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ABSTRACT

TOPOLOGICAL SUPERCONDUCTORS AND DARK MATTER
SEARCHES IN GRAVITATIONAL WAVE INTERFEROMETERS

by

Han Gyeol Suh

The University of Wisconsin-Milwaukee, 2023
Under the Supervision of Professor Daniel F. Agterberg and Professor Jolien D. Creighton

This work is comprised of research in two areas: superconductors and gravitational waves.

Superconductors have led to novel fundamental discoveries, including new topological states.

These states are robust, in that they are not altered by common changes to their environment. Here,

I will introduce three studies focused on topological properties of various superconductors. First,

newly proposed even-parity superconducting state in Sr2RuO4 introduces the emergence of topo-

logically protected Bogoliubov Fermi surfaces. Next, I will discuss topological bands and odd-parity

superconductivity in UTe2, which suggest Weyl nodes and their potential topological properties.

Lastly, anomalous pseudospin in non-symmorphic materials shows different symmetry properties

than the usual spin-1/2 and has its applications on BiS2, UPt3, Fe-based superconductors, and

UCoGe.

LIGO and Virgo are laser interferometers designed to detect gravitational waves, enabling a vari-

ety of physical analyses. One important aspect involves measuring the spacetime volume sensitivity

⟨V T ⟩. The researchers typically inject simulated signals to measure ⟨V T ⟩ which is computation-

ally expensive. I will present a machine learning method to reduce the computational cost of this

process. Furthermore, these detectors can conduct dark matter searches. My research proposes

a hypothesis that dark matter particles decay into gravitational waves, producing detectable blip

glitches, which have traditionally been considered as noise. I will present a dimensional and data

analysis to test the plausibility of my hypothesis.
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Chapter 1

Superconducting Materials

1.1 Overview

Work and research in superconductors has led to novel fundamental discoveries, including new

topologically protected states. Topologically protected states are robust, because they are protected

by symmetry. Thus, they are not altered by common changes to their environment. In this chapter,

the following sections are reprints of my published works on superconductors.

In Section 1.2, I will discuss the possibility of an even-parity chiral superconducting state in

Sr2RuO4. This material has long been thought to host a spin-triplet chiral p-wave superconducting

state. However, the singletlike response observed in recent spin-susceptibility measurements casts

serious doubts on this pairing state. Together with the evidence for broken time-reversal symmetry

and a jump in the shear modulus c66 at the superconducting transition temperature, the available

experiments point towards an even-parity chiral superconductor with kz(kx ± iky)-like Eg symme-

try, which has consistently been dismissed based on the quasi-two-dimensional electronic structure

of Sr2RuO4. My collaborators and I show that Eg state can be stabilized and is energetically com-

petitive with the A1g state. This Eg state naturally gives rise to Bogoliubov Fermi surfaces(BFSs),

which are quasiparticle zero energy surface topologically protected by a broken symmetry. This

work is reprinted from Ref. [1], where I mainly contributed to showing the stability of Eg channel

by solving linearized gap equation as shown in Fig. 1-1 and numerically finding the Bogoliubov

Fermi surfaces as shown in Fig. 1-3.
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In Section 1.3, I will discuss the topological band and superconductivity in UTe2. UTe2 is a

likely spin-triplet superconductor that also exhibits evidence for chiral Majorana edge states. A

characteristic structural feature of UTe2 is inversion-symmetry related pairs of U atoms, forming

rungs of ladders. My collaborators and I show how each rung’s two sublattice degrees of freedom

play a key role in understanding the electronic structure and the origin of superconductivity. We

also show that a previously identified strong ferromagnetic interaction within a U-U rung leads to a

pseudospin-triplet superconducting state that accounts for a nonzero polar Kerr angle, the observed

magnetic field-temperature phase diagrams, and nodal Weyl fermions. This work is reprinted from

Ref. [2], where I mainly contributed to fitting our microscopic model to DFT data and analyzing

the behavior of Weyl nodes in our model as shown in Fig. 1-7.

In Section 1.4, I will discuss the superconductivity of anomalous pseudospin. Spin-orbit cou-

pling driven by broken inversion symmetry (I) is known to lead to unusual magnetic response of

superconductors, including extremely large critical fields for spin-singlet superconductors. This un-

usual response is also known to appear in materials that have I, provided there is local I-breaking:

fermions participating in superconductivity reside on crystal sites that lack I. Here my collabora-

tors and I show that this unusual response exists even when the crystal sites preserve I. Indeed,

we argue that the symmetry of Kramers degenerate fermionic pseudospin is more relevant than the

local crystal site symmetry. We examine and classify non-symmorphic materials with momentum

space spin-textures that exhibit an anomalous pseudospin with different symmetry properties than

usual spin-1/2. We find that this anomalous pseudospin does not depend on the existence of local I

breaking crystal sites and it optimizes the unusual magnetic response traditionally associated with

locally noncentrosymmetric superconductors, dramatically extending the range of relevant materi-

als. We further show this anomalous pseudospin leads to fully gapped ‘nodal’ superconductors and

provides additional insight into the breakdown of Blount’s theorem for pseudospin triplet super-

conductors. We apply our results to UPt3, BiS2-based superconductors, Fe-based superconductors,

and paramagnetic UCoGe. This work is reprinted from Ref. [3], where I mainly contributed to

classifying all possible symmetry based kp theories near TRIM points on these nodal planes in

Table 1.4.
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1.2 Bogoliubov Fermi Surfaces - Sr2RuO4

1.2.1 Introduction

Based on early Knight shift [4], polarized neutron scattering [5], muon-spin-resonance [6], and polar

Kerr measurements [7], Sr2RuO4 has been widely thought to support a spin-triplet chiral p-wave

superconducting state with Eu symmetry [8–24]. This proposed state has had difficulty reconciling

other experimental results [24], including the absence of chiral edge currents [25], thermal transport

consistent with a nodal state [26–28], apparent Pauli-limiting effects for in-plane fields [29], and

the failure to observe a cusplike behavior of the critical temperature under nematic strain [30, 31].

Plausible explanations for each of these inconsistencies have nevertheless been presented [24, 32, 33].

Recently, however, the Knight shift has been revisited [34, 35] and, contrary to earlier results, a

relatively large reduction of the Knight shift for in-plane fields in the superconducting state has been

observed. This finding cannot be reconciled with the standard spin-triplet chiral p-wave state [9].

Although it now seems unlikely that Sr2RuO4 is a spin-triplet chiral p-wave superconductor,

the observation of broken time-reversal symmetry [6, 7, 36] and a jump in the shear modulus c66

[37, 38] at the critical temperature still indicate a multicomponent order parameter [39]. The

only other possible multicomponent channel within D4h symmetry belongs to the Eg irreducible

representation (irrep) [39]. At the Fermi surface, a chiral order parameter in this channel resembles

a spin-singlet d-wave state, which has horizontal line nodes. Such a state would appear to imply

that the dominant pairing instability involves electrons in different RuO2 layers, which is difficult

to understand in view of the pronounced quasi-two-dimensional nature of the normal state of

Sr2RuO4. Indeed, no microscopic calculation for Sr2RuO4 has found a leading weak-coupling Eg

instability [40–42].

In this section, we show that local interactions can lead to a weak-coupling instability in the Eg

channel, once we consider a complete three-dimensional (3D) model for the normal state. Physically,

this Eg state is a local (i.e., s-wave) orbital-antisymmetric spin-triplet (OAST) state stabilized

by on-site Hund’s coupling. When the renormalized low-energy Hund’s coupling J becomes larger

than the interorbital Hubbard interaction U ′, this channel develops an attractive interaction [43–48].

3



This pairing instability has been found in dynamical mean-field theory, which predicts it appears

in the strong-coupling limit even when the unrenormalized high-energy J is less than U ′ [49], and

also in the presence of strong charge fluctuations [50]. Pairing due to this type of interaction

was considered for Sr2RuO4 in Ref. [43] , where an A1g pairing state was found to be stable.

Motivated by the relevance of J for the normal state of Sr2RuO4 [51], we revisit the local-pairing

scenario. We note that, remarkably, a similar OAST pairing state is believed to be responsible for

nematic superconductivity in CuxBi2Se3 [52–54]. In the following, we show that an Eg state can

be stabilized over the A1g state of Ref. [43] by including momentum-dependent spin-orbit coupling

(SOC) corresponding to interlayer spin-dependent hopping with a hopping integral on the order

of 10 meV. This small value leaves the quasi-two-dimensional nature of the band structure intact.

Moreover, we use the concept of superconducting fitness [55, 56] to understand the importance of

this term in stabilizing the Eg state. Finally, we show that this chiral multiorbital Eg state will

display Bogoliubov Fermi surfaces [57, 58], instead of line nodes.

1.2.2 Normal-state Hamiltonian

An accurate description of the normal-state Hamiltonian is crucial for understanding supercon-

ductivity in the weak-coupling limit. Our starting point is a tight-binding parametrization of the

normal-state Hamiltonian that includes all terms allowed by symmetry [59]. To determine the mag-

nitude of each term, we carry out a fit to the density-functional theory (DFT) results of Veenstra

et al. [60]. However, angle-resolved photoemission spectroscopy (ARPES) measurements [51, 61]

suggest that some DFT parameters differ appreciably from the measured values, in particular the

SOC strengths [60]. We therefore allow the SOC parameters to vary in order to understand how

they affect the leading superconducting instability, under the constraint that the Fermi surfaces

do not differ significantly from the DFT predictions and are hence still qualitatively in accordance

with the ARPES results.

The relevant low-energy degrees of freedom (DOF) are the electrons in the t2g-orbital manifold

dyz, dxz, and dxy of Ru. Using the spinor operator Φ†
k = (c†k,yz↑, c

†
k,yz↓, c

†
k,xz↑, c

†
k,xz↓, c

†
k,xy↑, c

†
k,xy↓),

where c†k,γσ creates an electron with momentum k and spin σ in orbital γ, we construct the most

4



general three-orbital single-particle Hamiltonian as H0 =
∑

k Φ†
kĤ0(k)Φk with

Ĥ0(k) =

8∑
a=0

3∑
b=0

hab(k)λa ⊗ σb, (1.1)

where the λa are Gell-Mann matrices encoding the orbital DOF and the σb are Pauli matrices

encoding the spin (λ0 and σ0 are unit matrices), and hab(k) are even functions of momentum.

Time-reversal and inversion symmetries allow only for 15 hab(k) functions to be finite. The explicit

form of the hab(k) functions and the Gell-Mann matrices are given in the [1].

1.2.3 Interactions and superconductivity

We consider on-site interactions of the Hubbard-Kanamori type [62],

Hint =
U

2

∑
i,γ,σ ̸=σ′

niγσniγσ′ +
U ′

2

∑
i,γ ̸=γ′,σ,σ′

niγσniγ′σ′

+
J

2

∑
i,γ ̸=γ′,σ,σ′

c†iγσc
†
iγ′σ′ciγσ′ciγ′σ

+
J ′

2

∑
i,γ ̸=γ′,σ ̸=σ′

c†iγσc
†
iγσ′ciγ′σ′ciγ′σ, (1.2)

where c†iγσ (ciγσ) creates (annihilates) an electron at site i in orbital γ with spin σ, and niγσ =

c†iγσciγσ. The first two terms describe repulsion (U,U ′ > 0) between electrons in the same and in

different orbitals, respectively. The third and fourth terms represent the Hund’s exchange interac-

tion and pair-hopping interactions respectively. We take J = J ′ [62], where J > 0 is expected for

Sr2RuO4. In the context of Sr2RuO4, Hint is usually taken as the starting point for the calculation

of the spin- and charge-fluctuation propagators which enter into the effective interaction [19, 22].

Here, we take a different approach [43, 46] by directly decoupling the interaction in the Cooper

channel, which, for U ′−J < 0, yields an attractive interaction for on-site pairing in an OAST state.

This scenario has previously been applied to a two-dimensional model of Sr2RuO4, predicting an

OAST A1g state [43]. Although a strong-coupling instability towards an OAST Eg state in the

absence of SOC has been predicted in Ref. [50], the superconductivity in Sr2RuO4 is likely in the

weak-coupling regime [24]. It is therefore important to understand if an OAST Eg state can be the

5



Table 1.1: All even-parity local gap functions classified by irreps of the point group D4h. Here, [a, b]
corresponds to the parametrization of the gap matrix as λa ⊗ σb (iσ2). The other columns give the orbital
and spin character, as well as the interaction g for each superconducting state derived from the Hubbard-
Kanamori interaction Hint in Eq. (1.2). Note that the two components of the Eg order parameters can stem
from the orbital DOF, as for {[2, 0], [3, 0]} and {[6, 3],−[5, 3]}, or from the spin DOF, as for {[4, 1], [4, 2]}.

Irrep [a, b] Orbital Spin Interaction g

A1g

[0, 0] symmetric singlet U + 2J
[8, 0] symmetric singlet U − J
[4, 3] antisymmetric triplet U ′ − J

[5, 2] − [6, 1] antisymmetric triplet U ′ − J

A2g [5, 1] + [6, 2] antisymmetric triplet U ′ − J

B1g
[7, 0] symmetric singlet U − J

[5, 2] + [6, 1] antisymmetric triplet U ′ − J

B2g
[1, 0] symmetric singlet U ′ + J

[5, 1] − [6, 2] antisymmetric triplet U ′ − J

Eg

{[2, 0], [3, 0]} symmetric singlet U ′ + J
{[4, 1], [4, 2]} antisymmetric triplet U ′ − J
{[6, 3],−[5, 3]} antisymmetric triplet U ′ − J

leading instability in this limit.

In the spirit of Ref. [46], we treat Hint as a renormalized low-energy effective interaction. We

tabulate the allowed local gap functions, their symmetries, and the interactions in the respective

pairing channels in Table 1.1. Here, we adopt the common assumption of on-site rotational sym-

metry, which stipulates U = U ′ + 2J [62]. This choice implies that all the OAST channels have the

same attractive pairing interaction, which highlights the role of the normal-state Hamiltonian in se-

lecting the most stable state. However, since the Ru sites have D4h symmetry and not the assumed

full rotational symmetry, the interaction strengths for the different pairing channels are generally

different. Our results should therefore be interpreted as providing a guide to which superconducting

states this form of attractive interaction can give rise to.

We write a free-energy expansion up to second order in the superconducting order parameter

given by the gap matrices ∆̂i = ∆i λai ⊗ σbi(iσ2),

F =
1

2

∑
i

1

gi
Tr [∆̂†

i ∆̂i] −
kBT

2

∑
k,ω,i,j

Tr
[
∆̂iĜ∆̂†

jĜ
]
, (1.3)

where i and j sum over all channels of a chosen irrep, gi are the corresponding interaction strengths

from Table 1.1, ωm = (2m+1)πkBT are the fermionic Matsubara frequencies, and Ĝ = (iωm−Ĥ0)
−1
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and Ĝ = (iωm + ĤT
0 )−1 are the normal-state Green’s functions. Nontrivial solutions of the coupled

linearized gap equations obtained from ∂F/∂∆∗
i = 0 give the critical temperature Tc and the linear

combination of the ∆̂i corresponding to the leading instability. We include all channels in a chosen

irrep, not just the attractive ones (see Table 1.1). In evaluating the last term in Eq. (1.3), we keep

only intraband contributions; although the inclusion of interband terms will shift Tc, this effect is

negligible in the weak-coupling regime.

1.2.4 Results

Weak-coupling OAST pairing states for an attractive Hund’s interaction require nonvanishing SOC

[46, 47, 56]. SOC appears in five terms in the Hamiltonian Ĥ0(k) in Eq. (1.1), representing a large

parameter space to explore. We shall focus on the effects of the following terms: the z component of

the atomic SOC, h43 = ηz; the in-plane atomic SOC, h52−h61 = η⊥; and the momentum-dependent

SOC associated with the interlayer hopping amplitude tSOC
56z between the dxy and the dxz and dyz

orbitals, {h53, h63} = 8 tSOC
56z sin(kzc/2){cos(kxa/2) sin(kya/2),− sin(kxa/2) cos(kya/2)}. Here, we

will ignore the anisotropy of the atomic SOC and set ηz = η⊥ = η. We have carried out a cursory

exploration of the larger SOC parameter space and find that varying the other parameters within

reasonable ranges such that the Fermi surfaces do not significantly deviate from the DFT predictions

has little effect on the leading instability.

Figure 1-1(a) shows the phase diagram as a function of the atomic SOC η and the momentum-

dependent SOC, parametrized by tSOC
56z . We find leading instabilities in the A1g and Eg channels.

A2g and B2g states are not competitive anywhere in the phase diagram. A B1g state is sometimes

found as a subleading instability. The Eg solution is dominated by the {[6, 3],−[5, 3]} channel and

is stabilized for tSOC
56z ≳ η/4. Under the constraint of realistic Fermi surfaces, the Eg state can be

stabilized for tSOC
56z as small as about 5 meV, although this requires a rather small value of the on-site

SOC. It is remarkable that such a small energy scale determines the relative stability of qualitatively

different pairing states. As shown in Fig. 1-1(b), the Fermi surfaces for parameters stabilizing A1g

or Eg states are indeed very similar. The SOC strength remains controversial [51, 60, 61], but here

we have shown its importance for the determination of the most stable superconducting state. Our
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Figure 1-1: (a) Phase diagram showing the stability of A1g and Eg pairing states as a function of the SOC
parameters η and tSOC

56z . The vertical dashed lines indicate the minimum distance between two Fermi surfaces.
Percentages are defined as fractions of 2π/a. For small η, the separation between the β and γ bands becomes
too small, in view of the ARPES data [51]. The thin solid lines indicate the maximum variation of the Fermi
surface along the kz direction. For large tSOC

56z , the Fermi surfaces become too dispersive. The blue and
magenta dots denote the parameter choices for Eg and A1g stable solutions used in (b). (b) Fermi-surface
shapes, projected onto the kxky plane, for representative points in the A1g (red) and Eg (blue) regions in
(a). For A1g, η = 57 meV and tSOC

56z = 10 meV, while for Eg, η = 40 meV and tSOC
56z = 12 meV.

results are a proof of principle that an Eg superconducting state can be realized in Sr2RuO4, even

for purely local interactions, once one properly takes into account a complete and plausible 3D

model for the normal state.

Figure 1-2 displays the projected gaps at the Fermi surfaces for representative A1g and Eg

states. Note that in both cases the gap magnitude on the α sheet is very small, whereas the gaps

on the β and γ sheets are comparable. This shows that we cannot simply identify the γ band [63] or

the pair of almost one-dimensional α and β bands [19] as the dominant ones for superconductivity

[22].

It is possible to understand why these SOC terms stabilize the respective ground states based

on the notion of superconducting fitness [55, 56]. In particular, it has been shown for two-band

superconductors that if the quantity F̂A(k) = H̃0(k)∆̂(k) + ∆̂(k)H̃∗
0 (−k) is zero there is no

intraband pairing and hence no weak-coupling instability [here, H̃0(k) corresponds to Ĥ0(k) with

h00(k) set to zero]. Hence, adding terms to the normal-state Hamiltonian such that F̂A(k) becomes

nonzero for a particular gap function turns on a weak-coupling instability in this channel. The

fitness analysis can be extended to our three-orbital model or, alternatively, we can construct an
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Figure 1-2: Projected gaps at the Fermi surfaces for a representative (a) A1g and (b) chiral Eg state in
the first Brillouin zone. Parameters are the same as in Fig. 1-1 (b). The color code is normalized to the
maximum value of the A1g gap.

effective two-orbital model valid sufficiently far from the Brillouin-zone diagonals. Applying the

fitness argument to the effective two-band model, we find that the on-site SOC η turns on both the

A1g and B1g pairing channels, whereas the parameter tSOC
56z turns on the Eg {[6, 3],−[5, 3]} channel,

consistent with what we find numerically.

In view of the Knight-shift experiments [34, 35], it is important to comment on the spin sus-

ceptibility associated with the dominant Eg {[6, 3],−[5, 3]} channel. Since it is a spin-triplet state

with in-plane spin polarization of the Copper pairs, similar to the familiar chiral p-wave spin-triplet

pairing with a d-vector along the kz direction, it might naively be expected to show a temperature-

independent spin susceptibility for in-plane fields. This is not the case, however, since the even

parity of Eg implies that the intraband pairing potential is a pseudo-spin singlet when expressed

in the band basis and the low-energy response to a magnetic field is identical to a true spin singlet.

This has been examined numerically for similar pairing states [48, 64], where it was found that

9



Figure 1-3: BFSs for the chiral Eg state. The Fermi surfaces in red, green, and blue correspond to inflated
nodes stemming from the α, β, and γ band, respectively.

only a small fraction of the normal-state spin susceptibility persists at zero temperature in the

superconducting state.

1.2.5 Bogoliubov Fermi surfaces

An Eg state is expected to have horizontal line nodes at kz = 0 and 2π/c [24, 39], and it will have

vertical line nodes in a time-reversal invariant nematic state [37, 39]. Although recent tunneling

measurements have called into question time-reversal symmetry breaking in Sr2RuO4 [65], here

we follow the indications of polar Kerr and µSR experiments [6, 7, 36], and explicitly consider a

chiral Eg state which has no vertical line nodes. It has recently been shown that for an even-

parity superconductor that spontaneously breaks time-reversal symmetry, the excitation spectrum

is either fully gapped or contains Bogoliubov Fermi surfaces (BFSs) [57, 58]. Indeed, the chiral

Eg state considered here has BFSs, which are shown in Fig. 1-3. These BFSs are very thin in the

direction perpendicular to the normal-state Fermi surface, giving them a ribbon-like appearance

that extends along the kz axis by about 0.2% of the Brillouin zone. This value is proportional to the
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gap amplitude, here set to 0.15 meV. While the total residual density of states from the BFSs is not

large and may be difficult to observe [66], such a nodal structure implies that some experimental

results require reinterpretation. In particular, given that the BFSs extend along the kz-axis, the

argument that thermal conductivity measurements rule out the Eg state because it has horizontal

line nodes [27] no longer applies. The presence of BFSs may also require a reinterpretation of quasi-

particle-interference experiments [67]. We leave a detailed study of experimental consequences of

the Eg OAST state for future work.

1.2.6 Conclusions

We have argued that an Eg order parameter can be a realistic weak-coupling ground state for

Sr2RuO4, once we consider a complete 3D model for the normal state and interactions of the

Hubbard-Kanamori type. Key to our construction are the usually neglected momentum-dependent

SOC terms in the normal state. These terms can completely change the nature of the superconduct-

ing ground state, despite being so small that they do not significantly change the Fermi surfaces.

Our theory reconciles the recent observation of a singlet-like spin susceptibility with measurements

indicating a two-component order parameter and broken time-reversal symmetry.

1.3 Weyl point nodes - UTe2

1.3.1 Introduction

UTe2 [68] is poised to become a paradigmatic superconductor. There is strong evidence that it

is unconventional. Superconductivity survives to much higher magnetic fields than expected [68]

and shows a highly unusual re-entrant field induced superconductivity [69]. Furthernore, there

is also evidence for multiple superconducting phases [70–72], spontaneous broken time-reversal

symmetry [71], and chiral Majorana edge and surface states [73, 74], the nature of which are not

yet understood.

Many important questions remain open in understanding this superconducting state. Key

amongst these is the origin of the odd-parity superconductivity. On the related materials UGe2,
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Figure 1-4: (a) LDA+U band dispersion along kz axis (Λ line), kx (Σ) and ky (∆) with U = 1.2 eV.
Topological band with parity inversion (even at Γ and odd at X) is highlighted by red line. A few bands
selected from ThTe2 calculation are overlaid by thick blurred lines (with upward energy shift of 0.4 eV to
account for the atomic number difference of Th and U), which provide a good idea of how the coherent bands
and Fermi surface would be when all U 5f electrons are localized. (b) Density of states. Shaded (orange)
area shows U 5f j = 5/2 components.

URhGe, and UCoGe there is a consensus that ferromagnetic fluctuations is the origin [75]. However,

there is a debate as to the nature of these ferrmomagnetic fluctuations [75]. This debate is related to

the uncertainty of the underlying electronic model in this class of materials. Recently, this has been

addressed in UTe2 [76–78]. Here LDA+U and DMFT have developed a family of bandstructures

that depend upon U . The consequences of this family of bandstructures on superconductivity

have been explored, suggesting topological superconductivity [78]. In addition, effective Heisenberg

theories have been developed, with the insight that the strongest magnetic interaction, for all U

used, is a ferromagnetic interaction between the two inequivalent U atoms on a ladder rung [77],

providing a potential mechanism for superconductivity.

Here we revisit the LDA+U calculations, finding good agreement with previous results and

newly identifying a topological band that appears near the chemical potential for all values of U .

This topological band has its origin in 5f electrons located predominantly on the rung sublattice

degrees of freedom. On the two U atoms of the rung, even parity and odd-parity orbital combina-

tions can be made, a band inversion between such odd and even parity combinations provides the

origin of the topological band. The appearance of the topological band together with the rung fer-
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romagnetic interaction discussed above indicates that the rung sublattice degrees of freedom play a

central role in the electronic description. Conseqeuntly, we construct a symmetry-based electronic

model that explicitly includes these rung sublattice degrees of freedom and the ferromagnetic in-

teraction between them. This model: yields magnetic field-temperature phase diagrams that agree

with experiment; and allows a superconducting state with Weyl nodes, providing a potential ex-

planation for the observed surface chiral edge states [74], the observed polar Kerr effect [71], and

observed low energy excitations in the superconducting state [79].

1.3.2 Topological Band

A likely scenario for the electronic structure of UTe2 is a low temperature renormalized Fermi

liquid ground state in which Uranium 5f electrons are participants. This is consistent with scanning

tunneling microscopy [74] and the observed Fermi pocket about the Z-point seen in ARPES data

[80]. This point of view has been has been adopted in recent DMFT and GGA+U calculations

[76–78]. The latter reveal that the band structure depends strongly on the choice of U , suggesting

that any theory of the superconducting state needs to be developed for a range of band structures,

emphasizing properties that are generic across the relevant possibilities. Here, we have carried out

DFT calculations of the bandstructure of UTe2 using the full-potential linearized augmented plane

wave method and including a Coulomb U to account for interactions of the Uranium 5f electrons.

Our results agree with those found earlier [77, 78]. A key new finding is that for all values of U

included here, we find a topological band at or near the chemical potential.

A typical band structure with a moderate U value (U = 1.2 eV) is shown in Fig. 1-4. Due to

the large U 5f spin-orbit interaction, the energy range shown reveals only j = 5/2 electronic states.

This j = 5/2 manifold splits into three groups: (1) a lowest energy set of two bands which are less

dispersive with large spectral weight centering around 0.5 eV; (2) a middle group of bands that are

responsible for the Fermi surface; and (3) a highest energy set of two bands. Between groups (2)

and (3) there is a band gap and we have calculated the Z2 topological index for bands below this

band gap. This Z2 index is calculated from the band parity at the eight time-reversal-invariant

momenta (TRIMs). Only two of the TRIMs (Γ and X) can give rise to a non-trivial Z2 invariant,
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Figure 1-5: Schematics of Fy-band wavefunction at (a) Γ− and (b) X-points. A conventional orthorhombic
cell and two lattice points (open circles), (1/2, 1/2, 1/2) and (1, 1, 1), are drawn. Each lattice point is a
spatial-inversion center and comes with a ladder rung of the shortest distance U(1)-U(2). The wavefunction
sign is represented by colors (dark and light). Two-types of U(1)-U(2) hopping are shown: m0 is along c
axis within a rung (Π hybridization) and t3 connects U(1) and U(2) of different lattice points. Note that
Bloch phase at these two lattice points is in-phase at Γ and out-of-phase at X.

since the other six TRIMs have a mirror symmetry parity duplication. In Fig. 1-4, these parities are

given by black (odd-parity) and white (even-parity) dots. The non-trivial Z2 index is a consequence

of the top band (highlighted in red in Fig 1) for which there is a parity inversion in going from

Γ to X. The topological band is made up mainly from 5f y(5y2 − 3r2) orbitals on the two rung

U atoms, as shown in Fig. 1-5. For the U used here, this topological band gives rise to a Fermi

surface that is centered on Z point when viewed from the b̂ direction, in agreement with the Fermi

pocket observed experimentally [80, 81].

1.3.3 Minimal Hamiltonian

The topological band and the ferromagnetic rung interaction found by DFT indicates that the two U

rung sublattice degrees of freedom play an important role in the underlying physics. Surprisingly,

this degree of freedom has not been explicitly considered in understanding the superconducting

state in UTe2. In addition, the related materials UGe2, URhGe, and UCoGe also have similar U

atom sublattice degrees of freedom that have not been explicitly included in microscopic models

[75]. Here we consider the role of these rung degrees of freedom through the construction of a

minimal model that includes these. In particular, The U atoms sit on sites of C2v symmetry, for

which only a single spinor symmetry representation exists. A minimal model therefore inlcudes
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a single spinor pair centered on each of the two rung sublattice degrees of freedom. While these

spinors share the same symmetry properties as usual spin-1/2 fermions under C2v symmetry, DFT

reveals they are generally a linear combination of j = 5/2 states. We consider the most general

symmetry allowed non-interacting description that includes these rung sublattice and spin degrees

of freedom. The general form of a theory containing these electronic degrees of freedom is

HN = ϵ0(k) − µ+ fAg(k)τx + fz(k)τy + fy(k)σxτz

+fx(k)σyτz + fAu(k)σzτz (1.4)

where the functions fi(k) carry the symmetry properties given by the label i, in particular fAg(k) ≈

cnst, fz(k) ≈ kz, fy(k) ≈ ky, fx(k) ≈ kx, and fAu(k) ≈ kxkykz. Here the Pauli matrices σi describe

the spin degrees of freedom and the Pauli matrices τi describe the rung degrees of freedom. While

our analysis below does not depend upon the detailed from of fi(k), we nevertheless show specific

results the Fermi surface due to the Fy orbitals discussed above. For these orbitals, we take the

following tight-binding theory

ϵ0(k) = t1 cos(kx) + t2 cos(ky)

fAg(k) = m0 + t3 cos(kx/2) cos(ky/2) cos(kz/2)

fz(k) = tz sin(kz/2) cos(kx/2) cos(ky/2)

fy(k) = ty sin(ky)

fx(k) = tx sin(kx)

fAu(k) = tu sin(kx/2) sin(ky/2) sin(kz/2) (1.5)

Note that to have a topological band requires fAg to have opposite sign at Γ and at Z = (0, 0, 2π),

this will occur if |t3| > |m0| and both parameters have the same sign. Specifically, we use

(µ, t1, t2,m0, t3, tz, tx, ty, tu) =(0.129, -0.0892, 0.0678, -0.062, 0.0742, -0.0742, 0.006, 0.008, 0.01)

which were found by fitting to the DFT band near the Fermi surface. For a simple tight binding

model based on the Fy orbitals shown in Fig. 1-5, we find that t3 = −tz and that the momentum
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Table 1.2: Pairing gap functions due to ferromagnetic interactions between rung sublattice degrees of
freedom. The first column gives the local gap function and the last column gives the corresponding d⃗(k) in
the band basis when the spin-orbit coupling terms are vanishing (fx = fy = fAu = 0).

Gap Irrep Interaction Momentum dependence

∆zτyσz Au Jx + Jy − Jz
fz(k)√

f2
Ag(k)+f2

z (k)
ẑ

∆xτyσx B2u −Jx + Jy + Jz
fz(k)√

f2
Ag(k)+f2

z (k)
x̂

∆yτyσy B3u Jx − Jy + Jz
fz(k)√

f2
Ag(k)+f2

z (k)
ŷ

dependent spin-orbit coupling terms tx, ty, tcu are longer-range hopping parameters, so we take

them to be small.

1.3.4 Magnetic interactions

DFT calculations have found that the dominant magnetic interaction is a ferromagnetic interaction

between the rung sublattice U atoms [77]. Note that this local ferromagntic interaction does not

imply a global ferromagnetic state, but only that these two U atoms have the same spin-orientation.

Indeed, DFT finds ferromagnetic and anti-ferromagnetic ground states consistent with this local

configuation [77]. These different global ground states may account for two magnetically ordered

states observed experimentally [72]. This interaction is given by

Hint = −
∑
i

{JxSx
i,1S

x
i,2 + JyS

y
i,1S

y
i,2 + JzS

z
i,1S

z
i,2) (1.6)

where 1, 2 label the two U atoms on the rung, i labels a lattice site, and in general, due to the

orthorhombic structure, the ferromagnetic interactions Ji > 0 are unequal. Treating this as an

effective coupling for superconductivity, we find this gives rise to three possible pairing states as

shown in Table 1.2. Due to the inter-rung sublattice nature of the magnetic interactions, the pairing

states are necessarily proportional to a non-trivial τy rung operator and take the form ∆iτyσi which

describes a local, intra-unit cell, spin-triplet pairing function. While the interactions reveal the role

of magnetic anisotropy on pairing interaction, we will now set Jx = Jy = Jz to examine the effect

of HN on these pairing states.
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1.3.5 Role of HN

Naively, the stable pairing state is determined by the largest interaction parameter listed in Table

1. However, this is not the case, HN alters the relative stability of the pairing states. It is possible

to quantify the role of the individual terms of HN on the transition temperatures Tci without

specifying fully the functions fi(k) [82, 83]. In particular, this is determined by superconducting

fitness, which is specified by commutation and anticommutation relations between the gap functions

∆iτyσi and the terms of the form σiτj in HN . If a particular term anticommutes with ∆iτyσi, then

Tc,i is enhanced by this term, if it commutes with ∆iτyσi, then Tc,i is this term suppressed by

this term [83]. This yields the result that the fAg term suppresses all the Tc,i and the fz(k) term

enhances all the Tc,i. Consequently, if Jx = Jy = Jz, the spin-orbit coupling terms will dictate

which Tc,i is highest. In particular, the largest Tc,i is given by the smallest of ⟨f2Au⟩ (Au stable),

⟨f2x⟩ (B3u stable), or ⟨f2y ⟩ (B2u stable) where ⟨f⟩ represents an average over the Fermi surface. The

terms in the tight binding expression will be altered by pressure, providing a potential explanation

for the appearance of different superconducting states.

HN also dictates the form of the pseudospin triplet d⃗-vector on the Fermi surface. We do not

give the details here but point out that generically, all three pseudospin components x̂, ŷ, ẑ appear

for each gap function. In the limit that the momentum dependent spin-orbit coupling terms can

be ignored, fx = fy = fAu = 0, then the spin-triplet d⃗ vectors are given as in Table 1.2. Note that

it is likely that f2z >> f2x , f
2
y , f

2
Au when averaged over the Fermi surface since fz is determined by

a nearest neighbor hopping and fx, fy, fAu by a third nearest neighbor hopping. In this case Table

1.2 provides an approximately correct description of d⃗, except near kz = 0, 2π, in the following this

is called the weak spin orbit coupling limit.

1.3.6 Experimental Constraints

At ambient pressure, two superconducting transitions have been observed in zero field [71]. The

response of this phase diagram to a field along the b̂ (ŷ) and â (x̂) directions place constraints on

the order parameters. In particular, a reasonable interpretation of the experimental data is than

an applied field along the b̂ direction suppresses the upper transition strongly and suppressed the
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lower transition weakly [78, 84]. These data suggest that, in zero field, the upper transition has a

d⃗ predominantly along the ŷ and the lower transition has a d⃗ predominantly along the x̂ direction.

This naturally occurs within our theory in the weak spin-orbit coupling limit by attributing the

upper transition to B3u symmetry and the lower transition to B2u symmetry. This symmetry

assignment also naturally accounts for the evolution of the field-temperature phase diagram under

pressure. In particular, it has been observed that under pressure, the lower and upper transitions

switch [72] at a pressure P ≈ 0.2 GPa. Consequently, in the high pressure regime, a field along â

should play a similar role to the field along b̂ in the low pressure regime. This has been observed

[85, 86]. Our symmetry assignment also agrees with the observation of a polar Kerr effect at low

temperatures at ambient pressure, which dictates a low temperature B3u + iB2u (or Au + iB1u)

pairing state [71]. Based on our theory in the weak spin-orbit coupling limit, a qualitative phase

diagram consistent with these results is shown in Fig. 1-6.

We also note that the weak spin-orbit coupling limit naturally explains why thermal conductivity

exhibits nodal behavior that is similar along both the â and b̂ directions [79]. When fx = fy =

fAu = 0, all the gap functions have accidental line nodes when kz = 0, yielding nodal thermal

conductivity behavior along both â and b̂. These accidental line nodes will be lifted when the

spin-orbit coupling terms are non-zero but small, but a local gap minimum is still expected near

kz = 0, 2π which can mimic nodes in thermal conductivity.

1.3.7 Weyl Nodes

A B3u + iB2u pairing state can be stabilized through the coupling to ferromagnetic fluctuations

[71]. Here we examine more carefully the nodal structure of a B3u + iB2u pairing state. Using

the tight-binding theory given above, we find that Weyl nodes generically exist. These nodes are

topologically protected but do not sit at positions of high symmetry. The position of these nodes

are determined by the relative amplitudes of the B2u and the B3u order parameters. The evolution

of these nodes is shown in Fig. 1-7. We have also computed the Weyl charge of these nodes.

Generically, there exists four Weyl nodes, two of charge +1 and two of change -1. These Weyl

nodes imply the existence of surface Fermi arc states which provide an explanation for the chiral
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Figure 1-6: Qualitative temperature-field phase diagrams. The top two phase diagrams correspond to
P < 0.2 GPa and the bottom two to P > 0.2 GPa.

edges states seen with scanning tunneling microcopy [74].

1.3.8 Polar Kerr Effect

Now we turn to polar Kerr effect. Our theory generically gives rise to an imaginary anomalous

Hall conductivity, which is expected to be proportional to the polar Kerr signal. By a sum rule,

we have that the integrated imaginary anomalous Hall conductivity is given by
∫∞
−∞ ωσH(ω)dω =

Figure 1-7: Evolution of Weyl nodes as the ratio of B2u to B3u gap amplitudes change in the B3u + iB2u

phase.
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−iπe2⟨[∂kxHN , ∂kyHN ]⟩. The full expansion of the commutator is very complicated and will be

analyzed elsewhere, but we note that the contribution (∂kxfy∂kyfx − ∂kxfx∂kyfy)σzτ0 is directly

proportional to the so-called time-reversal-odd bilinear of the B2u + iB2u pairing state [87, 88].

This implies that expectation value of the commutator is nonzero, ensuring the existence of the

anomalous Hall conductivity and hence the polar Kerr signal. The sublattice structure of the

normal-state Hamiltonian is critical to this argument; in a single-band model, the commutator is

vanishing (Taylor and Kallin).

We have found the DFT results yield a topological band near the chemical potential in UTe2.

This together with a second DFT prediction as to the origin of magnetism suggest that U atom

rung degrees of freedom play an important role in UTe2. Based on this, we have developed a

model that can capture topological bands, B2u + iB3u pairing states that exhibit Weyl point that

originate from these rung ferromagnetic interactions, and yield a polar Kerr effect, providing a

simple promising model with which to gain an understand of UTe2 in more detail. In addition, we

note that in all U-based ferromagnetic superconductors, there exist U site degrees of freedom that

are related by parity symmetry, just as the rung degrees of freedom considered here. These degrees

of freedom are typically not included in theories of these superconductors. Our work suggests that

these U site degrees of freedom can provide a unifying theme for this class of materials.

1.4 Anomalous Pseudospin

1.4.1 Introduction

Momentum space spin-textures of electronic bands are known to underlie spintronic and super-

conducting properties of quantum materials [89–91]. In the spintronics context, Rashba-like spin

textures allow control of electronic spin through applied electric fields [89, 91]. In superconduc-

tors, these same spin textures lead to unusual and counter-intuitive magnetic response, such as the

robustness of spin-singlet superconductivity to applied magnetic fields, pair density wave states,

and singlet-triplet mixing [90]. While such spin-textures are common when inversion symmetry

(I) is broken, it has been realized that these can also occur when I is present. This has lead
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to the notion of hidden spin-textures [92] and locally non-centrosymmetric superconductivity [93],

where I related sectors each allow a Rashba-like spin-texture due to the local I breaking. These

spin-textures are of opposite sign on the two sectors, so that global inversion symmetry is restored.

These hidden spin-textures allow the novel physics associated with spin-orbit coupling (SOC) to

emerge even when I is not broken. It further allows for new physics to emerge. One notable exam-

ple is a field induced transition from an even-parity (pseudospin singlet) to odd-parity (pseudospin

triplet) observed in CeRh2As2 [94–97].

In materials with inversion symmetry, we call the above mentioned strongly anisotropic Pauli

limiting fields (and related anisotropic spin susceptibilities), fields far exceeding the usual Pauli

limiting field, and field induced transitions between different superconducting states, unusual mag-

netic response. Key to observing this unusual magnetic response associated with the spin-textures

in inversion symmetric materials, is that the I related sectors are weakly coupled [93, 97–99]. The-

oretical proposals for how to achieve this fall under two approaches: the first is to tailor weak

coupling between the inversion related sectors, for example by separating two inversion symmetry

related layers so that the interlayer coupling is weak [94]; the second is to exploit symmetries that

ensure that this inter-sector coupling vanishes. The symmetry based approach has been applied

to points and lines in momentum space. Examples include two-dimensional (2D) transition metal

dichalcogenides near the K-point [100] and non-symmorphic symmetries near the X −M line in

BaNiS2 with space group 129 (P4/nmm) [98]. Recently, we have generalized this to planes in mo-

mentum space through an analysis of the locally non-centrosymmetric superconductor CeRh2As2

[97]. In all these cases, the only energy splitting between the inversion-related sectors is due to SOC

- a situation conceptually similar to materials with broken I, where the usual two-fold pseudopsin

degeneracy is broken solely by SOC. Indeed, this suggests another route toward tailoring unusual

magnetic response of superconductors with inversion symmetry: Instead of emphasizing the lo-

cal I breaking, as has been done in the examples described above, it may be fruitful to identify

electronic degeneracies that are broken solely by SOC. This is the approach we take here and we

find it naturally leads to the desired unusual magnetic response. Furthermore, we find it does not

require crystal site symmetries with local I breaking, but rather is dictated by the symmetry of
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the Bloch fermion pseudospin. As pointed out by Anderson in 1984, [101], fermion pseudospin,

derived from the two-fold Kramer’s degeneracy originating from TI symmetry (where T is time-

reversal symmetry), plays a fundamental role in superconductivity. Here we find that when the

band degeneracy is lifted solely by SOC, this pseudospin has different symmetry properties than

usual spin-1/2 pseudospin.

Specifically, we identify electronic band degeneracies that are split solely by SOC in materials

with both inversion, I and time-reversal T , symmetries. This requires bands that are at least

four-fold degenerate when SOC is ignored. Such band degeneracies are not generic and require

symmetries beyond the usual two-fold pseudospin (or Kramers) degeneracy that arises from TI

symmetry. As discussed in a variety of contexts [102–105], such degeneracies can arise in non-

symmorphic crystal structures. Here we focus on the largest momentum region in the 3D Brillouin

zone that allows such degeneracies. This occurs on 2D momentum planes, which are often called

nodal planes. More specifically, this is the largest region in momentum space for which the required

four-fold electronic degeneracies can appear when SOC is ignored. Here we provide a complete

list of space groups for which this occurs and provide symmetry based kp theories for all time-

reversal-invariant momenta (TRIM) on these nodal planes. As discussed later, many relevant

superconductors exhibit Fermi surfaces near these TRIM. We find that the SOC-split electronic

states on these nodal planes generically exhibit a pseudospin that has a different symmetry than that

of usual spin-1/2 fermions (this generalizes a result we found for space group P4/nmm in the context

of locally non-centrosymmetric superconductor CeRh2As2 [97]). Here we name this anomalous

pseudospin and examine the consequences of this anomalous pseudospin on superconductivity. We

find that this anomalous pseudospin plays a central role on the superconducting magnetic response

and on the properties of spin-triplet superconductivity. Our results provide further insight on

earlier nodal and topological classifications of superconductivity in non-symmorphic materials [106–

115]. Furthermore, all the non-symmorphic crystal structures we examine have Wyckoff positions

with site symmetries that contain inversion symmetry. So, although unusual magnetic response is

typically associated with locally noncentrosymmetric superconductors, our theory establishes that

the local I breaking is not an essential ingredient, and our classification may guide the experimental
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search for new materials where local I breaking is not a feature.

In this section we begin by defining anomalous pseudospin on nodal momenta planes, we then

characterize all possible symmetry based kp theories near TRIM points on these nodal planes. Using

these kp theories, we analyze the magnetic response and nodal excitations of superconducting states

formed from anomalous pseudospin. We apply this analysis to a series of materials that exhibit

Fermi surfaces that lie on or near these nodal planes. More specifically we reveal how anomalous

pseudospin: explains critical fields that far exceed the Pauli field in BiS2-based materials [116] and

the observed magnetic response 3D Fe-based superconductors [117]; identifies which space groups

and TRIM are ideal to find a field induced even parity to odd parity transition akin to that observed

in CeRh2As2 [95]; provides insight into the gap symmetry of UPt3 [118]; and shines new light on

re-entrant superconductivity in UCoGe [75].

1.4.2 Anomalous pseudospin: symmetry origin

Our aim is to exploit symmetry to find nodal plane band degeneracies that are lifted solely by SOC.

As discussed below, once these band degeneracies are lifted, a two-fold pseudospin degeneracy will

remain. We find that generically, the pseudospin that results from this procedure does not share

the same symmetry properties as usual spin 1/2 and hence we name this anomalous pseudospin.

Pseudospin describes the two-fold Kramers degeneracy that arises at each momentum point k

when the product of time-reversal T and inversion I symmetries, TI, is present. The product TI

is anti-unitary and for fermions satisfies (TI)2 = −1, ensuring at least a two-fold degeneracy. It

is often the case that this pseudospin behaves as spin-1/2 under rotations [119]. However, when

symmetries beyond TI are present, it is possible that this is not the case. One example of this is

the angular momentum jz = ±3/2 electronic states that arise when cubic symmetry or a three-

fold rotation axis is present [90, 120, 121]. In the latter case, this gives rise to so-called type-II

Ising superconductivity in 2D materials [121, 122] where large in-plane critical fields appear when

the Fermi surface is sufficiently close to momentum points with this three-fold rotation symmetry.

A systematic analysis of the appearance of anomalous pseudospin for fermions near the Γ point

has been carried out [123–125]. In our case, the anomalous pseudospin appears on momentum
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planes in the Brillouin zone, allowing a larger phase space for the physical properties of anomalous

pseudospin to manifest.

To ensure the requisite band degeneracy on a nodal plane, consider the symmetry elements that

keep a momentum point on the plane invariant (here taken to be normal to the n̂ axis). These are

{E, M̃n̂, T I, T C̃2,n̂}, where M̃n̂ is a translation mirror symmetry and C̃2,n̂ is a translation two-fold

rotation symmetry. Their point group rotation and translation component can be denoted using

Seitz notation, for example M̃n̂ = {Mn̂|t1, t2, t3} where Mn̂ is a point group mirror symmetry along

n̂ and (t1, t2, t3) is a fractional translation vector (here the t3 is the translation component parallel

to n̂). Since we are searching for a degeneracy that appears without SOC, we consider orbital or

sublattice degrees of freedom for which (TI)2 = 1. The only remaining symmetry that can enforce

a two-fold degeneracy is TC̃2,n̂, since this is anti-unitary, it must satisfy (TC̃2,n̂)2 = −1 to do so.

Since T commutes with rotations, this implies C̃2
2,n̂ = −1. When operating on orbital or sublattice

degrees of freedom, C̃2
2,n̂ is typically 1, suggesting it is not possible to have the required degeneracy.

However, in non-symmorphic groups, C̃2,n̂ can be a screw axis, for which it is possible to satisfy

C̃2
2,n̂ = −1. In particular, using Seitz notation C̃2,n̂ = {C2n̂|t1, t2, 1/2} (here t1 and t2 correspond to

either a half in-plane translation vector or to no translation) we have (C̃2,n̂)2 = {E|0, 0, 1}. When

operating on a state carrying momentum k, (C̃2,n̂)2 is represented by eik·n̂. Hence if the nodal

plane sits at momentum k · n̂ = π, then C̃2
2,n̂ = −1 and a two-fold orbital or sublattice degeneracy

is ensured. When spin-degeneracy is also included, these states are then four-fold degenerate when

SOC is ignored.

When SOC is included, it is possible to show that the TI pseudospin partners have the same Mn̂

mirror eigenvalue (this result is generalization of that given in Ref. [97] where t1 = 0 and t2 = 0 was

used). That is, labeling the two Kramers degenerate states as |+⟩ and TI|+⟩, both belong to the

same eigenstate of M̃n̂. As a consequence, all Pauli matrices σ̃i made from the two states |+⟩ TI|+⟩

must all be invariant under M̃n̂. It is this feature that differs from usual spin-1/2. Of the three

Pauli matrices σi, constructed from usual spin-1/2 states, two will be odd under M̃n̂ and one will be

even under M̃n̂. It is this symmetry distinction between the anomalous pseudospin operators (σ̃i)

and usual spin 1/2 operators (σi) that underlie the unusual superconducting properties discussed
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below.

The above argument can also be applied to nodal lines generated by the symmetry elements

{E, C̃2,n̂, T I, TM̃n̂} with (TM̃n̂)2 = −1 when applied to orbital or sublattice degrees of freedom. In

this case, repeating the same arguments above show that SOC will also split the band degeneracy

and lead to anomalous pseudospin. Here, due to the larger available momentum phase space, we

restrict our analysis and classification to nodal planes and leave an analysis of nodal lines to a later

work. For all space groups that host nodal planes, we develop symmetry-based kp theories valid

near all TRIM on these nodal planes. We emphasize these TRIM since Cooper pairs are formed

by pairing states at momenta k and −k with the momentum origin given by a TRIM. We then

consider Fermi surfaces near these TRIM and discuss the resultant superconducting properties.

Figure 1 illustrates our approach. Here, in green, we show the nodal planes and lines that exhibit

anomalous pseudospin. Here we examine the properties of superconductivity for a Fermi surface

near the Z point, which is a TRIM on the nodal plane. The properties of superconductivity for

a Fermi surface near the Γ point, for which pseudospin is typically not anomalous, are described

in earlier review articles [126, 127]. We note that many superconducting materials, including the

examples discussed in this section, exhibit Fermi surfaces near nodal planes.

1.4.3 Nodal plane space groups and single-particle kp Hamiltonians

Here we identify all space groups that allow anomalous pseudospin on nodal planes and construct

the corresponding symmetry-based kp-like Hamiltonians for all TRIM on these planes. A key

new result is that these kp theories are of two types. Type 1 kp theories have Hamiltonians of

the same form generically examined in locally non-centrosymmetric superconductors and explicitly

contain SOC terms that are odd in momentum k. Type 2 kp theories contain SOC terms that

are even in momentum k, and have not appeared in the context of locally non-centrosymmetric

superconductors.
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Figure 1-8: Example from space group 14 where the green shading reveals the planes and lines in mo-
mentum space on which anomalous pseudospin exists. A Fermi surface located near the momentum plane
kz = π (as depicted by the dark Fermi surface near the Z point) will have its superconducting properties
governed by pairing of anomalous pseudospin. However, Fermi surfaces far from these planes (such as that
depicted near the Γ point) will exhibit more usual superconducting properties.

Space groups with nodal planes

To identify these nodal planes, all space groups containing inversion symmetry I = {I|0, 0, 0} and

the screw axis C̃2,n̂ = {C2n̂|t1, t2, 1/2} (where t1 = 0, 1/2 and t2 = 0, 1/2) were identified. For these

space groups, the nodal planes lie on the Brillouin zone boundary. Table 1.3 lists the resultant space

groups, point groups, nodal planes, and types of kp theories allowed for these space groups. As

discussed in the previous section, the degeneracies of these nodal planes are generically lifted by

SOC, yielding anomalous pseudospin.

Symmetry based kp theories near TRIM

Understanding the consequences of anomalous pseudospin on superconductivity requires a theory

for the normal state. Cooper pairs rely on the degeneracy between states of momenta k and −k

and this degeneracy is ensured by both T and I symmetries. For this reason, we develop symmetry-

based kp theories expanded around TRIM. To derive these kp-like Hamiltonians, we have used the

real representations for the TRIM given in the Bilbao Crystallographic server [128–130]. For these
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Table 1.3: Space groups with nodal planes
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TRIM, we initially consider space group irreducible representations that do not include spin, which,

for simplicity, we name orbital representations. These representations are either 2-fold or 4-fold

degenerate (when spin is added, these become 4-fold and 8-fold degenerate respectively). The full

kp-like Hamiltonians are only listed for the 2-fold degenerate representations. We present a partial

classification of the 4-fold degenerate orbital representations near the end of this section.

In constructing the kp theories for the 2-fold orbital degenerate TRIM points, we choose τi to

be Pauli matrices that encode the orbital degrees of freedom, and σi to be spin Pauli matrices.

We take T = τ0(iσy)K where K is the complex conjugation operator, hence the τ2 operator is

odd under time-reversal. For a given doubly degenerate space group representation on a TRIM,

constructing its direct product leads to four irreducible point group representations. These four

representations each correspond to an orbital operator τi, and this partially dictates the momentum

dependencies of symmetry allowed terms in the kp Hamiltonian. We present our results for the kp

Hamiltonians in Table 1.4. The first row of each box gives the type of the kp theory class and the

point group representations of the orbital operators that are given by Pauli matrices τi. In this

decomposition, the square brackets correspond to the antisymmetric τ2 operator and remaining

terms correspond to τ0, τ1, and τ3. The second row of a box gives the kp Hamiltonian, and the

last part of a box lists the space groups and TRIM points representations that belong to the kp

Hamiltonian class. We have tabulated the kp Hamiltonians for 122 TRIM points and we find that

only 13 different kp theories appear. These are of two types, which we call type 1 and type 2. Type 1

kp theories have degenerate even and odd parity orbital basis functions. These Hamiltonians have a

structure similar to those examined in the context of locally non-centrosymmetric superconductors

[93]. However, we note that local I breaking on crystal sites is not required to generate Type

1 kp theories. These Hamiltonians apply to all Wyckoff position site symmetries and the non-

symmorphic groups we consider all include site symmetries that include I. For site symmetries that

include I, the degenerate even and odd parity basis functions for type 1 Hamiltonians originate from

the combination of non-symmorphic symmetries and Bloch momenta at the zone boundary. Type

2 kp theories have two degenerate orbital basis functions with the same parity symmetry. These

Hamiltonian have a structure unlike that seen in locally noncentrosymmetric superconductors, yet
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as we show below, they exhibit a similar magnetic response.

The generic form of these kp theories are

H(k) = ε0,k + t1,kτ1 + tα,kτα + τβ(λk · σ) = ε0,k +Hδ(k) , (1.7)

(I, τα, τβ) =


(τ1, τ2, τ3) for type 1 ,

(τ0, τ3, τ2) for type 2 ,

(1.8)

where Hδ(k) = H(k) − ε0,k and α and β are type indices will be used the remaining context.

For parity mixed, type 1, kp theories, the degeneracy at TRIM points is not broken by SOC.

This is because the non-symmorphic symmetries combined with topological arguments imply these

TRIM must have an odd number of Dirac lines passing through them [131]. These Dirac lines

lie in the nodal plane. Elsewhere in the nodal plane, SOC lifts the 4-fold degeneracy. We will

discuss some consequences of these Dirac lines later. The non trivial inversion symmetry for type

1, I = τ1, implies the parity of the momentum functions that ε0,k = ε0,−k, t1,k = t1,−k, t2,k =

−t2,−k, and λk = −λ−k. This form of Hamiltonian has often been used to understand locally

non-centrosymmetric superconductors [90] and hidden spin polarization in inversion symmetric

materials [99]. In these contexts, the orbital degrees of freedom reside on different sectors that are

related by inversion symmetry and there is typically no symmetry requirement that ensures the

SOC dominates. The τ3 matrix is odd under inversion symmetry, allowing the odd-parity SOC

λk to appear. Many superconductors of interest have Fermi surfaces near type 1 TRIM points,

examples include: Fe-based superconductors, which often have electron pockets near the M point

in space group 129 (classes Dtype1
4h,1 or Dtype1

4h,3 ) [117], in this context the high Tc superconductor

monolayer FeSe is of interest, since it only has Fermi surfaces near the M point [132]; CeRh2As2

which exhibits a field induced transition from an even parity to an odd-parity superconducting state

[95, 96] and has Fermi surfaces near the M point in space group 129 (classes Dtype1
4h,1 or Dtype1

4h,3 );

BiS2-based superconductors [116] which has superconductivity that survives to very high fields and

which has electron pockets near the X point in space group 129 (class Dtype1
2h,3 ); the odd-parity heavy

fermion superconductor UPt3 [118] which has a pancake-like Fermi surface at kz = π/c in space
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group 193 (class Dtype1
6h ); and the ferromagnetic superconductor UCoGe [75] with space group 62

and a Fermi surface near the T point (class Dtype1
2h,1 ).

For type 2 kp theories, the 4-fold degeneracy is sometimes already split into 2 at the TRIM point

when SOC is added, unlike what occurs for type 1 kp theories. This happens in classes Ctype2
2h,2 and

Dtype2
2h,1 . For the other type 2 classes, this degeneracy at the TRIM point is not split. In these cases,

an even number of Dirac lines pass through the TRIM point. These Dirac lines lie in the nodal

plane. Since I = τ0 for type 2, all terms in the Hamiltonian are even parity, that is, unchanged

under k→ −k. One example where type 2 kp theories apply is in strain induced superconductivity

in RuO2[133, 134]. Without strain, RuO2 is thought to be a non-superconducting altermagnet

[135]. When strain is applied, bands near the X-M -R-A Brillouin zone face are most strongly

affected [133]. RuO2 has space group 136 with the R and M points belonging to classes Dtype2
2h,4 ,

Dtype2
4h,2 , or Dtype2

4h,4 . Later we discuss the ferromagnetic superconductor UCoGe with space group 62

[75]. In this example, we highlight the role of 8-fold degenerate points which exhibit some properties

similar to that found for type 2 TRIM points.

Type 1 and type 2 kp Hamiltonians share some common features that play an important role in

understanding the properties of the superconducting states. The first is that the non-symmorphic

symmetry dictates that these Hamiltonians are best described as two-band systems with eigenen-

ergies given by

E±(k) = ε0,k ±
√
t21,k + t2α,k + |λk|2 = ε0,k ± εδ,k , (1.9)

where α is the type index in Eq. 1.8. The second feature is that both simplify dramatically on

the nodal plane, where only the coefficient functions ε0,k and λk · n̂ are non-vanishing (that is

t1,k = t2,k = t3,k = |λk × n̂| = 0). This property is a direct consequence of the anomalous

pseudopspin. The symmetry arguments discussed in the previous section enforce this condition.

In particular, for momenta on the nodal plane, the mirror operator through the nodal plane, UM ,

takes the from UM = −iτβ(σ · n̂). The requirement that these Hamiltonians obey time-reversal

and inversion symmetries and commute with UM leads to this simple form of the kp theories in

the nodal plane. The final important property of these kp Hamiltonians is that the SOC terms are

often the leading order terms in the kp expansions, that is, they appear with the lowest powers
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Table 1.4: Classification of kp theories. Subscript numbering of momenta represents different real repre-
sentations on the same momentum point, and a permutation of the axes is denoted by the cyclic notation.
For example, 128(X1,2(xyz)) represents that there are two representations X1 and X2 on X = (0, 1/2, 0)

space group 128, and their local theory is obtained by Dtype1
2h,3 Hamiltonian under x→ y → z → x relabelling.

The representation convention is following Bilbao Crystallographic servera[128–130] except for the L point
in 193 and 194.

Class Symmetry

Hamiltonian

Space Group Momenta

Ctype1
2h,1 Ag +Bg + [Au] +Bu

H = ϵ0 + (t1xkx + t1zkz)kyτ1 + t2kyτ2

+ τ3[λxkyσx + (λyxkx + λyzkz)σy + λzkyσz ]

11(C1, D1, E1, Z1), 14(C1, Z1)

63(R1(yz)), 176(L1(yz))

Ctype2
2h,2 Ag + 2Bg + [Ag ]

H = ϵ0 + (t1xkx + t1zkz)kyτ1 + (t3xkx + t3zkz)kyτ3

+τ2[(λxxkx + λxzkz)kyσx + λyσy + (λzxkx + λzzkz)kyσz ]

14(D±
1 D±

2 , E±
1 E±

2 ), 64(R±
1 R±

2 (yz))

Dtype1
2h,1 Ag +B1g + [Au] +B1u

H = ϵ0 + t1kxkyτ1 + t2kxkykzτ2

+ τ3[λxkyσx + λykxσy + λzkxkykzσz ]

56(S1,2), 58(R1,2)

59(S1,2, R1,2), 62(T1,2(xz))

Dtype2
2h,2 Ag + 2B1g + [Ag ]

H = ϵ0 + t1kxkyτ1 + t3kxkyτ3

+ τ2[λxkykzσx + λykxkzσy + λzkxkyσz ]

55(S±
1 S±

2 , S±
3 S±

4 , R±
1 R±

2 , R±
3 R±

4 ), 56(R±
1 R±

2 , R±
3 R±

4 )

58(S±
1 S±

2 , S±
3 S±

4 ), 62(U±
1 U±

4 , U±
2 U±

3 )

Dtype1
2h,3 Ag +B2g + [B3u] +B1u

H = ϵ0 + t1kxkzτ1 + t2kxτ2

+ τ3[λxkyσx + λykxσy + λzkxkykzσz ]

51(X1,2, S1,2, U1,2, R1,2), 52(R1,2(xy), Y1,2(xyz))

53(Z1,2(zyx), T1,2(zyx)), 54(X1,2, S1,2)

55(U1,2(yz), X1,2(yz), Y1,2(xyz), T1,2(xyz))

56(X1,2, Y1,2(xy))

57(S1,2(xyz), Y1,2(xyz), Z1,2(zyx), U1,2(zyx))

58(X1,2(yz), Y1,2(xyz))

59(X1,2, U1,2, T1,2(xy), Y1,2(xy)), 60(X1,2, Z1,2(zyx))

61(X1,2, Y1,2(xyz), Z1,2(zyx))

62(X1,2, Z1,2(xz), Y1,2(xyz))

63(T1,2(zyx), Z1,2(zyx)), 64(T1,2(zyx), Z1,2(zyx))

127(X1,2(xyz), R1,2(xyz)), 128(X1,2(xyz))

129(X1,2(xy), R1,2(xy)), 130(X1,2(xy))

135(X1,2(xyz), R1,2(xyz)), 136(X1,2(xyz))

137(R1,2(xy), X1,2(xy)), 138(X1,2(xy))

193(L1,2), 194(L1,2(xy))

205(X1,2(xyz))

Dtype2
2h,4 Ag +B1g +B3g + [B2g ]

H = ϵ0 + t1kxkyτ1 + t3kykzτ3

+ τ2[λxkxkyσx + λyσy + λzkykzσz ]

52(T±
1 ), 53(U±

1 (yz), R±
1 (yz))

58(T±
1 , U±

1 (xy)), 60(S±
1 (xy))

128(R±
1 ), 136(R±

1 )

Dtype1
4h,1 A1g +B2g + [A1u] +B2u

H = ϵ0 + t1kxkyτ1 + t2kxkykz(k2x − k2y)τ2

+ τ3[λx(kxσy + kyσx) + λ3kxkykzσz ]

129(M1,2, A1,2), 130(M1,2)

136(A3,4), 137(M1,2), 138(M1,2)

Dtype2
4h,2 A1g + 2B2g + [A1g ]

H = ϵ0 + t1kxkyτ1 + t3kxkyτ3

+ τ2[λx(kykzσx + kxkzσy) + λzkxky(k2x − k2y)σz ]

127(M±
1 M±

4 ,M±
2 M±

3 , A±
1 A±

4 , A±
2 A±

3 )

128(M±
1 M±

4 ,M±
2 M±

3 ), 135(M±
1 M±

4 ,M±
2 M±

3 )

136(M±
1 M±

4 ,M±
2 M±

3 ), 138(A±
1 A±

4 , A±
2 A±

3 )

Dtype1
4h,3 A1g +B2g + [B1u] +A2u

H = ϵ0 + t1kxkyτ1 + t2kxkykzτ2

+ τ3[λx(kxσy − kyσx) + λzkxkykz(k2x − k2y)σz ]

129(M3,4, A3,4), 130(M3,4)

136(A1,2), 137(M3,4), 138(M3,4)

Dtype2
4h,4 A1g +A2g +B2g + [B1g ]

H = ϵ0 + t1kxky(k2x − k2y)τ1 + t3kxkyτ3

+ τ2[λx(kykzσx + kxkzσy) + λzkxkyσz ]

127(M±
5 , A±

5 ), 128(M±
5 )

135(M±
5 ), 136(M±

5 ), 138(A±
5 )

Dtype1
4h,5 A1g +A2g + [B1u] +B2u

H = ϵ0 + t1kxky(k2x − k2y)τ1 + t2kxkykzτ2

+ τ3[λx(kxσy + kyσx) + λzkxkykzσz ]

128(A1,2), 137(A1,2)

Ctype1
6h Ag +Bg + [Au] +Bu

H = ϵ0 + (t1xkx(k2x − 3k2y) + t1yky(3k2x − k2y))kzτ1

+ t2kzτ2 + τ3[λxkz(2kxkyσx + (k2x − k2y)σy)

+ (λzxkx(k2x − 3k2y) + λzyky(3k2x − k2y))σz ]

176(A1)

Dtype1
6h A1g +B2g + [A2u] +B1u

H = ϵ0 + t1kxkz(k2x − 3k2y)τ1 + t2kzτ2

+τ3[λxkz(2kxkyσx + (k2x − k2y)σy) + λzky(3k2x − k2y)σz ]

193(A1,2), 194(A1,2(xy))

ahttps://www.cryst.ehu.es/ Representations and Applications → Point and Space Groups → - Representations
→ SG Physically irreducible representations given in a real basis
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of ki. This is the case for classes Ctype2
2h,2 , Dtype1

2h,1 , Dtype2
2h,4 , Dtype1

4h,2 , Dtype1
4h,3 , and Dtype1

4h,5 . This feature

ensures that there exists a limit in which the SOC is the dominant single-particle interaction on

the Fermi surface and hence the unusual magnetic superconducting response we later discuss must

exist.

1.4.4 Superconducting states

In the previous section, complete symmetry-dictated kp theories were found for anomalous pseu-

dospin. These theories are complete in the sense that they include all operators of the form τiσj

allowed by symmetry. For superconductivity, the orbital degree of freedom enlarges the corre-

sponding space of possible gap functions compared to the usual even-parity (pseudospin-singlet)

∆̃(k) = ψk(iσy) and odd-parity (pseudospin-triplet) ∆̃(k) = dk · σ(iσy) states that appear in

single-band theories [126, 127]. Nevertheless, it is possible to understand some general properties

of the allowed pairing states.

To deduce the symmetry properties of possible pairing channels in this larger space of electronic

states, it is useful to define gap function differently than usual [136, 137]. In particular, we take

H =
∑
i,j,k

Hij(k)c†k,ick,j +
1

2

∑
i,j,k

[∆ij(k)c†k,ic̃
†
k,j + h.c.]. (1.10)

where i, j are combined spin and orbital indices, h.c. means Hermitian conjugate, ck(c†k) is the

Fermionic spin-half particle creation(annihilation) operator, and c̃k(c̃†k) is the time reversed partner

of ck(c†k). In the usual formulation c̃†k,j is replaced c†−k,j which leads to a different gap function

∆̃ij and to difficulties in interpreting the symmetry transformation properties of this gap function

[136, 137]. For a single-band, these new gap functions become ∆(k) = ψkσ0 for even-parity and

∆(k) = dk ·σ for odd-parity. The key use of Eq. 1.10 is that the ∆ij(k) transform under rotations in

the same way as the Hij(k), allowing the symmetry properties of the gap functions to be deduced.

The disadvantage of this approach is that the antisymmetry of the gap functions that follow from

the Pauli exclusion principle is not as readily apparent compared to the usual formulation [136, 137].

Enforcing the Pauli exclusion principle leads to eight types of gap functions that generalize
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the pseudospin-singlet and pseudospin-triplet of single-band gap functions. Six of these are simple

generalizations of the single-band gap functions: τiψk and τi(dk · σ) for i = 0, 1, and 3 where

ψ−k = ψk and d−k = −dk. Two are new gap functions: τ2(ψk · σ) and τ2dk with ψ−k = ψk

and d−k = −dk. It is possible to determine whether these gap functions are either even or odd-

parity and this depends upon whether the kp Hamiltonian is type 1 or type 2. These gap functions

and their parity symmetry are listed in Table 1.5. Without further consideration of additional

symmetries, the gap function will in general be a linear combination of all the even (or odd) parity

gap functions.

To gain an understanding of the relative importance of these pairing states it is useful to project

these gaps onto the band basis. Such a projection is meaningful if the energy separation between

the two bands is much larger than the gap magnitude. For many of the kp Hamiltonians, due to

the presence of Dirac lines, there will exist regions in momentum space for which this condition is

not satisfied. However, these regions represent a small portion of the Fermi surface when the SOC

energies are much larger than the gap energies, so that an examination of the projected gap is still

qualitatively useful in this limit. Provided the superconducting state does not break time-reversal

symmetry, the projected gap magnitude on band a can be found through [138]

∆̃2
± =

Tr[|{Hδ,∆}|2P±]

Tr[|Hδ|2]
. (1.11)

where P±(k) = 1
2(1 ± Hδ(k)/εδ,k) which is a projection operator onto ± band by the energy

dispersion Eq. 1.9. This projected gap magnitude is related to superconducting fitness [82, 83]:

if it vanishes, the corresponding gap function is called unfit and will have a Tc = 0 in the weak

coupling limit. Table 1.5 gives the projected gap functions for the pairing states discussed above.

The projection generally reduces the size of the gap, with the exception of the usual even-parity

τ0ψk state (interestingly, the odd-parity τ0(dk · σ) state has a gap that is generically reduced).

This reduction strongly suppresses the Tc of the pairings state, where it enters exponentially in the

weak-coupling limit. We later examine the different kp classes to identify fit gap functions since

the Tc of these states will be the largest, given a fixed attractive interaction strength.

On the nodal plane, the projected gap functions, shown in Table 1.5, simplify considerably since
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only ε0 and λk · n̂ are non-zero. For both type 1 and type 2 Hamiltonians, this leads to two gap

functions that are fully fit, that is, not reduced by the projection. For type 1 Hamiltonians, these

fully fit states are τ0ψk and τ3ψk. The state τ0ψk is even-parity and the state τ3ψk is odd-parity

and, as discussed later, these two states play an important role in the appearance of a field-induced

transition from even to odd parity superconductivity as observed in CeRh2As2. For gap functions

described by vectors, for example dk, the projected gaps on the nodal plane are of the form |dk ·n̂|2

or |dk × n̂|2. This is qualitatively different than the usual odd-parity single-band gap, where the

gap magnitude is |dk|2. The latter requires that all three components of dk must vanish to have

nodes. For the projected gaps on the nodal planes, this requirement is less stringent: only one

or two components of dk need to vanish to have nodes. This is closely related to the violation of

Blount’s theorem on the nodal planes.

Gap projection and the violation of Blount’s theorem

Blount’s theorem states that time-reversal symmetric odd-parity superconductors cannot have line

nodes when SOC is present [136]. Key to Blount’s theorem is the assumption that pseudsopsin

shares the same symmetry properties as usual spin [136]. The violation of Blount’s theorem in

non-symmorphic space groups has been demonstrated through an examination of Cooper pair

representations formed from antisymmetric direct products of the relevant fermions states.[106–

108, 110, 113, 114, 139]. Here we use an alternate approach that exploits the completeness of

the kp Hamiltonian space and the inclusion of all gap functions in this space that are allowed by

symmetry to directly compute the general form of the superconducting excitation spectrum. This

approach closely links the anomalous pseudopsin to the violation of Blount’s theorem.

The existence of anomalous pseudospin requires the presence of the translation mirror symmetry

M̃n̂. Consequently, the gap function can be classified as even or odd under this symmetry. Momenta

on the nodal plane are invariant under M̃n̂. Hence, for these momenta, U †
M∆(k)UM = ±∆(k) where

the + (−) holds for a mirror-even (mirror-odd) gap function. For our basis choice UM = −iτβ(σ ·n̂).

Importantly, for both types the kp theories on the nodal plane are given by H(k) = ε0,k + iUM (λk ·

n̂). This defines the two bands E±(k) = ε0,k ± |λk · n̂|. Written in the band basis, we can divide
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Table 1.5: Classification of allowed pairing states for the kp theories. For both type I and II TRIMs we
give the symmetry under inversion, the gap projection onto the Fermi surface, and the gap on the nodal
plane. The momentum subscript indices k of the coefficient functions are omitted here.

Type 1

Gap function Inversion Gap projection Gap on nodal plane

τ0ψ + |ψ|2 |ψ|2

τ0(d · σ) − (t21 + t22)|d|2 + |d · λ|2
t21 + t22 + |λ|2 |d · n̂|2

τ3ψ − |λ|2|ψ|2
t21 + t22 + |λ|2 |ψ|2

τ3(d · σ) +
|d · λ|2

t21 + t22 + |λ|2 |d · n̂|2

τ1ψ +
t21|ψ|2

t21 + t22 + |λ|2 0

τ1(d · σ) − t21|d|2 + |d× λ|2
t21 + t22 + |λ|2 |d× n̂|2

τ2d +
t22|d|2

t21 + t22 + |λ|2 0

τ2(ψ · σ) − t22|ψ|2 + |ψ × λ|2
t21 + t22 + |λ|2 |ψ × n̂|2

Type 2

Gap function Inversion Gap projection Gap on nodal plane

τ0ψ + |ψ|2 |ψ|2

τ0(d · σ) − (t21 + t22)|d|2 + |d · λ|2
t21 + t22 + |λ|2 |d · n̂|2

τ3ψ +
t23|ψ|2

t21 + t23 + |λ|2 0

τ3(d · σ) − t23|d|2 + |d× λ|2
t21 + t23 + |λ|2 |d× n̂|2

τ1ψ +
t21|ψ|2

t21 + t23 + |λ|2 0

τ1(d · σ) − t21|d|2 + |d× λ|2
t21 + t22 + |λ|2 |d× n̂|2

τ2d − |λ|2|d|2
t21 + t23 + |λ|2 |d|2

τ2(ψ · σ) +
|ψ · λ|2

t21 + t23 + |λ|2 |ψ · n̂|2
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the pairing potential into intraband and interband components. On the nodal plane the intraband

gap functions are explicitly given by

P±∆P± =
1

4
(−UM ± i sgn(λk · n̂)){UM ,∆} , (1.12)

while the interband components are

P±∆P∓ =
1

4
(−UM ± i sgn(λk · n̂))[UM ,∆] (1.13)

We observe that since a mirror-even gap function satisfies [UM ,∆] = 0, the interband gap compo-

nents must vanish on the nodal plane, i.e. the pairing only involves particles from the same band.

The general form of the BdG energy dispersion relation is then

±′
√

(ε0,k ± |λk · n̂|)2 + |∆±±|2 , (1.14)

where intraband gap magnitude |∆±±|2 = 1
4Tr[|P±∆P±|2] and ±′ is the particle-hole symmetry

index which is independent of band index ±. Since there is no requirement that |∆±±|2 = 0, line

nodes are therefore not expected on the nodal plane, but rather we should generically find two-gap

behavior with different size gaps on the two bands. In contrast, for the mirror-odd gap functions

we have {UM ,∆} = 0, so there is no intraband pairing on the nodal plane. The general form of

the eigenenergies for this interband pairing state is then

±′
(
±|λk · n̂| +

√
ϵ20,k + |∆±∓|2

)
, (1.15)

where intraband gap magnitude |∆±∓|2 = 1
4Tr[|P±∆P∓|2]. The gap has line nodes provided |λk ·

n̂|2 > |∆±∓|2. This result depends only on the mirror-odd symmetry of the gap, and not on the

parity symmetry. Since gaps that are odd under both mirror and parity symmetry are allowed, this

result shows that odd-parity gaps can have line nodes, thus demonstrating a violation of Blount’s

theorem.

The origin of these nodes due to purely interband pairing implies that the nodes are shifted off
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the Fermi surface [140]. If the spin-orbit coupling is too weak, i.e. |λk · n̂|2 < |∆±∓|2, the nodes

can annihilate with each other and are absent. This possibility has been discussed in the context of

even parity superconductivity in monolayer FeSe [141] and odd-parity superconductivity in UPt3

[139]. The analysis above is valid even when Dirac lines pass through the TRIM points, as is the

case in most of the derived kp theories. On the Dirac lines, the condition |λk · n̂|2 < |∆±∓|2 must

occur and the spectrum is therefore gapped.

Unconventional pairing states from electron-phonon interactions

To highlight how the pairing of anomalous pseudospin can differ from the single-band supercon-

ductivity, it is instructive to consider an attractive U Hubbard model. Such a model is often used

to capture the physics of electron-phonon driven s-wave superconductivity in single-band models.

Here we show that this coupling also allows unconventional pairings states. In particular, odd-parity

states in type 1 kp Hamiltonians. Such a state has recently likely been observed in CeRh2As2.

Here we consider a local Hubbard-U attraction on each site of the lattice and do not consider any

longer range Coulomb interactions. These sites are defined by their Wyckoff positions. Importantly,

for the non-symmorphic groups we have considered here, each Wyckoff position has a multiplicity

greater than one. Here we limit our discussion to Wyckoff positions with multiplicity two, which

implies that there are two inequivalent atoms per unit cell. An attractive U on these sites stabilizes

a local spin-singlet Cooper pair. Since there are two sites per unit cell this implies that there are

two stable superconducting degrees of freedom per unit cell. These two superconducting states

can be constructed by setting the phase of Cooper pair wavefunction on each site to be the same

or opposite. Since only local interactions are included, both these two states will have the same

pairing interaction. The in-phase state is a usual s-wave τ0ψk state. Identifying the other, out

of phase, superconducting state requires an understanding of the relationship between the basis

states for the kp Hamiltonians and orbitals located at the Wyckoff positions. In general, this will

depend on the specific orbitals included in the theory. However, the condition that the resultant

pairing states must be spin-singlet and local in space (hence momentum independent) allows only

two possibilities for this additional pairing state: it is either a τ1ψk or a τ3ψk pairing state. Of
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these states, for two reasons, the τ3ψk state for type 1 Hamiltonains is of particular interest.

The first reason is that this state is odd-parity and therefore offers a route towards topological

superconductivity [142, 143]. The second reason is that of the four possible states (τ1ψk or τ3ψk

for type 1 or type 2 Hamiltonians), this is the only state that is fully fit on the nodal plane (as

can be seen in Table 1.5, the other three states have zero gap projection on the nodal plane).

This implies that for type 1 Hamiltonians, the odd-parity τ3ψk and the s-wave τ0ψk states can

have comparable Tc since they both have the same pairing interaction. In practice, the τ3ψk state

will have a lower Tc than the τ0ψk state since it will not be fully fit away from the nodal plane.

Table 1.5 reveals that this projection is given by the ratio |λk|2/(t21,k + t22,k + |λk|2). For classes

Dtype1
2h,1 , D

type1
4h,1 , D

type1
4h,3 , and Dtype1

4h,5 , this ratio is nearly one since the SOC terms are the largest in

the kp Hamiltonian. This suggests that these classes offer a promising route toward stabilizing

odd-parity superconductivity. We stress that because |λk|2/(t21,k + t22,k + |λk|2) is slightly less than

one, the Tc of the odd-parity τ3ψk will be comparable but less than that of the usual s-wave state.

However, as we discuss later, the τ3ψk state can be stabilized over the usual s-wave τ0ψk state

in an applied field. The identification of classes Dtype1
2h,1 , D

type1
4h,1 , D

type1
4h,3 , and Dtype1

4h,5 that maximize

the Tc of odd-parity pairing from electron-phonon interactions allows the earlier theory for a field

induced even to odd parity transition CeRh2As2 [97] (with space group 129) to be generalized to

many other space groups.

While the above odd-parity state is only relevant for type 1 Hamiltonians, for type 2 Hamil-

tonians, the usual s-wave interaction can develop a novel structure. In particular, for the classes

Ctype2
2h,2 and Dtype2

2h,4 , Table 1.4 shows that the state τ2σy is maximally fit and has s-wave symmetry.

Consequently, this state will admix with the usual s-wave τ0ψ state. The theory describing this

admixture formally resembles that of a Hund pairing mechanism proposed to explain the appear-

ance of nodes in the likely s-wave superconductor KFe2As2 [144]. The results of this analysis and a

follow up analysis [145] allow some of the properties of this state to be understood. An important

conclusion of these works is that an s-wave superconducting state can emerge even when pairing for

the usual s-wave state is repulsive (that is for the Hubbard U > 0). This holds if two conditions are

met: the effective interaction for the τ2σy state is attractive (to first approximation, this effective
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interaction does not depend upon U [144, 145]) and the two bands that emerge in the kp theory

both cross the chemical potential. This s-wave pairing state naturally leads to nodes.

1.4.5 Role of Magnetic Fields

The role of anomalous pseudopsin is perhaps most unusual in response to magnetic fields. In

many superconductors, there has been a push to drive up the magnetic field at which these are

operational. Ising superconductors are one class of materials for which this has been successful, the

in-plane critical field far surpasses the Pauli field, opening the door to applications [146]. Another

relevant example is the field induced transition from an even parity to an odd-parity state observed

in CeRh2As2 [95, 96].

Recently, a powerful method to examine the response of superconductors to time-reversal

symmetry-breaking fields has been developed by the projection onto the band-basis[138]. The form

of the kp theories we have developed allows for the direct application of this projection method. The

response of superconductivity to time-reversal symmetry- breaking is described by a time-reversal

symmetry-breaking interaction Hh(k). A common form of TRSB Hamiltonian, and the one we

emphasize here, is the Zeeman field interaction term, which is represented by

Hh(k) = τ0(h · σ) , (1.16)

where h is a magnetic field parameter in the system. We note that our qualitative results apply

to a broader range of TRSB Hamiltonians. In particular, this is true if the TRSB field shares the

same symmetry properties as a Zeeman field (for example if Hh(k) describes the coupling between

orbital angular momentum and an applied field).

The theory introduces two parameters that quantify the response of superconductivity to time-

reversal symmetry-breaking. The first parameter is an effective g-factor given by

g̃2±,k,h =
2Tr[|{Hδ, Hh}|2P±]

Tr[|Hδ|2]Tr[|Hh|2]
. (1.17)
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The second parameter is the field-fitness, given by

F̃±,k,h =
Tr[|{{Hδ, ∆̃}, {Hδ, Hh}}|2P±]

2Tr[|{Hδ, Hh}|2P±]Tr[|{Hδ, ∆̃}|2P±]
. (1.18)

This field-fitness function ranges in value from zero to one. When the field-fitness is zero, the

superconducting state is not suppressed by the time-reversal symmetry breaking perturbation.

With these two parameters, the response of superconductivity to applied fields and the temperature

dependence of magnetic susceptibility in the superconducting state can be determined. With the

choice of the time-reversal symmetry-breaking field as the Zeeman field, Eq. 1.16, one finds

g̃2±,k,h =
t21,k + t2α,k + (λk · ĥ)2

t21,k + t2α,k + λ2
k

(1.19)

where α is a type index that is 2 for type 1 and 3 for type 2. This agrees with results in [147]

derived for Hamiltonians that resemble type 1 Hamiltonians. We note that the band index ± and

the magnitude of field h in the field-fitness and the g-factor do not change the outcome, thus they

will be omitted in the subsequent sections and they will be denoted by F̃ 2
k,ĥ

and g̃2
k,ĥ

.

Even parity superconductors

It can be shown that the field-fitness parameter in Eq. 1.18 is 1 for all even parity states. Con-

sequently, the magnetic response is governed solely by the generalized g-factor given in Eq. 1.19.

For momenta on the nodal plane, where t1,k = t2,k = t3,k = λk × n̂ = 0, the g-factor vanishes for

magnetic fields orthogonal to n̂. This is a direct consequence of the anomalous pseudospin, since

the symmetries of the Pauli matrices formed from anomalous pseudospin do not allow any coupling

to a Zeeman field perpendicular to n̂. An immediate consequence is that superconductivity survives

to much stronger fields than expected for these field orientations. However, momenta that do not

sit on the nodal plane also contribute to the superconducting state and their contribution needs

to be included as well. To quantify this, we solve for the Pauli limiting field within weak coupling
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Figure 1-9: DFT bands of BiS2 near the X point (a) without and (b) with the SOC. The bands highlighted
in the box are our focus.

theory at zero temperature. For an isotropic s-wave superconductor, we find

ln
hP,ĥ
h0

= −⟨ln |g̃k,ĥ|⟩k (1.20)

for field along direction ĥ, where h0 is the usual Pauli limiting field (found when the SOC is

ignored), and ⟨·⟩k means an average over the Fermi surface weighted by the density of states.

Below, we apply this formula to BiS2-based superconductors. We note that the spin susceptibility

in the superconducting state can also be expressed using g̃k,ĥ as well [138], and this shows that a

non-zero spin susceptibility is predicted at zero temperature whenever the critical field surpasses

h0.

Enhanced in plane field Pauli for BiS2-based superconductors

Here we turn to recent experimental results on BiS2-based superconductors [116, 148]. This

material has the tetragonal space group 129 (P4/nmm) and it exhibits two electron pockets about

the two equivalent X points [149, 150]. When S is replaced with Se, it has been observed that the

in-plane upper critical field surpasses the usual Pauli limiting field by a factor of 7 [148]. While it

has been suggested that the local non-centrosymmetric structure is the source of this large critical

field [148], there has been no quantitative calculation for this. Here we apply Eq. 1.20 to the

kp theory at the X-point to see if it is possible to account for this large critical field. The X

point in space group 129 belongs to class Dtype1
2h,3 .For BiS2, the dispersion is known to be strongly
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two-dimensional (2D) [116, 149] so we consider the kp theory in the 2D limit. This kp theory is

HBiS2 =
ℏ2

2m

(
k2x + γ2k2y

)
− µ+ t2kyτ2 + λxkyτ3σx + λykxτ3σy. (1.21)

Assuming s-wave superconductivity and accounting for the two equivalent pockets yields

hP,x̂ = h0

√
t22 + λ2x + |γλy|√

|t2| + |γλy|(t22 + λ2x)1/4
(1.22)

where h0 is the usual Pauli limiting field. For simplicity we consider γ = 1 in the following. Eq. 1.22

reveals that a large enhancement of the limiting field is possible and requires two conditions. The

first is that t2 << λx, λy and second is that these is substantial anisotropy in λx and λy. To

understand if these conditions are reasonable, we have carried out density-functional theory (DFT)

calculations on LaO1/2F1/2BiS2 with and without SOC. DFT calculations for LaO1/2F1/2BiS2 were

carried out by the full-potential linearized augmented plane wave method [151]. The Perdew-

Burke-Ernzerhof form of the exchange correlation functional [152], wave function and potential

energy cutoffs of 14 and 200 Ry, respectively, muffin-tin sphere radii of 1.15, 1.2, 1.3, 1.0 Å for Bi,

S, La, O atoms, respectively, the experimental lattice parameters [153], and an 15× 15× 5 k-point

mesh were employed for the self-consistent field calculation. The virtual crystal approximation

was used by setting the nuclear charge Z = 8.5 at O(F) sites. The resultant bands are shown in

Fig. 1-9. Without SOC, the band splitting along Γ to X yields an estimate for t2. When SOC is

present, the band splitting along the X to M yields λy and the band splitting along Γ to X yields√
λ2x + t22. The DFT calculated splittings suggest that λx is the largest parameter by a factor of

3-4, while t2 and λy are comparable. This suggests that the conditions to achieve a large critical

field are realistic in BiS2-based superconductors. Note that the largest observed Pauli fields are

found when the S is substituted by Se [148]. Se has a larger SOC than S, suggesting that the λi

parameters will be increased from what we estimate here. This is currently under exploration.

It is worthwhile contrasting the above theory with that for Fe-based materials in which electron

pockets exist near the M point of space group 129. The M-point is described by class Dtype1
4h,1 . In this

case, an analysis similar to to BiS2 gives an enhancement of only
√

2 of the Pauli field for in-plane
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fields. For c-axis fields, this class implies a significantly enhanced Pauli limiting field. These results

are consistent with experimental fits to upper critical fields in Fe-based superconductors that reveal

that the upper critical field for in-plane fields are Pauli suppressed while those for field along the

c-axis are not [154]. The contrast bewteen Fe-based materials and BiS2-based materials highlights

the importance of the different classes. In particular, the lower orthorhombic symmetry of the X

point allows protection to in-plane fields not afforded to the M point, where the theory is strongly

constrained by tetragonal symmetry.

Pair density wave states. In BCS theory, a spin-singlet superconductor is suppressed by the Zeeman

effect. Under a sufficiently strong magnetic field, the pairing susceptibility can be peaked at non-

zero Cooper pair momenta, leading to a pair density wave or FFLO state [155–157]. A schematic

phase diagram for a centrosymmetric system is shown in the left panel of Fig. 1-10. The typically

first order phase transition (double solid line) between the uniform and FFLO state ends at a

bicritical point (Tb, Hb), i.e. FFLO state only exists for T < Tb. A weak-coupling calculation

reveals that for the usual FFLO phase, Tb/Tc = 0.56

It is known that for locally non-centrosymmetric superconductors, FFLO-like phases can ap-

pear at lower fields Hb and higher temperatures Tb than the usual FFLO-like instability [93].

This is closely linked to the symmetry required instability to a pair density wave state for non-

centrosymmetric superconductors when a field is applied [90]. For a non-centrosymmetric sys-

tem under magnetic field, both inversion and time-reversal symmetry are broken. As a result,

the pairing susceptibility is generically peaked at non-zero momentum and Tb = Tc. For locally

non-centrosymmtric superconductors, inversion symmetry is locally broken on each sublattice. In

an extreme case, if the two sublattices are decoupled, then the system effectively becomes non-

centrosymmetric, and under a small magnetic field, an FFLO state can exists right below the

zero-field superconducting Tc. However, these sublattices are generically coupled so that Tb = Tc

is not realized in practice. Here we show that for type 1 Hamiltonians, FFLO-like states can in

principle exist up to Tb = Tc.

To show this, we consider the 2D version of class Dtype1
4h,1 and use the pairing susceptibility to
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Figure 1-10: Schematic phase diagram for a spin-singlet superconductor under Zeeman effect. Single solid
lines denote continuous phase transitions while double solid lines denote first-order phase transitions.

calculate Tb and Hb. In 2D, class Dtype1
4h,1 has the following normal state Hamiltonian:

HD4h,1
=

ℏ2

2m
(k2x + k2y) − µ+ t1kxkyτ1 + λxτ3(kyσx + kxσy) +Hxσx (1.23)

λx denotes the strength of the local inversion symmetry breaking (local Rashba SOC), while t1 is

the inter-sublattice coupling. The pairing susceptibility for an s-wave state with gap function τ0ψk

is

χpairing(Q) = − 1

β

∑
ωn

∑
(p,p+Q)∈FS

Tr [G0(Q + p, ωn)G0(p, ωn)] , (1.24)

where G0 is the normal state Green’s function written in Nambu space. The FFLO state is favored,

if the pairing susceptibility is peaked at non-zero Q. We examine the position of the bicritical point

(Tb, Hb), as a function of λx/(t1kF ). We use the following two equations to locate the bicritical

point: (1) The bicritical point lies on the BCS transition for the uniform superconductivity. (2)

The bicritical point is a continuous phase transition between uniform and FFLO superconductivity,

where ∇2
Qχpairing(Q) = 0. The result is in Fig. 1-11. 1000 × 1000 points are sampled in the 2D

Brillouin zone. Other parameters are t1 = 0.2, t = µ = 1. An energy cutoff of Ec = 0.1 is applied

to determine the position of the Fermi surface.

These results show that for zero λx/kF t1, a usual FFLO phase is found (that is Tb/Tc ≈ 0.56).
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Figure 1-11: The position of the bicritical point (Tb, Hb), as a function of λx/kF t1.

As the SOC λx increases or equivalently, as kF decreases, Tb increases and approaches the zero-field

critical temperature. In the meantime, Hb monotonically decreases.

We have shown that the FFLO phase can exist up to Tb = Tc for a 2D version of class Dtype1
4h,1 .

Key is that SOC is the leading order term in the kp theory and this is also the case for other type 1

Hamiltonians. Hence the optimal conditions for an enhanced FFLO phase to occur are when fields

are applied in-plane (perpendicular to the c-axis) for classes Dtype1
2h,1 , Dtype1

4h,1 , Dtype1
4h,3 , and Dtype1

4h,5 .

Odd-parity superconductors

For odd parity superconductors, the field fitness parameter F̃k,ĥ can become less than 1 [138].

Of particular interest is when F̃k,ĥ = 0 since this implies that Tc is unchanged by the time-

reversal symmetry breaking field (this is independent of the effective g-factor) [138]. For anomalous

pseudospin this possibility leads to two consequences not expected for spin-triplet states made from

usual spin-1/2 fermions. The first is a field induced transition from an even to an odd parity state.

The second is that, in spite of the presence of strong SOC, the superconducting state is immune to

magnetic fields for all field orientations. We discuss these each in turn.

Field induced even to odd parity transitions

In CeRh2As2, a field induced even to odd parity transition has been observed for the field

oriented along the c-axis in this tetragonal material [95, 96]. Earlier, we argued that this was due

the anomalous pseudospin that arises on the Brillouin zone faces in the non-symmorphic space
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group P4/nmm [97]. Here we show how this can be generalized to other space groups that admit

type 1 kp theories and determine which classes are optimal for observing such a transition. As

discussed in Section IV C, an attractive electron-phonon like interaction gives rise to both both

a usual s-wave τ0ψk state and an odd-parity τ3ψk state. These two states have the same pairing

interaction, but the gap projected onto the band basis is generally smaller for the τ3ψk state than

for the τ0ψk state, implying that τ0ψk state has the higher Tc. For the type 1 classes Dtype1
2h,1 ,

Dtype1
4h,1 , Dtype1

4h,3 , and Dtype1
4h,5 , anomalous pseudospin leads to Tc’s that are nearly the same for the

even τ0ψ and odd-parity τ3ψ states. These classes are therefore promising for observing a field

induced transition from an even-parity to an odd-parity state.

To determine if a such a field induced transition occurs we compute F̃k,ĥ for a pairing state

∆̃ = τ3. We find for type 1 kp theories

F̃k,ĥ =
(ĥ · λk)2(t21,k + t22,k + |λk|2)

|λk|2[ĥ2(t21,k + t22,k) + (ĥ · λk)2]
. (1.25)

Notice if ĥ · λk = 0, then F̃k,ĥ = 0 which maximizes Tc. To determine the field orientations for

which F̃k,ĥ = 0, we examine the form of λk in the type 1 classes discussed above. In all these

classes, the λz,k component appears with a higher power of momenta than the other components.

Consequently, the field should be applied along the ẑ direction. As an example, consider the class

Dtype1
4h,3 . Here λz,k ∝ kxkykz(k2x−k2y) while λx,k ∝ ky and λy,k ∝ ky. In this case λk will be in-plane

to an excellent approximation, and an even to odd-parity transition can be expected for the field

along the c-axis. Consequently, classes Dtype1
2h,1 , Dtype1

4h,1 , Dtype1
4h,3 , and Dtype1

4h,5 and, hence, space groups

56, 58, 59, 62, 128, 129, 130, 136, 137, and 138 are promising for realizing a field-induced even to

odd parity transition.

Field immune odd-parity superconductivity For a conventional spin-triplet superconductor (with

∆ = dk · σ) formed from usual spin-1/2 pseudospin, SOC typically pins the direction of the

vector dk. If the applied field is perpendicular to dk, that is if dk · ĥ = 0, then the Tc for this

field orientation is unchanged [158–160]. Since there exists at least one field direction for which

dk · ĥ ̸= 0, it is not expected that usual spin-triplet superconductors are immune to fields applied
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in all directions. For anomalous pseudopsin, this is not the case, it is possible for an odd-parity

state to be robust against suppression for arbitrarily oriented magnetic fields. To show how this is

possible, we calculate F̃k,ĥ for ∆ = τ0(dk · σ) for type 1 kp theories, this yields

F̃k,ĥ =
[(t21,k + t22,k)dk · ĥ+ (dk · λk)(λk · ĥ)]2

[(t21,k + t22,k)ĥ2 + (λk · ĥ)2][(t21,k + t22,k)|dk|2 + (dk · λk)2]
. (1.26)

We first note that near the nodal plane, the effective g-factor is small for in-plane fields n̂ ·h = 0, so

that for these field orientations superconductivity is not strongly suppressed (this is true for both

even and odd-parity superconducting states). Hence, to show that an odd-parity state survives

for all field orientations, we need to show that F̃k,ĥ ≈ 0 for a field applied along the nodal plane

normal where λk · ĥ becomes maximal. Near the plane we expect that λk · ĥ≫
√
t21,k + t22,k. Also,

(t21,k + t22,k) is small compared to λ2
k, so F̃k,ĥ is dominated by the dk · λk term in the numerator.

Hence if the denominator |t1,2dk| is much bigger than dk ·λk, then F̃k,ĥ ≈ 0. Given that λn̂ is the

largest SOC component, this requirement is equivalent to λ⊥ ≪ t1,2 and dk ⊥ n̂ (where λ⊥ is the

magnitude of the SOC perpendicular to n̂).

As a relevant example of the above mechanism we consider UPt3 [118]. The superconducting

state in UPt3 is believed to be an E2u state, with order parameter ∆ = ηp(σxky+σykx)+ηfσzkzkxky

(we only include one component of this two-component order parameter since similar arguments

hold for the second component). In general, since the p-wave and f-wave components have the

same symmetry, both ηp and ηf are non-zero. However, theories based on the usual pseudospin

typically require ηp = 0 due to the experimental observations discussed below [110, 161, 162]. Below

we further show that ηp = 0 is not required for these experimental observations when anomalous

pseudospin is considered. Indeed, these experiments are consistent with ηf = 0 and ηp ̸= 0 if

pairing occurs predominantly near the nodal plane kz = π/c.

Thermal conductivity experiments suggest the existence of line nodes [118]. For usual pseu-

dospin, the state σxky + σykx is either fully gapped or has only point nodes. This is one reason to

expect that ηp = 0. However, as illustrated in Table 1.4, line nodes are expected for this state on

the kz = π/c plane (note this conclusion also follows from Refs [111, 112, 114]). This is relevant
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for UPt3 since it is known to have the ‘starfish’ Fermi surface near this nodal plane [118] which

belongs to class Dtype1
6h

In terms of paramagnetic suppression, the superconducting state is known to be more robust

under B ⊥ ẑ compared to B ∥ ẑ [162]. For the usual pseudospin, this requires dk ∥ ẑ, and

thus ηp = 0. However, on the ‘starfish’ Fermi surface, the small g-factor for B ⊥ ẑ can serve to

protect the p-wave state against paramagnetic suppression. As discussed above, the suppression

from B ∥ ẑ depends on the ratio λx,y/t1,2, while the g-factor for B ⊥ ẑ depends on the ratio

(t1,2, λx,y)/λz. The requirement λx,y/t1,2 > (t1,2, λx,y)/λz is thus sufficient to match the observa-

tions on the upper critical fields. If both ratios are much smaller than one, the p-wave state is

immune to paramagnetic suppression for field along arbitrary directions. This could be relevant to

the approximately unchanged Knight shift in the superconducting state [163]. We note that the

use of F̃k,ĥ to determine the magnetic response relies on the validity of projection to a single band.

However, for class Dtype1
6h band degeneracies exist along three Dirac lines for which this projection

is not valid.

1.4.6 8-fold degenerate points: application to UCoGe

The arguments presented above relied on the 4-fold degeneracy at TRIM points when SOC is

not present. However, some of these TRIM points have an 8-fold degeneracy without SOC. It

is reasonable to ask if the conclusions found for kp theories of 4-fold degenerate points discussed

above survive to 8-fold degenerate points. We find that in most cases, the 8-fold degeneracy at

these TRIM is split by a single SOC term of the form Oσi where O is a momentum independent 4

by 4 orbital matrix. In Table 1.6, we give the direction of the spin component σi that appears in

this SOC term at the TRIM point. The existence of this single SOC term ensures small effective

g-factors for fields perpendicular to the spin-component direction. Consequently, the conclusions

associated with the effective g-factor anisotropy discussed in Section V still hold for these 8-fold

degenerate points. We note that the 8-fold degeneracy at the A point of space groups 130 and

135 are not split by SOC and these points provide examples of double Dirac points examined in

[164, 165].
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Table 1.6: Spin alignment of 8-fold degenerate TRIM.

Spin Alignment Space Group Momenta

σx 54(U1U2),54(R1R2),56(U1U2),60(R1R2),61(S1S2),62(S1S2),205(M1M2)

σy 52(S1S2),56(T1T2),57(T1T2),57(R1R2),61(T1T2),130(R1R2),138(R1R2)

σz
60(T1T2),60(U1U2),61(U1U2),62(R1R2),128(A3A4),

137(A3A4),176(A2A3),193(A3),194(A3)

One material for which these 8-fold degenerate points are likely to be relevant is the ferromagetic

superconductor UCoGe, which crystalizes in space group 62 (Pnma) [75]. UCoGe is believed to

be a possibly topological odd-parity superconductor [75, 109]. Our Fermi surface (given in Figure

3) reveals that all Fermi surface sheets lie near nodal planes with anomalous pseudospin and

further reveal tube-shaped pockets that enclose the zone-boundary S point and stretch along the

S-R axis. Here we focus on these Fermi surfaces. This feature reasonably agrees with previous

works [166–168] using local density approximation and the existence of these tube shaped Fermi

surfaces is consistent with quantum oscillation measurements [169]. Here density-functional theory

calculations for UCoGe were carried out by the full-potential linearized augmented plane wave

method [151]. Perdew-Burke-Ernzerhof form of exchange correlation functional [152], wave function

and potential energy cutoffs of 16 and 200 Ry, respectively, muffin-tin sphere radii of 1.4 Å for U

and 1.2 Å for Co and Ge, respectively, the experimental lattice parameters [170], and an 8× 12× 8

k-point mesh were employed for the self-consistent field calculation. Spin-orbit was fully taken into

account in the assumed nonmagnetic state. Fermi surface was determined on a dense 30 × 50 × 30

k-point mesh and visualized by using FermiSurfer [171].

Both the R and S points are 8-fold degenerate TRIM when SOC is not included for space group

62. Interestingly, from Table 1.6, the effective g-factors for fields along ŷ and ẑ directions are zero

at the S-point and are zero for fields along x̂ and ŷ directions at the R-point. This indicates that

superconductivity (both even and odd-parity) on the tube-shaped Fermi surfaces will be robust

against magnetic fields applied along the ŷ direction. This is the field direction for which the upper

critical field is observed to be the highest and for which an unusual S-shaped critical field curve

appears [75]. We leave a detailed examination of the consequences of anomalous pseudospin in

space group 62 on superconductivity to a later work.
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Figure 1-12: DFT Fermi surface of UCoGe.

1.4.7 Conclusions

Non-symmorphic symmetries allow the existence of nodal planes at Brillouin zone edges when no

SOC is present. When SOC is added, the pseudospin on these nodal planes has different symme-

try properties than usual pseudospin-1/2. Here we have classified all space groups and effective

single-particle theories near TRIM points on these nodal planes and examined the consequences

of this anomalous pseudospin on the superconducting state. We have shown how this enhances

the Tc for odd-parity superconducting states due to attractive interactions, leads to unexpected

superconducting nodal properties, allows large Pauli limiting fields and pair density wave states for

spin-singlet superconductors, gives rise to field immune odd-parity superconductivity, and to field

driven even to odd-parity superconducting transitions. Some of these properties have also been

predicted for locally non-centrosymmetric superconductors, however anomalous pseudospin applies

even when the crystal site symmetry contains inversion symmetry. This greatly extends the num-

ber of materials that can exhibit this superconducting response. While we have emphasized nodal

planes on which anomalous pseudospin exists, there are also materials for which anomalous pseu-

dospin develops on nodal lines and not on nodal planes. Some such materials also exhibit unusual

response to magnetic fields [172–174], suggesting a broader range of applicability for anomalous

pseudospin superconductivity.
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Chapter 2

Gravitational Wave Physics

2.1 Overview

Since the first detection of gravitational waves in 2015 [175], collaborations from LIGO (Laser In-

terferometer Gravitational-Wave Observatory), Virgo, and KAGRA (Kamioka Gravitational Wave

Detector) have detected 90 mergers, comprising binary black holes (BBH), binary neutron stars

(BNS), and neutron star-black hole (NSBH) pairs, during the first three observing runs (O1, O2,

and O3) [176–178]. The fourth observing run (O4) began on 24 May 2023 and is currently ongo-

ing. With the increasing number of detections, it allows a statistical study on the astrophysical

rates and the population of mergers [179]. Beyond the binary merger events, the collaborations

have also been conducting researches on different gravitational wave origins, such as dark matter

searches [180]. In this chapter, I will discuss two topics related to the gravitational wave physics:

the application of machine learning in spacetime volume sensitivity measurements and the search

for dark matter evidence from glitch events in LIGO detectors.
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2.2 Determining LIGO Spacetime Volume Sensitivity by Machine

Learning

2.2.1 Introduction

⟨V T ⟩ represents the spatial volume surveyed by the detectors multiplied by duration of observation,

which is mathematically defined later as Eq. 2.3 [181]. The rate of compact binary coalescence

events is proportional to ⟨V T ⟩, which is a key parameter in the gravitational wave astronomy. The

spacetime volume sensitivity is a measure of the detector’s ability to detect gravitational waves.

⟨V T ⟩ is often measured through injection campaigns, where simulated signals are injected into the

detector noise and the detection pipeline is run to determine how many signals are successfully

recovered. However, the injection campaign demands substantial computational resources and

varies with population models. This means that testing all intriguing population models through

injection campaigns would require a large amount of computational resources and efforts. In this

section, I utilize deep neural networks (DNN) to reduce the computational load in measuring ⟨V T ⟩.

This will eventually enable easier testing of ⟨V T ⟩ across different population models.

The primary objective of this research is to train machine learning(ML) models to estimate ∆Λ

for each injection trigger, which is a constituent element of ⟨V T ⟩ mathematically defined later by

Eq. 2.5. While the conventional injection campaign involves heavy calculations of an actual pipeline,

machine learning models make a rapid prediction of ∆Λ values through a pretrained algorithm to

enhance compuation speed.

This section is organized as follows. In the following subsection I explain the mathematical

background of the spacetime volume sensitivity ⟨V T ⟩ in terms of likelihood, mainly revisiting Ref.

[181]. Then I outline machine learning method that includes data preparation, model building, and

preformance results. Finally, I discuss the characteristics and limitations of my DNN models and

suggest potential applications for future work.
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2.2.2 Deep Neural Network(DNN)

Machine learning is a category of computer algorithms that allow a machine to develop indepen-

dently, solving a specific task without explicit human instruction. For instance, support vector

machine (SVM) and k-nearest neighbors (KNN) algorithms are machine learing examples inspired

by linear algebra. Artificial neural networks (ANN) exemplify machine learning inspired by the

emulation of biological neuron cells. A simple ANN model comprises three layers: the input layer,

the hidden layer, and the output layer. Each cell in the hidden layer is an operational unit that re-

ceives input parameters from the input layer and delivers the operation output to the output layer.

The first successful implementation of ANN was by Frank Rosenblatt in 1957 [182]. Although the

ANN concept is long-established, the development of computer hardware, particularly GPUs, has

facilitated a rapid ascent of deep learning since 2009. Deep neural networks (DNN) typically refer

to neural networks with multiple hidden layers.

In machine learning, algorithms are represented by a model with a parameter set, and a training

scheme guides the model to find the optimal parameter set to solve the task. The DNN parameters

are weights wijk and thresholds σij . Let yijdenote the state of each cell in the DNN where i indicates

the i-th layer and j indicates the j-th cell in the layer. It is determined by the equation,

yij = f(
∑
k

wijky(i−1)k − σij) , (2.1)

where f is an activation function. Although a sigmoid function is used as the activation function

in a traditional ANN. However, sigmoid function often causes a problem with the training process

due to the vanishing gradient problem that I will discuss later. Rectified linear unit (ReLU) is a

popular activation function in DNN because it does not suffer from the vanishing gradient problem.

The ReLU function is defined as

f(x) = max(0, x) . (2.2)

The most common way to train an ML model is through gradient-based optimization method

such as Stochastic Gradient Descent (SGD) method, which updates parameters according to the

gradient of the loss function. The loss function is a real number measure of the difference between

53



the model output and the ground truth value. The training method first calculate the error values

of celles in the output layer. Then, the contribution to the error of each cell in the previous layer

is determined by the derivative of the activation function, and the errors are distributed to them.

This process repeats until every cell in the model is attributed some error values by reaching the

initial layer. This process is called error backpropagation. The SGD method updates weights

and thresholds according to these error values. This entire process constitutes one epoch and

is repeated until the averaged error of the model converges to a minimum point. Because the

derivative sigmoid function is mostly zero except near zero, error values are multiplied by zeros

while backpropagating through the layers. This means the learning procedure unable to reduce

the final error in DNN because parameters in the front layers are not updated. On the other

hand, the derivative of ReLU is a step or sigmoidal function, which maintains non-vanishing errors

during backpropagation. There are several programming libraries for machine learning, such as

TensorFlow [183] and PyTorch [184]. In this project, I used TensorFlow to implement my ML

models.

2.2.3 Spacetime-Volume Sensitivity ⟨V T ⟩

The averaged spacetime volume sensitivity ⟨V T ⟩ for a specific astrophysical event is expressed by

⟨V T ⟩ = T

∫
dz dθ

dVc
dz

1

1 + z
Pr(θ)f(z, θ) , (2.3)

where T is the time duration of the observation, z is the redshift factor, Vc is the comoving volume,

Pr(θ) is the probability distribution of the event with source-parameters θ, and the astrophysical

distribution f(z, θ) is a selection function that estimates how likely it is to detect sources of z and

θ. For example, one might have θ = {m1,m2} for a population model describing the distribution of

binary component masses m1 and m2. Injections are sampling points of Monte-Carlo methods of

the above integration. Denote the total number of injections Ninj and the total spacetime volume

of injection range ⟨V T ⟩inj. The spacetime volume sensitivity is expressed as

⟨V T ⟩ =
Nrec

Ninj
⟨V T ⟩inj, (2.4)

54



where Nrec is the number of injections were detected (recovered) by the pipeline. One way to get

the Nrec value is imposing a explicit threshold on the Bayes factor of the injections. However, there

is a problem of ambiguity in which hard cut value to choose. Since Nrec is used to calculate the

actual signal rates, Nrec needs to be calculated in a statistical way by using the list of real event

triggers produced during the search. Define the rate of gravitational wave triggers by Λα, where

Λ0 is the expectation counts of terrestrial events and α=1,2, and 3 corresponding to BBH, BNS,

and NSBH respectively. First, calculate Λα from the real triggers. Let {γi} is a set of injections.

Consider the situation that one of an injection γi is added to the set of real triggers, then Λα value

will be change because of the new trigger γi. Let ∆Λα(γi) be the difference. After some algebra it

is given by

∆Λα(γi) =
covN (Λ0,Λα) +

∑
β covN (Λα,Λβ)Kβ(γi)

⟨Λ0⟩N +
∑

βKβ(γi)⟨Λβ⟩N
, (2.5)

where Kβ(γi) is the Bayes factor of γi in the astrophysical category β. Since Λα is the expectation

number of events during the search, increasing of its value means increasement of the expectation

value of Nrec. Repeat this argument over all injections, then the final Nrec is given by the summation

over ∆Λα(γi),

Nrec =
∑
i

∆Λ(γi) =
∑
i

∑
α=1,2,3

∆Λα(γi) . (2.6)

This relation shows that calculating ∆Λα for every injection is equivalent to calculating the ⟨V T ⟩.

2.2.4 Methods and Results

Data Preparation and Model Building

Injections during O1 and O2 before Virgo joined on Aug 1st, 2017 were used in this project. There

are several classes of injections listed in Table 2.1 below. Only the injections from the broad class

were used in training the ML models. In the broad class, injections are uniformly distributed in

distance. There are three ML models corresponding to the three broad classes: BBH, BNS, and

NSBH. Each models were trained on randomly picked 80% of the corresponding broad injections.

They were tested on the remaining 20% of broad injections and also tested on injections in other

classes: the astrophysical and peak distribution classes.
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Table 2.1: Classes of the injections. Broad injections are uniformly distributed in distance. Astrophysical
injections are uniformly distrbuted in spacetime volume which implies that f(z, θ) is increasing with redshift
z. Peak distribution injections are using Dirac delta function for a distribution. The astrophysical and peak
distribution injections are not used in training the ML models but only used in testing the models.

Class Type BBH BNS NSBH
Broad bbh-broad-aligned

bns-broad nsbh-broad
(including training set) bbh-broad-isotropic

Astrophysical or
bbh-astrophysical-imf bns-astrophysical

nsbh-delta-1p4-10-aligned
peak distribution nsbh-delta-1p4-10-isotropic

Each injection has several injected parameters. For deep learning I use Mchirp, η, χeff, log dH ,

log dL, z, and tgps. The first three of them are the chirp mass, symmetric mass ratio, and effective

spin parameter respectively defined as

Mchirp =
(m1m2)

3/5

(m1 +m2)1/5
, η =

m1m2

(m1 +m2)2
, χeff =

m1χ1 +m2χ2

m1 +m2
, (2.7)

where m1,2 are the masses and χ1,2 are the spin parameters of the two compact objects, log dH,L

are the log effective distances from the source to each detector sites Hanford and Livingston, z is

the redshift, and tGPS is the GPS time of the injection. The GPS time is required to capture the

time evolution of the detector sensitivity. Each parameter is batch normalized to have zero mean

and unit variance before feeding into the ML model. The true values of ∆Λ were calculated using

the pAstro package[181].

The ML models used in this research have a 5-layer architecture which includes the input and

output layers. The input layer has 7 nodes corresponding to the input parameters mentioned above.

The output layer has a single node that represents the estimated ∆Λ value. Each of the three hidden

layers has 64 nodes. Each model was trained for 10 epochs. Additionally, hyperparameter tuning

was conducted by testing a variety of model depths, ranging from 1 to 12 hidden layers. It concludes

that the 5-layer model was identified as the optimal model for both performance and model size.

All models were trained on a single M1 CPU. The training process took approximately 3 minutes,

processing a dataset with injection numbers on the order of 104. The ML models were implemented

using the TensorFlow [183] library.
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Figure 2-1: Error curves of ML models.

Table 2.2: Results of ML models.

Class Type Training Ninj NpAstro
rec NML

rec Error(%)

BBH broad test
BBH broad training

16824 13645.8 13545.7 -0.73
BBH astrophysical imf 40455 32203.0 32077.5 -0.39

BNS broad test
BNS broad training

6813 5518.5 5576.0 1.04
BNS astrophysical 34439 28935.5 28789.3 -0.51

NSBH broad test
NSBH broad training

8316 5966.0 6011.8 0.77
NSBH delta 1p4 10 aligned 36414 25510.6 25241.9 -1.05
NSBH delta 1p4 10 isotropic 29688 19484.6 21096.2 8.27

ML Model Performances

The error curves during the learning process are shown in Fig. 2-1. Although increasing the

maximum epoch beyond 10 could potentially decrease the error further, it occasionally leads to

greater error inNrec due to overfitting. TheNrec values calculated from pAstro and estimated by ML

models are presented in Table 2.2. More detailed error plots of each ML models for BBH injection

set are presented in Fig. 2-2 and other remaining injection sets are presented in Appendix A.1.

2.2.5 Discussion

My machine learning models demonstrated correct results with observed errors under 10%. Notably,

these errors are within acceptable bounds, staying below the inherent error scale of the ⟨V T ⟩

measurements [176]. This establishes that employing machine learning to infer ⟨V T ⟩ can offer

computational cost-efficiency.

However, one should note that overfitting the model can result a significant increase of errors for

other injection class. This problem can be observed when the model is trained for a large number of
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Figure 2-2: Performance of ML models for BBH injections

epochs, for example, training the model with BNS broad injections over 50 epochs and then testing

it on BNS astrophysical injections led to an error of -4.64%, a magnitude higher than in prior test.

One of the advantages of the current approach is that our ML models were trained on the

broad injection set. This set is typically the primary and the first serving set used during the

injection campaign. Hence, once a campaign finish the broad set analysis, the trained ML models

are immediately available for application in testing other population distributions, even before the

other astrophysical distributions have yet to be done by the actual pipeline campaign.

Unfortunately, the ML models were not utilized for the last O3 data analysis [179], due to their

lack of robustness in dealing with far distance injections. To illustrate more details, if the broad

set has an injection distance range that maxes out at 100 Mpc, the ML models would not be able

to estimate the ⟨V T ⟩ for the astrophysical set with an injection distance range that reaches up
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to 500 Mpc. This highlights an area for improvement if ML models are used in future O4 data

analysis. Achieving robustness for far distance injections and enabling the models to extrapolate

their estimations to include these far distance injections are key for this applicability.

2.3 Dark Matter Evidence in Blip Glitches

2.3.1 Introduction

LIGO and Virgo have been observing transient like signals called glitches through every observing

runs O1, O2, O3a, and O3b [185, 186]. Glitches are non-Gaussian, loud, and short in duration,

thus it may often triggers the detection pipeline. The challenge lies in distinguishing high mass

binary black hole (BBH) mergers and burst-type signals from these glitches, especially given that

glitches do not originate from astrophysical sources, as evidenced by their lack of correlation across

the multiple interferometers. The causes of many glitches remain unknown.

The collaborations have been developing a glitch classification pipeline called Gravity Spy.

This citizen science project involves human volunteers categorizing glitches based on their visual

attributes. The data accumulated from this human classification are then utilized to train a machine

learning model, which is applied to actual strain data to categorize glitches. A more detailed

description and updates on the Gravity Spy project can be found in Ref. [186, 187].

After the classification, the collaborations have been investigating the origin of glitches. Numer-

ous types of glitches have been identified, some of which are correlated with environmental factors.

For instance, during O3b, researchers found a strong correlation between the occurrence of slow

scattering arches and the relative motion between the end test mass chain and the reaction-mass

chain of the optic suspension system [178]. The rate of these glitches decreased following the im-

plementation of reaction-chain tracking in Hanford. The collaborations also regularly analyze the

correlation between glitches and environmental factors, such as seismic noise, weather, and human

activity. However, there remain some glitches, such as the blip glitches, whose physical causes and

potential correlation with environmental factors are proven to be uncorrelated [188].

In this section, I introduce a hypothesis that decaying dark matter particles generating grav-
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itational waves could be a potential source of blip glitches. In subsection 2.3.2, I will introduce

the conceptual picture of this hypothesis and share the results of an analysis showing blip glitch

rates statistics across all detectors and observing runs. In subsection 2.3.3, I will introduce the

Gabor-Morlet wavelet as the blip glitch waveform model. In subsection 2.3.4, I will present a list

of dark matter particle results deduced by dimensional analysis. In 2.3.5, I will introduce Bayesian

analysis for this problem. Finally in section 2.3.6, I will discuss these results and future work.

2.3.2 Dark matter decay and blip glitch rates

𝑀!

Ω"#$%&

𝑟'

𝐿(

𝑋 → 2𝐺)*

Figure 2-3: A diagram of a dark matter particle X with mass MX decaying into two gravitons in the limit
of cone-shaped classical gravitational waves.

Assume a hypothetical dark matter particle X at rest with rest mass MX decays into two

gravitons in two opposite directions as shown in Fig. ??. The decay process is assumed to be a

quantum gravity process. Because G, c, ℏ, and MX are all the physical parameters involved in this

microscopic process, the order of magnitude calculation of the decay rate is given by

ΓX→GW ∼
(
MX

MP

)n 1

TP
, (2.8)

where ΓX→GW is the gravitional decay rate of particle X, MP is the Planck mass, TP is the

Planck time, and n is a number given by a microscopic theory which remains uncertain linked

to a quantum gravity theory. After decay process let two gravitons quickly falls into the limit of

classical graivational wave propagating in narrow cone shape with steradian angle Ωdecay. Assume
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Figure 2-4: Rate of Blip Glitches(Weekly Statistics, ML confidence ¿ 0.99)

a blip glitch is detected when a decay event occured near the interferometer and gravitational wave

direction is oriented to intersect with the interferometer’s laser beam line. The order of the glitch

rate is given by

Γglitches ∼
ρDMVLIGO

MX

Ωdecay

4π
ΓX→GW , (2.9)

where ρDM is dark matter density, VLIGO is effective volume of the LIGO instruments, and Ωdecay is

solid angle of decaying gravitional wave. The blip glitch rate Γglitches is experimentally measured by

the number of blip glitch triggers divided by the observation time. The blip glitch rate calculated

for all observing runs and each detector sites is shown in Fig. 2-4.

2.3.3 Gabor-Morlet Wavelet Model

To model the blip glitches, Gabor-Morlet wavelet is used here, because a blip glitch is a Gaussian

modulated sinusoidal wave by its naming. The specific waveform is given by

u(t;θ) = A(e0, σ0, f0)e
− (t−t0)

2

4σ2
0 cos(2πf0(t− t0) − ϕ0) , (2.10)
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Figure 2-5: Representative blip glitch in O3b Virgo and cleaned q-scan by Gabor-Morlet wavelet. Cleaning
is done by the wavelet model Eq. 2.10. Parameters are given as follows: A = −2.77 × 10−21, f0 = 213Hz,
σ0 = 1.00ms, and ϕ0 = 1.78
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where the amplitude A is an amplitude function of the energy flux e0, the width σ0, and the

frequency f0. The energy flux is given by

A(e0, σ0, f0) =

√
e0

σ0f20 + (16π2σ0)−1
, (2.11)

which normalizes the energy flux relation, that is

dE

dS
=

1

16π

∫ ∞

−∞
dt(u̇2+ + u̇2×) ∼ e0 . (2.12)

The waveform parameter consists of five real numbers:

θ = (f0, σ0, e0, t0, ϕ0) . (2.13)

As shown in Fig. 2-5, the wavelet model nicely subtract the blip glitches by minimizing the nor-

malized energy flux.

2.3.4 Dark matter parameters estimation

The effective volume of the LIGO instruments VLIGO yields two approximation given by

VLIGO ≈


2L0(πr

2
c ) , rc < L0

4πr3c/3 , otherwise

(2.14)

where L0 = 4km is the arm length of the interferometer arm length and rc is a critical radius. Here,

assume that rc < L0 and VLIGO has two cylinderical geometry wrapped around each laser arm with

radius rc. Another limit rc ≥ L0 can also be considered, but it does not give a different dimensional

result unless rc is extremely greater than L0. When the energy flux of the gravitational wave is

assumed to be e0, which can be obtained by Eq. 2.11, then the total energy of the gravitational

wave is given by

MXc
2 ∼ 2e0Ωdecayr

2
c , (2.15)
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where the factor of two represents another gravitational wave packet propagating in the opposite

direction. These rc dependencies are canceled out in the blip glitch rate relation. Recall the rates

equation, the blip glitch rate Eq. 2.8 and the dark matter decay rate Eq. 2.9, they are given by

ΓX→GW ∼
(
MX

MP

)n 1

TP
, Γglitches ∼

ρDMVLIGO

MX

Ωdecay

4π
ΓX→GW , (2.16)

It is useful to introduce a characteristic mass scale

Mc ∼
ρDMc

2VLIGO

ΓglitchesTP

Ωdecay

4π
∼ ρDMc

2

ΓglitchesTP

L0

2e0
, (2.17)

which yields the relation (
MP

MX

)n

∼ 1

TPΓX→GW
∼ Mc

MX
. (2.18)

Hence, the quantum gravity microscopic parameter n is given by

n ≈ log(Mc/MX)

log(MP /MX)
. (2.19)

To deduce unkown parameters, it is imperative to clearify the input parameters. As in the

previous subsection, the q-scan parameter estimation (PE) result provides values for |A|, f0, σ0,

and ϕ0 corresponding to the representative blip glitch. The energy flux e0 is determined by Eq. 2.11.

The particle mass MX is inferred from the internal frequency f0. This is because similar in many

other microscopic decaying processes the internal characteristic frequency of wave packet is given

by the mass of the source particle due to the energy quantization of the wave packets as a particle.

Local dark matter density in the solar system ρDM = 6.1× 10−22kg/m3(= 0.009 M⊙pc−3) is taken

from Ref. [189, 190]. Now I can calculate the dark matter decay rate ΓX→GW and the quantum

gravity parameter n using the given parameters. The results are shown in Table 2.3. The dark

matter particle mass is given by MX=8.8 × 10−13 eV/c2, which falls into the light dark matter

mass region. Since n ≈ 1.28 is obtained by the log ratio between extreme magnitude numbers, n is

fine-tuned number and immune to the uncertainty of MX . Note that ΓX→GWTuniverse ≫ 1, which

casts doubt on the validity of the assumption that the dark matter particle is stable. However,
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Table 2.3: List of dark matter parameters

Parameter Quantity Method or Equation

|A| 2.8 × 10−21 Q-scan PE
f0 210 Hz Q-scan PE
σ0 1.0 ms Q-scan PE
ϕ0 1.8 rad Q-scan PE

e0 2.0 × 1013 eV/m2 c3

16πGA
2(σ0f

2
0 + 1/(16π2σ0))

MX 8.8 × 10−13 eV/c2 hf0/c
2

Ωdecayr
2
c 2.2 × 10−26m2 MXc

2/(2e0)
ρDM 3.4 × 1014 eV/c2/m3 Ref. [189, 190]

Γglitch 1.8 × 10−4 Hz Fig. 2-4
VLIGO/r

2
c 8π km Eq. 2.14

Mc 1.5 × 1039eV/c2 Eq. 2.17
n 1.28 Eq. 2.19

1/Tuniverse 2.2 × 10−18 Hz Inverse Hubble time
1/TP 1.8549 × 1043 Hz Inverse Planck time
MP 1.2209 × 1028 eV/c2 Planck mass

ΓX→GW 1.1 × 10−8 Hz MX/(McTP )

this assumption is not necessary for the hypothesis to be valid. The hypothetical particle X can

be intermediate dark matter particles in the decay process but not the original source of the mass

energy.

2.3.5 Bayesian statistics

The PSD weighted inner product is given by

(d, u) = 2

∫ ∞

−∞
df
d̃(f)ũ∗(f)

SPSD(|f |) , (2.20)

where SPSD(f) encodes the detector background noise information. The analytic form of the

waveform in the frequency domain is useful to reduce the numerical error when calculating inner

product, that is

ũ(f) =
√
πAσe−i(2πft0)(e−4π2σ2(f−f0)2e−iϕ0 + e−4π2σ2(f+f0)2eiϕ0) . (2.21)
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In order to calculate the likelihood of the hypothesis, I need to calculate the inner product between

the data and the model. The likelihood is given by

L(Hθ) =
Pr(data|Hθ)

Pr(data|Hnull)
=
e−(s−hθ,s−hθ)/2

e−(s,s)/2
= e(s,hθ)−(hθ,hθ)/2 , (2.22)

where s is the strain data, hθ is the model waveform, Hθ is the hypothesis to test, and Hθ null

hypothesis. To perform Bayesian inference, I need to calculate the posterior probability of the

hypothesis. The posterior probability is given by

Pr(Hθ|data) =
Pr(data|Hθ) Pr(Hθ)

Pr(data)
, (2.23)

where Pr(data|Hθ) is the likelihood, Pr(Hθ) is the prior probability, and Pr(data) is the evidence.

The evidence is given by

Pr(data) =

∫
dθPr(data|Hθ) Pr(Hθ) . (2.24)

The posterior probability is used to calculate the Bayes factor. The Bayes factor is given by

B =
Pr(Hθ|data)

Pr(Hnull|data)
. (2.25)

The Bayes factor is used to test the hypothesis. The hypothesis is accepted when the Bayes factor

is greater than 1. The hypothesis is rejected when the Bayes factor is less than 1. The Bayes factor

is used to calculate the probability of the hypothesis given by

Pr(Hθ|data) =
B

1 + B , Pr(Hnull|data) =
1

1 + B . (2.26)

2.3.6 Discussion

I tested the hypothesis that dark matter particles decaying into gravitational waves can be a

source of blip glitches with dimensional analysis and wavelet modeling. Glitch rate is given by

184µHz. The mass of the dark matter particle is estimated by the model parameter f0 = 210Hz

which is corresponding to the dark matter particle mass of 10−12eV/c2 and n = 1.28, where these
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parameters may give a rope to the quantum gravity theory and dark matter model. However, the

microscopic decay model need to be improved with intermediate particles, because current model is

not consistent with the assumption that the dark matter particle is stable, that is ΓX→GWTuniverse ≫

1.

Since this analysis was based on a single representative blip glitch trigger, a complete statistical

analysis are needed to draw a conclusion. There are two steps to be conducted in the future.

First, more precise analysis can be done by using all blip glitches as a population in all observing

runs. Second, the statistical anlysis introduced in 2.3.5 need to be conducted to test the hypothesis

instead of using exact values of the parameters. One of the challenging point is that Bayesian

analysis requires the inner product calculation between the data and the model on parameter space

grid points, which is computationally intensive. By employing Bayesian statistics, the validity of

my hypothesis can be further assessed by comparing the likelihood of this hypothesis against the

likelihood of the null hypothesis.
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Appendix

A.1 ML model performance figures

Figure A-6: Performance of ML models for BNS injections.
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Figure A-7: Performance of ML models for NSBH injections.
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