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ABSTRACT

CHANGE POINT DETECTION

FOR A PROCESS HAVING SEVERAL REGIMES

by

Oliver Meister

The University of Wisconsin-Milwaukee, 2023
Under the Supervision of Professor Richard Stockbridge

In this dissertation, possible methods for multiple change point detection on Markov

chain processes are studied. Related works for offline and online change point detection are

discussed and their applicability on sequential multiple change point detection for several

regimes is evaluated. We develop a method for a multiple change point detection for a process

having three regimes. Its efficiency is then evaluated on simulated Markov chain data by

looking into different scenarios such as processes that significantly differ between each other

or probability distributions that are slightly similar. This approach is then applied on Covid-

19 hospital data. Therefore, the data is modeled into three different Markov chain processes

and then used to successfully apply the derived change point detection method. In the end,

the possible enhancements and its applications in other real world examples are discussed.
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1.

Introduction

1.1 Motivation

In the beginning of the year 2020, SaRS-CoV-2 or better known as Covid-19 was a new

virus that started spreading from Wuhan, a city in the People’s Republic of China. The

United States government was first hesitant to react when the initial cases of the virus were

confirmed within the country. Scientists and politicians were indecisive when it was time

to proclaim safety measurements to prevent the spread of the virus. The next months were

shaped by arguments about the best time establishing new steps to contain the spread of

the virus. Of course, these decisions were impacted by the constant change of daily Covid-19

cases. An increasing number of cases usually represented that the current measurements

were not sufficient or that previous measurements were lifted too early. A decreasing num-

ber, on the other hand, represented that the measurements set in place were in fact working

at the given time. One of the main questions to be addressed is how do we decide if the

Covid-19 measurements are actually successful? If we take the Covid-19 cases and their

change, we would say that mandates such as wearing a mask were successful if it led to a

decline in cases. On the other hand, lifting the mask mandate would be considered too soon,

if the cases began rising significantly after. The idea can be explained through change point

1



detection theory. If we could see a change in cases right after masks became mandatory, we

can say that it had an impact on the number of cases. Our goal is to detect these change

points to evaluate how different decisions made during the pandemic impacted the cases. In

addition, change points can help to decide when it is time to establish more measurements.

If we look at the first half of 2020, we can detect several change points. The first change

point appears around the first cases starting March 10th. The number of new infections

is increasing exponentially until April 10th, when the infection rate started to decay. This

observation coincides with the lockdown that was issued on March 25th. Considering the

14 days delay that is caused by the incubation period, we are able to see that the lockdown

helped to stop the exponential growth. Looking closer at the graph we can see more change

points. The cases are starting to increase at the end of April which is when the stay at

home order was lifted. Our mathematical objectives are to find a model that describes the

evolution of infections as well as to develop an approach for a sequential multiple change

point detection.

2



1.2 Model

Our change point detection will be based on Covid-19 cases. Therefore, it is essential to use a

model that describes the evolution of infections. Epidemics or pandemics are often modeled

in SIR (Susceptible-Infected-Recovered) or SEIR (Susceptible-Infected-Exposed-Recovered)

processes which were established in the early 20th century with important works conducted

by Ross Ross (1916), Ross and Hudson Ross and Hudson (1917), Kermack and McKendrick

Kermack and McKendrick (1927) and Kendall Kendall (1956). SIR models are often run

with ordinary differential equations, but are also used for stochastic frameworks to predict

disease spread, total number of infections, or a duration of the pandemic.

Depending on the model being used, there are 3 to 4 stages:

(S) The susceptible class: Individuals that are able to become infected.

(E) The exposed class: Individuals that got exposed to the disease.

(I) The infected class: Individuals that became infected and are able to infect others from

the susceptible class.

(R) The recovered class: Individuals that recovered from the infection. They can be con-

sidered immune or transmit to the susceptible class again.

At the beginning of our work we are using a simplified SIR Model where the birth and death

probabilities are omitted. In addition, recovered individuals are not able to get infected again

and therefore considered immune to the virus. Our goal is to use more advanced models,

once we have established a change point detection method.

For the underlying prediction model we consider a discrete Markov Chain model with state

vector Yt = {St, It, Rt}. Define Yi as the observation at time i whose distributions depend

on the regime zt.

3



The change points θ0, . . . , θm initiate a possible change in the regime and therefore a

change of the random variables’ distribution.

4



2.

Literature Review

Before developing a method for finding change points in an online setup, it is necessary to

consider existing methods. The studied methods can be divided into two categories: retro-

spective change point detection and online change point detection. While the retrospective

approach analyzes the data after the observation, the online change point detection is look-

ing for a sequential approach.

Retrospective methods are discussed in several papers such as “Detecting change-points in

Markov chains” by Alan M. Polanksy (2007). Here, a likelihood theory is developed for a

known number of changes, while AIC and BIC measures are used for the case of an un-

known number of changes.Polansky (2007) Other methods of offline detection are mentioned

in “Multiple Change-Point Detection via a Screening and Ranking Algorithm” by Ningo

Hao, Yue Selena Niu and Heping Zhang (2013). The authors consider a sequence of random

variables whose underlying step function has an unknown number of steps and unknown

change points. The objective of their paper is to characterize the theoretical properties of

the Screening and Ranking algorithm, as well as to develop a false discovery rate approach

to the multiple change point problems.Hao et al. (2013)

Finding a single change point in a sequential manner is mentioned in papers such as “Se-

quential Changepoint Detection in Quality Control and Dynamical System” by Tze Leung

5



Lais. A common approach is the CUSUM scheme where a cumulative sum stopping rule is

defined which is optimal in the sense that the worst case delay is minimized. In addition the

CUSUM scheme minimzes the conditional expected delay.Lai (1995) Other papers, describ-

ing the CUSUM methods, are written by Koepcke, Ashida and Kretzberg (2016)L. Koepcke

(2016) or Yakir (1994)Yakir (1994). In the book “Optimal Stopping Rules” (2008) Shiryaev

derives a method to find a single change point by converting change point detection into

a optimal stopping problem.Shiryaev (2008) The author uses a Bayesian approach which is

later modified by other author’s such as Yakir for a Markov Chain model.

In the following sections we are first going to explain Shiryaev’s approach followed by Yakir’s

adaption to a Markov Chain model completed by the proof which is omitted in Yakir’s paper.

2.1 Shiryaev 2008 Optimal Stopping Rules

In Chapter 4.3 “The problem of disruption (discrete time)” of the book “Optimal Stop-

ping rules”(2008), Shiryaev uses a Bayes formulation to convert change point detection

into a optimal stopping time problem. On a measure space (Ω,F ), we are given i.i.d.

random variables ξ1, ξ2, . . . and a probability measure P π such that P π{θ = 0} = π and

P π{θ = n} = (1 − π)(1 − p)n−1p for n ≥ 1 where the random variable θ is defined as the

change point; and p and π are unknown constants with 0 < p < 1 and π ∈ [0, 1]. If θ = i,

the random variables ξ1, . . . , ξi−1, ξi, . . . are mutually independent. Furthermore, ξ1, . . . , ξi−1

are identically distributed by the density p0(x) and ξi, ξi+1, . . . are identically distributed by

p1(x).
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The change point θ is assumed to be geometrically distributed. The stopping time, the

time at which the “alarm” signals a change point based on the observed process, is called

τ . The risk associated with τ is defined as ρπ(τ) = P π{τ < θ} + cE[max{τ − θ, 0}], where

the first term is interpreted as the probability of a false alarm or early detection, and the

second term is the average delay of detecting the change point correctly (τ ≥ θ). In order

to understand Theorem 2.1 we need to define a π-Bayes time.

For a given π ∈ [0, 1] a stopping time is called Bayes time if ρπ(τ) = inf ρπ(τ) where the

infimum is taken over the class of all stopping times.

Theorem 2.1 now gives us a formula that detects a change point in a way that the risk ρπ(τ)

is minimized:

Theorem 2.1. Let c > 0, p > 0, and let ππn = P π{θ ≤ n|F ξ
n} be a posterior probability of

disruption occuring before time n; ππ0 = π. Then there exists a constant A∗ such that the τ ∗π

is a Bayes time with

τ ∗π = inf{n ≥ 0 : ππn ≥ A∗}

where

F ξ
0 = {∅,Ω}

F ξ
n = σ{ξ1, ξ2, . . . , ξn}.

7



2.2 Yakir 1994, Optimal Detection of a Change in Dis-

tribution when the Observations Form a Markov

Chain with a Finite State Space

In Yakir’s paper“Optimal Detection Of A Change in Distribution When The Observations

Form A Markov Chain With A Finite State Space”, the assumption of independence of the

observations is lifted by considering a Markov chain process with a finite state space. One

approach is the Bayes formulation as explained in Shiryaev’s book for independent random

variables.

Let (Ω,F ) be a measure space on which we are given the random variables X0, X1, . . . and

the change point θ. Furthermore, the author assumes a probability measure P π,x such that:

P π,x(X0 = x) = 1,

P π,x(θ = 1) = π

and:

P π,x(θ = k) = (1− π)p(1− p)k−2, for k ≥ 2 :

where p, π and x are known constants with 0 < p < 1, 0 ≤ π ≤ 1 and x one of the

possible state of the process (x ∈ X). The parameter θ is the random change point which is

geometrically distributed.

The distribution of our observations depends on the random change point θ. Assuming that

our change point θ = k we get the distribution of the random process X1, X2, . . . :

P π,x(X1 = x1, X2 = x2, . . . |θ = k) =


∏k−1

i=1 a(xi|xi−1)
∏n

i=k b(xi|xi−1), if k ≤ n∏n
i=1 a(xi|xi−1), if k > n.

8



The matrices A = (a(i|j)) and B = (b(i|j)) are two transition probability matrices for

the Markov process. Before the change point θ the distribution of the Markov chain has

the transition matrix A. If the change point occurred, the transition matrix changes to B.

Yakir’s next step is to define a stopping rule that is based on a risk function ρ. Therefore, the

stopping time N is adapted to the system of σ-algebras {Fn}∞n=0 which can be interpreted

as the knowledge obtained by making the observations x1, . . . , xn. The risk function is based

on the definition of Shiryaev’s paper:

ρ(N, θ) = P (π,x)(N < θ − 1) + cE(π,x)(N − θ + 1)+

where c > 0 is a fixed constant. The difference between Shiryaev’s and Yakir’s defined risk

function is that Yakir waives the cost for signaling an alarm one time step before or after

the actual change point. Yakir also uses the Bayes’ time to characterize the stopping rule

for minimizing the risk function (Theorem 1):

Theorem 2.2. Let p > 0, c > 0 then there exist a function δ(Xn) such that

N∗ = inf{n ≥ 0 : π(π,x)
n ≥ δ(Xn)},

is the (π, x)-Bayes’ rule. Moreover, δ(·) does not depend on π or x.

9



3.

Motivation

After comprehending Shiryaev’s and Yakir’s approach in finding a single change point in

an online matter, we wish to modify Yakir’s method to a model with multiple alternative

regimes. We are choosing Yakir because his detection is based on a Markov chain model.

In the following sections we will explain the different models that we define a change point

detection for.

3.1 Change Point Detection With Three Regimes

The first modification on Yakir’s approach would be to extend the number of regimes to

three. There is an initial regime A where our Markov random variables have a transition

matrix A. After a change point occurred there are two possible regimes. Therefore, the

Markov random variables Xθ, Xθ+1, . . . , Xn can either have transition Matrix B or C.

10



In order to modify the change point detection, we have to analyze how the different regimes

are affecting the posterior probability, which is necessary to find the Bayes’ time. Further-

more, we will extend the risk function. Next to having a penalty for an early detection and

a detection delay, we will have to consider the risk for choosing the wrong regime.

Let the change points to regimeB and C be defined as θB ∼ geom (λB) and θC ∼ geom (λC)

where θB and θC are independent random variables. A change point θ occurred if the process

either shifted to B or C. Therefore, the new change point is defined as θ = min(θB, θC).

For the case that the change points occur at the same time, we define that the regime will

switch to B.

The following lemmas will helps us define a posterior probability and extending our risk

function.

Lemma 3.1. Let θB ∼ geom (λB) and θC ∼ geom (λC) be independent random variables.

Define θ = min(θB, θC). Then θ ∼ geom(λB + λC − (λB · λC)).

11



Proof.

P (θB ≥ k) = (1− λB)k−1

P (θC ≥ k) = (1− λC)k−1

P (min(θB, θC) ≥ k) = P (θB ≥ k, θC ≥ k)

= P (θB ≥ k)P (θC ≥ k) = (1− λB)k−1(1− λC)k−1

P (min(θB, θC) = k) = P (min(θB, θC) ≥ k)− P (min(θB, θC) ≥ k + 1)

= (1− λB)k−1(1− λC)k−1 − (1− λB)k(1− λC)k

= (λB + λC − λBλC)((1− λB)(1− λC))k−1

= (λB + λC − λBλC)(1− (λB + λC − λBλC))k−1

Lemma 3.2. Let θB ∼ geom (λB) and θC ∼ geom (λC) be independent random variables.

Then P (θB < θC) = λB(1−λC)
λB+λC−λBλC

12



Proof.

P (θB < θC) =
∞∑
x=0

∞∑
y=x+1

(1− λB)x(1− λC)yλBλC

= λBλC

∞∑
x=0

(1− λB)x
∞∑

y=x+1

(1− λC)y

= λBλC

∞∑
x=0

(1− λB)x[
∞∑
y=0

(1− λC)y −
x∑
y=0

(1− λC)y]

= λBλC

∞∑
x=0

(1− λB)x
[

1

1− (1− λC)
− 1− (1− λC)x+1

1− (1− λC)

]
= λBλC

∞∑
x=0

(1− λB)x
[

(1− λC)x+1

λC

]
= λB(1− λC)

∞∑
x=0

[(1− λB)(1− λC)]x

= λB(1− λC)
1

1− (1− λB)(1− λC)

=
λB(1− λC)

λB + λC − λBλC

Lemma 3.3. P (θB = θC) = λBλC
λB+λC+λBλC

Proof.

P (θB = θC) = 1− P (λB < λC)− P (λC < λB)

= 1− λB(1− λC)

λB + λC − λBλC
− λC(1− λB)

λB + λC − λBλC

=
λB + λC − λBλC − λB + λBλC − λC + λBλC

λB + λC − λBλC

=
λBλC

λB + λC − λBλC

13



The first step is to find the posterior probability P (θ < n|F) that a change point occurred

before time n, πn. We are extending the condition of the posterior probability by the regime

that we are in. In our case, we have two cases: regime B and regime C. The new posterior

probability πn is defined as P (θ ≤ n|F, i) where i is the regime.

πn+1,i =

πnpi(ξn+1) + (1− πn)λB(1− λC)pB(ξn+1) + (1− πn)(1− λB)λCpC(ξn+1)

numerator + (1− πn)(1− λB)(1− λC)p0(ξn+1)

+
+(1− πn)λBλCpB(ξn+1)

numerator + (1− πn)(1− λB)(1− λC)p0(ξn+1)

πn+1,B = P (θ ≤ n, α = B|F)

=
πn,BpB(ξn+1) + (1− πn,B)(1− πn,C)(λB + λC − λBλC) λB

λB+λC−λBλC
pB(ξn+1)

numerator + (1− πn,B)(1− πn,C)(1− λB + λC − λBλC)pA(ξn+1)

and

πn+1,C = P (θ ≤ n, α = C|F)

=

πn,CpC(ξn+1)

+ (1− πn,C)(1− πn,B)(λC + λB − λCλB) λC(1−λB)
λC+λB−λCλB

pC(ξn+1)

numerator + (1− πn,C)(1− πn,B)(1− λC + λB − λCλB)pA(ξn+1)
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4.

Change Point Detection For A Markov

Chain Model With Three Regimes

In this chapter, we are adapting Yakir’s approach, described in section 2.2 of a change point

detection with one alternative regime, to a method that detects a change point for a Markov

chain model with two alternative regimes.

4.1 Markov Chain Model With Three Regimes

Our goal is to derive a method that detects a change point with two alternative regimes.

We again assume X1, X2, . . . are random variables governed by a Markov Chain distribution

with

P (X0 = x) = 1

P (xi|xi−1) = a(xi|xi−1)

for i = 1, 2, . . . , θ − 1. After the change point, θ = min{θB, θC} where θB ∼ geom(λB) and

θC ∼ geom(λC) are i.i.d. random variables, we have the probability distribution

P (xi|xi−1) = b(xi|xi−1)
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if θ = θB and

P (xi|xi−1) = c(xi|xi−1)

if θ = θC

for i = θ, θ + 1, . . .

Therefore we have:

P (θ = 0) = P (θB = 0) + P (θC = 0, θB > 0) = πB + (1− πB) · πC = π0 ∈ (0, 1)

with πB = P (θB = 0) and πC = P (θC = 0).

Furthermore,

P (θ = n) = (1− π0)(1− p)n−1p, n = 1, 2, . . .

where p = λB + λC − λB · λC .

The posterior probabilities are defined as follows

Definition 4.1. Let α denote the current regime of the process,

then the probability for a change point to regime α, occurring before or at time n conditioned

by Fn is given by:

πn,α = P (θ ≤ n, αn = α|Fn)

Therefore, for our model, we have

πn,B := P (θ ≤ n, αn = B|Fn)

and

πn,C := P (θ ≤ n, αn = C|Fn)

where αn is the regime at time step n and

F0 = {∅,Ω}
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Fn = σ{X0, X1, X2, . . . , Xn}

4.2 Proof that the new posterior probability is a Markov

random function

In order to apply Yakir’s approach, we have to show that the posterior function for the

change point is a Markov function. The definition of a Markov function can be found in

Shiryaev.

Definition 4.2 (Markov Random Function Shiryaev (2008)). The system X = (xt,Ft, P ),t ∈

Z is said to be a (homogeneous nonterminating) Markov random function if (1.36) is satisfied

and if for all s,t ∈ Z,B ∈ B,

P (Xt+s ∈ B|Ft) = P (xt+s ∈ B|xt)

Definition 4.3 (Markov Process Shiryaev (2008)). The system X = (xt,Ft, Px), t ∈ Z , x ∈

E, is said to be a (homogeneous, nonterminating) Markov process with values in a state space

(E,B) if the following conditions are satisfied:

(1) For each A ∈ F , Px(A) is a B-measurable function for x;

(2) For all x ∈ E,B ∈ B, s, t ∈ Z ,

Px(xt+s ∈ B|Ft) = Pxt(xs ∈ B) (1.35)

(3) Px(x0 = x) = 1, x ∈ E;
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(4) for each t ∈ Z and ω ∈ Ω there will be a unique ω′ ∈ Ω such that

xs(ω
′) = xs+t(ω) (1.36)

for all s ∈ Z

We are now showing that the posterior functions are Markov functions

Lemma 4.4. Assume that we are having the model described in section 4.1 and let An =

X1, . . . , Xn. Then both πn,B and πn,C are Markov random functions.

Proof. We are first showing that πn,B is a Markov random function.

The posterior function with a transition to regime B can be calculated as:

πn,B =
πB
∏n

i=1 bi−1,i + (1− π0)
∑n

k=2

∏k−1
i=1 ai−1,iq

k−2λB
∏n

i=k bi−1,i
P (A)

+
+(1− π0)

∏n
i=1 ai−1,iq

n+1−2(λB)

P (A)

(4.5)

with p = λB + λC(1 − λB), q = 1 − p , π0 = πB + (1 − πB)πC , ai−1,i = a(xi|xi−1) and

bi−1,i = b(xi|xi−1), and

P (A) =πB

n∏
i=1

bi−1,i + (1− π0)
n∑
k=2

k−1∏
i=1

ai−1,iq
k−2λB

n∏
i=k

bi−1,i + (1− π0)
n∏
i=1

ai−1,iq
n+1−2(λB)

+ (1− πB)πC

n∏
i=1

ci−1,i + (1− π0)
n∑
k=2

k−1∏
i=1

ai−1,iq
k−2λC(1− λB)

n∏
i=k

ci−1,i

+ (1− π0)
n∏
i=1

ai−1,iq
n+1−2(λC)(1− λB)

+ (1− π0)
∞∑

k=n+2

n∏
i=1

ai−1,iq
k−2p.

(4.6)
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The first term in the numerator describes the case where a change point happens at time

step 0. The second term is calculating the probability that a change point occurs between

time step 1 and n. The last term shows the probability that a change point happens at time

n+ 1. In that case no observation is governed by B yet.

We can rewrite the first two terms of the numerator as follows:

πB

n∏
i=1

bi−1,i + (1− π0)
n∑
k=2

k−1∏
i=1

ai−1,iq
k−2λB

n∏
i=k

bi−1,i

= πB

n−1∏
i=1

bi−1,i × bn−1,n + (1− π0)
n−1∑
k=2

k−1∏
i=1

ai−1,iq
k−2λB

n−1∏
i=k

bi−1,i × bn−1,n

+ (1− π0)
n−1∏
i=1

ai−1,iq
n−1λB × bn−1,n

=

[
πB

n−1∏
i=1

bi−1,i + (1− π0)
n−1∑
k=2

k−1∏
i=1

ai−1,iq
k−2λB

n−1∏
i=k

bi−1,i + (1− π0)
n−1∏
i=1

ai−1,iq
n−1λB

]
× bn−1,n

= πn−1,B bn−1,n P (An).

(4.7)

The same can be shown for the numerator of πn,C .

Next we consider the last term in the denominator. We use the fact that for the geometric

series, it holds that
∑∞

k=n+2 q
k−2 = qn 1

1−q = qn

p
.

(1− π0)
∞∑

k=n+2

n∏
i=1

ai−1,iq
k−2p

= (1− π0)
n∏
i=1

ai−1,i
qn

p
p

= (1− π0)
n∏
i=1

ai−1,iq
n

= (1− π0)
n−1∏
i=1

ai−1,iq
n−1 an−1,n q.

(4.8)
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Furthermore, (1− π0)
∏n−1

i=1 ai−1,iq
n−1 = P (θ − 1 > n− 1,Fn−1). If we compare the last

term of the numerator with these results, we can see that

(1− π0)
n∏
i=1

ai−1,iq
n+1−2(λB)

= (1− π0)
n−1∏
i=1

ai−1,iq
n−1(λB) an−1,n

= P (θ − 1 > n− 1,Fn−1) λB an−1,n.

(4.9)

These results show that we can rewrite our posterior probability as follows:

πn−1,B bn−1,n P (An) + P (θ > n− 1,Fn−1) λB an−1,n
numeratorB + numeratorC + P (θ > n− 1,Fn−1) q an−1,n

(4.10)

with

numeratorB = πn−1,B bn−1,n + (1− (πn−1,B + πn−1,C)) λB an−1,n

and

numeratorC = πn−1,C cn−1,n + (1− (πn−1,B + πn−1,C) (λC(1− λB)) an−1,n.

Dividing each term by P (An) gives us the following result:

πn,B =
πn−1,B bn−1,n + P (θ > n− 1|Fn−1) λB an−1,n

numeratorB + numeratorC + P (θ > n− 1|Fn−1) q an−1,n

=
πn−1,B bn−1,n + (1− (πn−1,B + πn−1,C)) λB an−1,n

numeratorB + numeratorC + (1− (πn−1,B + πn−1,C)) q an−1,n
.

(4.11)

In the end numeratorC = πn−1,C cn−1,n + (1− (πn−1,B + πn−1,C)) λC(1− λB) an−1,n.

The last equation is true because P (θ − 1 ≤ n|Fn) = P (θ − 1 ≤ n, α = B|Fn) + P (θ − 1 ≤

n, α = C|Fn).

Furthermore, the last term shows that the posterior function πn,B is a Markov function.
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We are getting a similar result for the posterior probability with regard to regime C:

πn,C =
πn−1,C cn−1,n + (1− (πn−1,B + πn−1,C) (λC(1− λB)) an−1,n

numeratorB + numeratorC + (1− (πn−1,B + πn−1,C) q an−1,n

and therefore, πn is also a Markov function.

4.3 Transforming the Change Point Detection Into an

Optimal Stopping Time Problem

Similar to Shiryaev, we are defining a risk for causing an alarm at time τ . Consider the risk

function ρπ(τ) = P{τ < θ} + cE(τ − θ)+. The first term describes an early detection and

the second term an expected detection delay.

We are interested in writing the risk function into a formula depending on πn.

Lemma 4.12. For each τ ∈M[F ], we note that P π{τ < θ} = Eπ[1− ππτ ] with M[F ] being

the class of all stopping time with respect to the system Fn.
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Proof.

E[1− πτ ] = 1− E[πτ ]

= 1−
∑
n

E[πnI(τ=n)]

= 1−
∑
n

E[1(τ=n)E[I(θ≤n)|Fn]]

= 1−
∑
n

E[E[1(τ=n)1(θ≤n)|Fn]]

= 1−
∑
n

E[1(θ≤τ,τ=n)]

= 1− E[
∑
n

1(θ≤τ,τ=n)]

= 1− E[1(θ≤τ)]

= P (θ > τ)

(4.13)

In addition, we have to derive a formula for the second term E(τ − θ)+. The proof is

similar to Shiryaev Shiryaev (2008). We show that for each n ≥ 0:

Eπ[max(n− θ, 0)|Fn] =
n∑
k=0

(n− k)P π{θ = k|Fn}

=
n−1∑
k=0

P π{θ ≤ k|Fn}

=
n−1∑
k=0

[P π{θ ≤ k|Fn} − P π{θ ≤ k + 1|Fk}] +
n−1∑
k=0

P π{θ ≤ k|Fk}

=
n−1∑
k=0

[P π{θ ≤ k|Fn} − P π{θ ≤ k|Fk}] +
n−1∑
k=0

ππk .

(4.14)
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We define the sum as

ψπn =
n∑
k=0

[P π{θ ≤ k|Fn} − P π{θ ≤ k|Fk}]

= −
n∑
k=0

[P π{θ ≥ k|Fn} − P π{θ ≥ k|Fk}] .
(4.15)

The sequence {ψπn,Fn, P
π}, n ≥ 0 then forms a martingale for each π ∈ [0, 1]:

E[ψπn+1|Fn] = E[
n+1∑
k=0

[P π{θ ≤ k|Fn+1} − P π{θ ≤ k|Fk}]|Fn]

= E[
n∑
k=0

[P π{θ ≤ k|Fn+1} − P π{θ ≤ k|Fk}]|Fn]

= E[
n∑
k=0

[P π{θ ≤ k|Fn} − P π{θ ≤ k + 1|Fk}]]

= ψπn.

(4.16)

We now use the Optional Sampling Theorem (Theorem 1.12, Shiryaev 2008) to show

that for any τ ∈M [F ]

E[ψπτ ] = E[ψπ0 ] = 0.

Hence for τ ∈M [F ], we get the risk:

ρπ(τ) = P π{τ < θ}+ cE[max{τ − θ, 0}]

= E[(1− πτ ) + c
τ−1∑
k=0

ππk + cψπτ ]

= E[(1− ππτ ) + c
τ−1∑
k=0

ππk ].

(4.17)

Hence, for the Bayes time ρπ = infτ∈M [F ] ρ
π(τ),

we find that ρπ = infτ∈M [F ξ] E[(1− πτ ) + c
∑τ−1

k=0 π
π
k ].

Ππ = (ππn,F
ξ
n , P

π), n ≥ 0, forms a sub-martingale: E[ππn+1|Fn] ≥ ππn (P π − a.s.).
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4.4 Optimal Stopping Time Without Penalty For Choos-

ing The Wrong Regime

The family of Markov random functions {Ππ,0≤π≤1} can be associated with a Markov pro-

cess in discrete time Π = (πn,F, Pπ), n ≥ 0, having the same transition probabilities as each

Markov random function Ππ, π ∈ [0, 1].Shiryaev (2008)

In Chapter 2.14, Shiryaev develops a method to find the optimal stopping time for a

Markov sequence X = (Xn,Fn, Px). The stopping time is optimal in sense of maximizing

the gain for stopping at time n. The gain function is defined by

G(n, x0, . . . xn) = αng(xn)−
n−1∑
s=0

αsc(xs) (4.18)

for n ≥ 0 and G(0, x0) = g(x0) where g(xn) is interpreted as the gain for stopping at time n

while c(x) are the costs for the opportunity of making the next observation. The variable α

is the discount factor which we can disregard in our case.Shiryaev (2008)

The goal is to maximize the payoff

s(x) = supE{ατg(xτ )−
τ−1∑
s=0

αsc(xs)} (4.19)

where the supremum is taking over the stopping time classes M(α.c).

Theorem 4.20 (Shiryaev (2008)). Let the functions g(x) and c(x) satisfy (4.18), 0 < α ≤ 1.

Then:

(1) The payoff s(x) is the smallest (α,c)- excessive majorant of the function g(x);

(2) s(x) = max{g(x), α, Ts(x)− c(x)}
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(3) s(x) = limN→∞Q
N
{α,c}g(x) where QN

{α,c} is the N th power of the operator

(4) For any ε > 0 the time τε = inf{n ≥ 0 : αns(xn) ≤ αng(xn) + ε} is an ε-optimal

stopping time for the class M(α,c)

(5) If Px(τ0 < ∞) = 1, x ∈ E, the time τ0 will be an optimal stopping time for the class

M(α,c)

(6) If Px{
∑∞

s=0 α
sc(xs = ∞)} = 1, x ∈ E then Px{τ0 < ∞} = 1 and the time τ0 is an

optimal stopping time in the class M(α,c)

We derive the following method to find the optimal stopping time.

Theorem 4.21. The optimal stopping time for the model described in Section 4.1 is

τ0 = inf{n ≥ 0 : ρ(πn) = 1− πn} = inf{n ≥ 0 : πn ≥ A∗}

with πn = πn,B + πn,C.

Proof. Now consider the risk function

R(πn, τ) = 1− πτ + c
τ−1∑
k=0

πk (4.22)

With the results of Theorem 4.20, we only need to find the optimal stopping time for the

payoff to find the π-Bayes time τ ∗π . However, we minimize our risk function. Therefore, we
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multiply R(πn, τ) by −1:

−R(πn, τ) = −(1− πτ )− c
τ−1∑
k=0

πk

We set g(π) = −(1 − π), the probability of a early detection, as the gain function, and

c(π) = c
∑τ−1

k=0 πk, the costs of observing until stopping time τ . For the payoff, we get

−ρ(π) = supE[−(1− πτ )− c
τ−1∑
k=0

πk] = − inf E[(1− πτ ) + c
τ−1∑
k=0

πk].

And therefore, ρ(π) = inf E[(1− πτ ) + c
∑τ−1

k=0 πk] where the infimum is taking over the class

of stopping times

M 1 = {τ ∈M : E[
τ−1∑
k=0

πk <∞]}.

It follows for the payoff

−ρ(π) = max{g(x), T (−ρ(π))− c(πn)}

= max{−(1− π), T (−ρ(π))−
τ−1∑
k=1

πk)}

= −min{(1− π), c(π) + Tρ(π)},

(4.23)

the payoff is the smallest excessive majorant of the function g(π). (Tf(x)−c(x) ≥ f(x)).

We now get

τ0 = inf{n ≥ 0 : −ρ(πn) ≤ g(π)}.

= inf{n ≥ 0 : −min{(1− π), c(π) + Tρ(π)} ≤ −(1− πn)}

= inf{n ≥ 0 : min{(1− π), c(π) + Tρ(π)} ≥ 1− πn}

as the optimal stopping time to minimize our risk.
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This is equivalent to the optimal stopping time τ0 = inf{n ≥ 0 : ρ(πn) = 1− πn}

= inf{n ≥ 0 : πn ≥ A∗}.

Therefore, we found a optimal stopping time and proved Theorem 4.21.

4.5 Adding A Penalty For Choosing The Wrong Regime

In Shiryaev’s book Shiryaev (2008) and later in Yakir’s paper Yakir (1994) the risk function

ρ(τ) = E[I(τ < θ) + c1E(τ − θ)+)]

is used to find the change point. We showed that the risk function can be expressed with

the posterior probability πτ = P (θ ≤ τ |Fτ ) to make a decision while calculating the risk

function. We previously found a change point detection method to a model with three

regimes while we ignore the risk of choosing the wrong regime. The stopping rule is:

τ0 = inf{n ≥ 0 : πn,B + πn,C ≥ A∗}. (4.24)

Our goal is to develop a risk function that includes the penalty of choosing the wrong regime.

A possible way to define that risk is:

E[I(θ ≤ τ)I(πτ,B ≥ πτ,C)I(θC < θB) + I(θ ≤ τ)I(πτ,C > πτ,B)I(θC ≥ θB)]. (4.25)

It describes the risk deciding on the wrong regime after a change point has happened.

The decision criteria is based on the posterior functions πτ,B and πτ,C . If πτ,B is greater than

or equal to πτ,C we are deciding on regime B, otherwise regime C.
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We can transform the risk into a formula depending on the posterior probabilities. We are

showing this on the first term of our risk function.The risk will be updated by the information

of our observations.

Lemma 4.26. Let τ be a stopping time and Yτ = I(θ ≤ τ)I(πτ,B ≥ πτ,C)I(θC < θB) + I(θ ≤

τ)I(πτ,C > πτ,B)I(θC ≥ θB) then

E[Yτ ] = E[I{πτ,B ≥ πτ,C}πτ,C + I{πτ,C > πτ,B}πτ,B]

Proof. First we are showing on the first term how to transform the risk into a formula

depending on πτ,B.

E[I(πτ,B≥πτ,C)I(θ−1≤τ,θC<θB)] = E[I(πτ,B > πτ,C)πτ,C ]:

Therefore we get

E[I(πτ,B≥πτ,C)I(θ−1≤τ,θC<θB)] = E[I(πτ,B≥πτ,C)I(θ−1≤τ,ατ=C)]

= E[
∑
n

I(πn,B≥πn,C ,θ−1≤n,αn=C)Iτ=n]

=
∑
n

E[I(πn,B≥πn,C ,θ−1≤n,αn=C)Iτ=n]

=
∑
n

E[E[I(πn,B≥πn,C)I(τ=n)I(θ−1≤n,αn=C)|Fn]]

=
∑
n

E[I(πn,B≥πn,C)I(τ=n)E[I(θ−1≤n,αn=C)|Fn]]

=
∑
n

E[I(πn,B≥πn,C)πn,CI(τ=n)]

= E[Yτ ].

(4.27)

With Theorem 4.20, we need only to find the optimal stopping time for the problem:

ρ(π) = inf E[(1− πτ ) + c1

τ−1∑
k=0

πk + c2(I{πτ,B ≥ πτ,C}πτ,C + I{πτ,C > πτ,B}πτ,B)]
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and the infimum is taken over the stopping times.

M 1 =

{
τ ∈M : E[

τ−1∑
k=1

πk] <∞

}
.

Therefore, we want to find the optimal stopping time while we are minimizing the risk:

R(πτ,B, πτ,C) = 1− πn + c2I{πτ,B ≥ πτ,C}πτ,C + c3I{πτ,C > πτ,B}πτ,B + c1

τ−1∑
k=1

πk

We want minimize our risk function. Therefore we will be trying to maximize the negative

risk:

−R(πB, πC) = −(1− πn)− c2(I{πτ,B ≥ πτ,C}πτ,C − I{πτ,C > πτ,B}πτ,B)− c1
τ−1∑
k=1

πk.

We have

g(πB, πC) = −(1− (πB + πC))− c2I(πB≥πC)πC − c3I(πB<πC)πB

and

c(πB, πC) = π.

It can be shown that |g(πB, πC)| < G <∞ and E[c(πn,B, πn,C)] <∞.

Shiryaev defines the pay of function as

s(x) = supE

{
ατg(xτ )−

τ−1∑
s=0

αsc(xs)

}
.

Comparing this to our negative risk function we get:
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s(πB, πC) = supE

{
g(πτ,B, πτ,C)−

τ−1∑
s=0

c(πs)

}

= supE

{
−(1− πτ )− c2I{πτ,B ≥ πτ,C}πτ,C − c3I{πτ,C > πτ,B}πτ,B − c1

τ−1∑
s=0

πs

}

= − inf E

{
(1− πτ ) + c2I{πτ,B ≥ πτ,C}πτ,C + c3I{πτ,C > πτ,B}πτ,B + c1

τ−1∑
s=0

πs

}
.

The last equation shows that s(πB, πC) = −ρ(πB, πC).

Therefore according to Theorem 4.20 s(x) is the smallest (α, c)-excessive majorant of the

function g(x).

s(πB, πC) = max {g(πB, πC), T s(πB, πC)− c(πB, πC)}

= max
{
−(1− π)− c2I(πB≥πC)πC − c3I(πB<πC)πB, T s(πB, πC)− π

}
and

ρ(πB, πC) = −max
{
−(1− π)− c2I(πB≥πC)πC − c3I(πB<πC)πB, T s(πB, πC)− π

}
= min

{
(1− π) + c2I(πB≥πC)πC + c3I(πB<πC)πB, π − Ts(πB, πC)

}
= min

{
(1− π) + c2I(πB≥πC)πC + c3I(πB<πC)πB, π + Tρ(πB, πC)

}
where Ts(πn,B, πn,C) = E[s(πB,1, πC,1)].

Furthermore, since P (τ0 < ∞) = 1 and P (
∑∞

s=0 c(π) = ∞) = 1, the optimal stopping
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time is equal to

τ0 = inf{n ≥ 0 : s(πn,B, πn,C) ≤ g(πn,B, πn,C))}

= inf{n ≥ 0 : max
{
−(1− πn)− c2I(πn,B≥πn,C)πn,C − I(πn,B<πn,C)πn,B, T s(πB, πC)− πn

}
≤ −(1− (πn,B + πn,C))− c2I(πn,B≥πn,C)πn,C − c3I(πn,B<πn,C)πn,B}

= inf{n ≥ 0 : −min
{

(1− πn) + c2I(πn,B≥πn,C)πn,C + c3I(πn,B<πn,C)πn,B, π − Ts(πn,B, πn,C)
}

≤ −(1− (πn,B + πn,C))− c2I(πn,B≥πn,C)πn,C − c3I(πn,B<πn,C)πn,B}

= inf{n ≥ 0 : min
{

(1− πn) + c2I(πn,B≥πn,C)πn,C + c3I(πn,B<πn,C)πn,B, π − Ts(πn,B, πn,C)
}

≥ (1− (πn,B + πn,C)) + I(πn,B≥πn,C)πn,C + I(πn,B<πn,C)πn,B}

= inf{n ≥ 0 : min
{

(1− πn) + c2I(πn,B≥πn,C)πn,C + c3I(πn,B<πn,C)πn,B, π + Tρ(πn,Bπn,C)
}

≥ (1− (πn,B + πn,C)) + c2I(πn,B≥πn,C)πn,C + c3I(πn,B<πn,C)πn,B}

= inf{n ≥ 0 : ρ(πn,B, πn,C) ≥ (1− (πn,B + πn,C)) + c2I(πn,B≥πn,C)πn,C + c3I(πn,B<πn,C)πn,B}.

As a result our optimal stopping time is

Theorem 4.28. The optimal stopping time for the model described in Section 4.1 with a

penalty for choosing the wrong regime is

τ0 = inf{n ≥ 0 : ρ(πn,B, πn,C) ≥ (1− (πn,B + πn,C)) + I(πn,B≥πn,C)πn,C + I(πn,B<πn,C)πn,B}.
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5.

Estimating The Risk ρ

In this chapter we are discussing the first steps of the calculations of our change point

detection method. First, we are showing on a simple example that the calculations for ρ are

computationally intensive (Section 5.1). Therefore, an estimation for the risk ρ is derived in

the following sections. Here, we are showing how this estimation can be applied on different

models.

5.1 Change Point Detection Example

We are looking at a Markov chain with two possible states, 0 and 1 where our current state

is denoted as xi with an initial state x0 = 0. In addition, we have three transition matrices

A,B and C.

A =

0.1 0.9

0 1



B =

 1 0

0.9 0.1
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C =

0.5 0.5

0.5 0.5


Our regime A has a transition probability matrix that makes transitions to state 1 very likely.

In contrast, regime B tends to have more transitions towards stage 0. The third regime has

even probabilities.

Our change points are geometrically distributed with θB ∼ geom(0.3) and θC ∼ geom(0.3).

In addition, the probabilities that a change point will happen before our first observation,

are πB = 0 and πC = 0.

With the results from Lemma 4.4, the posterior probabilities can be calculated as follows:

πn,B =
πn−1,B bn−1,n + (1− (πn−1,B + πn−1,C)) λB an−1,n

numeratorB + numeratorC + (1− (πn−1,B + πn−1,C)) q an−1,n

πn+1,B =
πn,Bbn−1,n + (1− (πn,B + πn,C)) 0.3 an,n+1

numeratorB + numeratorC + (1− (πn,B + πn,C)) 0.49 an,n+1

with q = 1− p = 1− (λB + λC − (λBλC)) = 1− (0.3 + 0.3− (0.3× 0.3)) = 0.49.

For regime C:

πn+1,C =
πn,Ccn−1,n + (1− (πn,B + πn,C)) 0.21 an,n+1

numeratorB + numeratorC + (1− (πn,B + πn,C)) 0.49 an,n+1

with λC(1− λB) = 0.21.

After running the simulations with the given parameters, we are getting the values

x0, . . . , x9 shown in Table 5.1.

The calculated posterior values are shown in Table 5.2. The first array represents the
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i 0 1 2 3 4 5 6 7 8 9
xi 0 1 1 0 1 0 1 1 1 0

Table 5.1: First ten values for a simulation of the Markov Chain with two alternative regimes
with a switch to regime C at time step 2

i 0 1 2 3 4 5 6 7 8 9
πn,B 0 0.3 0.2832 0.2480 0.5113 0.0 0.0 0.0 0.0 0.0
πn,C 0.0 0.21 0.3326 0.4267 0. 4887 1.0 1.0 1.0 1.0 1.0

Table 5.2: Calculated Posterior Values for n simulations

posterior probabilities for regime B at time steps 0 to 9 and the second array shows the

posterior probabilities of regime C.

We want to make a decision based on our optimal stopping time. Therefore, we declare

that a change point has happened if

min
{

(1− πn) + c2I(πn,B≥πn,C)πn,C + c3I(πn,B<πn,C)πn,B, π + Tρ(πn,Bπn,C)
}

≥ (1− πn) + c2I(πn,B≥πn,C)πn,C + c3I(πn,B<πn,C)πn,B

which is analog to the method developed in Section 4.4. Using the calculated posterior

functions, the first step in calculations gives us:

min
{

(1− π1) + c2I(πB,1≥πC,1)πC,1 + c3I(πB,1<πC,1)πB,1, π + Tρ(πB,2πC,2)
}

≥ (1− (πB,1 + πC,1)) + c2I(πB,1≥πC,1)πC,1 + c3I(πB,1<πC,1)πB,1

≥ min {0.49 + 0.21, 0.51 + E[π2,B, π2,C ]} ≥ 0.49 + 0.21

≥ min {0.7, 0.51 + E[π2,B, π2,C ]} ≥ 0.7.
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Looking at the stopping rule at time step 1, we have to do more calculations. The

declaration of a change point depends on the calculations of E[ρ(π2,B, π2,C)]. Therefore, we

have to calculate the expected values until we know that the first term 0.7 is the minimum.

In order to calculate the expected risk for making another observation, we are calculating

the possible values for ρ(π2,B, π2,C) and their probabilities.

If x2 = 0, we are getting the posterior probabilities π2,B = 0.72 and π2,C = 0.28.

For the case x2 = 1, we get π2,B = 0.2832 and π2,C = 0.3326.

In our case, the probability that P (x2|x1, x0) can be calculated as follows:

P (x2|x1, x0) = P (x2|x1, x0, α1 = A) P (α1 = A|x1, x0)

+ P (x2|x1, α1 = B) P (α1 = B|x1, x0) + P (x2|x1, α1 = C) P (α1 = C|x1, x0)

= a(x2|x1)P (α1 = A|x1, x0) + b(x2|x1)P (α1 = B|x1, x0) + c(x2|x1)P (α1 = C|x1, x0)

= a(x2|x1)(1− (π1,B + π1,C) + b(x2|x1)π1,B + c(x2|x1)π1,C

= a(x2|x1)(1− (π1,B + π1,C) + b(x2|x1)π1,B + c(x2|x1)π1,C .

The calculated probabilities for x2 are

P (x2 = 0|x1 = 1, x0 = 0) = 0× (1− (0.3 + 0.21)) + 0.9× 0.3 + 0.5× 0.21

= 0.375

and

P (x2 = 1|x1 = 1, x0 = 0) = 1× (1− (0.3 + 0.21)) + 0.1× 0.3 + 0.5× 0.21

= 0.625.
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We can now calculate E[ρ(π2,B, π2,C)]:

E[ρ(π2,B, π2,C)] =
∑

ρ(π2,B ,π2,C)

ρ(π2,B, π2,C)P (ρ(π2,B, π2,C)|x1, x0)

=
∑
x2

ρ(π2,B, π2,C)P (x2|x1, x0)

= ρ(π2,B, π2,C)P (x2 = 0|x1, x0) + ρ(π2,B, π2,C)P (x2 = 1|x1, x0)

= ρ(π2,B, π2,C)P (x2 = 0|x1 = 0, x0 = 1) + ρ(π2,B, π2,C)P (x2 = 1|x1 = 0, x0 = 1)

= ρ(π2,B, π2,C)0.375 + ρ(π2,B, π2,C)0.625.

The risk function ρ(π2,B, π2,C) can be calculated for both cases x2 = 0 and x1 = 1.

For x2 = 0:

ρ(π2,B, π2,C) = min{1− (0.72 + 0.28) + 0.28, 0.72 + 0.28 + Tρ(π3,B, π3,B)}

= min{0.28, 1 + Tρ(π3,B, π3,B)}

since Tρ(π3,B, π3,B) is positive, ρ(π2,B, π2,C) = 0.28.

For x2 = 1:

ρ(π2,B, π2,C) = min{1− (0.2832 + 0.3326) + 0.2832, 0.2832 + 0.3326 + Tρ(π3,B, π3,B)}

= min{0.6674, 0.6158 + Tρ(π3,B, π3,B)}.

We cannot state the exact value of ρ(π2,B, π2,C) because we do not know what Tρ(π3,B, π3,B)
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i xi αi πi,B πi,C ρleft ρright ρ change point
1 1 A 0.3 0.21 0.7 0.5221 0.5221
2 1 C 0.2832 0.3326 0.6674 0.4981 0.4981
3 0 C 0.2480 0.4267 0.5733 0.4951 0.4951
4 1 C 0.5113 0.4887 0.4887 0.2443 0.2443
5 0 C 0.0 1.0 0 0 τ0 = 5
6 1 C 0.0 1.0 0 0
7 1 C 0.0 1.0 0 0
8 1 C 0.0 1.0 0 0
9 0 C 0.0 1.0 0 0

Table 5.3: Values for simulated Markov chain

is. With these calculations we get:

E[ρ(π2,B, π2,C)] = ρ(π2,B, π2,C)0.375 + ρ(π2,B, π2,C)0.625

= 0.28× 0.375 + min{0.6674, 0.6158 + Tρ(π3,B, π3,B)× 0.625.

Our stopping rule for x1 = 1 is:

ρ(π1,B, π1,C) = min {0.7, 0.51 + E[π2,B, π2,C ]}

= min {0.7, 0.51 + 0.28× 0.375

+ min{0.6674, 0.6158 + Tρ(π3,B, π3,B)} × 0.625}

= min {0.7, 0.51 + 0.105 + min{0.6674, 0.6158 + 0.4981} × 0.625}

= min {0.7, 0.51 + 0.105 + 0.6674× 0.625}

= min {0.7, 0.5221}

= 0.5221.

Therefore, we are not causing an alarm. The following calculations can be found in Table

5.3. A change point is detected after a switch from regime 1 to 0. This is only possible under

a regime change to C. The alarm is caused at time step τ0 = 5.
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5.2 Using Qn To Estimate ρ

The results of Section 5.1 show that calculating ρ is computationally intensive. Therefore,

we are interested to use a risk Qn as in Theorem 4.20, to estimate the risk ρ. In this section

we derive the risk Q for a Markov chain model with two regimes and show its application

on a simulation.

5.2.1 Calculating Q for Markov Chain Model With Two Regimes

After calculating Qn for a simple model with one alternative regime, we are now looking

at the case for Markov chain random variables. We assume that X1, X2, . . . are random

variables governed by a Markov chain distribution with

P (X0 = x) = 1

P (xi|xi−1) = a(xi|xi−1)

for i = 1, 2, . . . , θ − 1, and

P (xi|xi−1) = b(xi|xi−1)

for i = θ, θ + 1, . . . . Here θ is the change point with zero inflated distribution

P (θ = 0) = π ∈ (0, 1)

P (θ = n) = (1− π)(1− p)n−1p, n = 1, 2, . . .
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where p ∈ (0, 1).

The posterior probability is defined as

πn := P (θ ≤ n|Fn), n = 0, 1, 2, . . .

where

F0 = {∅,Ω}

Fn = σ{X1, X2, . . . , Xn}.

Some observations that are

π0 = P (θ ≤ 0|F0) = P (θ = 0) = π

π1 = P (θ ≤ 1|F1) = P (θ = 0|F1) + P (θ = 1|F1).

Then

E[π1] = E[P (θ = 0|F1) + P (θ = 1|F1)]

= P (θ = 0) + P (θ = 1)

= π + (1− π) · p

= p+ (1− p) · π.

(5.1)

We derive a Bayes formula for π1 following Shiryaev’s approach Shiryaev (2008). Consider

A = {X1 = x1} ∈ F1. Then

Px(θ ≤ 1, A) = P (θ = 0, A|X0 = x) + P (θ = 1, A|X0 = x)

= P (A|θ = 0, X0 = x) · P (θ = 0) + P (A|θ = 1, X0 = x) · P (θ = 1)

= πP (X1 = x1|θ = 0, X0 = x) + (1− π)pP (X1 = x1|θ = 1, X0 = x)

= π · b(x1|x) + (1− π) · p · b(x1|x).

(5.2)
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We use the definition of conditional expectation to derive a Bayes formula for π1 and define

Px(X1 = x1) = P (A, θ = 0) + P (A, θ = 1) + P (A, θ > 1)

= π · b(x1|x) + (1− π) · p · b(x1|x) + (1− π) · (1− p) · a(x1|x).

(5.3)

Therefore,

Px(θ ≤ 1, A) = π · b(x1|x) + (1− π) · p · b(x1|x)

=
π · b(x1|x) + (1− π) · p · b(x1|x)

π · b(x1|x) + (1− π) · p · b(x1|x) + (1− π) · (1− p) · a(x1|x)
· P (A)

=

∫
A

π · b(x1|x) + (1− π) · p · b(x1|x)

π · b(x1|x) + (1− π) · p · b(x1|x) + (1− π) · (1− p) · a(X1|x)
dP

=

∫
A

b(x1|x) · (π + (1− π) · p)
π · b(x1|x) + (1− π) · p · b(x1|x) + (1− π) · (1− p) · a(x1|x)

dP.

(5.4)

By the definition of conditional expectation, we have

Px(θ ≤ 1|F1) = π1(X1) =
π · b(X1|x) + (1− π) · p · b(X1|x)

π · b(X1|x) + (1− π) · p · b(X1|x) + (1− π) · (1− p) · a(X1|x)

(5.5)

given that π1(X1) is F1-measurable.

Moreover,

Ex[π1] =
∑

π1(x1)P (X1 = x1|X0 = x)

=
∑ π0 · b(x1|x) + (1− π) · p · b(x1|x)

π0 · b(x1|x) + (1− π) · p · b(x1|x) + (1− π)(1− p)a(x1|x)

· (π0 · b(x1|x) + (1− π) · p · b(x1|x) + (1− π)(1− p)a(x1|x))

=
∑

π0 · b(x1|x) + (1− π) · p · b(x1|x)

= π0 + (1− π0) · p.

(5.6)

We can see that Ex[π1] does not depend on x which agrees with the previous results where

we calculated the expected value directly.
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5.2.2 Example: Calculating Q1 for Markov Chain Model With

Two Regimes

We assume x1, x2 . . . are random variables governed by a Markov Chain distribution with

P (x0 = 0) = 1 The transition probability matrices are

A =

0.1 0.9

0.4 0.6


for i = 1, 2, . . . , θ − 1 and

B =

0.8 0.2

0.9 0.1


for i = θ, θ + 1, . . . .

and θ is the change point with distribution

P (θ = 0) = π ∈ (0, 1)

P (θ = n) = (1− π) · (1− p)n−1 · p.

Let p = 0.4

We are calculating Q(g(π)) = min{g(π), c · π + Eg(π)} for π = 0.1 and c = 1. We have

g(π) = 1− π = 0.9 and c · π = 0.1.

Furthermore,

P (x1 = 1|x0 = 0) = π · b(1|0) + (1− π)(p)b(1|0) + (1− π)(1− p)a(1|0)

= 0.1 · 0.2 + 0.9 · 0.4 · 0.2 + 0.9 · 0.6 · 0.9

= 0.578

(5.7)
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and

P (x1 = 0|x0 = 0) = π · b(0|0) + (1− π)(p)b(0|0) + (1− π)(1− p)a(0|0)

= 0.1 · 0.8 + 0.9 · 0.4 · 0.8 + 0.9 · 0.6 · 0.1

= 0.422.

(5.8)

In addition, we can calculate E[π1] = E[π1|π1 = 0]P (x1 = 0|P0 = 0) + E[π1|π1 = 1]P (x1 =

1|P0 = 0):

E[π|x1 = 0] =
π · b(0|0) + (1− π)(p)b(0|0)

π · b(0|0) + (1− π)(p)b(0|0) + (1− π)(1− p)a(0|0)

=
0.1 · 0.2 + 0.9 · 0.4 · 0.2

0.1 · 0.2 + 0.9 · 0.4 · 0.2 + 0.9 · 0.6 · 0.9

=
0.092

0.578

= 0.1592

(5.9)

E[π|x1 = 1] =
π · b(1|0) + (1− π)(p)b(1|0)

π · b(1|0) + (1− π)(p)b(0|0) + (1− π)(1− p)a(0|0)

=
0.1 · 0.8 + 0.9 · 0.4 · 0.8

0.1 · 0.8 + 0.9 · 0.4 · 0.8 + 0.9 · 0.6 · 0.1

=
0.368

0.422

= 0.8720

(5.10)

We get E[g(π)] = 0.578 · (1− 0.1592) + 0.422 · (1− 0.8720) = 0.540 and

Q(g(π)) = min{0.9, 0.1 + 0.540} = 0.640

.

Similarly, we calculated values for different π values as shown in Table 5.4.
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π 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Qg(π) 0.6 0.64 0.68 0.7 0.6 0. 5 0.4 0.3 0.2 0.1 0.0

Table 5.4: Qg(π) values for a Markov Chain model

Figure 5.1: Interpolation between the calculated values of Qg(π)

5.2.3 Example: Calculating Q2(π) for Markov Chain Model With

Two Regimes

After calculating g1 = Q(g(π)) we are interested in calculating g2(π) = Q2.

g2(π) = min{g1(π), π + E[Q(π)]}

= min{0.640, 0.1 + E[Q(π)]}
(5.11)

All values are given besides E[Q(π)]. Therefore, we can use the Q(π) value that we calculated

previously by interpolating between the values. The function that is achieve by interpolating

between the points is shown in (5.1).
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π 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Qg(π) 0.6 0.64 0.68 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
Q2(π) 0.464 0.5376 0.6112 0.6814 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Table 5.5: Qg(π) values for a Markov Chain model

Eπ[g1(π)] = g1(π) · Pπ(x1 = 0|x0 = 0) + g1(π) · Pπ(x1 = 1|x0 = 0)

= g1(0.1592) · 0.578 + g1(0.8720) · 0.422

= 0.6638 · 0.578 + 0.128 · 0.422

= 0.4377

(5.12)

Therefore, we get the following value for g2(0.1):

g2(π) = min{0.640, 0.1 + 0.4377}

= 0.5377

(5.13)

Further calculations with other π values give us an overview of the function Q2(π) shown in

Table 5.5.

A comparison of the different Qn and its convergence to a function that will later be

called ρ(π) is shown in graphic Figure 5.2. The blue line shows our first Q(π), the orange

line represents Q2. The other two lines are not discernible on the graph. They show Q100

and Q1000. It can be seen that the values do not change significantly anymore. Therefore,

we can call the red line and estimate of ρ(π).

5.3 Markov Chain Model With Three Regimes

In order to use the derived stopping time method, we have to calculate ρ. However, we

showed that the calculations become computational intensive fast even for simpler models.

Therefore, we derive a method to estimate ρ for a Markov Chain with three regimes and

show its application on an example. In the following chapter we are adapting the parameter

Q derived previously.

44



Figure 5.2: Interpolation between the calculated values of Qg(π) with blue: Q(π), orange:
Q2 and red: Q1000.

5.3.1 Qn for a Markov Chain Model With Three Regimes

Our goal is to derive a method that detects a change point with two alternative regimes.

We again assume X1, X2, . . . are random variables governed by a Markov chain distribution

with

P (X0 = x) = 1

P (xi|xi−1) = a(xi|xi−1)

for i = 1, 2, . . . , θ − 1. After the change point θ = min{θB, θC} where θB ∼ geom(λB) and

θC ∼ geom(λC) we have

P (xi|xi−1) = b(xi|xi−1)

if θ = θB and

P (xi|xi−1) = c(xi|xi−1)

45



if θ = θC

for i = θ, θ + 1, . . .

Therefore we have:

P (θ = 0) = P (θB = 0) + P (θC = 0 ∩ θB > 0) = πB + (1− πB) · πC = π0 ∈ (0, 1)

and

P (θ = n) = (1− π0)(1− p)n−1p, n = 1, 2, . . .

where p = λB + λC − λB · λC .

The posterior probabilities are defines as

πn,B := P (θ ≤ n, αn = B|Fn)

and

πn,C := P (θ ≤ n, αn = C|Fn).

The first observations are

π0 = P (θ ≤ 0|F0)

= P (θ ≤ 0, α0 = B|F0) + P (θ ≤ 0, α0 = C|F0)

= P (θB = 0) + (1− P (θB = 0)) · P (θC = 0)

= πB + (1− πB) · πC

(5.14)

π1 = P (θ ≤ 1|F1) = P (θ = 0|F1) + P (θ = 1|F1). (5.15)
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Then

E[π1] = E[P (θ = 0|F1) + P (θ = 1|F1)]

= P (θ = 0) + P (θ = 1)

= π0 + (1− π0) · p

= p+ (1− p) · π0.

(5.16)

We derive a Bayes formula for π1, as we did previously. Consider A = {X1 = x1} ∈ F1.

Then

Px(θ ≤ 1, A) = P (θ = 0, A|X0 = x) + P (θ = 1, A|X0 = x)

= P (θ = 0, α1 = B,A|X0 = x) + P (θ = 0, α1 = C,A|X0 = x)

+ P (θ = 1, α1 = B,A|X0 = x) + P (θ = 1, α1 = C,A|X0 = x)

= P (A|θ = 0, α1 = B,X0 = x) · πB

+ P (A|θ = 0, α1 = C,X0 = x) · (1− πB) · πC

+ P (A|θ = 1, α1 = B,X0 = x) · P (θ = 1, α1 = B)

+ P (A|θ = 1, α1 = C,X0 = x) · P (θ = 1, α1 = C)

= πB · b(x1|x) + (1− πB) · πC · c(x1|x)

+ (1− π0) · λB · b(x1|x)

+ (1− π0) · (1− λB) · λC · c(x1|x).

(5.17)

We apply the definition for the conditional expectation
∫
G
XdP =

∫
G
E[X|G ]dP in order to

derive the Bayes formula.
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Px(A) = Px(X1 = x1)

= πB · b(x1|x) + (1− πB) · πC · c(x1|x) + (1− π0) · λB · b(x1|x)

+ (1− π0) · (1− λB) · λC · c(x1|x)

+ (1− π0) · (1− λB) · (1− λC) · a(x1|x)

(5.18)

Px(θ ≤ 1, A) =
πBb(x1|x) + (1− πB)πCc(x1|x)

P (A)

+
(1− π0) [λBb(X1|x) + (1− λB)λCc(x1|x)]

P (A)
· P (A)

=

∫
A

πBb(x1|x) + πCc(x1|x) + (1− π0) [λBb(X1|x) + (1− λB)λCc(x1|x)]

P (A)
dP.

(5.19)

We can use the definition of the conditional expectation, given that π1 is F1-measurable.

∫
A

πBb(x1|x) + πCc(x1|x) + (1− π0) [λBb(X1|x) + (1− λB)λCc(x1|x)]

P (A)
dP =

∫
A

π1dP.

(5.20)

This result gives us a Bayes formula for π1:

πx,1 =
πBb(X1|x) + πCc(X1|x) + (1− π0) [λBb(X1|x) + (1− λB)λCc(X1|x)]

P (X1)
. (5.21)

We can use this formula to calculate E[π1] which is necessary to calculate different values of
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Q.

Ex[π1] =
∑

π1(x1) · P (X1 = x1|X0 = x)

=
∑ πB · b(x1|x) + (1− πB) · πC · c(x1|x)

P (X1 = 1)

+
(1− π0) · [λBb(x1|x) + (1− λB) · λC · c(x1|x)]

P (X1 = 1)
· P (X1 = 1)

=
∑

πB · b(x1|x) + (1− πB) · πC · c(x1|x)

+ (1− π0) · [λBb(x1|x) + (1− λB) · λC · c(x1|x)]

= πB + (1− πB) · πC + (1− π0) [·λB + (1− λB)λC ]

= π0 + (1− π0) · p

(5.22)

The formula matches the results when we calculated Ex[π1] directly.

5.3.2 Example: Calculating Q2(π) for Markov Chain Model With

Three Regime

We show how to calculate Q for a Markov Chain with three regimes. We assume X1, . . .

are random variables governed by a Markov Chain distribution with P (x0 = 0) = 1. The

transition probability matrices are

A =

0.9 0.1

0.4 0.6


and the two alternative regimes have the transition probabilities

B =

0.8 0.2

0.9 0.1
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πB 0.1
πC 0.1
λB 0.4
λC 0.1
p 0.46

Table 5.6: Parameters for the Markov Chain model with three regimes

and

C =

0.5 0.5

0.5 0.5


.

All other variables are defined in Table 5.6.

Our Q(g(π)) is defined as min{g(πB, πC), c · π + Eg(πB, πC)} with c = 1. The definition

for g(πB, πC) is derived in the previous chapters:

g(πB, πC) = (1− π) + I(πB ≥ πC) · πC + I(πB < πC) · πB (5.23)

For the calculations of Q we also need to calculate the probabilities for x1. Our model has

two possible states {0, 1}:

P (x1 = 1|x0 = 0) = πBb(1|0) + (1− πB) · πC · c(1|0)

+ (1− πB)(1− πC) · λBb(1|0) + (1− πB)(1− πC) · (1− λB)(λC)c(1|0)

+ (1− πB)(1− πC) · (1− λB − λC + λBλC) · a(1|0)

= 0.1 · 0.2 + 0.9 · 0.1 · 0.5

+ 0.9 · 0.9 · 0.4 · 0.2 + 0.9 · 0.9 · 0.6 · 0.1 · 0.5

+ 0.9 · 0.9 · 0.6 · 0.9 · 0.1

= 0.19784

(5.24)

50



and

P (x1 = 0|x0 = 0) = πBb(0|0) + (1− πB) · πC · c(0|0)

(1− πB)(1− πC) · λBb(0|0) + (1− πB)(1− πC) · (1− λB)(λC)c(0|0)

(1− πB)(1− πC) · (1− λB − λC + λBλC) · a(0|0)

= 0.1 · 0.8 + 0.9 · 0.1 · 0.5

+ 0.9 · 0.9 · 0.4 · 0.8 + 0.9 · 0.9 · 0.6 · 0.1 · 0.5

+ 0.9 · 0.9 · 0.6 · 0.9 · 0.9

= 0.80216.

(5.25)

After calculating the conditional probabilities we are interested in calculating the conditional

expectation. Meaning, we calculate π1 for the cases x1 = 1 and x1 = 0. For further

calculations, we start by calculating E[πα,1(0)].

πx,B,1(0) =
πBb(0|0) + (1− πB)(1− πC) · λBb(0|0)

numerator + (1− πB)(1− πC) · (1− λB − λC + λBλC) · a(0|0)

=
0.3392

0.80216

= 0.42289

(5.26)

and

πx,C,1(0) =
(1− πB) · πC · c(0|0) + (1− πB)(1− πC) · (1− λB)(λC)c(0|0)

numerator + (1− πB)(1− πC) · (1− λB − λC + λBλC) · a(0|0)

=
0.0693

0.80192

= 0.08640.

(5.27)
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We can calculated Eπ1(0) by adding both expected values:

πx,1(0) = πx,B,1(0) + πC,1(0)

= 0.42289 + 0.08640

= 0.50930

(5.28)

Similar calculations resulted in:

π1(1) = 0.7789

πB,1(1) = 0.4286

πC,1(1) = 0.3503.

(5.29)

After deriving the expected values and probabilities we can calculate E[π1]:

E[π1] = E[π1(0)] · P (x1 = 0|x0 = 0) + E[π1(1)] · P (x1 = 1|x0 = 0)

= 0.5093 · 0.80192 + 0.7789 · 0.19808

= 0.5627.

(5.30)

We can check the value to the formula that we calculated previously

E[π1] = πB + (1− πB) · πC + (1− (πB + (1− πB) · πC)) · p

= 0.1 + 0.9 · 0.1 + 0.81 · 0.46

= 0.5626.

(5.31)

Which is numerically equal to round of.
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The goal of this section is to calculate Q1(π) or g1(π). The formula to derive this is given by

g1(π) = min{(1− π) + I{πB≥πC}πC + I{πB<πC}πB, c · π · E[Q(π)]}

= min{1− 0.2 + 0.1, 0.2 · E[Q(π)]}

= min{1− 0.2 + 0.1, 0.2 · 0.5759}

= min{0.9, 0.7759}

= 0.7759

(5.32)

with

E[Q(π)] = [g(E[πB,1(0)],E[πC,1(0))]] · P (x1 = 0|x0 = 0)

+ [g(E[πB,1(1)],E[πC,1(1)]] · P (x1 = 1|x0 = 0)

= [(1− 0.5093) + 0.0864] · 0.80192 + [(1− 0.7789) + 0.3503] · 0.19784

= 0.4629 + 0.1130

= 0.5759.

(5.33)

5.3.3 Example: Results Q2(π) for Markov Chain Model

With Three Regime

For the example in Section 5.3 we calculated the missing values. We will no be calculating

Q2(π).

g2(π) = min{g1(π), π + E[Q(π)]}

= {0.8, 0.5 + E[Q(π)]}
(5.34)
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For the expected value we can use the calculated values for Q(π) by interpolating between

the values.

Eπ[g1(π)] = g1(π) · P (x1 = 0|x2 = 0) + g1(π) · Pπ(x1|x0)

= g1(0.4868, 0.0768) · Pπ(x1 = 0|x2 = 0) + g1(0.4927, 0.3110) · Pπ(x1 = 1|x0 = 0)

= g1(0.4868, 0.0768) · 0.80216 + g1(0.4927, 0.3110) · 0.19784

= 0.5132 · 0.80216 + 0.5075 · 0.19784

= 0.51207.

(5.35)

This gives us

g2(π) = min{0.3984, 0.3 + 0.51207}

= 0.3984.

(5.36)
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6.

Simulations

We demonstrate the change point detection for a Markov chain model with three regimes

using simulation and apply the calculated values of Q to our stopping rule.

We will use the same variables shown in Table 6.1 with different transition matrices.

6.1 Simulation 1

For the first simulation we are choosing an initial regime that makes a transition to state

1 very likely. Furthermore, the state 1 is an absorbing state, meaning that once entering

state 1 the state does not change anymore. Therefore, a change point will be indicated

immediately but not limited by a change from state 1 to state 0.

x0 0
πB 0.1
πC 0.1
λB 0.4
λC 0.1
p 0.46
c 0.5
Qn Q2

Table 6.1: Variables for the Markov Chain model with three regimes

55



Figure 6.1: Simulation 1: Markov chain values
Figure 6.2: Simulation 1: π, g(πn,B, πn,C) and
ρ

A =

 0.3 0.7

0.0 1.0

 , B =

 0.8 0.2

0.1 0.9

 , C =

 0.5 0.5

0.5 0.5


For the change point detection we have the following stopping rule:

τ0 = inf{n ≥ 0 : ρ(πn,B, πn,C) ≥ (1− (πn,B + πn,C)) + I(πn,B≥πn,C)πn,C + I(πn,B<πn,C)πn,B}

where ρ(πn,B, πn,C) can be estimated by the calculated values of Qn. We are using Q1000.

Therefore, the method will cause an alarm if

τ0 = inf{n ≥ 0 : Q1000(πn,B, πn,C) ≥ (1− (πn,B + πn,C)) + I(πn,B≥πn,C)πn,C + I(πn,B<πn,C)πn,B}.

(6.1)

The first result is shown in Figure 6.1. The yellow point represents the actual change point

while the red point stands for the caused alarm. As assumed, a change point is immediately

detect if there is a switch from state 1 to state 0.

Furthermore the values of πn, g(πn,B, πn,C) and ρ(πn,B, πn,C) are shown in Figure 6.2. As

defined an alarm is caused when ρ = g.
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6.2 Simulation 2

We are interested in seeing the same model in a second simulation to see how well the method

detects a change point without an imediate change from state 1 to 0. The example of the

change point detection can be seen in Figure 6.3. A switch happens at time step t = 3

(orange point) while an alarm is caused at t = 24. First, we could think that our change

point detection is not optimal since a switch from state 1 to state 0 indicated that a change

point has happened. However, the alarm is caused one time step after the switch. This

can be explained by the additional component in our risk function: the cost of choosing the

wrong regime. Even when it is certain that a change point has happened, the probability of

choosing the wrong regime is too high.

An additional factor for the change point detection are the variables ci. These are weights

that can be adjusted to define the severity of early detection or detection delay just as

choosing the wrong regime.

If we consider our Covid 19 data, these weights can be interpreted the following. Assume

that we are prioritizing the health of the people and we want to detect changes as early

as possible. Then we would weight the early detection factor much less. This will cause

more early detections. However, the average detection delay will decrease. Another case is a

business man who wants to avoid a lock down as much as possible. Here, an early detection

can have a major impact on the person’s business which is why they might weigh an early

detection or the cost of choosing the wrong regime more.

6.3 Evaluation Simulation

We are interested in seeing how well our method detects change points. Therefore, we are

using the model and simulate 100 data sets. Each time we are measuring the average early
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Figure 6.3: Simulation 2: Markov chain values
Figure 6.4: Simulation 2: π, g(πn,B, πn,C) and
ρ

π λ A B C Early Detection Late Detection Wrong Regime c1

(0.01,0.01) (0.1,0.05) A =

(
0.5 0.5
0.9 0.1

)
B =

(
0.1 0.9
0.0 1.0

)
C =

(
0.2 0.8
0.2 0.8

)
49
δe=3.32

51
δl = 0.83

14
δB = 14
δC = 0

0.5

(0.01,0.01) (0.1,0.05) A =

(
1.0 0.0
0.0 1.0

)
B =

(
0.0 1.0
0.0 1.0

)
C =

(
0.0 1.0
1.0 0.0

)
0.0
δe=0.0

98
δl = 1.0
σl = 0.0

26
δB = 36
δC = 0

0.5

(0.01,0.01) (0.1,0.05) A =

(
0.5 0.5
0.5 0.5

)
B =

(
0.1 0.9
0.1 0.9

)
C =

(
0.9 0.1
0.9 0.1

)
54
δe=6.76

35
δl = 3.03

1
δB = 1
δC = 0

0.5

(0.01,0.01) (0.1,0.05) A =

(
0.5 0.5
0.5 0.5

)
B =

(
0.1 0.9
0.1 0.9

)
C =

(
0.9 0.1
0.9 0.1

) 29
δe = 4.71
σe = 4.86

71
δl = 5.69
σl = 3.52

3
δB = 0
δC = 0

0.2

(0.01,0.01) (0.1,0.05) A =

(
0.5 0.5
0.5 0.5

)
B =

(
0.1 0.9
0.1 0.9

)
C =

(
0.9 0.1
0.9 0.1

) 12
δe=5.92
σl = 5.71

85
δl = 5.96
σl = 2.98

1
δB = 1
δC = 0

0.05

(0.01,0.01) (0.1,0.05) A =

(
0.5 0.5
0.5 0.5

)
B =

(
0.25 0.75
0.25 0.75

)
C =

(
0.75 0.25
0.75 0.25

)
32
δe = 2.77

68
δl = 4.68

14
δB = 0
δC = 14

0.2

Table 6.2: Results for a Markov chain model with 3 regimes. Bases on calculations with Q2,
m = 11 and 100 simulations

detection δe, the average late detection δl, and the number of regimes wrongly assigned.

Here, δB names the cases where regime B was assigned while the actual regime was C. δC

is applied analogously.

The results are shown in Table 6.2.

Every row shows a model with three regimes. In the first row, we have an initial regime

with equal probabilities to stay or leave state 0 and a tendency to switch to state 0 once

in state 1. The two alternative regimes are rather similar, both having a tendency towards

state 1.

The initial probabilities for regime B or C are both 0.01. However, the parameter λB is 0.1
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while λC is 0.05 and therefore greater than λC . This makes a transition to regime B more

likely.

The results show an even distribution between early detection (49) and late detection (51)

with an average early detection of 3.32 and an average detection delay of 0.83. 14 regimes

were wrongly assigned to B when the regime was C. The weight for a detection delay was

0.5.

We are interested in a case where the transition probability matrices of B and C differ more

significantly. We look at row 3 of our table Table 6.2. Here, the initial regime shows even

probabilities of 0.5 for every transition. Regime B shows a clear tendency for state 1 while

transitions to state 0 are very likely in regime C. The initial change point probabilities π

and the variable λ stay the same as in row 1.

The results show that there are 54 early detections and 35 detection delays. Only one regime

was assigned wrongly. However, we are interested in reducing the number of early detections

and focus on causing an alarm when it actually happened. Therefore, we change the weight

c1 from 0.5 to 0.2.

Changing our weight results in less early detections and more detection delays. The average

detection delay increased from 3.03 to 5.69 with a standard deviation of 3.52. The increase

of the detection delay is due to the fact that early alarms are weighted more now. Therefore,

the algorithm is rather careful about causing an alarm. In addition, the wrongly assigned

regimes dropped from 1 to 0.

After changing lowering the value of c1 to 0.05 (see row 5), we see an additional drop in early

detection. The average detection delay only increased slightly while the standard deviation

decreased. However, we see that one regime was assigned wrongly. This is most likely not

due to the change of the weight.

The last row shows an example where the regimes B and C do not differ that drastically.

We wanted to analyze how our method works when the transition probability matrices differ

less significantly. We can see a slight increase in the detection delay. What is prominent
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that the wrongly assigned regimes increased by 14. All assigned C when the actual regime

was B.
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7.

Covid Data

We successfully developed a method to find a change point in Markov chain models with

two alternative regimes. After testing our method on simulated data, we are interested in

applying the approach on real time data. We start with the Wisconsin daily Covid data

which is published on several websites such as Our World In Data. This chapter will be

divided into four parts. First, we analyze the available data followed by developing a model

for the Covid-19 data into a Markov chain model. The second section describes the result of

our change point detection. Finally, we apply our results on other states data. Here, we use

the derived change point detection and apply it on data from the state of Minnesota.

7.1 Wisconsin Covid Data

The Covid data is freely accessible at several websites. We used the data that is available on

the ”Our World In Data” website Data (2023). The first data we consider are the daily new

confirmed Covid-19 cases. The daily new confirmed Covid-19 cases in Wisconsin are shown

in Figure 7.1.

If we want to define our regimes, we would pick one regime where the cases are rather

stable, meaning that there is no significant increase or decrease in the new confirmed cases.

On the other hand we are interested in defining two other regimes. One showing a increase
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Figure 7.1: Daily New Confirmed Covid-19 Cases in Wisonsin. DHS (2023)

in new confirmed cases and the other showing a significant decrease in cases. We are labeling

the regime with constant case numbers A, the regime with an increasing number of cases B

and the last regime C. A first look at the data would suggest the regime A to take place in

times such as January 2020 till June 2020 or May 2022 till November 2022. Examples for

regime B could be August 2020 till October 2020, etc.

7.1.1 Model Wisconsin Data

Our simulations of the change point detection method are based on a Markov chain model

with three states. Therefore, we establish a three state Markov chain for our Covid-19 data.

One approach is to define the states through thresholds for the change in cases. The change

can be calculated the following

changei+1 = ni+1 − ni.
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Figure 7.2: Change of Daily New Confirmed Covid-19 Cases in Wisonsin. DHS (2023)

State 0 1 2
changei+1 ≤ −70 [−70, 70] ≥ 70

Table 7.1: Thresholds for states of Covid-19 cases in Wisconsin

where ni+1 is the number of confirmed cases on day i + 1 and ni the number of confirmed

cases on day i. The change in cases is shown in Figure 7.2 with an average change of 0.5259.

We are choosing the intervals for the different states given in Table 7.1.

With the chosen thresholds were able to categorize every change of Covid-19 cases into a

state. The results are displayed in Figure 7.3. We can now use the data to estimate transition

probabilities for every regime. Therefore, we need to define training data or intervals which

can be used to estimate the transition matrices for regime A, B and C. We first choose

to decide on the intervals by looking at the Daily New Confirmed Covid-19 cases (Figure

7.1). The data suggest that we are in regime A until August 2020 with a slow transition to
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Figure 7.3: States of Daily New Confirmed Covid-19 Cases in Wisconsin. DHS (2023)
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Regime A B C
Training 5/22/2020− 8/22/2020 9/22/2020− 10/22/2020 11/15/2020− 1/15/2021
Interval

Table 7.2: Time intervals for estimating the transition probability matrices.

regime B. This increase in cases can be observed until October 2020. The definite decline

can be seen starting Mid-November until Mid-January. We will try to use these intervals as

training data. The exact intervals are shown in Table 7.2.

Each transition probability between state i and state j can be estimated by the following

formula.

pij =
nij∑
j nij

(7.1)

Using the training data gives us the transition probabilities

A =


0.3448 0.1379 0.5172

0.1154 0.3461 0.5385

0.4444 0.3611 0.1944



B =


0.3 0.1 0.6

0.5 0.0 0.5

0.3333 0.2 0.4667

.



C =


0.4848 0.0 0.5152

0.5 0.0 0.5

0.68 0.08 0.24
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Figure 7.4: Change of Daily New Confirmed Covid-19 Cases in Wisonsin with adjusted
range. DHS (2023)

Some of the transition probabilities are 0 which means that there were not any transitions

between these states. This can be a result of having a small sample space. Therefore, we

can either use more training data, by choosing more intervals for the parameter estimation.

Another solution could be adjusting the intervals for the chosen states shown in Table 7.1.

The sample size is relatively small since we only have Covid-19 data of the last two years.

Dividing these data points into three different training sets for three regimes can be chal-

lenging. Therefore, we first try to adjust the thresholds for our states.

We take a closer look at the change in cases displayed in Figure 7.2. The extraordinary

spike in change around January 2022 make it difficult to see the actual behavior pattern.

Therefore, we are now looking at a graph were the range is going from −7000 to 7000 shown

in Figure 7.4. The range is visible range is just omitted in the graph but not the actual data.
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Figure 7.5: Previous Day Hospital Admissions (Age 60-69) in Wisconsin. HealthData.gov
(2023)

The graph suggests that the thresholds −70 and 70 were making transitions to state 1

during an increase in cases rather unlikely.

Trying different intervals for the states does not result in complete transition probability

matrices. Meaning, it is not possible to eliminate all zeros in the matrices.

7.2 Wisconsin Hospital Admission Data

Another data set that can indicate changes in the Covid-19 cases are the daily hospital

admissions. The data is available on several websites such as HealthData.gov (2023). We

choose to observe the daily hospital admissions for patients between 60 and 69. The numbers

are shown in Figure 7.5.

We are again calculating the change between the current and previous day which results

in the data shown in Figure 7.6.
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Figure 7.6: Change In Previous Day Hospital Admissions (Age 60-69) in Wisconsin. Health-
Data.gov (2023)
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Regime A B C
Training 07/30/2020− 09/22/2020 10/01/2020− 11/06/2020 12/01/2020− 02/10/2021
Interval 06/18/2022− 12/01/2022 07/15/2021− 09/11/2021 01/17/2022− 03/15/2022

Table 7.3: Time intervals for estimating the transition probability matrices from Wisconsin
hospital admissions.

State 0 1 2 3
changei+1 ≤ −0.1 [−0.1, 0] [0, 0.1] ≥ 0.1

Table 7.4: Thresholds for states of Covid-19 Hospital admissions in Wisconsin

Again we are interested in organizing the changes into different states depending on the

interval they are in. In order to have more training data, we are using several time intervals

for the data. The chosen time frames for our training data are displayed in Table 7.3.

Next we are defining our states. In addition to choosing several time intervals, we are

also using four states to categorize our changes in hospital admissions.

The resulting state distribution is shown in Figure 7.7.

With these setting we are able to calculate the transition probability matrices for our

different regimes. We use the same method that is described previously. The results are

three matrices that do not contain any probability equal to zero.

A =



0.0345 0.2759 0.4483 0.2414

0.0541 0.2703 0.4865 0.1891

0.1310 0.3929 0.3690 0.1071

0.4194 0.4194 0.1290 0.03226
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Figure 7.7: States In Previous Day Hospital Admissions (Age 60-69) in Wisconsin. Health-
Data.gov (2023)
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Figure 7.8: Change Point Detection on Wisconsin Hospital Data (Age 60-69) with start date
on October 31st 2021

B =



0.1176 0.1176 0.3529 0.4118

0.125 0.0417 0.5417 0.2917

0.22 0.26 0.3 0.22

0.4571 0.2 0.2286 0.1143



C =



0.2581 0.0645 0.3548 0.3226

0.1818 0.1515 0.2727 0.3939

0.1667 0.4333 0.3 0.1

0.4063 0.375 0.0625 0.1563


.

We can use these matrices of our regimes in our method to detect change points. There-
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Figure 7.9: Change Point Detection on Wisconsin Hospital Data (Age 60-69) with start date
on April 27th 2021

fore, we are looking back at the hospital admissions in Figure 7.5. To test our change point

detection on real time data, we choose starting dates that were not used to estimate our

probability matrices, for example 10/31/2021. The graph suggest that a week before the

cases were increases with a short stabilization at the peek. We are now applying our change

point detection assuming a initial regime A. The method detects a change point after 7 days

with a switch to regime B as shown in Figure 7.8. In the graph regime 1 stands for regime

B and regime 2 would be regime C.

While the change point and regime towards B seems to be detected correctly if we compare

it to the data, the caused alarm seems to be early. While it was correct in this case, a very

sensitive method can lead to false alarms in very small changes of behavior.

An example is looking at starting date April 27th 2021. The graph would suggest an

initial regime A with a short decrease in cases and an increase after mid July. The current
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Figure 7.10: Change Point Detection on Wisconsin Hospital Data (Age 60-69) with start
date on April 27th 2021 with c1 = 0.1

method detects a change point after 7 days with a switch to regime B, shown in Figure 7.9.

While there might be a short trend of increasing cases, the detection is too early.

A way to make the method less sensitive is adjusting the constant c1 as we did in the

simulation. Trying different constants c1 = 0.1 results in good balance of early detection

and late detection. With c1 = 0.1 we detect a change point after 99 days towards regime B.

The detection is shown in Figure 7.10.

While the method does not detect the short decrease in cases it detects the increase in hospi-

tal admissions quickly. This is due to the balance between early detection or predicting the

wrong regime and the detection delay. This means that changing the constant resulted in a

more accurate regime prediction but also into a detection delay and also a loss in sensitivity.
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Figure 7.11: Previous Day Hospital Admissions (Age 60-69) in Minnesota. HealthData.gov
(2023)

7.3 Change Point Detection On Other State Data

The Covid 19 daily data or the hospital admission data are very limited if we divide it into

training data for three different regimes and additional testing data for our method. In

the previous section we developed a change point detection method for Wisconsin hospital

admission data and tested our method for different start dates. However, these start dates

were very limited.

Therefore, we are testing our developed method with the calculated probability matrices

on other states’ data. We are choosing to test the method on the hospital admission data of

Minnesota since it suggests to have a similar environment regarding factors such as popula-

tion density and climate. The daily hospital admission data is shown in Figure 7.11.

First, we are choosing June 1st 2021 as our starting date. We decide for A as the initial
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Figure 7.12: Change Point Detection on Minnesota Hospital Data (Age 60-69) with start
date on June 1st 2021 with c1 = 0.1

regime. Looking at the development of the data we would assume a change point which re-

sults in an increasing numbers of cases. The detected change point is shown in Figure 7.12.

Another start date to choose from is November 20th 2022. In that time period the data

suggest neither an increase nor a decrease in the data. Therefore, we can choose the regime

A as our initial regime. We would expect a change point alarm in the next weeks towards

regime C. The results of our change point detection method are shown in Figure 7.13.
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Figure 7.13: Change Point Detection on Minnesota Hospital Data (Age 60-69) with start
date on November 20th 2022 with c1 = 0.1
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8.

Summary

In this dissertation we developed a successful change point detection method for Markov

chain models. The approach makes it possible to detect a change point and, additionally,

decides on the new regime that the process had switched to.

We successfully applied and showed the functionality of the method on simulated Markov

chain data. Later on, we were able to apply our method on Covid-19 data. Therefore, we

transformed the collected Covid-19 hospital admission data into a Markov chain model with

3 regimes. The results showed that our method is also working on real time data can be

modeled in Markov chain processes.

8.1 Multiple Change Point Detection With Two Regimes

An additional way to enhance the change point detection method is adding more change

points. The random variables X0, X1, . . . , Xθ0−1 would be governed by regime A. After the

first change point θ0 occurred the regime will switch to B, meaning that the random variables

Xθ0 , Xθ0+1, . . . , Xθ1−1 have the transition matrix B. The second change point θ1 will occur

after change point θ0 and will result in a switch to regime A.
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Again, we have to adjust the posterior probability and risk function.

After we would develop an approach for both, we could use the results to modify our

approach to a multiple change point detection with two regimes. We will only have two

possible regimes A and B that are switching when a change point θi occurs. We are getting

X0, X1, . . . , Xθ0−1, Xθ0 , Xθ0+1, . . . , Xθ1−1, Xθ1 , Xθ1+1, . . . , Xθ2−1, Xθ2 , Xθ2+1, . . . .

After finding an approach for the case of multiple change points and multiple regimes,

the two method could be combined.

78



X0, X1, . . . , Xθ0−1

Markov random variables with transition Matrix A

Xθ0 , Xθ0 , . . . , Xθ1−1

Xθ0 , Xθ0 , . . . , Xθ1−1

Xθ0 , Xθ0 , . . . , Xθ1−1

· · ·

Xθ1 , Xθ1+1, · · · , Xθ2−1

Xθ1 , Xθ1+1, · · · , Xθ2−1

Xθ1 , Xθ1+1, · · · , Xθ2−1

· · ·

· · ·

· · ·

Xθ1 , Xθ1+1, · · · , Xθ2−1

Xθ1 , Xθ1+1, · · · , Xθ2−1

Xθ1 , Xθ1+1, · · · , Xθ2−1

· · ·

· · ·

· · ·

Xθ1 , Xθ1+1, · · · , Xθ2−1

Xθ1 , Xθ1+1, · · · , Xθ2−1

Xθ1 , Xθ1+1, · · · , Xθ2−1

· · ·

· · ·

· · ·

· · ·

Markov random variables with transition Matrix B

Markov random variables with transition Matrix C

Markov random variables with transition Matrix D

8.1.1 Change Point Detection With Multiple Regimes

After developing a change point detection method, we started to enhance our approach to

a detection with multiple regimes. This section shows the beginning of this process, where

the first Lemma are created. This can be a good foundation for enhancing the method.

We name our different regimes r0, r1, . . . , rm. The initial regime is r0. The probability of

switching to regime ri at time θi is geometrically distributed with parameter λi. The change

point θ is defined as the minimum of all θi’s. The following lemma will derive the distribution

of the change point θ.

Lemma 8.1. Let θ1, . . . , θm be independent, geometrically distributed i.i.d. random variables

with parameters λ1, . . . , λm. Then the minimum of the random variables is also geometrically

distributed with parameter λ =
∑m

i=1 λi −
∑m

k=1

∑i−1
j=1 λiλj +

∑m
i=1

∑i−1
j=1

∑j−1
k=1 λiλjλk · · · −

(−1)m
∏m

l=1 λl.
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Proof.

P (θi ≥ k) = (1− λi)k−1

P (min{θ1, . . . , θm}) = P (θ1 ≥ k, . . . , θm ≤ k)

= P (θ1 ≥ k)× · · · × P (θm ≥ k)

= (1− λ1)k × · · · × (1− λm)k

P (min{θ1, . . . , θm} = k) = P (min{θ1, . . . , θm} ≥ k)− P (min{θ1, . . . , θm} ≥ k + 1)

= (1− λ1)k−1 × · · · × (1− λm)k−1 − (1− λ1)k × · · · × (1− λm)k

= (1− λ1)k−1 × · · · × (1− λm)k−1 − ((1− λ1)× · · · × (1− λm))(1− λ1)k−1 × · · · × (1− λm)k−1

= (1− ((1− λ1)× · · · × (1− λm)))(1− λ1)k−1 × · · · × (1− λm)k−1

= (1− ((1− λ1)× · · · × (1− λm)))((1− λ1)× · · · × (1− λm))k−1

= (λ)(1− λ)k−1

With

λ = 1−
m∏
i=1

(1− λi)

= 1− (1− λ1)× · · · × (1− λm)

= 1− (1−
m∑
i=1

λi +
m∑
k=1

i−1∑
j=1

λiλj −
m∑
i=1

i−1∑
j=1

j−1∑
k=1

λiλjλk · · ·+ (−1)m
m∏
l=1

λl)

=
m∑
i=1

λi −
m∑
k=1

i−1∑
j=1

λiλj +
m∑
i=1

i−1∑
j=1

j−1∑
k=1

λiλjλk · · · − (−1)m
m∏
l=1

λ
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Furthermore, we need to calculate the probability that we are switching to a regime

ri. Namely, we switch to regime r1 if P (θ1 ≤ θ2, . . . , θ1 ≤ θm), we switch to regime r2 if

P (θ2 > θ1, θ2 ≤ θ3, . . . , θ2 ≤ θm) and so on.

8.2 Other Data

In this dissertation we successfully detected change points on real Covid-19 data. In addition,

we were able to predict the regime that the process has switched to. However, the used data

was limited to a time period of three years. After the process of training our Markov chain

model and calculate the transition probability matrices, there was only a limited amount

of testing data. Therefore, it would be interesting to see how the method can be applied

on other real data that can be modeled in a Markov chain. Such data can consist of but is

not limited to other epidemiological models, speech recognition or credit risks.Ribeiro (2023)
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