. We made note of plants that we did not collect (such as 

large water lilies [Nymphaea spp. and Nuphar spp.] and pickerelweed [Pontederia cordata]), and 

stored samples in a freezer until they could be thawed and identified. 

In 2022, we recorded habitat information at each location where we collected eDNA 

samples. We visually estimated the proportion of submerged, floating, and emergent vegetation 

and the proportion of open water at each site. We then estimated the proportion of total 

submerged vegetation made up of simple-leaved, complex-leaved, and mat-forming/grass-like 

plants, and the proportion of total emergent vegetation composed of persistent vegetation (i.e., 
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grasses, rushes, and sedges), broad-leaved deciduous vegetation, and cattails (Nohner and Diana 

2015). We then visually estimated the proportion of the site composed of organic substrate, small 

(inorganic) substrates less than 2-mm in diameter, and large inorganic substrates greater than 2-

mm in diameter (Lamothe and Drake 2020). We measured total dissolved solids (ppm), water 

temperature (°C), and conductivity (µS/cm) at each site. We did not directly measure the 

proportion of organic, small inorganic, and large inorganic substrates or the proportion of 

vegetation types during sampling in 2021, so we used photographs of the sites to estimate these 

values. 

2.2.4.2. Local Habitat Modeling. We used binomial generalized linear models (GLMs) to 

identify local-scale environmental variables associated with bridle shiner presence in Maine. We 

collected or calculated 35 environmental variables from each of the 95 sites where we collected 

eDNA and/or seined in 2021 and 2022 (Table 2.1). We counted the number of dams within a 2-

km radius of a sampling location (within the same drainage; Pregler et al. 2019), and used the 

2016 National Land Cover Database (NLCD) Tree Canopy Cover dataset to determine the 

percent canopy cover at each sampling location (Coulston et al. 2012). We also calculated the 

proportion of seven 2019 NLCD land cover classes (agricultural, developed, total forest, mixed 

forest, deciduous forest, coniferous forest, and wetland/open water) within each site’s HUC12 

sub-watershed (Table 2.1; Dewitz and U.S. Geological Survey [USGS] 2021, USGS 2021). In 

addition to using the HUC12 delineations from the USGS Watershed Boundary Dataset (USGS 

2021), we used a digital elevation model (DEM; USGS 1998) and ArcGIS Pro’s Hydrology 

toolset to calculate the upstream drainage area of each sampling location. We hypothesized that 

land use within each site’s upstream drainage area would have more of an influence on water 

quality than land use in its surrounding HUC12, which also included the area downstream of a 
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site. We used the Index of Ecological Integrity (IEI) developed by the North Atlantic Landscape 

Conservation Cooperative (McGarigal et al. 2018) as a proxy for site disturbance. We included 

the measurements of conductivity (µS/cm) and total dissolved solids (ppm) that we had collected 

in the field along with our estimates of site substrate and plant cover described above (Table 2.1).  

Table 2.1 Covariates used to determine local habitat effects on bridle shiner presence in Maine. 

Category Variable Description Source 

Indices of 

disturbance 

dams Number of dams within 

2 km of sampling 

location 

State dam point locations 

(MAODS and MADCR 

2012; ME DEP 2022;  

IEI Index of Ecological 

Integrity 

North Atlantic Landscape 

Conservation Cooperative 

(McGarigal et al. 2018) 

Land use: HUC12 HUC12.area Area in sq. km of each 

HUC12 unit 

Watershed Boundary 

Dataset (USGS)  
Prop.ag.HUC12 Proportion of 

agricultural area within 

each site's HUC12 

Derived from National 

Land Cover Database 

(Dewitz and USGS 2021) 

and Watershed Boundary 

Dataset (USGS)  
Prop.cfor.HUC12 Proportion of coniferous 

forest within each site's 

HUC12 

 

 
Prop.devel.HUC12 Proportion of developed 

area within each site's 

HUC12 

 

 
Prop.dfor.HUC12 Proportion of deciduous 

forest within each site's 

HUC12 

 

 
Prop.for.HUC12 Proportion of total forest 

within each site's 

HUC12 

 

 
Prop.mfor.HUC12 Proportion of mixed 

forest (including 

forested wetland) within 

each site's HUC12 

 

 
Prop.wetl.HUC12 Proportion of freshwater 

wetland and open water 

within each site's 

HUC12 
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Table 2.1 Continued. 

Land use: upstream Drainage.Area Drainage area for each 

location in square km 

calculated using the 

Watershed tool in 

ArcGIS Pro 

Derived from DEM (USGS 

1998) 

 Prop.Ag Proportion of 

agricultural area within 

each drainage 

Derived from NLCD 

(Dewitz and USGS 2021)  

 Prop.Cforest Proportion of coniferous 

forest within each 

drainage 

 

 Prop.Devel Proportion of developed 

area within each 

drainage 

 

 Prop.Dforest Proportion of deciduous 

forest within each 

drainage 

 

 Prop.Forest Proportion of total forest 

within each drainage 

 

 Prop.Mforest Proportion of mixed 

forest (including 

forested wetland) within 

each drainage 

 

 Prop.Wtl Proportion of freshwater 

wetland and open water 

within each drainage 

 

Plant types & cover Canopy Percent canopy cover NLCD 2016 Tree Canopy 

Cover (Coulston et al. 

2012)  
prop.Eveg Proportion of site 

dominated by emergent 

aquatic vegetation 

Estimated at site (2022) or 

from site photos (2021) 

 
prop.site.Eveg.broad Proportion of site 

dominated by broad-

leaved deciduous 

emergent aquatic 

vegetation 

 

 
prop.site.Eveg.cat Proportion of site 

dominated by emergent 

aquatic vegetation 

(cattails) 

 

 
prop.site.Eveg1 Proportion of site 

dominated by persistent 

emergent aquatic 

vegetation 

 

 
prop.Fveg Proportion of site 

dominated by floating 

aquatic vegetation 
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Table 2.1 Continued. 

Plant types & cover prop.Sveg Proportion of site 

dominated by 

submerged aquatic 

vegetation 

Estimated at site (2022) or 

from site photos (2021) 

 
prop.site.Sveg.complex Proportion of site 

dominated by complex 

submerged aquatic 

vegetation 

 

 
prop.site.Sveg.grass Proportion of site 

dominated by mat-

forming or grass-like 

submerged aquatic 

vegetation 

 

 
prop.site.Sveg.simple Proportion of site 

dominated by simple 

submerged aquatic 

vegetation 

 

 
prop.open.water Proportion of site 

dominated by open 

water (no vegetation) 

 

Substrate prop.large.sub Proportion of large 

substrates 

 

 
prop.org.sub Proportion of organic 

substrate 

 

 
prop.sm.sub Proportion of small 

substrates 

 

Water quality conductivity Conductivity (µS/cm) Measured at site  
TDS Total dissolved solids 

(ppm) 

 

Waterbody type WBType LakePond or 

StreamRiver 

Categorized by sampling 

location 

 

We fit GLMs to site data in Program R (version 4.3.0; R Core Team 2023). We first 

scaled each numeric variable about its mean and standard deviation and generated ten random 

seed numbers to use in k-fold cross-validation. Each seed allowed the dismo package (version 

1.3-9; Hijmans et al. 2022) to randomly partition the data into five folds using the kfold function. 

This ensured that 80% of the data would be used for training and that 20% would be used for 

model testing, and that data points would be randomly assigned to the testing and training groups 

in ten different ways. We then ran the 10-fold cross-validated GLM and generated a correlogram 
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of the Pearson correlation between numeric variables (Figure 2.1). We ranked variables by their 

average variable importance across folds using the R package vip (version 0.3.2; Greenwell and 

Boehmke 2020), and eliminated low-ranking variables that were highly correlated with higher-

ranking variables (|𝑟|≥ 0.70; Dormann et al. 2013). We then simplified the model by running a 

genetic algorithm ten times in package glmulti (version 1.0.8; Calcagno 2020). Glmulti uses 

Akaike’s Information Criterion (AIC; Akaike 1974) to determine which linear combination of 

variables results in the best model fit. We fit a final GLM with only the reduced variables from 

the top glmulti model and calculated the model’s area under the receiver operating characteristic 

curve (AUC; Fielding and Bell 1997). Finally, we ran a χ2 analysis of deviance to determine 

which variables had the greatest influence on model fit. 
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Figure 2.1 Correlogram of the Pearson correlations (r) between 34 continuous local habitat 

variables. Darker reds denote strong negative correlations and darker blues denote strong 

positive correlations. 

 

2.2.5. Species Distribution Models 

2.2.5.1. Raster and Presence-Absence Data Preparation. We selected 24 environmental 

variables available in GIS repositories to include in our SDM models (Appendix E). We limited 

the extent of the models by buffering the known historic range of bridle shiners in New 



 
 

57 

 

Hampshire and Maine (i.e., the Saco and Merrimack HUC6 basins) by 50-km to account for the 

likely non-detection of fish at the edges of their range (Sutton et al. 2015). We created one raster 

at this extent for each variable, and projected all rasters to NAD83 / UTM Zone 19N using either 

ArcGIS Pro or the gdalUtilities package in R (soil data only; version 1.2.4 O’Brien 2023). We 

then resampled each raster by using the 2019 NLCD as a snap raster. We also applied the NLCD 

cell size (approximately 30-m x 30-m) to the rasters. We used all 24 covariates to determine 

which land cover classes, landscape position variables, and substrate variables to retain in the 

final SDMs. We scaled all rasters of continuous variables by subtracting the raster’s mean value 

from each cell and then dividing by the standard deviation. 

We used the most recent survey at a site to determine which sites were occupied during 

the historic (1898-1999) and current (2000-2022) time periods (Appendix F). If bridle shiners 

were documented at a site after the year 2000, we presumed that they were also historically 

present at the site. We considered a site to be currently occupied if bridle shiners were found 

there during the most recent site survey between 2000 and 2022. There were 17 lakes and ponds 

with historic bridle shiner presence but no survey coordinates: we used the center point of these 

in the SDMs unless the location of a suitable habitat patch was known (n = 7 lakes/ponds). 

2.2.5.2. Landscape-Scale Variables. We included the landscape position variables catchment 

position (catchment), distance from the coast (km; coast), elevation (m; elev), marine limit 

(marine), and slope (degrees; slope). We determined the catchment position of a site following 

the method of Pregler et al. (2019) and using data from the Northeast Aquatic Habitat 

Classification System (NAHCS; Olivero and Anderson 2008) to assign Strahler stream order 

(Strahler 1957). We derived site slope and elevation from DEMs and calculated the distance 

from the coastline in kilometers. We considered areas under 128-m in elevation along the 
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coastline to be within the marine limit, and therefore influenced by marine-derived sediments 

(Deeds et al. 2020). We hypothesized that bridle shiners would be positively associated with 

water bodies closer to headwaters (catchment positions 1a, 1b, and 2; Olivero and Anderson 

2008, Pregler et al. 2019), in areas of low elevation and with lower slopes, in areas closer to the 

coast, and within the marine limit.  

We divided the model extent into 177 hexagonal cells (circumcircle radius = 10-km, area 

= 259.8-km2), then used the 2020 Biophysical Settings dataset from the Landscape Fire and 

Resource Management Planning Tools (LANDFIRE; Rollins 2009, Blankenship et al. 2021) 

program to calculate the proportion of fourteen forest types within each hexagon (Table 2.2). 

This allowed us to explore variations in forest type along north-south, east-west, and coast-

mountain gradients.  

Finally, we included five substrate variables in our models. We obtained four of these 

layers (clay content, sand content, silt content, and soil pH) from the International Soil Reference 

and Information Centre’s (ISRIC) Soil Data Hub (Poggio et al. 2021). We included the clay, 

sand, and silt content of the uppermost 5-cm of soil (in g/kg; Poggio et al. 2021) to locate water 

bodies with sand or silt substrates (Adams and Hankinson 1928). We also included lithology 

classes (fine glacial lake sediment, coarse glacial outwash, and fine coastal sediment and 

alluvium) as these are the parent materials of soil substrates and remain stable over long time 

scales (Theobald et al. 2015). Finally, we included soil pH as a proxy for waterbody pH as many 

cyprinid species are intolerant of highly acidic water (Laerm et al. 1980; Rahel and Magnuson 

1983), and acidity may limit the distribution of some species (Laerm et al. 1980). Cell values for 

soils below water bodies were not included in the original ISRIC soil rasters, so we interpolated 
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these values within a 200-m shoreline buffer of each waterbody using the Empirical Bayesian 

Kriging tool in ArcGIS Pro (default model and search neighborhood parameters). 

Table 2.2 Rasters of landscape-scale variables used to model bridle shiner distribution in Maine 

and New Hampshire. 

 

Category Variable Description Source 

Landscape 

position variables 

catchment* Catchment position: 6 

stream/river size classes 

Northeast Aquatic Habitat 

Classification System (Olivero 

and Anderson 2008)  
coast Distance from coast (km) Derived from National Wetlands 

Inventory (USFWS 2022) 
 

elev Elevation (m) Digital Elevation Model (USGS 

1998)  
marine† Marine limit Derived from Digital Elevation 

Model (USGS 1998) 
 

slope Slope (°) 
 

Land cover 

variables 

for.1920 Proportion of Laurentian-

Acadian Northern Hardwoods 

Forest in cell* 

LANDFIRE Biophysical 

Settings (Rollins 2009; 

Blankenship et al. 2021) 
 

for.1921 Proportion of Northeastern 

Interior Dry-Mesic Oak Forest in 

cell 

 

 
for.1922 Proportion of Northern Atlantic 

Coastal Plain Hardwood Forest 

in cell 

 

 
for.1924 Proportion of Laurentian-

Acadian Northern Pine(-Oak) 

Forest in cell 

 

 
for.1925 Proportion of Laurentian-

Acadian Pine-Hemlock-

Hardwood Forest in cell 

 

 
for.1926 Proportion of Central 

Appalachian Dry Oak-Pine 

Forest in cell 

 

 
for.1927 Proportion of Appalachian 

(Hemlock-)Northern Hardwood 

Forest in cell 

 

 
for.1928 Proportion of Acadian Low-

Elevation Spruce-Fir-Hardwood 

Forest in cell 

 

 
for.1929 Proportion of Acadian-

Appalachian Montane Spruce-

Fir Forest in cell 

 

 



 
 

60 

 

Table 2.2 Continued. 

Land cover 

variables 

for.1930 Proportion of Central 

Appalachian Pine-Oak Rocky 

Woodland in cell 

LANDFIRE Biophysical 

Settings (Rollins 2009; 

Blankenship et al. 2021) 
 

for.1931 Proportion of Northern Atlantic 

Coastal Plain Maritime Forest in 

cell 

 

 
for.1941 Proportion of North-Central 

Interior Wet Flatwoods in cell 

 

 
for.1980 Proportion of Boreal Jack Pine-

Black Spruce Forest in cell 

 

 
for.1981 Proportion of Northeastern 

Interior Pine Barrens in cell 

 

Substrate variables clay Clay content of soil (g/kg) at 0-

5cm 

SoilGrids (Poggio et al. 2021) 

 
pH Soil pH (pH * 10) at 0-5cm 

 

 
sand Sand content of soil (g/kg) at 0-

5cm 

 

 
silt Silt content of soil (g/kg) at 0-

5cm 

 

  lith‡ Lithology: 4 classes + water (Theobald et al. 2015) 

Note: * NAHCS stream orders: 1a:Headwater: 0<3.861 sq.mi, 1b:Creek: >=3.861<38.61 sq.mi., 2:Small River: >= 38.61<200 

sq.mi., 3a:Medium Tributary River: >=200<1000 sq.mi., 3b:Medium Mainstem River: >=1000<3861 sq.mi., 4:Large River: 

>=3861<9653 sq.mi., 5:Great River: >=9653 sq.mi. 

† Categorical: Falling within (1) or outside of (0) the marine limit as defined by Deeds et al. (2020) 

‡ 5 classes of lithology: water (999), glacial till coarse (11), glacial lake sediment fine (13), glacial outwash coarse (14), 

alluvium and coastal sediment fine (19) 

 

2.2.5.3. Exploratory Machine-Learning Models (Maxent and Random Forest). We used 

maximum entropy (Maxent; Phillips et al. 2006) and random forest models (Breiman 2001) to 

explore the relationships between the 24 raster habitat covariates and current and historic bridle 

shiner distributions in Maine and New Hampshire. These models are both machine learning 

methods that can fit complex nonlinear relationships (Breiman 2001). We stacked the 24 rasters 

using package terra (version 1.7-28; Hijmans 2023) and loaded the presence-absence data into 

package SDMtune (version 1.2.1; Vignali et al. 2020). We followed the SDMtune stepwise 

variable selection and model-tuning protocol described by Vignali et al. (2020) to find the most 
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parsimonious group of predictor variables for each type of model and for historic and current 

survey data.  

SDMs compare habitat variables at presence locations with the available habitat at 

randomly generated background points over the model’s spatial extent. We added known 

absences from each time period (n = 1 historic, n = 116 current absences) to randomly-generated 

background points (n = 10,000 total points; Barbet-Massin et al. 2012) using SDMtune. We 

weighted presence and pseudo-absence points equally (Barbet-Massin et al. 2012). We then split 

presence and absence-background points into training (60%), validation (20%), and testing 

(20%) datasets for model cross-validation (sensu Vignali et al. 2020). We calculated each 

model’s area under the receiver operating characteristic curve (AUC; Fielding and Bell 1997) 

after each tuning step using the validation dataset, and then used the held-apart testing dataset to 

calculate the final model AUC (Vignali et al. 2020). We used the default permutation value of 10 

for all analyses.  

We first ran default models using the training dataset with no cross-validation. Then, we 

performed k-fold cross-validation (k = 10 folds; Sutton et al. 2015) using the default model 

settings. We then plotted the Pearson correlation between all continuous covariates to gauge 

whether any of the predictor variables were highly correlated (|𝑟|≥ 0.70; Figure 2.2; Dormann et 

al. 2013). We used a data-driven approach to select the predictor variables with the highest 

explanatory value that were not highly correlated with other variables (Vignali et al. 2020). The 

varSel function in SDMtune ranks predictor variables by permutation importance, then performs 

a leave-one-out Jackknife test to determine which variable within each group of correlated 

variables will reduce model performance the least when removed. The function iterates through 
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all the predictor variables until all the remaining correlations fall under the threshold value of 

0.70 (Dormann et al. 2013; Vignali et al. 2020).  

 

Figure 2.2 Correlogram of the Pearson correlations (r) between 21 continuous landscape habitat 

variables. Pearson coefficients greater than 0.70 are labeled. 

 

Machine learning models have fixed settings, or hyperparameters, that must be defined 

prior to model training. Optimal hyperparameter values are specific to each dataset, and tuning a 

machine learning model requires testing multiple configurations of these parameters (Vignali et 

al. 2020). We tuned Maxent and RF hyperparameters using the optimizeModel function in 

SDMtune with default arguments (Vignali et al. 2020). Tunable hyperparameters differ between 
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model types: typical random forest hyperparameters include the number of trees (ntree), the 

number of candidate features to select at intermediate nodes of a tree (mtry), and the minimum 

number of observations informing each terminal node (nodesize; Han et al. 2020). Tunable 

Maxent hyperparameters include feature class combinations (fc; linear, quadratic, product, hinge, 

and threshold), the regularization multiplier (reg), and the number of model iterations (iter). The 

optimizeModel function applies a genetic algorithm to optimize the combination of possible 

hyperparameter values rather than calculating all possible combinations (Vignali et al. 2020). We 

provided the function with the following list of possible hyperparameter values: mtry = 1-10, 

ntree = 500, 700, 900, 1100, 1300, 1500, 1700, or 1900, and nodesize = 1-15 for RF models and 

fc = “l”, “lq”, “lh”, “lqp”, “lqph”, or “lqpht”, iter = 300, 500, 700, 900, or 1100, and reg = 0.2, 

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0 for Maxent models.  

We used the tuned hyperparameters to further optimize model parsimony. The SDMtune 

function reduceVar removes predictor variables with low permutation importance (Vignali et al. 

2020). This function works similarly to the varSel function in that it performs a leave-one-out 

Jackknife test on each variable and removes variables that fall below the threshold permutation 

importance value (provided that the removal of the variable does not decrease model AUC; 

Vignali et al. 2020). We chose a conservative threshold permutation importance value of 1% , 

then merged the training (60% of data) and validation (20% of data) data subsets to make a 

larger training dataset with which to test the final exploratory model. We evaluated this model 

using the held-apart testing dataset (20% of data), which had not been used in earlier steps to 

tune the model (Vignali et al. 2020).  

2.2.5.4. Exploratory Generalized Linear Models. We fit binomial GLMs for both current and 

historic bridle shiner data. As with the RF and Maxent models, we used current presence 
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locations (n = 122), current absence locations (n = 116), and a subset of the background pseudo-

absence locations generated in SDMtune (n = 9884) to model the current bridle shiner 

distribution. For the historic dataset, we used presence locations (n = 156), absence locations (n 

= 1), and a larger subset of the pseudo-absence locations (n = 9999). As with the local habitat 

GLMs, we began by generating ten random seed numbers to use in k-fold cross-validation. We 

randomly assigned 80% of the points to the training dataset and 20% to the testing dataset using 

the ten seeds. We did not include a validation subset of the data as with SDMtune as there were 

no hyperparameters to tune.  

For each dataset, we then conducted a 10-fold cross-validated GLM with all 24 scaled 

predictor variables. We then calculated the variable importance to each model using vip. We 

used the average effect size (Z-value) to remove less-influential variables that were highly 

correlated (|𝑟|≥ 0.70; Dormann et al. 2013) with highly-influential variables, as we had done 

with the random forest and Maxent models in SDMtune. We then dropped the correlated layers 

from the raster stack and ran a new GLM with the reduced raster dataset. To approximate the 

reduceVar step used with the Maxent and RF models, we used glmulti to remove the variables 

that contributed the least to model fit. We then ran final GLM models using only the variables 

selected by glmulti.  

We evaluated the exploratory models using the true skill statistic (TSS; Allouche et al. 

2006) and the testing AUC. AUC is a threshold-independent measure of accuracy while TSS is 

threshold-dependent (Komac et al. 2016): AUC is therefore more suited to evaluating the 

performance of continuous probability scores and TSS is more suited to evaluating binary 

predictions of presence/absence based on the threshold value (Allouche et al. 2006). TSS values 

range from -1 to 1, with 1 representing a perfectly accurate model and values less than 0 
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indicating a performance no better than random (Allouche et al. 2006). AUC estimates can be 

misleading when generating pseudo-absences from more distant areas, but we avoided this bias 

by restricting predictions to the known historic bridle shiner range (Lobo et al. 2008; Sutton et al. 

2015). 

2.2.5.5. Ensemble Models and Predictions. We chose an ensemble model approach in order to 

emphasize the trends emerging from the data while reducing the noise from individual model 

outputs (Araújo and New 2007). We selected the final set of predictor variables (n = 11) by 

comparing AUC and TSS values from exploratory analyses. We used this final set of variables 

and k-fold cross-validation (k = 10 folds or seeds) to train final RF, Maxent, and GLM models 

for the current and historic time periods. We tuned Maxent and RF hyperparameters a second 

time with the reduced set of predictor variables (sensu Vignali et al. 2020). We then calculated 

the probability that each cell of an output raster would be occupied by bridle shiners using the 

final, cross-validated models.  

 Raw probability scores generated by a model need to be rescaled by species prevalence in 

order to reflect habitat suitability (Jiménez-Valverde and Lobo 2007; Lobo et al. 2008). We 

accomplished this by calculating the mean threshold value (10 threshold values from 10-fold 

cross-validation) which maximized the sum of model sensitivity and specificity for each model 

(Jiménez-Valverde and Lobo 2007; Komac et al. 2016). All values below the threshold 

probability value are considered absences and all values above the threshold are considered 

presences. This threshold varies with each model and defines the value below which the 

combination of predictor variables is considered unsuitable habitat. Binarizing the rasters 

allowed us to quantify the predicted area of suitable habitat (Fourcade 2021). We then subtracted 

the historic presence/absence raster from the current presence/absence raster to determine the 
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overall change in predicted occupied area. To approximate only areas of shallow water, we 

created a 100-m lakeshore buffer and removed lake centers from the final ensemble model 

output. We then calculated the total area of suitable habitat in Maine and New Hampshire, along 

with the change in predicted occupied area for each state. 

2.3. Results 

2.3.1. Local Habitat Variables 

We fit a 10-fold cross-validated GLM on 35 Maine habitat variables. We ranked 

variables according to their average variable importance, and eliminated eight lower-ranking 

variables that were highly correlated with higher-ranking variables. We ran all linear 

combinations of the selected 27 variables in glmulti, whose top model eliminated an additional 

16 variables (Appendix G).  

We then fit a final GLM with the 11 covariates retained by the top model. All of these 

variables influenced the probability of bridle shiner presence: the number of dams within 2-km 

of the site (Z = -2.04, p = 0.04), the proportion of deciduous forest within a site’s HUC12 (Z = -

2.04, p = 0.04), the proportion of floating vegetation (Z = -2.04, p = 0.04), the proportion of 

persistent emergent vegetation (Z = -2.03, p = 0.04), the total area of a site’s HUC12 (Z = 2.03, p 

= 0.04), the Index of Ecological Integrity (Z = 2.03, p = 0.04), the proportion of complex-leaved 

submerged vegetation (Z = 2.03, p = 0.04), the proportion of mixed forest within a site’s HUC12 

(Z = 2.02, p = 0.04), the proportion of coniferous forest within a site’s HUC12 (Z = -2.02, p = 

0.04), the proportion of agricultural land in the site’s upstream catchment (Z = -2.02, p = 0.04), 

and the proportion of deciduous forest in a site’s upstream catchment (Z = -2.01, p = 0.04). The 

χ2 analysis of deviance revealed that the proportion of persistent emergent vegetation (p < 0.001), 

the proportion of complex-leaved submerged vegetation (p <  0.01), the proportion of coniferous 
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forest in a HUC12 (p = 0.01), the total area of a site’s HUC12 (p = 0.01), and the IEI (p = 0.03) 

all significantly improved model fit.  

Therefore, bridle shiners in Maine were more likely to occur at sites with a higher 

proportion of complex-leaved submerged vegetation than floating or persistent emergent 

vegetation. We also found evidence that bridle shiners were more likely to occur in HUC12 sub-

watersheds with more mixed forest than strictly deciduous or coniferous forest. We were more 

likely to find them in areas with a higher Index of Ecological Integrity and in areas with fewer 

dams. Sites with a higher proportion of agriculture and deciduous forest in their upstream 

drainage were less likely to support bridle shiners. Bridle shiners were also more likely to inhabit 

sites with larger HUC12 sub-watersheds. 

2.3.2. Species Distribution Models 

 We modeled the historic and current range of the bridle shiner within Maine and New 

Hampshire. Of the six exploratory SDMs, the Maxent model of current bridle shiner presence 

had the highest AUC (0.92) and the GLM of current bridle shiner presence had the highest TSS 

(0.74; Table 2.3). We trained the six final individual models using the 11 variables retained by 

the current Maxent model: catchment position (catchment), soil clay content (clay), elevation 

(elev), proportion of Laurentian-Acadian Northern Pine(-Oak) Forest (for.1924), proportion of 

Appalachian (Hemlock-)Northern Hardwood Forest (for.1927), proportion of Central 

Appalachian Pine-Oak Rocky Woodland (for.1930), proportion of Boreal Jack Pine-Black 

Spruce Forest (for.1980), lithology (lith), soil pH (pH), soil silt content (silt), and slope (slope).  
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Table 2.3 AUC and TSS performance scores for the three exploratory species distribution 

modeling methods (generalized linear model [GLM], Maxent, and random forest [RF]) for the 

historic (1898-1999) and current (2000-2022) bridle shiner distribution. Exploratory models 

were generated using 24 predictor variables. 

 

  trainAUC testAUC TSS 

 Historic Current Historic Current Historic Current 

GLM 0.886 0.897 0.843 0.911 0.573 0.742 

Maxent 0.929 0.962 0.870 0.921 0.642 0.727 

RF 1.000 1.000 0.907 0.881 0.690 0.628 

 

 While bridle shiner occurrences also overlap with Central Appalachian Dry Oak-Pine 

Forest (for.1926), only the historic (exploratory) Maxent model assigned this variable a 

permutation importance over zero (5.6% permutation importance). The exploratory glmulti of 

historic populations returned 29 models within 2 ΔAICc of the top model, with only two of these 

models including for.1926 (Appendix H: Table H.1). The current glmulti returned 22 models 

within 2 ΔAICc of the top model, with only one of the models including for.1926 (Appendix H: 

Table H.2). While not associated with bridle shiner occurrences in Maine and New Hampshire, 

this and other forest types may be predictive of bridle shiner presence in the central and southern 

portions of their range. 

 All model types performed better than random (AUC > 0.70, Baldwin 2009; TSS > 0.60, 

Komac et al. 2016) for both the historic and current time periods (Table 2.4), although the 

historic GLM had a TSS score slightly below 0.60 (TSS = 0.59), indicating only moderate 

support for this model (Landis and Koch 1977). All three model types performed better when 

evaluating current bridle shiner presence-absence data than when evaluating historic presence-

only data (Table 2.4).  
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Table 2.4 AUC and TSS performance scores and threshold suitability values for the three species 

distribution modeling methods (generalized linear model [GLM], Maxent, and random forest 

[RF]) and resulting ensemble models of historic (1898-1999) and current (2000-2022) bridle 

shiner distribution. Final models were generated using 11 predictor variables. 

 

  trainAUC testAUC TSS Threshold 

 Historic Current Historic Current Historic Current Historic Current 

GLM 0.864 0.884 0.847 0.866 0.588 0.622 0.015 0.016 

Maxent 0.929 0.964 0.875 0.921 0.633 0.745 0.127 0.141 

RF 1.000 1.000 0.902 0.908 0.670 0.728 0.011 0.009 

Ensemble 0.931 0.949 0.875 0.899 0.630 0.699 0.051 0.055 

 

 The ensemble model predicted a 51% reduction of suitable bridle shiner habitat between 

the historic (676-km2) and current (331-km2) time periods. Predicted habitat loss was more 

pronounced in Maine, where only 37.7% of historic bridle shiner habitat remains. The ensemble 

models also predicted a substantial loss of habitat (45.7%) in New Hampshire, but lost habitats 

were interspersed with predicted habitat gains (Figure 2.3). The majority of these “new” habitats 

were located in streams and rivers, but we did not see a corresponding trend in Maine. This could 

reflect differences in variable importance between the historic and current models: Appalachian 

(Hemlock-)Northern Hardwood Forest (for.1927), for example, was the primary factor 

influencing the historic random forest model (65.4% permutation importance) but not the current 

random forest model (12.3% permutation importance; Figure 2.4b). The variable importance of 

the Maxent models and GLMs did not vary as substantially over time.
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Figure 2.3 Ensemble model-predicted areas of bridle shiner habitat loss (blue), gain (red), and no change (gray) over southeastern New 

Hampshire.
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Figure 2.4 Permutation importance of the 11 environmental variables included in the final a) 

Maxent, b) random forest, and c) GLM models for both the historic (blue) and current (red) time 

periods.  

 Predicted suitable habitats in Maine and New Hampshire were once distributed 

throughout the Saco and Merrimack basins (HUC6) but are now relegated to the northeastern and 

western portions of the Saco basin and the eastern and central portions of the Merrimack (Figure 

2.5a, b). Much of the once-suitable habitat in the central Saco and southeastern Merrimack is 

predicted to have been lost, and the limits of the bridle shiner range seem to be shifting westward 

and inland (Figure 2.5b, c). Bridle shiners were predicted to have historically occupied areas east 
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of the Saco basin (Lower Androscoggin HUC8), but only a small portion of this area remains in 

the current model (Figure 2.5c).  

 

Figure 2.5 Kernel density of predicted suitable bridle shiner habitat in southeastern New 

Hampshire and southwestern Maine calculated using results of a) historic (1898-1999) and b) 

current (2000-2022) species distribution models and a 100-m radius. Predicted habitat loss over 

time (c) is also represented by a kernel density plot. Inset map shows modeled region in light 

gray, state boundaries are in black, and the Saco and Merrimack basin (HUC6) boundaries are 

shown in dark blue. 
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2.3.2.1. Variable Importance. We used the permutation importance of the final Maxent and RF 

models and the variable importance of the final GLMs to determine the effect size of the 11 

covariates on bridle shiner presence (Figure 2.4). Additionally, we used the Z-values of the ten-

fold, cross-validated GLMs to determine the directionality of the effects (Tables 2.5 and 2.6). 

The most influential variable in five of the six final models was Appalachian (Hemlock-

)Northern Hardwood Forest (for.1927), with other forest types contributing less to the final 

model outputs (Figure 2.4). Bridle shiners were positively associated with this forest type and 

with Boreal Jack Pine-Black Spruce Forest (for.1980) and negatively associated with Laurentian-

Acadian Northern Pine(-Oak) Forest (for.1924) and Central Appalachian Pine-Oak Rocky 

Woodland (for.1930; Tables 2.5 and 2.6).  

Table 2.5 Cross-validated generalized linear model Z-values for each predictor variable and each 

level of categorical variable in the historic (1898-1999) bridle shiner species distribution model. 

Ten-fold cross-validation was achieved using ten random seeds. 

 

 Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 Seed 8 Seed 9 
Seed 

10 
Average 

(Intercept) -14.06 -14.36 -14.33 -14.62 -14.52 -14.70 -14.75 -14.24 -14.27 -14.59 -14.44 

catchment2 3.89 4.05 4.13 4.62 4.20 4.33 4.32 4.27 3.88 3.64 4.13 

catchment3 4.34 4.30 3.93 6.07 4.65 5.24 5.00 4.84 4.85 4.95 4.82 

catchment4 3.99 4.44 4.11 5.67 4.85 5.00 5.14 4.57 4.54 4.73 4.70 

catchment5 -0.03 0.05 -0.02 -0.03 0.04 0.33 0.45 -0.03 0.09 0.08 0.09 

catchment6 -0.01 -0.02 -0.03 -0.01 -0.03 -0.02 -0.02 -0.01 -0.03 -0.02 -0.02 

clay -2.86 -3.19 -3.73 -2.75 -3.09 -2.91 -3.22 -2.62 -2.73 -2.82 -2.99 

elev -5.50 -5.27 -5.46 -4.61 -5.31 -4.95 -4.96 -5.18 -5.36 -5.12 -5.17 

for.1924 -2.10 -1.59 -2.07 -1.94 -1.79 -2.33 -2.16 -2.19 -2.49 -2.41 -2.11 

for.1927 8.12 8.38 8.02 8.23 8.16 8.20 8.73 8.40 8.29 8.21 8.27 

for.1930 -0.77 -1.53 -1.12 -1.06 -0.94 -0.65 -1.62 -0.99 0.32 -1.11 -0.95 

for.1980 1.04 0.89 0.82 0.12 0.40 0.56 0.98 0.51 0.40 1.04 0.68 

lith13 -0.46 0.05 -0.34 -1.33 -0.74 -1.30 -1.13 -0.57 -1.05 -0.27 -0.71 

lith14 -2.75 -2.25 -2.16 -2.44 -2.72 -2.55 -2.14 -2.81 -2.82 -2.76 -2.54 

lith19 -0.01 -0.02 -0.02 -0.01 -0.03 -0.02 -0.02 -0.01 -0.03 -0.02 -0.02 

lith999 -3.87 -4.30 -3.48 -4.50 -4.42 -4.44 -4.20 -4.17 -4.33 -4.28 -4.20 

pH -2.09 -1.61 -2.03 -2.13 -1.60 -1.97 -2.91 -1.65 -1.94 -2.30 -2.02 

silt 2.95 2.46 2.65 2.37 3.00 2.44 3.07 3.01 3.13 3.57 2.86 

slope -0.59 -0.76 -1.25 -0.40 -0.60 -1.03 -0.90 -0.68 -0.29 -0.81 -0.73 
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Table 2.5 Continued. 
Note: NAHCS stream orders: catchment2 = 1b:Creek: >=3.861<38.61 sq.mi., catchment3 = 2:Small River: >= 38.61<200 sq.mi., 

catchment4 = 3a:Medium Tributary River: >=200<1000 sq.mi., catchment5 = 3b:Medium Mainstem River: >=1000<3861 sq.mi., 

catchment6 = 4:Large River: >=3861<9653 sq.mi., 5:Great River: >=9653 sq.mi. 

LANDFIRE Biophysical Settings: for.1924 = Laurentian-Acadian Northern Pine(-Oak) Forest, for.1927 = Appalachian (Hemlock-)Northern 

Hardwood Forest, for.1930 = Central Appalachian Pine-Oak Rocky Woodland, for.1980 = Boreal Jack Pine-Black Spruce Forest 

Lithology: lith999 = water, lith13 = glacial lake sediment fine, lith14 = glacial outwash coarse, lith19 = alluvium and coastal sediment fine 

 

Table 2.6 Cross-validated generalized linear model Z-values for each predictor variable and each 

level of categorical variable in the current (2000-2022) bridle shiner species distribution model. 

Ten-fold cross-validation was achieved using ten random seeds. 

 

  
Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 Seed 8 Seed 9 

Seed 

10 
Average 

(Intercept) -14.20 -14.04 -13.38 -13.72 -13.95 -13.85 -13.91 -13.37 -13.83 -13.20 -13.74 

catchment2 3.94 4.15 3.34 4.11 3.41 4.06 3.96 3.98 3.71 4.02 3.87 

catchment3 5.48 5.14 4.91 5.34 4.70 5.08 4.98 5.67 4.91 5.37 5.16 

catchment4 4.95 5.27 5.35 4.58 5.20 4.53 4.94 5.75 5.75 5.87 5.22 

catchment5 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 

catchment6 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 

clay -3.09 -3.26 -2.77 -2.85 -3.25 -2.62 -4.18 -3.04 -2.49 -3.05 -3.06 

elev -3.90 -4.44 -4.40 -4.49 -4.23 -4.27 -4.28 -4.22 -4.01 -4.25 -4.25 

for.1924 -2.01 -1.58 -1.00 -1.53 -1.51 -1.75 -1.22 -1.58 -1.05 -0.84 -1.41 

for.1927 7.61 7.61 7.52 7.50 7.93 7.64 8.21 7.75 7.54 8.11 7.74 

for.1930 -2.06 -2.71 -2.61 -2.43 -2.62 -2.59 -3.34 -2.23 -2.74 -2.76 -2.61 

for.1980 0.82 1.38 1.70 1.34 1.03 1.71 1.77 1.51 1.72 1.48 1.45 

lith13 -0.97 -0.22 -1.01 -0.79 -0.38 -0.58 -0.55 -0.76 -1.33 -0.88 -0.75 

lith14 -2.36 -2.88 -3.03 -2.76 -2.86 -2.90 -2.22 -2.57 -3.11 -2.88 -2.76 

lith19 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 

lith999 -4.49 -4.27 -5.05 -4.24 -4.40 -4.29 -3.84 -4.52 -5.09 -5.32 -4.55 

pH -2.70 -3.29 -2.56 -3.25 -3.72 -2.64 -3.42 -3.65 -3.38 -3.43 -3.20 

silt 1.88 2.96 2.39 2.25 3.50 2.30 3.29 2.86 2.35 3.02 2.68 

slope -1.05 -0.14 -0.95 -0.39 -1.68 -0.56 -1.34 -0.80 -1.29 -1.10 -0.93 
Note: NAHCS stream orders: catchment2 = 1b:Creek: >=3.861<38.61 sq.mi., catchment3 = 2:Small River: >= 38.61<200 sq.mi., catchment4 

= 3a:Medium Tributary River: >=200<1000 sq.mi., catchment5 = 3b:Medium Mainstem River: >=1000<3861 sq.mi., catchment6 = 4:Large 

River: >=3861<9653 sq.mi., 5:Great River: >=9653 sq.mi. 

LANDFIRE Biophysical Settings: for.1924 = Laurentian-Acadian Northern Pine(-Oak) Forest, for.1927 = Appalachian (Hemlock-)Northern 

Hardwood Forest, for.1930 = Central Appalachian Pine-Oak Rocky Woodland, for.1980 = Boreal Jack Pine-Black Spruce Forest 

Lithology: lith999 = water, lith13 = glacial lake sediment fine, lith14 = glacial outwash coarse, lith19 = alluvium and coastal sediment fine 

 

Catchment position and terrain (elevation, slope) variables moderately influenced bridle 

shiner presence across model type and time period (Figure 2.4). Specifically, catchment position 

Z-values were strongly positive for creeks (catchment2), small rivers (catchment3), medium 

tributary rivers (catchment4), and lakes/ponds fed primarily by any of these categories (Tables 
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2.5 and 2.6). Bridle shiner presence was weakly positively associated with medium mainstem 

rivers (catchment5) during the historic period (Table 2.5), but weakly negatively associated with 

this variable in the current time period model (Table 2.6). Similarly, bridle shiner presence was 

weakly negatively associated with large rivers (catchment6) across both time periods. Bridle 

shiner presence was inversely related to elevation (elev) and weakly inversely related to slope 

(slope; Tables 2.5 and 2.6). This suggests that bridle shiners occupy flatter sites at lower 

elevations, and that the bridle shiner range in Maine and New Hampshire may be limited to the 

north and west by mountain ranges. 

Soil and lithology characteristics were also moderately influential for the RF and GLM 

models (Figure 2.4b, c). Bridle shiners were less likely to inhabit areas of coarse glacial outwash 

and areas identified as water by the lithology (lith) dataset (Tables 2.5 and 2.6). This dataset only 

categorized the largest lakes as water, so this negative relationship is likely showing that bridle 

shiners are less likely to inhabit large lakes than streams, rivers, and ponds. This corroborates the 

catchment position findings because larger lakes tended to have a higher catchment position 

value than smaller streams and rivers. Soils with a higher clay content reduced the probability of 

bridle shiner occupancy, while soils with a higher silt content increased it (Tables 2.5 and 2.6). 

GLMs also showed an inverse relationship between bridle shiner presence and soil pH: bridle 

shiners were more likely to occupy areas that were more acidic than average (average pH = 4.7; 

Tables 2.5 and 2.6). This finding may suggest that bridle shiners are more acid-tolerant than 

other cyprinids, who are considered intolerant of waters below pH 5.2 (Laerm et al. 1980; Rahel 

and Magnuson 1983). Alternatively, these results may suggest that surrounding soil pH is not 

indicative of a waterbody’s pH. 
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2.4. Discussion 

Bridle shiners have historically occurred in eastern New Hampshire and southwestern 

Maine where freshwater systems are more heavily degraded and stressed by human population 

growth, urban and exurban development, and climate change. Several populations in New 

Hampshire have become extirpated due to herbicide use, shoreline habitat loss, lake drawdowns, 

and eutrophication (NHFGD 2015). Recent eDNA and seine surveys in Maine (Chapter 1) 

allowed us to model habitat selection within a waterbody. We found that bridle shiners are 

strongly associated with sites that have a higher proportion of complex-leaved, submerged 

aquatic vegetation and a lower proportion of floating and persistent emergent vegetation. Bridle 

shiners were also more likely to inhabit sites with less anthropogenic disturbance (higher Index 

of Ecological Integrity). Using the proportion of 2019 land cover surrounding each site, we 

determined that bridle shiners were more likely to inhabit areas surrounded by mixed forest and 

with less agricultural land in their upstream catchment.  

We also found that bridle shiners in Maine were more likely to persist at sites with fewer 

nearby dams. As with other freshwater and diadromous species, bridle shiner populations have 

become increasingly fragmented by dams and undersized culvert construction (Cote et al. 2009), 

but the cumulative impact of these barriers to bridle shiner metapopulation dynamics is not 

known. Bridle shiners are known to utilize the headponds of artificial dams (Geneva et al. 2018; 

Pregler et al. 2019), and in several instances have become extirpated from such habitats after 

sudden water level drops or dam breaches (NHFGD 2015). Although artificial dam 

impoundments can provide habitat for cyprinids, these impoundments also support a higher 

relative abundance of large piscivores (Whittum et al. 2023). It is possible that these artificial 
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habitats are population sinks for bridle shiners because of the high risk of predation and sudden 

water level fluctuations. 

Bridle shiner declines are likely due to the same factors that affect other minnow species, 

especially habitat loss and degradation. Bridle shiners are vulnerable to practices such as lake 

drawdowns and herbicide use because they live on the shoreline and require access to abundant 

vegetation (Pregler et al. 2019). Occupancy modeling has shown that bridle shiners can be 

reliably detected via seine net (Jensen and Vokoun 2013; Pregler et al. 2015) and environmental 

DNA (Chapter 1), so range-wide declines likely reflect true absences and extirpations rather than 

a failure to detect the species. These recent surveys in Maine and New Hampshire allowed us to 

model both their historic and current distribution in the region. We found that bridle shiner 

presence in these states is influenced by dominant forest type, catchment position, elevation, 

slope, soil composition, and lithology. Individual models had high model performance as 

determined by AUC and TSS statistics, and the overall ensemble models performed considerably 

better than random. Ensemble models predicted that only half (49%) of historic suitable habitat 

remains in this region, with losses in Maine being the most pronounced (62% decrease).  

 Our habitat suitability results mostly agreed with those of other bridle shiner habitat 

studies. Bridle shiners have been reported to prefer the still or slow-moving water of lakes, 

ponds, and low-gradient stream reaches (Jensen and Vokoun 2013; Pregler et al. 2019). While 

we were unable to include water velocity and stream gradient in our models, our final models 

considered point slope to be influential and inversely related to bridle shiner presence. This is 

additional evidence that bridle shiners inhabit areas with lower slopes such as lakes, ponds, and 

river backwaters. 
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 Bridle shiners in Connecticut select reaches or habitat patches with unconsolidated 

bottoms, silty substrate, and abundant aquatic vegetation (Jensen and Vokoun 2013; Pregler et al. 

2019). At the landscape scale, we found that areas with a higher soil silt content were 

significantly more likely to support bridle shiners, while areas with soil high in clay are less 

likely to support bridle shiners.  

 Pregler et al. (2019) also found that water body catchment position had a statistically 

significant effect on the probability of bridle shiner occurrence: water bodies in the headwaters 

of a catchment were more likely to support bridle shiners. Our SDMs provided further evidence 

that creeks (1b), small rivers (2), and medium tributary rivers (3a) were more likely to support 

bridle shiners than headwater streams (1a) and large rivers (positions 3b and 4). It is possible that 

bridle shiners in Maine and New Hampshire prefer water bodies further downstream in a 

catchment because of the cold temperatures in headwater streams. In Maine, headwater streams 

were colder than other stream orders and tended to have higher stream gradients. 

 Pregler et al. (2019) also found that bridle shiners in Connecticut were more likely to 

persist in areas of high forest cover and low impervious cover. We included the proportions of a 

suite of forest types in our models to add to their predictive power and found that Appalachian 

(Hemlock-)Northern Hardwood Forest cover was strongly associated with bridle shiner presence. 

The influence of this forest type may be specific to this region, as it does not extend much further 

south than New Hampshire. Other forest types, such as Central Appalachian Dry Oak-Pine 

Forest or Northern Atlantic Coastal Plain Hardwood Forest, may be more predictive of bridle 

shiner occurrence in central and southern portions of their range. We used LANDFIRE 

Biophysical Settings forest classifications because they are based on both the current biophysical 

environment and historical disturbance regimes (Rollins 2009; Blankenship et al. 2021), and so 
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were applicable to both of our modeling time scales (1898-1999 and 2000-2022). Measures of 

general forest composition, such as the 2019 NLCD mixed, coniferous, and deciduous forest 

classifications, may be more appropriate for modeling larger portions of the bridle shiner’s 

current range.  

 Bridle shiners have been documented using the low salinity portions of estuaries in the 

southern part of their range (Cooper 1985). Our models suggest that the northeastern bridle 

shiner range is shifting away from the coast, so including a dataset of salinity gradients could be 

informative in future models. Similarly, a dataset of pH gradients across waterbodies could allow 

us to discern if this variable limits bridle shiner distribution. We attempted to model this using 

the pH of nearby soil as a proxy, which suggested that bridle shiners occupied more acidic areas. 

This is the opposite of what we would expect given the literature on other cyprinid species, 

including the closely-related blacknose shiner, which are generally intolerant of low pH (Laerm 

et al. 1980; Rahel and Magnuson 1983; Rahel 1984).  

2.4.1. Study Limitations 

 One of the limitations of using background, or pseudo-absence, points in SDMs is the 

high degree of class overlap between presence and background variables: a portion of the 

randomly-generated points will occur in areas that have suitable habitat, and may even have 

undocumented populations of the species (Valavi et al. 2021). Generating several thousand 

background points is also necessary when characterizing the range of environmental conditions 

in the modeled area, which creates an imbalance between the number of presence and 

background points (Valavi et al. 2021). Using a large number of randomly-selected background 

points is recommended when using regression techniques and Maxent models (Barbet-Massin et 

al. 2012), but can result in overly complex (“overfit”) RF models. While our final historic RF 
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models had the highest test AUCs of all three model types, their training AUCs were both 1.0, 

which is evidence of model overfitting.  

 Maxent modeling has also received scrutiny because it does not produce estimates of the 

probability of presence, but rather estimates an index of habitat suitability for each raster cell 

between 0 and 1 (Elith et al. 2011; Royle et al. 2012). Maxent also uses a complementary log-log 

(“cloglog”) link function by default, which assumes that a species’ presence or absence at nearby 

sites is independent (Phillips et al. 2017). This is not an appropriate assumption for bridle 

shiners, whose limited dispersal ability results in spatial autocorrelation of presence points 

(Phillips et al. 2017). Therefore, we used a logistic link function to predict habitat suitability on 

the probability scale so that Maxent outputs could be averaged with RF and GLM outputs.  

 Maxent typically uses presence-only data and randomly generates pseudo-absences. In 

general, presence-absence data is preferred to presence-only data because observed zeros are 

more informative than points with unknown occupancy (Royle et al. 2012). We used our 

observed absences in addition to randomly generated background points in all of our SDM 

models, including Maxent. All of the models run with presence-absence-background data 

performed better (higher AUC and TSS) than models run with only presence-background data, 

although we cannot say for certain that the inclusion of absence points was what improved model 

performance. Model performance was also likely improved because all of the lake and pond sites 

that were missing coordinates, and for which we used water body centroids, were included as 

absences in the current time period models. Including these points as presences may have 

reduced the performance of the historic models. 

 There are several environmental variables that are currently unavailable in spatial 

databases that could improve future iterations of our SDMs. First, lake and river bathymetry data 
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are not available for water bodies in Maine. Combining depth information with other currently 

unmapped features such as river and lake substrate, water velocity, and submerged vegetation 

density would provide detailed predictions of specific areas within water bodies where bridle 

shiners are likely to persist. This would eliminate the need to crop out portions of the final 

models to approximate shallow areas. 

2.4.2. Conclusions 

 Locating additional bridle shiner populations in Maine and New Hampshire, especially at 

the periphery of their predicted range in Maine, will be critical to preventing further declines. 

These peripheral populations merit high conservation priority because of the unique evolutionary 

pressures they have faced compared with conspecifics at the core of their range (Taylor et al. 

2003; Haak et al. 2010), and because they are at the leading edge of the species’ potential 

northward expansion in response to climate change (Gibson et al. 2009). Using spatially explicit 

habitat models to target survey areas can result in greater survey efficiency over large areas 

(Guisan et al. 2006). Our local and regional models can be used to focus surveys on areas across 

Maine and New Hampshire with high predicted habitat suitability. In addition to guiding the 

search for undiscovered bridle shiner populations, managers may also use these models to search 

for suitable reintroduction or assisted migration sites or to inform habitat restoration efforts. 

  



 
 

82 

 

BIBLIOGRAPHY 

Adams, C. C., and T. L. Hankinson. 1928. The ecology and economics of Oneida Lake fish. 

Roosevelt Wild Life Annals 1(3–4):235–548. 

Agersnap, S., E. E. Sigsgaard, M. R. Jensen, M. D. P. Avila, H. Carl, P. R. Møller, S. L. Krøs, S. 

W. Knudsen, M. S. Wisz, and P. F. Thomsen. 2022. A national scale “BioBlitz” using 

citizen science and eDNA metabarcoding for monitoring coastal marine fish. Frontiers in 

Marine Science 9:1–17. 

Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on 

Automatic Control 19(6):716–723. 

Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution 

models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 

43(6):1223–1232. 

Angermeier, P. L. 1995. Ecological attributes of extinction-prone species: loss of freshwater 

fishes of Virginia. Conservation Biology 9(1):143–158. 

Araújo, M. B., and M. New. 2007. Ensemble forecasting of species distributions. Trends in 

Ecology & Evolution 22(1):42–47. 

Baldwin, R. 2009. Use of maximum entropy modeling in wildlife research. Entropy 11:854–866. 

Barbet-Massin, M., F. Jiguet, C. Albert, and W. Thuiller. 2012. Selecting pseudo-absences for 

species distribution models: how, where and how many? Methods in Ecology and 

Evolution 3:327–338. 

Barnes, M. A., C. R. Turner, C. L. Jerde, M. A. Renshaw, W. L. Chadderton, and D. M. Lodge. 

2014. Environmental conditions influence eDNA persistence in aquatic systems. 

Environmental Science & Technology 48:1819–1827. 

Biggs, J., N. Ewald, A. Valentini, C. Gaboriaud, T. Dejean, R. A. Griffiths, J. Foster, J. W. 

Wilkinson, A. Arnell, P. Brotherton, P. Williams, and F. Dunn. 2015. Using eDNA to 

develop a national citizen science-based monitoring programme for the great crested 

newt (Triturus cristatus). Biological Conservation 183:19–28. 

Blankenship, K., R. Swaty, K. R. Hall, S. Hagen, K. Pohl, A. Shlisky Hunt, J. Patton, L. Frid, 

and J. Smith. 2021. Vegetation dynamics models: a comprehensive set for natural 

resource assessment and planning in the United States. Ecosphere 12(4):e03484. 

Bonar, S. A., M. Divens, and B. Bolding. 1997. Methods for sampling the distribution and 

abundance of bull trout/Dolly Varden. Washington Dept. of Fish and Wildlife, Fish 

Management Program, Inland Fisheries Investigations, Resources Assessment Division, 

Research report RAD97-05, Olympia, WA. 

Breiman, L. 2001. Random forests. Machine Learning 45(1):5–32. 



 
 

83 

 

Bunn, S. E., and A. H. Arthington. 2002. Basic principles and ecological consequences of altered 

flow regimes for aquatic biodiversity. Environmental Management 30(4):492–507. 

Calcagno, V. 2020. glmulti: model selection and multimodel inference made easy. R package 

version 1.0.8. https://CRAN.R-project.org/package=glmulti. 

Carlos-Júnior, L. A., J. C. Creed, R. Marrs, R. J. Lewis, T. P. Moulton, R. Feijó-Lima, and M. 

Spencer. 2020. Generalized linear models outperform commonly used canonical analysis 

in estimating spatial structure of presence/absence data. PeerJ 8:e9777. 

Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. 

Australian Journal of Ecology 18(1):117–143. 

Collins, R. A., J. Bakker, O. S. Wangensteen, A. Z. Soto, L. Corrigan, D. W. Sims, M. J. Genner, 

and S. Mariani. 2019. Non‐specific amplification compromises environmental DNA 

metabarcoding with COI. Methods in Ecology and Evolution 10(11):1985–2001. 

Committee on the Status of Endangered Wildlife in Canada [COSEWIC]. 2013. COSEWIC 

assessment and status report on the bridle shiner (Notropis bifrenatus) in Canada. CW69-

14/671-2013E-PDF, Ontario, Canada. 

Cooper, E. L., editor. 1985. Chapter 3 - Fishes. Pages 169–256 Species of Special Concern in 

Pennsylvania. Carnagie Museum of Natural History, Pittsburgh, PA. 

Cooper, G. P. 1939. A biological survey of thirty-one lakes and ponds of the Upper Saco River 

and Sebago Lake drainage systems in Maine. Maine Department of Inland Fisheries and 

Game, Fish Survey Report 2. 

Cote, D., D. G. Kehler, C. Bourne, and Y. F. Wiersma. 2009. A new measure of longitudinal 

connectivity for stream networks. Landscape Ecology 24(1):101–113. 

Coulston, J. W., G. G. Moisen, B. T. Wilson, M. V. Finco, W. B. Cohen, and C. K. Brewer. 

2012. Modeling percent tree canopy cover: a pilot study. Photogrammetric Engineering 

& Remote Sensing 78(7):715–727. 

Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe. 1979. Classification of wetlands and 

deepwater habitats of the United States. Page Classification of Wetlands and Deepwater 

Habitats of the United States. U.S. Department of the Interior, Fish and Wildlife Service 

Washington, D.C. USA. 

Deeds, J., A. Amirbahman, S. A. Norton, and L. C. Bacon. 2020. A hydrogeomorphic and 

condition classification for Maine, USA, lakes. Lake and Reservoir Management 

36(2):122–138. 

Deiner, K., and F. Altermatt. 2014. Transport distance of invertebrate environmental DNA in a 

natural river. PLoS ONE 9(2):e88786. 



 
 

84 

 

Deiner, K., E. A. Fronhofer, E. Mächler, J.-C. Walser, and F. Altermatt. 2016. Environmental 

DNA reveals that rivers are conveyer belts of biodiversity information. Nature 

Communications 7(1):12544. 

Dejean, T., A. Valentini, A. Duparc, S. Pellier-Cuit, F. Pompanon, P. Taberlet, and C. Miaud. 

2011. Persistence of environmental DNA in freshwater ecosystems. PLoS ONE 

6(8):e23398. 

Dewitz, J., and USGS. 2021, June 4. National Land Cover Database (NLCD) 2019 Products. 

Raster, ScienceBase. 

Doering, P. H., C. T. Roman, L. L. Beatty, A. A. Keller, and C. A. Oviatt. 1995. Water quality 

and habitat evaluation of Bass Harbor Marsh Acadia National Park, Maine. Page 213. 

National Park Service, New England System Support Office (NESO), 

NPS/NESORNR/NRTR/95-31, Boston, MA. 

Dorazio, R. M., and R. A. Erickson. 2018. ednaoccupancy: An R package for multiscale 

occupancy modelling of environmental DNA data. Molecular Ecology Resources 

18(2):368–380. 

Dormann, C. F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carré, J. R. G. Marquéz, B. 

Gruber, B. Lafourcade, P. J. Leitão, T. Münkemüller, C. McClean, P. E. Osborne, B. 

Reineking, B. Schröder, A. K. Skidmore, D. Zurell, and S. Lautenbach. 2013. 

Collinearity: a review of methods to deal with it and a simulation study evaluating their 

performance. Ecography 36(1):27–46. 

Dudgeon, D., A. H. Arthington, M. O. Gessner, Z.-I. Kawabata, D. J. Knowler, C. Lévêque, R. J. 

Naiman, A.-H. Prieur‐Richard, D. Soto, M. L. J. Stiassny, and C. A. Sullivan. 2006. 

Freshwater biodiversity: importance, threats, status and conservation challenges. 

Biological Reviews 81(2):163–182. 

Dumelle, M., T. Kincaid, A. R. Olsen, and M. Weber. 2023. spsurvey: spatial sampling design 

and analysis in R. Journal of Statistical Software 105:1–29. 

Eichmiller, J. J., P. G. Bajer, and P. W. Sorensen. 2014. The relationship between the distribution 

of common carp and their environmental DNA in a small lake. PLoS ONE 9(11):1–8. 

Eichmiller, J. J., L. M. Miller, and P. W. Sorensen. 2016. Optimizing techniques to capture and 

extract environmental DNA for detection and quantification of fish. Molecular Ecology 

Resources 16(1):56–68. 

Elith, J., S. J. Phillips, T. Hastie, M. Dudík, Y. E. Chee, and C. J. Yates. 2011. A statistical 

explanation of MaxEnt for ecologists. Diversity and Distributions 17(1):43–57. 

Everhart, W. H. 2002. Fishes of Maine. Maine Dept. of Inland Fisheries and Wildlife, Augusta, 

Maine. 



 
 

85 

 

Fagan, W. F. 2002. Connectivity, fragmentation, and extinction risk in dendritic 

metapopulations. Ecology 83(12):3243–3249. 

Ficetola, G. F., J. Pansu, A. Bonin, E. Coissac, C. Giguet-Covex, M. De Barba, L. Gielly, C. M. 

Lopes, F. Boyer, F. Pompanon, G. Rayé, and P. Taberlet. 2015. Replication levels, false 

presences and the estimation of the presence/absence from eDNA metabarcoding data. 

Molecular Ecology Resources 15(3):543–556. 

Fielding, A. H., and J. F. Bell. 1997. A review of methods for the assessment of prediction errors 

in conservation presence/absence models. Environmental Conservation 24(1):38–49. 

Fiske, I. J., and R. B. Chandler. 2011. unmarked: an R Package for fitting hierarchical models of 

wildlife occurrence and abundance. Journal of Statistical Software 43(10). 

Fourcade, Y. 2021. Fine-tuning niche models matters in invasion ecology. A lesson from the 

land planarian Obama nungara. Ecological Modelling 457:109686. 

Gallagher, M. 2010a, January 8. Stream fish surveys (historical). 

http://www.gulfofmaine.org/kb/2.0/record.html?recordid=9233&save_record=1&search=

quick&f_records_per_page=25&f_searchphrase=&f_documents_or_data=Data&f_record

s_per_page=25&submit=Search&sort=Author&f_start_this_page=0. 

Gallagher, M. 2010b, January 8. Stream fish surveys (recent). 

http://www.gulfofmaine.org/kb/2.0/record.html?recordid=9234. 

Geneva, A. J., A. M. Kreit, S. Neiffer, S. Tsang, and R. J. Horwitz. 2018. Regional population 

structure of the endangered Bridle Shiner (Notropis bifrenatus). Conservation Genetics 

19(5):1039–1053. 

Gibson, S. Y., R. C. Van Der Marel, and B. M. Starzomski. 2009. Climate change and 

conservation of leading-edge peripheral populations. Conservation Biology 23(6):1369–

1373. 

Goforth, R. R., and J. W. Foltz. 1998. Movements of the yellowfin shiner, Notropis lutipinnis. 

Ecology of Freshwater Fish 7(2):49–55. 

Goldberg, C. S., K. M. Strickler, and A. K. Fremier. 2018. Degradation and dispersion limit 

environmental DNA detection of rare amphibians in wetlands: Increasing efficacy of 

sampling designs. Science of The Total Environment 633:695–703. 

Gray, S., L. McDonnell, N. Mandrak, and L. Chapman. 2016. Species-specific effects of 

turbidity on the physiology of imperiled blackline shiners Notropis spp. in the Laurentian 

Great Lakes. Endangered Species Research 31:271–277. 

Green, R. H., and R. C. Young. 1993. Sampling to detect rare species. Ecological Applications 

3(2):351–356. 



 
 

86 

 

Greenwell, B., M., and B. Boehmke C. 2020. Variable importance plots — an introduction to the 

vip package. The R Journal 12(1):343. 

Grieger, R. 2019, October 31. RPubs - NMDS ordination plotting. 

https://www.rpubs.com/RGrieger/545184. 

Guisan, A., O. Broennimann, R. Engler, M. Vust, N. G. Yoccoz, A. Lehmann, and N. E. 

Zimmermann. 2006. Using niche-based models to improve the sampling of rare species. 

Conservation Biology 20(2):501–511. 

Haak, A. L., J. E. Williams, H. M. Neville, D. C. Dauwalter, and W. T. Colyer. 2010. 

Conserving peripheral trout populations: the values and risks of life on the edge. Fisheries 

35(11):530–549. 

Hammerson, G. 2021, March 5. Notropis bifrenatus. NatureServe Explorer. 

https://explorer.natureserve.org/Taxon/ELEMENT_GLOBAL.2.100562/Notropis_bifrena

tus. 

Han, S., H. Kim, and Y.-S. Lee. 2020. Double random forest. Machine Learning 109(8):1569–

1586. 

Harrington, R. W. 1948a. The food of the bridled shiner, Notropis bifrenatus (Cope). The 

American Midland Naturalist 40(2):353–361. 

Harrington, R. W. 1948b. The life cycle and fertility of the Bridled Shiner, Notropis bifrenatus 

(Cope). The American Midland Naturalist 39(1):83–92. 

Hengl, T., M. Nussbaum, M. N. Wright, G. B. M. Heuvelink, and B. Gräler. 2018. Random 

forest as a generic framework for predictive modeling of spatial and spatio-temporal 

variables. PeerJ 6:e5518. 

Hijmans, R. J. 2023. terra: spatial data analysis. R package version 1.7-29. https://CRAN.R-

project.org/package=terra. 

Hijmans, R. J., S. J. Phillips, J. Leathwick, and J. Elith. 2022. dismo: species distribution 

modeling. R package version 1.3-9. https://CRAN.R-project.org/package=dismo. 

Hinlo, R., D. Gleeson, M. Lintermans, and E. Furlan. 2017. Methods to maximise recovery of 

environmental DNA from water samples. PLOS ONE 12(6):e0179251. 

Hinlo, R., M. Lintermans, D. Gleeson, B. Broadhurst, and E. Furlan. 2018. Performance of 

eDNA assays to detect and quantify an elusive benthic fish in upland streams. Biological 

Invasions 20(11):3079–3093. 

Jelks, H. L., S. J. Walsh, N. M. Burkhead, S. Contreras‐Balderas, E. Diaz‐Pardo, D. A. 

Hendrickson, J. Lyons, N. E. Mandrak, F. McCormick, J. S. Nelson, S. P. Platania, B. A. 

Porter, C. B. Renaud, J. J. Schmitter‐Soto, E. B. Taylor, and M. L. Warren. 2008. 



 
 

87 

 

Conservation status of imperiled North American freshwater and diadromous fishes. 

Fisheries 33(8):372–407. 

Jensen, T., and J. C. Vokoun. 2013. Using multistate occupancy estimation to model habitat use 

in difficult-to-sample watersheds: bridle shiner in a low-gradient swampy stream. 

Canadian Journal of Fisheries and Aquatic Sciences 70(10):1429–1437. 

Jerde, C. L., A. R. Mahon, W. L. Chadderton, and D. M. Lodge. 2011. “Sight-unseen” detection 

of rare aquatic species using environmental DNA: eDNA surveillance of rare aquatic 

species. Conservation Letters 4(2):150–157. 

Jiménez-Valverde, A., and J. M. Lobo. 2007. Threshold criteria for conversion of probability of 

species presence to either-or presence-absence. Acta Oecologica 31(3):361–369. 

Johnston, C. E. 2000. Movement patterns of imperiled blue shiners (Pisces: Cyprinidae) among 

habitat patches. Ecology of Freshwater Fish 9(3):170–176. 

Kaky, E., V. Nolan, A. Alatawi, and F. Gilbert. 2020. A comparison between Ensemble and 

MaxEnt species distribution modelling approaches for conservation: A case study with 

Egyptian medicinal plants. Ecological Informatics 60:101150. 

Kendall, W. C. 1914. An annotated catalogue of the fishes of Maine. Pages 1–216. Portland 

Society of Natural History, Portland, Me. 

Kéry, M., and J. A. Royle. 2016. Applied hierarchical modeling in ecology: analysis of 

distribution, abundance and species richness in R and BUGS. Academic Press/Elsevier, 

Amsterdam; Boston. 

Kilian, J. V., R. L. Raesly, S. A. Stranko, A. J. Becker, and E. Durell. 2011. Extirpation of the 

Bridle Shiner (Notropis bifrenatus) from Maryland. Northeastern Naturalist 18(2):236–

242. 

Komac, B., P. Esteban, L. Trapero, and R. Caritg. 2016. Modelization of the current and future 

habitat suitability of Rhododendron ferrugineum using potential snow accumulation. PloS 

one 11:e0147324. 

Lacoursière‐Roussel, A., G. Côté, V. Leclerc, and L. Bernatchez. 2016a. Quantifying relative 

fish abundance with eDNA: a promising tool for fisheries management. Journal of 

Applied Ecology 53(4):1148–1157. 

Lacoursière‐Roussel, A., M. Rosabal, and L. Bernatchez. 2016b. Estimating fish abundance and 

biomass from eDNA concentrations: variability among capture methods and 

environmental conditions. Molecular Ecology Resources 16(6):1401–1414. 

Laerm, J., B. J. Freeman, L. J. Vitt, J. M. Meyers, and L. Logan. 1980. Vertebrates of the 

Okefenokee Swamp. Brimleyana 4:47–73. 



 
 

88 

 

Lahoz-Monfort, J. J., G. Guillera-Arroita, and R. Tingley. 2016. Statistical approaches to account 

for false-positive errors in environmental DNA samples. Molecular Ecology Resources 

16(3):673–685. 

Lamothe, K. A., and D. A. R. Drake. 2020. Habitat associations of the Threatened pugnose 

minnow (Opsopoeodus emiliae) at the northern edge of the species range. Ecology of 

Freshwater Fish 29(2):289–298. 

Landis, J. R., and G. G. Koch. 1977. The measurement of observer agreement for categorical 

data. Biometrics 33(1):159–174. 

Larson, E. R., B. M. Graham, R. Achury, J. J. Coon, M. K. Daniels, D. K. Gambrell, K. L. 

Jonasen, G. D. King, N. LaRacuente, T. I. Perrin-Stowe, E. M. Reed, C. J. Rice, S. A. 

Ruzi, M. W. Thairu, J. C. Wilson, and A. V. Suarez. 2020. From eDNA to citizen 

science: emerging tools for the early detection of invasive species. Frontiers in Ecology 

and the Environment 18(4):194–202. 

Lesica, P., and F. W. Allendorf. 1995. When are peripheral populations valuable for 

conservation? Conservation Biology 9(4):753–760. 

Lobo, J. M., A. Jiménez-Valverde, and R. Real. 2008. AUC: a misleading measure of the 

performance of predictive distribution models. Global Ecology and Biogeography 

17(2):145–151. 

MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. Andrew Royle, and C. A. 

Langtimm. 2002. Estimating site occupancy rates when detection probabilities are less 

than one. Ecology 83(8):2248–2255. 

Maine Dept. of Inland Fisheries and Wildlife. 2015. Maine’s Wildlife Action Plan. Maine 

Department of Inland Fisheries and Wildlife, SWG Report, Augusta, ME. 

Maine Dept. of Inland Fisheries and Wildlife. 2021. Species of Special Concern. 

https://www.maine.gov/ifw/fish-wildlife/wildlife/endangered-threatened-species/special-

concern.html. 

Marmion, M., M. Parviainen, M. Luoto, R. K. Heikkinen, and W. Thuiller. 2009. Evaluation of 

consensus methods in predictive species distribution modelling. Diversity and 

Distributions 15(1):59–69. 

McArdle, B. H. 1990. When are rare species not there? Oikos 57(2):276. 

McColl‐Gausden, E. F., A. R. Weeks, R. A. Coleman, K. L. Robinson, S. Song, T. A. Raadik, 

and R. Tingley. 2020. Multispecies models reveal that eDNA metabarcoding is more 

sensitive than backpack electrofishing for conducting fish surveys in freshwater streams. 

Molecular Ecology 00:1–16. 



 
 

89 

 

McGarigal, K., B. W. Compton, E. B. Plunkett, W. V. DeLuca, J. Grand, E. Ene, and S. D. 

Jackson. 2018. A landscape index of ecological integrity to inform landscape 

conservation. Landscape Ecology 33(7):1029–1048. 

Mize, E. L., R. A. Erickson, C. M. Merkes, N. Berndt, K. Bockrath, J. Credico, N. Grueneis, J. 

Merry, K. Mosel, M. Tuttle‐Lau, K. V. Ruden, Z. Woiak, J. J. Amberg, K. Baerwaldt, S. 

Finney, and E. Monroe. 2019. Refinement of eDNA as an early monitoring tool at the 

landscape-level: study design considerations. Ecological Applications 29(6):e01951. 

Mordecai, R. S., B. J. Mattsson, C. J. Tzilkowski, and R. J. Cooper. 2011. Addressing challenges 

when studying mobile or episodic species: hierarchical Bayes estimation of occupancy 

and use. Journal of Applied Ecology 48(1):56–66. 

Nester, G. M., M. J. Heydenrych, T. E. Berry, Z. Richards, J. Wasserman, N. E. White, M. De 

Brauwer, M. Bunce, M. Takahashi, and L. Claassens. 2023. Characterizing the 

distribution of the critically endangered estuarine pipefish (Syngnathus watermeyeri) 

across its range using environmental DNA. Environmental DNA 5(1):132–145. 

New Hampshire Fish and Game Department. 2015. New Hampshire Wildlife Action Plan. New 

Hampshire Fish and Game Department, SWG Report, Concord, NH. 

Nichols, J. D., L. L. Bailey, A. F. O’Connell Jr., N. W. Talancy, E. H. Campbell Grant, A. T. 

Gilbert, E. M. Annand, T. P. Husband, and J. E. Hines. 2008. Multi-scale occupancy 

estimation and modelling using multiple detection methods. Journal of Applied Ecology 

45(5):1321–1329. 

Nohner, J. K., and J. S. Diana. 2015. Muskellunge spawning site selection in northern Wisconsin 

lakes and a GIS-based predictive habitat model. North American Journal of Fisheries 

Management 35(1):141–157. 

O’Brien, J. 2023. gdalUtilities: Wrappers for “GDAL” Utilities Executables. R. 

Oksanen, J., G. L. Simpson, F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, 

P. Solymos, M. H. H. Stevens, E. Szoecs, H. Wagner, M. Barbour, M. Bedward, B. 

Bolker, D. Borcard, G. Carvalho, M. Chirico, M. De Caceres, S. Durand, H. B. A. 

Evangelista, R. FitzJohn, M. Friendly, B. Furneaux, G. Hannigan, M. O. Hill, L. Lahti, D. 

McGlinn, M.-H. Ouellette, E. Ribeiro Cunha, T. Smith, A. Stier, C. J. F. ter Braak, and J. 

Weedon. 2022. vegan: Community ecology package. R package version 2.6-4. 
https://CRAN.R-project.org/package=vegan.  

Olden, J. D., Z. S. Hogan, and M. J. V. Zanden. 2007. Small fish, big fish, red fish, blue fish: 

size-biased extinction risk of the world’s freshwater and marine fishes. Global Ecology 

and Biogeography 16(6):694–701. 

Olivero, A. P., and M. G. Anderson. 2008. Northeast Aquatic Habitat Classification System. The 

Nature Conservancy, Boston, MA. 



 
 

90 

 

Page, L. M., and B. M. Burr. 2011. Peterson field guide to freshwater fishes of North America 

north of Mexico, 2nd edition. Houghton Mifflin Harcourt Publishing Company, New 

York, NY. 

Paul, M. J., and J. L. Meyer. 2001. Streams in the urban landscape. Annual Review of Ecology 

and Systematics 32:333–365. 

Phillips, S. J., R. P. Anderson, M. Dudík, R. E. Schapire, and M. E. Blair. 2017. Opening the 

black box: an open-source release of Maxent. Ecography 40(7):887–893. 

Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of species 

geographic distributions. Ecological Modelling 190(3):231–259. 

Plough, L. V., M. B. Ogburn, C. L. Fitzgerald, R. Geranio, G. A. Marafino, and K. D. Richie. 

2018. Environmental DNA analysis of river herring in Chesapeake Bay: A powerful tool 

for monitoring threatened keystone species. PLOS ONE 13(11):e0205578. 

Poggio, L., L. M. de Sousa, N. H. Batjes, G. B. M. Heuvelink, B. Kempen, E. Ribeiro, and D. 

Rossiter. 2021. SoilGrids 2.0: producing soil information for the globe with quantified 

spatial uncertainty. SOIL 7(1):217–240. 

Pregler, K. C., N. Hagstrom, E. T. Schultz, and J. C. Vokoun. 2019. Landscape factors predict 

local extirpation in an imperilled minnow species, the bridle shiner (Notropis bifrenatus). 

Aquatic Conservation: Marine and Freshwater Ecosystems 29(8):1227–1237. 

Pregler, K. C., J. C. Vokoun, T. Jensen, and N. Hagstrom. 2015. Using multimethod occupancy 

estimation models to quantify gear differences in detection probabilities: is backpack 

electrofishing missing occurrences for a species of concern? Transactions of the 

American Fisheries Society 144(1):89–95. 

Quinn, T. P., I. Erb, M. F. Richardson, and T. M. Crowley. 2018. Understanding sequencing data 

as compositions: an outlook and review. Bioinformatics 34(16):2870–2878. 

R Core Team. 2022. R: a language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. 

R Core Team. 2023. R: a language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. 

Rahel, F. J. 1984. Factors structuring fish assemblages along a bog lake successional gradient. 

Ecology 65(4):1276–1289. 

Rahel, F. J., and J. J. Magnuson. 1983. Low pH and the Absence of Fish Species in Naturally 

Acidic Wisconsin Lakes: Inferences for Cultural Acidification. Canadian Journal of 

Fisheries and Aquatic Sciences 40(1):3–9. 



 
 

91 

 

Riaz, M., M. Kuemmerlen, C. Wittwer, B. Cocchiararo, I. Khaliq, M. Pfenninger, and C. Nowak. 

2020. Combining environmental DNA and species distribution modeling to evaluate 

reintroduction success of a freshwater fish. Ecological Applications 30(2):e02034. 

Robinson, A. T., Y. M. Paroz, M. J. Clement, T. W. Franklin, J. C. Dysthe, M. K. Young, K. S. 

McKelvey, and K. J. Carim. 2019. Environmental DNA sampling of small-bodied 

minnows: performance relative to location, species, and traditional sampling. North 

American Journal of Fisheries Management 39(5):1073–1085. 

Rollins, M. G. 2009. LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel 

assessment. International Journal of Wildland Fire 18(3):235–249. 

Rourke, M. L., A. M. Fowler, J. M. Hughes, M. K. Broadhurst, J. D. DiBattista, S. Fielder, J. W. 

Walburn, and E. M. Furlan. 2021. Environmental DNA (eDNA) as a tool for assessing 

fish biomass: A review of approaches and future considerations for resource surveys. 

Environmental DNA 00:1–25. 

Roussel, J.-M., J.-M. Paillisson, A. Tréguier, and E. Petit. 2015. The downside of eDNA as a 

survey tool in water bodies. Journal of Applied Ecology 52(4):823–826. 

Royle, J. A., R. B. Chandler, C. Yackulic, and J. D. Nichols. 2012. Likelihood analysis of 

species occurrence probability from presence-only data for modelling species 

distributions. Methods in Ecology and Evolution 3(3):545–554. 

Scheuerell, M. D., and D. E. Schindler. 2004. Changes in the spatial distribution of fishes in 

lakes along a residential development gradient. Ecosystems 7(1):98–106. 

Schmidt, B. R., M. Kéry, S. Ursenbacher, O. J. Hyman, and J. P. Collins. 2013. Site occupancy 

models in the analysis of environmental DNA presence/absence surveys: a case study of 

an emerging amphibian pathogen. Methods in Ecology and Evolution 4(7):646–653. 

Soranno, P. A., K. S. Cheruvelil, T. Wagner, K. E. Webster, and M. T. Bremigan. 2015. Effects 

of land use on lake nutrients: the importance of scale, hydrologic connectivity, and 

region. PLOS ONE 10(8):e0135454. 

de Souza, L. S., J. C. Godwin, M. A. Renshaw, and E. Larson. 2016. Environmental DNA 

(eDNA) detection probability is influenced by seasonal activity of organisms. PLOS 

ONE 11(10):e0165273. 

Stone, J., B. C. Lê, and J. R. Moring. 2001. Freshwater fishes of Acadia National Park, Mount 

Desert Island, Maine. Northeastern Naturalist 8(3):311–318. 

Strahler, A. N. 1957. Quantitative analysis of watershed geomorphology. Transactions of the 

American Geophysical Union 38(6):913–920. 

Sutherland, J. W., S. A. Norton, J. W. Short, and C. Navitsky. 2018. Modeling salinization and 

recovery of road salt-impacted lakes in temperate regions based on long-term monitoring 



 
 

92 

 

of Lake George, New York (USA) and its drainage basin. Science of The Total 

Environment 637–638:282–294. 

Sutton, W. B., K. Barrett, A. T. Moody, C. S. Loftin, P. G. DeMaynadier, and P. Nanjappa. 

2015. Predicted changes in climatic niche and climate refugia of conservation priority 

salamander species in the northeastern United States. Forests 6(1):1–26. 

Takahara, T., T. Minamoto, H. Yamanaka, H. Doi, and Z. Kawabata. 2012. Estimation of fish 

biomass using environmental DNA. PLoS ONE 7(4):e35868. 

Takahashi, M., M. Saccò, J. H. Kestel, G. Nester, M. A. Campbell, M. van der Heyde, M. J. 

Heydenrych, D. J. Juszkiewicz, P. Nevill, K. L. Dawkins, C. Bessey, K. Fernandes, H. 

Miller, M. Power, M. Mousavi-Derazmahalleh, J. P. Newton, N. E. White, Z. T. 

Richards, and M. E. Allentoft. 2023. Aquatic environmental DNA: A review of the 

macro-organismal biomonitoring revolution. Science of The Total Environment 

873:162322. 

Taylor, E. B., M. D. Stamford, and J. S. Baxter. 2003. Population subdivision in westslope 

cutthroat trout (Oncorhynchus clarki lewisi) at the northern periphery of its range: 

evolutionary inferences and conservation implications. Molecular Ecology 12(10):2609–

2622. 

Thalinger, B., D. Kirschner, Y. Pütz, C. Moritz, R. Schwarzenberger, J. Wanzenböck, and M. 

Traugott. 2021. Lateral and longitudinal fish environmental DNA distribution in dynamic 

riverine habitats. Environmental DNA 3(1):305–318. 

Theobald, D. M., D. Harrison-Atlas, W. B. Monahan, and C. M. Albano. 2015. Ecologically-

relevant maps of landforms and physiographic diversity for climate adaptation planning. 

PLOS ONE 10(12):e0143619. 

Thomsen, P. F., J. Kielgast, L. L. Iversen, P. R. Møller, M. Rasmussen, and E. Willerslev. 2012. 

Detection of a diverse marine fish fauna using environmental DNA from seawater 

samples. PLOS ONE 7(8):e41732. 

Turner, C. R., M. A. Barnes, C. C. Y. Xu, S. E. Jones, C. L. Jerde, and D. M. Lodge. 2014. 

Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods in 

Ecology and Evolution 5(7):676–684. 

U.S. Environmental Protection Agency [USEPA]. 2016. Region 1 Maine Lakes Data Sets. 

https://archive.epa.gov/emap/archive-emap/web/html/index-158.html. 

U.S. Fish and Wildlife Service [USFWS]. 2020. Quality Assurance Project Plan eDNA 

Monitoring of Bighead and Silver Carps. Page 91. 

U.S. Fish and Wildlife Service [USFWS]. 2022, October 6. USFWS National Wetlands 

Inventory. Geodatabase. 



 
 

93 

 

U.S. Geological Survey [USGS]. 1998, August 16. 3D Elevation Program 10-Meter Resolution 

Digital Elevation Model. Raster, Earth Engine Data Catalog. 

U.S. Geological Survey [USGS]. 2021. Watershed Boundary Dataset. Geodatabase. 

Valavi, R., J. Elith, J. J. Lahoz-Monfort, and G. Guillera-Arroita. 2021. Modelling species 

presence-only data with random forests. Ecography 44(12):1731–1742. 

Valentini, A., P. Taberlet, C. Miaud, R. Civade, J. Herder, P. F. Thomsen, E. Bellemain, A. 

Besnard, E. Coissac, F. Boyer, C. Gaboriaud, P. Jean, N. Poulet, N. Roset, G. H. Copp, P. 

Geniez, D. Pont, C. Argillier, J.-M. Baudoin, T. Peroux, A. J. Crivelli, A. Olivier, M. 

Acqueberge, M. L. Brun, P. R. Møller, E. Willerslev, and T. Dejean. 2016. Next-

generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. 

Molecular Ecology 25(4):929–942. 

Vignali, S., A. G. Barras, R. Arlettaz, and V. Braunisch. 2020. SDMtune: An R package to tune 

and evaluate species distribution models. Ecology and Evolution 10(20):11488–11506. 

Walsh, C. J., A. H. Roy, J. W. Feminella, P. D. Cottingham, P. M. Groffman, and R. P. Morgan. 

2005. The urban stream syndrome: current knowledge and the search for a cure. Journal 

of the North American Benthological Society 24(3):706–723. 

Watson, J. M., S. M. Coghlan Jr., J. Zydlewski, D. B. Hayes, and I. A. Kiraly. 2018. Dam 

Removal and Fish Passage Improvement Influence Fish Assemblages in the Penobscot 

River, Maine. Transactions of the American Fisheries Society 147(3):525–540. 

Whittier, T. R., D. B. Halliwell, and S. G. Paulsen. 1997. Cyprinid distributions in Northeast 

U.S.A. lakes: evidence of regional-scale minnow biodiversity losses. Canadian Journal of 

Fisheries and Aquatic Sciences 54:15. 

Whittum, K. A., J. D. Zydlewski, S. M. Coghlan Jr, D. B. Hayes, J. Watson, and I. Kiraly. 2023. 

Fish Assemblages in the Penobscot River: A Decade after Dam Removal. Marine and 

Coastal Fisheries 15(1):e10227. 

Wick, C. 2007. A guide to the freshwater fishes of Maine. Maine Dept. of Inland Fisheries and 

Wildlife. 

Wiken, E., F. J. Nava, and G. E. Griffith. 2011. North American Terrestrial Ecoregions—Level 

III. Commission for Environmental Cooperation, Montreal, Canada. 

Wilcox, T. M., K. S. McKelvey, M. K. Young, S. F. Jane, W. H. Lowe, A. R. Whiteley, and M. 

K. Schwartz. 2013. Robust detection of rare species using environmental DNA: the 

importance of primer specificity. PLoS ONE 8(3):e59520. 

Wilson, I. G. 1997. Inhibition and facilitation of nucleic acid amplification. Applied and 

Environmental Microbiology. 



 
 

94 

 

Wood, Z. T., B. F. Erdman, G. York, J. G. Trial, and M. T. Kinnison. 2020. Experimental 

assessment of optimal lotic eDNA sampling and assay multiplexing for a critically 

endangered fish. Environmental DNA 2(4):407–417. 

Wood, Z. T., A. Lacoursière-Roussel, F. LeBlanc, M. Trudel, M. T. Kinnison, C. Garry 

McBrine, S. A. Pavey, and N. Gagné. 2021. Spatial heterogeneity of eDNA transport 

improves stream assessment of threatened salmon presence, abundance, and location. 

Frontiers in Ecology and Evolution 9:1–16. 

Yoder, C. O., L. E. Hersha, and E. T. Rankin. 2009. Fish Assemblage and Habitat Assessment of 

the Presumpscot River. University of Southern Maine, Casco Bay Estuary Partnership, 

MBI Technical Report MBI/2008-12-6, Portland, ME. 

Yoder, C. O., L. E. Hersha, and E. T. Rankin. 2010. The Maine Rivers Fish Assemblage 

Assessment: Application to the Presumpscot River in 2006 (2010 State of the Bay 

Presentation). 

York, G. 2016, December. Environmental DNA Detection of Invasive Species. Master’s Thesis, 

University of Maine, Orono, ME. 

 

  



 
 

95 

 

APPENDICES 

APPENDIX A: eDNA CORE LAB EXTRACTION STANDARD OPERATING 

PROCEDURE 

A.  PURPOSE  

The purpose of this standard operating procedure (SOP) is to describe the procedures 

required to use DNeasy® Blood and Tissue Kit for the extraction of eDNA from filters. 

B. SAFETY PRECAUTIONS 

• Use standard laboratory PPE 

• Use sterilized, filtered pipette tips 

• Ensure centrifuge is properly balanced 

 

C. EQUIPMENT AND MATERIAL REQUIRED 

1. Laboratory PPE 

2. DNeasy® Blood and Tissue Kit  

o Proteinase K 

o Buffer ATL 

o Buffer AL 

o Buffer AW1 

o Buffer AW2 

o Buffer AE 

o 2 ul collection tubes 

3. Qiagen Investigator Lyse & Spin Basket kit 

4. 1.5 ul microcentrifuge tubes 

5. Sterile forceps (1 per filter) 

6. Hazardous waste bags/collection vessel 

7. Fine tipped marker 

8. Timer  

9. Pipette(s) 

10. Sterile box of filtered pipette tips for each size of pipettes used  

11. Shaking incubator 

12. Microcentrifuge 

13. Vortexer 

14. bleach wipes 

15. 10% bleach solution 

16. Kim Wipes 

17. DNA-off 

18. UV sterilization light 

19. 100% ethanol 

20. Gloves, like so many. 
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D. PROCEDURES 

1. Be advised: This SOP will not tell you to change your gloves constantly, but you 

should. If your glove touches any liquid that contains DNA, change them.  

2. Be advised: Incubation times are suggested, but may be changed. They MUST be 

standard across all samples to be compared. This includes digestion and elution 

incubations. 

3. Clean the work station with Clorox Bleach wipes and DNA-Off and UV sterilization 

prior to and after all eDNA work. 

4. Turn on the incubator and set the temperature to 56°C. Set the shaker setting to low 

speed. Allow to come up to temperature before continuing. 

5. Place the Buffer ATL into the shaker in order to dissolve into solution any precipitate 

that has formed. This is only necessary if solutes have formed 

6. Create an extraction blank 

o A single 47mm glass fiber filter, rolled and placed into a 1.5 ul microcentrifuge 

tube, as environmental samples. 

7. Add 370 ul of Buffer ATL and 30 ul of Proteinase K to each 1.5 ul microcentrifuge 

tube containing a filtered sample. Vortex immediately and vigorously for 15 seconds. 

Place samples into a clean tube tray and into shaker incubator. 

8. Incubate for 1 hour (timed) 

9. Clean workstation with 10%bleach, DNA-off and UV sterilization before continuing. 

10. Pre-label all tubes during incubation: 

o 1 spin column + collection tube per filter 

o 1 x 1.5 ul tube for lysis collection 

o 1 lyse & spin basket per filter 

o 1 x 1.5 ul tube for final elution 

o Set aside 3 X 2ul collection tubes per filter (no need to label) 

11. Prepare work station with 1 sterile forceps per filter. Have hazardous waste bag/vessel 

prepared for containing used forceps. 

12. Using sterile forceps, press the lysed filter down to expel some of the lysis solution. 

Using a 1000ul pipette, draw off as much of the lysis as possible, depositing it into a 

sterile labeled 1.5 ul tube. Seal the tube, this lysis will be used. 

13. Using the same forceps, remove the filter and place into the basket (spin column) of 

the Lyse & Spin basket. If there is any residual lysis, pipette and expel into the 1.5ul 

tube containing the rest of the lysis. 

14. Repeat steps 9+10 for all filters. 

15. Spin all Lyse & Spin baskets at maximum speed for 2 minutes. When complete the 

filters should appear white and dry.  

o If the filters have not given up all the lysis, they may be re-spun. If the second 

spin isn’t sufficient, a new spin basket may be used. All lysis must be retained. 

16. Transfer the lysis into the collection tube so all lysis for each filter is within a single 

tube. Discard filter and basket. 

17. Add 200 ul of AL buffer and 200 ul of 100% ethanol to each tube. Vortex immediately 

for 15 seconds. 
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18. Transfer 650 ul of the buffer mix to a labeled DNeasy Blood and Tissue spin column. 

Repeat for all samples. 

19. Spin tubes for at 6000xg (8000 rpm) for 1 minute. 

20. Discard flow through. Repeat steps 15+16 until all buffer mixture is run through spin 

column.  

21. Add 500ul of AW1 buffer. Spin at 6000xg (8000 rpm) for 1 minute. Discard flow 

through and place spin column into a fresh collection tube. 

22. Add 500ul of AW2 buffer. Spin at maximum speed for 2 minutes. Discard flow 

through and place spin column into a fresh 2ul collection tube. 

23. Spin at maximum speed for 1 minute. Discard flow through carefully, ensure spin 

column does not contact any flow through at this point. Change to a fresh sterile 

collection tube. 

24. Add 100 ul of AE Buffer. Incubate without spinning at 56°C for 2 minutes.  

o Longer incubation times may be used if there is concern for low DNA yield, 

however times should be standardized across each project. 

25. Spin at 6000xg (8000 rpm) for 1 minute. 

26. Discard spin column. Transfer flow through from 2 ul collection tube to labeled, sterile 

1.5 ul microcentrifuge tubes. 

27. Store DNA extract at -20°C for short term use or -80°C for archival or long term 

storage. 

28. Clean entire work station with 10% bleach solution, DNA-off and UV sterilization 

upon completion. Clean pipettes with DNA-off. Soak tube trays and forceps in 10% 

bleach solution for a minimum of 10 minutes, then rinse thoroughly with RO/DI water. 

Forceps should be packed for autoclaving and autoclaved at convenience. Items should 

finally be UV sterilized in the cabinet sterilizer. 

 

E. QUALITY CONTROL 

1. Extraction negative should not amplify in final PCR results 

 

F. NOTES FOR eDNA WORK: 

a. Gloves should be changed regularly. At any point if user has touched the inside of 

a cap or a potentially contaminated area, gloves must be changed. Ensure 

attention to detail in this area, and be especially cautious of not contaminating 

reagents and equipment. Filter transfer is the most critical step in terms of cross-

contamination between samples and an unclean workstation. 

b. Reagents must be treated carefully. Do not re-use tips. Always change tips. 

c. Developing a work plan before starting is vital. Set up workspace in a way that is 

easy and comfortable, but most importantly will decrease the likelihood of 

contamination. Be prepared before you start. 

d. Ensure that any bleach on the bench top is dry before resuming work. 

e. Contamination risks at bench: 

i. Air flow. Turn off hood air flow before doing any eDNA work. 

ii. Nothing should be above an open tube or sample. Be aware of how a 

workstation is set up and avoid a set up that would require moving a hand, 

sleeve or pipette over an open tube. 

iii. If you have any question, change tips and gloves. 
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iv. Don’t touch anything. If you do, change your gloves. 

v. Change your gloves. 
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APPENDIX B: PRIMER DEVELOPMENT 

As of 2021, no species-specific genetic primer for bridle shiners had been developed. In 

February 2021 we obtained fifteen bridle shiner fin clips from the New York State Museum for 

genetic sequencing. Samples were collected in 2015 and 2016 from Cayuga Lake, Sweezy Pond, 

and Lakeview Pond. We transferred the samples in 95% ethanol and stored them in a -80°C 

freezer until sequencing. 

G. York designed qPCR primers and a Taqman MGB probe to be specific to Bridle 

Shiner (Notropis bifrenatus). In silico design was performed using Benchling (Benchling, 

www.benchling.com) for alignments. We tested against eighteen species in silico on the 

Benchling platform followed by NCBI Primer BLAST. Predicted Tm, primer-dimer and 

secondary structure potential were tested via IDT OligoAnalyzer (OligoAnalyzer). Multiple 

mitochondrial gene regions were selected for testing, and our final primers are on cytochrome b 

and produce an amplicon of 149 base pairs. 

In-lab testing included specificity against twenty-one species. Non-target species tissues 

were identified and collected locally by Maine Inland Fisheries and Wildlife or University of 

Maine students. Candidate primers were selected for specificity and amplification efficiency. 

Final primers were optimized for concentration and annealing temperature on Bio-Rad CFX96.  

Forward primer 5’-3’: TTCACTCCAGCGAACCCC 

Reverse primer 5’-3’: GGGACTACTAACAGTACTAGGATACTG 

Probe 5’-3’: GCCACCACACATCCAACCT 

Table B.1 Species (n = 18) and accession numbers used for in silico testing for the bridle shiner 

qPCR primer. 

 

Common name Scientific name Accession 

Blacknose dace Rhinichthys atratulus AP012104 

Blacknose shiner Notropis heterolepis MG570413 

http://www.benchling.com/
https://www.idtdna.com/pages/tools/oligoanalyzer?returnurl=%2Fcalc%2Fanalyzer%2F
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Table B.1 Continued.   

Bridle shiner Notropis bifrenatus MG570408 

Bridle shiner Notropis bifrenatus MG570409 

Bridle shiner Notropis bifrenatus MG570451 

Central mudminnow Umbra limi KP013095 

Common shiner Luxilus cornutus AP012090 

Creek chub Semotilus atromaculatus AP012107 

Eastern silvery 

minnow 

Hybognathus regius GQ275151 

Fathead minnow Pimephales promelas KT289925 

Finescale dace Phoxinus neogaeus EU755058 

Golden shiner Notemigonus crysoleucas MG570425 

Longnose dace Rhinichthys cataractae MG570446 

Mummichog Fundulus heteroclitus KT869378 

Northern redbelly dace Phoxinus eos AP009151 

Pearl dace Margariscus margarita AP012081 

Rudd Scardinius 

erythrophthalmus 

AP011263 

Splendid darter Etheostoma barrenense AF288424 

Spottail shiner Notropis hudsonius MG570443 

Swamp darter Etheostoma fusiforme FJ937010 

Swamp darter Etheostoma fusiforme HQ128138 

Tessellated darter Etheostoma olmstedi MH301061 

Table B.2 Species (n = 21) used for in vitro lab validation testing of the bridle shiner qPCR 

primer. 

Common name Scientific name 

Alewife Alosa pseudoharengus 

American eel Anguilla rostrata 

American shad Alosa sapidissima 

Atlantic salmon Salmo salar 

Atlantic sturgeon Acipenser oxyrynchus 

oxyrynchus 

Blacknose shiner Notropis heterolepis 

Bridle shiner Notropis bifrenatus 

Brook trout Salvelinus fontinalis 

Chain pickerel Esox niger 

Common goldfish Carassius auratus 

Fathead minnow Pimephales promelas 

Finescale dace Phoxinus neogaeus 

Largemouth bass Micropterus salmoides 

Mummichog Fundulus heteroclitus 

Pumpkinseed Lepomis gibbosus 

Rainbow smelt Osmerus mordax 
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Table B.2 Continued.  

Rainbow trout Oncorhynchus mykiss 

Smallmouth bass Micropterus dolomieu 

Striped bass Morone saxatilis 

Swamp darter Etheostoma fusiforme 

Tomcod Microgadus tomcod 

White perch Morone americana 

 

  



 
 

102 

 

APPENDIX C: FISH COMMUNITY COMPOSITION 

We analyzed abundance data from seine net surveys using nonmetric multidimensional 

scaling (NMDS; Faith et al. 1987) with a Bray-Curtis dissimilarity index using vegan (Oksanen 

et al. 2022) in Program R (version 4.2.2; R Core Team 2022). Following Watson et al. (2018) we 

used fourth root-transformed catch per seine net haul abundance values to reduce the influence of 

abundant species and accentuate differences in species assemblages (Clarke 1993). We 

conducted a single ordination, then plotted both site and species scores. The metaMDS function 

in vegan uses principal component analysis to rotate the NMDS axes so that Axis 1 reflects the 

primary sources of variation in the data (Watson et al. 2018; Oksanen et al. 2022). We used the 

envfit function to determine which species were the intrinsic drivers of the site distribution 

pattern (Grieger 2019). 

The NMDS analyses resulted in a stress value less than 0.20 (final stress = 0.079), 

indicating that the ordination represented the data well in two dimensions (Clarke 1993). We 

grouped sites with/without bridle shiner presence using the ordiellipse function in vegan (Figure 

C.1). Positive values along Axis 1 were associated with stream dwelling species such as 

blacknose dace (Rhinichthys atratulus) and brook trout (Salvelinus fontinalis), while negative 

values were associated with species found in lentic habitats (e.g., bridle shiner and golden 

shiner). Bridle shiner, chain pickerel, and largemouth bass were the primary species driving 

negative values along this axis, and common shiner and white sucker had a significant positive 

influence on NMDS1 values. We could not determine a consistent pattern for the distribution of 

species along Axis 2, which was primarily positively influenced by ninespine stickleback, 

fourspine stickleback, and young-of-year minnows. Negative values along NMDS2 were 

primarily driven by bridle shiner and common shiner.
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Figure C.1 Nonmetric multidimensional scaling ordination including a) sites and b) species ordinations. Site codes can be found in 

Table 1.1. 

 

a) b) 
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Figure C.2 Species intrinsically driving the site distribution pattern of Figure C.1. 
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APPENDIX D: HIERARCHICAL OCCUPANCY MODELING CODE 

#### R code for 3-tiered hierarchical occupancy model in WinBUGS. ##### 

#### G. York & E. Blomberg, adapted from Kery and Royle 2016 

# install.packages("AHMbook") 

# install.packages("car") 

# install.packages("R2WinBUGS") 

# install.packages("plotrix") 

 

# install WinBUGS before continuing 

 

library(AHMbook)  

library(car)  

library(R2WinBUGS)  

library(plotrix) 

library(emdbook) 

library(ggplot2) 

library(gridExtra) 

 

# Import eDNA data ---- 

pcr1 <- read.csv("./WinBUGS/All_eDNA/BDSoccupancy_pcr1b.csv", header=TRUE, 

row.names = 1)  

pcr2 <- read.csv("./WinBUGS/All_eDNA/BDSoccupancy_pcr2b.csv", header=TRUE, 

row.names = 1)   

pcr3 <- read.csv("./WinBUGS/All_eDNA/BDSoccupancy_pcr3b.csv", header=TRUE, 

row.names = 1)   

pcr4 <- read.csv("./WinBUGS/All_eDNA/BDSoccupancy_pcr4b.csv", header=TRUE, 

row.names = 1)  

 

A <- array(as.numeric(NA), dim = c(93,5,4)) #create empty array of 4, 97x5 matrices 

 

A[,,1] <- as.matrix(pcr1) #data into array  

A[,,2] <- as.matrix(pcr2)  

A[,,3] < -as.matrix(pcr3)  

A[,,4] <- as.matrix(pcr4)  

 

y <- A  

 

str( win.data <- list(y = y, # data used to fill array 

                      n.site = dim(y)[1], # number of rows = number of sites (97) 

                      n.samples = dim(y)[2], # number of columns = number of 1L replicate samples/site 

(up to 5) 

                      n.pcr = dim(y)[3] )) # number of PCR replicates (4) 

 

# Define model in BUGS language  ---- 
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sink("eDNA.model.txt")  

 

cat(" 

model{ 

# Priors and model for params  

  int.psi ~ dunif(0,1) # Intercept of occupancy probability (sites)  

  for(t in 1:n.samples){  

      int.theta[t] ~ dunif(0,1)} # Intercepts of availability probability per sample replicate 

                              

  for(t in 1:n.pcr){  

      int.p[t] ~ dunif(0,1)}  # Intercepts of detection probability (1-PCR error) 

       

# 'Likelihood' (or basic model structure) 

   

  ## Occurrence in site i  

  for(i in 1:n.site){  

      z[i] ~ dbern(psi[i])  

      logit(psi[i]) <- logit(int.psi)  

       

      ## Occurrence in sample j  

      for(j in 1:n.samples){  

          a[i,j] ~ dbern(mu.a[i,j]) 

          mu.a[i,j] <- z[i] * theta[i,j] 

          logit(theta[i,j]) <- logit(int.theta[j]) 

   

          ## PCR detection error process in sample k  

          for (k in 1:n.pcr){  

               y[i,j,k] ~ dbern(mu.y[i,j,k])  

               mu.y[i,j,k] <- a[i,j] * p[i,j,k]  

               logit(p[i,j,k]) <- logit(int.p[k]) 

                            } 

                          } 

                tmp[i] <- step(sum(a[i,])-0.1)  

                        } 

 

# Derived quantities  

sum.z <- sum(z[]) # Total number of occupied sites  

sum.a <- sum(tmp[]) # Total number of samples with presence  

mean.p <- mean(int.p[]) # mean p across qPCR replicates  

mean.theta <- mean(int.theta[]) # mean theta across sample replicates  

 

} # end model  

",fill=TRUE) 

 

sink()  
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# Initial values  

zst <- apply(y, 1, max) # inits for presence (z)  

ast <- apply(y, c(1,2), max) # inits for availability (a): applies the "max" function to all matrix 

rows and columns in the array 

inits <- function() list(z = zst, a = ast, int.psi = 0.5)  

 

# parameters  

params <- c("int.psi", "int.theta", "int.p", "sum.z", "sum.a", "mean.p","mean.theta")  

 

# MCMC setting  

ni <- 25000 ; nt <- 10 ; nb <- 2000 ; nc <- 3  

 

# Call WinBUGS and summarize posterior  

 

bd <- "C:/Program Files/winbugs14_full_patched/WinBUGS14" # Location of WinBUGS 

 

eDNA.out <- bugs(win.data, inits, params, "eDNA.model.txt",  

                 n.chains = nc, n.thin = nt,  

                 n.iter = ni, n.burnin = nb,  

                 debug = TRUE, bugs.seed = 42, 

                 bugs.dir = bd) 

 

print(eDNA.out, 4) 

# Inference for Bugs model at "eDNA.model.txt", fit using WinBUGS, 

# 3 chains, each with 25000 iterations (first 2000 discarded), n.thin = 10 

# n.sims = 6900 iterations saved 

#                        mean        sd      2.5%       25%       50%      75%    97.5%    Rhat  n.eff 

# int.psi           0.2010     0.0522     0.1159     0.1653     0.1950     0.2313     0.3181 1.0014  3000 

# int.theta[1]   0.5727     0.1318     0.3123     0.4825     0.5747     0.6664     0.8206 1.0011  6900 

# int.theta[2]   0.5876     0.1421     0.3086     0.4882     0.5911     0.6890     0.8501 1.0009  6900 

# int.theta[3]   0.4010     0.1591     0.1261     0.2840     0.3907     0.5102     0.7256 1.0010  6900 

# int.theta[4]   0.6650     0.2355     0.1608     0.4993     0.7028     0.8664     0.9876 1.0014  3900 

# int.theta[5]   0.6623     0.2339     0.1619     0.4969     0.6966     0.8594     0.9875 1.0018  2500 

# int.p[1]         0.5959     0.0955     0.4040     0.5330     0.5985     0.6613     0.7731 1.0009  6900 

# int.p[2]         0.5951     0.0942     0.4086     0.5324     0.5970     0.6622     0.7718 1.0009  6900 

# int.p[3]         0.5221     0.0962     0.3368     0.4546     0.5226     0.5897     0.7046 1.0024  1200 

# int.p[4]         0.5593     0.0957     0.3691     0.4943     0.5597     0.6280     0.7385 1.0012  4400 

# sum.z           18.1671   3.0063   15.0000   16.0000   17.0000   19.0000   26.0000 1.0013  4000 

# sum.a           17.8939   2.7686   15.0000   16.0000   17.0000  1 9.0000   25.0000 1.0014  3300 

# mean.p         0.5681     0.0514     0.4647     0.5335     0.5692     0.6045     0.6650 1.0015  3000 

# mean.theta   0.5777     0.0895     0.3931     0.5171     0.5810     0.6416     0.7407 1.0009  6900 

# deviance      139.1212 7.5940 129.8000 132.7000 138.0000 143.7250 157.1525 1.0008  6900 

#  

# For each parameter, n.eff is a crude measure of effective sample size, 

# and Rhat is the potential scale reduction factor (at convergence, Rhat=1). 

#  
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# DIC info (using the rule, pD = var(deviance)/2) 

# pD = 28.8 and DIC = 168.0 

# DIC is an estimate of expected predictive error (lower deviance is better). 

#  

# # Total # of occupied sites  

# 18.1671 

 

# Total # of samples with presence  

# 17.8939 

 

# mean probability (psi) of eDNA presence at site 

# 0.2010 

 

# mean probability (theta) of collecting eDNA in a single sample 

# 0.5777 

 

# mean detection prob. (p) of detecting eDNA in a qPCR rep  

# 0.5681 

 

# Calculate p* (Code from E. Blomberg) ---- 

no.pcr <- seq(1,10,1) 

 

pstar <- 1-((1-eDNA.out$mean$mean.p)^no.pcr) 

1-((1-eDNA.out$mean$mean.p)^4) 

# p* = 0.9652144 # with 4 PCR replicates 

sigma <- matrix(c(eDNA.out$sd$mean.p^2,0,  

                  0,0), nrow=2) 

 

pstar.se <- vector(length=length(pstar)) 

 

for (i in 1:length(no.pcr)){ 

   

pstar.se[i]<- sqrt(deltavar(1-((1-x)^y), 

                            meanval = c(x=eDNA.out$mean$mean.p, y=no.pcr[i]), 

                            Sigma=sigma)) } 

 

pstar.df <- data.frame(pcr=no.pcr, pstar = pstar, se=pstar.se) 

 

pstar.95 <- 4 # number of PCR replicates needed for detection to exceed 95% 

pstar.80 <- 2 # number of PCR replicates needed for detection to exceed 80%  

pstar.50 <- 1 # number of PCR replicates needed for detection to exceed 50% 

 

# 95% Confidence Intervals 

pstar.df$lower <- pstar.df$pstar - pstar.df$se*1.96 

pstar.df$upper <- pstar.df$pstar + pstar.df$se*1.96 

pstar.df$upper[pstar.df$upper > 1] <- 1 
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write.csv(pstar.df, "./WinBUGS/All_eDNA/pstar.csv") 

 

# Calculate theta* (code from E. Blomberg) ---- 

no.samples <- seq(1,10,1) 

 

tstar <- 1-((1-eDNA.out$mean$mean.theta)^no.samples) 

 

sigma <- matrix(c(eDNA.out$sd$mean.theta^2,0,  

                  0,0), nrow=2) 

 

tstar.se <- vector(length=length(tstar)) 

 

for (i in 1:length(no.samples)){ 

    tstar.se[i]<- sqrt(deltavar(1-((1-x)^y), 

                       meanval = c(x=eDNA.out$mean$mean.theta, y=no.samples[i]), 

                       Sigma=sigma)) } 

 

tstar.df <- data.frame(samples=no.samples, tstar = tstar, se=tstar.se) 

 

tstar.95 <- 4 # number of 1-L water samples needed for availability to exceed 95% 

tstar.80 <- 2 # number of 1-L water samples needed for availability to exceed 80%  

tstar.50 <- 1 # number of 1-L water samples needed for availability to exceed 50% 

 

# 95% Confidence Intervals 

tstar.df$lower <- tstar.df$tstar - tstar.df$se*1.96 

tstar.df$upper <- tstar.df$tstar + tstar.df$se*1.96 

tstar.df$upper[tstar.df$upper > 1] <- 1 

write.csv(tstar.df, "./WinBUGS/All_eDNA/thetastar.csv") 
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APPENDIX E: SPECIES DISTRIBUTION MODEL PREDICTOR VARIABLES
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Figure E.1 Predictor variable inputs (n = 24) to bridle shiner species distribution models. 

Variables were scaled about their means and standard deviations prior to modeling. Maps depict: 
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a) catchment position, b) soil clay composition (g/kg), c) distance from the coast (km), d) 

elevation above sea level (meters), e) proportion of Laurentian-Acadian Northern Hardwoods 

Forest (for.1920) in hexagon, f) proportion of Northeastern Interior Dry-Mesic Oak Forest 

(for.1921) in hexagons, g) proportion of Northern Atlantic Coastal Plain Hardwood Forest 

(for.1922) in hexagon, h) proportion of Laurentian-Acadian Northern Pine(-Oak) Forest in 

hexagon, i) proportion of Laurentian-Acadian Pine-Hemlock-Hardwood Forest in hexagon, j) 

proportion of Central Appalachian Dry Oak-Pine Forest in hexagon, k) proportion of 

Appalachian (Hemlock-)Northern Hardwood Forest in hexagon, l) proportion of Acadian Low-

Elevation Spruce-Fir-Hardwood Forest in hexagon, m) proportion of Acadian-Appalachian 

Montane Spruce-Fir Forest in hexagon, n) proportion of Central Appalachian Pine-Oak Rocky 

Woodland in hexagon, o) proportion of Northern Atlantic Coastal Plain Maritime Forest in 

hexagon, p) North-Central Interior Wet Flatwoods in hexagon, q) proportion of Boreal Jack 

Pine-Black Spruce Forest in hexagon, r) proportion of Northeastern Interior Pine Barrens in 

hexagon, s) lithology (glacial till coarse, glacial lake sediment fine, glacial outwash coarse, 

alluvium and coastal sediment fine, water), t) marine limit (above or below 128-m limit), u) soil 

water pH, v) soil sand content (g/kg), w) soil silt content (g/kg), and x) point slope (degrees).
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APPENDIX F: BRIDLE SHINER SURVEY SITES IN MAINE AND NEW HAMPSHIRE 

Table F.1 Historic (1898-1999) and current (2000-2022) bridle shiner survey sites (n = 250) in Maine and New Hampshire used as 

species distribution model inputs. Sites labeled “NA” in the Historic Occupancy or Current Occupancy columns were not included in 

the model for that time period. 

 

Year 

Established 

Year 

Last 

Sampled 

State Waterbody Site Name 

Historic 

status (1898-

1999) 

Historic 

Occupancy 

Current 

status 

(2000-

2022) 

Current 

Occupancy 

Point 

Accuracy 
Easting Northing 

1898 Pre-2000 ME Little 

Sebago 

Lake 

Little 

Sebago Lake 

Present in 

waterbody 

1 Unknown NA Center of 

waterbody: 

no precise 

location 

known 

386517 4859470 

1899 2022 ME Crescent 

Lake 

CRESLK-02 Present in 

waterbody 

1 Present 1 GPS survey 

point 

383820 4869380 

1899 Pre-2000 ME Chaffin 

Pond 

Chaffin 

Pond 

Present in 

waterbody 

1 Unknown NA Center of 

waterbody: 

no precise 

location 

known 

384012 4856060 

1900 2021 ME Sebago 

Lake/ 

Songo 

River 

SEBAGO-

01 

Present in 

waterbody 

1 Present 1 GPS survey 

point 

373567 4863550 

1937 2021 ME Crooked 

River 

CROOKR Present 1 Absent 0 GPS survey 

point 2021, 

historic road 

crossing 

coordinates 

373952 4873110 

1937 2021 ME Great 

Works 

River 

GWORKN Present 1 Absent 0 GPS survey 

point 2021, 

historic road 

crossing 

coordinates 

357524 4805680 
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Table F.1 Continued. 
1937 2021 ME Great 

Works 

River 

GWORKS Present 1 Present 1 GPS survey 

point 2021, 

historic road 

crossing 

coordinates 

358935 4797490 

1937 2021 ME Great 

Works 

River/ 

Bauneg 

Beg Pond 

GWORKB Present 1 Absent 0 GPS survey 

point 

359014 4801930 

1937 2021 ME Josie's 

Brook 

JOSIES Present 1 Absent 0 GPS survey 

point 2021, 

historic road 

crossing 

coordinates 

369686 4840580 

1937 2021 ME Little River LITTLR Present 1 Absent 0 GPS survey 

point 2021, 

historic road 

crossing 

coordinates 

350489 4803790 

1937 2021 ME Salmon 

Falls River 

SFALLS Present 1 Present 1 GPS survey 

point 

345364 4796430 

1938 2021 ME Bear Pond BEARPD-

01 

Present in 

waterbody 

1 Absent 0 GPS survey 

point, 

historic 

point 

estimated 

362593 4890820 

1938 2021 ME Bear Pond BEARPD-

02 

Present in 

waterbody 

NA Absent 0 GPS survey 

point, 

historic 

presence 

estimated 

elsewhere in 

waterbody 

363317 4889350 

1938 2021 ME Burnt 

Meadow 

Pond 

BURNPD-

01 

Present in 

waterbody 

1 Absent 0 GPS survey 

point, 

historic 

point 

estimated 

348493 4865680 



 
 

117 

 

Table F.1 Continued. 
1938 2021 ME Burnt 

Meadow 

Pond 

BURNPD-

02 

Present in 

waterbody 

NA Absent 0 GPS survey 

point, absent 

at this point 

in 1956 

348628 4865060 

1938 2021 ME Highland 

Lake 

HIGHLK-02 Present in 

waterbody 

NA Absent 0 GPS survey 

point, 

historic 

presence 

estimated 

elsewhere in 

waterbody 

358466 4884480 

1938 2021 ME Highland 

Lake 

HIGHLK-03 Present in 

waterbody 

NA Absent 0 GPS survey 

point, 

historic 

presence 

estimated 

elsewhere in 

waterbody 

362817 4879480 

1938 2021 ME Highland 

Lake 

HIGHLK-04 Present in 

waterbody 

1 Present 1 GPS survey 

point 

359879 4884760 

1938 2021 ME Sebago 

Lake 

SEBAGO-

03 

Present in 

waterbody 

NA Absent 0 GPS survey 

point, 

historic 

presence 

estimated 

elsewhere in 

waterbody 

370327 4864980 

1938 2021 ME Sebago 

Lake 

SEBAGO-

04 

Present in 

waterbody 

NA Absent 0 GPS survey 

point, 

historic 

presence 

estimated 

elsewhere in 

waterbody 

375361 4848550 
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Table F.1 Continued. 
1938 2021 ME Sebago 

Lake 

SEBAGO-

06 

Present in 

waterbody 

NA Absent 0 GPS survey 

point, 

historic 

presence 

estimated 

elsewhere in 

waterbody 

381712 4861730 

1938 2021 ME Spectacle 

Pond 

SPECPD Present 1 Absent 0 GPS survey 

point 

346921 4853590 

1938 2021 ME Stanley 

Pond 

STANPD-

01 

Present in 

waterbody 

NA Absent 0 GPS survey 

point, 

historic 

presence 

estimated 

elsewhere in 

waterbody 

348533 4854720 

1938 2021 ME Stanley 

Pond 

STANPD-

02 

Present in 

waterbody 

NA Absent 0 GPS survey 

point, 

historic 

presence 

estimated 

elsewhere in 

waterbody 

348100 4854900 

1938 2021 ME Stanley 

Pond 

STANPD-

03 

Present in 

waterbody 

1 Absent 0 GPS survey 

point, 

historic 

point 

estimated 

347764 4855830 

1938 2021 ME Trafton 

Pond 

TRAFPD-01 Present in 

waterbody 

NA Absent 0 GPS survey 

point, 

historic 

presence 

estimated 

elsewhere in 

waterbody 

348254 4856280 
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Table F.1 Continued. 
1938 2021 ME Trafton 

Pond 

TRAFPD-02 Present in 

waterbody 

1 Absent 0 GPS survey 

point, 

historic 

point 

estimated 

347797 4856810 

1938 2022 ME Barker 

Pond 

BARKER Present 1 Present 1 GPS survey 

point 

359052 4860990 

1939 1939 ME Saco River SACONO Present 1 Unknown NA Estimated 

from historic 

road 

crossing 

coordinates, 

no current 

survey 

352830 4862300 

1939 2021 ME Jordan 

River 

JORDAN Present 1 Absent 0 GPS survey 

point 2021, 

historic road 

crossing 

coordinates 

382462 4860680 

1939 2021 ME Old Course 

Saco River 

OCSACO Present 1 Absent 0 GPS survey 

point 2021, 

historic road 

crossing 

coordinates 

346256 4884460 

1939 2021 ME Ossipee 

River 

OSSIPM Present 1 Present 1 GPS survey 

point 

343737 4850670 

1939 2021 ME Saco River SACONO-

01 

Present in 

vicinity 

NA Absent 0 GPS survey 

point 

353424 4862040 

1939 2021 ME Saco River SACOSO Present 1 Absent 0 GPS survey 

point 2021, 

historic road 

crossing 

coordinates 

356722 4851960 

1939 2022 ME Ossipee 

River 

OSSIPE Present 1 Present 1 GPS survey 

point 

353209 4852140 
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Table F.1 Continued. 
1939 Pre-2000 ME Ossipee 

River 

OSSIPW Present 1 Unknown NA Estimated 

from road 

crossing 

coordinates, 

no current 

survey 

340528 4850890 

1946 2022 ME Colcord 

Pond 

COLCPD-

01 

Presumed 

present 

1 Present 1 GPS survey 

point 

342804 4855520 

1947 Unknow

n 

NH Mill Pond 

(Oyster 

River) 

Mill Pond Present in 

waterbody 

1 Absent 0 Center of 

waterbody: 

no precise 

location 

known 

343760 4777090 

1947 Unknow

n 

NH Wheelwrig

ht Pond 

Wheelwrigh

t Pond 

Present in 

waterbody 

1 Absent 0 Center of 

waterbody: 

no precise 

location 

known 

336626 4778020 

1955 2022 ME Crescent 

Lake 

CRESLK-03 Present in 

waterbody 

NA Absent 0 GPS survey 

point, 

historic 

presence 

estimated 

elsewhere in 

waterbody 

382678 4871880 

1955 2022 ME Crescent 

Lake/ 

Tenny 

River 

CRESLK-01 Present in 

waterbody 

1 Present 1 GPS survey 

point 

382630 4867340 

1955 2022 ME Sokokis 

Lake 

SOKOLK-

01 

Present in 

waterbody 

NA Absent 0 GPS survey 

point, 

historic 

presence 

estimated 

elsewhere in 

waterbody 

356133 4839970 
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Table F.1 Continued. 
1955 2022 ME Sokokis 

Lake 

SOKOLK-

02 

Present in 

waterbody 

NA Absent 0 GPS survey 

point, 

historic 

presence 

estimated 

elsewhere in 

waterbody 

354643 4841400 

1955 2022 ME Sokokis 

Lake 

SOKOLK-

03 

Present in 

waterbody 

1 Absent 0 GPS survey 

point, 

historic 

point 

estimated 

354682 4841370 

1960 2022 ME Marr Pond MARRPD-

01 

Present 

(likely 

misidentifie

d) 

NA Absent 0 GPS survey 

point 

476034 4999620 

1960 2022 ME Marr Pond MARRPD-

02 

Present 

(likely 

misidentifie

d) 

NA Absent 0 GPS survey 

point 

476743 4999440 

1992 2021 ME Marshall 

Brook 

MARBRK Present; 

likely 

introduced 

NA Absent 0 GPS survey 

point 

551554 4902250 

1992 2021 ME Proctor 

Pond 

PROCPD-

01 

Present in 

waterbody 

NA Absent 0 GPS survey 

point, 

historic 

presence 

estimated 

elsewhere in 

waterbody 

356431 4900500 

1992 2021 ME Proctor 

Pond 

PROCPD-

02 

Present in 

waterbody 

1 Absent 0 GPS survey 

point, 

historic 

point 

estimated 

356592 4900260 
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Table F.1 Continued. 
1999 1999 ME Little Pond Little Pond Present in 

waterbody 

1 Unknown NA Center of 

waterbody: 

no precise 

location 

known 

350801 4884320 

2002 2002 ME Unnamed 

brook 

BLANBR Present 1 Present 1 GPS survey 

point 

396167 4852400 

2002 2021 ME Piscataqua 

River 

PISCAT Present 1 Absent 0 GPS survey 

point 2021, 

historic road 

crossing 

coordinates 

394376 4847570 

2005 2005 NH Bixby Pond 20050801-

1330-WAP-

Little 

Suncook 

River-

Epsom-

SEINE 

Present 1 Present 1 GPS survey 

point 

312316 4788270 

2005 2005 NH Cocheco 

River 

20050803-

1345-WAP-

Cocheco 

River-

Farmington-

SEINE 

Present 1 Present 1 GPS survey 

point 

331081 4808090 

2005 2005 NH Coffin 

Brook 

20050812-

1220-WAP-

Coffin 

Brook-

Alton-

SEINE 

Present 1 Present 1 GPS survey 

point 

319306 4810310 

2005 2005 NH Isinglass 

River 

20051012-

1345-WAP-

Isinglass 

River-

Barrington-

SEINE 

Present 1 Present 1 GPS survey 

point 

333231 4789540 
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Table F.1 Continued. 
2005 2005 NH Jones 

Brook 

20050803-

1100-WAP-

Jones 

Brook-

Middleton-

SEINE 

Present 1 Present 1 GPS survey 

point 

334893 4816200 

2005 2005 NH Powwow 

River 

20050707-

1200-WAP-

Powwow 

River-South 

Hampton-

SEINE 

Present 1 Present 1 GPS survey 

point 

337348 4748990 

2005 2005 NH Soucook 

River 

20050616-

1400-WAP-

Soucook 

River-

Loudon-

SEINE 

Present 1 Present 1 GPS survey 

point 

299752 4795540 

2005 2005 NH Suncook 

River 

20050801-

1130-WAP-

Suncook 

River-

Epsom-

SEINE 

Present 1 Present 1 GPS survey 

point 

306455 4785960 

2005 2005 NH Suncook 

River 

20050812-

1200-WAP-

Suncook 

River-

Pembroke-

SEINE 

Present 1 Present 1 GPS survey 

point 

304380 4781370 

2005 2005 NH Trout Pond 20050919-

1515-WAP-

Trout Pond-

Freedom-

SEINE 

Present 1 Present 1 GPS survey 

point 

328826 4856330 
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Table F.1 Continued. 
2005 2020 NH Purity Lake 20200813-

1100-BS-

Purity Lake-

Madison-

DIPNET 

Present 1 Present 1 GPS survey 

point 

332157 4858600 

2006 2006 NH Exeter 

River 

20060626-

1155-WAP-

Exeter 

River-

Fremont-

SEINE 

Present 1 Present 1 GPS survey 

point 

327085 4759240 

2006 2006 NH Isinglass 

River 

20060808-

800-

NHDES-

Isinglass 

River-

Barrington-

EFISH 

Present 1 Present 1 GPS survey 

point 

337298 4790040 

2006 2010 NH Lamprey 

River 

20100914-

1000-BS-

Lamprey 

River-

Raymond-

DIPNET 

Present 1 Present 1 GPS survey 

point 

319633 4768920 

2006 2013 NH Winnipesa

ukee Lake 

20060821-

1220-WAP-

Lake 

Winnipesau

kee-

Moultonbor

ough-SEINE 

Present 1 Present; 

declining 

1 GPS survey 

point 

303164 4842570 

2006 2019 NH Soucook 

River 

20190920-

900-BS-

Soucook 

River-

Loudon-

DIPNET 

Present 1 Present 1 GPS survey 

point 

299994 4795870 

            



 
 

125 

 

Table F.1 Continued. 
2006 2020 NH Pemigawas

set Lake 

20200917-

1130-BS-

Pemigewass

et Lake-New 

Hampton-

DIPNET 

Present 1 Present 1 GPS survey 

point 

289874 4832800 

2006 2021 ME Presumpsc

ot River 

PRESUM-

01 

Present 1 Present 1 GPS survey 

point 

383533 4845090 

2006 2021 ME Presumpsc

ot River 

PRESUM-

02 

Present 1 Present 1 GPS survey 

point 

383583 4845200 

2007 2007 NH Berrys 

River 

20070628-

800-

NHDES-

Berrys 

River-

Strafford-

EFISH 

Present 1 Present 1 GPS survey 

point 

332695 4794640 

2007 2021 ME Browns 

Brook 

BROBRK Present 

(possibly 

misidentifie

d) 

NA Absent 0 GPS survey 

point 

554524 4967970 

2008 2008 NH Bonfield 

Brook 

20080717-

830-EBTJV-

unnamed 

stream-

Madison-

EFISH 

Present 1 Present 1 GPS survey 

point 

327739 4866770 

2008 2008 NH Soucook 

River 

20080812-

1000-WAP-

Soucook 

River-

Canterbury-

SEINE 

Present 1 Present 1 GPS survey 

point 

301052 4806980 
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Table F.1 Continued. 
2009 2009 NH Black 

Brook 

20090629-

1200-

IMPOUND-

Black 

Brook-

Manchester-

EFISH 

Present 1 Present 1 GPS survey 

point 

298097 4764890 

2009 2009 NH Winnipesa

ukee Lake 

20090604-

1130-BS-

Lake 

Winnipesau

kee-

Moultonbor

ough-SEINE 

Present 1 Present 1 GPS survey 

point 

308008 4844130 

2009 2009 NH Winnipesa

ukee Lake 

20090604-

1200-BS-

Lake 

Winnipesau

kee-

Moultonbor

ough-SEINE 

Present 1 Present 1 GPS survey 

point 

308056 4844280 

2009 2010 NH Winnipesa

ukee Lake 

20090604-

1300-BS-

Lake 

Winnipesau

kee-

Moultonbor

ough-SEINE 

Present 1 Present 1 GPS survey 

point 

307620 4844580 

2009 2010 NH Winnipesa

ukee Lake 

20090914-

1200-

WARMWA

TER-Lake 

Winnipesau

kee-

Moultonbor

ough-

EBOAT 

Present 1 Present 1 GPS survey 

point 

307794 4845010 
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Table F.1 Continued. 
2009 2019 NH Winnipesa

ukee Lake 

20090604-

1100-BS-

Lake 

Winnipesau

kee-

Moultonbor

ough-SEINE 

Present 1 Present 1 GPS survey 

point 

307961 4844050 

2009 2019 NH Winnipesa

ukee Lake 

20090604-

1230-BS-

Lake 

Winnipesau

kee-

Moultonbor

ough-SEINE 

Present 1 Present 1 GPS survey 

point 

307541 4843770 

2010 2010 NH Lamprey 

River 

20100914-

1200-BS-

Lamprey 

River-

Raymond-

DIPNET 

Present 1 Present 1 GPS survey 

point 

318968 4769400 

2010 2010 NH Lees Pond 20100618-

1030-BS-

Lees Pond-

Moultonbor

ough-

DIPNET 

Present 1 Present 1 GPS survey 

point 

306392 4845820 

2010 2010 NH Winnipesa

ukee Lake 

20100728-

1230-BS-

Winnipesau

kee Lake-

Moultonbor

ough-

DIPNET 

Present 1 Present 1 GPS survey 

point 

307866 4844680 
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Table F.1 Continued. 
2010 2010 NH Winnipesa

ukee Lake 

20100729-

1030-BS-

Winnipesau

kee Lake-

Moultonbor

ough-

DIPNET 

Present 1 Present 1 GPS survey 

point 

310247 4838360 

2010 2010 NH Winnipesa

ukee Lake 

20100729-

1130-BS-

Winnipesau

kee Lake-

Moultonbor

ough-

DIPNET 

Present 1 Present 1 GPS survey 

point 

307474 4845060 

2010 2019 NH Winnipesa

ukee Lake 

20100615-

1000-BS-

Winnipesau

kee Lake-

Moultonbor

ough-

DIPNET 

Present 1 Present 1 GPS survey 

point 

305741 4843980 

2010 2019 NH Winnipesa

ukee Lake 

20100615-

1100-BS-

Winnipesau

kee Lake-

Moultonbor

ough-

DIPNET 

Present 1 Present 1 GPS survey 

point 

306109 4844090 

2010 2019 NH Winnipesa

ukee Lake 

20100728-

1015-BS-

Winnipesau

kee Lake-

Moultonbor

ough-

DIPNET 

Present 1 Present 1 GPS survey 

point 

306640 4844450 
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Table F.1 Continued. 
2010 2019 NH Winnipesa

ukee Lake 

20100728-

1100-BS-

Winnipesau

kee Lake-

Moultonbor

ough-

DIPNET 

Present 1 Present 1 GPS survey 

point 

307118 4844510 

2010 2019 NH Winnipesa

ukee Lake 

20100728-

930-BS-

Winnipesau

kee Lake-

Moultonbor

ough-

DIPNET 

Present 1 Present 1 GPS survey 

point 

306352 4844270 

2010 2019 NH Winnipesa

ukee Lake 

20100728-

945-BS-

Winnipesau

kee Lake-

Moultonbor

ough-

DIPNET 

Present 1 Present 1 GPS survey 

point 

306541 4844270 

2010 2019 NH Winnipesa

ukee Lake 

20190702-

1000-BS-

Winnipesau

kee Lake-

Moultonbor

ough-

DIPNET 

Present 1 Present 1 GPS survey 

point 

306859 4844600 

2010 2021 ME Boom Rd. 

brook 

BOOMBR Present 1 Absent 0 GPS survey 

point 2021, 

historic road 

crossing 

coordinates 

377144 4819870 

2010 2021 ME Kimball 

Brook 

KIMBAL Present 1 Present 1 GPS survey 

point 

341689 4887230 
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Table F.1 Continued. 
2010 2022 ME Watchic 

Pond brook 

WATBRK Present 1 Absent 0 GPS survey 

point 2021, 

historic road 

crossing 

coordinates 

368055 4845460 

2011 2011 NH Lamprey 

River 

20110811-

930-BS-

Lamprey 

River-

Raymond-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

324701 4765520 

2011 2011 NH Lamprey 

River 

20110823-

1100-BS-

Lamprey 

River-

Raymond-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

321419 4767070 

2012 2012 NH Bunker 

Pond 

20120731-

1400-BS-

Lamprey 

River-

Epping-

SEINE 

Present 1 Absent 0 GPS survey 

point 

326481 4767360 

2012 2012 NH Jones 

Brook 

20120801-

1030-BS-

Jones 

Brook-

Middleton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

333229 4816800 

2012 2012 NH Jones 

Brook 

20120801-

1200-BS-

Jones 

Brook-

Middleton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

333751 4817080 
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Table F.1 Continued. 
2012 2012 NH Jones 

Brook 

20120801-

1330-BS-

Jones 

Brook-

Middleton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

332844 4817220 

2012 2012 NH Jones 

Brook 

20120801-

900-BS-

Jones 

Brook-

Middleton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

334783 4816370 

2012 2012 NH Lamprey 

River 

20120817-

800-BS-

Lamprey 

River-

Epping-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

326778 4767710 

2012 2019 NH Branch 

River 

20120802-

1300-BS-

Branch 

River-

Milton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

340403 4814010 

2013 2013 NH Crystal 

Lake 

20130718-

1000-BS-

Crystal 

Lake-

Gilmanton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

312049 4813770 

2013 2013 NH Garland 

Pond 

(west) 

20130806-

1200-BS-

Garland 

Pond-

Moultonbor

ough-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

306200 4846810 
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Table F.1 Continued. 
2013 2013 NH Isinglass 

River 

20130723-

1300-BS-

Isinglass 

River-

Barrington-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

332103 4788900 

2013 2013 NH Jones 

Brook 

20130812-

1000-BS-

Jones 

Brook-

Milton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

337824 4813440 

2013 2013 NH Jones 

Brook 

20130812-

1200-BS-

Jones 

Brook-

Milton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

335218 4815050 

2013 2013 NH Seaver 

Brook 

20130603-

1200-

EBTJV-

Seaver 

Brook-

Plaistow-

EFISH 

Presumed 

present 

1 Present 1 GPS survey 

point 

329426 4743960 

2013 2013 NH Winnipesa

ukee Lake 

20130509-

1100-BS-

Winnipesau

kee Lake-

Moultonbor

ough-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

307548 4844390 

2014 2014 NH Cocheco 

River 

20140908-

800-BS-

Cocheco 

River-

Farmington-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

330772 4809000 

            



 
 

133 

 

Table F.1 Continued. 
2014 2014 NH Coffin 

Brook 

20140929-

1000-BS-

Coffin 

Brook-

Alton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

319744 4809650 

2014 2014 NH Coffin 

Brook 

20140929-

1200-BS-

Coffin 

Brook-

Alton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

321001 4810060 

2014 2014 NH Coffin 

Brook 

20140929-

1300-BS-

Coffin 

Brook-

Alton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

321740 4810230 

2014 2014 NH Coffin 

Brook 

20140929-

800-BS-

Coffin 

Brook-

Alton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

319217 4810690 

2014 2014 NH Exeter 

River 

20140827-

1000-BS-

Exeter 

River-

Fremont-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

329044 4758860 

2014 2014 NH Exeter 

River 

20140827-

800-BS-

Exeter 

River-

Fremont-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

326845 4759900 
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Table F.1 Continued. 
2014 2014 NH Northeast 

Pond 

20140723-

1000-BS-

Northeast 

Pond-

Milton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

342338 4810900 

2014 2014 NH Northeast 

Pond 

20140723-

800-BS-

Northeast 

Pond-

Milton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

341558 4814410 

2014 2014 NH Ryefield 

Brook 

20140909-

1300-BS-

Ryefield 

Brook-

Wolfeboro-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

327387 4830760 

2014 2014 NH Warren 

Brook 

20140909-

1000-BS-

Warren 

Brook-

Wolfeboro-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

328940 4828230 

2014 2014 NH Wentworth 

Lake 

20140909-

1200-BS-

Wentworth 

Lake-

Wolfeboro-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

327301 4830530 

2014 2014 NH Wentworth 

Lake 

20140909-

800-BS-

Wentworth 

Lake-

Wolfeboro-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

323743 4828390 
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Table F.1 Continued. 
2015 2015 NH Heron 

Pond 

20151008-

1230-BS-

Heron Pond-

Moultonbor

ough-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

300604 4845920 

2015 2015 NH Powwow 

River 

20150723-

1030-BS-

Powwow 

River-South 

Hampton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

337701 4749520 

2015 2015 NH Province 

Lake 

20160830-

1230-BS-

South River-

Effingham-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

338958 4840540 

2015 2015 NH Unnamed 

pond 

20150924-

1015-BS-

unnamed 

pond-

Moultonbor

ough-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

299997 4847940 

2016 2016 NH Copp 

Brook 

20160830-

930-BS-

Copp 

Brook-

Wakefield-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

338388 4826560 

2016 2016 NH Copps 

Pond 

20160922-

1130-BS-

Copps Pond-

Tuftonboro-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

316279 4838670 
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Table F.1 Continued. 
2016 2021 NH Berry Pond 20160922-

900-BS-

Berry Pond-

Moultonbor

ough-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

307391 4847840 

2016 2021 NH Berry Pond 20210723-

1200-BS-

Berry Pond-

Moultonbor

ough-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

307193 4848850 

2017 2017 NH Exeter 

River 

20171003-

1230-BS-

Exeter 

River-

Fremont-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

325972 4760500 

2017 2017 NH Exeter 

River 

20171003-

930-BS-

Exeter 

River-

Brentwood-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

329771 4759160 

2017 2017 NH Exeter 

River 

20171018-

1000-BS-

Exeter 

River-

Brentwood-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

336793 4759420 

2017 2017 NH Harper 

Brook 

20170929-

930-BS-

Harper 

Brook  -

New 

Hampton-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

287105 4833900 
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Table F.1 Continued. 
2017 2017 NH Red Hill 

River 

20170926-

1030-BS-

Red Hill 

River-

Sandwich-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

303589 4851420 

2017 2017 NH Red Hill 

River 

20170926-

900-BS-Red 

Hill River-

Sandwich-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

303311 4851840 

2017 2017 NH Salmon 

Falls River 

20170814-

1030-BS-

Salmon 

Falls River-

Milton-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

342012 4819280 

2017 2017 NH Suncook 

River 

20170913-

1100-BS-

Suncook 

River-

Epsom-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

308338 4790510 

2017 2017 NH Union 

Meadows 

Pond 

20170814-

1230-BS-

Union 

Meadows 

Pond-

Wakefield-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

336326 4818780 

2017 2017 NH Unnamed 

pond 

20170929-

1430-BS-

unnamed 

pond-

Meredith-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

292252 4832670 
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Table F.1 Continued. 
2017 2020 NH Harper 

Brook 

20200917-

900-BS-

Harper 

Brook-New 

Hampton-

DIPNET 

Presumed 

present 

1 Present in 

2018, not 

detected 

in 2020: 

0 GPS survey 

point 

289309 4833360 

2018 2018 NH Garland 

Pond (east) 

20190701-

1030-BS-

Garland 

Pond-

Ossipee-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

323622 4840930 

2018 2018 NH Kanasatka 

Lake 

20180709-

1000-BS-

Kanasatka 

Lake-

Moultonbor

ough-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

303025 4843210 

2018 2018 NH Kanasatka 

Lake 

20180709-

1130-BS-

Kanasatka 

Lake-

Moultonbor

ough-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

302156 4844500 

2018 2018 NH Kanasatka 

Lake 

20180709-

1300-BS-

Kanasatka 

Lake-

Moultonbor

ough-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

301199 4844670 

2018 2018 NH Lamprey 

River 

20180629-

930-BS-

Lamprey 

River-

Epping-

DIPNET 

Present 1 Present 1 GPS survey 

point 

326725 4767610 
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Table F.1 Continued. 
2019 2019 NH Beaver 

Brook 

20190924-

1400-BS-

Beaver 

Brook-New 

Durham-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

325161 4822400 

2019 2019 NH Northeast 

Pond 

20190809-

930-BS-

Northeast 

Pond-

Milton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

341348 4815040 

2019 2019 NH Salmon 

Falls River 

20190809-

1000-BS-

Salmon 

Falls River-

Milton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

340682 4815310 

2019 2019 NH Salmon 

Falls River 

20190809-

1100-BS-

Salmon 

Falls River-

Milton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

340588 4815330 

2019 2019 NH Salmon 

Falls River 

20190809-

1230-BS-

Salmon 

Falls River-

Milton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

340628 4815970 

2019 2019 NH Salmon 

Falls River 

20190809-

945-BS-

Salmon 

Falls River-

Milton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

341112 4815260 
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Table F.1 Continued. 
2019 2019 NH Suncook 

River 

20190920-

1100-BS-

Suncook 

River-

Barnstead-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

314287 4807800 

2019 2019 NH Unnamed 

stream 

20190701-

1130-BS-

unnamed 

stream-

Ossipee-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

324576 4840400 

2019 2022 NH Warren 

Hatchery 

Pond 

20220824-

1030-BS-

Warren 

Hatchery 

Pond-

Warren-

DIPNET 

Absent 0 Introduce

d 

NA GPS survey 

point 

268205 4866060 

2020 2020 NH Archers 

Pond 

20200813-

1300-BS-

Archers 

Pond-

Ossipee-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

327486 4843180 

2020 2020 NH Branch 

River 

20200818-

1230-BS-

Branch 

River-

Milton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

339216 4815550 

2020 2020 NH Cooks 

Pond 

20200806-

1000-BS-

Cooks Pond-

Madison-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

326549 4859110 
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Table F.1 Continued. 
2020 2020 NH Isinglass 

River 

20200707-

1000-BS-

Isinglass 

River-

Barrington-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

330815 4789640 

2020 2020 NH Isinglass 

River 

20200707-

1230-BS-

Isinglass 

River-

Barrington-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

330006 4790140 

2020 2020 NH Isinglass 

River 

20200707-

1530-BS-

Isinglass 

River-

Barrington-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

330319 4789780 

2020 2020 NH Nippo 

Brook 

20200805-

900-BS-

Nippo 

Brook-

Barrington-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

330050 4788390 

2020 2020 NH Pine River 20200729-

930-BS-Pine 

River-

Effingham-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

329392 4846180 

2020 2020 NH Salmon 

Falls River 

20200818-

1030-BS-

Salmon 

Falls River-

Milton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

341080 4817410 
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Table F.1 Continued. 
2020 2020 NH Squam 

River 

20200812-

1000-BS-

Squam 

River-

Ashland-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

288770 4843690 

2021 2021 NH Bearcamp 

Pond 

20210723-

1000-BS-

Bearcamp 

Pond-

Sandwich-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

308843 4854620 

2021 2021 NH Brindle 

Pond 

20210715-

1200-BS-

Brindle 

Pond-

Barnstead-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

318108 4803750 

2021 2021 NH Cawley 

Pond 

20210802-

940-BS-

Cawley 

Pond-

Sanbornton-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

289508 4824110 

2021 2021 NH Chocorua 

Lake 

20210712-

1000-BS-

Chocorua 

Lake-

Tamworth-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

320804 4862780 

2021 2021 NH Conway 

Lake 

20210716-

1100-BS-

Conway 

Lake-

Conway-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

335622 4871630 
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Table F.1 Continued. 
2021 2021 NH Crystal 

Lake 

20210623-

1300-BS-

Crystal 

Lake-

Gilmanton -

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

313542 4811090 

2021 2021 NH Exeter 

River 

20210721-

1100-BS-

Exeter 

River-

Exeter-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

341677 4758800 

2021 2021 NH Hawkins 

Pond 

20210722-

1200-BS-

Hawkins 

Pond-Center 

Harbor-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

293836 4840320 

2021 2021 NH Hermit 

Lake 

20210802-

1330-BS-

Hermit 

Lake-

Sanbornton-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

289184 4827440 

2021 2021 NH Horn Pond 20210714-

1030-BS-

Horn Pond-

Wakefield-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

341178 4825920 

2021 2021 NH Moores 

Pond 

20210712-

1200-BS-

Moores 

Pond-

Tamworth-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

323202 4858490 
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Table F.1 Continued. 
2021 2021 NH Purity Lake 20210618-

1030-BS-

Purity Lake-

Eaton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

332664 4860540 

2021 2021 NH Rocky 

Pond 

20210623-

930-BS-

Rocky 

Pond-

Gilmanton-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

301241 4808760 

2021 2021 NH Rollins 

Pond 

20210802-

1230-BS-

Rollins 

Pond-

Sanbornton-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

289596 4823150 

2021 2021 ME Saco River SACONO-

02 

Present in 

vicinity 

NA Absent 0 GPS survey 

point 

353642 4862300 

2021 2021 NH Snake 

River 

20210713-

1100-BS-

Snake 

River-New 

Hampton-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

294736 4837720 

2021 2021 NH Soucook 

River 

20210616-

1000-BS-

Soucook 

River-

Loudon-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

301160 4807380 

2021 2021 NH Upper 

Suncook 

Lake 

20210715-

1000-BS-

Upper 

Suncook 

Lake-

Barnstead-

DIPNET 

Present 1 Present 1 GPS survey 

point 

314625 4807430 
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Table F.1 Continued. 
2021 2021 NH White Lake 20210716-

1400-BS-

White Lake-

Tamworth-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

321375 4855970 

2021 2021 NH Whites 

Pond 

20210715-

1400-BS-

Whites 

Pond-

Pittsfield-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

312329 4797020 

2021 2021 NH Wickwas 

Lake 

20210723-

1400-BS-

Wickwas 

Lake-

Meredith-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

293622 4832450 

2021 2021 NH Winona 

Lake 

20210722-

1000-BS-

Winona 

Lake-New 

Hampton-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

293446 4838540 

2021 2022 ME Saco River 

backwater 

SACONO-

03 

Presumed 

present 

1 Present 1 GPS survey 

point 

353523 4862370 

2022 2022 ME Androscog

gin River 

ANDROS Unknown NA Absent 0 GPS survey 

point 

405085 4877020 

2022 2022 ME Bradley 

Pond 

BRADPD-

01 

Unknown NA Absent 0 GPS survey 

point 

351426 4899890 

2022 2022 ME Bradley 

Pond 

BRADPD-

02 

Unknown NA Absent 0 GPS survey 

point 

351071 4899370 

2022 2022 ME Buck 

Meadow 

Brook 

BUCKBR Presumed 

present 

1 Present 1 GPS survey 

point 

350874 4869460 

2022 2022 ME Buff Brook BUFFBR Unknown NA Absent 0 GPS survey 

point 

356590 4828550 

2022 2022 ME Carsley 

Brook 

CARBRK Unknown NA Absent 0 GPS survey 

point 

368265 4882340 
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Table F.1 Continued. 
2022 2022 ME Chandler 

Brook 

CHANBR Unknown NA Absent 0 GPS survey 

point 

401963 4862410 

2022 2022 ME Colcord 

Pond inlet 

COLCPD-

02 

Present in 

waterbody 

NA Absent 0 GPS survey 

point 

342639 4857680 

2022 2022 ME Crooked 

River 

CROOKN Unknown NA Absent 0 GPS survey 

point 

357338 4900570 

2022 2022 ME Crooked 

River 

CROOKS Unknown NA Absent 0 GPS survey 

point 

374475 4870820 

2022 2022 ME Dingley 

Brook 

DINGLY Unknown NA Absent 0 GPS survey 

point 

378789 4863140 

2022 2022 ME Duck Pond 

Brook 

DUCKIN Unknown NA Absent 0 GPS survey 

point 

358274 4884980 

2022 2022 ME Duck Pond 

Brook 

DUCKNO Unknown NA Absent 0 GPS survey 

point 

357422 4889870 

2022 2022 ME Eddy 

Brook 

EDDYBR Unknown NA Absent 0 GPS survey 

point 

393679 4868000 

2022 2022 NH Exeter 

River 

20220823-

1430-BS-

Exeter 

River-

Chester-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

320961 4759830 

2022 2022 NH Garland 

Pond 

(west) 

20220711-

1330-BS-

Garland 

Pond-

Moultonbor

ough-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

305852 4846900 

2022 2022 ME Great 

Brook 

GRTBRK Unknown NA Absent 0 GPS survey 

point 

346438 4846970 

2022 2022 ME Haley Pond 

brook 

HALEY Unknown NA Unknown NA GPS survey 

point 

353738 4844540 

2022 2022 ME Half Moon 

Pond (Otter 

Ponds 

complex) 

OTTER-02 Unknown NA Absent 0 GPS survey 

point 

378319 4846670 

            



 
 

147 

 

Table F.1 Continued. 
2022 2022 ME Ingalls 

Pond 

INGALS-01 Unknown NA Absent 0 GPS survey 

point 

355979 4858140 

2022 2022 ME Ingalls 

Pond 

INGALS-02 Unknown NA Absent 0 GPS survey 

point 

356014 4857860 

2022 2022 NH Lamprey 

River 

20220914-

1330-BS-

Lamprey 

River-

Newmarket-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

341924 4772630 

2022 2022 NH Long Pond 20220826-

1030-BS-

Long Pond-

Northwood-

DIPNET 

Unknown NA Absent 0 GPS survey 

point 

319112 4790390 

2022 2022 ME Meadow 

Brook 

MEADBR Unknown NA Absent 0 GPS survey 

point 

413718 4869180 

2022 2022 ME Merrill 

Brook 

MERRIL Unknown NA Absent 0 GPS survey 

point 

408744 4855850 

2022 2022 ME Middle 

Range 

Pond 

RANGE-01 Unknown NA Absent 0 GPS survey 

point 

389383 4877000 

2022 2022 ME Middle 

Range 

Pond 

RANGE-02 Unknown NA Absent 0 GPS survey 

point 

388929 4874370 

2022 2022 ME Mosquito 

Pond 

MOSQPD Unknown NA Absent 0 GPS survey 

point 

356524 4906740 

2022 2022 ME Mud Pond MUDNO Presumed 

present 

1 Present 1 GPS survey 

point 

358926 4865650 

2022 2022 ME Mud Pond MUDSO Unknown NA Absent 0 GPS survey 

point 

348459 4830540 

2022 2022 ME Ossipee 

River 

OSSIPR Unknown NA Absent 0 GPS survey 

point 

353408 4852070 

2022 2022 ME Panther 

Pond 

PANTHR-

02 

Presumed 

present in 

waterbody 

NA Absent 0 GPS survey 

point 

381908 4863540 
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Table F.1 Continued. 
2022 2022 ME Panther 

Pond 

PANTHR-

03 

Presumed 

present in 

waterbody 

NA Absent 0 GPS survey 

point 

383454 4864880 

2022 2022 ME Panther 

Pond/Tenn

y River 

PANTHR-

01 

Presumed 

present 

1 Present 1 GPS survey 

point 

382062 4866260 

2022 2022 ME Piscataqua 

River 

PISCDN Unknown NA Absent 0 GPS survey 

point 

395381 4845140 

2022 2022 ME Piscataqua 

River 

PISCUP Unknown NA Absent 0 GPS survey 

point 

394834 4850480 

2022 2022 ME Presumpsc

ot River 

PRESBG Unknown NA Absent 0 GPS survey 

point 

383487 4846940 

2022 2022 ME Rachel 

Carson 

brook 

RACHEL Unknown NA Absent 0 GPS survey 

point 

396681 4827270 

2022 2022 ME Red Brook REDBRK Unknown NA Absent 0 GPS survey 

point 

391689 4831260 

2022 2022 NH Red Hill 

River 

20220711-

1030-BS-

Red Hill 

River-

Moultonbor

ough-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

305584 4849760 

2022 2022 NH Red Hill 

River 

20220711-

1130-BS-

Red Hill 

River-

Moultonbor

ough-

DIPNET 

Presumed 

present 

1 Present 1 GPS survey 

point 

305648 4849550 

2022 2022 ME Robert's 

Ridge 

brook 

RIDGEB Unknown NA Absent 0 GPS survey 

point 

363830 4826630 

2022 2022 ME Royal 

River 

ROYAL Unknown NA Absent 0 GPS survey 

point 

398071 4874310 

2022 2022 ME Shepard's 

River 

SHEPR Unknown NA Absent 0 GPS survey 

point 

345344 4866430 



 
 

149 

 

Table F.1 Continued. 
2022 2022 ME Snake Pond 

(Otter 

Ponds 

complex) 

OTTER-01 Unknown NA Absent 0 GPS survey 

point 

378872 4846550 

2022 2022 ME Soper Mill 

Brook 

SOPER Unknown NA Absent 0 GPS survey 

point 

402196 4875470 

2022 2022 ME Symmes 

Pond 

SYMMES-

01 

Unknown NA Absent 0 GPS survey 

point 

348917 4834440 

2022 2022 ME Symmes 

Pond 

SYMMES-

02 

Unknown NA Absent 0 GPS survey 

point 

348864 4834450 

2022 2022 ME The Heath HEATH-01 Unknown NA Absent 0 GPS survey 

point 

382068 4875170 

2022 2022 ME The Heath HEATH-02 Unknown NA Absent 0 GPS survey 

point 

381920 4874680 

2022 2022 ME Unnamed 

pond 

CANCO Unknown NA Absent 0 GPS survey 

point 

396733 4837540 

Pre-2000 2020 NH Heads 

Pond 

20200708-

900-BS-

Heads Pond-

Hooksett-

DIPNET 

Present 1 Absent 0 GPS survey 

point 

301469 4774900 

Pre-2000 Unknow

n 

NH Canobie 

Lake 

Canobie 

Lake 

Present 1 Absent 0 Center of 

waterbody: 

no precise 

location 

known 

315595 4740760 

Pre-2000 Unknow

n 

NH Lower 

Suncook 

Lake 

Lower 

Suncook 

Lake 

Present in 

waterbody 

1 Absent 0 Center of 

waterbody: 

no precise 

location 

known 

315869 4805010 

Pre-2000 Unknow

n 

NH Pleasant 

Lake 

Pleasant 

Lake 

Present in 

waterbody 

1 Absent 0 Center of 

waterbody: 

no precise 

location 

known 

316274 4784430 
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Table F.1 Continued. 
Pre-2000 Unknow

n 

NH Shadow 

Lake 

Shadow 

Lake 

Present in 

waterbody 

1 Absent 0 Center of 

waterbody: 

no precise 

location 

known 

316955 4743150 

Pre-2000 Unknow

n 

NH Winnipesa

ukee Lake 

Winnipesau

kee Lake: 

Fish Cove 

Present 1 Absent 0 Center of 

cove: no 

precise 

coordinates 

303333 4835260 

Pre-2000 Unknow

n 

NH Winnisqua

m Lake 

Winnisquam 

Lake 

Present in 

waterbody 

1 Absent 0 Center of 

waterbody: 

no precise 

location 

known 

297610 4823430 
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APPENDIX G: LOCAL HABITAT MODELS 

Table G.1 Top 50 local habitat models ranked by AICc using glmulti. 

Rank Variables AICc ΔAIC 

1 1 + dams + prop.Fveg + Prop.Ag + Prop.Dforest + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + HUC12.area + 

prop.site.Sveg.complex + prop.site.Eveg1 

30.602 0.000 

2 1 + WBType + TDS + prop.Fveg + Drainage.Area + Prop.Devel + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + 

HUC12.area + prop.site.Sveg.complex + prop.site.Sveg.simple + prop.site.Eveg.cat 

34.658 4.055 

3 1 + WBType + prop.Sveg + prop.Fveg + Drainage.Area + Prop.Ag + Prop.Mforest + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + 

Prop.cfor.HUC12 + HUC12.area 

34.803 4.201 

4 1 + WBType + TDS + prop.Fveg + Drainage.Area + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + HUC12.area + 

prop.site.Sveg.complex + prop.site.Sveg.simple + prop.site.Eveg1 + prop.site.Eveg.cat 

35.261 4.658 

5 1 + WBType + TDS + prop.Fveg + Drainage.Area + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + HUC12.area + 

prop.site.Sveg.complex + prop.site.Sveg.simple + prop.site.Eveg.cat 

35.726 5.123 

6 1 + WBType + prop.org.sub + prop.Sveg + prop.Fveg + Drainage.Area + Prop.Ag + Prop.Mforest + IEI + Prop.mfor.HUC12 + 

Prop.dfor.HUC12 + Prop.cfor.HUC12 + HUC12.area 

35.765 5.163 

7 1 + WBType + TDS + prop.Fveg + Drainage.Area + Prop.Ag + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + 

HUC12.area + prop.site.Sveg.complex + prop.site.Sveg.simple + prop.site.Eveg.cat 

35.767 5.165 

8 1 + WBType + prop.Sveg + prop.Fveg + Drainage.Area + Prop.Ag + Prop.Mforest + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + 

Prop.cfor.HUC12 + HUC12.area + prop.site.Sveg.complex 

35.900 5.298 

9 1 + WBType + prop.Sveg + prop.Eveg + prop.Fveg + Drainage.Area + Prop.Ag + Prop.Mforest + IEI + Prop.mfor.HUC12 + 

Prop.dfor.HUC12 + Prop.cfor.HUC12 + HUC12.area 

36.008 5.406 

10 1 + WBType + TDS + dams + prop.Fveg + Drainage.Area + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + 

HUC12.area + prop.site.Sveg.complex + prop.site.Sveg.simple + prop.site.Eveg.cat 

36.086 5.484 

11 1 + WBType + TDS + prop.Fveg + Drainage.Area + Prop.Wtl + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + 

HUC12.area + prop.site.Sveg.complex + prop.site.Sveg.simple + prop.site.Eveg.cat 

36.268 5.665 

12 1 + WBType + prop.Sveg + prop.Fveg + Drainage.Area + Prop.Ag + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 

+ HUC12.area + prop.site.Sveg.complex 

36.332 5.730 

13 1 + WBType + dams + prop.Sveg + prop.Fveg + Drainage.Area + Prop.Ag + Prop.Mforest + IEI + Prop.mfor.HUC12 + 

Prop.dfor.HUC12 + Prop.cfor.HUC12 + HUC12.area 

36.676 6.074 

14 1 + WBType + prop.Sveg + prop.Fveg + Drainage.Area + Prop.Ag + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 

+ HUC12.area 

36.714 6.111 

15 1 + WBType + TDS + prop.Fveg + Drainage.Area + Prop.Devel + Prop.Mforest + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + 

Prop.cfor.HUC12 + Prop.ag.HUC12 + HUC12.area + prop.site.Sveg.complex + prop.site.Sveg.simple 

36.736 6.134 

16 1 + WBType + TDS + dams + prop.Fveg + Drainage.Area + Prop.Cforest + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + 

Prop.cfor.HUC12 + prop.site.Eveg1 + prop.site.Eveg.broad 

36.807 6.205 

17 1 + WBType + TDS + prop.Fveg + Drainage.Area + Prop.Mforest + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + 

HUC12.area + prop.site.Sveg.complex + prop.site.Sveg.simple + prop.site.Eveg.cat 

37.316 6.714 
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Table G.1 Continued. 
18 1 + WBType + TDS + prop.Sveg + prop.Fveg + Drainage.Area + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + 

prop.site.Eveg.broad 

37.325 6.723 

19 1 + WBType + TDS + dams + prop.Fveg + Drainage.Area + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + 

prop.site.Eveg1 + prop.site.Eveg.broad 

37.419 6.817 

20 1 + WBType + TDS + prop.Fveg + Drainage.Area + Prop.Cforest + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + 

HUC12.area + prop.site.Sveg.complex + prop.site.Sveg.simple + prop.site.Eveg.cat 

37.481 6.879 

21 1 + WBType + TDS + prop.Fveg + Drainage.Area + Prop.Dforest + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + 

HUC12.area + prop.site.Sveg.complex + prop.site.Sveg.simple + prop.site.Eveg.cat 

37.554 6.952 

22 1 + WBType + TDS + prop.Fveg + Drainage.Area + Canopy + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + 

HUC12.area + prop.site.Sveg.complex + prop.site.Sveg.simple + prop.site.Eveg.cat 

37.690 7.088 

23 1 + WBType + TDS + prop.large.sub + prop.Sveg + prop.Fveg + Drainage.Area + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + 

Prop.cfor.HUC12 + prop.site.Eveg.broad 

37.997 7.394 

24 1 + WBType + prop.Sveg + prop.Fveg + Drainage.Area + Prop.Ag + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 

+ HUC12.area + prop.site.Sveg.complex + prop.site.Sveg.simple 

38.030 7.428 

25 1 + WBType + TDS + dams + prop.Sveg + prop.Eveg + prop.Fveg + Prop.Devel + Prop.Mforest + IEI + Prop.mfor.HUC12 + 

Prop.dfor.HUC12 + Prop.cfor.HUC12 + prop.site.Eveg1 

38.141 7.538 

26 1 + WBType + dams + prop.Sveg + prop.Fveg + Drainage.Area + Prop.Ag + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + 

Prop.cfor.HUC12 + HUC12.area + prop.site.Sveg.complex 

38.198 7.596 

27 1 + prop.Sveg + prop.Eveg + prop.Fveg + Drainage.Area + Prop.Wtl + Canopy + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + 

Prop.cfor.HUC12 + HUC12.area + prop.site.Eveg.broad 

38.277 7.675 

28 1 + WBType + prop.org.sub + prop.Sveg + prop.Fveg + Drainage.Area + Prop.Ag + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + 

Prop.cfor.HUC12 + HUC12.area + prop.site.Sveg.complex 

38.321 7.719 

29 1 + WBType + prop.Sveg + prop.Fveg + Drainage.Area + Prop.Ag + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 

+ Prop.ag.HUC12 + HUC12.area + prop.site.Sveg.complex 

38.332 7.730 

30 1 + WBType + TDS + dams + prop.Fveg + Prop.Mforest + Prop.Wtl + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 

+ HUC12.area + prop.site.Eveg.broad 

38.375 7.772 

31 1 + WBType + prop.Sveg + prop.Fveg + Prop.Ag + Prop.Wtl + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + 

Prop.ag.HUC12 + HUC12.area + prop.site.Eveg.cat 

38.499 7.897 

32 1 + prop.large.sub + prop.Sveg + prop.Eveg + prop.Fveg + Drainage.Area + Prop.Wtl + Canopy + IEI + Prop.mfor.HUC12 + 

Prop.dfor.HUC12 + Prop.cfor.HUC12 + HUC12.area + prop.site.Eveg.broad 

38.534 7.932 

33 1 + WBType + TDS + dams + prop.Fveg + Drainage.Area + Canopy + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 

+ HUC12.area + prop.site.Sveg.complex + prop.site.Sveg.simple 

38.675 8.073 

34 1 + WBType + prop.large.sub + prop.Sveg + prop.Fveg + Drainage.Area + Prop.Ag + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + 

Prop.cfor.HUC12 + HUC12.area 

38.692 8.090 

35 1 + WBType + TDS + prop.Fveg + Drainage.Area + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + HUC12.area + 

prop.site.Sveg.complex + prop.site.Sveg.simple 

38.707 8.104 

36 1 + WBType + TDS + prop.Sveg + prop.Fveg + Drainage.Area + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + 

prop.site.Eveg.cat + prop.site.Eveg.broad 

38.708 8.106 
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Table G.1 Continued. 
37 1 + WBType + TDS + dams + prop.Eveg + prop.Fveg + Prop.Mforest + Prop.Wtl + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + 

Prop.cfor.HUC12 + HUC12.area + prop.site.Eveg.broad 

38.724 8.122 

38 1 + WBType + prop.Sveg + prop.Fveg + Prop.Ag + Prop.Wtl + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + 

Prop.ag.HUC12 + HUC12.area 

38.777 8.174 

39 1 + WBType + TDS + dams + prop.large.sub + prop.Fveg + Drainage.Area + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + 

Prop.cfor.HUC12 + HUC12.area + prop.site.Sveg.complex + prop.site.Sveg.simple 

38.853 8.251 

40 1 + WBType + TDS + dams + prop.Fveg + Drainage.Area + Prop.Dforest + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + 

Prop.cfor.HUC12 + prop.site.Eveg1 + prop.site.Eveg.broad 

38.855 8.253 

41 1 + WBType + TDS + prop.Sveg + prop.Fveg + Drainage.Area + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + 

prop.site.Sveg.complex + prop.site.Eveg.broad 

38.884 8.282 

42 1 + WBType + TDS + dams + prop.Fveg + Drainage.Area + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + 

prop.site.Eveg1 

38.958 8.356 

43 1 + WBType + TDS + prop.Sveg + prop.Fveg + Drainage.Area + Prop.Dforest + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + 

Prop.cfor.HUC12 + prop.site.Eveg.broad 

38.977 8.375 

44 1 + WBType + TDS + prop.org.sub + prop.Sveg + prop.Fveg + Drainage.Area + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + 

Prop.cfor.HUC12 + prop.site.Eveg.broad 

38.982 8.380 

45 1 + prop.Sveg + prop.Eveg + prop.Fveg + Drainage.Area + Prop.Cforest + Prop.Wtl + Canopy + IEI + Prop.mfor.HUC12 + 

Prop.dfor.HUC12 + Prop.cfor.HUC12 + HUC12.area + prop.site.Eveg.broad 

39.046 8.444 

46 1 + prop.Sveg + prop.Fveg + Drainage.Area + Prop.Wtl + Canopy + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + 

HUC12.area + prop.site.Eveg.cat + prop.site.Eveg.broad 

39.131 8.529 

47 1 + WBType + TDS + dams + prop.Fveg + Drainage.Area + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + 

HUC12.area + prop.site.Eveg1 + prop.site.Eveg.broad 

39.146 8.544 

48 1 + WBType + TDS + dams + prop.org.sub + Prop.Cforest + Prop.Mforest + Prop.Wtl + IEI + Prop.dfor.HUC12 + Prop.cfor.HUC12 + 

Prop.ag.HUC12 + prop.site.Sveg.complex + prop.site.Eveg1 

39.294 8.691 

49 1 + WBType + TDS + prop.Sveg + prop.Fveg + Drainage.Area + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + Prop.cfor.HUC12 + 

prop.site.Sveg.simple + prop.site.Eveg.broad 

39.305 8.703 

50 1 + WBType + prop.Sveg + prop.Fveg + Prop.Ag + Prop.Cforest + Prop.Wtl + IEI + Prop.mfor.HUC12 + Prop.dfor.HUC12 + 

Prop.cfor.HUC12 + HUC12.area 

39.321 8.719 
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APPENDIX H: EXPLORATORY GENERALIZED LINEAR MODELS 

Table H.1 Top 50 historic period (1898-1999) generalized linear models ranked by AICc using glmulti. 

Rank Variables AICc ΔAICc 

1 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1941 + pH + silt + slope 1043.90 0.00 

2 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 + pH 

+ silt + slope 

1043.95 0.05 

3 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 + pH + silt + slope 1044.34 0.44 

4 1 + catchment + lith + clay + elev + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 + pH + silt + slope 1044.51 0.61 

5 1 + catchment + lith + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 + pH + silt + slope 1044.53 0.63 

6 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1941 + pH + silt + slope 1044.56 0.67 

7 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1941 + pH + silt 1044.64 0.74 

8 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1941 + pH + silt + slope 1044.81 0.92 

9 1 + catchment + lith + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1941 + pH + silt + slope 1044.84 0.94 

10 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 + pH + silt 1044.94 1.05 

11 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1941 + pH + silt + slope 1045.10 1.21 

12 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 + for.1981 

+ pH + silt + slope 

1045.25 1.35 

13 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 + pH + silt 1045.28 1.38 

14 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 + for.1980 

+ pH + silt + slope 

1045.31 1.41 

15 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1930 + for.1941 

+ pH + silt + slope 

1045.34 1.44 

16 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 + pH + slope 1045.35 1.45 

17 1 + catchment + lith + clay + elev + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1941 + pH + silt + slope 1045.36 1.47 

18 1 + catchment + lith + clay + elev + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 + pH + silt  1045.39 1.49 

19 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1941 + for.1980 + pH 

+ silt + slope 

1045.42 1.52 

20 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1941 + pH + silt 1045.46 1.56 

21 1 + catchment + lith + clay + elev + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1930 + for.1941 + pH + silt + slope 1045.50 1.61 

22 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1926 + for.1927 + for.1928 + for.1929 + for.1941 

+ pH + silt + slope 

1045.64 1.75 

23 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 + for.1981 

+ pH + silt + slope 

1045.66 1.77 
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Table H.1 Continued. 
24 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1930 + for.1941 

+ pH + silt + slope 

1045.69 1.79 

25 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1941 + for.1981 

+ pH + silt + slope 

1045.70 1.80 

26 1 + catchment + lith + marine + clay + elev + for.1920 + for.1921 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 

+ pH + silt + slope 

1045.73 1.83 

27 1 + catchment + lith + marine + clay + elev + for.1920 + for.1921 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1941 

+ pH + silt + slope 

1045.73 1.84 

28 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1941 + silt + slope 1045.77 1.88 

29 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1926 + for.1927 + for.1928 + for.1929 + for.1941 

+ pH + silt + slope 

1045.89 1.99 

30 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 + for.1980 

+ pH + silt + slope 

1045.92 2.02 

31 1 + catchment + lith + clay + elev + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 + for.1980 

+ pH + silt + slope 

1045.93 2.03 

32 1 + catchment + lith + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 + for.1981 

+ pH + silt + slope 

1045.95 2.06 

33 1 + catchment + lith + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1930 + for.1941 

+ pH + silt + slope 

1045.95 2.06 

34 1 + catchment + lith + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1926 + for.1927 + for.1928 + for.1929 + for.1941 

+ pH + silt + slope 

1046.08 2.19 

35 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1941 + pH + slope 1046.15 2.26 

36 1 + catchment + lith + marine + clay + elev + for.1921 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 

+ pH + silt + slope 

1046.23 2.33 

37 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 + for.1980 

+ pH + silt 

1046.32 2.42 

38 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1925 + for.1926 + for.1927 + for.1928 + for.1929 + for.1941 

+ pH + silt + slope 

1046.34 2.44 

39 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1941 + pH + slope 1046.38 2.49 

40 1 + catchment + lith + clay + elev + for.1921 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 + pH + silt + slope 1046.45 2.56 

41 1 + catchment + lith + clay + elev + for.1922 + for.1924 + for.1925 + for.1926 + for.1927 + for.1928 + for.1929 + for.1941 + pH + silt + slope 1046.50 2.60 

42 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1926 + for.1927 + for.1928 + for.1929 + for.1941 + pH + silt + slope 1046.52 2.63 

43 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 + silt + slope 1046.53 2.64 

44 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1926 + for.1927 + for.1928 + for.1929 

+ for.1941 + pH + silt 

1046.71 2.81 

45 1 + catchment + lith + marine + clay + elev + for.1920 + for.1921 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 

+ for.1941 + pH + silt 

1046.72 2.82 
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Table H.1 Continued. 
46 1 + catchment + lith + marine + clay + elev + for.1921 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1941 + pH + silt + slope 1046.74 2.84 

47 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + pH + silt + slope 1046.74 2.85 

48 1 + catchment + lith + clay + elev + for.1920 + for.1921 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1941 + pH + silt + slope 1046.76 2.87 

49 1 + catchment + lith + clay + elev + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1941 + silt + slope 1046.86 2.96 

50 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + pH + silt + slope 1046.86 2.96 

 

Table H.2 Top 50 current period (2000-2022) generalized linear models ranked by AICc using glmulti. 

Rank Variables AICc ΔAICc 

1 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1931 + for.1981 + pH + silt 849.24 0.00 

2 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1931 + for.1981 + pH + silt 849.44 0.20 

3 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1931 + for.1981 + pH + silt 849.49 0.26 

4 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1930 + for.1931 + for.1981 

+ pH + silt 

849.88 0.64 

5 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1931 + for.1981 

+ pH + silt 

849.97 0.73 

6 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1930 + for.1931 + for.1981 + pH + silt 850.11 0.87 

7 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1931 + for.1981 + pH + silt 850.13 0.89 

8 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1930 + for.1931 + for.1981 + pH + silt 850.19 0.96 

9 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1930 + for.1931 + for.1980 

+ for.1981 + pH + silt 

850.45 1.21 

10 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1926 + for.1927 + for.1928 + for.1929 + for.1931 + for.1981 + pH + silt 850.56 1.32 

11 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1931 + for.1980 + for.1981 

+ pH + silt 

850.58 1.34 

12 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1930 + for.1931 + for.1980 + for.1981 

+ pH + silt 

850.67 1.44 

13 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1931 + for.1980 + for.1981 + pH + silt 850.69 1.45 

14 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1927 + for.1928 + for.1931 + for.1981 + pH + silt 850.73 1.49 

15 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1931 + for.1980 

+ for.1981 + pH + silt 

850.76 1.53 

16 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1931 + for.1981 + pH 850.87 1.64 

17 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1930 + for.1931 + for.1981 

+ pH + silt 

850.96 1.72 
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Table H.2 Continued. 
18 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1931 + for.1981 + pH + silt + slope 851.02 1.78 

19 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1930 + for.1931 

+ for.1981 + pH + silt 

851.03 1.80 

20 1 + catchment + lith + marine + clay + elev + for.1924 + for.1927 + for.1928 + for.1929 + for.1931 + for.1981 + pH + silt 851.05 1.82 

21 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1931 + for.1981 + pH + silt 

+ slope 

851.17 1.93 

22 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1931 + for.1981 + pH + silt 

+ slope 

851.18 1.95 

23 1 + catchment + lith + marine + clay + elev + for.1921 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1931 + for.1981 + pH + silt 851.24 2.00 

24 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1930 + for.1931 + for.1981 

+ pH 

851.25 2.01 

25 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1926 + for.1927 + for.1928 + for.1929 + for.1931 

+ for.1980 + pH + silt 

851.31 2.07 

26 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1926 + for.1927 + for.1928 + for.1929 + for.1931 + for.1981 

+ pH + silt 

851.33 2.09 

27 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1926 + for.1927 + for.1928 + for.1929 + for.1931 

+ pH + silt 

851.36 2.12 

28 1 + catchment + lith + marine + clay + elev + for.1920 + for.1921 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1931 + for.1981 

+ pH + silt 

851.42 2.19 

29 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1927 + for.1929 + for.1931 + for.1981 + pH + silt 851.45 2.21 

30 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1925 + for.1926 + for.1927 + for.1928 + for.1929 + for.1931 + for.1981 

+ pH + silt 

851.48 2.24 

31 1 + catchment + lith + marine + clay + elev + for.1920 + for.1924 + for.1927 + for.1928 + for.1929 + for.1930 + for.1931 + for.1981 + pH + silt 851.49 2.25 

32 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1927 + for.1928 + for.1930 + for.1931 + for.1981 + pH + silt 851.54 2.30 

33 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1930 + for.1931 + for.1981 

+ pH + silt + slope 

851.60 2.37 

34 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1931 + for.1981 

+ pH + silt + slope 

851.61 2.37 

35 1 + catchment + lith + marine + clay + elev + for.1920 + for.1924 + for.1927 + for.1928 + for.1929 + for.1931 + for.1981 + pH + silt 851.64 2.40 

36 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1931 + for.1980 

+ for.1981 + pH 

851.72 2.48 

37 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1926 + for.1927 + for.1928 + for.1931 + for.1981 + pH + silt 851.77 2.54 

38 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1926 + for.1927 + for.1928 + for.1929 + for.1930 + for.1931 

+ for.1981 + pH + silt 

851.81 2.57 

39 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1930 + for.1931 + for.1981 + pH + silt 

+ slope 

851.82 2.58 

    



 
 

158 

 

Table H.2 Continued. 
40 1 + catchment + lith + marine + clay + elev + for.1920 + for.1921 + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1930 + for.1931 

+ for.1981 + pH + silt 

851.84 2.60 

41 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1931 + for.1981 + pH 852.01 2.77 

42 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1931 + for.1980 

+ pH + silt 

852.01 2.77 

43 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1926 + for.1927 + for.1928 + for.1930 + for.1931 + for.1981 

+ pH + silt 

852.03 2.79 

44 1 + catchment + lith + marine + clay + elev + for.1920 + for.1921 + for.1922 + for.1924 + for.1927 + for.1928 + for.1930 + for.1931 + for.1981 

+ pH + silt 

852.06 2.82 

45 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1926 + for.1927 + for.1928 + for.1929 + for.1930 

+ for.1931 + for.1980 + pH + silt 

852.11 2.87 

46 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1927 + for.1928 + for.1929 + for.1931 + pH + silt 852.30 3.06 

47 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1930 + for.1931 + for.1980 + pH + silt 852.35 3.11 

48 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1927 + for.1928 + for.1929 + for.1930 + for.1931 

+ for.1980 + pH + silt 

852.38 3.14 

49 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1927 + for.1928 + for.1930 + for.1931 + for.1980 + for.1981 

+ pH + silt + slope 

852.38 3.15 

50 1 + catchment + lith + marine + clay + elev + for.1920 + for.1922 + for.1924 + for.1925 + for.1926 + for.1927 + for.1928 + for.1929 + for.1931 

+ for.1980 + for.1981 + pH + silt 

852.39 3.15 
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APPENDIX I: SPECIES DISTRIBUTION MODELING CODE 

# 1. Standardize rasters 

library(raster) 

 

# load and stack rasters ---- 

files <- list.files(path = "./Predictors/sw_ext/", 

                    pattern = "tif", 

                    all.files = TRUE, 

                    full.names = TRUE,  

                    include.dirs = FALSE) 

 

predictors <- raster::stack(files) 

 

names(predictors) <- c("catchment", "clay", "coast", "elev",  

                       "for.1920", "for.1921", "for.1922", "for.1924", "for.1925",  

               "for.1926", "for.1927", "for.1928", "for.1929", "for.1930",  

                "for.1931", "for.1941", "for.1980", "for.1981", "lith",  

                       "marine", "sand", "silt", "slope", "pH") 

predictors$pH <- reclassify(predictors$pH, cbind(128, NA)) # Arc exported NAs as 128 for 

some reason (and only for this layer)  

 

names <- as.factor(c("catchment", "clay", "coast", "elev",  

                       "for.1920", "for.1921", "for.1922", "for.1924", "for.1925",  

               "for.1926", "for.1927", "for.1928", "for.1929", "for.1930",  

                "for.1931", "for.1941", "for.1980", "for.1981", "lith",  

                       "marine", "sand", "silt", "slope", "pH")) 

# Standardize rasters ----- 

## for continuous variables ---- 

for (i in names){ 

  writeRaster(scale(na.omit(predictors[[which(names(predictors) %in% i)]]), center = TRUE), 

paste0(paste0("./Predictors/sw_ext/Scaled/", i), "_sw.tif"), overwrite = TRUE) 

} 

 

# Load standardized rasters ---- 

files.st <- list.files(path = "./Predictors/sw_ext/Scaled/", 

                       pattern = "tif", 

                       all.files = TRUE, 

                       full.names = TRUE, 

                       include.dirs = FALSE) 
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predictors.st <- raster::stack(files.st,  

                               as.factor(predictors$lith),  

                               as.factor(predictors$marine),  

                               as.factor(predictors$catchment)) 

names(predictors.st) 

names(predictors.st) <- c("catchment", "clay", "coast", "elev",  

                       "for.1920", "for.1921", "for.1922", "for.1924", "for.1925",  

               "for.1926", "for.1927", "for.1928", "for.1929", "for.1930",  

                "for.1931", "for.1941", "for.1980", "for.1981", "lith",  

                       "marine", "sand", "silt", "slope", "pH") 

 

# Check rasters ---- 

x11() 

par(mfrow=c(1,2)) 

plot(predictors.st$silt) 

plot(predictors.st$sand) 

---------------------------------------------------------------------------------------------------------------------

--------- 

# 2. SDMtune exploratory code (example with only current presence-absence data) 

 

##############################################################################

# 

  # Current presence-absence data ####   

  

##############################################################################

# 

  rm(list = ls()) # remove all objects from R 

   

  # Load libraries ---- 

  library(dismo) 

  library(dplyr) 

  library(rasterVis) 

  library(rgdal) 

  library(rJava) 

  library(SDMtune) 

  library(sp) 

  library(terra) 

  library(zeallot) 

   

  # Load scaled rasters into terra ---- 
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  files <- list.files(path = "./Predictors/sw_ext/Scaled/Comparison/", 

                      pattern = "tif", 

                      all.files = TRUE, 

                      full.names = TRUE, 

                      include.dirs = FALSE) 

  # Stack rasters in terra ---- 

  predictors <- terra::rast(files) 

  names(predictors) # check order of layers 

   

  names(predictors) <- c("catchment", "clay", "coast",  

                         "elev", "for.1920", "for.1921",  

                         "for.1922", "for.1924", "for.1925", "for.1926",  

                         "for.1927", "for.1928", "for.1929", "for.1930",  

                         "for.1931", "for.1941","for.1980", "for.1981", "lith",  

                         "marine", "pH", "sand", "silt", "slope") 

   

  # Change categorical variables to factors ---- 

  predictors$lith <- as.factor(predictors$lith) 

  predictors$marine <- as.factor(predictors$marine) 

  predictors$catchment <- as.factor(predictors$catchment) 

  # Check rasters 

  # x11() 

  # par(mfrow=c(4,4)) 

  # plot(predictors[[1:16]]) 

  # x11() 

  # par(mfrow=c(4,4)) 

  # plot(predictors[[17:32]]) 

  # x11() 

  # par(mfrow=c(2,2)) 

  # plot(predictors[[33:45]]) 

   

  # Read in presence/absence points ---- 

  bds <- readOGR("./BDSsites_snapped.shp") # snapped to catchment position raster 

  bds$cOccu[bds$cOccu == -9999] <- NA # Arc won't let NA's be assigned to numeric columns, 

so fix this here 

  bds$hOccu[bds$hOccu == -9999] <- NA 

  bds$Year_Est[bds$Year_Est == -9999] <- NA 

  bds$YearSamp[bds$YearSamp == -9999] <- NA 

   

  # Confirm that all instances of -9999 have been removed 
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  summary(bds$cOccu) # 7 NA's 

  summary(bds$hOccu) # 93 NA's, only one confirmed historic absence (other sites unknown) 

   

  # Current presence coordinates ---- 

  cPresent <- subset(bds, cOccu == 1) # 122 presences 

  cPres <- cPresent@coords[,1:2] 

   

  # Current absence coordinates ---- 

  cAbsent <- subset(bds, cOccu == 0) # 120 known absences 

  cAbs <- cAbsent@coords[,1:2] 

  c.ab <- 10000-(length(cAbsent)-4) 

   

  # Generate background coordinates ---- 

  set.seed(42) 

  # bg_coords <- terra::spatSample(predictors, 

  #                                size = 50000, # returns 12107 points (many NA's from points on land) 

  #                                method = "random", 

  #                                na.rm = TRUE, 

  #                                xy = TRUE, 

  #                                values = FALSE) 

  # saveRDS(bg_coords, "./all_bg_coords_terra.rds") # save for later analyses 

  bg_coords <- readRDS("./all_bg_coords_terra.rds") 

  bg_coords_cab <- bg_coords[1:c.ab,] # keep first 10,000 points for Maxent 

   

  # Combine background and absence coordinates 

  c_bg_all <- rbind(bg_coords_cab, cAbs) 

  # saveRDS(c_bg_all, "./curr_bgab_terra_all.rds") # save points 

  save.image(file = "cSDMtune_exp_comparison.RData") 

   

  # Plot 

  x11() 

  plot(predictors$catchment) 

  points(cAbs) 

  points(bg_coords_cab) 

  points(c_bg_all) 

   

  # Create SWD object ---- 

  c_data <- prepareSWD(species = "BDS", 

                       p = cPres, # 121 presence points 

                       a = c_bg_all, # 10004 background & absence points 
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                       env = predictors, 

                       categorical = c("catchment", "lith", "marine")) 

  # ! 4 locations are NA for some environmental variables and have been discarded  

  # Species: BDS  

  # Presence locations: 121  

  # Absence locations: 10000  

   

  swd2csv(c_data, file_name = "./c_data_exploratory_comparison.csv") # save data as csv 

   

  ## Explore degree of autocorrelation ---- 

  x11() 

  plotCor(c_data,  

          method = "pearson",  

          cor_th = 0.7) 

   

  # Split data for cross-validation ---- 

  c(ctrain, cval, ctest) %<-% trainValTest(c_data, 

                                           val = 0.2, 

                                           test = 0.2, 

                                           only_presence = FALSE, 

                                           seed = 42) # The only_presence argument is used to split only the 

presence and not the background locations (Maxent only) 

  save.image(file = "cSDMtune_exp_comparison.RData") 

   

  # Random forest model---- 

  ## Train a model with default settings ---- 

  set.seed(42) 

  c_default_rf <- train(method = "RF", # can only do classification rf in SDMtune 

                        data = ctrain) 

  # Species: BDS  

  # Presence locations: 73  

  # Absence locations: 6000  

  # mtry: 6 

  # ntree: 500 

  # nodesize: 1 

  cat("Training auc: ", auc(c_default_rf)) 

  # Training auc:   # overfitting 

  cat("Training TSS: ", tss(c_default_rf)) 

  # Training TSS:   

  cat("Testing auc: ", auc(c_default_rf, test = cval)) 
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  # Testing auc:    

  cat("Testing tss: ", tss(c_default_rf, test = cval)) 

  # Testing tss:   

   

  c_default_rf@model@model$confusion 

  #      0 1  class.error 

  # 0 5996 4 0.0006666667 

  # 1   65 8 0.8904109589 

  # sensitivity = 15/(15+14) = 0.5172 

  # specificity = 5986/(5986+58) = 0.9904 

  # overall accuracy = (15+5986)/(5986+14+58+15) = 98.8 

  # true skill statistic = sensitivity + specificity - 1 = 0.5076 

   

  ### Variable importance default ---- 

  write.csv((c_vi_defaultrf <- varImp(c_default_rf, 

                                      permut = 10)), "./c_vi_default_rfexphexcomparison.csv") 

   

  save.image(file = "cSDMtune_exp_comparison.RData") 

   

  ## K-fold cross-validation ---- 

  c_folds_rf <- randomFolds(ctrain,  

                            k = 10,  

                            only_presence = FALSE,  

                            seed = 42) 

   

  c_kfold_rf <- train("RF",  

                      data = ctrain,  

                      folds = c_folds_rf) 

  # Replicates: 4  

  # Presence locations: 73  

  # Absence locations: 6000  

  # mtry: 6 

  # ntree: 500 

  # nodesize: 1 

   

  saveRDS(c_kfold_rf, "./c_kfold_rfexphexcomparison.rds") 

   

  cat("Training AUC: ", auc(c_kfold_rf)) 

  # Training AUC: 1  # overfitting 

  cat("Testing AUC: ", auc(c_kfold_rf, test = TRUE)) 
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  # Testing AUC:  0.9288006 

   

  ### Variable importance kfold ---- 

  write.csv((c_vi_kfoldrf <- varImp(c_kfold_rf, 

                                    permut = 10)), "./c_vi_kfold_rfexphexcomparison.csv") 

   

  save.image(file = "cSDMtune_exp_comparison.RData") 

   

  ## Data-driven variable selection 1 ---- 

  # Remove highly correlated variables 

  # SDMtune implements an algorithm that removes highly correlated variables repeating the 

following steps: 

  #   1. Ranks the variables according to the permutation importance or the percent contribution 

(the second method is available only for Maxent models). 

  #   2. Checks if the variable ranked as most important is highly correlated with other variables, 

according to the given method and correlation threshold. If the algorithm finds correlated 

variables it moves to the next step, otherwise checks the other variables in the rank; 

  #   3. Performs a leave one out Jackknife test among the correlated variables; 

  #   4. Remove the variable that decreases the model performance the least when removed, 

according to the given metric on the training dataset. 

  set.seed(42) 

  c_select_var_rf <- varSel(c_kfold_rf, 

                            metric = "auc", 

                            test = cval, 

                            bg4cor = c_data, 

                            method = "pearson", 

                            cor_th = 0.7, 

                            permut = 10) 

   

  # ✔  The variables clay, elev, for.1931, and silt have been removed 

  c_select_var_rf 

  # Continuous: coast for.1920 for.1921 for.1922 for.1924 for.1925 for.1926 for.1927 for.1928 

for.1929 for.1930 for.1941 for.1980 for.1981 pH sand slope   

  # Categorical: catchment lith marine 

   

  saveRDS(c_select_var_rf, "./c_select_var_rfexphexcomparison.rds") 

   

  cat("Training AUC: ", auc(c_select_var_rf)) 

  # Training AUC:  

  cat("Testing AUC after: ", auc(c_select_var_rf, test = cval)) 
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  #> Testing AUC after:  

   

  ### Variable importance varSel ---- 

  write.csv((varImp(c_select_var_rf, permut = 10)), 

"./c_vi_select_var_rfexphexcomparison.csv") 

  save.image(file = "cSDMtune_exp_comparison.RData") 

   

  ## Tune hyperparameters----- 

  getTunableArgs(c_select_var_rf) 

  # "mtry"     "ntree"    "nodesize" 

   

  c_rf <- list(mtry = 1:15,  

               ntree = seq(500,2000,200), 

               nodesize = 1:15) 

   

  c_om_rf <- SDMtune::optimizeModel(c_select_var_rf,  

                                    hypers = c_rf,  

                                    metric = "auc",  

                                    seed = 42) 

   

  saveRDS(c_om_rf, "./c_om_rfexphexcomparison.rds") 

   

  c_best_model_rf <- c_om_rf@models[[1]] 

   

  c_om_rf@results[1, ] 

  #    mtry ntree nodesize train_AUC  test_AUC   diff_AUC 

  # 1     9   700        1         1 0.9404747  0.0595253 

   

  write.csv(c_om_rf@results, "./c_om_rf_resultsexphexcomparison.csv") 

   

  save.image(file = "cSDMtune_exp_comparison.RData") 

   

  ## Data-driven variable selection 2 ---- 

  set.seed(42) 

  c_reduced_var_rf <- reduceVar(c_best_model_rf, # cross-validated, tuned model 

                                th = 1,     # Contribution threshold (2% permutation importance) 

                                metric = "auc", # Metric used to evaluate models 

                                test = cval,  

                                permut = 10, 
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                                use_jk = TRUE) # Use Jackknife AUC test (will not remove variables if it 

reduces AUC) 

   

  # ✔ No variables  have been removed 

   

  c_reduced_var_rf 

  # Replicates: 10  

  # Presence locations: 73  

  # Absence locations: 6000  

  # mtry: 9 

  # ntree: 700 

  # nodesize: 1 

  # Continuous:  clay elev for.1920 for.1921 for.1922 for.1924 for.1925 for.1926 for.1927 

for.1928 for.1929 for.1930 for.1931 for.1980 for.1981 pH slope  

  # Categorical: catchment lith marine 

   

  cat("Training AUC: ", auc(c_reduced_var_rf)) 

  # Training AUC:   

  cat("Testing AUC after: ", auc(c_reduced_var_rf, test = cval)) 

  #> Testing AUC after:  

   

  ### Variable importance reduceVar ---- 

  write.csv((varImp(c_reduced_var_rf, permut = 10)), 

"./c_vi_reduced_var_rfexphexcomparison.csv") 

   

  ## Merge SWD ---- 

  # Index of the best model 

  c_index_rf <- which.max(c_om_rf@results$test_AUC) 

   

  # New train dataset containing only the selected variables 

  c_new_train_rf <- c_reduced_var_rf@data  

   

  # Merge data 

  c_merged_data_rf <- mergeSWD(c_new_train_rf, 

                               cval, # The val dataset contains all the initial environmental variables but the 

mergeSWD() function will merge only those that are present in both datasets 

                               only_presence = FALSE)  

   

  # Presence locations: 97  

  # Absence locations: 8000  
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  save.image(file = "cSDMtune_exp_comparison.RData") 

   

  ## Final model ---- 

  set.seed(42) 

  c_final_rf <- train(method = "RF", 

                      data = c_merged_data_rf, 

                      mtry = c_om_rf@results[c_index_rf, 1], # mtry = 9 

                      ntree = c_om_rf@results[c_index_rf, 2], # ntree = 700 

                      nodesize = c_om_rf@results[c_index_rf, 3]) # nodesize = 1 

  c_final_rf 

  # Object of class SDMmodel  

  # Method: RF  

  # Species: BDS  

  # Presence locations:  97 

  # Absence locations:  8000 

  # Model configurations: 

  # mtry: 9 

  # ntree: 700 

  # nodesize: 1 

  # Variables:  

  # Continuous: coast for.1920 for.1921 for.1922 for.1924 for.1925 for.1926 for.1927 for.1928 

for.1929 for.1930 for.1941 for.1980 for.1981 pH sand slope 

  # Categorical: catchment lith marine           

   

  save.image(file = "cSDMtune_exp_comparison.RData") 

   

  # Evaluate using the held apart testing dataset 

  cat("Training auc: ", auc(c_final_rf)) 

  # Training auc:  1 

  cat("Training tss: ", tss(c_final_rf)) 

  # Training tss:  1 

  cat("Testing auc: ", auc(c_final_rf, test = ctest)) 

  # Testing auc:  0.8805 

  cat("Testing tss: ", tss(c_final_rf, test = ctest)) 

  # Testing tss:  0.628 

  caucrf <- SDMtune::auc(c_final_rf, test = ctest) # for weighted model mean 

  # Testing auc:  0.8805 

   

  c_final_rf@model@model$confusion 

  #      0  1 class.error 



 
 

169 

 

  # 0 7983 17   0.0021250 

  # 1   82 15   0.8453608 

   

   

  ### Variable importance final ---- 

  (c_vi_finalrf <- varImp(c_final_rf, 

                          permut = 10)) 

  #     Variable Permutation_importance    sd 

  # 1      coast                   47.1 0.002 

  # 2  catchment                   21.5 0.001 

  # 3   for.1927                   17.6 0.001 

  # 4       sand                    5.6 0.000 

  # 5      slope                    5.2 0.000 

  # 6         pH                    2.2 0.000 

  # 7       lith                    0.6 0.000 

  # 8   for.1980                    0.1 0.000 

  # 9   for.1920                    0.0 0.000 

  # 10  for.1921                    0.0 0.000 

  # 11  for.1922                    0.0 0.000 

  # 12  for.1924                    0.0 0.000 

  # 13  for.1925                    0.0 0.000 

  # 14  for.1926                    0.0 0.000 

  # 15  for.1928                    0.0 0.000 

  # 16  for.1929                    0.0 0.000 

  # 17  for.1930                    0.0 0.000 

  # 18  for.1941                    0.0 0.000 

  # 19  for.1981                    0.0 0.000 

  # 20    marine                    0.0 0.000 

  write.csv(c_vi_finalrf, "./c_vi_final_rfexphexcomparison.csv") 

   

   

  # Maxent model---- 

  ## Train a model with default settings ---- 

  set.seed(42) 

  c_default_mx <- train(method = "Maxent", 

                        data = ctrain) 

  # Presence locations: 73  

  # Absence locations: 6000  

  # fc: lqph 

  # reg: 1 
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  # iter: 500 

   

  cat("Training auc: ", auc(c_default_mx)) 

  # Training auc:   

  cat("Training tss: ", tss(c_default_mx)) 

  # Training tss:   

  cat("Testing auc: ", auc(c_default_mx, test = cval)) 

  # Testing auc:   

  cat("Testing tss: ", tss(c_default_mx, test = cval)) 

  # Testing tss:   

   

  ### Variable importance default ---- 

  (c_vi_defaultmx <- varImp(c_default_mx, 

                            permut = 10)) 

   

  write.csv(c_vi_defaultmx, "./c_vi_default_mxexphexcomparison.csv") 

  save.image(file = "cSDMtune_exp_comparison.RData") 

   

  ## K-fold cross-validation ---- 

  c_folds_mx <- randomFolds(ctrain, 

                            k = 10, 

                            only_presence = FALSE, 

                            seed = 42) 

   

  c_kfold_mx <- train("Maxent",  

                      data = ctrain,  

                      folds = c_folds_mx) 

  # Presence locations: 73  

  # Absence locations: 6000  

  # Model configurations: 

  # fc: lqph 

  # reg: 1 

  # iter: 500 

  saveRDS(c_kfold_mx, "./c_kfold_mxexphexcomparison.rds") 

   

  cat("Training AUC: ", auc(c_kfold_mx)) 

  # Training AUC:   

  cat("Testing AUC: ", auc(c_kfold_mx, test = TRUE)) 

  # Testing AUC:   
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  ### Variable importance kfold ---- 

  (c_vi_kfoldmx <- varImp(c_kfold_mx, 

                          permut = 10)) 

   

  write.csv(c_vi_kfoldmx, "./c_vi_kfold_mxexphexcomparison.csv") 

   

  save.image(file = "cSDMtune_exp_comparison.RData") 

   

  ## Data-driven variable selection 1 ---- 

  # Remove highly correlated variables 

  set.seed(42) 

  c_select_var_mx <- varSel(c_kfold_mx, 

                            metric = "auc", 

                            test = cval, 

                            bg4cor = c_data, 

                            method = "pearson", 

                            cor_th = 0.7) 

   

  # ✔ The variables coast, for.1941, and sand have been removed 

  # Variables:  

  # Continuous:  clay elev for.1920 for.1921 for.1922 for.1924 for.1925 for.1926 for.1927 

for.1928 for.1929 for.1930 for.1941 for.1980 for.1981 pH silt slope  

  # Categorical: catchment lith marine 

  save.image(file = "cSDMtune_exp_comparison.RData") 

   

  cat("Training AUC: ", auc(c_select_var_mx)) 

  # Training AUC:   

  cat("Testing AUC: ", auc(c_select_var_mx, test = TRUE)) 

  # Testing AUC:   

   

  ### Variable importance varSel ---- 

  (c_vi_select_var_mx <- varImp(c_select_var_mx, 

                                permut = 10)) 

   

  write.csv(c_vi_select_var_mx, "./c_vi_select_var_mxexphexcomparison.csv") 

   

  ## Tune hyperparameters----- 

  getTunableArgs(c_kfold_mx) 

  # [1] "fc"   "reg"  "iter" 
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  c_mx <- list(fc = c("l", "lq", "lh", "lqp", "lqph", "lqpht"),  

               iter = seq(300,1100,200), 

               reg = seq(0.2,1,0.1)) 

   

  c_om_mx <- optimizeModel(c_select_var_mx,  

                           hypers = c_mx,  

                           metric = "auc",  

                           seed = 42) 

   

  c_best_model_mx <- c_om_mx@models[[1]] 

   

  c_om_mx@results[1, ] 

  #      fc reg iter train_AUC  test_AUC   diff_AUC 

  # 1     

   

  save.image(file = "cSDMtune_exp_comparison.RData") 

  write.csv(c_om_mx@results, "./c_om_mx_resultsexphexcomparison.csv") 

   

  ## Data-driven variable selection 2 ---- 

  set.seed(42) 

  c_reduced_var_mx <- reduceVar(c_best_model_mx,  

                                th = 1,  

                                metric = "auc",  

                                test = cval, 

                                permut = 10,  

                                use_jk = TRUE) 

   

  # ✔ The variables for.1931, marine, for.1920, for.1926, for.1922, for.1921, for.1928, for.1981, 

for.1925, and for.1929 have been removed 

   

  c_reduced_var_mx  

  # Model configurations: 

  # fc:  

  # reg:  

  # iter:  

  # Variables: 

  # Continuous:  

  # Categorical: catchment lith 

   

  auc(c_reduced_var_mx) 
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  #> Training AUC:    

  cat("Testing AUC after: ", auc(c_reduced_var_mx, test = cval)) 

  #> Testing AUC after:  

   

  ### Variable importance reduceVar ---- 

  write.csv((varImp(c_reduced_var_mx, permut = 10)), 

"./c_vi_reduced_var_mxexphexcomparison.csv") 

   

  save.image(file = "cSDMtune_exp_comparison.RData") 

   

  ## Merge SWD ---- 

  # Index of the best model 

  c_index_mx <- which.max(c_om_mx@results$test_AUC) 

   

  # New train dataset containing only the selected variables 

  c_new_train_mx <- c_reduced_var_mx@data  

   

  # Merge only presence data 

  c_merged_data_mx <- mergeSWD(c_new_train_mx, 

                               cval, # The val dataset contains all the initial environmental variables but the 

mergeSWD() function will merge only those that are present in both datasets 

                               only_presence = FALSE)  

  # Presence locations: 97  

  # Absence locations: 8000  

   

  ## Final model ---- 

  set.seed(42) 

  c_final_mx <- train("Maxent", 

                      data = c_merged_data_mx, 

                      fc = c_om_mx@results[c_index_mx, 1], # fc = lqpht 

                      reg = c_om_mx@results[c_index_mx, 2], # reg = 0.3 

                      iter = c_om_mx@results[c_index_mx, 3]) # iter = 300 

  # Presence locations:  97 

  # Absence locations:  8000 

  # Model configurations: 

  #  fc: lqpht 

  #  reg: 0.3 

  #  iter: 300 

  # Variables: 

  # Continuous:  clay elev for.1924 for.1927 for.1930 for.1980 pH silt slope  
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  # Categorical: catchment lith 

   

  # evaluate using the held apart testing dataset 

  auc(c_final_mx) 

  # 0.9622481 

  cat("Training tss: ", tss(c_final_mx)) 

  # Training tss:  0.7929201 

  caucmx <- auc(c_final_mx, test = ctest) 

  # 0.92053 

  x11() 

  plotROC(c_final_mx, test = ctest) 

   

  cat("Testing tss: ", tss(c_final_mx, test = ctest)) 

  # Testing tss:  0.7265 

   

  (c_vi_finalmx <- varImp(c_final_mx, 

                          permut = 10)) 

  #     Variable Permutation_importance    sd 

  # 1   for.1927                   47.7 0.013 

  # 2       elev                   12.2 0.007 

  # 3      slope                    9.9 0.003 

  # 4  catchment                    7.4 0.004 

  # 5   for.1930                    5.7 0.005 

  # 6   for.1924                    5.0 0.005 

  # 7       clay                    3.5 0.001 

  # 8       silt                    3.1 0.002 

  # 9   for.1980                    2.9 0.002 

  # 10      lith                    2.2 0.002 

  # 11        pH                    0.5 0.002 

   

  ### Variable importance final ---- 

  write.csv(c_vi_finalmx, "./c_vi_final_mxexphexcomparison.csv") 

  write.csv(c_final_mx@model@lambdas, "./c_exploratory_mx_lambdas_comparison.csv")   

   

---------------------------------------------------------------------------------------------------------------------

--------------------- 

# 3. Exploratory GLM of current presence-absence-background data 

 

############################################################################# 

# Current presence-absence-background data##### 
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############################################################################# 

rm(list = ls())  

 

# Load libraries ---- 

library(BiodiversityR) 

library(caret) 

library(dismo) 

library(dplyr) 

library(glmulti) 

library(raster) 

library(rgdal) 

library(tidyverse) 

library(vip) 

 

# Load scaled rasters into R ---- 

files <- list.files(path = "./Predictors/sw_ext/Scaled/Comparison/", 

                    pattern = "tif", 

                    all.files = TRUE, 

                    full.names = TRUE, 

                    include.dirs = FALSE) 

 

# Stack rasters in raster ---- 

predictors <- raster::stack(files) 

names(predictors) # check order of layers 

names(predictors) <- c("catchment", "clay", "coast",  

                       "elev", "for.1920", "for.1921",  

                       "for.1922", "for.1924", "for.1925", "for.1926",  

                       "for.1927", "for.1928", "for.1929", "for.1930",  

                       "for.1931", "for.1941","for.1980", "for.1981", "lith",  

                       "marine", "pH", "sand", "silt", "slope") 

 

# Change categorical variables to factors ---- 

predictors$lith <- as.factor(predictors$lith) 

predictors$marine <- as.factor(predictors$marine) 

predictors$catchment <- as.factor(predictors$catchment) 

 

# Check rasters 

# x11() 

# par(mfrow=c(4,4)) 

# plot(predictors[[1:16]]) 

# x11() 

# par(mfrow=c(4,4)) 

# plot(predictors[[17:32]]) 

# x11() 

# par(mfrow=c(2,2)) 

# plot(predictors[[33:36]]) 
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# Read in presence/absence points ---- 

bds <- readOGR("./BDSsites_snapped.shp") # snapped to catchment position raster 

bds$cOccu[bds$cOccu == -9999] <- NA # Arc won't let NA's be assigned to numeric columns, 

so fix this here 

bds$hOccu[bds$hOccu == -9999] <- NA 

bds$Year_Est[bds$Year_Est == -9999] <- NA 

bds$YearSamp[bds$YearSamp == -9999] <- NA 

 

# Confirm that all instances of -9999 have been removed 

summary(bds$cOccu) # 7 NA's 

summary(bds$hOccu) # 93 NA's, only one confirmed historic absence (other sites unknown) 

summary(bds$Year_Est) 

#  Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  

#  1898    2005    2014    2001    2021    2022       6 

summary(bds$YearSamp) # 0 refers to unknown sampling year, NA refers to sites not sampled 

after 2000 

#   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  

#      0    2014    2021    2008    2022    2022       8  

# write.csv(bds, "./bdssites_snapped.csv") 

 

# Current presence coordinates ---- 

cPresent <- subset(bds, cOccu == 1) # 122 known presences 

cPres <- cPresent@coords[,1:2] 

 

# Current absence coordinates ---- 

cAbsent <- subset(bds, cOccu == 0) # 121 known absences, 117 in model extent 

cAbsent <- subset(cAbsent, Site_Name != "MARRPD-01") # Remove absences outside of model 

extent 

cAbsent <- subset(cAbsent, Site_Name != "MARRPD-02") 

cAbsent <- subset(cAbsent, Site_Name != "MARBRK") 

cAbsent <- subset(cAbsent, Site_Name != "BROBRK") 

cAbs <- cAbsent@coords[,1:2] 

c.ab <- 10000-length(cAbsent) 

 

# Read in background coordinates ---- 

bg_coords <- readRDS("./all_bg_coords_terra.rds") # use same background points as with 

MaxEnt and RF 

bg_coords_cab <- bg_coords[1:c.ab,] # keep first 10,000 points 

 

# Combine background and absence coordinates ---- 

c_bg_all <- rbind(bg_coords_cab, cAbs) 

 

# Default GLM ---- 

## Partition presence and absence data ---- 

folds <- 5 # percentage split (80/20) as in other models 
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{set.seed(42) 

  kfold_pres <- kfold(cPres, folds) 

  kfold_back <- kfold(c_bg_all, folds) 

   

  # Create training data 

  cPres_train <- cPres[kfold_pres != 1, ]  

  cBackg_train <- c_bg_all[kfold_back != 1, ]  

  pab_train <- c(rep(1, nrow(cPres_train)), rep(0, nrow(cBackg_train))) 

  envtrain <- raster::extract(predictors, rbind(cPres_train,cBackg_train)) 

  envtrain <- data.frame(cbind(pab=pab_train, envtrain)) 

  envtrain <- transform(envtrain, 

                        catchment = as.factor(envtrain$catchment), 

                        lith = as.factor(envtrain$lith), 

                        marine = as.factor(envtrain$marine)) 

  # Create testing data  

  cPres_test <- cPres[kfold_pres == 1, ]  

  prestest <- data.frame(raster::extract(predictors, cPres_test)) 

  prestest <- transform(prestest, 

                        catchment = as.factor(prestest$catchment), 

                        lith = as.factor(prestest$lith), 

                        marine = as.factor(prestest$marine)) 

  cBackg_test <- c_bg_all[kfold_back == 1, ]  

  abstest <- data.frame(raster::extract(predictors, cBackg_test)) 

  abstest <- transform(abstest, 

                       catchment = as.factor(abstest$catchment), 

                       lith = as.factor(abstest$lith), 

                       marine = as.factor(abstest$marine)) 

  # GLM with all variables 

  c_default_glm <- glm(pab ~ ., family = binomial(link = "logit"),  

                       data = envtrain)} 

# Warning message: 

#   glm.fit: fitted probabilities numerically 0 or 1 occurred  

 

# Test AUC 

c_default_e <- evaluate(p=prestest,a=abstest, c_default_glm)   

(default_auc <- slot(c_default_e, "auc")) 

# 0.9130417 

 

## Variable importance ---- 

c_vi_default_glm <- vi_model(c_default_glm, type = "stat") # Z-statistic 

write.csv(c_vi_default_glm, "./c_vi_default_glmexpcomparison.csv") 

 

save.image("./cGLM_exploratory_comparison.RData") 

 

# K-fold cross-validation  ---- 
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# Set random seeds 

set.seed(42) 

(seeds <- sample.int(1000, 10)) 

# [1] 561 997 321 153  74 228 146 634  49 128 

 

# Set number of folds 

folds <- 5 # percentage split (80% training /20% testing) as in other models 

 

# Create empty outputs to hold results 

c_kfold_glm <- list() 

c_kfold_e <- list() 

kfold_auc <- matrix(NA, nrow = 1, ncol = 1) 

coutput <- data.frame(matrix(NA, nrow = 10, ncol = 2)) # Create an empty data.frame 

colnames(coutput) <- c("seed", "testAUC") 

 

# Cross-validation 

for (i in seq_along(seeds)){ 

  set.seed(i) # set random seed 

  kfold_pres <- kfold(cPres, folds) # partition presence and background data according to the 

random seed 

  kfold_back <- kfold(c_bg_all, folds) 

   

  # Create training data with 4/5 folds 

  cPres_train <- cPres[kfold_pres != 1, ]  

  cBackg_train <- c_bg_all[kfold_back != 1, ]  

  pab_train <- c(rep(1, nrow(cPres_train)), rep(0, nrow(cBackg_train))) 

  envtrain <- raster::extract(predictors, rbind(cPres_train,cBackg_train)) 

  envtrain <- data.frame(cbind(pab=pab_train, envtrain)) 

  envtrain <- transform(envtrain, 

                        catchment = as.factor(envtrain$catchment), 

                        lith = as.factor(envtrain$lith), 

                        marine = as.factor(envtrain$marine)) 

   

  # Create testing data with 1/5 folds 

  cPres_test <- cPres[kfold_pres == 1, ] 

  prestest <- data.frame(raster::extract(predictors, cPres_test)) 

  prestest <- transform(prestest, 

                        catchment = as.factor(prestest$catchment), 

                        lith = as.factor(prestest$lith), 

                        marine = as.factor(prestest$marine)) 

  cBackg_test <- c_bg_all[kfold_back == 1, ]  

  abstest <- data.frame(raster::extract(predictors, cBackg_test)) 

  abstest <- transform(abstest, 

                       catchment = as.factor(abstest$catchment), 

                       lith = as.factor(abstest$lith), 

                       marine = as.factor(abstest$marine)) 
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  # GLM with all variables 

  c_kfold_glm[[i]] <- glm(pab ~ ., family = binomial(link = "logit"),  

                          data = envtrain) 

   

  # Test AUC 

  c_kfold_e[[i]] <- evaluate(p=prestest,a=abstest, c_default_glm)   

  kfold_auc[i] <- slot(c_kfold_e[[i]], "auc") 

   

  # Populate output data frame 

  coutput[i, 1] <- seeds[i] 

  coutput[i, 2] <- kfold_auc[i] 

} 

# Warning messages: 

#   1: glm.fit: fitted probabilities numerically 0 or 1 occurred  

# 2: glm.fit: fitted probabilities numerically 0 or 1 occurred  

# 3: glm.fit: fitted probabilities numerically 0 or 1 occurred  

# 4: glm.fit: fitted probabilities numerically 0 or 1 occurred  

# 5: glm.fit: fitted probabilities numerically 0 or 1 occurred  

# 6: glm.fit: fitted probabilities numerically 0 or 1 occurred  

# 7: glm.fit: fitted probabilities numerically 0 or 1 occurred  

# 8: glm.fit: fitted probabilities numerically 0 or 1 occurred  

# 9: glm.fit: fitted probabilities numerically 0 or 1 occurred  

# 10: glm.fit: fitted probabilities numerically 0 or 1 occurred  

saveRDS(coutput, "./c_kfold_glm_outputexpcomparison.RDS") 

 

## calculate the mean AUC ---- 

(aucGLM <- sapply(c_kfold_e, function(x){slot(x, 'auc')})) 

# [1] 0.9092500 0.8828125 0.9111458 0.9161875 0.8912500 0.9287292 0.8895625 0.8875833 

0.9097708 0.8750833 

(mean(aucGLM)) 

# [1] 0.9001375 

 

## Variable importance ---- 

c_vi_kfold_glm <- vi_model(c_kfold_glm[[1]], type = "stat") # Z-statistic 

 

c_vi_kfold_glm <- c_vi_kfold_glm[order(c_vi_kfold_glm$Variable),] %>% select(-Sign) 

 

for (i in 2:length(c_kfold_glm)) { 

  vi <- vi_model(c_kfold_glm[[i]], type = "stat") 

  c_vi_kfold_glm <- c_vi_kfold_glm %>% left_join(., vi, by = "Variable") %>% select(-Sign) 

} 

# average ranks together 

c_vi_kfold_glm$Avg <- rowMeans(c_vi_kfold_glm[, 2:11]) 

c_vi_kfold_glm <- c_vi_kfold_glm[order(-c_vi_kfold_glm$Avg),] 

write.csv(c_vi_kfold_glm, "./c_vi_kfold_glmexpcomparison.csv") 
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save.image("./cGLM_exploratory_comparison.RData") 

 

# Remove highly correlated variables (equivalent of varSel) ---- 

# Keep: catchment, clay, elev, for.1920, for.1921, for.1922, for.1924, for.1925, for.1926, 

for.1927, for.1928, for.1929, for.1930, for.1931, for.1980, for.1981, lith, marine, pH, silt, slope 

# Remove: coast, for.1941, sand 

 

# Drop layers 1 ---- 

pred_drop <- dropLayer(predictors, c("coast", "for.1941", "sand")) 

 

# GLM with selected variables (no kfold because glmulti can only accept one model as input)---- 

{set.seed(42) 

  kfold_pres <- kfold(cPres, folds) 

  kfold_back <- kfold(c_bg_all, folds) 

   

  # Create training data with selected variables 

  cPres_train <- cPres[kfold_pres != 1, ]  

  cBackg_train <- c_bg_all[kfold_back != 1, ]  

  pab_train <- c(rep(1, nrow(cPres_train)), rep(0, nrow(cBackg_train))) 

  envtrain <- raster::extract(pred_drop, rbind(cPres_train,cBackg_train)) 

  envtrain <- data.frame(cbind(pab=pab_train, envtrain)) 

  envtrain <- transform(envtrain, 

                        catchment = as.factor(envtrain$catchment), 

                        lith = as.factor(envtrain$lith), 

                        marine = as.factor(envtrain$marine)) 

  # Create testing data  

  cPres_test <- cPres[kfold_pres == 1, ]  

  prestest <- data.frame(raster::extract(pred_drop, cPres_test)) 

  prestest <- transform(prestest, 

                        catchment = as.factor(prestest$catchment), 

                        lith = as.factor(prestest$lith), 

                        marine = as.factor(prestest$marine)) 

  cBackg_test <- c_bg_all[kfold_back == 1, ]  

  abstest <- data.frame(raster::extract(pred_drop, cBackg_test)) 

  abstest <- transform(abstest, 

                       catchment = as.factor(abstest$catchment), 

                       lith = as.factor(abstest$lith), 

                       marine = as.factor(abstest$marine)) 

  # GLM with selected variables 

  c_glm_selmodel <- glm(pab ~ ., family = binomial(link = "logit"),  

                        data = envtrain)} 

# Warning message: 

#   glm.fit: fitted probabilities numerically 0 or 1 occurred  

 

c_glm_sel_e <- evaluate(p=prestest,a=abstest, c_glm_selmodel) 
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# class          : ModelEvaluation  

# n presences    : 24  

# n absences     : 2000  

# AUC            : 0.9146042  

# cor            : 0.09460181  

# max TPR+TNR at : -4.0666     

 

varSel_auc <- slot(c_glm_sel_e, "auc") 

# 0.9146042 

 

## Variable importance (varSel) ---- 

c_vi_varSel_glm <- vi_model(c_glm_selmodel, type = "stat") 

write.csv(c_vi_varSel_glm, "./c_vi_varSel_glmexpcomparison.csv") 

 

save.image("./cGLM_exploratory_comparison.RData") 

 

# Variable selection 2 ---- 

set.seed(42) 

# Run glmulti genetic algorithm 10x 

c_glmulti_l1_g <- list() 

 

for (i in 1:10){ 

  c_glmulti_l1_g[[i]] <- glmulti(c_glm_selmodel, 

                                 crit = aicc, 

                                 level = 1, 

                                 method = "g", 

                                 family = binomial, 

                                 confsetsize = 50, 

                                 plotty = F) 

} 

saveRDS(c_glmulti_l1_g, "./c_glmulti_exp_comparison.RDS") 

 

# Get AIC values from top models of each glmulti 

c_glmulti_aicc <- c_glmulti_l1_g[[1]]@objects[[1]]$aic 

 

for (i in 2:10) { 

  c_glmulti_aicc <- cbind(c_glmulti_aicc, c_glmulti_l1_g[[i]]@objects[[1]]$aic) 

} 

save.image("./cGLM_exploratory_comparison.RData") 

 

## Write top models to csv for all glmulti replicates ---- 

c.output.list <- list() 

c.output <- data.frame(matrix(NA, nrow = 50, ncol = 2)) # Create an empty data.frame 

colnames(c.output) <- c("variables", "AICc") 

for (i in 1:10){ 

  for (j in 1:50){ 
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    formula <- as.character(c_glmulti_l1_g[[i]]@formulas[[j]]) 

    aicc <- c_glmulti_l1_g[[i]]@objects[[j]]$aic 

    c.output[j, 1] <- formula[3] 

    c.output[j, 2] <- aicc 

     

  } 

  c.output.list[[i]] <- c.output 

} 

curr.models <- rbind(c.output.list[[1]], c.output.list[[2]], c.output.list[[3]],  

                     c.output.list[[4]], c.output.list[[5]], c.output.list[[6]], 

                     c.output.list[[7]], c.output.list[[8]], c.output.list[[9]],  

                     c.output.list[[10]]) 

curr.models <- curr.models[order(curr.models$AICc),] 

 

write.csv(curr.models, "./c_glmulti_topmodels.csv") 

 

## Find which layers glmulti dropped ---- 

print(c_glmulti_aicc) 

# [1,]        849.2388 849.2388 849.2388 849.2388 849.2388 849.2388 849.2388 851.3133 

849.2388 849.2388 

min(c_glmulti_aicc) 

# 849.2388 

# glmulti 1-10 

 

c_glmulti_l1_g[[1]]@formulas[[1]] 

# pab ~ 1 + catchment + lith + marine + clay + elev + for.1922 + for.1924 + for.1927 + for.1928 

+ for.1929 + for.1931 + for.1981 + pH + silt 

 

 

# Original: catchment, clay, elev, for.1920, for.1921, for.1922, for.1924, for.1925, for.1926, 

for.1927, for.1928, for.1929, for.1930, for.1931, for.1980, for.1981, lith, marine, pH, silt, slope 

# Reduced: catchment, clay, elev, for.1922, for.1924, for.1927, for.1928, for.1929, for.1931, 

for.1981, lith, marine, pH, silt 

# Dropped: for.1920, for.1921, for.1925, for.1926, for.1930, for.1980, slope 

 

# Drop layers 2 ---- 

pred_drop2 <- dropLayer(pred_drop, c("for.1920", "for.1921", "for.1925", "for.1926", 

"for.1930", "for.1980", "slope")) 

 

save.image("./cGLM_exploratory_comparison.RData") 

 

# GLM with reduced variables  ---- 

{ 

  set.seed(42) 

  kfold_pres <- kfold(cPres, folds) 

  kfold_back <- kfold(c_bg_all, folds) 
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  ## Create training data using reduced set of predictors ---- 

  cPres_train <- cPres[kfold_pres != 1, ]  

  cBackg_train <- c_bg_all[kfold_back != 1, ]  

  pab_train <- c(rep(1, nrow(cPres_train)), rep(0, nrow(cBackg_train))) 

  envtrain <- raster::extract(pred_drop2, rbind(cPres_train,cBackg_train)) 

  envtrain <- data.frame(cbind(pab=pab_train, envtrain)) 

  envtrain <- transform(envtrain, 

                        catchment = as.factor(envtrain$catchment), 

                        lith = as.factor(envtrain$lith), 

                        marine = as.factor(envtrain$marine)) 

  prestrain <- data.frame(raster::extract(pred_drop2, cPres_train)) 

  prestrain <- transform(prestrain, 

                         catchment = as.factor(prestrain$catchment), 

                         lith = as.factor(prestrain$lith), 

                         marine = as.factor(prestrain$marine)) 

  abstrain <- data.frame(raster::extract(pred_drop2, cBackg_train)) 

  abstrain <- transform(abstrain, 

                        catchment = as.factor(abstrain$catchment), 

                        lith = as.factor(abstrain$lith), 

                        marine = as.factor(abstrain$marine)) 

   

  ## Create testing data ---- 

  cPres_test <- cPres[kfold_pres == 1, ]  

  prestest <- data.frame(raster::extract(pred_drop2, cPres_test)) 

  prestest <- transform(prestest, 

                        catchment = as.factor(prestest$catchment), 

                        lith = as.factor(prestest$lith), 

                        marine = as.factor(prestest$marine)) 

  cBackg_test <- c_bg_all[kfold_back == 1, ] 

  abstest <- data.frame(raster::extract(pred_drop2, cBackg_test)) 

  abstest <- transform(abstest, 

                       catchment = as.factor(abstest$catchment), 

                       lith = as.factor(abstest$lith), 

                       marine = as.factor(abstest$marine)) 

  ## GLM with reduced variables ---- 

  c_reduceVar_glm <- glm(pab ~ ., family = binomial(link = "logit"), 

                         data = envtrain) 

   

  c_summ <- summary(c_reduceVar_glm) 

} 

 

 

c_summ 

# Coefficients: 

#               Estimate Std. Error z value Pr(>|z|)     
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# (Intercept) -7.950e+00  6.533e-01 -12.169  < 2e-16 *** 

# catchment2   1.142e+00  3.112e-01   3.668 0.000245 *** 

# catchment3   2.073e+00  3.746e-01   5.533 3.15e-08 *** 

# catchment4   1.940e+00  4.608e-01   4.210 2.56e-05 *** 

# catchment5  -1.224e+01  4.399e+02  -0.028 0.977800     

# catchment6  -1.332e+01  1.214e+03  -0.011 0.991244     

# clay        -5.480e-01  1.883e-01  -2.910 0.003613 **  

# elev        -3.734e+00  9.341e-01  -3.997 6.41e-05 *** 

# for.1922     2.452e-01  1.197e-01   2.050 0.040393 *   

# for.1924    -9.961e-01  3.427e-01  -2.907 0.003651 **  

# for.1927     9.833e-01  1.626e-01   6.049 1.46e-09 *** 

# for.1928    -1.429e+00  1.002e+00  -1.427 0.153650     

# for.1929     1.048e+00  4.247e-01   2.469 0.013556 *   

# for.1931     2.289e-01  9.083e-02   2.520 0.011740 *   

# for.1981    -3.376e-01  1.711e-01  -1.973 0.048495 *   

# lith13       5.924e-03  2.886e-01   0.021 0.983622     

# lith14      -1.743e+00  7.129e-01  -2.445 0.014492 *   

# lith19      -1.650e+01  1.520e+03  -0.011 0.991340     

# lith999     -1.702e+00  4.665e-01  -3.649 0.000264 *** 

# marine1     -9.966e-01  3.952e-01  -2.522 0.011673 *   

# pH          -3.769e-01  1.305e-01  -2.889 0.003867 **  

# silt         3.587e-01  1.652e-01   2.171 0.029968 *   

# --- 

# Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

#  

# (Dispersion parameter for binomial family taken to be 1) 

#  

# Null deviance: 1060.03  on 8097  degrees of freedom 

# Residual deviance:  805.24  on 8076  degrees of freedom 

# AIC: 849.24 

#  

# Number of Fisher Scoring iterations: 18 

 

write.csv(c_summ$coefficients, "./c_final_glm_summaryexpcomparison.csv") 

 

 

(c_reduceVar_train_e <- evaluate(p=prestrain, a=abstrain, c_reduceVar_glm)) 

# class          : ModelEvaluation  

# n presences    : 98  

# n absences     : 8000  

# AUC            : 0.8971964  

# cor            : 0.1020383  

# max TPR+TNR at : -4.176151  

 

(c_reduceVar_test_e <- evaluate(p=prestest,a=abstest, c_reduceVar_glm)) 

# class          : ModelEvaluation  
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# n presences    : 24  

# n absences     : 2000  

# AUC            : 0.9110208  

# cor            : 0.1001951  

# max TPR+TNR at : -4.050003  

(cGLM_eval <- ensemble.evaluate(eval =  c_reduceVar_test_e, eval.train = 

c_reduceVar_train_e)) 

# Calculated fixed threshold of -4.17615081 corresponding to highest sum of sensitivity and 

specificity 

#        AUC         TSS        SEDI   TSS.fixed  SEDI.fixed   FNR.fixed   MCR.fixed     AUCdiff  

# 0.91102083  0.74166667  0.94919699  0.72566667  0.86531032  0.08333333  0.18972332 -

0.01382440  

 

save.image("./cGLM_exploratory_comparison.RData") 

 

## calculate the AUC for comparison with other models ---- 

 

(caucGLM <- slot(c_reduceVar_test_e, "auc")) 

# [1] 0.8902292 

 

## GLM thresholds ---- 

(c_Opt_glm <-  c_reduceVar_test_e@t[which.max(c_reduceVar_test_e@TPR + 

c_reduceVar_test_e@TNR)]) 

# -4.257425 

 

(cthGLM <- plogis(c_Opt_glm)) # threshold on logit scale 

# [1] 0.01396105 

 

## Variable importance ---- 

c_vi_reduceVar_glm <- vi_model(c_reduceVar_glm, type = "stat") 

 

write.csv(c_vi_reduceVar_glm, "./c_vi_reduceVar_glmexpcomparison.csv") 

 

save.image("./cGLM_exploratory_comparison.RData") 

   

   

  -------------------------------------------------------------------------------------------------------------------

----------------------- 

# 4. Final RF and Maxent of current presence-absence-background data 

##############################################################################

# 

# Final current models ####################################################### 

##############################################################################

# 

# Using only variables from top model (current pop. Maxent model) 
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rm(list = ls()) # remove all objects from R 

load("./cFinalRFMx.RData") 

 

# Load libraries ---- 

library(dismo) 

library(dplyr) 

library(rasterVis) 

library(rgdal) 

library(rJava) 

library(SDMtune) 

library(sp) 

library(terra) 

library(zeallot) 

 

# Load scaled rasters into terra ---- 

files <- list.files(path = "./Predictors/sw_ext/Scaled/Final/", 

                    pattern = "tif", 

                    all.files = TRUE, 

                    full.names = TRUE, 

                    include.dirs = FALSE) 

 

# Stack rasters in terra ---- 

predictors <- terra::rast(files) 

names(predictors) # check order of layers 

 

names(predictors) <- c("catchment", "clay", "elev", "for.1924", "for.1927",  

                       "for.1930", "for.1980",  

                       "lith", "pH", "silt", "slope") 

# for.1920 = Laurentian-Acadian Northern Hardwoods Forest 

# for.1921 = Northeastern Interior Dry-Mesic Oak Forest 

# for.1922 = Northern Atlantic Coastal Plain Hardwood Forest 

# for.1924 = Laurentian-Acadian Northern Pine(-Oak) Forest 

# for.1925 = Laurentian-Acadian Pine-Hemlock-Hardwood Forest 

# for.1926 = Central Appalachian Dry Oak-Pine Forest 

# for.1927 = Appalachian (Hemlock)-Northern Hardwood Forest 

# for.1928 = Acadian Low-Elevation Spruce-Fir-Hardwood Forest 

# for.1929 = Acadian-Appalachian Montane Spruce-Fir Forest 

# for.1930 = Central Appalachian Pine-Oak Rocky Woodland 

# for.1931 = Northern Atlantic Coastal Plain Maritime Forest 

# for.1980 = Boreal Jack Pine-Black Spruce Forest  

# for.1981 = Northeastern Interior Pine Barrens 

 

# Change categorical variables to factors ---- 

predictors$catchment <- as.factor(predictors$catchment) 

predictors$lith <- as.factor(predictors$lith) 
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# predictors$marine <- as.factor(predictors$marine) 

 

# Check rasters 

# x11() 

# par(mfrow=c(4,4)) 

# plot(predictors[[1:16]]) 

 

# Read in presence/absence points ---- 

bds <- readOGR("./BDSsites_snapped.shp") # snapped to catchment position raster 

bds$cOccu[bds$cOccu == -9999] <- NA # Arc won't let NA's be assigned to numeric columns, 

so fix this here 

bds$hOccu[bds$hOccu == -9999] <- NA 

bds$Year_Est[bds$Year_Est == -9999] <- NA 

bds$YearSamp[bds$YearSamp == -9999] <- NA 

 

# Confirm that all instances of -9999 have been removed 

summary(bds$cOccu) # 7 NA's 

summary(bds$hOccu) # 93 NA's, only one confirmed historic absence (other sites unknown) 

summary(bds$Year_Est) 

#  Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  

#  1898    2005    2014    2001    2021    2022       6 

summary(bds$YearSamp) # 0 refers to unknown sampling year, NA refers to sites not sampled 

after 2000 

#   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  

#      0    2014    2021    2008    2022    2022       8  

# write.csv(bds, "./bdssites_snapped.csv") 

 

# Current presence coordinates ---- 

cPresent <- subset(bds, cOccu == 1) # 122 presences 

cPres <- cPresent@coords[,1:2] 

 

# Current absence coordinates ---- 

cAbsent <- subset(bds, cOccu == 0) # 121 absences 

cAbs <- cAbsent@coords[,1:2] 

c.ab <- 10000-length(cAbsent) 

 

# Generate background coordinates ---- 

set.seed(42) 

# bg_coords <- terra::spatSample(predictors, 

#                                size = 50000, # returns 12107 points (many NA's from points on land) 

#                                method = "random", 

#                                na.rm = TRUE, 

#                                xy = TRUE, 

#                                values = FALSE) 

# saveRDS(bg_coords, "./all_bg_coords_terra.rds") # save for later analyses 

bg_coords <- readRDS("./all_bg_coords_terra.rds") 
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bg_coords_cab <- bg_coords[1:c.ab,] # keep first 10,000 points for Maxent 

 

# Combine background and absence coordinates 

c_bg_all <- rbind(bg_coords_cab, cAbs) 

# saveRDS(c_bg_all, "./curr_bgab_terra_all.rds") # save points 

save.image(file = "cFinalRFMx.RData") 

 

# Create SWD object ---- 

c_data <- prepareSWD(species = "BDS", 

                     p = cPres, # 122 presence points 

                     a = c_bg_all,  

                     env = predictors, 

                     categorical = c("catchment", "lith")) 

 

# Split data for cross-validation ---- 

c(ctrain, cval, ctest) %<-% trainValTest(c_data, 

                                         val = 0.2, 

                                         test = 0.2, 

                                         only_presence = FALSE, 

                                         seed = 42) # The only_presence argument is used to split only the 

presence and not the background locations (Maxent only) 

 

save.image(file = "cFinalRFMx.RData") 

 

# Random forest model---- 

## Train a model with default settings ---- 

 

set.seed(42) 

c_default_rf <- train(method = "RF", # can only do classification rf in SDMtune 

                      data = ctrain) 

# Presence locations: 125  

# Absence locations: 8000  

# mtry: 3 

# ntree: 500 

# nodesize: 1 

# Continuous: clay elev for.1924 for.1927 for.1930 for.1980 pH silt slope   

# Categorical: catchment lith 

 

cat("Training auc: ", auc(c_default_rf)) 

# Training auc:  1 # overfitting 

cat("Training TSS: ", tss(c_default_rf)) 

# Training TSS:  1 

cat("Testing auc: ", auc(c_default_rf, test = cval)) 

# Testing auc:  0.8849633 

cat("Testing TSS: ", tss(c_default_rf, test = cval)) 

# Testing TSS:  0.6256462 
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c_default_rf@model@model$confusion 

#      0 1 class.error 

# 0 5991 7 0.001167056 

# 1   66 7 0.904109589 

 

### Variable importance default ---- 

(c_vi_defaultrf <- varImp(c_default_rf, 

                          permut = 10)) 

#    Variable Permutation_importance    sd 

# 1       silt                   25.8 0.000 

# 2   for.1980                   22.8 0.000 

# 3   for.1927                   16.4 0.001 

# 4       elev                   15.3 0.000 

# 5  catchment                    8.4 0.000 

# 6      slope                    4.3 0.000 

# 7       clay                    3.3 0.000 

# 8         pH                    1.9 0.000 

# 9   for.1924                    1.6 0.000 

# 10  for.1930                    0.2 0.000 

# 11      lith                    0.0 0.000 

write.csv(c_vi_defaultrf, "./c_vi_default_rffinal.csv") 

 

save.image(file = "cFinalRFMx.RData") 

 

## K-fold cross-validation ---- 

c_folds_rf <- randomFolds(ctrain,  

                          k = 10,  

                          only_presence = FALSE,  

                          seed = 42) 

 

c_kfold_rf <- train("RF",  

                    data = ctrain,  

                    folds = c_folds_rf) 

# Presence locations: 73  

# Absence locations: 5998  

# Replicates: 10  

# mtry: 3 

# ntree: 500 

# nodesize: 1 

 

cat("Training AUC: ", auc(c_kfold_rf)) 

# Training AUC:  1 # overfitting 

cat("Testing AUC: ", auc(c_kfold_rf, test = cval)) 

# Testing AUC:  0.8857971 

cat("Testing TSS: ", tss(c_kfold_rf, test = cval)) 
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# Testing TSS:  0.6479302 

 

### Variable importance kfold ---- 

(c_vi_kfoldrf <- varImp(c_kfold_rf, 

                        permut = 10)) 

#     Variable Permutation_importance    sd 

# 1       silt                  24.56 6.157 

# 2   for.1927                  21.35 8.206 Appalachian (Hemlock)-Northern Hardwood Forest 

# 3   for.1980                  18.61 7.399 Boreal Jack Pine-Black Spruce Forest 

# 4       elev                  13.80 4.529 

# 5  catchment                   9.71 4.079 

# 6      slope                   3.96 2.038 

# 7       clay                   3.86 1.373 

# 8         pH                   2.66 1.067 

# 9   for.1924                   1.23 0.618 Laurentian-Acadian Northern Pine(-Oak) Forest 

# 10  for.1930                   0.17 0.149 Central Appalachian Pine-Oak Rocky Woodland 

# 11      lith                   0.05 0.071 

 

write.csv(c_vi_kfoldrf, "./c_vi_kfold_rffinal.csv") 

 

save.image(file = "cFinalRFMx.RData") 

 

## Tune hyperparameters 2----- 

getTunableArgs(c_kfold_rf) 

# "mtry"     "ntree"    "nodesize" 

 

c_rf <- list(mtry = 1:11,  

             ntree = seq(500,2000,200), 

             nodesize = 1:15) 

 

c_om_rf <- optimizeModel(c_kfold_rf,  

                         hypers = c_rf,  

                         metric = "auc",  

                         seed = 42) 

 

saveRDS(c_om_rf, "./c_om_rffinal.rds") 

 

c_best_model_rf <- c_om_rf@models[[1]] 

 

c_om_rf@results[1, ] 

#   mtry ntree nodesize train_AUC    test_AUC    diff_AUC 

# 1    2  1300       10 0.9999966    0.939671  0.06032566 

 

write.csv(c_om_rf@results, "./c_om_rf_results_final.csv") 

 

## Merge SWD ---- 
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# Index of the best model 

c_index_rf <- which.max(c_om_rf@results$test_AUC) 

 

# New train dataset containing only the selected variables 

# c_new_train_rf <- c_reduced_var_rf@data  

 

# Merge data 

c_merged_data_rf <- mergeSWD(ctrain, 

                             cval, 

                             only_presence = FALSE)  

# Presence locations: 125  

# Absence locations: 8000  

save.image(file = "cFinalRFMx.RData") 

 

## Final model ---- 

c_folds_rf2 <- randomFolds(c_merged_data_rf,  

                           k = 10,  

                           only_presence = FALSE,  

                           seed = 42) 

 

c_kfold_rf2 <- train("RF",  

                     data = c_merged_data_rf,  

                     folds = c_folds_rf2, 

                     mtry = c_om_rf@results[c_index_rf, 1], # mtry = 2 

                     ntree = c_om_rf@results[c_index_rf, 2], # ntree = 1300 

                     nodesize = c_om_rf@results[c_index_rf, 3]) # nodesize = 10 

# Presence locations: 125  

# Absence locations: 8000  

# Replicates: 10  

# mtry: 2 

# ntree: 1300 

# nodesize: 10 

# Continuous: clay elev for.1924 for.1927 for.1930 for.1980 pH silt slope  

# Categorical: catchment lith 

 

cat("Training AUC: ", auc(c_kfold_rf2)) 

# Training AUC:  0.9999966 # overfitting 

cat("Testing AUC: ", auc(c_kfold_rf2, test = ctest)) 

# Testing AUC:  0.9081711 

cat("Testing TSS: ", tss(c_kfold_rf2, test = ctest)) 

# Testing TSS:  0.7283722 

caucrf <- auc(c_kfold_rf2, test = ctest) # for weighted mean of models 

 

### Variable importance final ---- 

(c_vi_finalrf <- varImp(c_kfold_rf2, 

                        permut = 10)) 
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#     Variable Permutation_importance    sd 

# 1       silt                  26.86 2.553 

# 2       elev                  18.11 2.837 

# 3  catchment                  12.98 2.574 

# 4   for.1927                  12.31 2.980 

# 5      slope                   8.80 2.477 

# 6       clay                   8.38 1.348 

# 7         pH                   5.50 0.841 

# 8   for.1980                   3.96 1.655 

# 9   for.1924                   1.92 0.483 

# 10      lith                   0.67 0.254 

# 11  for.1930                   0.47 0.206 

write.csv(c_vi_finalrf, "./c_vi_final_rf.csv") 

 

## Create distribution map ---- 

c_map_rf <- predict(c_kfold_rf2, 

                    data = predictors, 

                    file = "./Predictions/Prob/Current/c_prob_rffinal.tif", 

                    overwrite = TRUE)  

c_map_rf <- terra::rast("./Predictions/Prob/Current/c_prob_rffinal_mean.tif") 

### Thresholds ---- 

cthsrf <- list() 

c_kfold_ths <- matrix(NA, nrow = 10, ncol = 1) 

for (i in 1:10){ 

  cthsrf[[i]] <- thresholds(c_kfold_rf@models[[i]], test = ctest) 

  c_kfold_ths[i,1] <- cthsrf[[i]][5,2] 

} 

saveRDS(cthsrf, "./c_kfold_thresholds_rffinal.rds") 

 

(c_ths_rf <- mean(c_kfold_ths)) 

# 0.0094 

 

## Presence/absence map ---- 

c_pamap_rf <- plotPA(c_map_rf,  

                     th = c_ths_rf, 

                     filename = "./Predictions/PresAbs/Current/c_pamap_rffinal.tif", 

                     overwrite = TRUE) 

x11() 

plot(c_pamap_rf) 

 

# Maxent model---- 

## Train a model with default settings ---- 

set.seed(42) 

c_default_mx <- train(method = "Maxent", 

                      data = ctrain) 
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cat("Training auc: ", auc(c_default_mx)) 

# Training auc:  0.9466831 

cat("Training TSS: ", tss(c_default_mx)) 

# Training TSS:  0.7996296 

cat("Testing auc: ", auc(c_default_mx, test = cval)) 

# Testing auc: 0.885276 

cat("Testing TSS: ", tss(c_default_mx, test = cval)) 

# Testing TSS:  0.6337335 

 

### Variable importance default ---- 

(c_vi_defaultmx <- varImp(c_default_mx, 

                          permut = 10)) 

#     Variable Permutation_importance    sd 

# 1   for.1927                   44.0 0.029 

# 2  catchment                   11.6 0.007 

# 3   for.1980                   10.4 0.003 

# 4       elev                    8.2 0.010 

# 5   for.1930                    7.2 0.008 

# 6      slope                    5.3 0.007 

# 7       lith                    3.9 0.004 

# 8         pH                    3.9 0.002 

# 9       silt                    2.4 0.003 

# 10      clay                    1.5 0.003 

# 11  for.1924                    1.5 0.003 

 

write.csv(c_vi_defaultmx, "./c_vi_default_mxfinal.csv") 

save.image(file = "cFinalRFMx.RData") 

 

## K-fold cross-validation ---- 

c_folds_mx <- randomFolds(ctrain, 

                          k = 10, 

                          only_presence = FALSE, 

                          seed = 42) 

 

c_kfold_mx <- train("Maxent",  

                    data = ctrain,  

                    folds = c_folds_mx) 

 

cat("Training AUC: ", auc(c_kfold_mx)) 

# Training AUC:  0.9474427 

cat("Testing AUC: ", auc(c_kfold_mx, test = cval)) 

# Testing AUC:  0.8791146 

cat("Testing TSS: ", tss(c_kfold_mx, test = cval)) 

# Testing TSS:  0.6112577 

 

### Variable importance kfold ---- 
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(c_vi_kfoldmx <- varImp(c_kfold_mx, 

                        permut = 10)) 

#     Variable Permutation_importance    sd 

# 1   for.1927                  43.18 2.709 

# 2  catchment                  11.25 1.715 

# 3   for.1980                   9.91 1.088 

# 4       elev                   8.98 1.781 

# 5   for.1930                   7.50 1.715 

# 6      slope                   5.75 1.831 

# 7         pH                   3.70 1.080 

# 8       lith                   3.57 0.691 

# 9       silt                   2.70 0.782 

# 10      clay                   2.07 1.254 

# 11  for.1924                   1.37 0.424 

 

write.csv(c_vi_kfoldmx, "./c_vi_kfold_mxfinal.csv") 

 

save.image(file = "cFinalRFMx.RData") 

 

## Tune hyperparameters----- 

getTunableArgs(c_kfold_mx) 

# [1] "fc"   "reg"  "iter" 

 

c_mx <- list(fc = c("l", "lq", "lh", "lqp", "lqph", "lqpht"),  

             iter = seq(300,1100,200), 

             reg = seq(0.2,1,0.1)) 

 

c_om_mx <- optimizeModel(c_kfold_mx,  

                         hypers = c_mx,  

                         metric = "auc",  

                         seed = 42) 

 

c_best_model_mx <- c_om_mx@models[[1]] 

 

c_om_mx@results[1, ] 

#   fc    reg iter train_AUC  test_AUC   diff_AUC 

# 1 lqpht 0.3  300 0.9737843 0.9276561 0.04612822 

 

save.image(file = "cFinalRFMx.RData") 

write.csv(c_om_mx@results, "./c_om_mx_resultsfinal.csv") 

 

## Merge SWD ---- 

# Index of the best model 

c_index_mx <- which.max(c_om_mx@results$test_AUC) 

 

# New train dataset containing only the selected variables 
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# c_new_train_mx <- c_reduced_var_mx@data  

 

# Merge only presence data 

c_merged_data_mx <- mergeSWD(ctrain, 

                             cval,  

                             only_presence = FALSE)  

# Presence locations: 125  

# Absence locations: 8000  

 

## Final model ---- 

c_folds_mx2 <- randomFolds(c_merged_data_mx,  

                           k = 10,  

                           only_presence = FALSE,  

                           seed = 42) 

 

c_kfold_mx2 <- train("Maxent",  

                     data = c_merged_data_mx,  

                     folds = c_folds_mx2, 

                     fc = c_om_mx@results[c_index_mx, 1], # fc = lh 

                     reg = c_om_mx@results[c_index_mx, 2], # reg = 0.5 

                     iter = c_om_mx@results[c_index_mx, 3]) # iter = 300 

# Presence locations: 97  

# Absence locations: 7997  

# Replicates: 10  

# lh: lqpht 

# reg: 0.3 

# iter: 300 

 

cat("Training AUC: ", auc(c_kfold_mx2)) 

# Training AUC:  0.9638511 # overfitting 

cat("Testing AUC: ", auc(c_kfold_mx2, test = ctest)) 

# Testing AUC:  0.9212166 

cat("Testing TSS: ", tss(c_kfold_mx2, test = ctest)) 

# Testing TSS:  0.7451446 

caucmx <- auc(c_kfold_mx2, test = ctest) # for weighted mean of models 

 

### Variable importance final ---- 

(c_vi_finalmx <- varImp(c_kfold_mx2, 

                        permut = 10)) 

#     Variable Permutation_importance    sd 

# 1   for.1927                  54.03 4.373 

# 2       elev                  11.15 1.883 

# 3      slope                   8.01 1.084 

# 4  catchment                   6.02 1.146 

# 5   for.1930                   4.49 1.038 

# 6       lith                   3.72 1.536 
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# 7   for.1924                   3.57 1.277 

# 8       silt                   3.09 0.638 

# 9       clay                   2.60 0.999 

# 10  for.1980                   2.54 0.789 

# 11        pH                   0.77 0.313 

write.csv(c_vi_finalmx, "./c_vi_final_mx.csv") 

write.csv(c_kfold_mx2@model@lambdas, "./c_final_mx_lambdas.csv")  

 

## Create distribution map ---- 

c_map_mx <- predict(c_kfold_mx2, 

                    data = predictors, 

                    file = "./Predictions/Prob/Current/c_prob_mxfinal.tif", 

                    overwrite = TRUE)  

c_map_mx <- terra::rast("./Predictions/Prob/Current/c_prob_mxfinal_mean.tif") 

### Thresholds ---- 

cthsmx <- list() 

c_kfold_ths_mx <- matrix(NA, nrow = 10, ncol = 1) 

for (i in 1:10){ 

  cthsmx[[i]] <- thresholds(c_kfold_mx2@models[[i]], test = ctest) 

  c_kfold_ths_mx[i,1] <- cthsmx[[i]][5,2] 

} 

saveRDS(cthsmx, "./c_thresholds_mxfinal.rds") 

 

(c_ths_mx <- mean(c_kfold_ths_mx)) 

# 0.1414215 

 

## Presence/absence map ---- 

c_pamap_mx <- plotPA(c_map_mx,  

                     th = c_ths_mx, 

                     filename = "./Predictions/PresAbs/Current/c_pamap_mxfinal.tif", 

                     overwrite = TRUE) 

x11() 

plot(c_pamap_mx) 

save.image(file = "cFinalRFMx.RData") 

 

---------------------------------------------------------------------------------------------------------------------

--------------------- 

# 5. Final GLM of current presence-absence-background data 

############################################################################# 

# Current presence-absence-background data##### 

############################################################################# 

#load("cGLMfinal.RData") 

 

rm(list = ls())  
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# Load libraries ---- 

library(BiodiversityR) 

library(caret) 

library(dismo) 

library(dplyr) 

library(glmulti) 

library(raster) 

library(rgdal) 

library(tidyverse) 

library(vip) 

 

# Load scaled rasters into terra ---- 

files <- list.files(path = "./Predictors/sw_ext/Scaled/Final/", 

                    pattern = "tif", 

                    all.files = TRUE, 

                    full.names = TRUE, 

                    include.dirs = FALSE) 

 

# Stack rasters in terra ---- 

predictors <- terra::rast(files) 

names(predictors) # check order of layers 

 

names(predictors) <- c("catchment", "clay", "elev", "for.1924", "for.1927",  

                       "for.1930", "for.1980",  

                       "lith", "pH", "silt", "slope") 

# for.1920 = Laurentian-Acadian Northern Hardwoods Forest 

# for.1921 = Northeastern Interior Dry-Mesic Oak Forest 

# for.1922 = Northern Atlantic Coastal Plain Hardwood Forest 

# for.1924 = Laurentian-Acadian Northern Pine(-Oak) Forest 

# for.1925 = Laurentian-Acadian Pine-Hemlock-Hardwood Forest 

# for.1926 = Central Appalachian Dry Oak-Pine Forest 

# for.1927 = Appalachian (Hemlock)-Northern Hardwood Forest 

# for.1928 = Acadian Low-Elevation Spruce-Fir-Hardwood Forest 

# for.1929 = Acadian-Appalachian Montane Spruce-Fir Forest 

# for.1930 = Central Appalachian Pine-Oak Rocky Woodland 

# for.1931 = Northern Atlantic Coastal Plain Maritime Forest 

# for.1980 = Boreal Jack Pine-Black Spruce Forest  

# for.1981 = Northeastern Interior Pine Barrens 

 

# Change categorical variables to factors ---- 
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predictors$catchment <- as.factor(predictors$catchment) 

predictors$lith <- as.factor(predictors$lith) 

# predictors$marine <- as.factor(predictors$marine) 

 

# Check rasters 

# x11() 

# par(mfrow=c(4,4)) 

# plot(predictors[[1:16]]) 

 

# Read in presence/absence points ---- 

bds <- readOGR("./BDSsites_snapped.shp") # snapped to catchment position raster 

bds$cOccu[bds$cOccu == -9999] <- NA # Arc won't let NA's be assigned to numeric columns, 

so fix this here 

bds$hOccu[bds$hOccu == -9999] <- NA 

bds$Year_Est[bds$Year_Est == -9999] <- NA 

bds$YearSamp[bds$YearSamp == -9999] <- NA 

 

# Confirm that all instances of -9999 have been removed 

summary(bds$cOccu) # 7 NA's 

summary(bds$hOccu) # 93 NA's, only one confirmed historic absence (other sites unknown) 

summary(bds$Year_Est) 

#  Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  

#  1898    2005    2014    2001    2021    2022       6 

summary(bds$YearSamp) # 0 refers to unknown sampling year, NA refers to sites not sampled 

after 2000 

#   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  

#      0    2014    2021    2008    2022    2022       8  

# write.csv(bds, "./bdssites_snapped.csv") 

 

# Current presence coordinates ---- 

cPresent <- subset(bds, cOccu == 1) # 121 known presences 

cPres <- cPresent@coords[,1:2] 

 

# Current absence coordinates ---- 

cAbsent <- subset(bds, cOccu == 0) # 120 known absences 

cAbsent <- subset(cAbsent, Site_Name != "MARRPD-01") # Remove absences outside of sw 

extent 

cAbsent <- subset(cAbsent, Site_Name != "MARRPD-02") 

cAbsent <- subset(cAbsent, Site_Name != "MARBRK") 

cAbsent <- subset(cAbsent, Site_Name != "BROBRK") 
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cAbs <- cAbsent@coords[,1:2] 

c.ab <- 10000-length(cAbsent) 

 

# Read in background coordinates ---- 

bg_coords <- readRDS("./all_bg_coords_terra.rds") # use same background points as with 

MaxEnt and RF 

bg_coords_cab <- bg_coords[1:c.ab,] # keep first 10,000 points 

 

# Combine background and absence coordinates ---- 

c_bg_all <- rbind(bg_coords_cab, cAbs) 

 

# Default GLM ---- 

## Partition presence and absence data ---- 

folds <- 5 # percentage split (80/20) as in other models 

 

set.seed(42) 

kfold_pres <- kfold(cPres, folds) 

kfold_back <- kfold(c_bg_all, folds) 

 

# Create training data 

cPres_train <- cPres[kfold_pres != 1, ]  

cBackg_train <- c_bg_all[kfold_back != 1, ]  

pab_train <- c(rep(1, nrow(cPres_train)), rep(0, nrow(cBackg_train))) 

envtrain <- raster::extract(predictors, rbind(cPres_train,cBackg_train)) 

envtrain <- data.frame(cbind(pab=pab_train, envtrain)) 

envtrain <- transform(envtrain, 

                      catchment = as.factor(envtrain$catchment), 

                      lith = as.factor(envtrain$lith)) 

# Create testing data  

cPres_test <- cPres[kfold_pres == 1, ]  

prestest <- data.frame(raster::extract(predictors, cPres_test)) 

prestest <- transform(prestest, 

                      catchment = as.factor(prestest$catchment), 

                      lith = as.factor(prestest$lith)) 

cBackg_test <- c_bg_all[kfold_back == 1, ]  

abstest <- data.frame(raster::extract(predictors, cBackg_test)) 

abstest <- transform(abstest, 

                     catchment = as.factor(abstest$catchment), 

                     lith = as.factor(abstest$lith)) 

# GLM with all variables 
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c_default_glm <- glm(pab ~ ., family = binomial(link = "logit"),  

                     data = envtrain) 

# Warning message: 

#   glm.fit: fitted probabilities numerically 0 or 1 occurred  

 

# Test AUC 

c_default_e <- evaluate(p=prestest,a=abstest, c_default_glm)   

(default_auc <- slot(c_default_e, "auc")) 

# 0.894 

 

## Variable importance ---- 

c_vi_default_glm <- vi_model(c_default_glm, type = "stat") # Z-statistic 

write.csv(c_vi_default_glm, "./c_vi_default_glmfinal.csv") 

 

save.image("./cGLMfinal.RData") 

 

# K-fold cross-validation  ---- 

# Set random seeds 

set.seed(42) 

(seeds <- sample.int(1000, 10)) 

# [1] 561 997 321 153  74 228 146 634  49 128 

 

# Set number of folds 

folds <- 5 # percentage split (80% training /20% testing) as in other models 

 

# Create empty outputs to hold results 

c_kfold_glm <- list() 

c_kfold_e_train <- list() 

c_kfold_e_test <- list() 

kfold_auc_train <- matrix(NA, nrow = 1, ncol = 1) 

kfold_auc_test <- matrix(NA, nrow = 1, ncol = 1) 

coutput <- data.frame(matrix(NA, nrow = 10, ncol = 3)) # Create an empty data.frame 

colnames(coutput) <- c("seed", "trainAUC", "testAUC") 

 

# Cross-validation 

for (i in seq_along(seeds)){ 

  set.seed(i) # set random seed 

  kfold_pres <- kfold(cPres, folds) # partition presence and background data according to the 

random seed 

  kfold_back <- kfold(c_bg_all, folds) 
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  # Create training data with 4/5 folds 

  cPres_train <- cPres[kfold_pres != 1, ]  

  cBackg_train <- c_bg_all[kfold_back != 1, ]  

  pab_train <- c(rep(1, nrow(cPres_train)), rep(0, nrow(cBackg_train))) 

  envtrain <- raster::extract(predictors, rbind(cPres_train,cBackg_train)) 

  envtrain <- data.frame(cbind(pab=pab_train, envtrain)) 

  envtrain <- transform(envtrain, 

                        catchment = as.factor(envtrain$catchment), 

                        lith = as.factor(envtrain$lith)) 

   

  # Create training data with 4/5 folds 

  prestrain <- data.frame(raster::extract(predictors, cPres_train)) 

  prestrain <- transform(prestrain, 

                         catchment = as.factor(prestrain$catchment), 

                         lith = as.factor(prestrain$lith)) 

  abstrain <- data.frame(raster::extract(predictors, cBackg_train)) 

  abstrain <- transform(abstrain, 

                        catchment = as.factor(abstrain$catchment), 

                        lith = as.factor(abstrain$lith)) 

   

  # Create testing data with 1/5 folds 

  cPres_test <- cPres[kfold_pres == 1, ] 

  prestest <- data.frame(raster::extract(predictors, cPres_test)) 

  prestest <- transform(prestest, 

                        catchment = as.factor(prestest$catchment), 

                        lith = as.factor(prestest$lith)) 

  cBackg_test <- c_bg_all[kfold_back == 1, ]  

  abstest <- data.frame(raster::extract(predictors, cBackg_test)) 

  abstest <- transform(abstest, 

                       catchment = as.factor(abstest$catchment), 

                       lith = as.factor(abstest$lith)) 

   

  # GLM with all variables 

  c_kfold_glm[[i]] <- glm(pab ~ ., family = binomial(link = "logit"),  

                          data = envtrain) 

  # Train AUC 

  c_kfold_e_train[[i]] <- evaluate(p=prestrain, a=abstrain, c_kfold_glm[[i]]) 

  kfold_auc_train[i] <- slot(c_kfold_e_train[[i]], "auc") 
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  # Test AUC 

  c_kfold_e_test[[i]] <- evaluate(p=prestest,a=abstest, c_kfold_glm[[i]])   

  kfold_auc_test[i] <- slot(c_kfold_e_test[[i]], "auc") 

   

  # Populate output data frame 

  coutput[i, 1] <- seeds[i] 

  coutput[i, 2] <- kfold_auc_train[i] 

  coutput[i, 3] <- kfold_auc_test[i] 

} 

# Warning messages: 

#   1: glm.fit: fitted probabilities numerically 0 or 1 occurred  

# 2: glm.fit: fitted probabilities numerically 0 or 1 occurred  

# 3: glm.fit: fitted probabilities numerically 0 or 1 occurred  

# 4: glm.fit: fitted probabilities numerically 0 or 1 occurred  

# 5: glm.fit: fitted probabilities numerically 0 or 1 occurred  

# 6: glm.fit: fitted probabilities numerically 0 or 1 occurred  

# 7: glm.fit: fitted probabilities numerically 0 or 1 occurred  

# 8: glm.fit: fitted probabilities numerically 0 or 1 occurred  

# 9: glm.fit: fitted probabilities numerically 0 or 1 occurred  

# 10: glm.fit: fitted probabilities numerically 0 or 1 occurred  

saveRDS(coutput, "./c_kfold_glm_outputfinal.RDS") 

 

coutput 

#    seed  trainAUC   testAUC 

# 1   561 0.8822666 0.8715000 

# 2   997 0.8845880 0.8642708 

# 3   321 0.8848329 0.8810625 

# 4   153 0.8786454 0.8898542 

# 5    74 0.8780281 0.8814167 

# 6   228 0.8783673 0.8896042 

# 7   146 0.8830969 0.8494583 

# 8   634 0.8843839 0.8574583 

# 9    49 0.8809094 0.8716458 

# 10  128 0.9028202 0.8048542 

 

## calculate the mean AUC ---- 

(aucGLM_train <- sapply(c_kfold_e_train, function(x){slot(x, 'auc')})) 

# [1] 0.8822666 0.8845880 0.8848329 0.8786454 0.8780281 0.8783673 0.8830969 0.8843839 

0.8809094 0.9028202 

(mean(aucGLM_train)) 



 
 

203 

 

# [1] 0.8837939 

(aucGLM_test <- sapply(c_kfold_e_test, function(x){slot(x, 'auc')})) 

# [1] 0.8715000 0.8642708 0.8810625 0.8898542 0.8814167 0.8896042 0.8494583 0.8574583 

0.8716458 0.8048542 

(caucGLM <- mean(aucGLM_test)) 

# 0.8661125 

 

## Thresholds ---- 

c_kfold_t <- data.frame(matrix(NA, nrow = 10, ncol = 2)) # Create an empty data.frame 

colnames(c_kfold_t) <- c("threshold", "logit") 

 

for (i in 1:10) { 

  c_kfold_t[i, 1] <- c_kfold_e_test[[i]]@t[which.max(c_kfold_e_test[[i]]@TPR + 

c_kfold_e_test[[i]]@TNR)] 

  c_kfold_t[i, 2] <- plogis(c_kfold_t[i, 1]) 

} 

 

c_kfold_t 

#    threshold       logit 

# 1  -3.520573 0.028732512 

# 2  -4.679280 0.009200265 

# 3  -4.302436 0.013354787 

# 4  -4.255326 0.013989968 

# 5  -4.286985 0.013559909 

# 6  -4.262792 0.013887348 

# 7  -3.911335 0.019621067 

# 8  -4.744384 0.008625373 

# 9  -3.690804 0.024344484 

# 10 -4.478065 0.011227867 

 

mean(c_kfold_t$threshold) 

# -4.213198 

 

(cthsglm <- mean(c_kfold_t$logit)) 

# 0.01565436 

 

## TSS ---- 

eval <- list() 

kfold_tss <- matrix(NA, nrow = 1, ncol = 1) 

for (i in 1:10){ 
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  eval[[i]] <- ensemble.evaluate(eval = c_kfold_e_test[[i]], eval.train = c_kfold_e_train[[i]]) 

  kfold_tss[i] <- eval[[i]][2] 

} 

kfold_tss 

# [1] 0.6395000 0.5885000 0.6600000 0.7116667 0.6525000 0.6388333 0.5573333 0.5825000 

0.6696667 0.5205000 

mean(kfold_tss) 

# [1] 0.6221 

 

## Variable importance ---- 

c_vi_kfold_glm <- vi_model(c_kfold_glm[[1]], type = "stat") # Z-statistic 

 

c_vi_kfold_glm <- c_vi_kfold_glm[order(c_vi_kfold_glm$Variable),] %>% select(-Sign) 

 

for (i in 2:length(c_kfold_glm)) { 

  vi <- vi_model(c_kfold_glm[[i]], type = "stat") 

  c_vi_kfold_glm <- c_vi_kfold_glm %>% left_join(., vi, by = "Variable") %>% select(-Sign) 

} 

# average ranks together 

c_vi_kfold_glm$Avg <- rowMeans(c_vi_kfold_glm[, 2:11]) 

c_vi_kfold_glm <- c_vi_kfold_glm[order(-c_vi_kfold_glm$Avg),] 

write.csv(c_vi_kfold_glm, "./c_vi_kfold_glmfinal.csv") 

 

# average z-scores with sign 

ztable <- data.frame(matrix(NA, nrow = 19, ncol = 10)) 

colnames(ztable) <- c(1:10) 

rownames(ztable) <- names(c_kfold_glm[[1]]$coefficients) 

for (i in 1:10){ 

c_summary <- summary(c_kfold_glm[[i]]) 

coeff <- data.frame(c_summary$coefficients) 

ztable[,i] <- coeff$z.value 

} 

write.csv(ztable, "./c_ztable.csv") 

 

 

 

save.image("./cGLMfinal.RData") 

 

# Predict values ---- 

## Probabilistic ---- 
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# Rasters on linear scale 

for (i in 1:10){ 

  pglm <- predict(predictors, c_kfold_glm[[i]]) 

  writeRaster(pglm, paste0(paste0("./Predictions/scratch_glm/pglm_clinear_scale_", i), ".tif"), 

overwrite = TRUE) 

} 

# pglm <- predict(predictors, c_kfold_glm[[9]]) 

# writeRaster(pglm, "./Predictions/scratch_glm/pglm_clinear_scale_9.tif", overwrite = TRUE) 

 

# Convert rasters to logit scale ---- 

files <- list.files(path = "./Predictions/scratch_glm/", 

                    pattern = "clinear", 

                    all.files = TRUE, 

                    full.names = TRUE, 

                    include.dirs = FALSE) 

 

linrasters <- raster::stack(files) 

pglm.mean <- calc(linrasters, fun = mean) 

pglm.logit <- calc(pglm.mean, fun = plogis) 

writeRaster(pglm.logit, "./Predictions/Prob/Current/c_prob_glmfinal_mean.tif", overwrite = 

TRUE) 

 

## Binary presence/absence raster ---- 

pglm.logit <- raster("./Predictions/Prob/Current/c_prob_glmfinal_mean.tif") 

m <- c(0, cthsglm, 0,  cthsglm, 1, 1) 

rclmat <- matrix(m, ncol=3, byrow=TRUE) 

pglm.pa <- reclassify(pglm.logit, rclmat, include.lowest = TRUE, right = TRUE) 

x11() 

plot(pglm.pa) 

writeRaster(pglm.pa, "./Predictions/PresAbs/Current/c_pamap_glmfinal.tif", overwrite = TRUE) 

save.image("./cGLMfinal.RData") 

 

---------------------------------------------------------------------------------------------------------------------

--------------------- 

# 6. Ensemble models 

 

# Load individual models ---- 

load("./hFinalRFMx.RData") # historic pops RF and Maxent 

load("./cFinalRFMx.RData") # current pops RF and Maxent 

load("./cGLMfinal.RData") # current pops GLM 
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load("./hGLMfinal.RData") # historic pops GLM 

 

 

# Load libraries ---- 

library(dismo) 

library(dplyr) 

library(rasterVis) 

library(rgdal) 

library(rJava) 

library(SDMtune) 

library(sp) 

library(terra) 

library(zeallot) 

 

# Historic populations ---- 

## Stack rasters ---- 

files <- list.files(path = "./Predictions/Prob/Historic/", 

                    pattern = "tif", 

                    all.files = TRUE, 

                    full.names = TRUE, 

                    include.dirs = FALSE) 

h_prob_predict <- terra::rast(files) 

names(h_prob_predict) 

names(h_prob_predict) <- c("glm", "mx", "rf") 

 

## Weighted means ---- 

h_prob_auc <- c(haucGLM, haucmx, haucrf) 

# [1] 0.8471952 0.8753726 0.9023403 

h_w <- (h_prob_auc-0.5)^2 # subtract 0.5 (the random expectation) and square the result to give 

further weight to higher AUC values 

# [1] 0.1205445 0.1409046 0.1618777 

h_prob_mean <- terra::weighted.mean(h_prob_predict, h_w) 

 

## Mean threshold values ---- 

h_th_mean <- mean(c(hthsglm, h_ths_mx, h_ths_rf)) 

# [1] 0.05102805 

 

## Write raster ---- 

x11() 

par(mfrow=c(1,1)) 

plot(h_prob_mean) 

 

writeRaster(h_prob_mean, "./Predictions/Prob/Historic/h_prob_weighted_mean.tif") 

h_pamap_mean <- plotPA(h_prob_mean,  

                       th = h_th_mean, 

                       filename = "./Predictions/PresAbs/Historic/h_pamap_mean.tif", 
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                       overwrite = TRUE) 

plot(h_pamap_mean) 

 

# Current populations ---- 

## Stack rasters ---- 

files <- list.files(path = "./Predictions/Prob/Current/", 

                    pattern = "tif", 

                    all.files = TRUE, 

                    full.names = TRUE, 

                    include.dirs = FALSE) 

c_prob_predict <- terra::rast(files) 

names(c_prob_predict) 

names(c_prob_predict) <- c("glm", "mx", "rf") 

 

## Weighted mean of model AUCs ---- 

c_prob_auc <- c(caucGLM, caucmx, caucrf) 

# [1] 0.8661125 0.9212166 0.9081711 

c_w <- (c_prob_auc-0.5)^2 # subtract 0.5 (the random expectation) and square the result to give 

further weight to higher AUC values 

# [1] 0.1340384 0.1774234 0.1666036 

 

## Mean threshold values ---- 

c_th_mean <- mean(c(cthsglm, c_ths_mx, c_ths_rf)) 

# [1] 0.05549196 

 

## Write rasters ---- 

c_prob_mean <- terra::weighted.mean(c_prob_predict, c_w) 

x11() 

par(mfrow=c(1,1)) 

plot(c_prob_mean) 

writeRaster(c_prob_mean, "./Predictions/Prob/Current/c_prob_weighted_mean.tif") 

c_pamap_mean <- plotPA(c_prob_mean,  

                       th = c_th_mean, 

                       filename = "./Predictions/PresAbs/Current/c_pamap_mean.tif", 

                       overwrite = TRUE) 

plot(c_pamap_mean) 

 

# Change over time ---- 

c_prob_mean <- rast("./Predictions/Prob/Current/c_prob_weighted_mean.tif") 

h_prob_mean <- rast("./Predictions/Prob/Historic/h_prob_weighted_mean.tif") 

c_pamap_mean <- rast("./Predictions/PresAbs/Current/c_pamap_mean.tif") 

h_pamap_mean <- rast("./Predictions/PresAbs/Historic/h_pamap_mean.tif") 

 

 

change_in_prob <- c_prob_mean - h_prob_mean 

x11() 
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plot(change_in_prob) 

writeRaster(change_in_prob, "./Predictions/Prob/change_in_prob_presence.tif") 

 

pa_change <- c_pamap_mean - h_pamap_mean 

x11() 

plot(pa_change) 

writeRaster(pa_change, "./Predictions/PresAbs/pa_change.tif") 

 

c_area <- readOGR("./Predictions/PresAbs/Current/c_pamap_area.shp") 

h_area <- readOGR("./Predictions/PresAbs/Historic/h_pamap_area.shp") 

 

(loss <- h_area@data$Area - c_area@data$Area) 

# 676.033 km2 - 330.807 km2 = 345.226 km2 

 

(prop.left <- c_area@data$Area / h_area@data$Area) 

# 0.4893356 range left (continued predicted presence in 49% of historic range) 

 

(prop.lost <- 1 - (c_area@data$Area / h_area@data$Area)) 

# 0.5106644 range lost (range has shrunk by 51%) 

 

## Maine ---- 

c_area_ME <- readOGR("./Predictions/PresAbs/Current/c_pamap_area_ME.shp") 

h_area_ME <- readOGR("./Predictions/PresAbs/Historic/h_pamap_area_ME.shp") 

 

(loss <- h_area_ME@data$Area - c_area_ME@data$Area) 

# 218.585 km2 - 82.346 km2 = 136.239 km2 

 

(prop.left <- c_area_ME@data$Area / h_area_ME@data$Area) 

# 0.376723 range left (continued predicted presence in 38% of historic Maine range) 

 

(prop.lost <- 1 - (c_area_ME@data$Area / h_area_ME@data$Area)) 

# 0.623277 range lost (range has shrunk by 62% in Maine) 

 

## New Hampshire ---- 

c_area_NH <- readOGR("./Predictions/PresAbs/Current/c_pamap_area_NH.shp") 

h_area_NH <- readOGR("./Predictions/PresAbs/Historic/h_pamap_area_NH.shp") 

 

(loss <- h_area_NH@data$Area - c_area_NH@data$Area) 

# 457.206 km2 - 248.404 km2 = 208.802 km2 

 

(prop.left <- c_area_NH@data$Area / h_area_NH@data$Area) 

# 0.5433087 range left (continued predicted presence in 54% of historic NH range) 

 

(prop.lost <- 1 - (c_area_NH@data$Area / h_area_NH@data$Area)) 

# 0.4566913 range lost (range has shrunk by 46% in NH) 
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removal. After graduating with her bachelor’s in 2015, Lara spent four years working for Acadia 

National Park as a wildlife technician and environmental compliance assistant. Lara became 

especially interested in monitoring rare species as she surveyed Acadia’s bats, bumble bees, and 

wintering seabirds. Her interests in rare species monitoring, geographic information systems, and 

wetlands led her to return to the University of Maine to pursue her master’s degree researching 

the bridle shiner. After receiving her degree, Lara will begin a Ph.D. program working with a 

very different and less elusive species, the wild turkey. Lara is a candidate for the Master of 

Science degree in Wildlife Ecology from the University of Maine in August 2023. 
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