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ABSTRACT 

 
The current ASTM C-618 standard for fly ash classification uses an index based on a 

limited set of elements determined by XRF.  This approach treats the fly ash as if it were 

a homogeneous material of uniform composition. However, detailed analysis of 

thousands of individual fly ash glass particles by Automated SEM (ASEM) shows that 

the chemical composition can vary widely from one particle to another.  The XRF data 

represent an average over all these diverse compositions including inert crystalline 

phases like quartz. Consequently, an index computed from the XRF data may not be a 

reliable predictor of fly ash performance.  On the other hand, the chemical compositions 

of the individual glassy particles are not completely randomly distributed, but rather 

cluster around certain values that reflect the chemical compositions of the precursor 

clay minerals.  These clusters could be the basis of a more accurate statistical 

description of the chemical composition of the fly ash in terms of the weighted 

compositional center of each of the clusters.  Moreover, the clusters can be used to 

define the chemical compositions of a set of calcium aluminate silicate glasses.  Each of 

these glasses has a characteristic reactivity that can be determined experimentally.  
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Thus a fly ash classification system could be developed based on a set of standard fly 

ash glass compositions that would predict the reactivity of the fly ash and hence its 

performance as a supplementary cementitious material.  

 

I. INTRODUCTION 

The motivation for this research is the need for an improved classification system for fly 

ashes
1-3

. The ASTM specification C-618 defines just two classes based on bulk 

chemical composition in terms of the sum Al
2
O

3
+SiO

2
+Fe

2
O

3 
with the criteria that Class 

C ashes 50-70% and Class F > 70%4. However, these classes are not directly related to 

pozzolanic activity, which depends upon mineralogy of the individual particles, rather 

than the bulk chemical composition of the whole fly ash. The most important factors are 

the quantity of reactive material present and the rate at which the reactive components 

enter into the hydration reaction.  

The reactive components in fly ash are normally in the form of glassy phases, but 

the available analytical techniques cannot characterize these glassy phases directly. 

Bulk chemical analyses such as XRF cannot discriminate between glassy and 

crystalline phases.   X-ray diffraction with Rietveld analysis can provide an indirect 

estimate of the glassy phase by calculating the difference between the XRF bulk 

chemistry and the overall chemistry of the crystalline phases. However, this gives only a 

bulk average glass composition. The computer automated scanning electron 

microscope (ASEM), which identifies and characterizes individual particles, shows that 

the chemical composition can vary widely from one particle to another. Therefore, the 



objective of this paper is to consider the possibility of a performance-based 

classification system based on cluster analysis of the individual particle data. 

 

II. PARTICLE ANALYSIS BY AUTOMATED SCANNING ELECTRON MICROSCOPY 

(ASEM) 

As an alternative to using the fly ash bulk composition, the selected approach is 

based on the analysis of individual fly ash particles using Automated Scanning Electron 

Microscopy (ASEM) 5-7. This measures the major elements in a selected particle and its 

diameters along several orientations.  Glassy particles are identified using the aspect 

ratio, estimated from a 64 x 64 pixel micrograph of each individual particle.  This is 

based on the concept that the glassy particles form by cooling from droplets of melted 

clays or other minerals, and thus would have nearly spherical shapes in contrast to the 

more angular shapes of the crystalline particles. The identification of crystalline particles 

is then confirmed using characteristic elemental ratios.  A typical analysis measures 

about 10,000 particles.  An example of ASEM analysis is shown in Fig. 1.   

 For better visualization of the elemental data, the particle compositions are 

plotted in triaxial coordinates corresponding to the three glass science categories of 

glass formers (right), alkali modifiers (bottom) and alkali-earth (left).  Each point in the 

plot represents the composition of a single particle as noted above.  The ASTM 

specification C-618 is based on the sum of the three components Al
2
O

3
+SiO

2
+Fe

2
O

3 
, 

with 50% specified as the lower limit for Class C ashes and 70% for Class F. This sum 

turns out to be the same as one of the axes of the triaxial diagram used here to plot the 

ASEM data. Thus, the ASTM C-618 limits plot as straight horizontal lines as shown in 



Fig 1. The fly ash shown in Fig. 1 is classified as Class C based on its bulk composition.  

However, some particles actually plot in the Class F region. Others show significant 

concentrations of CaO and could be self cementing.  

 

 

  (a) Coal Creek Fly Ash      (b) Cayuga Fly Ash 

Figure 1: Composition of all spherical particles of (a) Coal Creek and (b) Cayuga fly ash 

in glass coordinates 

         This plot also illustrates the inadequacy of the current ASTM C-618 

classifications, which do not take into account the CaO or alkali contents of the fly ash.  

It is often stated that Class C ashes are higher in calcium than Class F, even though the 

CaO content is not given explicitly.  This statement is apparently based on the constant 

sum properties of chemical compositional data discussed below.   In other words if the 

sum Al
2
O

3
-SiO

2
-Fe

2
O

3
 decreases, then the CaO content must increase in 

compensation. However, this is strictly true only for the four component system:  Al
2
O

3
-

SiO
2
-Fe

2
O

3 -CaO.  Since the sum Al
2
O

3
-SiO

2
-Fe

2
O

3
  is at the top vertex and the CaO is 

at the left vertex, this actually defines a binary system, and hence all the data points 



would have to plot along the left triaxial axis in Fig. 1. However, as can be seen, the 

data are scattered all across the upper half of the triangle, indicating little or no 

correlation between CaO and Al
2
O

3
+SiO

2
+Fe

2
O

3
. This is the result of the presence of 

the additional components Na
2
O and K

2
O which add more degrees of freedom.  

 

 III. CLUSTER ANALYSIS 

Figure 1 also gives some idea of the dispersion in the particles’ chemical compositions.  

A mean chemical composition for the all particles can be calculated, but it would have 

such large compositional variances as to be meaningless.    However, in the plot, 

several clusters can be observed whose derived statistics would indicate far better in 

class compositional similarity.  For example, as shown by the red outline, there is an 

elliptical cluster running parallel to the CaO+MgO axis below SiO2+Al2O3+Fe2O3 ≈ 0.60.  

These clusters reflect the chemical compositions of the precursors of the glassy 

particles, i.e. different clay minerals.  Each of these clusters would have a characteristic 

glass chemical composition, and hence a characteristic reactivity.  This suggests the 

possibility of predicting the reactivity of the overall fly ash in terms of the fractions and 

characteristic reactivities of these clusters.  

 Each cluster is defined by its weighted compositional centroid and the boundary 

in chemical composition space which encloses all the members of the cluster.  This 

space would have as many dimensions as the number of major chemical constituents, 

which can consist of as many as 7 and thus the boundary would be a hypersurface.  

The ellipse shown in Fig 1a is actually a projection of the hypersurface onto the 2 

dimensional planes.  The centroid is strictly a geometrical concept; it is the center of 



symmetry of shape of the boundary.  It can also be regarded as the mean chemical 

composition of the cluster, provided that this mean is calculated correctly as discussed 

below.   

In the k means method of cluster analysis,8 the number, k, of clusters is specified 

in advance.  The algorithm then assigns all the members of the data set into one of 

these clusters based on some distance metric in the composition space.  For the 

purposes of this paper, the distance metrics used were Euclidian, following the rules of 

orthogonal vector space geometry.  Once all the members have been assigned, the 

cluster boundary is drawn around the extreme values of the cluster.  In this approach, 

outliers are generally defined by single particle clusters (i.e., groups with only one 

compositional member).  For the purposes of summarization and compositional 

modeling, such outliers are generally ignored. 

As an example of cluster analysis the ASEM data for some fly ashes from an 

Iowa State University study were used.  The open source implementation of S, known 

as R 9 includes cluster analysis software, which was used to identify the clusters in the 

ASEM data by the k-means method.  This was based on 7 constituents: K2O, Na2O, 

CaO, MgO, SiO2, Al2O3 and Fe2O3. The number, k, of clusters was also limited to 7.  It is 

worth noting that, while the number of clusters is arbitrary, decreasing the number of 

clusters tends to reduce the precision of in class statistics.  Consequently, increasing 

the number of clusters reduces the summarization and predictive power of the derived 

clusters.  The value chosen here represents a balance between these two 

considerations, although it is derived only through empirical study.  The clusters 

obtained by using k-mean method on spherical particles of Cayuga and Coal Creek fly 



ashes are shown in Fig. 2. There are seven clusters found in the analysis of each fly 

ash appearing in Red, Magenta, Green, Blue, Cyan, Yellow and Black.  

 

 

 

 

 

 

 

 

 
(a) Coal Creek      (b) Cayuga  

 
Figure 2: Clusters of spherical particles of (a) Coal Creek fly ash and (b) Cayuga fly ash 

in CaO+MgO-SiO2+Al2O3+Fe2O3-Na2O+K2O coordinates 

 
Table 1 Classification of Glassy Phase based on Cluster Analysis of Coal Creek Fly Ash 

Cluster No. Color Name Number (%) 
1 Black Si-Al-Fe glass 9.57 
2 Red Trace element 1.00 
3 Green Si-Al-Fe glass 32.67 
4 Blue CAS glass 11.85 
5 Cyan CAS glass 11.93 
6 Magenta Ca rich glass 15.64 
7 Yellow CAS glass 17.34 
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Table 2 Classification of Glassy Phase based on Cluster Analysis of Cayuga Fly Ash 

Cluster No. Color Name Number (%) 
1 Black Si-Al-Fe glass 44.55 
2 Red CAS glass 7.00 
3 Green Ca rich glass 3.86 
4 Blue Si-Al-Fe glass 11.82 
5 Cyan Hi Alkali glass 0.78 
6 Magenta Ca rich glass 6.35 
7 Yellow Si-Na glass 25.65 

 

It can be seen that the boundaries of the clusters in the Coal Creek fly ash are 

clearly separated from one another except for the black cluster, which overlaps with 

other clusters. This may be because the particles in the black cluster have significant 

amounts of the other elements, such as Ti, that are not shown as individual axes in the 

diagram. A higher number k of clusters would be needed to separate this widely 

dispersed black cluster into more precisely defined clusters.  However, each cluster 

would then contain only a small number of particles.  Each cluster in this fly ash 

contains a similar number of particles  although  the green cluster, which is the Si-Al-Fe 

glass, has the  highest number of particles accounting for 33% of all particles. The 

average composition of this cluster is 56% Si-Al-Fe and 28% alkali content, which 

indicates high reactivity of the particles.  

There are only two major clusters in Cayuga fly ash; black and yellow. The black 

cluster accounts for 45% of the total particles. It has high Si-Al-Fe content and low Ca-

Mg and Na-K content which is considered aluminosilicate glass. Their high Si-Al-Fe 

content indicates low reactivity of the cluster. The wide dispersion of the cyan class 

seems to indicate that more clusters would better define the class. 



  In order to relate the clustering observed in the ASEM data to conventional 

mineralogical analysis, the cluster data are also plotted as oxides in a CaO-Al2O3-SiO2 

ternary diagram.  Note that the colors in this CaO-Al2O3-SiO2 diagram do not represent 

the same clusters as found in the CaO+MgO-SiO2+Al2O3+Fe2O3-Na2O+K2O diagrams in 

Fig 2. The ternary diagram suggests that the clusters arise from the original chemical 

compositions of the inorganic minerals in the coal.  This could be either clay minerals or 

other minerals such as quartz or pyrites. For example, the clay mineral kaolinite10 has 

the formula Al2Si2O5(OH)4  for an Al2O3:SiO2 ratio of 1:2 and no CaO. Thus it could be a 

source for the blue cluster in Coal Creek and the red cluster for Cayuga.  The common 

clay mineral montmorillonite has idealformula:Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O 

and it could be  a source for the yellow cluster in Coal Creek and the yellow cluster in 

Cayuga. The Na content in this mineral could volatilize during the melting process. 

 

(a) Coal Creek      (b) Cayuga      

Figure 3: Clusters of spherical particles of (a) Coal Creek fly ash and (b) Cayuga in 

CaO-Al2O3-SiO2 coordinates 
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  The majority of the clusters found in Coal Creek fly ash are the green, blue, cyan 

magenta and yellow clusters. The difference between these clusters is the CaO and 

SiO2 content  for which as CaO decreases the SiO2 content increases in compensation. 

They have similar SiO2/Al2O3 ratios in which SiO2 is greater  than Al2O3. The major 

clusters in Cayuga fly ash; blue, magenta, black and cyan, also differ by the CaO 

content. They have similar SiO2/Al2O3 ratios and Al2O3 is almost equal to the SiO2 

content. 

Compositional data statistics 

  A complication of working with compositional data is the constant sum property.  

If a chemical composition is given in terms of a set of mass fractions, x1, x2, x3…xd, then 

by definition: 

 
1

1
d

i

i

x


  (1) 

This constant sum property implies that there are only d-1 independent variables since: 
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Consequently, it is not correct to calculate a mean composition of a set of samples by 

simply calculating the means of the individual xi.   

  Aitchison11 proposed a way to overcome this problem by calculating a set of 

ratios:  

 i
i

d

x
r i d

x
   (3) 

Then the mean composition and the variances of a set of samples can be calculated in 

terms of these ratios.   For convenience, Aitchison used the logs of these ratios to 



calculate the means, consequently this technique is known as the logratio method.   As 

a result the mean computed from the logratio is the geometric mean rather than the 

arithmetic mean, but in many cases this is more appropriate when dealing with 

geological data sets. 

The use of ratios rather than mass fractions to describe a chemical composition 

may initially be hard to understand, but the two sets of coordinates are equivalent.  As 

shown in Fig 4a for a hypothetical sample composition A, in a ternary phase diagram 

the ratio is a line.  Since there are two possible ratios that can be calculated for the 

three components, the result is a pair of lines.  Their intersection defines the position of 

the data point. 

 

 The logratio method also calculates variances, σi
2, in terms of ratios.  This 

produces a confidence interval ± σi around ri which plots as a pair of lines bracketing the 

line for ri as shown in Fig 4b.  The intersections of these line pairs form a polygon which 

defines a region of confidence around the point A.   

Fig. 4a: Illustration of the equivalent of 
mass fraction and ratio coordinates for 
hypothetical composition A. 

Fig. 4b: Illustration of variances in 
ratio coordinates 



Clusters vs Standard Glass Compositions 

  The k means cluster analysis algorithm avoids the constant sum issue because it 

uses an iterative geometric method which compares the distances between pairs of 

data points to find the centroid of the data set.  However, there would some problems 

with a fly ash classification system based directly on clusters.  The set of clusters is 

specific to a given data set. This means that the cluster centroids and boundaries would 

vary from one fly ash sample to another, as illustrated in Figs.  2 & 3. In other cases, the  

number k may even be different.  Consequently, it would not be possible to compare fly 

ashes using their respective sets of clusters.  

  However, it would be possible to define a set of standard clusters and then to 

evaluate how well a data set fits that standard set.  This set would be developed by 

statistical analysis of the clusters analyzed from a variety of actual fly ashes. The 

specifications of these standard clusters would also take into account geochemical 

constraints such as clay mineral chemistry. Since the centroid of each of these standard 

clusters would be a specific chemical composition, this also defines a set of standard 

glasses.  An example of such a standard set of glasses is given in Table 3 12.  

Table 3: Set of Standard Glasses 

Glass SCL SCM SCH SCF SCFK SCB SYH SYF SYQ SYB 

Al2O3 17.46 14.69 13.98 14.28 16.38 16.54 23.71 26.80 9.59 25.99 

CaO 4.79 13.15 25.35 3.51 7.75 13.83 22.40 4.07 1.34 4.61 

Fe2O3 5.77 6.28 7.30 5.53 5.07 5.40 7.28 10.83 2.02 12.11 

K2O 6.50 4.63 2.18 7.34 2.73 2.35 0.12 2.92 1.78 2.07 

MgO 1.86 2.52 3.43 1.23 5.70 3.36 4.81 3.44 0.24 1.01 

Na2O 15.61 10.43 6.09 11.06 2.24 4.33 0.11 1.35 0.34 0.86 

SiO2 47.93 48.20 41.57 56.94 60.13 53.59 41.40 50.45 84.69 53.35 

 



  Given the standard chemical compositions, it would then be possible to make 

specimens of the glasses.  These would then be characterized for density and reactivity. 

 

Development of a Performance-based Classification System 

  A performance-based classification system could be developed using a set of 

these standardized glass compositions.  In this approach, for a total number, N, of 

glassy particles analyzed by ASEM, each particle would be assigned to a standard 

glass class, based on its chemical composition.  Then for k number of standard glass 

classes: 

 
k

i

i o

N n


  (4) 

where ni is the particle count in the ith class.  The no class is introduced to account for 

those outlier particles that could not be assigned to any of the standard set within the 

specified tolerances. 

  The ni themselves can be plotted as a histogram, but for comparison between 

different fly ashes they should be normalized to give fractions or percentages i.e. fi = 

ni/N.  It should be noted these are number fractions.  To convert them to mass fractions 

it is necessary to use the individual particle radius and the density of the glass. 
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where xi  is the mass fraction, rj is the radius of the jth particle and ρi  is the density of the 

ith standard glass.  It is necessary to use this approximation because the ASEM system 

does not measure the density of the individual particles. 



  Since the reactivities of the standard glass types would be known, either the fi  or 

the xi can be used to predict the performance of the fly ash and thus make up a 

performance-based classification system.  Rather than deal with a set of individual 

reactivities, it may be more desirable to use a single composite reactivity index.  

Depending on how the reactivities are defined, this could be a mass-based index: 

 
1

k

m i i

i

A a m


  (6) 

where Am is the reactivity index based on mass and the ai are the reactivities of the 

individual glass types. 

  However, because the reactions take place at the solution/glass interface, a 

more appropriate index may be based on surface areas: 
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where si are  the surface area fractions, given by: 
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In this case, the ai are surface area normalized reactivities. Another advantage of the 

surface-based reactivity index is that avoids the need to specify particle densities. 

 

V. CONCLUSIONS 

  The availability of data on individual fly ash particles provided by the ASEM 

makes it possible to identify characteristic clusters of glass particles with similar 

compositions.  These clusters can then be used to develop a standard set of fly ash 



glass compositions. The density and reactivity of each of these glasses would then be 

determined experimentally.  This standard set of glasses can then form the basis of a 

classification system for fly ashes using mass or surface –based fractions.  Finally, a 

composite reactivity index can be calculated from the individual glass reactivities. 
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