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Abstract	

A tricritical point as a crossover between (stationary finite-wavelength) type-Is and (stationary 
longwave) type-IIs bifurcations is identified in the study of diffusive-thermal (Turing) instability 
of flames propagating in a Hele-Shaw channel in a direction transverse to a shear flow. Three 
regimes exhibiting different scaling laws are identified in the neighbourhood of the tricritical 
point. For these three regimes, sixth-order partial differential equations are obtained governing 
the weakly nonlinear evolution of unstable solutions near the onset of instability. These sixth-
order PDES may be regarded as the substitute for the classical fourth-order Kuramoto–Si-
vashinsky equation which is not applicable near the tricritical point. 

Keywords: Tricritical	point; Sixth-order PDEs; Kuramoto–Sivashinsky equation; Weakly nonlin-
ear analysis 

 

Tricritical	point	

The concept of tricritical point is a well-recognized 
topic in the theories of phase transition. It is a point in 
the phase diagram where the curves of first-order and 
second-order phase transitions meet [1]. On the other 
hand, the two phase transitions are qualitatively analo-
gous to a stationary finite-wavelength (known as type-
Is) and a stationary longwave (known as type-IIs) bifur-
cations, studied in the linear stability theory. The nota-
tion type-Is and type-IIs follow the terminology of the 
review paper [2] and the book [3, pp.75–81] with the 
subscript 𝑠 indicating a stationary or non-oscillatory 
bifurcation from a stable to an unstable state. Analo-
gous to the tricritical point of the phase transition, a 
tricritical point as a crossover between type-Is and 
type-IIs bifurcations appears not to have been studied 
yet in the literature. In fact, we have encountered such 
a point in a recent investigation [4] of the diffusive-
thermal (Turing) instability of a premixed flame prop-
agating in a Hele-Shaw channel in a direction trans-
verse to the shear-flow direction. The flame stability in 
this case is governed by a dispersion relation, connect-
ing the complex growth rate 𝜎 of a normal-mode per-
turbation with its real wavenumber 𝑘, given by 

2Γ 1 Γ 𝑙 1 Γ 2𝜎 4𝜆𝑘 0 (1) 

with Γ √1 4𝜎 4𝑘 .  Here, 𝑙  and 𝜆  are two in-
dependent parameters, defined by 

𝑙 ≡ 𝛽 𝐿𝑒 1 ∈ ∞, ∞ ,

𝜆 ≡
𝛾𝑃𝑒

1 𝛾𝑃𝑒
∈ 0,1  

(2) 

where 𝛽  and 𝐿𝑒  are the Zeldovich and Lewis num-
bers and 𝑃𝑒 is the Peclet number based on the chan-
nel half-width and the flow (maximum) amplitude. As 
for 𝛾 , it is the Taylor-dispersion coefficient which is 
fully determined by the flow profile, equal to 8/945 in 
the case of a plane Poiseuille flow and 1/20 in the case 
of a Couette flow, for instance. The dispersion relation 
yields, in general, three roots for 𝜎 𝜎 𝑘  , of which 
one of the roots is always real and satisfies the condi-
tion 𝜎 0 0.  This particular root is the root that is 
involved in the type-Is and type-IIs bifurcation, as it will 
be shortly confirmed from the implications of the Tay-
lor expansion of 𝜎 𝑘   which follows. Henceforth we 
shall regard 𝜎 to be real and refer only to this root. 

A Taylor series expansion of 𝜎 𝑘  at 𝑘 0 is given 
by 

𝜎 𝑎𝑘 𝑏𝑘 𝑐𝑘 ⋯ (3) 

where 

𝑎
𝑙
2

2𝜆 1 1,

𝑏
𝑙
8

2𝜆 1 𝑙 6 , 
(4) 
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𝑐
𝑙
16

2𝜆 1 𝑙 4 𝑙 10 . (5) 

The type-IIs bifurcation is explained using only the first 
two terms of the Taylor series, provided 𝑏 0. Then 
the onset of instability corresponds to the condition 
𝑎 0 or, equivalently the condition 𝑑 𝜎/𝑑𝑘 | 0 
(see the schematic illustration in Fig. 1). The condition 
𝑏 0 is needed since if 𝑏 0, then the critical wave-
number 𝑘  at the instability onset is necessarily non-
zero and therefore does not correspond to a type-IIs bi-
furcation. It is evident from the definition of 𝑏 that as 
𝑙 → 6 , 𝑏 → 0;  the vanishing of 𝑏  due to 𝑙 2𝜆 1
0  is irrelevant since this corresponds to points lying 
elsewhere in the 𝑙-𝜆 plane than the region of interest 
under consideration. This then defines a tricritical	
point in the 𝑙-𝜆plane (see Fig. 1), 

𝑙, 𝜆 6,2/3  (6) 

as a point for which both 𝑎 𝑏 0 [1]. To character-
ise the neighbourhood of the tricritical point, we need 
the three-term expansion of the Taylor series with the 
condition 𝑐 0 ; 𝑐 4  at the tricritical point. For 
𝑙 6  (i.e., 𝑏 0 ), we have type-Is bifurcation which 
involves the change of sign of 𝜎  at a critical wave-
number 𝑘 0 where 𝑑𝜎/𝑑𝑘 0. 

The	 three	 regimes	 in	 the	 neighbourhood	 of	 the	
tricritical	point	

The neighbourhood of the tricritical point can be 

examined by introducing two independent small pa-
rameters 

𝜀
𝜆 2/3

2/3
≪ 1, 𝜇

𝑙 6
6

≪ 1. (7) 

The formula for 𝑏 (4) indicates that 𝑏 ≃ 3𝜇 to lead-
ing order. The three-term Taylor expansion (3) can 
therefore be written, in terms of 𝜇 and 𝜀, as 

𝜎 𝑎𝑘 3𝜇𝑘 4𝑘 ,
𝑎 4𝜀 𝜇 4𝜀𝜇. 

(8) 

The characteristic scale for 𝑘  and consequently that 
for 𝜎  depend essentially on how 𝑎  or, equivalently 
how 𝜀 compares with 𝜇. 

It is instructive to visualize the neighbourhood of the 
tricritical point in the 𝜇 -𝑎  plane, as shown in Fig. 2. 
Here the gray shaded region represents stable states, 
and the remaining regions represent unstable states. 
The type-IIs bifurcation, characterized by the condition 
𝑎 0 is applicable for 𝜇 0, whereas the type-Is bi-
furcation is applicable for 𝜇 0. The parabola 𝑎 𝜇  
is plotted as a dashed curve for the purpose of reference. 
This figure identifies two critical regimes and a tricriti-
cal regime in the middle. 

Two	critical	regimes:	 𝑎 𝑂 𝜇 	
First, let us consider the case in which 𝑎 𝑂 𝜇  . 

According to the definition of 𝑎 (8), such a balance is 
possible only if 

4𝜀 𝜇 𝑠 1 𝜇 ⋯, (9) 

 

Fig. 1. Left: Stability diagram in 𝑙-𝜆 plane. The colour scale indicates the wavenumber 𝑘  corresponding to the 
maximum growth rate; on the type-IIs boundary, 𝑘 𝑘 0 and on the type-Is boundary, 𝑘 𝑘 0, where 
𝑘   is the critical wavenumber, i.e., 𝑘   at the onset of instability. The explicit formulas for type-Is and type-IIs 
boundaries in the figure are derived in [4] from the dispersion relation (1); specifically, the type-IIs boundary is 
derived from the condition 𝑑 𝜎/𝑑𝑘 0 at 𝑘 0, whereas the type-Is boundary is derived from the conditions 
𝜎 𝑑𝜎/𝑑𝑘 0  at 𝑘 0.  Right: Schematic pictures of type-Is and type-IIs bifurcation. The blue lines represent 
dispersion curves just below the instability onset (i.e., for points lying in the white region in the left figure), whereas 
the other two lines represent dispersion curves just above the instability onset. 
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where 𝑠 is an arbitrary, order-unity constant. Thus, in 
critical regimes, 𝑎  is simply equal to 𝑎 𝑠𝜇   in the 
first approximation. The dispersion relation (8) then 
simplifies to 

𝜎 𝑠𝜇 𝑘 3𝜇𝑘 4𝑘 . (10) 

The dependence of 𝜎  on 𝜀  appears through the pa-
rameter 𝑠.  The type-IIs bifurcation for 𝜇 0  then 
corresponds to 𝑠 0  and the type-Is bifurcation for 
𝜇 0  to 𝑠 9/16.  The latter result follows from 
the marginal condition 𝜎 0 satisfied at 𝑘 𝜇 1

1 4𝑠/3 /4 where 𝑑𝜎/𝑑𝑘 0. 

Tricritical	regime:	 𝑎 ≫ 𝑂 𝜇 	
When 𝑎 ≫ 𝑂 𝜇 , i.e., for points lying far above the 

parabola 𝑎 𝜇  which includes 𝜇 0 and its neigh-
bourhood (see Fig. 2), we can anticipate different scal-
ing laws from the previous case where 𝑎 𝑂 𝜇 . The 
former region can be accessed by assuming 𝑎 ∼ 𝜀 and 
letting either 𝜇 ∼ 𝜀  or 𝜇 ≪ 𝜀  such that 𝑎 ≫ 𝜇  . In 
general, we can write, in the first approximation, 𝑎
4𝜀 𝜇 0 that includes all possible cases. It is easy to 
establish using (8) that when 𝑎 ∼ 𝜀, the fourth-order 
term becomes negligible in comparison with the other 
two terms. Therefore, we may write 

𝜎 4𝜀 𝜇 𝑘 4𝑘 . (11) 

Evolution	of	the	flame	front	in	the	weakly	nonlinear	
limit	

Let the equation of the perturbed flame front be 𝑦
𝑓 𝑥, 𝑡  in the 𝑥-𝑦 plane. In the linear theory, arbitrary 
𝑓 can be constructed from the normal modes 𝑒  
and the evolution of 𝑓 𝑥, 𝑡  for positive 𝜎 is dictated 
by the function 𝜎 𝑘  (equation (10) or (11)). However, 

in the absence of any instability, the quasi-planar front 
evolves in time 𝑡 according to 

𝑓
1
2
𝑓

1
8
𝑓 ⋯ (12) 

which follows from the eikonal equation for flame-front 
propagation [5]. Thus, in the presence of instability, 
nonlinear effects will become significant only when the 
perturbation amplitude grows to a magnitude such that 
𝑓 ∼ 𝑓  . In the weakly nonlinear limit, only the first 
term on the right-hand side is retained. Such an analy-
sis near type-IIs bifurcation was first provided by Si-
vashinsky [6, 7], who derived the Kuramoto–Si-
vashinsky equation for 𝑓 𝑥, 𝑡  , describing the evolu-
tion of an unstable flame front. A similar analysis near 
type-Is bifurcation can be shown to yield the Swift–Ho-
henberg equation [2] for 𝑓 𝑥, 𝑡 . Our attention here fo-
cuses on the neighbourhood of the tricritical point 
where neither of these equations is applicable. 

Equation	for	the	critical	regimes	
From (10), it follows at once that the characteristic 

wavenumber is 𝑘 ∼ |𝜇|  and the characteristic 
growth rate is 𝜎 ∼ |𝜇| .  Inspection of equation (12) 
using these length and time scales shows that the non-
linear term becomes important when 𝑓 ∼ 𝜇 . Further 
by introducing the scalings 

𝜏
27
16

|𝜇| 𝑡, 𝜉
√3
2

|𝜇| / 𝑥,

𝐹
4𝑓

9𝜇
, 𝑞

4𝑠
9

 
(13) 

the evolution equations for the flame front that account 
for both (10) and (12) can be written as 

 

Fig. 2. The neighbourhood of the tricritical point (origin) in the 𝜇-𝑎 plane. The type-Is and type-IIs boundaries are 
the same as those in the left plot of Fig. 1, which are given by 𝑎 0 for type-IIs and 𝑎 3 𝜇/4 3𝜇/4

⋯ for type-Is boundary. The figure illustrates the two critical regimes on either side of the tricritical point, that flank 
a tricritical regime in the middle. 
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Type-IIs critical regime: 

𝐹 𝑞𝐹 𝐹 𝐹
1
2
𝐹 0,

𝑞 0, 

(14) 

Type-Is critical regime: 

𝐹 𝑞𝐹 𝐹 𝐹
𝐹

2
0,

𝑞
1
4

. 

(15) 

These two equations pertain, respectively, to the left 
and the right critical regimes, indicated in Fig. 2, 
whereas the range of allowed values for 𝑞 in each case 
strictly corresponds to unstable states and excludes 
stable states. 

Equation	for	the	tricritical	regime	
Equation (11) suggests that the characteristic wave-

number in this case is 𝑘 ∼ 𝜀 /  and the characteristic 
growth rate is 𝜎 ∼ 𝜀 / . In a similar manner as we did 
before, we identify that for the nonlinear effects to be-
come important we need 𝑓 ∼ 𝜀.  Introducing the 

following rescalings 

𝜏 4𝜀 𝜇 / 𝑡/2,
𝜉 4𝜀 𝜇 / 𝑥/√2,
𝐹 𝑓/ 4𝜀 𝜇  

(16) 

we obtain the following governing equation in the 
weakly nonlinear limit 

𝐹 𝐹 𝐹
1
2
𝐹 0. (17) 

Sample	numerical	results	of	the	sixth-order	equations	
Equations (14), (15) and (17) are typically solved in 

a periodic domain with a period 2𝜋𝐿.  Integration of 
these equations over this domain shows that the mean 
value 𝐹𝑑𝜉  has a negative drift in time. To 

avoid this drift, one usually works with the variable 
𝐺 𝐹   in place of 𝐹,  for which the mean value 

𝐺𝑑𝜉 is a constant. Measuring 𝜉 in units of 𝐿 

and 𝜏 in units of 𝐿 , we can simplify (17) (using the 
same symbols for the rescaled 𝜉 and 𝜏) to 

 

Fig. 3. Phase portrait of the function 𝐸 𝜏  for 𝜈 0.04 for the Kuramoto–Sivashinsky equation (21) and for the 
three equations (18)–(19) (with 𝑞 1) applicable in the three regimes. The phase trajectories in these plots cor-
respond to the time interval 𝜏 ∈ 0,60 . For the selected case, the Kuramoto–Sivashinsky equation and the tricritical 
equation results in a homoclinic orbit (cf. figure 2 of [10]) in which the cusps seen in the figures are equilibrium 
points that connect a stable and an unstable manifold. In the type-IIs critical regime, the solution approaches a 
steady state via a stable spiral. The type-Is critical regime results in a Shilnikov orbit (cf. figure 4 of [8]) in which the 
point 𝐸,𝑑𝐸/𝑑𝜏 744,0  acts as a connector between a stable saddle and an unstable center. 
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𝐺 𝜈𝐺 𝐺 𝐺𝐺 0, (18) 

where 𝜈 1/𝐿 .  Under the same scaling, equations 
(14) and (15) simplify to 

𝐺 𝜈𝐺 √𝜈𝐺 𝑞𝐺 𝐺𝐺 0. (19) 

All these equations can be integrated using periodic 
boundary conditions and an initial condition, given by 

𝐺 𝜉, 𝜏 𝐺 𝜉 2𝜋, 𝜏 , 𝐺 𝜉, 0 𝐺 𝜉 . (20) 

For the sake of comparison, we shall also solve the 
fourth-order Kuramoto–Sivashinsky equation which, 
under suitable scaling, can be written in the form 

𝐺 √𝜈𝐺 𝐺 𝐺𝐺 0. (21) 

subject to the conditions (20). A useful quantity to track 
as a function of time in the computations is the gradient 
energy of the flame front which is defined by 

𝐸 𝜏
1
2

𝐺 𝑑𝜉
1
2

𝐹 𝑑𝜉. (22) 

We have performed numerical computations using the 

initial condition 𝐺 cos 𝜉  for selected values of 𝜈. 
Generally speaking, our computations suggest that the 
solutions of the equations (18)–(19) are qualitatively 
similar to that of the Kuramoto–Sivashinsky equation 
(21) with (20), in that solutions approach non-trivial 
states only when 𝜈 1 and that there exist windows 
of 𝜈 with specific attractors [8–10]. The study of these 
attractors based on an exhaustive set of computations 
and their connection to infinite-dimensional dynamical 
systems are of independent interest and deserve inves-
tigation in the future. For illustrative purposes, we pre-
sent here the phase portraits of 𝐸 𝜏  computed from 
(18)–(21) in Fig. 3 for 𝜈 0.04 and in Fig. 4 for 𝜈
0.005. The description of these portraits is provided in 
the figure caption. 

Generalized	forms	
Since the type-IIs bifurcation along with the nonlin-

ear gradient term 𝑓 /2   appears in a number of 
other systems as well such as in slowly varying phase 
fields [11], liquid interfacial problems [12–15], 
trapped-ion instabilities [16], etc., it is plausible to ex-
pect a tricritical point (in the sense defined here) in 

 

Fig. 4. Phase portrait of the function 𝐸 𝜏  for 𝜈 0.005 for the Kuramoto–Sivashinsky equation (21) and for the 
three equations (18)–(19) (with 𝑞 1) applicable in the three regimes. The phase trajectories in the first and the 
last plots correspond to the time intervals 𝜏 ∈ 41,68 , whereas the time interval for the other two plots is 𝜏 ∈
0,100 .  For this selected case, the Kuramoto–Sivashinsky equation displays a chaotic oscillatory behaviour, 

whereas the tricritical equation has a stable steady solution at large times. In the type-IIs critical regime, the phase 
trajectory resembles a Shilnikov-type orbit mentioned in Fig. 3. In the type-Is critical regime, we observe a periodic 
doubling event for the selected parametric values. 
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these systems due to the variation of a new controlling 
parameter. In concluding this note, we thus write down 
the generalized three-dimensional form of the equa-
tions applicable in the neighbourhood of the tricritical 
point as 

Tricritical regime: 

𝐹 𝛻 𝐹 𝛻 𝐹
1
2

|𝛻𝐹| 0, 
(23) 

Critical regimes: 

𝐹 𝑞∇ 𝐹 ∇ 𝐹 ∇ 𝐹
1
2

|∇𝐹| 0, 
(24) 

where 𝑞 0  when the plus sign applies and 𝑞
1/4 when the minus sign applies. It is also apparent 

that the change of sign of the fourth-derivative term 
from one-side of the tricritical point to the other side, is 
mediated through the tricritical-regime equation in 
which the fourth-derivative term is absent. 

Summary	

The characteristics of cellular pattern in thick pre-
mixed flames, propagating in a direction transverse to 
the shear flow in a narrow channel, depend on the 
Lewis number and the Peclet number, as discussed in 
greater detail in [4]. Consequently, the flame dynamics 
is controlled by the parameters 𝜇 and 𝜀, which meas-
ure the extent of departure from the onset of instability 
in terms of the Lewis number and the Peclet number, 
respectively. Near the onset of cellular instability, the 
following scaling prevails: 

𝑘 ∼ 𝜇,  𝜎 ∼ 𝜇 ,  𝑓 ∼ 𝜇 with 𝜀 ∼ 𝜇 
 in type-IIs bifurcations, (25) 

𝑘 𝑘 ∼ 𝜇,  𝜎 ∼ 𝜇,  𝑓 ∼ 𝜇  
 with 𝜀 ∼ 𝜇 in type-Is bifurcations, (26) 

which respectively characterises the length scale 
(measured in units of laminar flame thickness), the 
time scale (measured in units of flame residence time) 
and the perturbation amplitude (measured in units of 
laminar flame thickness). Conventionally, only type-IIs 
bifurcation is encountered in the absence of the shear 
flow. In type-Is bifurcation, the cells are not longwave 
type because 𝑘 ∼ 𝑂 1  is not a small number. 

On the other hand, in the three regimes in the neigh-
bourhood of the tricritical point, we have 

𝑘 ∼ 𝜇,  𝜎 ∼ 𝜇 ,  𝑓 ∼ 𝜇  
 with 4𝜀 𝜇 ∼ 𝜇  in the critical regimes (27) 

𝑘 ∼ 𝜀 / ,  𝜎 ∼ 𝜀 / ,  𝑓 ∼ 𝜀 
 with 4𝜀 𝜇 ∼ 𝜀 in the tricritical regimes (28) 

The key controlling small parameter is 𝜇  in the two 
critical regimes and 𝜀 in the tricritical regime, unlike 

in (25)–(26) where one is allowed to arbitrarily select 
𝜇 or 𝜀 as the small parameter. 
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