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ABSTRACT

REALISTIC SPEED CONTROL OF AGENTS IN
TRAFFIC SIMULATION

by

Lakshman Karthik Ramkumar

The University of Wisconsin-Milwaukee, 2023
Under the Supervision of Professor Tian Zhao

Agents in multi-agent traffic simulation tend to be more dependent on the rules and

existing instructions to move mechanically and unnaturally imitating human behaviors.

The agents will not accelerate or decelerate as humans do. Humans have an irregular

pattern of acceleration and deceleration when it comes to real-time driving. This includes

hitting breaks when not necessary and sometimes even driving above the speed limit to

catch up. In prior works, other factors such as drag and simulation-specific parameters

were not considered in the models. Additionally, the models were not tested on the

traffic simulation frameworks like SUMO. Instead, they utilized simple numerical models

to simulate the environment and evaluate the performance of the models. Therefore,

there is a need to further investigate and incorporate these additional factors, as well as

validate the models on the SUMO platform, to enhance the realism and applicability of the

research. It is also difficult to calibrate SUMO to a given traffic scenario as traffic engineers

might need to specify manually the vehicle specifications while designing the experiments.

It would be easier for engineers to populate the road network with pre-trained agents that

require minimal tuning which includes specifying maximum acceleration, deceleration, and

minimum and maximum speed of the vehicles to be simulated. We propose a unified system

for agents to decide when to accelerate and decelerate with the help of deep reinforcement

learning aided by a combination of factors such as instantaneous speed, time, and other

important metrics. The proposed system will aid the agents to behave more like humans

by acting based on the surrounding agents in complex situations. This in turn can help

create a diverse traffic flow that can mimic real-life traffic scenarios.
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Chapter 1

Introduction

Transportation engineers and urban planners can benefit from using traffic simulation to

model and analyze traffic flow in various scenarios. It is an effective tool for predict-

ing traffic behavior, evaluating alternative solutions, reducing cost and time, improving

safety, and enhancing public engagement. A multi-agent simulation is a useful approach

for microscopic traffic simulation. Still, it can sometimes produce unnatural or ineffective

results due to the use of simplistic behavior models based on existing research. For exam-

ple, some models imitate stereotyped driving behaviors using predefined rules, which can

lead to unnatural traffic flows and inaccurate real-life traffic investigations. To address

this, agents should be constructed with the flexibility to adapt their driving behavior to

different surrounding situations.

In a typical driving scenario, the agent might interact with vehicles that may show up

from anywhere on the road. In reality, human drivers control their vehicles by responding

to complex conditions which is impossible to model with rules for each possible condition,

given the action (acceleration/deceleration) is continuous.

When it comes to velocity control driver models are a critical part that defines the car-

following behavior. Driver models are distinguished as rule-based and supervised learning

approaches. The rule-based approach represents the traditional car-follow models such as

the Intelligent Driver Model (IDM). The supervised learning approach utilizes the data
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from human demonstrations to approximate the actions taken and the car-following states

[1]. Though these two approaches emulate human drivers’ car-following behavior, it might

not be the best solution to reproduce realistic traffic as the human driving data is from a

very small sample when compared to the global drivers’ population, which is more diverse.

These autonomous agents can be trained to drive considering safety, efficiency, and comfort

besides imitating human behavior as human drivers may not drive optimally.

In this paper, we present a Deep Reinforcement Learning (DRL) based approach which

uses Soft Actor-Critic (SAC) [2] algorithm to train the agent to drive safely given complex

conditions. The model optimizes safety, comfort, and efficiency by learning from interac-

tions in the simulation environment (SUMO). SAC is known to work well on continuous

action spaces and is better in early exploration which can be tuned through a temperature

parameter.

The temperature parameter (α) controls the balance between exploration and exploita-

tion during training [3]. It affects the exploration behavior of the policy by adjusting the

strength of entropy regularization. A higher temperature promotes more exploration by in-

creasing the impact of entropy regularization, while a lower temperature encourages more

deterministic actions. By tuning the temperature parameter, SAC can strike a balance

between exploring new actions and exploiting known ones, leading to effective learning

and improved performance in reinforcement learning tasks. A reward function has been

designed to evaluate driving features like speed limit, comfort, safety, and efficiency.

The major contributions of this paper are:

1. Soft Actor-Critic with Multiple Objectives: The proposed agent is based on Soft

Actor-Critic, a reinforcement learning algorithm, capable of learning from multiple ob-

jectives simultaneously. Unlike previous approaches that primarily focused on learning

velocity or acceleration directly, this work expands the scope by considering multiple

objectives such as speed, safety, comfort, and efficiency. By incorporating multiple ob-

jectives, the agent can learn to make decisions that optimize across different aspects of

driving performance.
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2. Abstraction of Acceleration: In contrast to directly learning acceleration, this work

abstracts acceleration control through action scaling. By decoupling the specific accelera-

tion values from the action space, the agent can effectively learn how to adjust its behavior

without explicitly learning the acceleration dynamics. This abstraction can simplify the

learning process and improve the agent’s ability to generalize to different driving scenarios.

3. New Reward Function: The work introduces a novel reward function that integrates

various factors to guide the agent’s behavior. The reward function incorporates desired

speed, Time to Collision (TTC), headway (the distance between the agent vehicle and the

vehicle ahead), and jerk (rate of change of acceleration). By including these elements, the

reward function encourages the agent to drive within the desired speed range, maintain safe

distances, and minimize sudden changes in acceleration, resulting in safer and smoother

driving behavior.

4. Collision Warning System: To enhance safety, this work incorporates a collision

warning system into the velocity control framework. The warning will be triggered when

the distance between the lead vehicle and ego vehicle is less than dsafe, computed as

suggested by [4]. This has proven to avoid collisions during both training and testing.

5. Detailed comparison of performances of the proposed model with the default Krauss

model in SUMO, the Intelligent Driver Model, and prior work that uses the DDPG algo-

rithm.
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Chapter 2

Background

2.1 Car Follow Model

Car-following models are essential in understanding how an ego vehicle responds to the

movements of a leading vehicle. These models are widely used in microscopic simulations

and provide theoretical foundations for autonomous car-following systems. Throughout

the years, several car-following models have been proposed, dating back to the 1950s.

The Intelligent Driver Model (IDM) [5] is a popular car-following model that considers

factors such as desired time headway, desired speed, and the velocity difference between

the ego and leading vehicles. By incorporating these variables, IDM calculates the accel-

eration of the ego vehicle, aiming to maintain a safe distance while accounting for driver

preferences.

Another significant model is the Krauss Model [6], which focuses on the interaction

between the ego vehicle and the leading vehicle. It takes into account parameters like

distance, relative velocity, and relative acceleration to determine the acceleration of the

ego vehicle. The Krauss Model emphasizes cooperative driving, where the ego vehicle

adjusts its behavior to ensure a stable and harmonious traffic flow.

The optimal velocity model is another widely used car-following model. It operates on

the assumption that drivers aim to maintain a constant time headway with the leading ve-

hicle. By considering the desired time headway, current speed, and velocity differences, the
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optimal velocity model computes the desired acceleration of the ego vehicle. Its objective

is to achieve smooth and efficient traffic flow by optimizing vehicle spacing.

2.2 Reinforcement Learning

Reinforcement Learning (RL) is a computational approach to solving sequential decision-

making problems. In RL, an agent interacts with an environment and learns to make

optimal decisions to maximize a long-term reward. The process unfolds over a sequence

of time steps.

At each time step, the agent observes the current state of the environment, denoted

as st. Based on this observation, the agent selects an action, denoted as at, from a set of

possible actions defined by the action space A. The selection of the action is guided by a

policy, denoted as π(at|st), which maps states to actions.

Once the agent chooses an action, it receives a reward, denoted as rt, from the envi-

ronment. This reward reflects the immediate benefit or penalty associated with the chosen

action. Additionally, the environment transitions to a new state, denoted as st+1, based

on the agent’s action.

The process of observing the state, selecting an action, receiving a reward, and transi-

tioning to the next state continues in a sequential manner until a terminal state is reached.

At that point, the agent restarts the process. The objective of the agent is to maximize

the accumulated reward over time.

The accumulated reward, denoted as Rt, is a measure of the total expected reward that

the agent aims to maximize. It is computed by summing the discounted rewards obtained

at each time step, where the discount factor γ determines the importance of future rewards

relative to immediate rewards. The discount factor γ typically lies between 0 and 1, with

higher values indicating a greater emphasis on long-term rewards.

By iteratively interacting with the environment, observing states, selecting actions,

and receiving rewards, the RL agent learns to optimize its decision-making process to

maximize the long-term, cumulative reward [7]. This iterative learning process allows the
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agent to adapt its behavior based on the observed rewards and the underlying dynamics

of the environment.

Rt =
∞∑
k=1

γkrt, γ ∈ (0, 1] (2.1)

2.2.1 Value-based Reinforcement Learning

A value function is a measure of the quality or expected return associated with being in

a particular state or state-action pair. The action value function, denoted as Qπ(s, a),

represents the expected return for selecting action a in state s when following a specific

policy π. It quantifies the desirability or goodness of taking action a in state s.

Value-based RL methods aim to estimate the action values by leveraging a history of

experience. One commonly used value-based RL algorithm is Q-learning. In Q-learning,

the agent begins with an initial Q-function, which assigns random values to the state-

action pairs. As the agent interacts with the environment and receives rewards, it updates

its Q-values based on the Bellman Equation [8].

Q(s, a) = E[r + γmax
a′

Q(s′, a′)] (2.2)

The Bellman Equation captures the intuition that the maximum future reward for

the current state s and action a is the immediate reward r obtained and the maximum

expected future reward for the resulting state s′. By iteratively updating the Q-values

using this equation, the agent gradually learns to estimate the optimal action values.

Once the Q-values are estimated, the agent can determine the optimal policy for

decision-making. The optimal policy is to select the action with the highest Q-value in a

given state, as it represents the action that is expected to lead to the maximum cumulative

future rewards. By following the optimal policy, the agent maximizes its expected return

over time.

Value-based RL methods, such as Q-learning, provide a way for the agent to learn and

make decisions based on estimates of the action values. These methods enable the agent

to navigate the environment, explore different actions, and converge to an optimal policy
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that maximizes the expected future rewards.

2.2.2 Policy-based Reinforcement Learning

▽θ log π(at|st; θ)Rt (2.3)

Policy-based reinforcement learning (RL) methods update the policy directly by ad-

justing its parameters θ using gradient ascent on the expected return E[Rt]. In contrast

to value-based methods, which estimate action values and make decisions based on those

estimates, policy-based methods focus on improving the policy itself.

One popular policy-based RL algorithm is REINFORCE. In REINFORCE, the agent

interacts with the environment, collecting trajectories of states, actions, and rewards.

Trajectories represent sequences of states and actions taken by the agent, along with the

corresponding rewards received.

The policy parameters θ are updated using equation 2.3[7]. This step aims to in-

crease the probability of actions that lead to higher rewards and decrease the probability

of actions that lead to lower rewards, thereby improving the policy. By iteratively col-

lecting trajectories, computing expected returns, and updating the policy parameters,

REINFORCE seeks to find the optimal policy that maximizes the expected return over

time.

Policy-based RL methods have advantages such as handling continuous action spaces

naturally and learning stochastic policies. Continuous action spaces can be addressed

without discretization or function approximation techniques, while stochastic policies can

handle uncertainty and exploration.

However, policy-based methods can suffer from high variance in gradients, leading to

instability and slow learning. Techniques like baseline subtraction and variance reduction

methods, such as advantage estimation, can mitigate this issue. Overall, policy-based

methods, including REINFORCE, offer a direct approach to updating policies, enabling

them to handle continuous actions and learn stochastic policies, although they may require

additional techniques to address high variance.
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2.3 Actor Critic

In a RL problem, the agents are supposed to maximize their reward r. The policy network

is called an Actor because it chooses the action and the estimated value function is known

as critic as it evaluates the action taken and corrects it. The advantage of actor-critic

method is that they require minimal computation in order to select actions. For example,

in case of a continuous-valued action space (acceleration of the agent in our case), the

method that learns the action values must search through the entire space of infinite set

of possible actions to pick an action. This extensive computation can be avoided if the

policy is explicitly stored or learned.

To address the high variance in gradient estimates and improve learning efficiency,

actor-critic methods are often employed. In an actor-critic framework, there are two

learning agents: the actor (policy) and the critic (value function). The actor is responsible

for determining the actions to take based on the current policy, while the critic evaluates

the quality of the actions and provides feedback to the actor.

The critic, typically implemented as a value function, estimates the expected return

or the value associated with being in a particular state or state-action pair. It provides

guidance to the actor on how to adjust the policy to improve performance. The actor takes

this feedback from the critic into account when updating the policy parameters, allowing

for a more informed and effective exploration of the action space.

The actor-critic approach combines the advantages of both policy-based and value-

based methods. It leverages the policy-based updates to directly optimize the policy,

while also utilizing the value-based updates to reduce variance and provide more stable

and efficient learning. This two-agent setup enhances the learning process and enables the

agent to improve its policy based on the feedback received from the critic.
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2.4 Model-based Reinforcement Learning

Reinforcement learning (RL) methods can be broadly classified into two categories: model-

based and model-free. These categories differ in how the agent interacts with the environ-

ment and learns to make decisions.

Model-based RL refers to algorithms where the agent tries to understand and create a

model of the environment based on its interactions. The agent learns the dynamics of the

environment, including transition probabilities and reward functions, and uses this model

to plan its actions. The model can be learned from data collected during the agent’s

interactions with the environment or can be provided explicitly.

The key characteristic of model-based algorithms is that the agent uses the learned or

provided model to make decisions. Given the model, the agent can perform planning to

determine the best actions to take in order to maximize its reward. The agent considers

the consequences of its actions and selects the action that is expected to yield the high-

est reward based on its model. This greedy approach focuses on maximizing immediate

rewards without explicitly considering the uncertainty or exploration.

2.5 Model-free Reinforcement Learning

Model-free RL algorithms do not require an explicit model of the environment. Instead,

they learn the consequences of their actions through experience. Model-free algorithms

directly estimate the value function or the policy without explicitly modeling the environ-

ment dynamics. Examples of model-free algorithms include Q-learning and policy gradient

methods.

In model-free RL, the agent interacts with the environment, observes the states and

rewards, and updates its value function or policy based on the observed outcomes. The

agent explores different actions and their consequences by interacting with the environment

multiple times. It updates its policy to maximize the expected cumulative reward over

time. Model-free algorithms use methods like Q-learning, where the agent estimates the
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values of state-action pairs, or policy gradient methods, where the agent directly learns a

parameterized policy.

The key difference between model-based and model-free RL lies in how they handle

decision-making. In model-based RL, the agent makes decisions based on a learned or

provided model of the environment. It is greedy in selecting actions that yield the max-

imum expected reward, taking into account the consequences of its actions. In contrast,

model-free algorithms do not have an explicit model and instead learn the optimal policy

or value function through repeated interactions. They adjust their policy based on the

observed outcomes, aiming to optimize long-term rewards.

Soft Actor-Critic is a model-free deep actor-critic algorithm where the agent aims

to maximize the expected reward while also maximizing the entropy of the actions taken,

which helps in faster exploration and convergence. Entropy, in the context of SAC, refers to

the uncertainty or randomness in the agent’s policy. It measures the amount of information

or unpredictability in the agent’s action distribution.

The objective of SAC is to maximize the expected cumulative reward while also max-

imizing the entropy of the policy. By maximizing entropy, SAC encourages exploration

and prevents the policy from becoming too deterministic or overly focused on exploiting

a single optimal action.
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Chapter 3

Related Work

In traditional traffic simulation methods like SUMO and AIMSUN, the Car-Following

Model (CFM) is utilized to simulate vehicle interactions. CFM takes into account several

key features, including safety distance and the relative velocity between adjacent vehicles

in the same lane. The safety distance is crucial for maintaining a safe following distance

and avoiding collisions, while the relative velocity influences how a vehicle adjusts its

speed or acceleration to ensure a consistent traffic flow. CFM models may also consider

lane-changing behavior and incorporate driver-specific parameters like desired speed and

reaction time to capture variations in driving behavior. When it comes to calibrating a

specific CFM (Car Follow Model), heuristic search algorithms like random search, Tabu

search, and genetic algorithm [9] are commonly employed to identify the optimal param-

eters for the CFM system.

One of the pioneering works in the field of neural control is ALVINN (Autonomous Land

Vehicle In a Neural Network). ALVINN [10], developed in the late 1980s, employed a neural

network-based approach for autonomous driving tasks. Building upon this foundation,

NVIDIA emerged as one of the early adopters of ALVINN by incorporating it into their

deep neural network called PilotNet. NVIDIA’s PilotNet [11] was specifically designed for

lane-keeping applications and utilized supervised learning techniques. The training data

for PilotNet consisted of an extensive 72-hour collection of human driving recordings. By
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leveraging this training data, NVIDIA successfully trained PilotNet to effectively perform

lane-keeping tasks using deep neural networks, further advancing the field of neural control

in autonomous driving.

The early works have deeply influenced the development of various deep-learning tech-

niques for autonomous vehicle control. Among these techniques, imitation learning has

emerged as a widely favored approach. Notably, researchers such as Zhang et al [12]. and

Pan et al. [13] have made notable advancements in this area by extending the Dataset

Aggregation (DAgger) imitation algorithm to the specific domain of autonomous driving.

Their studies effectively demonstrated that autonomous vehicle control can be successfully

learned from visual inputs, underscoring the immense potential of vision-based approaches

in this field.

Since then there have been works focusing on the implementation of a reinforcement

learning (RL) based approach to optimize driving comfort through longitudinal velocity

control [14]. This work involved utilizing RL algorithms to learn an optimal control policy

that considers factors such as acceleration, braking, and vehicle dynamics to provide a

smooth and comfortable driving experience. The work used a Soft Actor-Critic network

and an online mode of training. The agent trained exhibited capabilities to accelerate with

a minimal jerk and maintain the speed limit. However, it did not consider the car-follow

behavior which demands a complex observation space and reward function.

While there are online Actor-Critic approaches, some works have focused on improv-

ing safety and comfort in driving by employing offline reinforcement learning algorithms,

such as Deep Deterministic Policy Gradient (DDPG) networks, trained with NGSIM data

[15]. These approaches aimed to optimize driving behavior by considering variables like

Time-to-Collision (TTC), headway, and jerk, with the goal of ensuring a safe and com-

fortable driving experience. One notable consideration in these works is the use of DDPG

as an offline RL algorithm. DDPG networks learn an optimal control policy by leveraging

historical data, allowing for the optimization of driving behavior even in scenarios where

real-time interaction with the environment is not feasible. This offline training approach
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provides an effective means to train the network using available data without requiring

online interactions. However, a common limitation observed in these studies is the eval-

uation methodology, which often relies on mathematical models. While mathematical

models offer valuable insights, they may not fully capture the intricacies of simulation

environments, where real-world dynamics and complexities come into play.

Another notable work in the field involves leveraging Inverse Reinforcement Learning

(IRL) and expert trajectory data to imitate human behavior [1]. The objective is to

learn driving policies that mimic human decision-making processes. By utilizing IRL, this

approach aims to understand the underlying preferences and intentions of expert drivers

by observing their trajectories. This work takes into consideration two crucial factors:

the lead vehicle gap and traffic signals. The lead vehicle gap plays a significant role in

maintaining safe distances, while the consideration of traffic signals allows the model to

adapt its behavior based on the current traffic conditions. The state space employed in

this work includes various parameters to capture the driving context, such as the length

of the current lane, speed limit, phase of the traffic light, velocity, position in the lane,

and distance to the traffic light. These state variables collectively provide the necessary

information for the learning algorithm to make informed decisions. Interestingly, unlike

previous works that focused on learning acceleration, this model specifically learns the

speed as the desired control output. This shift in focus highlights a different approach,

emphasizing the importance of speed control to imitate human driving behavior accurately.

By combining IRL, expert trajectory data, and a comprehensive state space representation,

this work strives to capture the intricacies of human-like driving behavior. However, it

might not be sufficient to generate a diverse traffic flow as the sample space is very small

and it is hard to determine whether the RL agent has generalized the reward function

despite the work showcasing better performances by imitating the expert trajectories.

Imitation learning-based approaches have made significant advancements in the realm

of traffic simulation [1]. However, their effectiveness diminishes when deployed in en-

vironments that differ from their training distribution [16]. While these driving models,
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built using supervised techniques, are typically evaluated based on performance metrics on

pre-collected validation datasets, it is crucial to recognize that low prediction error on of-

fline testing does not necessarily guarantee high-quality driving performance [17]. Despite

showcasing promising results during closed-loop testing in naturalistic driving scenarios,

imitation learning models often experience performance degradation due to distributional

shift [18], the presence of unpredictable road users [19], or causal confusion [20] when

confronted with diverse driving scenarios. These limitations highlight the challenges of

deploying imitation learning approaches in real-world autonomous driving applications,

necessitating the exploration of more robust and adaptable methodologies.

However, Reinforcement learning (RL) approaches offer notable advantages for longi-

tudinal velocity control. RL algorithms have the capability to learn general driving rules

that can adapt to new and varying environments. This has been demonstrated through nu-

merous successful applications of RL in the autonomous vehicle longitudinal control [14].

The suitability of RL for longitudinal control is attributed to the ability to learn from

low-dimensional observations such as relative distances and velocities. This mitigates the

sample-efficiency problem commonly associated with RL. Additionally, defining the re-

ward function for RL in the longitudinal control scenario is comparatively easier, often

relying on safety distances to vehicles ahead. These factors contribute to the effectiveness

and appeal of RL in autonomous vehicle longitudinal control, showcasing its potential for

advancing autonomous driving capabilities. For these reasons, we focus on longitudinal

velocity control by combining safety, comfort, efficiency, and speed constraints.
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Chapter 4

Approach

In order to develop a velocity control strategy for a system with a continuous variable like

acceleration, the Soft-Actor Critic (SAC) algorithm was chosen for the task. The SAC

algorithm is a reinforcement learning technique that has been shown to achieve state-of-

the-art performance on continuous control tasks.

In this section, we will describe the approach taken to learn the velocity control strategy

using the SAC algorithm. We will start by outlining the main steps involved in the process,

which include defining the problem, selecting appropriate reward functions, designing

the neural network architecture, and training the model. The implementation is made

available through GitHub 1.

Firstly, we defined the problem by specifying the task and the environment in which it

will be performed. We then selected appropriate reward functions that would incentivize

the agent to learn the desired behavior. Next, we designed a neural network architecture

that could learn from the input data and output the appropriate control action. Finally,

we trained the model using the collected data and iteratively improved its performance.

Overall, the SAC algorithm proved to be a powerful tool for learning a velocity control

strategy in a system with a continuous variable like acceleration.

1https://github.com/latchukarthick98/realisitc_speed_control

15

https://github.com/latchukarthick98/realisitc_speed_control


4.1 State and Action

For our specific velocity control problem, the state is defined by the following variables:

• Current velocity (v): The current speed of ego vehicle.

• Current acceleration (a): The current acceleration of the ego vehicle.

• Previous acceleration (aprev): The acceleration of the ego vehicle at the previous

time step.

• Vehicle gap (gap): The distance between the leading and ego vehicles.

• Relative speed (vrel): The difference between the velocity of the ego vehicle and

the velocity of the leading vehicle.

In the velocity control problem described, the action determines the desired accelera-

tion for the next time step.

This means that the agent receives feedback on its performance based on how well

it can control the acceleration to achieve the desired velocity while taking into account

the previous acceleration of the ego vehicle, the acceleration of the leading vehicle, the

gap between both vehicles and the relative speed. By optimizing the reward function to

incentivize the agent to reach the desired velocity quickly and smoothly while maintaining

a safe distance from the leading vehicle, we can train the agent to reliably control the

system’s acceleration and achieve the desired velocity.

4.2 Simulation Setup

The simulation environment used in this project is the Simulation of Urban Mobility

(SUMO), which is a widely used framework for traffic simulations. In this particular

simulation, there are around 200 vehicles in addition to the ego vehicle. These vehicles

are programmed to follow specific traffic rules, such as stopping at red lights and following

speed limits, and behave based on the default car-follow model (Krauss). The learning
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agent vehicle’s specification has been shown in 4.1. The agent in the simulation has to

handle two different situations: one with a leading vehicle and another without one. These

situations require the agent to use different strategies to navigate the traffic. To avoid any

potential impact of sequence, events in the simulation were randomly shuffled. Shuffling

the sequence of events in the simulation is a technique used to mitigate any potential

impact or bias caused by the order in which the events occur. Reinforcement learning

algorithms often learn from sequential data, where the order of events can influence the

learning process. By randomly shuffling the events, we ensure that the learning algorithm

is exposed to a diverse and varied sequence of events, reducing the risk of it overfitting

specific patterns or dependencies in the original sequence. This allowed for a more accurate

representation of real-life traffic scenarios, where events can occur in any order. Overall,

the SUMO simulation environment and setup allow for a comprehensive evaluation of the

agent’s performance in various traffic scenarios.

Figure 4.1: Road Network used for Training
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Figure 4.2: Road Network used for Testing the car follow behavior

4.3 Reward Function

The reward function used in the velocity control task consists of four components: the

desired speed reward, the time-to-collision (TTC) reward, the headway reward, and the

comfort reward. Each of these components is designed to incentivize the agent to learn a

specific aspect of the desired behavior.

4.3.1 Desired Speed Reward

The desired speed reward is a simple reward that encourages the agent to reach the desired

speed as quickly and smoothly as possible. The agent is encouraged to drive towards the

desired speed. Without rewarding the speed, the agent might fall prey to the zero rewards

imposed by comfort and TTC rewards, as standing still is much safer than driving. It is

calculated as the negative absolute difference between the current velocity and the desired

velocity.

The desired speed reward rforward is defined as the ratio of the absolute difference
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Figure 4.3: Road Network of Shorewood neighborhood used for Testing

between the desired speed and current speed to the desired speed which is shown in

equation 4.1.

rforward =
|vdesired − vcurrent|

vdesired

= lmap(rforward, [1, 0], [0, 1])

(4.1)

The reward rforward will be approaching zero when the current speed is approaching

the desired speed and approaching one when the current speed is zero. But, with this kind

of reward, the agent might not even move as the goal is to maximize the overall reward.

So, a linear map function (equation 4.9) that maps the reward in the interval [0, 1] to [1, 0]

is applied to the equation 4.1. It is also ensured that rforward is clipped in the range [0, 1].

This also helps in normalizing the overall reward.
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4.3.2 Time-to-Collision Reward

Time-to-Collision is calculated by dividing the gap between ego and leading vehicles with

the relative velocity (vrel) of the ego and lead vehicles (equation 4.2). The TTC reward

incentivizes the agent to maintain a safe distance from the leading vehicle. It is calculated

with the equation 4.3. A high TTC reward indicates that the ego vehicle is far from the

leading vehicle, while a low TTC reward indicates that the ego vehicle is close to the

leading vehicle and needs to slow down to avoid a collision.

TTC = −gap

vrel
(4.2)

rttc =


log(TTC

4 ) 0 ≤ TTC ≤ 4

0 otherwise

(4.3)

The TTC reward will approach negative infinity as the TTC values approach zero, hence

penalizing heavily for near-miss collision scenarios. The upper bound of 4 for TTC is

chosen as it resulted in better overall performance [15].

4.3.3 Headway Reward

The headway reward also encourages the agent to maintain a safe distance from the leading

vehicle. It is calculated as log-normal distribution (equation 4.5) of the headway distance,

which is the distance between the leading vehicle and the ego vehicle divided by the current

velocity of the ego vehicle (equation 4.4). A high headway reward indicates that the ego

vehicle is far from the leading vehicle, while a low headway reward indicates that the ego

vehicle is too close and needs to slow down.

headway =
gap

vcurrent
(4.4)

rheadway = flognorm(headway|µ = 0.4426, σ = 0.4365) (4.5)
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The log-normal distribution along with the parameters specified in equation 4.5 is used to

encourage the agent to maintain a constant headway. The distribution corresponds to the

largest value (about 0.65) when the headway is about 1.2 seconds and the lower value for

too long or too short headway values [15].

4.3.4 Comfort Reward

Finally, the comforting reward incentivizes the agent to control the acceleration smoothly.

It is calculated as the negative squared difference between the current acceleration and

the previous acceleration of the ego vehicle (equations 4.6 and 4.7). A low comfort reward

indicates that the acceleration is changing quickly, while a high comfort reward indicates

that the acceleration is changing smoothly.

comfort = abs(aprev − acurrent) (4.6)

rcomfort =
−comfort2

3600
(4.7)

4.3.5 Combined Rewards

By combining these four rewards, the agent is incentivized to reach the desired speed

quickly and smoothly while maintaining a safe distance from the leading vehicle and

controlling the acceleration smoothly. This reward function has been shown to effectively

train the agent to learn the desired velocity control strategy in the simulation environment.

R = ω1 ∗ rforward + ω2 ∗ rcomfort + ω3 ∗ rheadway + ω4 ∗ rttc − ω5 ∗ rcollision (4.8)

In the above equation 4.8, rcollision refers to the heavy penalty that is imposed when

the vehicle collides. The weights are ω1, ω2, ω3, ω4, ω5 = 1 for this task, which means each

feature is equally regarded.
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4.3.6 Reward Normalization

It is known that the optimal policy is invariant by scaling and shifting rewards. Since the

rewards must be bounded for stable training, we chose to normalize them in the range

[0, 1] by convention. Normalizing the reward has been proven to be practically beneficial in

Deep Reinforcement Learning as the same model can be used for various tasks. We forbid

negative rewards, since they may encourage the agent to prefer terminating an episode

early by colliding rather than suffering a negative return if no satisfying trajectory can be

found. Normalization is done through a linear map function (equation 4.9).

lmap(val, [xmin, xmax], [ymin, ymax]) = ymin +
(val − xmin) ∗ (ymax − ymin)

(xmax − xmin)
(4.9)

4.4 Action Scaling

In the context of vehicle control, actions refer to the actuation of vehicle pedals, specifically

the accelerator and brake pedals. The accelerator pedal is associated with positive actions,

indicating an intention to accelerate the vehicle. On the other hand, the brake pedal is

associated with negative actions, signifying the intention to apply braking force and slow

down or stop the vehicle.

a =
(Fdrive − Fdrag)

m
(4.10)

Fdrive =
Pengine

v
+m ∗ g + Ffriction (4.11)

Fdrag = 0.5 ∗ Cd ∗ ρ ∗A ∗ v2 (4.12)
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where:

Fdrive Driving Force

Fdrag Air Drag Force

m = Mass of the vehicle

Pengine = Engine power

v = Velocity

g = Acceleration due to gravity

A = Car frontal area

Cd = Drag coefficient

ρ = Air Density

The acceleration of the vehicle is influenced by its current speed. The relationship

between speed and acceleration can be determined based on the vehicle’s technical data or

specifications which is applied to equation 4.10. These specifications provide information

about the maximum and minimum acceleration values at different speeds. By considering

the current speed, the controller can determine the appropriate level of acceleration within

the speed-dependent limits.

When the action is set to 0, it implies that neither pedal is actuated. In this scenario,

the vehicle decelerates due to the simulation of driving resistance. This deceleration ac-

counts for factors such as aerodynamic drag, rolling resistance, and other forces that act

to slow down the vehicle in the absence of pedal actuation. By incorporating this de-

celeration component, the controller ensures that the vehicle gradually slows down when

no pedal is being pressed. Fig.4.4 shows a diagrammatic representation of action scaling

which is inspired by [14].

In summary, in vehicle control, actions correspond to the actuation of the accelera-

tor and brake pedals. Positive actions represent acceleration, negative actions represent
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Figure 4.4: Action Scaling based on the current speed and action input. AP =
Acceleration Pedal, BP = Break Pedal, a = acceleration, v = velocity.

braking, and 0 action indicates no actuation of either pedal. The relationship between

speed and acceleration is determined by the vehicle’s technical data, and the controller

applies speed-dependent limits to the acceleration. When no pedal is actuated, the vehicle

decelerates based on the simulation of driving resistance.

Table 4.1: Vehicle Specification

Attribute Value

Acceleration Limits [−3.0, 3.0] m/s2

Velocity Limits [0, 50] m/s
Mass 1443 kg
Frontal Area 2.38 m2

Emergency Breaking −4.5 m/s2
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Algorithm 1 Velocity Control based on Soft Actor-Critic (SAC)

Require:
1: Initial state s
2: Learning rate α
3: Discount factor γ
4: Target update rate τ
5: Entropy coefficient β
6: Replay buffer size N
7: Batch size B

Ensure:
8: Trained actor network π
9: Initialization:

10: Initialize actor network π with random weights θπ
11: Initialize critic network Q with random weights θQ
12: Initialize target networks π′ and Q′ with weights θπ′ = θπ and θQ′ = θQ
13: Replay Buffer:
14: Create an empty replay buffer R of size N
15: Training Loop:
16: repeat
17: Sample an action at ∼ π(st, θπ) from the actor network π based on the current

state st
18: Execute the action at in the environment and observe the next state st+1, reward

rt, and termination signal done
19: Store the experience (st, at, rt, st+1, done) in the replay buffer R
20: if replay buffer size > B then
21: Sample a batch of experiences (si, ai, ri, si+1, donei) from the replay buffer R
22: Compute the target value yi for each sample:
23: yi = ri + γ(1− donei)Q

′(si+1, π
′(si+1, θπ′), θQ′)

24: Update the critic network by minimizing the mean squared Bellman error:
25: θQ = θQ − α∇θQ

(
1
B

∑
i(yi −Q(si, ai, θQ))

2
)

26: Update the actor network by maximizing the expected Q-values and the entropy
regularization term:

27: θπ = θπ + α∇θπ

(
1
B

∑
iQ(si, π(si, θπ), θQ)− β∇θπH(π(si, θπ))

)
28: Update the target networks by slowly blending the main network weights:
29: θπ′ = τθπ + (1− τ)θπ′

30: θQ′ = τθQ + (1− τ)θQ′

31: end if
32: until convergence or maximum number of episodes reached
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4.5 Collision Warning and Avoidance

The safety reward system, despite penalizing situations with small time-to-collision (TTC)

values, may not completely prevent the agent from taking unsafe actions that could result

in collisions, even after the training has converged. In such cases, collisions lead to the

simulation being reset. A collision avoidance strategy is employed both during the train-

ing and testing phases to enhance the agent’s ability to avoid collisions. This approach

also aids the agent in recognizing and responding appropriately when the leading vehicle

abruptly comes to a stop.

dsafe =
v2

2 ∗ a
−

v2lead
2 ∗ alead

+ v ∗R+ C (4.13)

where:

v = Velocity of the ego vehicle

a = Maximum deceleration of the ego vehicle

vlead = Velocity of the lead vehicle

alead = Maximum deceleration of the lead vehicle

R = Reaction time

C = Confidence distance, C = 2 in this implementation

The safe distance(dsafe) formulation presented in equation 4.13 is based on a kinematic

stop distance proposed by [4]. The intuition is that when the car in front hits a hard break

and suddenly stops, the ego vehicle has no chance of collision if it maintains a distance

larger than dsafe. The agent takes a hard brake (emergency breaking mentioned in Table

4.1) when its distance from the lead vehicle is less than the dsafe. It also acts as a teacher

for the agent during training to correct itself in the event of taking an unsafe action.
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4.6 Network Architecture

For the velocity control task, the network architecture of a Soft Actor-Critic (SAC) network

is tailored to handle continuous action spaces and predict the optimal control inputs to

regulate the vehicle’s speed. Here’s an adapted description of the network architecture:

Figure 4.5: Soft Actor-Critic Network
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Table 4.2: Hyperparameters for Soft Actor-Critic (SAC) Algorithm

Hyperparameter Value

Optimizer Adam [21]
Learning rate 0.0003
Discount factor (γ) 0.99
Replay buffer size 1,000,000
Number of hidden layers (all networks) 2
Number of hidden units per layer 256
Optimization batch size 256
Target entropy −dim(A)
Activation function ReLU
Soft update factor 0.01
Target update interval 1
Gradient steps 1

4.6.1 Actor Network

The actor network takes the current state of the vehicle as input and outputs the control

signal or action that determines the desired velocity. The architecture of the actor network

typically consists of one or more hidden layers followed by an output layer.

The hidden layers of the actor network can utilize fully connected (dense) layers as the

input includes sensor readings such as velocity, gap, and acceleration. There are 256 units

in the hidden layer of the actor network. The actor network and its interaction with the

critic network is shown in Figure 4.5

The activation function used between the layers is ReLU which introduces non-linearity

into the network. These activation functions help the network model complex relationships

and extract relevant features from the input state.

The output layer of the actor network is typically a single neuron that outputs the

desired vehicle action (accelerate/decelerate). As this is a continuous control task, the

output neuron employs a linear activation function to directly provide the desired action.
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4.6.2 Critic Network

The critic network estimates the value function, which evaluates the expected return or

utility of a given state and the associated control signal. It takes the current state and

the selected action as inputs and outputs a scalar value representing the estimated value

of that state-action pair. This value is used to assess the quality of the chosen action by

the actor network. The architecture of the critic network is similar to the actor network,

with hidden layers and an output layer.

The hidden layers of the critic network use fully connected layers. These layers extract

relevant features to estimate the state-action value. The activation function, ReLU is

employed between the layers. The critic network’s hidden layer has about 256 units.

The output layer of the critic network consists of a single neuron that provides the

estimated state-action value. This value is used to compute the advantage function, which

represents the advantage of taking a specific action in a given state compared to the

average value of that state.

4.6.3 Value Network

Similar to the critic network, SAC includes a value network to estimate the state value

function, which measures the expected return from a given state. However, for the vehicle

velocity control task, the value network is not necessary, as the focus is primarily on the

actor and critic networks.

In summary, for a vehicle velocity control task, the SAC network architecture comprises

an actor network that outputs the desired action, a critic network that estimates the

state-action value, and a value network for state-value estimation. The actor network

determines the control inputs, the critic network evaluates their quality, and the value

network estimates the expected return. This architecture enables the SAC algorithm

to learn an optimal policy for regulating the vehicle’s velocity based on the given state

information.

29



4.7 Training the agent

The Actor-Critic network used for the training has been depicted in Fig.4.5. The hyper-

parameters used for the training are listed in Table 4.2. A detailed algorithm on how the

SAC-based agent was trained has been presented in Algorithm 1. In the training of a

SAC agent for velocity control in the SUMO environment, the agent undergoes a learn-

ing process of over 1 million steps with approximately 1000 episodes where each episode

has a maximum of 1000 steps as a time horizon. A time horizon is a hard limit on time

steps to stop training the same episode and reset the environment for a new episode. By

doing this we eliminate the chances for the model being stuck due to a huge negative

cumulative reward and fail to improve. During each episode, the agent interacts with

the SUMO environment by observing the current state, selecting an action (accelerator or

brake pedal actuation), and receiving a reward based on the action and resulting state.

The agent’s training involves collecting data, storing transitions in a replay buffer, and

periodically updating its policy and value function networks through optimization. The

objective is to find a policy that maximizes the expected cumulative reward while also

balancing exploration and exploitation through the entropy term. By training for a large

number of episodes, the SAC agent learns to control the vehicle’s velocity effectively in the

SUMO environment. The mean rewards obtained during training over different episodes

have been presented in Fig.4.6. It can be noted that the rewards started converging after

˜350 episodes.
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Figure 4.6: Mean reward of each episode during the training of SAC agent. x − axis is
episodes and y − axis is mean reward per episode.
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Chapter 5

Evaluation

This section aims to compare the car-following behavior simulated by the Krauss, IDM,

and SAC-based models, showcasing their respective abilities to safely, efficiently, and com-

fortably follow the leading vehicle.

5.1 Driving Comfort

In evaluating driving comfort during car-following events, one common metric used is the

jerk, which represents the rate of change of acceleration. A lower jerk value indicates

smoother and more comfortable driving behavior.

To calculate the jerk, measurements are taken at each step of the car-following event,

capturing the acceleration changes experienced by the following vehicle. By comparing

the jerk values generated by the Krauss, IDM, and SAC-based models, and a baseline

model (referred to as DDPG), we can gain insights into the comfort levels achieved by

each model.

The cumulative distribution of jerk values during the car-following events simulated

by different models is presented in Fig.5.1. The mean jerk values for the Krauss model,

IDM model, SAC-based model (our implementation) and DDPG are 5.45m/s3, 0.67m/s3,

2.11m/s3, and 6.11m/s3 respectively.

Comparing these values, we can observe that the IDM model achieves the lowest mean
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jerk, indicating a smoother and more comfortable car-following behavior. The SAC-based

model also performs well, with a higher mean jerk than IDM but still providing relatively

comfortable driving. On the other hand, the Krauss model and DDPG model have higher

mean jerk values, suggesting less comfortable driving experiences.

Figure 5.1: Comparison of Jerk from different models. SAC is our implementation.

5.2 Safe Driving

Driving safety is a crucial aspect of evaluating car-following behavior, and one commonly

used metric is Time to Collision (TTC). TTC measures the estimated time it would take

for a following vehicle to collide with the leading vehicle if their current trajectories were

maintained. Higher TTC values indicate safer distances between vehicles, reducing the

risk of collisions.

A cumulative distribution of TTC for the car-following event by all four models in

comparison is shown in Fig.5.2. The mean TTC values for the models are as follows: the

Krauss model has a mean TTC of 33.5 seconds, the IDM model has a mean TTC of 26.8
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seconds, the SAC model has a mean TTC of 36.7 seconds and the DDPG model has a

mean TTC of 13.6 seconds.

This means that the SAC model exhibits the highest mean TTC value, indicating safer

following distances and a reduced risk of collisions during car-following events. The IDM

model follows with a slightly lower mean TTC, while the Krauss model has a moderate

mean TTC. The DDPG model, however, demonstrates the lowest mean TTC, suggesting

closer following distances and potentially higher collision risks.

Figure 5.2: Comparison of Time to Collision values from different models. SAC is our
implementation.

5.3 Efficient driving

Driving efficiency, a key factor in evaluating car-following behavior, can be assessed using

the concept of time headway. Time headway represents the time interval between the

leading and following vehicles, indicating how closely vehicles are spaced on the road. A

higher time headway signifies a more efficient and smoother traffic flow.

To evaluate driving efficiency, time headway is measured at each step of the simulation,
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providing insights into the efficiency of car-following events. By comparing the mean

time headway values for the Krauss, IDM, SAC, and DDPG models, we can assess their

respective efficiency levels.

A cumulative distribution of time headway times exhibited four different car-follow

models were compared in Fig.5.3. The mean time headway values for the models are as

follows: the Krauss model has a mean time headway of 1.37 seconds, the IDM model has

a mean time headway of 1.37 seconds, the SAC model has a mean time headway of 1.48

seconds, and the DDPG model has a mean time headway of 0.36 seconds.

These results indicate that both the Krauss and IDM models exhibit similar mean

time headway values, suggesting comparable levels of driving efficiency. The SAC model

demonstrates a slightly higher mean time headway, indicating a relatively more efficient

traffic flow. In contrast, the DDPG model shows the lowest mean time headway, indicating

a less efficient traffic flow with vehicles being closely spaced.

Figure 5.3: Comparison of Headway times from different models. SAC is our implemen-
tation.
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5.4 Leader Speed vs Follower Speed

To give an illustration of how the following vehicle copes up with the leader in terms of

speed, a sample car-follow event has been chosen to compare the speed of the leader versus

the following vehicle with respect to the given time step as shown in Fig.5.4. It can be

Figure 5.4: Leader vs Follower speed in a random car follow event

seen that the following vehicle tries to keep up the speed of the leader vehicle to maintain

a safe gap. Though the follower goes a little higher speed than the leader sometimes, it

maintains the speed of the leader most of the time. The spikes that appear to be higher

than the leader’s speed may be due to the follower trying to maintain an efficient headway

time, rushing to close the distance.
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5.5 Models in Comparison

5.5.1 Krauss Model

The Krauss car-following model [6], developed by Hermann Krauss, is the default car-

following model in the SUMO traffic simulation framework. This model captures the

behavior of individual vehicles in a traffic flow by considering factors such as desired time

headway, actual time headway, and speed differences. It incorporates a stochastic term

to account for random variations in acceleration. Widely used in traffic simulations, the

Krauss model provides a simplified representation of vehicle interactions and is employed

as the default car-following model in SUMO, enabling the study and analysis of traffic

flow dynamics in various scenarios.

5.5.2 Intelligent Driver Model (IDM)

The Intelligent Driver Model (IDM) [5] is a car-following model commonly used in traffic

simulations and transportation research. Developed by Treiber, Hennecke, and Helbing,

the IDM aims to replicate human driving behavior by considering factors such as desired

speed, desired time headway, and sensitivity to the speed and distance of the vehicle ahead.

The model assumes that drivers strive to maintain a desired time headway while reaching

their desired speed. It incorporates acceleration and deceleration terms based on these

factors, including a comfortable deceleration term in response to a slower vehicle and an

acceleration term reflecting the difference between desired and actual speeds. The IDM

also considers safety distances that increase with decreasing speeds and sizes of the vehicle

ahead.

5.5.3 DDPG model and its Implementation

DDPG, a model used for comparisons, has been reconstructed with the network archi-

tecture and hyperparameters specified in the paper [15] to support SUMO. However, it

is important to note that the original implementation of the paper used trajectories ex-

tracted from NGSIM data and employed a mathematical model for vehicle simulation.
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This means that the reconstructed DDPG might not be an exact replica of the original

work. Consequently, the comparisons made between DDPG and other models may be

affected by these differences in implementation. The variations in data source and simu-

lation approach could potentially introduce discrepancies and impact the validity of the

presented comparisons.

In summary, the SAC-based model demonstrates superiority in terms of safe, efficient,

and comfortable driving behavior compared to the other three models. It achieves this

through the following key points:

Safety The SAC-based model exhibits larger Time to Collision (TTC) values compared

to the other models, indicating safer distances and a reduced risk of collisions during

car-following events. It is also notable that the SAC based approach has fewer TTC

values between the range 0 and 20 seconds and more TTC values between the range

40 and 50 seconds making it safer compared to other methods.

Efficiency The SAC-based model is capable of maintaining safe and efficient time head-

ways between 1 second and 2 seconds. This ensures smoother traffic flow and better

utilization of road capacity.

Comfort While the Intelligent Driver Model (IDM) excels in providing comfortable driv-

ing experiences, the SAC-based model still offers satisfactory levels of comfort, due

to its smoother acceleration patterns and ability to follow the lead vehicle effectively.

Overall, the SAC-based model outperforms the other models, including Krauss and the

baseline models, in terms of both safety and efficiency. Although IDM may offer better

driving comfort, the SAC-based model strikes a balance between comfort, safety, and

efficiency, making it a preferred choice for car-following simulations and traffic management

applications.
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Chapter 6

Conclusion and Future Work

In conclusion, we have presented a Soft Actor-Critic (SAC) based agent that effectively

learns to control velocity by applying appropriate acceleration while prioritizing safety,

comfort, and efficiency. The agent was trained using an online environment with SUMO

as a simulation environment, which generates random traffic scenarios.

The performance of our model was compared against the Krauss, IDM, and DDPG

models to evaluate its effectiveness. The results demonstrate that our model exhibits

safe, efficient, and comfortable driving capabilities. While it may not outperform the IDM

model in terms of comfort, it excels in safety and efficiency, outperforming both the Krauss

model and DDPG model across all aspects.

An important aspect of our model is its ability to maintain speed with the lead vehicle,

which is crucial for maintaining a safe distance and avoiding collisions. This finding

highlights the effectiveness of the proposed approach in achieving safe driving behaviors.

Overall, the results indicate that reinforcement learning methods, such as the SAC

algorithm, hold significant promise in handling diverse traffic simulations and effectively

generalizing driving behaviors. Further research and improvements in the model can

potentially enhance its comfort aspect while maintaining its superior safety and efficiency

characteristics. Our study contributes to the growing body of knowledge in developing

intelligent systems for traffic simulation.

39



The future works can be in one of the following aspects:

1. Test the performance of the SAC-based model using real-world traffic data by trans-

lating NGSIM data into SUMO traffic scenarios. This will allow for the validation

of the model’s ability to generalize and adapt to real-world traffic conditions.

2. Explore the potential of action scaling in the SAC-based model. Investigate whether

scaling the actions can provide a way to test the model with vehicles that have

different technical specifications without requiring separate training for each vehicle

type. Action scaling can abstract the acceleration component, enabling the model

to handle vehicles with varying performance characteristics.

3. Conduct experiments with different weights for the reward terms in the SAC-based

model. By adjusting the weights assigned to different components of the reward

function, such as comfort, energy efficiency, or safety, the model’s behavior can be

fine-tuned to prioritize specific objectives. Exploring different weight configurations

can help find an optimal balance and uncover the trade-offs between different per-

formance metrics.
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