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ARTICLE

Dissociation of tau pathology and neuronal
hypometabolism within the ATN framework of
Alzheimer’s disease
Michael Tran Duong 1,2,79, Sandhitsu R. Das3,4,79, Xueying Lyu2, Long Xie1, Hayley Richardson5,

Sharon X. Xie4,5, Paul A. Yushkevich1,2,4, Alzheimer’s Disease Neuroimaging Initiative (ADNI)*,

David A. Wolk2,3,4✉ & Ilya M. Nasrallah 1,2,4✉

Alzheimer’s disease (AD) is defined by amyloid (A) and tau (T) pathologies, with T better

correlated to neurodegeneration (N). However, T and N have complex regional relationships

in part related to non-AD factors that influence N. With machine learning, we assessed

heterogeneity in 18F-flortaucipir vs. 18F-fluorodeoxyglucose positron emission tomography as

markers of T and neuronal hypometabolism (NM) in 289 symptomatic patients from the

Alzheimer’s Disease Neuroimaging Initiative. We identified six T/NM clusters with differing

limbic and cortical patterns. The canonical group was defined as the T/NM pattern with

lowest regression residuals. Groups resilient to T had less hypometabolism than expected

relative to T and displayed better cognition than the canonical group. Groups susceptible to T

had more hypometabolism than expected given T and exhibited worse cognitive decline, with

imaging and clinical measures concordant with non-AD copathologies. Together, T/NM

mismatch reveals distinct imaging signatures with pathobiological and prognostic implica-

tions for AD.
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A lzheimer’s disease (AD) causes cognitive impairment with
substantial between-patient variability in clinical pre-
sentation as well as the burden and distribution of

pathology1–3. This clinicopathologic heterogeneity is both a
challenge and opportunity for systematic, biomarker-based stu-
dies to refine our understanding of AD biology, diagnosis and
management. AD hallmark pathologies begin with accumulation
of amyloid (A) plaques, followed by deposition of tau (T) tangles
and subsequent neuronal injury/neurodegeneration (N)3. A and
T aggregates are bound by specialized radiotracers for in vivo
positron emission tomography (PET) imaging (such as
18F-Flortaucipir for T tangles). N may be assessed via neuronal
hypometabolism (NM) with 18F-fluorodeoxyglucose (18F-FDG)
PET or structural atrophy (NS) with magnetic resonance imaging
(MRI). Additional polypathologies contribute to clinical pro-
gression in AD, including vascular and inflammatory etiologies,
α-synucleinopathy and TAR DNA-binding protein-43 (TDP-43)
diseases, many of which do not currently have specific in vivo
measures3,4.

To address this complexity and provide a biological, rather than
clinical, definition of AD, the National Institute on Aging and
Alzheimer’s Association proposed the ATN research framework3.
These criteria designate the global presence (+) or absence (−) of
three AD dimensions: A, T and N. Patients with A+ status are
included in the Alzheimer’s continuum while a research diagnosis
of AD necessitates both A+ and T+, consistent with the definition
of AD neuropathologic change on autopsy. This model con-
solidates various pathological interactions in the Alzheimer’s
continuum to classify heterogeneous groups by a panel of
dichotomized biomarkers. Such categorical approach has already
shed light on differential rates of memory decline5,6 and clinical
risks/outcomes7,8 in patients with certain ATN combinations.

Neurodegeneration in AD is largely thought to be driven by T
neurofibrillary tangles9,10 and much work has supported a strong
spatial, quantitative link between measures of T and NM

11–13.
However, both T and N show variability in patterns across the
brain and between individuals, and this T/N relationship is not a
complete one-to-one mapping14,15. Compared to a typical rela-
tionship between deposition of neurofibrillary tangles and neu-
ronal hypometabolism (NM ~ T), a relative decoupling of T and
NM may arise when patients have less N than expected given their
T level (NM < T as metabolic resilience to T), or greater N than
expected given their T (NM > T as susceptibility). Quantification
of relative T/NM mismatch may capture resilience and vulner-
ability in neuronal metabolic responses to T, perhaps linked to
non-AD pathophysiology not currently operationalized within
ATN criteria.

Here, we developed a machine learning-based clustering
method to identify mismatch between T and NM using sympto-
matic patients from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) cohort. We posited that mismatch analyses
from PET markers of T and NM would reveal imaging signatures
of patient groups including a typical or canonical T/NM rela-
tionship as well as unique patterns of resilience and susceptibility
to T. We hypothesized for a given level of T, susceptible patients
with greater than expected NM have worse cognitive decline
compared to participants with canonical T/NM relationships,
potentially due to more concomitant non-AD pathologies than
the canonical group (Fig. 1a). Given that AD autopsy studies
reveal widespread prevalence of non-AD copathology16, we pre-
dicted that some of the dissociation between T and NM is attri-
butable to a spectrum of mixed disease burden. The NM > T
scenario may encompass patients with metabolic vulnerability to
T along with the presence of non-AD copathologies such as α-
synuclein and TDP-43 that contribute to NM independently of T
and at levels greater than the canonical group. Moreover, we

expected that the canonical group likely has some intermediate
amount of mixed disease, while resilient groups may have less
copathology and slower cognitive decline

To this end, we evaluated T/NM mismatch and its relation to
clinical features, cognitive progression and supportive evidence
for copathologies. Since non-AD pathologies and risk factors are
expected to be present in both A+ or A− individuals, we per-
formed post hoc analyses in the whole cohort and A+ or A−
groups. Our findings were replicated with a cohort of cognitively
normal older adults in the Harvard Aging Brain Study (HABS).
Overall, we demonstrate the utility of T/NM mismatch in mod-
eling AD heterogeneity, predicting progression and providing
pathophysiological insight for cognitive impairment.

Results
T/NM mismatch defines groups by regional residual patterns.
We measured the relationship between T and NM (Fig. 1a) by
regressions of 18F-FDG vs. tau standardized uptake value ratios
(SUVRs) for each region-of-interest (ROI) and individual. Within
our ADNI cohort (n= 289, Supplementary Table 1), clustering
on T/NM regression residuals resulted in six groups with sizes
ranging from 16 to 89 members. These groups were labeled based
on the relative spatial pattern of metabolic resilience or vulner-
ability to T, which we describe below. As an example, group
identity (the cluster to which a participant belongs) was mapped
onto graphs for regions such as inferior temporal gyrus (Fig. 1b).
This ROI is involved in early symptomatic stages of AD pro-
gression and is a representative of between-group differences in
T/NM relations5,17. Similar T/NM relations were seen in residual
heatmaps across all ROIs and patients (Supplementary Fig. 1).
Next, we assessed the consistency of our clustering across dif-
ferent visualization methods. A principal component analysis
(PCA) (Fig. 1c) and t-distributed stochastic neighbor embedding
(t-SNE) method (Supplementary Fig. 1) map the 104 ROI
dimensions onto two axes and both corroborated the between-
group separation of clusters. A dendrogram visualized the within-
group similarity across clustered patients (Fig. 1d). Therefore, the
consistency of these groups across several dimensionality reduc-
tion methods substantiates this clustering approach.

There was no significant between-group difference in A status.
Despite this lack of statistically significant difference, some groups
appeared more enriched in A+ individuals, so we covaried by A
status, as well as for sex, age, education level and T burden in the
inferior temporal gyrus in subsequent omnibus and between-
group analyses. There were between-group differences, including
significant differences in sex and education, across all participants
(Table 1) and specifically among A+ (Table 2) or A− patients
(Supplementary Table 2). There were no significant differences in
age. The groups had similar average tau SUVRs across all regions;
the distribution of individuals with regional T patterns that
correspond to AD Braak stages were also similar across groups
for all participants (Fig. 2). Hence, these groups likely do not
depict distinct stages of AD progression but instead appear to
represent unique spatial patterns of the relationship between T
pathology and its functional consequences.

Herein, we characterize our six T/NM mismatch groups. The
largest group of individuals (89/289) were found close to the
regression line across most regions, with the smallest residuals.
This canonical group defines the condition where relative NM was
statistically commensurate to the level of T (NM ~ T). The other
five groups were compared to the canonical group by T/NM

residuals in three- and two-dimensional regional maps across all
participants (Fig. 2a), visualizing regions where NM is greater or
less than what is observed in the canonical group given the T
level. Groups derived from clustering all participants showed
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distinct neuroanatomical patterns; these patterns were similar
across subcohorts of A+ patients (Fig. 2b) and A− patients
(Supplementary Fig. 3).

There were 3 groups with less N relative to their T level
compared to the canonical group (positive residuals), thus
classified as resilient to T (Fig. 2). The resilient groups had
relative differences in spatial patterns of T/NM mismatch
corresponding to prominent regions either throughout the
cerebral cortex, termed the cortical resilient groups, or limbic
areas, termed the limbic resilient group. Cortical resilient patterns
stratified into two groups based on either high or low magnitude
residuals. The high cortical resilient group (50/289) had higher T/
NM residuals across most cortical and limbic ROIs compared to
the canonical group and was the first group to split in clustering
(Fig. 1d). The low cortical resilient group (62/289) had positive
residuals throughout the cortex compared to the canonical or
limbic resilient groups. While both cortical resilient groups had
similar T levels (Supplementary Fig. 2), the high cortical resilient
group had greater T/NM residuals (Fig. 2). Both high and low
cortical resilient groups had similar distributions of positive
residuals but the low cortical resilient group had lower magnitude
residuals, especially in limbic structures. The limbic resilient
group (16/289) had high positive T/NM residuals localized to the
medial temporal lobe (MTL), anterior temporal and orbitofrontal
regions compared to the canonical or other resilient groups, while
other cortical regions had lower residuals here relative to the
canonical group.

Two groups had worse N than typical for their level of T
(negative residuals) and were considered susceptible to T (Fig. 2).
These groups also had a relative predilection forspatial patterns
involving predominantly cortical or limbic regions, though these
regional distributions were less distinct compared to those in the
resilient groups. The cortical susceptible group (47/289) had

lower residuals generally in cortical regions, with lesser extent in
limbic regions than other groups. The limbic susceptible group
(25/289) had a pattern of low residuals in primarily limbic and
anterior frontotemporal areas.

T/NM groups have differences in N but not T markers. We
evaluated whether clustering in T/NM residuals was generally
driven by either tau or 18F-FDG SUVR. Notably, our groups did
not significantly vary by T burden (Supplementary Fig. 2), indi-
cating that residual-based clustering was more influenced by
between-group18F-FDG SUVR differences, even after covarying
for sex, age, education, A status and T level. Among resilient
groups, T/NM residual patterns (Fig. 2) were not linked to
regional differences in tau SUVR (Fig. 3a), but rather 18F-FDG
SUVR (Fig. 3b). The high cortical resilient group had significantly
higher covariate-adjusted18F-FDG SUVR across several repre-
sentative regions compared to the canonical and other resilient
groups (p’s < 0.005). Significant differences between covariate-
adjusted18F-FDG SUVR in the limbic and low cortical resilient
groups matched the group differences in T/NM residuals. Com-
pared to the canonical group, the limbic resilient group had
significantly higher 18F-FDG SUVR in MTL structures while the
low cortical resilient group had elevated 18F-FDG SUVR
throughout the cortex (p’s < 0.005). Likewise, across susceptible
groups, there were no regional differences in tau SUVR (Fig. 3c),
but instead 18F-FDG SUVR (Fig. 3d). Compared to the canonical
group, the limbic susceptible group had lower 18F-FDG SUVR in
limbic areas while the cortical susceptible group had worse
18F-FDG SUVR in other cortical regions (p’s < 0.005). Regional
resilience and susceptibility patterns across the cohort (Fig. 3a–d)
were replicated in subgroups of A+ patients (Fig. 3e–h) and A−
patients (Supplementary Fig. 4).
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Additionally, mean cortical thickness differed among groups
(Tables 1 and 2). In the whole cohort, thickness was greater in the
low cortical resilient (2.10 mm, p= 0.01, unadjusted) and high
cortical resilient group (2.09 mm, p= 0.04, unadjusted) compared
to the canonical group (1.87 mm).

T/NM clustering shows consistency across internal and external
validation. We aimed to internally validate our clustering
approach within those participants demonstrating AD pathologic
change. We performed clustering on A+ participants only, who
overall also demonstrate higher T burden (since 87% of A+
participants were T+). Indeed, groups generated from A+ parti-
cipants alone resembled groups formed from clustering all parti-
cipants, in overall patterns and group identity (Supplementary
Fig. 5). Then, we compared the robustness of clustering on subsets
of 150 randomly selected participants over ten folds. Clustering
was stable across folds (Supplementary Fig. 6). About 90% of
participants had a match between their original group identity and
the group identity endorsed by a majority of folds, while 9% of
participants had group identity shift in the same residual direction
(such as between high and low cortical resilience). These experi-
ments demonstrate the robustness of our clustering.

Because clustering was similar across A+ and A− cognitively
impaired ADNI participants, next we corroborated clustering in
the external HABS cohort of cognitively normal older adults with
lower levels of A and T pathology (Supplementary Tables 3 and
4). Six T/NM groups were generated from the whole HABS
cohort, demonstrating similar regional patterns to those found in
symptomatic ADNI participants: canonical, high and low cortical
resilience, limbic resilience, cortical susceptibility and limbic-
predominant susceptibility (Supplementary Fig. 7). Thus, patterns
of T/NM dissociation similar to those in symptomatic AD may be
shared across settings of preclinical AD and cognitive aging,
where resilience factors or non-AD pathologies may influence
18F-FDG metabolism at low or intermediate levels of T.

T/NM groups exhibit different cognitive trajectories. We
hypothesized that relative hypometabolism for a given level of T
may be associated with differences in cross-sectional and long-
itudinal cognitive measures. Although T and N markers both
strongly associate with cognitive impairment, we predicted that
susceptible participants may have additional copathologies con-
tributing to N and leading to greater cognitive decline than pre-
dicted by T. We found significant cross-sectional group differences
across the cohort for various cognitive tests at the time of 18F-FDG
scan even after controlling for covariates such as sex, age, educa-
tion, baseline cognition, A status and T level (Table 1). In absolute
terms, the canonical group had mid-range impaired ADAS-Cog
(22.9), while resilient groups had lower, better scores (19.6, 20.0,
18.8) and susceptible groups had higher, worse scores (25.6, 26.0).
These results were replicated with additional global cognitive
measures (Mini-Mental Status Exam (MMSE) and Clinical
Dementia Rating sum of boxes (CDR-SOB)). For cross-sectional
covariate-adjusted pairwise comparisons, significant differences
were noted between the canonical and low cortical resilient groups
on the ADAS-Cog (p= 0.0003) and MMSE (p= 0.002). Such
differences were also seen in the A+ cohort (Table 2).

Then, we compared longitudinal cognitive trajectories by linear
mixed effects models with covariates (Fig. 4 and Supplementary
Table 5). Across groups, the canonical group had mid-range
decline on ADAS-Cog (+0.8 points/year) (Fig. 4a). The resilient
groups (high cortical, limbic, low cortical) had the slowest
progression on ADAS-Cog (–0.07, +0.6, +0.6 points/year,
respectively). Though ADAS-Cog slopes in resilient groups did
not significantly differ from the canonical group, the high corticalT
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Table 2 T/NM mismatch clustering across A+ patients.

Group MCI/
Dem

F/M Age (y) Educ (y) Cognition Cortical thickness (mm)

ADAS-Cog CDR-SOB MMSE

High cortical
resilient

19/4 11/12 74.5 (6.8) 16.5 (2.5) 22.5 (8.6) 2.0 (1.8) 27.1 (3.4) 2.05 (0.25)

Limbic resilient 5/2 4/3 70.4 (11.5) 15.6 (2.3) 23.5 (9.0) 2.4 (1.2) 24.7 (4.7) 1.95 (0.42)
Low cortical
resilient

31/5 20/16 73.4 (7.4) 15.0 (2.1) 20.7 (5.8)** 2.0 (1.8)+ 27.1 (2.2)** 2.08 (0.22)**

Canonical 26/23 19/30 75.6 (7.4) 16.6 (3.6) 26.5 (8.4) 3.0 (2.2) 25.6 (3.1) 1.77 (0.57)
Cortical
susceptible

14/17 10/21 74.3 (15.6) 15.6 (3.1) 28.4 (8.4) 4.0 (2.5)+ 24.2 (3.6) 1.78 (0.41)

Limbic susceptible 7/11 11/7 78.8 (5.3) 15.7 (2.2) 28.0 (9.6) 3.3 (2.5) 24.7 (4.4) 1.64 (0.44)
Group p val 0.03 0.36 0.01 <0.0001 0.01 <0.05 0.005

Diagnosis (MCI/dementia) and sex (F/M) are in frequencies. Mean (standard deviation) values are shown for age/education (years), ADAS-Cog, CDR-SOB, MMSE, and global cortical thickness (mm).
The last row depicts group difference p values by likelihood ratio tests after adjusting for covariates. Significant differences in pairwise comparisons between a non-canonical and canonical group with
covariate adjustment are annotated. For pairwise comparisons, ** denotes p < 0.005 after multiple tests adjustment and + denotes p < 0.05 before multiple tests adjustment. Covariates include sex, age,
education and inferior temporal gyrus tau SUVR. Sample sizes and p values are listed in Supplementary Data 1.
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Fig. 2 Brain maps visualize T/NM mismatch relationships and spatial patterns. Three- and two-dimensional renderings of mean T/NM relation regional
residuals are shown for a all participants and b A+ patients. Compared to the canonical (NM ~ T) group, resilient (NM < T) and susceptible (NM > T) groups
have limbic vs. cortical involvement (arrowheads). Color scale represents the mean T/NM residual (in 18F-FDG SUVR). R right, L left, A anterior, P
posterior.
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resilient group showed less decline on CDR-SOB than the
canonical group (p= 0.04, uncorrected). In contrast, there was
significantly steeper decline on ADAS-Cog in the cortical
susceptible (+2.4 points/year, p= 0.002) and limbic susceptible
groups (+3.9 points/year, p < 0.0005) than the canonical group
(Fig. 4a). Significant differences between canonical and

susceptible trajectories were also found for CDR-SOB and MMSE
(Fig. 4b,c). Among A+ participants (Fig. 4d–f) and A− patients
only (Supplementary Fig. 8), between-group differences in
cognitive progression rates were comparable to the whole cohort.

Akin to cognitively impaired ADNI participants, cognitively
normal HABS participants had a significant group difference in
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cross-sectional MMSE (p= 0.008) (Supplementary Table 4). On
MMSE, groups corresponding to T/NM susceptibility had
significantly lower baseline scores. Together, our data suggests
that the decoupling of T and NM may relate to factors affecting
cognitive outcomes in both symptomatic and asymptomatic
individuals across the distribution of T level.

Exploratory analysis of copathology factors driving T/NM

mismatch. Since susceptible groups had greater N than expected
given their T and faster cognitive progression, we considered
potential roles of copathology in driving advanced N (Fig. 5a). The
cortical and limbic susceptible groups had significantly greater
number of vascular clinical risk factors than the canonical group

(p= 0.0003, p= 0.04, respectively) (Fig. 5b). The limbic susceptible
group had significantly higher average subcortical infarct burden than
the canonical group (p= 0.04) (Fig. 5c). White matter hyperintensity
(WMH) volumes were higher in susceptible groups compared to the
canonical group though such trends were not significant (Supple-
mentary Fig. 9A). We also explored APOE, a gene harboring a
common variant linked to dementia. APOE4 risk allele frequency
was higher in the susceptible groups than other groups but not sig-
nificantly different than the canonical group (Supplementary Fig. 9B).

Next, we studied how mixed proteinopathies may contribute
to susceptible groups. While there are no definitive imaging or
cognitive markers for the presence of α-synuclein or TDP-43,
we assessed the consilience of several suggestive imaging and
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cognitive tests to provide some indication for what additional
copathologies may be present in the setting of T/NM mismatch.

We tested imaging and clinical markers of α-synuclein (Lewy
body) pathology in the cortical susceptible group. A well-studied,
potential indicator of Lewy Body Disease (LBD) is the cingulate
island sign18–20, the relative sparing of 18F-FDG SUVR in the
posterior cingulate cortex relative to precuneus and cuneus
(Fig. 5a). There was significantly higher cingulate island ratio in
the cortical susceptible group compared to the limbic susceptible
and canonical groups (p’s < 0.005, Fig. 5d). Differences were also
significant in A+ and A− cohorts. We also assessed cognitive
features linked to LBD, such as visuospatial impairment17.
Compared to the canonical group, the cortical susceptible group
had significantly worse covariate-adjusted Clock Drawing scores
(p= 0.03) and other visuospatial markers (Fig. 5e and Supple-
mentary Fig. 9C) and trended toward higher proportion of
patients with hallucinations on the Neuropsychiatric Inventory
(NPI) and worse visuospatial z-scores (Fig. 5f, g). Thus, these
imaging and cognitive results suggest potential α-synuclein
pathology in the cortical susceptible group.

We analyzed the possibility of Limbic-predominant Age-related
TDP-43 Encephalopathy (LATE) copathology in the limbic
susceptible group given a pattern of severe anterior temporal/
MTL hypometabolism relative to T (Figs. 2 and 5a). We utilized the
I/MTL/FSO ratio, defined as worse MTL and frontal supraorbital
(FSO) hypometabolism relative to inferior temporal gyrus (I).
Higher I/MTL/FSO ratio signifies worse MTL hypometabolism and
correlates to LATE in clinicopathologic studies21,22. The limbic
susceptible group had significantly higher I/MTL/FSO 18F-FDG
ratio relative to the canonical group (p= 0.01) (Fig. 5h). LATE
commonly presents with asymmetric hippocampal sclerosis23, so
we evaluated MTL asymmetry indices24 for 18F-FDG hypometa-
bolism and atrophy. The limbic susceptible group had significantly
higher MTL asymmetry in 18F-FDG SUVR and thickness (Fig. 5i, j)
than canonical and cortical susceptible groups (p’s < 0.005). We
further evaluated memory phenotypes linked to LATE23. Compared
to the canonical group, the limbic susceptible group had worse
semantic memory with significant covariate-adjusted differences in
category fluency (p= 0.02) (Fig. 5k), Multilingual Naming Test
(p= 0.008) (Supplementary Fig. 9D) and ADNI domain z-scores
for language and memory (p’s < 0.05) (Fig. 5l, m). These imaging
and cognitive profiles imply possible TDP-43 pathology in the
limbic susceptible group.

Overall, these findings suggest that symptomatic susceptible
groups had more copathology-related factors than the canonical
group. Cognitively normal groups resembling T/NM susceptibility
patterns in the HABS cohort also demonstrate covariate-adjusted
biomarker elevations consistent with greater non-AD pathology
(Supplementary Fig. 10). When we evaluate the same biomarkers
of copathology in the resilient groups, we generally observed less
evidence of mixed pathology burden than the canonical group,
particularly the cingulate island ratio as well as I/MTL/FSO ratio
and MTL thickness asymmetry (Supplementary Fig. 11). Overall,
non-AD pathology biomarkers convey higher burden in suscep-
tible groups and lower burden in resilient groups compared to the
canonical group, indicating that relative levels of mixed
pathologies contribute to T/NM mismatch and that canonical
patients have some degree of copathology concordant with their
commonality in autopsy series16.

Discussion
We leveraged paired tau and 18F-FDG PET studies to assess the
in vivo dissociation of T and NM relationships in cognitively
impaired individuals in the ADNI dataset. Clustering identified
six groups of patients, including a canonical group that defines

the expected relationship between T and NM (NM ~ T) and
additional groups that were either more resilient (NM < T) or
susceptible (NM > T) to T, defined by less or greater NM than
expected for a given level of T, respectively. We also clustered
residuals from the T/NM relationship across ten folds on random
subsets of participants, and with A+ participants only, which did
not impact overall clustering. Groups resembling our six T/NM

groups in symptomatic ADNI participants appeared in the
asymptomatic HABS cohort, further validating the spatial pat-
terns presented here.

Our T/NM groups had significant differences in 18F-FDG and
not tau SUVR at a group level (Fig. 3). This fact does not
necessarily signify that T/NM clustering was solely driven by 18F-
FDG, but rather that clustering depends on variation in 18F-FDG
relative to tau SUVR at an individual level. Certain participants
can be identified with similar cortical 18F-FDG SUVR, but vastly
different tau SUVR. For instance, a patient with high tau SUVR
may have lower NM (more metabolism) than expected given their
level of T and may be placed in the low cortical resilient group,
whereas a patient with low tau SUVR may have higher NM (less
metabolism) than expected given their T and may fall in the
cortical susceptible group. Compared to clustering on just NM, T/
NM clustering enables regional and relative comparisons of NM

given a level of T and promotes the evaluation of factors beyond
AD stage or pathology that may not be captured from NM alone.

Relative to the canonical group, the resilient groups had better
baseline cognitive scores whereas susceptible groups had faster
cognitive decline over time. Metabolic and cognitive phenotypes in
the T/NM resilient and susceptible groups were shared across A+
and A− cohorts. The observations of impaired cognition and
hypometabolism in A− susceptible groups strengthen the notion
that factors influencing the T/NM relationship in AD (like copa-
thology) are also present in non-AD symptomatic patients. In other
words, the A+ group may reflect AD plus additional factors,
including copathologies, whereas the A− group may have these
non-AD factors alone affecting this clustering. Our results support
the use of T/NM mismatch as a complement to direct measures of
ATN biomarkers to study disorders of AD and non-AD pathology.

It is important to note that T/NM groups also differed with
regard to cortical atrophy (Tables 1 and 2). Since NS and NM are
linked, it is reasonable to predict that T/NS and T/NM relation-
ships are also associated. Indeed, clustering with T/NS approaches
yields groups with relative resilience or vulnerability to T25. The
median regional correlation coefficient between T/NS and T/NM

residuals was 0.29, suggesting that while T/NS and T/NM rela-
tionships are similar, they may provide some unique information.
For example, metabolism may be more sensitive to Lewy body
pathology than structure18,19. Likewise, metabolism may reflect
aspects of functional reserve and synaptic activity not captured by
structural markers while, alternatively, structure may be less
affected by non-disease related functional variability than meta-
bolism. Thus, it is likely the case that T/NS and T/NM mismatch
each offer complementary, yet unique characterizations.

Intriguingly, both resilient and susceptible groups appeared to
divide along patterns roughly involving either limbic or cortical
regions. Several studies demonstrate similar spatial separation.
For example, heterogeneity in either T or N alone has been
examined by regional involvement and disease trajectories15,26–28.
Here, we investigate the variability in relationships between T and
NM biomarkers with an integrative approach that evinces con-
sistent patterns of neuroimaging and cognitive measures within
the disentangling of NM relative to T. To some extent, this
dividing line between limbic vs. cortical involvement perhaps
parallels the dissociable MTL networks described by29–32. This
previous work supports the existence of the anterior temporal
network, most akin to the limbic regions described here, and a
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posterior-medial network that largely conforms to the default
mode network. Prior research has also suggested differential
changes within these networks across the AD continuum29,33,34.
Non-AD pathologies, such as TDP-43, might also split along this
anterior-posterior axis35. Though we observed two cortical resi-
lient groups (high and low), it is unclear what factors beyond
metabolism distinguish high and low cortical resilience. These T/
NM differences were enough for these groups to strongly cluster
separately since the high cortical resilient group was the first
group to separate in terms of dendrogram distance (Fig. 1d). That
said, these two groups may reflect a continuum of cortical resi-
lience. Together, our findings may indicate differentially con-
nected networks harbor not only dissociable vulnerabilities to
accumulation of different pathologies, but also relative resiliencies
to these pathological states.

We probed several factors that may influence the link between
T and NM, including association of surrogate markers for three
copathologies (vascular disease, α-synuclein and TDP-43). While
our groups did not differ in mean tau SUVR burden or inferred
Braak stage distribution (Fig. 3 and Supplementary Fig. 2), they
did separate in terms of cognitive profiles, progression, and
copathology-associated markers, suggesting that non-AD
pathologies contribute to the dissociation of T and NM and,
thus, to the cognitive trajectory beyond Braak stage. In fact,
longitudinal group differences were found even when covarying
for baseline tau SUVR, which further suppresses effects of AD
severity. Other aspects of resilience or vulnerability outside
copathology also may influence outcomes beyond Braak staging.
To this point, there was evidence of greater burden of vascular
disease, a common copathology in AD3, in the susceptible
patients, suggesting that the elevated levels of cerebrovascular
disease compared to the canonical group are a factor in their
relative vulnerability.

AD can present with multiple proteinopathies, including α-
synuclein18 and TDP-43 inclusions23. While there are not yet
well-established biomarkers for these pathologies, 18F-FDG PET
studies have provided patterns probabilistically related to both
entities19–22. We emphasize that this analysis was exploratory and
requires further comprehensive validation. The cortical suscep-
tible group harbored higher cingulate island ratio and worse
visuospatial processing and trended toward greater frequency of
hallucinations, all supportive of concomitant LBD18,19. In con-
trast, the limbic susceptible group had the greatest average age
among groups (78.9 ± 6.1 years) and a pattern of MTL-
predominant hypometabolism with asymmetry, all features that
have been associated with LATE21,22. Parallel to semantic and
episodic memory impairment associated with TDP-43
pathology36–38, the limbic susceptible group had the worst cate-
gorical and naming fluency. While these features are correlative
and not comprehensive, the convergence of imaging, cognitive
and clinical evidence support a potential contribution of copa-
thology to susceptible groups with greater hypometabolism than
expected given their level of T.

Resilience and susceptibility as defined here by NM < T and
NM > T, respectively, may be thought of as a combination of
separate yet related features, including relative levels of copa-
thology and factors that directly influence the neuronal and glial
responses to T pathology. Currently, it is more straightforward to
assess the former, but the latter may reflect intrinsic resilience or
vulnerability to T, perhaps related to genetic/epigenetic factors.
Our copathology analyses suggest that susceptible groups have
mixed cognitive impairment with more evidence of copathologies
than the canonical group to contribute to hypometabolism not
accounted for by T alone. Given the frequency of mixed disease
on autopsy16, non-AD pathologies may represent an orthogonal
axis along which canonical groups have intermediate levels of

copathology, while resilient and susceptible groups have less or
more mixed pathology, respectively (Fig. 5 and Supplementary
Fig. 11). In the context of AD, these copathologies may be
synergistic as non-AD proteinopathies can influence how neu-
rons and glia respond to T39–41. Additional differences in non-
disease related genetic, lifestyle and environmental factors also
decouple the T/NM relationship, representing attributes that
affect how neurons respond to injury perhaps related to or dis-
tinct from copathology. The metabolic and cognitive profiles in
resilient and susceptible groups were shared across A+ and A−
cohorts and in symptomatic and asymptomatic patients. The
observations of similar patterns of T/NM mismatch and impaired
cognition between A+ and A− susceptible groups are expected,
as factors influencing the T/NM relationship in AD may also be
present in non-AD symptomatic patients. Given current con-
straints of in vivo biomarkers, autopsy data must confirm these
hypotheses regarding specific copathology.

The study had several limitations. First, neuropathological
validation is important for this work, but currently no datasets
with tau PET, 18F-FDG PET and autopsy were available to us.
Analyses in symptomatic individuals were performed on one
cohort (ADNI) which includes multiple sites but with well-
established data harmonization methods. Given the ADNI
inclusion/exclusion criteria, this sample may not be representative
of the broader population of cognitively impaired patients that
harbor more mixed pathology, particularly vascular disease. A
more heterogeneous sample might show more phenotypes/
groups. However, the HABS dataset offers corresponding evi-
dence of T/NM dissociation patterns in cognitively normal older
adults known to harbor significant regional relationships between
tau and 18F-FDG PET42. Notably, these similar T/NM groups
arose with use of two distinct processing methods (ANTs for
ADNI data and FreeSurfer for HABS data), indicating robustness
of clustering to specific processing pipelines. Despite this, the
separation of susceptible groups by imaging and cognitive factors
associated with copathology highlight the non-trivial amount of
copathology in ADNI participants. To this point, autopsy study of
an ADNI subset demonstrated that α-synuclein and TDP-43
polypathology are frequently present in ADNI patients and cor-
relate with antemortem imaging markers16. The canonical group
is a statistical designation and does not quantify the absolute
amount of AD vs. non-AD pathology. However, the canonical
group does provide a relative benchmark for the population.
While there was not much available data to study resilience-
related factors, our initial analysis of resilient and susceptible
groups supports the continued search for genetic, epigenetic and
pathophysiological features that influence these relationships.
Note that resilient groups had significantly higher APOE2 carrier
frequency and the susceptible groups trended toward higher
APOE4 frequency, though these differences were not seen after
adjusting for A status (Supplementary Fig. 9B). Investigations
into additional AD-associated features, such as glial and immune
cell-mediated inflammation as well as blood brain barrier dys-
function, may also be warranted4,43,44.

Despite these limitations, the T/NM mismatch approach may
hold utility for biomedical research, specifically allowing clinical
trials to measure heterogeneity across the Alzheimer’s continuum.
For instance, the group of NM > T susceptible patients may have
mixed pathologies, which could reduce study power and com-
plicate the assessment of investigational treatments designed to
target single pathways. Consequently, future trials for anti-
amyloid or anti-tau therapies might intentionally recruit patients
or stratify findings based on T/NM groups.

Overall, we define PET-based T/NM mismatch measurements
to evaluate the varying relationships of neuronal metabolism to T
pathology in participants with cognitive decline. Dissociation in
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the T/NM relationship demonstrates distinct groups with some
showing resilience and others depicting susceptibility to T in
terms of regional distributions of hypometabolism, cognition and
pathological factors. T/NM mismatch provides a quantitative
spatial approach to assess neuroanatomical patterns of metabolic
states affected by T pathology. This may improve our under-
standing of the biology and prognostication of subgroups in the
Alzheimer’s and non-AD continuums. Additional studies may
elucidate the heterogeneity of cellular metabolic responses to AD
features as a step toward the successful implementation of pre-
cision medicine in AD.

Methods
Patient cohort. From the ADNI cohort database (http://adni.loni.usc.edu), we
included participants with a 18F-flortaucipir (tau) PET and 18F-FDG PET performed
within 1 year of each other, along with a measure of amyloid (A) status and a MRI
scan (within about 1 year of PET scans). Of these, 289 participants with a diagnosis
of mild cognitive impairment (MCI) or dementia were found. Evaluation of A status
utilized 18F-florbetapir (n= 182) or 18F-florbetaben (n= 105) (amyloid) PET or
Elecsys cerebrospinal fluid (CSF) Aβ assay (n= 2). Median time between 18F-FDG
vs. tau PET in the ADNI cohort was 12 days (80% of cases within 1 month).
Stratification by A enables analysis of T/NM mismatch in patients along the Alz-
heimer’s continuum (A+, n= 164) and those with likely non-AD (A−, n= 125)
pathology. Additional cohort details are listed in Supplementary Table 1. In the
cognitively normal HABS cohort (data release 2.0; https://habs.mgh.harvard.edu/)45,
we included 115 participants with tau PET, 18F-FDG PET, 11C-Pittsburgh com-
pound B (amyloid) PET and MRI with the same criteria as above. The median time
between 18F-FDG vs. tau PET in the HABS sample was 105 days (63% of cases
within 5 months). See details in Supplementary Table 3. For the ADNI data, human
subjects approval was obtained by the ADNI investigators to comply with the
Institutional Review Board at each participating ADNI site. All participating ADNI
sites received approval from their site’s Institutional Review Board; a complete listing
of ADNI sites is provided at the end of the article file. All ADNI participants
provided written informed consent. ADNI data was accessed according to the
policies of the ADNI data sharing and publications committee. For the HABS data,
HABS protocols were approved by the Partners Human Research Committee, the
Institutional Review Board for the Massachusetts General Hospital and Brigham and
Women’s Hospital, and all participants gave informed consent. HABS data was
accessed according to the policies of the HABS data committee.

Imaging data. Post-processed PET images from the ADNI data archive (http://
adni.loni.usc.edu/data-samples/access-data/) were obtained46. Tau PET imaging
was originally performed using the ADNI protocol with 30-min brain scans (six
5-min frames) starting 75 min after intravenous administration of ~10.0 mCi
18F-Flortaucipir. 18F-FDG PET imaging consisted of a 30-min scan (six 5-min
frames) at 30 min after 5.0 mCi 18F-FDG injection. For amyloid PET, a 20-min
brain scan (four 5-min frames) was performed 50 min after ~10.0 mCi
18F-Florbetapir or 90 min following ~8.1 mCi 18F-Florbetaben injection. Processed
PET images with uniform isotropic resolution (8 mm full-width-at-half-maximum)
were obtained with the ADNI archive description “Coreg, Avg, Std Img and Vox
Size, Uniform Resolution.” ADNI MRI included a T1-weighted structural scan
(resolution 1.0 × 1.0 × 1.2 mm3) and fluid attenuated inversion recovery (FLAIR)
sequence MRI scan were acquired in the same session. For the HABS cohort42,45,
we accessed spreadsheets of tau SUVR, 18F-FDG SUVR and 11C-Pittsburgh
compound B distribution volume ratio.

Image processing and PET regional analysis. MRI studies were processed using
the ANTs (v2) pipeline47 for inhomogeneity correction, brain extraction, template
registration and cortical thickness measurement48,49. MRI scans were divided into
104 cortical and subcortical ROIs with multi-atlas segmentation50,51 (http://
neuromorphometrics.com/ParcellationProtocol_2010-04-05.PDF). PET images
were co-registered to T1-weighted MRI with ANTs using rigid-body
transformation47. SUVR maps were generated by convert3D (v1.1.0) with reference
regions specific for each tracer: inferior cerebellar cortex for 18F-Flortaucipir52,
cerebellar cortex for 18F-FDG53 and cerebellum for 18F-Florbetapir or
18F-Florbetaben54,55. Mean regional T and NM measures were extracted from tau
and 18F-FDG SUVR maps. Amyloid status (A+/A−) was determined with
18F-Florbetapir SUVR ≥ 1.11 or 18F-Florbetaben SUVR ≥ 1.08 computed from a
composite ROI from middle frontal, anterior cingulate, posterior cingulate, inferior
parietal, precuneus, supramarginal, middle temporal and superior temporal
cortex54,55. Comparison between our amyloid SUVRs with available amyloid
SUVRs from ADNI SUMMARYSUVR_WHOLECEREBNORM (UCBERKE-
LEYAV45_01_14_21 and UCBERKELEYFBB_01_14_21, accessed 8/2021)
revealed a strong correlation between amyloid measurements with R2= 0.973 and
slope β= 0.987 with no change in results. Two cases without amyloid PET had CSF
amyloid-β42 < 980 pg/ml, meeting the threshold for A+ classification56. Braak

staging was from separate processed ADNI data (UCBERKE-
LEYAV1451_11_16_21, UCBERKELEYAV1451_PVC_11_16_21, accessed 11/
2021) and thresholds (for Braak stages 1/2, 3/4, 5/6) derived from decision trees of
tau SUVRs57. The HABS data consisted of amyloid status, tau and 18F-FDG SUVR
spreadsheets in 84 cortical regions with FreeSurfer (v6) as generated in42,45 (data
release 2.0; accessed 11/2021).

Definition of regional T/NM mismatch by clustering. Spatial patterns of T/NM

mismatch were investigated by clustering of the residuals on a regression model of
18F-FDG vs. tau SUVR. Robust linear regressions of individual 18F-FDG SUVR vs.
a log transform of tau SUVR (to ameliorate effects of a skewed distribution of T)
across all patients were performed in each of the 104 gray matter ROIs (Fig. 1) to
yield T/NM mismatch residuals (in units of 18F-FDG SUVR). A bi-square
weighting function minimized the influence of outliers in robust regression. To
attenuate the effect of outliers on clustering, regression residuals for each ROI and
individual were discretized into a vector based on whether the residual was greater
than 0.6 SD from the regression line (a cutpoint that identifies the farthest ~25% of
points above or ~25% of points below the regression line) and if the residual was
negative or positive, generating an array of 104 ROIs across 289 participants where
each entry was −1, 0, or 1. Discretized residuals were inputs for Ward’s agglom-
erative hierarchical clustering58 with the hclust and cluster packages on R (v4.0.5)
to create T/NM mismatch groups. The number of clusters was selected by elbow
and silhouette analysis59, which both suggested that k= 6 clusters optimizes
within-cluster similarity. These methods did not agree on lower values, which
would not capture as much between-group variation in specific regional patterns.
Dimensionality reduction on discretized residuals was performed by PCA (Fig. 1)
and t-SNE (Supplementary Fig. 1A). Regional mean residuals were visualized in
cohort-based heatmaps, brain maps and three-dimensional renderings by ITK-
SNAP60 and MRIcroGL61. Clustering validation was performed across 10-folds of
150 randomly selected ADNI participants, which showed stable group patterns and
identities.

Cognitive evaluation. ADNI and HABS performed cognitive testing using unified
methodologies (accessed 8/2021 and 11/2021, respectively). We selected cognitive
testing sessions closest to the 18F-FDG scan along with longitudinal follow-up
testing. Global measures included AD Assessment Scale-Cognition 13 item (ADAS,
higher score is worse)62, Clinical Dementia Rating sum of boxes (CDR-SOB, higher
is worse)63 and Mini-Mental Status Exam (MMSE, lower is worse)64. Exploratory
analysis was pursued with additional measures based on mismatch group findings
and included the use of Clock Drawing Test65, NPI66 item B for proportion of
patients with hallucinations after scan, ADNI z-scores for visuospatial, language
and memory domains67,68, categorical fluency of animals69, Everyday Cognition
test70 and Multilingual Naming Test71.

Exploratory assessment of features associated with brain copathologies.
Available vascular risk factors assessed at initial medical history were obtained
from ADNI (INITHEALTH, accessed 4/2021), including presence of hypertension,
hyperlipidemia, type 2 diabetes, arrhythmia, cerebrovascular disease, endovascular
management of head/neck vessels, coronary artery disease (angina, stenosis,
infarct), coronary interventions (stent, bypass graft), heart failure, structural heart
defects and peripheral artery disease44. Number of subcortical infarcts (>3 mm in
size) were centrally measured from MRI scans72 performed up to 18F-FDG scan
(MRI_INFARCTS_01_29_21, accessed 4/2021). Infarcts mostly localized to cere-
bral white matter, basal ganglia and cerebellum. White matter hyperintensity
(WMH) volumes were drawn from ADNI analysis of FLAIR MRI73

(ADNI_UCD_WMH_DICT_09_01_20, accessed 1/2021). Apolipoprotein E
(APOE) allele frequency was analyzed (APOERES, accessed 7/2021).

In follow-up analyses, we calculated 18F-FDG PET measures which are thought
to map to different non-AD pathologies. The cingulate island sign represents
metabolic sparing of posterior cingulate cortex relative to precuneus and cuneus
and has been associated with a-synuclein pathology. It was quantified as the ratio of
posterior cingulate/precuneus/cuneus 18F-FDG SUVR; higher cingulate island ratio
is linked to α-synucleinopathy19,20. The presence of TDP-43 pathology has been
associated with MTL and FSO hypometabolism relative to inferior temporal gyrus
(I). The I/MTL/FSO ratio was calculated as the ratio of inferior temporal gyrus/
MTL/FSO gyrus 18F-FDG SUVR. Higher I/MTL/FSO ratio is associated with TDP-
43-related disease21,22. An MTL asymmetry index was computed as |left−right|/
(left+right) for 18F-FDG SUVR and cortical thickness24 as an additional potential
marker of TDP-43 pathology23.

Statistical analysis. Statistical analysis was performed in R (v4.0.5). All statistical
tests were two-sided. Comparisons for variables such as cognition or tau and
18F-FDG SUVRs were performed with likelihood ratio tests by linear regression.
Covariates included sex, age, education, amyloid status (A+/A−) and tau SUVR in
the inferior temporal gyrus, a region where T correlates with disease severity5,17.
Multiple test adjustment by Benjamini–Hochberg correction with false discovery
rate= 0.05 was conducted for pairwise comparisons with the canonical group. Box
plots show the data points as dots, mean as an X symbol, median as the middle box
line, first quartile (Q1) and third quartiles (Q3) as box edges (denoting the
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interquartile range, IQR), whiskers as the minimum/maximum points and outliers
based on thresholds <Q1 − 1.5(IQR) or >Q3+ 1.5(IQR). Exploratory analyses
(such as for copathology biomarkers) were also performed without multiple test
adjustment. Genotype frequency comparisons were performed with χ2 tests.
Longitudinal cognitive trajectories were assessed with linear mixed effects models
to account for participant-specific random intercepts with baseline cognitive score
at scan, time from scan, cluster and cluster*time interaction as independent
variables and sex, age, education and A status as covariates. Slopes of annual
cognitive change for each cluster were defined as the sum of the time from scan
slope and cluster*time interaction slope. Differences in decline rates were assessed
by significance of the slope of the cluster*time interaction.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw and processed data including the participant scans and spreadsheets described
above are available on the data archives of the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (http://adni.loni.usc.edu) and the Harvard Aging Brain Study (https://
habs.mgh.harvard.edu/)45. Supplementary Material is available online. Additional
information can be provided by the authors upon reasonable request. Source data are
provided with this paper.

Code availability
Relevant code can be found at: http://stnava.github.io/ANTs/. This includes links to
scripts on brain extraction (https://github.com/ANTsX/ANTs/blob/master/Scripts/
antsBrainExtraction.sh), image registration (https://github.com/ANTsX/ANTs/tree/
master/ImageRegistration) and segmentation (https://github.com/ANTsX/ANTs/tree/
master/ImageSegmentation). Additional information can be provided by the authors
upon reasonable request.
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