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ABSTRACT

PARALLELIZATION OF DIAL-A-RIDE USING TABU
SEARCH

by

Raghuveer Naraharisetti

The University of Wisconsin-Milwaukee, 2023
Under the Supervision of Professor Tian Zhao

Dial-A-Ride is a transport system heavily constrained by following fleet size, vehicle

capacity, and a fixed number of requests (pickup and drop-off points) with time windows. It

is often modelled as Integer Programming, various solutions are proposed using heuristics.

One such heuristic is ”Tabu Search”. Tabu Search is very CPU intensive with its process of

search, therefore many modern computing techniques like using GPUs have been employed

to make it efficient.

As with many other greedy algorithms, the local optima is not always the same as the

global optima, so it is not possible to go past the local optima using greedy techniques for

this problem. It is often modelled as Integer Programming, with the search space being

very big, there are proven to not be so efficient. So, many heuristics have been proposed

in the past, one such heuristic is ”Tabu Search”. The local search of this heuristic uses

memory to keep track of recent moves made and tries to avoid them for specified iterations

(marks as Tabu) and also continues to explore the neighbourhood search space even with

the degradation optimization function value, thus helping the algorithm to go past the

local optima towards global optima.

This thesis focuses on limitations of parallelizing DARP-TS for multi-core CPU, dis-

cussing major factors like (i) number of good moves in the neighbourhood and how we

can estimate a value for N SIZE (number of parallel moves to make in each iteration),

(ii) difference between a CPU core and a GPU core in the context of thread scheduling,

memory layout and memory limitations, (iii) proposes few data-structures to keep the

memory allocations low thus reducing the time for garbage collection and (iv) proposes an
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incremental way of calculating the value of optimization function in the local search phase

which helps in mapping the execution and evaluation of N SIZE moves in each iteration

onto the multiple CPU cores.
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Chapter 1

Introduction

Dial-A-Ride Problem (DARP) deals with moving passengers from one location to an-

other with a fixed set of vehicles with a fixed capacity constraint on each vehicle. The

customers/passengers submit the requests with pickup & drop-off locations along with

pickup & drop-off time windows and max ride time. The objective of DARP is to provide

transportation service to these requests under constraints defined in the system while op-

timization for the objective function of the system. A DAR where all the requests and

constraints of the DAR are known in advance is classified as Static DAR. If the requests

are allowed to arrive while the service is active, such DAR is classified as Dynamic DAR.

This paper deals with Static DAR, so all requests and constraints of the system are known

in advance. DARP is proven to be NP-Hard, it is generalized from the Pickup and Deliv-

ery Problem with Time Windows (PDPTW)[1]. The optimization function for the DAR

is flexible in the sense that it can be defined as a combination of various factors and also

possible to optimize for a subset or a specific case by modifying the constant coefficients

for each or subset of factors. This paper closely follows the optimization function defined

here[2], which calculates the total violations of the system with the constraints defined

in the system. The lesser the optimization values, the less violation and the better the

solution.

The literature contains numerous solutions proposed for addressing the problem, in-
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cluding both exact solutions and heuristic-based approaches. Although exact solutions

guarantee optimality, their runtimes often become impractical for real-time problems as

the scale increases [3]. On the other hand, heuristics offer reasonable runtimes for real-

world scenarios[1]. Continuous efforts have been made to enhance these heuristic methods

[1][3][4]. In light of modern hardware advancements, such as GPUs, [5] presented an

adapted version of heuristic-based algorithms tailored for GPU utilization. While GPUs

offer faster computation, their architecture primarily targets graphics processing, posing

challenges when attempting to apply general-purpose computing algorithms to them. Ad-

ditionally, GPUs tend to be costly and not readily available off the shelf. In contrast,

CPUs have become increasingly powerful, affordable, and commonly found in everyday

computing devices. With the advancements in silicon chip research and the latest ARM

processors, it has now become reasonable and feasible to implement these heuristics on

multi-core CPUs, which are highly accessible and powerful.

This paper makes some observations on the calculation of optimization function (f(s))

value in the local search phase and formulates a way to incrementally calculate optimiza-

tion function values for the solutions generated by applying a move on the existing solution

using dynamic programming techniques to avoid re-calculation of parts of f(s). This paper

also proposes a few data structures to support the above technique for calculating f(s′).

This paper also proposes the use of probability on vertices when picking for the random

move generation in the local search phase with the probability value directly proportional

to the absolute value of violation at the respective vertex, this helps the algorithm to make

moves such that vertices with high violation have a high probability of removal from the

respective route. Finally, we present the results of applying the proposed algorithm to

benchmark datasets from [2] and demonstrate its speedup compared to different thread

configurations, with the single-thread configuration as the baseline.

The previous research on the Dial-a-Ride Problem with Tabu Search (DARP-TS) has

primarily focused on improving the heuristics and exploring GPU-based optimizations

using frameworks like CUDA. These approaches have shown impressive speedups but are
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limited by the availability and cost of GPUs.

In contrast, there is a lack of research specifically targeting general-purpose multi-core

CPUs for modelling the DARP-TS algorithm. This paper aims to fill that gap by leveraging

the widespread availability and relatively low cost of multi-core CPUs. By designing the

algorithm to harness the computational power of multi-core CPUs, the paper seeks to

make the DARP-TS approach more accessible and applicable in practical scenarios.

Furthermore, the paper takes a different approach by focusing on computer science

techniques, such as the use of better data structures, to minimize the re-computation

of intermediate results. By optimizing the data structures and employing incremental

calculation techniques, the paper aims to improve the efficiency of the algorithm without

relying solely on heuristic enhancements.

Overall, this paper attempts to address the limitations of previous research by targeting

multi-core CPUs, which are more readily available and cost-effective, and by exploring

computer science techniques to optimize the algorithm’s performance.

The paper focuses on the calculation of the optimization function (f(s)) value in the

local search phase of the algorithm and introduces an incremental approach to calculate

the violation function values for solutions generated by applying moves to the existing

solution. This approach utilizes dynamic programming techniques to avoid redundant

calculations of parts of the f(s). To support the incremental calculation of f(s′), the

paper proposes the use of specific data structures. These structures facilitate efficient

updates and retrieval of information related to the parts of the f(s).

Additionally, the paper suggests incorporating probability values when generating ran-

dom moves in the local search phase. The probability assigned to each vertex is propor-

tional to the absolute violation at that vertex. This probabilistic approach allows the

algorithm to prioritize moves that remove vertices with higher violations from their re-

spective routes.

The proposed algorithm is evaluated using benchmark datasets from a previous study.

The results demonstrate the speedup achieved by different thread configurations compared
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to the baseline single-thread configuration.

Overall, the paper presents observations and techniques to improve the efficiency of the

algorithm, specifically in the local search phase. The proposed approaches aim to reduce

redundant calculations, prioritize moves based on violation levels, and leverage parallel

computing to enhance the algorithm’s performance.

The mentioned algorithm is implemented in Julia language here
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Chapter 2

Related work

2.1 Related Work

The DARP was first introduced by [6] with applications from various cities are reported

[3], [7], [8]. Early literature focused on exact methods for single vehicles [9]–[11] and then

form multiple vehicles [12], [13]. With exact solutions taking longer times to complete

research focused more on applications of various Meta-heuristics to Dial-a-Ride Problem

(DARP) with improved computational efficiency compared to exact methods. Several

meta-heuristics, such as Genetic Algorithm [14], Variable Neighborhood Search [15], De-

terministic Annealing and Multi-Atomic Annealing have been employed to address the

DARP. These approaches have shown improved computational efficiency compared to

exact methods, making them attractive alternatives. The focus has shifted towards devel-

oping effective solutions for large-scale DARP instances.

Tabu Search (TS) is one of the meta-heuristics [16] that has proven to be efficient in

many optimization problems. Cordeau and Colorni [2] adapted Tabu Search for DARP and

also introduced benchmark dataset instances and their best-known solutions with absolute

runtime. Kirchler and Calvo [1] proposed a better and adapted version of DARP-TS with

the objective of considering the moves with a constraint of granularity threshold calling

it Granular Tabu Search (GTS) and also reported absolute runtime for the benchmark

instances from [2].
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Kirchler and Calvo [1] developed a new way of generating an initial solution where

the DARP instance is modelled into a graph and an assignment problem is employed on

the graph to get the assignment of requests to vehicles which are called clusters, where a

cluster is defined as a set of requests that are close to each other spatially and temporally.

Recent research [5] proposed a generic GPU framework for DARP and reported speedups

for DARP-TS with various other heuristics modelled to run GPU devices.

However, the existing research lacks a comprehensive analysis of how the number

of moves made in each iteration (N SIZE) impacts the convergence speed to the best-

known solution, as well as its performance with different CPU thread/core configurations.

This paper aims to address this gap by presenting an adapted version of the DARP-TS

algorithm. We investigate the relationship between N SIZE, thread configurations, and

the runtime to reach the optimal solution. By conducting experiments and analyzing the

results, the paper provides insights into the optimal settings for N SIZE and thread/core

configurations, contributing to a better understanding of the algorithm’s performance in

different computing environments.

2.2 Tabu Search

DARP can be classified as an Integer Programming and combinatorial optimization prob-

lem. The best value for the optimization function in the system is referred to as Global

Optima and the best value for the optimization function in each iteration or each move

is referred to as Local Optima. In greedy solutions, local optima often reach the global

optima. This is not the case with DARP, it is not always possible to escape the local

optima with a greedy approach of considering a local move if and only if it improves the

optimization function. In DARP, local optima is not equal to global optima. So, local

optima have to be escaped to reach global optima, which means the algorithm has to allow

the local optima to degrade and consider moves which degrade the optimization function,

this will let us escape the local optima and eventually reach the global optima. Because

of this reason, many meta-heuristic solutions have been proposed such as tabu search[16],
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variable neighbourhood search [15], and genetic algorithms [14]. Meta-Heuristic solutions

don’t guarantee global optima but often guarantee near-global optimal solutions in a rea-

sonable time, which is often desired in most real-world scenarios. This is why the usage

of meta-heuristics has seen a significant rise in optimization problems.

Approximate algorithms in the domain of combinatorial optimization problems are

often called heuristics. Meta-heuristics are a class of approximate methods, that are

designed to attack hard combinatorial optimization problems where classical heuristics

have failed to be effective and efficient. [17] define meta-heuristics as

Definition: A meta-heuristic is an iterative generation process which guides a subordi-

nate heuristic by combining intelligently different concepts for exploring and exploiting the

search space using learning strategies to structure information in order to find efficiently

near-optimal solutions.

So it doesn’t guarantee a globally optimal solution is found but provides a solution that

is near the global optimal solution that is good enough for many use cases. Tabu Search

is one such meta-heuristic which is widely used in solving combinatorial optimization

problems where the search space of the solution is exponential. A local search in tabu

search is defined a as guided search for a solution that is in the neighbourhood of the

current solution. A neighbourhood is defined as a set of solutions that can be obtained

from the current solution by applying or making a ‘MOVE‘ to the current solution. It is

important to determine the next neighbourhood to explore at each iteration, with problems

like DARP, where there exponential number of possible solutions from any given current

solution, it is not possible or viable to explore all the possible moves, so we should achieve

an effective trade-off between quality of next move and effort to find it. So we need some

procedures to evaluate the quality of the next move. Using memory for a guided search

of search space to avoid cyclic moves is introduced by [16]

The notion of things that are considered ”taboo” can change over time, as memory

evolves and adapts. Two kinds of memories are often used in Tabu Search, one is called

‘Short-term memory‘ and the other is called ‘Long-term memory‘, both play the role of
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making the search process escape local minima while making sure that the search process is

not just confined to a neighbour but explores more diverse regions [16]. Tabu Search (TS) is

based on the idea that making poor strategic choices can provide more useful information

than making random ones. TS incorporates intelligent search principles by balancing

exploiting good solution features and exploring new, promising regions. Two strategies,

Intensification and Diversification, are employed to make the exploration process more

effective. Intensification modifies choice rules to focus on examining neighbours of elite

solutions, while Diversification encourages the search process to examine unvisited regions

and generate solutions that differ significantly from those seen before. The Tabu Search

focuses more on the local search phase. It starts by generating an initial solution and

performs a search that is referred to as ‘Local Search‘ by making moves that direct the

system towards better optimization function value or exploring new regions. [16]
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Chapter 3

Formal Definition

3.1 Formal definition of DARP

This paper follows the exact formulation of DARP defined in [2]. The DARP is defined

on a complete graph set G=(V,A), where V = {v0, v1, ...v2n} is the vertex set and A =

{(vi, vj) : vi, vj ∈ V, i ̸= j}. Vertex v0 represents the depot for the fleet of nV vehicles.

All the vehicles start and end the trip at v0. The remaining 2n vertices represent pickup

and drop-off for the transportation requests. Each vertex pair (vi, vi+2n) represents the

pickup and drop-off vertex for the transportation request i. Each request comes with a

set of constraints with the same or different values for pickup and drop-off vertices. Below

are these constraints

• Load: Each vertex vi ∈ V has a associated load denoted by qi for request i. q0 = 0

• Time Window: Each vertex vi ∈ V has a time window [ei, li] for the requested

service.

• Service Duration: Each vertex vi ∈ V has a non-negative service duration, which is

the time duration reserved for service at this vertex

Let s be the solution for a given DARP instance, then is defined as a set of nV routes,

one for each vehicle in the fleet s = {routei : i ∈ N | 1 ≤ x ≤ nV }. Solving for s consists
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of following

• Every route start and end at v0

• Each route is defined as a set of arc (vi, vj) where i and j are consecutive vertices in

the same route.

• For each request i, the requests vi and vi+2n belong to the same route and vi+2n is

visited later than vertex vi

• The load of the vehicle k at any point in time doesn’t exceed Qk

• The service at vertex vi begins in the interval [ei, li] and every vehicle leaves the

depot and returns to the depot in the interval [e0, l0]

• The ride time of any user does not exceed L

• The total routing cost for all vehicles is minimized

Other variables are also associated with each vertex vi

• Arrival Time - Ai, represents time of arrival of vehicle at vertex vi

• Beginning of Service - Bi, represents time at which service is started at vertex vi.

Bi = max(Ai, ei)

• Departure Time - Di, represents time at which vehicle left the vertex vi. Di = Bi+di

• Wait Time - Wi, represents wait time incurred at vertex vi. Wi = Bi −Ai

• Ride Time - Li, represents total ride time of the passenger boarded at vertex vi.

Li = Bi+n −Ai

3.2 Optimization function

The Optimization function is denoted by f(s) and gives a quantified value of how optimized

is given solution s for the given DARP system and its constraints. It can be seen as the
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summation of total violations of the DARP constraints, so the lower the value of f(s), the

lesser the violations by s and the better the solution. So, the algorithm tries to get the

optimization to a lower value. The f(s) consists of 5 parts

• c(s) - denotes total travel costs of all the routes

• q(s) - denotes total load constraint violations on all the routes

• d(s) - denotes total max route duration violations on all routes

• w(s) - denotes total time window violations on all routes

• t(s) - denotes total ride time violations on all routes

s = {routei : i ∈ N | 1 ≤ x ≤ nV } (3.1)

f(s) = c(s) + αq(s) + βd(s) + γw(s) + Γt(s) (3.2)

Here α, β, γ,Γ are self-adjusting positive parameters, by dynamically adjusting these pa-

rameters the algorithm directs the solution to explore solution space and is particularly

useful for tightly constrained instances [2]
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Chapter 4

CPU core vs GPU core

A GPU, which stands for Graphics Processing Unit, is a specialized processing unit pri-

marily designed for rendering images and videos. It takes input data related to images,

videos, or scenes and generates output that can be displayed on screens. GPU processing

involves intensive vector math and matrix multiplications. GPUs are optimized for these

operations with specific design choices, but they may have limitations when performing

general computing tasks. Typically, GPUs have thousands of cores.

On the other hand, CPUs, or Central Processing Units, are designed for general-

purpose computing. CPUs take instructions as input and produce output. The design

choices in CPUs are geared towards a wide range of computing tasks. Modern CPUs

usually have 8 to 32 cores. However, comparing GPUs and CPUs based solely on the

number of cores would not be a fair comparison. For example, the latest NVIDIA Rx4090

GPU has 16,384 cores and offers 49 TFLOPS, while the latest Intel i9 CPU has 24 cores

and provides 849 GFLOPS, which is significantly lower compared to the Rx4090. However,

this does not mean that the Rx4090 GPU will outperform the i9 CPU in all scenarios. The

design choices made around GPUs optimize them for graphics processing, and it would

not be advisable to replace GPUs with CPUs in all cases.

To understand why a GPU core is different from a CPU core, we need to consider

their respective designs and characteristics. GPU cores are designed for high throughput,
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high bandwidth, and high-precision floating-point mathematical operations. They excel at

fast mathematical operations but may not perform as well in general-purpose computing.

At a high level, a GPU core consists of four components: a dispatch unit for receiving

instructions, a Floating Point Unit (FPU) for floating-point operations, an Integer Unit

(INTU) for integer operations, and a results queue for storing the results of instructions.

When a GPU receives an instruction, it is handled by the scheduler, which assigns the

instruction to a specific thread. Threads in a GPU are organized into WARPs, which are

sets of 32 threads. WARPs work with a concept called ”Single Instruction Multiple Data”

(SIMD), meaning all threads in a WARP can only execute a single instruction per cycle

but on different data if necessary. However, this comes with a limitation: if there is branch

divergence in one or some threads, it blocks the progress of all threads within the WARP

since the instruction is no longer uniform. Therefore, when designing programs for GPUs,

it is important to minimize or avoid branch divergence to ensure optimal performance.

CPU cores are designed for general-purpose computing and are optimized to handle

unpredictable branching, data access, and arbitrary instructions. Each core in a CPU can

operate independently, which is known as MIMD (Multiple Instruction Multiple Data)

architecture. This independence of cores makes CPUs more suitable for general-purpose

computing tasks. Additionally, modern compilers have become intelligent enough to opti-

mize programs for various CPU architectures. This implies that a single program can be

targeted towards a wide range of machine architectures, eliminating the need for device-

specific optimizations. This alleviates the requirement for modifying programs with each

new iteration of device architecture.
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Chapter 5

More Tabu Search

A solution in DARP is a set of routes, usually one for each vehicle in the fleet. In Tabu

Search, the initial solution plays a crucial role in guiding the local search towards near-

optimal solutions. A good initial solution can expedite the convergence to better solutions

compared to a poor initial solution. [1], the authors propose using an assignment problem

to generate an initial solution for the Dynamic Dial-a-Ride Problem (DARP).

To model DARP as an assignment problem, the goal is to construct clusters of requests

that are spatially and temporally close together. Each cluster represents a vehicle route.

Since each request has pickup coordinates and a pickup time window, the system can be

represented as a graph with nodes in a two-dimensional space. However, considering only

one dimension (e.g., pickup coordinates) would not be accurate since requests can have

different or widely separated time windows. To address this, the paper introduces the

concept of ”Average Departure Time” to convert the two-dimensional values into a scalar

value.

In the constructed graph, all requests and vehicles are considered nodes, and edges are

assigned weights based on the following rules: 1. If both nodes A and B are requesting

nodes, the weight of the edge connecting them is the Average Departure Time of A and

B. 2. If A and B are the same requesting node, no edge is connected (no self-edges). 3.

If A is a requesting node and B is a vehicle node (or vice versa), the weight of the edge

14



connecting them is the time taken for vehicle B to reach the pickup node of request A

from the starting depot. 4. If both A and B are vehicle depots, they are not connected

by an edge.

Once the nodes are connected and weights are assigned, the graph-building step is

complete. The assignment problem algorithm is then applied to this graph, aiming to

minimize the overall cost of the assignment. The output of this algorithm is a cluster of

nodes representing the initial solution, which is subsequently used as the starting point

for the Tabu Search.

[5] proposes an alternative approach to generating the initial solution by randomly

generating multiple solutions and selecting the one with the lowest optimization function

value. In this paper, the method defined in [5] is employed to generate the initial solution.

5.1 Issues with Assignment Problem

The worst-case run-time complexity of the assignment problem is O(n3) and it is not

trivial to parallelize this to make sure multi-CPU, so we end up only using a single CPU

even though we have multi-CPU. Another issue we found with the assignment problem

is that, if the requests are close enough, the solution of the assignment problem often

ends up with a single or few big cluster or clusters. This is not considered a good initial

solution and would make the local search difficult to reach the near-optimal value of the

optimization function, as the optimal solution divides the requests into multiple clusters

so that each cluster can be assigned to a vehicle. For the above reason, we found that

using the assignment problem is not viable when considering modelling the DARP to run

on high parallel architectures, So we need to use other approaches for generating the initial

solution.

15



5.2 Local Search

Once the initial solution is generated, the next step in TS is the search process, which

is usually called Local Search. The local search has the following components to it (Fig-

ure 5.1).

• Current solution, which is the current solution of the system.

• Best solution, which is the best solution found so far

• A move, a move consists of 5 parts i, k1, k2, p1, p2, where request i from route k1 and

inserted to the route k2, where pickup node for request i is inserted at position/index

in the route k2 and drop-off node for request i is inserted at position/index in the

route k2

Local search is performed in iterations. Each iteration requires an evaluation of the

neighbourhood and executing exactly one move to generate a new solution. In each iter-

ation, the ‘N SIZE‘ number of moves are randomly generated and each is applied to the

current solution, each yielding a new solution. Then the best solution which gives the

lowest value for the optimization function is picked among the new generated solution and

made as the current solution for the next iteration, if the current solution is better than

the best solution found so far, the best solution is updated with the current solution. This

continues until a Stopping Criteria has been met. This paper follows two stopping criteria.

• Run until we reach the best-known solution

• Run for a given period of time

5.3 Diversification and Intensification

Diversification and Intensification are employed to improve the effectiveness of the Tabu

Search method. Intensification directs the search towards more known elite regions which

have a high probability to be part of an optimal solution. Diversification directs the search
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towards more unexplored regions, this helps the search to escape the local minima and

reach optimal solutions. [2]

Figure 5.1: Tabu Search flow diagram

5.4 Tabu Memories

To escape the local minima and explore new promising regions, TS uses two types of

memories.

• Short-Term Memory, also called ‘Tabu list‘

• Long-Term Memory

In DARP-TS, we store the arcs of moves used in both the memories, but for vari-

ous reasons. An arc can be defined as a tuple (move.i,move.k2) referred as pik, which

represents the request i being inserted or assigned to the vehicle of route k2.

Short-term memory is used to mark the moves used as tabu for a certain number of

iterations, this is used for intensification, and diversification of the search process (See
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section 4). The value of the number of iterations to tabu a certain move depends on

the value of θ at the time of operation. θ is defined in [2] as a variable to hold the

value of TabuTenure, the number of iterations for which a move is forbidden from being

reconsidered again.

Long-term memory is used to record the number of times a particular pik is considered

in any of the current solutions in the search process. This is used to calculate the pik in

the penalty formula, which is used to penalize a solution by a factor proportional to the

frequency of addition of its distinguished attributes [2].

Aspiration Criteria

In Tabu Search, We need to override tabu rules in certain cases. These are often defined

in terms of aspiration criteria. These allow the algorithm to reconsider moves that are

marked tabu for certain iterations. [16]

Intra route Optimizations

[2] proposes executing intra-route optimizations in the local search algorithm after a cer-

tain number of iterations, denoted as κ. The optimization process involves sequentially

removing each vertex (v1, v2, ..., v2n) from its original route and reinserting it at a new po-

sition within the same route. The objective is to find the position that maximizes the value

of the optimization function. This approach employs a brute force method, considering

all possible combinations and selecting the best one for each route.
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Chapter 6

DARP-TS on multi-core CPU

In the DARP-TS (Dial-a-Ride Problem with Tabu Search) context, the local search process

is identified as the most time-consuming aspect [5]. Thus, it is sensible to focus on parallel

execution for the local search to leverage the capabilities of multi-core CPUs. During each

iteration, N SIZE random moves are generated, and each move is executed to create a new

solution. The f(s) is then recalculated for each solution s′, and the best one is chosen

as the current solution for the next iteration. This process continues until a stopping

criterion is met. It is important to note that recalculating the f(s′) is a computationally

intensive task and this becomes much more impact on the performance if we increase the

N SIZE i.e. explore more of the neighbourhood in each iteration. Thus, it is important

that we optimize the calculation of f(s′), where s′ is the result of applying a move on s

To analyze the runtime complexity of calculating the f(s′) for a given solution s′

in DARP which is the result of applying a move on s, let’s consider an example where

N SIZE is the number of solutions generated per iteration, nR represents the number of

requests, and nV denotes the number of vehicles. The runtime complexity of calculating

the f(s′) value for a single route is O(nR) since the worst case could involve all requests

being assigned to a single route. Consequently, the runtime complexity for all the routes

in a solution (i.e., a single iteration) is O(nR * nV). If we extend this calculation to

N SIZE solutions per iteration, the runtime complexity becomes O(N SIZE * nR * nV)
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per iteration.

This paper makes a few observations from the above text to make some improvements

to the runtime complexity defined above.

6.1 Observation 1: Summation of per route parts of each

route, gives us f(s)

The Optimization function f(s) used in the paper is defined in eq2. It is the summation

of parts i.e. violations. Each part is the sum of violations on all the routes.

c(s) =

nV∑
j=1

cr(routej)

q(s) =
nV∑
j=1

qr(routej)

d(s) =

nV∑
j=1

dr(routej)

w(s) =
nV∑
j=1

wr(routej)

t(s) =
nV∑
j=1

tr(routej)

the expanded version of f(s) can be written as

f(s) =
nV∑
j=1

(cr(routej) + αqr(routej) + βdr(routej) + γwr(routej) + Γtr(routej)) (6.1)

20



6.2 Observation 2: Not all requests need to be re-calculated

in a local search iteration

In the local search, a randomly generated move is applied to the then current solution.

A move is defined as picking a request i from route k1 (both pickup and drop-off nodes)

and inserting them in route k2 at indices p1, p2. If we observe, not all the routes are

impacted when applying a move [reference 1]. If a solution has route k1, k2, k3, k4....knV

and a move (r, k3, k5, p
′
1, p

′
2) is applied which resulted in a solution k1, k2, k

′
3, k4, k

′
5, ....knV ,

here only routes k3, k5 are modified to k′3, k
′
5. So, we can calculate the f(snew) value

for the new solution obtained by using the f(scur) values of the current solution where

the routes are included in the move and recomputing for the routes that are included in

the move. This can be seen as an optimal substructure and able to sub-problem over-

lapping. Let s′ be solution obtained by applying move on existing solution s, for which

c(routej), q(routej), d(routej), w(routej)∀(j ∈ s) are already calculated when calculating

f(s)

move = (i, k1, k2, p1, p2)

s′ = {x ∈ s | 1 ≤ x ≤ nV, x ̸= k1, x ̸= k2} ∪ {k1, k2}

c(s′) = (
nV∑
j=1

j ̸∈(k1,k2)

cr(routej)) + cr(routek1) + cr(routek2)

q(s′) = (
nV∑
j=1

j ̸∈(k1,k2)

qr(routej)) + qr(routek1) + qr(routek2)

d(s′) = (

nV∑
j=1

j ̸∈(k1,k2)

dr(routej)) + dr(routek1) + dr(routek2)
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w(s′) = (

nV∑
j=1

j ̸∈(k1,k2)

wr(routej)) + wr(routek1) + wr(routek2)

t(s′) = (
nV∑
j=1

j ̸∈(k1,k2)

tr(routej)) + tr(routek1) + tr(routek2)

f(s′) = c(s′) + αq(s′) + βd(s′) + γw(s′) + Γt(s′)

The above equations formulate the idea that when we generate a solution s′ by applying

a move on s, we can reuse the c, q, d, w, t violation function values for the unchanged

routes (routej in above equations) and just recompute the violation function values for the

changed routes (k1, k2) in above equations). Since the number of routes that are modified

in each new solution is 2 which is constant. The runtime complexity of making N SIZE

moves and picking the best move that yields the best solution now becomes O(N SIZE *

nV * 2) which equals O(N SIZE * nV). Using observation 2, we could improve the runtime

complexity of local search iteration from O(N SIZE * nR * nV) to O(N SIZE * nV)

6.3 Using probability in picking nodes from the route for

generating moves

In the step of randomly generating N SIZE number of moves, below are a sequence of

steps involved in this single step

• Make a list of all requests in the DAR system

• Loop below steps for N SIZE times

– Pick a route k1 from list of routes in the current solution

– Pick a request i from the above picked route k1

– Remove both pickup and drop-off nodes associated with this request from route

k1
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– Randomly pick a route k2

– Randomly pick two points or indices p1, p2 in route k2

– Build structure (i, k1, k2, p1, p2)

– Check if (i, k2) is tabu, if yes mark the move as tabu

– Add the generated move to the list of N SIZE moves

Instead of randomly picking requests from route k1, this paper sets the probability

proportional to the value of violations at each node for all the nodes. This makes those

nodes highly likely to be removed and re-inserted into other routes. Our experiments show

that this technique will direct the solution to not include nodes in routes which can result

in high violations thus improving the value of f(s).

6.4 Diversification and Intensification strategies

This paper uses diversification and intensification strategies from [2] and ”Dynamic vari-

ation of Tabu tenure” from [1].

6.5 Aspiration Criteria

This paper uses aspiration criteria defined in [1], which allows move arcs which are tabu to

be executed in local search only if they lead to a solution whose objective function value

is better than the best solution found so far. [1]
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Chapter 7

Scaling

7.1 Scaling local search for multiple CPU cores & role of

N SIZE

Modern programming languages offer high-level semantics to map compute functions onto

available threads or cores in a compute instance. In the context of DARP-TS, we have

identified the local search as the component that needs to be scaled to utilize multiple

cores effectively.

The size of the entire neighbourhood in DARP-TS is defined as nR ∗ nV , indicating

that each vehicle can potentially be assigned to the route of any other vehicle. The number

of moves that can be made is also limited by the size of the neighbourhood. Therefore, the

value of N SIZE should be constrained by the size of the neighbourhood. However, setting

N SIZE equal to nR ∗ nV is not advisable. In TS, moves are tabu for certain iterations

to avoid repetitive searches in the same neighbourhoods. If N SIZE is set too high, the

algorithm may get stuck in move generation, and although this can be mitigated by using

aspiration criteria, it does not lead to effective solutions escaping local minima or reaching

the optimal solution in a reasonable amount of time. On the other hand, if N SIZE is set

too low, the algorithm may not take sufficient steps to reach an optimal solution within a

reasonable time frame.
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The value of N SIZE should also be directly proportional to and bounded by the

number of available cores. Setting N SIZE larger than the available cores will result in

increased iteration time since there are fewer cores than required to execute and evaluate

the N SIZE moves concurrently. Conversely, setting N SIZE smaller than the available

cores leads to under-utilization of cores, and due to the lower number of moves executed

per iteration, it takes more time to reach an optimal solution.

In conclusion, the value of N SIZE in DARP-TS should be directly proportional to

the size of the neighbourhood and the number of available cores, ensuring a balance

between utilizing the neighbourhood effectively and making efficient use of the available

computational resources. The later section of the paper discusses a formula to effectively

pick a N SIZE for a given nR, nV and a number of available cores.

7.2 Scaling N SIZE

The value of N SIZE in the DARP-TS algorithm is indeed bounded by the size of the

neighbourhood. If N SIZE is set to a value larger than the size of the neighbourhood,

the algorithm may get stuck in the random move generation phase as it won’t be able to

generate N SIZE unique moves. On the other hand, if N SIZE is set too small, it may not

effectively utilize the computing resources, resulting in a long time to reach the optimal

solution.

To address this, the paper proposes setting the value of N SIZE as a percentage of the

dataset size. This approach ensures that the N SIZE value is proportional to the size of

the neighbourhood, allowing the algorithm to explore a sufficient number of moves while

avoiding getting stuck in the random move generation process. By relating N SIZE to the

dataset size, the paper aims to strike a balance between exploration and computational

efficiency in the local search phase of the algorithm.

Therefore, it’s important to consider the characteristics of the problem instance and

the specific neighbourhood being explored when setting the value of N SIZE. Adapting

N SIZE based on the problem instance, such as a percentage of the dataset size, can provide
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a reasonable starting point. However, fine-tuning and experimentation may be necessary

to determine the optimal value of N SIZE that strikes a balance between exploration and

computational efficiency in the search process.

In summary, the value of N SIZE should be carefully chosen, taking into account

the number of ”good moves” available in each neighbourhood, to ensure the effective

exploration of the search space and efficient convergence towards the optimal solution.
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Chapter 8

Implementation issues

8.1 Memory Scaling

The fact that all the cores in a CPU share common memory has both advantages and

disadvantages when designing algorithms. One advantage is that there is no need to move

data into specific parts accessible only to the target core or close to it; instead, all the

memory can be shared (except for a few core-specific caches). However, a disadvantage is

that the algorithm becomes highly susceptible to data races. It becomes easy for a thread

or core to overwrite a shared memory block while another thread is using it to store

intermediate values or variables. This can lead to unexpected and erroneous behaviour

in the algorithm. Most of the high-level languages provide some kind of semantics to

partially alleviate this issue.

In programming languages with automatic garbage collection, the program lacks con-

trol over the memory release process, which is handled by the language runtime. This

means that the runtime can interrupt the program at any time for garbage collection,

leading to potential slowdowns in DARP-TS if memory allocation is not carefully man-

aged.

For instance, if we employ a naive approach, each iteration requires the creation of nV

arrays, each of which has a size of at most nR. In the worst case, the space complexity

becomes O(N SIZE ∗ nR ∗ nV ). Considering the scale of the neighbourhood, garbage
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collection may kick in at some iteration, causing the program to lose control. It’s impor-

tant to note that garbage collection algorithms are typically single-threaded, which can

adversely impact the runtimes of DARP-TS.

To address this issue, one solution is to always use pre-allocated data structures in

the local search process. By doing so, no new allocations are made during each local

search iteration, resulting in fewer garbage collection interventions and reduced garbage

collection runtimes. The paper under discussion utilizes pre-allocated arrays for all local

search processes, which has demonstrated improved optimization runtimes in experiments

conducted with the Julia implementation.

By employing pre-allocated data structures, the DARP-TS algorithm can effectively

mitigate the impact of garbage collection on its performance, leading to more efficient

execution.

8.2 Data structures

The paper discusses various implementation-specific data structures used to optimize mem-

ory usage and avoid dynamic memory allocations. These data structures contribute to

achieving the desired objectives mentioned in the ”Memory Scaling” section 8.1. Four

key data structures introduced and discussed in the paper are the Route, RMap, OptRoute

and OptRoutes.

Route

A Route is defined as an array that represents the pickup or drop-off nodes for vehicles in

the fleet. Routes are extensively used throughout the algorithm, from creating initial solu-

tions to applying moves in local search iterations. To avoid dynamic memory allocations,

the paper pre-allocates three instances of routes:

• Initial Solutions: Since the number of initial solutions is known in advance, arrays

required for all initial solutions are pre-allocated.
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• Current Solution routes in local search: As these routes change with each local search

iteration, they are pre-allocated.

• Best Solution routes: These routes are also pre-allocated.

By pre-allocating these instances, the paper minimizes dynamic memory allocations

and enables efficient memory utilization. In local search iterations, when N SIZE number

of moves are made, only two routes in a solution are modified, allowing the re-use of the

other nV-2 routes’ metadata structures without cloning. This approach enables scaling

of N SIZE on devices with limited available memory. Changes to current or best solution

routes are performed in place without dynamic allocations.

RMap

The algorithm requires hash maps to store information such as Arrival Times, Departure

Times, and Wait Times for all nodes in a route and all routes in the system. However,

pre-allocating and re-using hash maps is challenging. To address this, the paper utilizes

pre-allocated arrays for these purposes. To map a particular node to an index in the

respective pre-allocated arrays, the paper introduces a single hash map referred to as

RMap. RMap stores the index at which information about a specific node is stored in all

the pre-allocated arrays.

By using pre-allocated arrays and the RMap data structure, the paper achieves efficient

memory management and avoids the need for dynamic memory allocations for hash map-

related operations.

Figure 8.1 provides a visual representation of the RMap data structure and Pre-

allocated array for Wait Times of a route as an example. As per the mappings in RMap,

the associated value for the pickup vertex of request 20 can be found in index 2 of the

pre-allocated array for wait times which is value ”4”. So for each solution, we now only

need one hash map which we refer to as RMap to map which index in the pre-allocated

array has the information for a respective vertex. This way, we can have an arbitrary

number of pre-allocated arrays to store various kinds of intermediate and final results for
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a solution and reuse these pre-allocated arrays in the next iterations.

Figure 8.1: RMap data-structure

OptRoute

In the context of scaling local search for multiple CPU cores, storing violations per route

allows for the incremental construction of the f(s) value for solutions generated by applying

moves in the local search. OptRoute is a data structure that holds all the violations for

a specific route. It also includes probability weights for each node in the route, which

are used in the random generation of moves. Whenever possible, OptRoute is re-used for

unchanged routes, reducing the need for additional memory allocations.

OptRoutes

OptRoutes is a data structure that holds instances of OptRoute for a given solution, which

is a set of routes. It also stores various other metadata related to the solution, such as

the f(s) value, cost penalty, and the move that resulted in the solution (if applicable).

When constructing an OptRoutes instance for a new solution, components of OptRoutes

are partially re-used, further optimizing memory usage.

By utilizing the OptRoute and OptRoutes data structures, the paper achieves efficient

storage of violations, probability weights, and other metadata associated with routes and

solutions. This helps in improving memory utilization and the overall performance of the

algorithm.

30



Chapter 9

Performance Evaluation

The proposed Multi-CPU-based DARP-TS is implemented in Julia language. All the

experiments were conducted on AMD Ryzen Threadripper PRO 3975WX 32-Core. We

considered standard DARP benchmark instances from [2] to conduct the experiments.

These instances have various datasets where the number of requests ranges from 24-144

and the fleet size from 3-13. The algorithm is run with different thread configurations

by setting Julia’s specific system environment variable JULIA NUM THREADS. Fol-

lowing guidelines of [2], these experiments use the same violation coefficient values or

ranges.

Figs. 3 to 7 show the runtime of the algorithm to reach the best-known solution with

various thread configurations. For N SIZE for these experiments, we chose 10, 20, 30 and

35 % of the data-set size, where dataset size is defined by nR ∗ nV .

Fig. 8 shows the convergence plot for the time taken to achieve the best-known solution

for data-set pr10 with 1 and 16 thread configuration and N SIZE values of 10,20, 30 and

35 % of the data-set size.
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Figure 9.1: pr01-pr04

the impact of different N SIZE percentages (10%, 20%, 25%, 35%) and thread configurations (1,
4, 8, 16 threads) on the algorithm’s runtime for pr01, pr02, pr03 and pr04 datasets.

32



Based on the pr01 plot in 9.1, which represents the dataset pr01 with 24 requests, it

can be concluded that there is not a significant improvement in runtimes when varying

both N SIZE and multi-CPU cores. This observation can be explained by the following

factors:

• N SIZE Value: The values of N SIZE 20%, 25%, 35% are too big for the dataset size

which 144. The 10% N SIZE is good enough to explore most of the ”good moves” in

the neighbourhood, increasing the N SIZE beyond that is only exploring other bad

moves that don’t contribute to the optimization process. This also explains why the

total runtime is very similar for all the percentages of N SIZE.

• Multi-CPU Cores: Increasing the number of CPU cores may not lead to significant

runtime improvements due to certain factors. One possible reason is that the com-

putational power provided by a single thread configuration is already sufficient for

the given problem size. Additional threads may introduce more context switching

and thread overhead, which can negate any potential performance gains.
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Figure 9.2: pr09-pr12

the impact of different N SIZE percentages (10%, 20%, 25%, 35%) and thread configurations (1,
4, 8, 16 threads) on the algorithm’s runtime for pr09, pr10, pr11 and pr12 datasets
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Based on plots pr09 and pr10 in 9.2, which represent the datasets pr09 with 108

requests and 8 vehicles in the fleet, and pr10 with 144 requests and 10 vehicles in the fleet,

the following observations can be made:

• Runtime Improvement with Number of Threads: The runtime of the algorithm

demonstrates a significant improvement as the number of threads increases. This

indicates that parallelizing the algorithm by utilizing multiple threads can effectively

reduce the overall execution time. As more threads are employed, the algorithm

completes faster. However, the difference in improvement between 8 and 16 threads is

not as substantial, suggesting that there may be diminishing returns beyond a certain

number of threads. Increasing the number of threads beyond a certain number may

not provide significant additional runtime improvements.

• Limitations of N SIZE: The observations indicate that there is not a significant

improvement in runtime with an increase in N SIZE. This is not due to the inability

to scale the moves with available threads, but rather due to a limitation on the

number of ”good moves” that can be made in each iteration.

In Figure 9.6, the convergence to the best-known solution for different N SIZE values

in the pr10 dataset is plotted. The graph shows that for the 16-thread configuration, all

N SIZE values exhibit similar slopes. This can be attributed to the observation that the

number of good moves within a neighbourhood is limited, and reaching the optimal solu-

tion entails navigating through these neighbourhoods. Despite parallelizing the execution

and evaluating multiple neighbourhoods simultaneously, the algorithm is still constrained

by the sequential aspect of navigating through neighbourhoods.

On the other hand, in the 1-thread configuration, the slope of the convergence line

increases with higher N SIZE values. This is because there is a limitation on the number

of ”good moves” available, and exceeding this limit results in making moves that do not

contribute to the optimization process. Instead, it increases the computational time of

each iteration, consequently slowing down the convergence process.
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Figure 9.3: pr05-pr8

the impact of different N SIZE percentages (10%, 20%, 25%, 35%) and thread configurations (1,
4, 8, 16 threads) on the algorithm’s runtime for pr05, pr06, pr07, pr08 datasets

Overall, these observations highlight the impact of N SIZE and thread configurations

on the convergence speed of the algorithm, with the limitations of good moves and the

interplay between parallel execution and sequential neighbourhood navigation influencing

the results.
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Figure 9.4: pr13-pr16

the impact of different N SIZE percentages (10%, 20%, 25%, 35%) and thread configurations (1,
4, 8, 16 threads) on the algorithm’s runtime for pr13, pr14, pr15, pr16 datasets
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Figure 9.5: pr17-pr20

the impact of different N SIZE percentages (10%, 20%, 25%, 35%) and thread configurations (1,
4, 8, 16 threads) on the algorithm’s runtime for pr17, pr18, pr19, pr20 datasets
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Figure 9.6: converging plot for pr10

the impact of different N SIZE percentages (10%, 20%, 25%, 35%) and thread configurations (1,
4, 8, 16 threads) on the algorithm’s convergence to the best-known solution.
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Chapter 10

Conclusion

This research focuses on addressing key limitations of the DARP-TS algorithm when

applied to multi-CPU cores. One major limiting factor is the number of ”good moves”

available within the neighbourhood, which directly affects the algorithm’s ability to reach

an optimal solution. To estimate this metric, the research proposes using a percentage of

the dataset size, specifically the number of requests multiplied by the number of vehicles.

This provides a rough approximation of the neighbourhood’s size and helps in determining

an appropriate value for N SIZE.

Additionally, the study explores the impact of different thread configurations on the al-

gorithm’s performance. It observes a speedup of approximately three times when utilizing

multiple threads compared to a single-threaded configuration. However, it is also noted

that higher threads converge faster compared to lesser threads. This finding suggests that

the algorithm’s progress is limited by the serial nature of navigating through the various

neighbourhoods, despite parallelizing other aspects of the execution such as execution and

evaluation of N SIZE neighbourhoods in each iteration.

The study proposes a way to incrementally calculate the optimization function for

the intermediate solutions generated during the local search process for the evaluation

of randomly generated moves. This combined with pre-allocated memory can attribute

to decreasing computation time and scaling to more threads while keeping the memory
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allocations low.

Furthermore, the research highlights the challenge of limited memory in multi-core

CPU machines and the role of garbage collectors in dynamic memory-controlled languages.

To mitigate the impact of memory allocation and garbage collection on runtime, the pa-

per proposes pre-allocating arrays and introduces specific data structures. By avoiding

dynamic memory allocations and minimizing garbage collection interventions, the algo-

rithm’s overall performance is improved.

Pandi et al. [5] reported an impressive average speedup of 55 times when applying

the DARP-TS algorithm on GPUs. This substantial speedup can be attributed to the

superior performance of GPU cores compared to CPU cores. GPUs are designed with

a large number of cores, often numbering in the thousands, enabling them to handle

massive parallelization of computations. This parallel processing capability allows GPUs

to efficiently process the DARP-TS algorithm and achieve significant speed gains.

In contrast, CPUs typically have fewer cores compared to GPUs, which limits their

parallel processing capabilities. Additionally, CPU architectures often abstract away the

CPU scheduling process, which can result in unwanted preemption, context switching, and

thread overheads. In comparison, GPUs provide more flexible and fine-grained control over

low-level scheduling, allowing for optimizations specifically tailored to the problem at hand.

The CPUs also abstract the memory allocation and memory block placement using virtual

memory, which when dealing with algorithms that use a lot of memory can often result

in page cache misses, fragmented memory, and non-sequential memory allocation often

leading to additional CPU instructions. This optimized scheduling mechanism and fine-

grained memory control contribute to the efficient execution of the DARP-TS algorithm

on GPUs, leading to the observed speedup.

It is worth noting that the specific N SIZE value used in the GPU-based implementa-

tion is not specified in the research paper. The N SIZE parameter determines the number

of random moves generated in each iteration to explore the neighbourhood. While the

impact of N SIZE on the speed of convergence is not explicitly discussed in the context
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of the GPU implementation, it is an important factor to consider when optimizing the

algorithm for different hardware architectures.

Moreover, the research acknowledges that it does not delve into low-level optimizations

specific to the target device. The paper focuses more on high-level techniques and con-

siderations to improve the performance of the DARP-TS algorithm on multi-CPU cores.

Low-level optimizations, on the other hand, involve fine-tuning the algorithm implemen-

tation for a specific device, taking advantage of hardware-specific features, and exploiting

optimizations at the instruction level. These low-level optimizations are often crucial in

achieving maximum performance on a given device.

In summary, the difference in speedup between the GPU-based approach and the multi-

CPU core approach can be attributed to the inherent hardware differences. GPUs offer

superior parallel processing capabilities due to their large number of cores, resulting in

significant speedups. Additionally, low-level optimizations specific to the target device

and the ability to control the scheduling algorithm at the computational cores level play a

crucial role in further optimizing the algorithm’s performance. This research investigates

the limitations of the DARP-TS algorithm on multi-CPU cores and proposes solutions

to address these limitations. It emphasizes the importance of estimating the number

of ”good moves,” explores the impact of thread configurations on convergence speed,

suggests techniques to optimize memory usage, and garbage collection and proposes a way

to incrementally calculate f(s) for intermediate solutions during the local search phase.
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