

Development of green cement and green concrete, based on partial replacement of cement with limestone powders and blast - furnace slag

Yaniv Knop

Civil Engineering Department Ariel university, Israel.

Introduction

Over the past few years there has been a growing interest in the development of Portland Cement by partial replacement of the clinker (active component) or the reduction of cement in the concrete mixture, with various chemical additives.

- 1. <u>Active materials</u> Fly ash, Metakaolin, Slag, Silica fume.
- 2. Inert materials Limestone, Silica

Motivation

The motivations to reduce the clinker and the cement content are threefold:

- 1. Environmental
 - \succ lower CO₂ emission to the atmosphere.
 - 1 ton clinker \Rightarrow 0.8 1.0 ton CO₂ emission
- 2. <u>Economical -</u> cost reduction.
- 3. <u>Scientific\Technology</u> improvement of performances.

Limestone

Limestone is one of the most attractive as it is considered:

Natural

□ Available

Economical

Research Goal

Development of <u>blended cement & concrete mixture</u>, by partial replacement of the

clinker or cement mostly with limestone powders and other chemical additives,

having several particle size distributions, in order to improve the

cement & concrete performances.

Hypothesis

- The ability to replace an "active" material with an inert additive, while achieving improved properties, can be obtained by increasing the <u>Packaging</u> Density of the blended cement & concrete mixture.
- Increased Packing Density, can be achieved by a combination of <u>several</u> <u>different particle size distributions</u>.

Setting Times

5 % wt.

Single-Particle-Size

Nucleation Centers

Increased number of nucleation centers

Faster hydration rate more hydration products at early age

Jeffrey, 2009

Setting Times

Single-Particle-Size compared to combined sizes

Packing Density Measurement

Packing Density =
$$\frac{V_{Solid}}{V_{Solid+water}} = \frac{1}{1 + \rho_P \frac{w}{p}}$$

Lecomte et al, 2009

where:

W = water required to mix cement paste to obtain normal consistency

p = the powder weight

 $\rho_{\rm p}$ = the specific density of the dry

Packing Density

Influence of mechanisms involved

 \Box Nucleation Centers \rightarrow Surface Area

Greater surface area, faster setting rate

\Box Packing Density \rightarrow Solid Content

Greater solid content, lesser voids to be filled by hydration products

* Michael, 2008

Setting Times

Penetration depths vs. time

Replacement
contentSmall
%Similar
%Big
%5%
20%
35%5%

Limestone having combined sizes

Surface Area & Packing Density Combined Particle Sizes

Combined limestone particle sizes:

Greater Surface Area

Greater Packing Density

Limestone having combined sizes

Development of both blended cement and concrete mixtures having reduced clinker

Nucleation Centers & Packing Density

Blended Cement & Concrete mixture Having reduced clinker amount

Concrete Production

UNIVERSIT

Partial Replacement of the Original Cement with limestone powders having various sizes

Original cement replacement with limestone, % wt.

Original cement replacement with limestone, % wt.

Combined limestone particle sizes: Greater Initial Strength Greater Final Strength

Original cement replacement with limestone, % wt.

Original cement replacement with limestone, % wt.

Replacement amount, % wt.	Increased Initial strength, %	Increased Final strength, %
5	18	3
15	32	23
25	45	30

Partial replacement of the Original Cement with limestone powder having various sizes

Replacement amount, % wt.	Increased Initial strength, %	Increased Final strength, %
5	18	3
15	32	23
25	45	30

Combined limestone particle sizes:

Greater Specific WeightGreater Surface Area

Partial replacement of the Original Cement with Blast - Furnace Slag having a single size

Replacement amount, %

BFS having a Single-Particle-Size

Partial replacement of the Original Cement with Blast - Furnace Slag having various sizes

BFS having combined sizes

Conclusions

Two main mechanisms were found to effect the performances of cement and concrete mixtures ; **Surface Area & Packing Density**.

Partial replacement of cement with chemical additives having <u>fine particles</u>

Blended of various chemical additives having various sizes;

Development of Green Cement & Green Concrete having reduced clinker amount and improved performances