University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

August 2023

Non-Hyperbolic Right-Angled Coxeter Groups with Menger Curve Boundary

Cong He
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Mathematics Commons

Recommended Citation

He, Cong, "Non-Hyperbolic Right-Angled Coxeter Groups with Menger Curve Boundary" (2023). Theses and Dissertations. 3272.
https://dc.uwm.edu/etd/3272

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact scholarlycommunicationteam-group@uwm.edu.

NON-HYPERBOLIC RIGHT-ANGLED COXETER GROUPS WITH MENGER CURVE BOUNDARY

by

Cong He

A Dissertation Submitted in
Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy in Mathematics
at

The University of Wisconsin-Milwaukee
August 2023

ABSTRACT
 NON-HYPERBOLIC RIGHT-ANGLED COXETER GROUPS WITH MENGER CURVE BOUNDARY

by
Cong He
The University of Wisconsin-Milwaukee, 2023
Under the Supervision of Professor Craig Guilbault

We find a class of simplicial complexes as nerves of non-hyperbolic right-angled Coxeter groups, with boundary homeomorphic to the Menger curve. The nerves are triangulations of compact orientable surfaces with boundary. In particular, the nerves are non-graphs.
(C) Copyright by Cong He, 2023

All rights Reserved

TABLE OF CONTENTS

List of figures v
List of notations viii
Acknowledgements ix
1 Introduction 1
1.1 Overview 1
1.2 Organization 3
2 CAT(0) spaces and groups 5
2.1 CAT(0) spaces 5
$2.2 \quad \delta$-hyperbolic spaces 8
2.3 Examples of group boundaries 9
2.3.1 Sierpiński carpet and Menger curve 9
2.3.2 Pontryagin surface as the boundary of right-angled Coxeter group 11
3 The geometry of RACGs 14
3.1 Coxeter groups 14
3.2 Davis complexes 15
3.3 Visual boundaries of Coxeter groups 16
4 Triangulation 18
4.1 Assumptions 18
4.2 Construction of the triangulation 19
5 More properties of Davis complex and Coxeter group 21
5.1 Disjointness in the Davis complex 21
5.2 Disjointness in the visual boundary 24
5.3 Special property of Coxeter groups 28
6 Nullity and density 30
6.1 Properties of geodesic segments 30
6.2 Nullity property 32
7 Locally nonplanar property 36
7.1 Notations 36
7.2 Proof of the locally nonplanar property 37
8 No local cut point 42
$8.1 C_{p q}$ is null 43
8.2 Small B_{k} inclusion 45
$8.3 p_{0}$ is not a local cut point 46
8.3.1 Case 1: $p_{0} \in \mathscr{P} \backslash \bigcup_{k=1}^{\infty} B_{k}$ 46
8.3.2 Case 2: $p_{0} \in B_{k_{0}}$ for some k_{0} 49
9 Other properties of $\partial_{\infty} \Sigma_{N_{0}}$ 51
9.1 Path connected and locally path connected 51
9.2 Visual boundary is 1-dimensional 51
9.3 Completion of the main theorem 52
10 Closing comments and open questions 53
Bibliography 55

LIST OF FIGURES

2.1 CAT(0) inequality. 6
2.2 Comparison triangle. 8
2.3 The Sierpiński carpet. 10
2.4 The Menger curve. 10
2.5 Pontryagin surface. 12
3.1 Cubification 16
4.1 Dranishnikov subdivision of a 2 -simplex. 19
4.2 "Poison pill" subdivision. 20
$5.1 g_{1} H_{a}^{+} \cap g_{2} H_{a}^{+}=\emptyset$. 23
5.2 Rays intersect the wall $g h_{a}$. 25
5.3 The interiors of $\partial_{\infty}\left(g_{i} H_{a}^{+}\right)$do not intersect. 26
5.4 The boundary of $\partial_{\infty}\left(g_{2} H_{a}^{+}\right)$does not intersect with the interior of $\partial_{\infty}\left(g_{1} H_{a}^{+}\right)$. 26
6.1 $\widetilde{G}_{1, \hat{g}} K$ retracts onto $\partial B\left(x_{0}, n\right)$ and $\Pi_{n}\left(\widetilde{G}_{1, \hat{g}} K\right) \subseteq B_{\frac{1}{n}}(\xi(n))$. 34
7.1 Davis complex $\Sigma_{N_{1}}$: 2-dimensional. 38
7.2 Davis complex $\Sigma_{N_{0}}$: 2-dimensional. 39
7.3 Davis complex $\Sigma_{N_{1}}$: 3-dimensional. 40
7.4 Davis complex $\Sigma_{N_{0}}$: 3-dimensional. 41
8.1 The path goes into and out of Pontryagin disk 43
$8.2\left\{A_{p q}\right\}_{p, q}$ is null. 44
$8.3 \quad B_{k}^{\prime} s$ with $\operatorname{diam}\left(B_{k}\right) \leq \frac{\delta}{3}$ are included in U. 46
8.4 The purple path goes into the Pontryagin disks. 47
8.5 Push the path segments in $B_{k}^{\prime} s$ out. 48

8.7 Reroute the path l. 50

LIST OF NOTATIONS

- N : the abstract simplicial complex corresponding to a flag triangulation of a closed surface.
- $K=\operatorname{cone}\left(N^{\prime}\right)$ is called the chamber, N^{\prime} denotes the barycentric subdivision of N.
- $N_{0}:=N-a, N_{1}:=N-(a \cup b)$.
- $V_{N}:=$ vertex set of N .
- L_{b} : the link of b.
- $W_{L_{b}}$: group generated by the vertices of L_{b}.
- $\mathcal{T}_{N_{0}, b}$: a special transversal of $W_{N_{0}}$ for $W_{L_{b}}$, i.e.
$\mathcal{T}_{N_{0}, b}:=\left\{g^{\prime}: g^{\prime}\right.$ is the unique minimum length element in coset $\left.g W_{L_{b}}\right\}$.
$\mathcal{T}_{N_{0}, b}^{+}:=\left\{g \in \mathcal{T}_{a} \mid \ell(g a)>\ell(g)\right\}$.
- $h_{v_{i}}:=\bigcup_{g \in W_{L_{v_{i}}}} g P_{v_{i}}, P_{v_{i}}$ is a panel, and $h_{v_{i}}$ is sometimes called a wall, see Chapter 3. The wall separates Σ_{N} into two components, denote the closure of the component without the fundamental chamber by $H_{v_{i}}^{+}$, and $H_{v_{i}}^{+}=\bigcup_{h}\left\{h K: \ell\left(v_{i} h\right)<\ell(h)\right\}$.
- $g H_{a}^{+}$: the translation of H_{a}^{+}by $g \in \mathcal{T}_{N_{0}, a}$, where
$\mathcal{J}_{N_{0}, a}$: transversal of $W_{N_{0}}$ for $W_{L_{a}}$, i.e.
$\mathcal{J}_{N_{0}, a}:=\left\{g^{\prime}: g^{\prime}\right.$ is the unique minimum length element in a coset $\left.g W_{L_{a}}\right\}$.
- For any convex set U, denote by $\partial_{\infty} U$ the geodesic equivalent class in U.
- $\Pi_{\delta}(\xi)$: the projection of ξ onto $\partial B\left(x_{0}, \delta\right)$.
- $U_{\Pi_{\delta}(\xi)}$: a neighborhood of $\Pi_{\delta}(\xi)$ in $\partial B\left(x_{0}, \delta\right)$.
- $\ell(g)$ is the length of any reduced representation of g.
- In $(g):=\left\{v \in V_{N} \mid \ell(g v)<\ell(g)\right\}$, and $O u t(g):=\left\{v \in V_{N} \mid \ell(g v)>\ell(g)\right\}$.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Craig Guilbault, who exposed me to the field of Geometric Group and Geometric Topology, and introduced me such a nice topic for my dissertation; without his help, the completeness is unimaginable. Thank him for guiding me for many years including the summer breaks, enduring my naive questions and ignorance, also thank him for helping me modify the writing of the dissertation. His dedication in academic research influenced me and will encourage me to be a good scholar. Beyond academics, he gave me lots of helpful life advice.

I also would like to thank the other dissertation committee members Professors Chris Hruska, Boris Okun, Jonah Gaster and Kevin McLeod for their thoughtful comments on my manuscript and insighful questions during my defense. Special thanks go to Professors Boris Okun and Chris Hruska for many times of individual discussion with them; Professors Jonah Gaster, Chris Hruska and Boris Okun for their criticism about my presentations given in the seminars. Their advice improved my dissertation.

Many thanks go to Professor Jeb Willenbring and the staff working at the front desk of the main office.

I want to thank my fellow graduate students at UWM for their help and friendship. Especially, I would like to thank Arka Banerjee, Daniel Gulbrandsen, Prayagdeep Parija, William Braubach, Joseph Paulson, Ashani Dasgupta and Daniel Noelck.

Finally, I would like to express my deep gratitude to my wife. She has put up with the long nights and anxiety that accompanied the graduate school. Without her strong support, I could not imagine I can persist in to today.

Chapter 1

Introduction

1.1 Overview

In [30], Świa̧tkowski gave a necessary and sufficient condition for a hyperbolic Coxeter group with planar nerve to have Sierpiński curve as its Gromov boundary. And hyperbolic right-angled Coxeter groups with Gromov boundary as Menger curve were studied by Daniel Danielski [7]. Recently, Danielski and Świa̧tkowski gave complete characterizations (in terms of nerves) of the word hyperbolic Coxeter groups whose Gromov boundary is homeomorphic to the Sierpiński curve and to the Menger curve, respectively, see [8]. A theorem by Dahmani, Guirardel, and Przytycki [6] implies that a random group at density less than $\frac{1}{2}$ in Gromov density model has a boundary homeomorphic to the Menger curve. As for nonhyperbolic CAT(0) groups, there are many examples which are known to have Sierpiński carpet boundary, but as recently as 2019, the following question was open.

Question 1. (Ruane) Does there exist a non-hyperbolic CAT(0) group G with the Menger curve boundary?

Haulmark, Hruska, and Sathaye [19], in 2019, produced the first known examples of non-hyperbolic CAT(0) groups whose visual boundary is homeomorphic to the Menger curve. Their examples are non-right-angled Coxeter groups whose nerves are complete graphs on
vertices for $n \geq 5$. The construction in [19] depended on a slight extension of Sierpiński's theorem on embedding 1-dimensional planar compacta into the Sierpiński carpet.

One of the main results in this dissertation is the following:

Theorem 1.1.1. An orientable surface with a single boundary component admits (many) triangulations which are nerves of right-angled Coxeter groups with the Menger curve boundaries. Among them are many non-hyperbolic groups.

Theorem 1.1.1 gives a new collection of positive answer to Question 1. Our examples are right-angled Coxeter groups (RACGs) whose nerves are triangulations of compact orientable surfaces with boundary, and the nerves are non-graphs. One of the key assumptions on these triangulations is "no-empty-square" condition at two special vertices, which is useful to deduce the nullity and density properties; these properties will then be exploited to prove the no local-cut point and nonplanar properties for the Menger curve.

Our proofs are based on a classical characterization of the Menger curve due to Anderson, theorems by Fischer and Świa̧tkowski which implies the visual boundary of $\partial_{\infty} \Sigma_{N}$ (or the boundary of the right-angled Coxeter groups W_{N}) is Pontryagin surface, and a perturbing trick for the paths.

An outline of the proof. Now let us move on to sketching our proof. Here are several crucial steps to prove Theorem 1.1.1.

1. Denote by N a flag triangulation of an orientable surface, and W_{N} the corresponding right-angled Coxeter group defined as following:

$$
\left.W_{N}:=\left\langle v_{i} \in V\right| v_{i}^{2}=1 \text { for all } i,\left(v_{i} v_{j}\right)^{2}=1 \text { if } v_{i}, v_{j} \text { are adjacent }\right\rangle,
$$

where V represents the vertices of N.
2. Construct the Davis CAT(0) cube complex Σ_{N} for the Coxeter group W_{N} with nerve N. Then W_{N} acts geometrically on Σ_{N}. See $[10,11]$ for related definitions.
3. By a theorem of Fischer [13], $\partial_{\infty} \Sigma_{N}$ is a Pontryagin surface.
4. Denote by N_{0} a subcomplex obtained by removing a single vertex from N, and $W_{N_{0}}$ Coxeter group with nerve N_{0}, then the Davis complex for W_{0} is a convex subcomplex $\Sigma_{N_{0}}$ of Σ_{N}, so $\partial_{\infty} \Sigma_{N_{0}} \subseteq \partial_{\infty} \Sigma_{N}$. Note that N_{0} is homeomorphic to a compact surface with a single boundary component.
5. Now we show that $\partial_{\infty} \Sigma_{N_{0}}$ can be obtained from $\partial_{\infty} \Sigma_{N}$ by removing the interiors of a pairwise disjoint, dense sequence of Pontryagin disks whose diameters converge to zero. This step requires the application of some special properties of Coxeter groups.
6. With a lot of additional work we are able to verify that $\partial_{\infty} \Sigma_{N_{0}}$ satisfies all of the conditions of a famous characterization of the Menger curve due to Anderson [2,3]. The key steps are showing that $\partial_{\infty} \Sigma_{N_{0}}$ has no local cut points and no planar open subsets. In order to accomplish these steps (and portions of the previous step), the triangulation N from Step 1 must be chosen to satisfy some technical conditions. By adding an additional condition, we can assure that $W_{N_{0}}$ is not hyperbolic.

1.2 Organization

Now we turn to state the organization of the dissertation.
In Chapter 2, we introduce CAT(0) spaces and boundary of groups, particularly some typical examples.

In Chapter 3, we discuss general properties and geometry of right-angled Coxeter groups, especially the Davis complex.

In Chapter 4, we construct a class of special triangulations. One of the key assumptions of the triangulation is "non-empty-square" property at two special vertices.

With these assumptions of the triangulations, we further investigate some special properties of the Davis complex in Chapter 5.

The "no-empty-square" property is used to deduce the nullity and density properties in Chapter 6, and the nonplanar property in Chapter 7. It is worth mentioning that an additional assumption the triangulation contains a full subcomplex Γ which is a subdivision of the barycentric subdivision of K_{5} is also exploited.

In Chapter 8, we take advantage of the nullity property developed in Chapter 6, and a perturbation trick of paths to prove there is no local cut point.

Finally, we briefly prove the other properties of Menger curve, such as the visual boundary is 1-dimensional and locally connected.

Chapter 2

CAT(0) spaces and groups

2.1 CAT(0) spaces

Roughly speaking, a CAT(0) space [5] is a geodesic metric space in which all its geodesic triangles are thinner than its Euclidean triangles. More precisely, we give the definition as below.

Definition 1. (CAT(0) space) Let X be a geodesic metric space and Δ be a geodesic triangle in X. A triangle $\bar{\Delta}=\Delta(\bar{p}, \bar{q}, \bar{r})$ in Euclidean space E^{n} is called a comparison triangle for $\Delta=\Delta([p, q],[q, r],[r, p])$ if $d(\bar{p}, \bar{q})=d(p, q), d(\bar{q}, \bar{r})=d(q, r)$ and $d(\bar{p}, \bar{r})=d(p, r)$. See Figure 2.1. Δ is said to satisfy the $\mathbf{C A T}(\mathbf{0})$ inequality if for all $x, y \in \Delta$ and all comparison points $\bar{x}, \bar{y} \in \bar{\Delta}, d(x, y) \leq d(\bar{x}, \bar{y})$ holds. And X is called $\mathbf{C A T}(0)$ space if it is a geodesic space all of whose geodesic triangles satisfy the CAT(0) inequality.

Definition 2. The boundary of a proper CAT(0) space X, denoted by $\partial_{\infty} X$, is the set of equivalence classes of rays, where two rays are equivalent if and only if they are asymptotic. We say that two geodesic rays $\alpha, \alpha^{\prime}:[0, \infty) \rightarrow X$ are asymptotic if there is some constant k such that $d\left(\alpha(t), \alpha^{\prime}(t)\right) \leq k$ for every $t \geq 0$.

Once a base point is fixed, there is a unique representative geodesic ray from each equivalence class [5].

Figure 2.1: CAT(0) inequality.

We may endow $\bar{X}=X \cup \partial X$, with the cone topology, described below, which makes ∂X a closed subspace of \bar{X} and \bar{X} compact (as long as X is proper). With the topology on ∂X induced by the cone topology on \bar{X}, the boundary is often called the visual boundary. In what follows, the term 'boundary' will always mean 'visual boundary'. Furthermore, we will slightly abuse terminology and call the cone topology restricted to $\partial_{\infty} X$ simply the cone topology if it is clear that we are only interested in the topology on $\partial_{\infty} X$.

One way in which to describe the cone topology on \bar{X}, denoted $\mathcal{T}\left(x_{0}\right)$ for $x_{0} \in X$, is by giving a basis. A basic neighborhood of a point at infinity has the following form: given a geodesic ray c and positive numbers $r>0, \epsilon>0$, let

$$
U(c, r, \epsilon)=\left\{x \in \bar{X} \mid d(x, c(0))>r, d\left(\Pi_{r}(x), \Pi_{r}(c)\right)<\epsilon\right\},
$$

where Π_{r} is the natural projection of \bar{X} onto $\bar{B}(c(0), r)$. Then a basis for the topology $\mathcal{T}\left(x_{0}\right)$, on \bar{X} consists of the set of all open balls $B(x, r) \subset X$, together with the collection of all sets of the form $U(c, r, \epsilon)$, where c is a geodesic ray with $c(0)=x_{0}$.

If we restrict to $\partial_{\infty} X$, a basis of open sets for $\partial_{\infty} X$ is given by all the

$$
U(c, r, \epsilon)=\left\{\xi \in \partial_{\infty} X: d\left(\Pi_{r}(x), \Pi_{r}(c)\right)<\epsilon\right\}
$$

where c is a geodesic ray, with $c(0)=x_{0}$ and $\epsilon, r>0$.

Remark 1. For all $x_{0}, x_{0}^{\prime} \in X, \mathcal{T}\left(x_{0}\right)$ and $\mathcal{T}\left(x_{0}^{\prime}\right)$ are homeomorphic, see [5] Proposition 8.8.

We need the following Lebesgue-like lemma for cone topology on $\partial_{\infty} X$ when (X, d) is a proper CAT(0) space.

Lemma 2.1.1. ([15])

1. For each $\gamma \in \partial_{\infty} X$ and $n>0$, let

$$
V(\gamma, n)=\left\{\beta \in \partial_{\infty} X \left\lvert\, d(\beta(n), \gamma(n))<\frac{1}{n}\right.\right\}
$$

Then $\left\{V(\gamma, n) \mid \gamma \in \partial_{\infty} X\right.$ and $\left.n>0\right\}$ is a basis for the cone topology on $\partial_{\infty} X$.
2. For any open cover \mathfrak{U} of $\partial_{\infty} X$, there is an $n_{0}>0$ such that each $V\left(\xi, n_{0}\right)$ is contained in some element of \mathcal{U}, where $\xi \in \partial_{\infty} X$.

We now prove some geometric properties from the CAT(0) inequality. Denote by P_{δ} the projection of $X \backslash B\left(x_{0}, \delta\right)$ onto $\partial B\left(x_{0}, \delta\right), S$ a subset in a CAT(0) space X, assume $\operatorname{diam}(S) \leq A$, and S is outside the δ ball.

Lemma 2.1.2. Let κ be a constant such that $\kappa \geq 2$. If there exists a point $p_{1} \in S$ with $d\left(x_{0}, p_{1}\right) \geq \kappa A$, then $\operatorname{diam}\left(P_{\delta}(S)\right) \leq \frac{4 \delta}{\kappa}$.

Proof. Note for any $p \in S$, we have

$$
d\left(x_{0}, p\right) \geq d\left(x_{0}, p_{1}\right)-d\left(p_{1}, p\right) \geq \kappa A-A \geq \frac{\kappa A}{2}
$$

Denote $R^{\prime}=d\left(x_{0}, p_{1}\right), R=d\left(x_{0}, p\right)$, without loss of generality, we assume $R^{\prime} \geq R$, see Figure 2.2, then $m:=R^{\prime}-R \leq d\left(p_{1}, p\right) \leq A$. Let q be the point on the geodesic segment $\left[x_{0}, p_{1}\right]$ with $d\left(x_{0}, q\right)=R$, then

$$
d(p, q) \leq d\left(p_{1}, q\right)+d\left(p_{1}, p\right) \leq m+A \leq 2 A
$$

Let q^{\prime} and p^{\prime} be the points on the geodesic line $\left[x_{0}, p_{1}\right]$ and $\left[x_{0}, p\right]$ with $d\left(x_{0}, q^{\prime}\right)=\delta$ and $d\left(x_{0}, p^{\prime}\right)=\delta$ respectively. Correspondingly, in the Euclidean triangle, let $\tilde{q}^{\prime}, \tilde{p}^{\prime}$ be the the
points on the geodesic line $\left[\tilde{x}_{0}, \tilde{p}_{1}\right]$ and $\left[\tilde{x}_{0}, \tilde{p}\right]$ with $d\left(\tilde{x}_{0}, \tilde{q}^{\prime}\right)=\delta$ and $d\left(\tilde{x}_{0}, \tilde{p}^{\prime}\right)=\delta$; also denote \tilde{q} the point on the geodesic line $\left[\tilde{x}_{0}, \tilde{p}_{1}\right]$ with $d\left(\tilde{x}_{0}, \tilde{q}\right)=R$.

By CAT(0) inequality, we get

$$
d\left(p^{\prime}, q^{\prime}\right) \leq d\left(\tilde{p}^{\prime}, \tilde{q}^{\prime}\right)=\frac{d(\tilde{p}, \tilde{q})}{R} \delta \leq \frac{2 A}{\frac{1}{2} \kappa A} \delta \leq \frac{4 \delta}{\kappa} .
$$

Figure 2.2: Comparison triangle.

We now give a definition of a convex set to proceed.
A subset U of X is convex if every $p, q \in U$ can be joined by a geodesic segment contained totally in U.

Lemma 2.1.3. If (X, d) is $C A T(0)$ space and Y is a closed convex subspace of X, then $\left(Y,\left.d\right|_{Y}\right)$ is a $C A T(0)$ space and $\partial_{\infty} Y$ is a subspace of $\partial_{\infty} X$.

Proof. Choose a basepoint x_{0} lying in Y, each geodesic ray in Y based at x_{0} is also a geodesic ray in X.

$2.2 \quad \delta$-hyperbolic spaces

A δ-hyperbolic space is a geodesic metric space with the following property: there exists a $\delta>0$ so that the third side of any triangle lies in the δ-neighborhood of the other two. A
group G that acts geometrically (properly, cocompactly, by isometries) on a CAT(0) space [hyperbolic space] is called a CAT(0) [hyperbolic] group. A similar strategy to Definition 2 allows one to define ∂X for hyperbolic space X, which is called Gromov boundary, see [5]. ∂X is also called the boundary of G.

In the case when X is δ-hyperbolic CAT (0) space, the visual and Gromov boundaries are the same.

2.3 Examples of group boundaries

Here are some examples of groups and their boundaries.
Example 2.3.1.

- The boundary of \mathbb{Z} is two points, since it can act geometrically on the real line by translation; since \mathbb{R} is both $\mathrm{CAT}(0)$ and hyperbolic, so is \mathbb{Z}.
- Similarly, the boundary of $\mathbb{Z} \oplus \mathbb{Z}$ is a circle; $\mathbb{Z} \oplus \mathbb{Z}$ is $\operatorname{CAT}(0)$ but not hyperbolic.
- The boundary of 4 -valent tree is the Cantor set; the free group on two generators F_{2} can act on the 4 -valent tree, which is both $\operatorname{CAT}(0)$ and hyperbolic.

Some interesting and famous fractal spaces play important roles in this dissertation because they can occur as group boundaries. Here is an informal description of a few of them.

2.3.1 Sierpiński carpet and Menger curve

The classical construction of a Sierpiński carpet (see Figure 2.3, sometimes called Sierpiński curve) is analogous to the construction of a Cantor set: start with the unit square in the plane, subdivide it into nine equal subsquares, remove the middle open square, and then repeat this procedure inductively on the remaining squares. The Menger curve can be obtained by a similar but more complicated construction, see Figure 2.4.

Figure 2.3: The Sierpiński carpet.

Figure 2.4: The Menger curve.

The Menger curve has the following well-known characterization:

Theorem 2.3.2. ([2,3]) A compact metric space M is a Menger curve provided: M is 1-dimensional, connected, locally connected, has no local-cut points, and no non-empty open subset of M is planar.

Kapovich and Kleiner [21] investigated the hyperbolic groups with Sierpinski carpet and Menger curve boundaries. Dahmani, Guirardel, and Przytycki [22] proved that most hyperbolic groups have a boundary homeomorphic to the Menger curve. This explains the motivation of Question 1.

2.3.2 Pontryagin surface as the boundary of right-angled Coxeter group

Starting from 2-sphere \mathbb{S}^{2}, remove the interiors of a disjoint dense collection of closed disks with diameters approaching zero, then glue punctured tori along the boundaries. Repeating this process infinitely many times, we get an inverse limit of an inverse sequence of connected sum of tori. We call the inverse limit the Pontryagin surface $[9,20,24]$ denoted by \mathscr{P}, see Figure 2.5.

If we start from a Euclidean disk \mathbb{D}^{2}, and then do the same process as \mathbb{S}^{2} avoiding the boundary of \mathbb{D}^{2}, we get the Pontryagin disk [24] denoted by $B_{\mathscr{P}}$ as an inverse limit of an inverse sequence of \mathbb{D}^{2} with handles, intuitively see the part above S^{1} in Figure 2.5.

Figure 2.5: Pontryagin surface.

The Pontryagin surface \mathscr{P} has several good properties [9, 13, 24]. For instance,

- \mathscr{P} is compact, connected and 2-dimensional.
- Any separating circle S^{1} divides \mathscr{P} into two components whose closures are homeomorphic to the Pontryagin disks, i.e. $\mathscr{P} \approx B_{\mathscr{P}} \cup_{S^{1}} B_{\mathscr{P}}$.
- For every positive integer k, \mathscr{P} is k-homogeneous, i.e., for any given two collections $\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ and $\left\{y_{1}, y_{2}, \cdots, y_{k}\right\}$ of k distinct points in \mathscr{P}, there is a homeomorphism $h: \mathscr{P} \rightarrow \mathscr{P}$ such that $h\left(x_{i}\right)=y_{i}$.
- For any neighborhood U of $p \in \mathscr{P}$, there is a Pontryagin disk such that $p \in B_{\mathscr{P}} \subseteq U$.
- \mathscr{P} is locally path connected, and it has no local cut points.

A special case of Fischer's theorem $[13,29]$ is: if the nerve N of a right-angled Coxeter group W_{N} is a flag triangulation of a closed orientable surface, then the boundary of W_{N} is homeomorphic to the Pontryagin surface $[13,24,34,35]$, i.e. $\partial_{\infty} W_{N} \approx \mathscr{P}$, see more in Chapter 3.

Chapter 3

The geometry of RACGs

In Chapter 2, we introduced the Pontryagin surface as the visual boundary of right-angled Coxeter groups. In this chapter, we will explain the geometry of right-angled Coxeter groups.

In this dissertation, we restrict ourselves to surface nerve N which is a flag triangulation of a surface; N corresponds to a Coxeter group W_{N}, denote chamber $K=\operatorname{cone}(N)$, gluing chambers $g K$ (which are copies of K with $g \in W$) according to the structure of Coxeter groups, we obtain the Davis complex which Coxeter groups W act on.

3.1 Coxeter groups

Definition 3. Let V be a finite set and $m: V \times V \rightarrow\{\infty, 1,2\}$ a function with the property that $m(u, v)=1$ if and only if $u=v$, and $m(u, v)=m(v, u)$ for all $u, v \in V$. Then the group $W=\langle V|(u v)^{m(u, v)}=1$ for all $\left.u, v \in V\right\rangle$ defined in terms of generators and relators is called right angled Coxeter group. The pair (W, V) is called a right angled Coxeter system.

An important feature of right angled Coxeter system is its nerve, the abstract simplicial complex

$$
N=N(W, V)=\{\emptyset \neq S \subseteq V \mid\langle S\rangle \text { is finite }\}
$$

(where $\langle S\rangle$ is the subgroup of Γ generated by S), i.e., the faces correspond to vertex sets S such that $m(u, v)=2$ for all $u, v \in S, u \neq v .|N|$ will denote a geometric realization of N. If N is a finite flag complex with vertex set V, then

$$
\left.W=\langle V| v^{2}=1 \text { for all } v \in V \text { and }(u v)^{2}=1 \text { for all }\{u, v\} \in N\right\rangle
$$

is a right angled Coxeter system whose nerve is N (see [10], Lemma 11.3). Therefore, the above describes a one-to-one correspondence between finite flag complexes N and right angled Coxeter system (W, V).

3.2 Davis complexes

We introduce the star and the link of a vertex v denoted respectively by $S t(v)$ and L_{v}.
Let v be a vertex of the complex \mathcal{S}, define

$$
\begin{equation*}
S t(v)=\{\sigma \in \mathcal{S} \mid \exists \tau \in \mathcal{S}, \text { s.t. } v \in \tau \text { and } \sigma \leq \tau\} \tag{3.2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{v}=\{\sigma \in S t(v) \mid v \notin \sigma\} \tag{3.2.2}
\end{equation*}
$$

Let (W, V) be the right angled Coxeter system with nerve $N . N^{\prime}$ denotes the first barycentric subdivision of $N . K:=\operatorname{cone}\left(N^{\prime}\right)$ is called a chamber. Divide N^{\prime} into panels

$$
\left\{P_{v}=\left|S t\left(v, N^{\prime}\right)\right| \mid v \in V\right\}
$$

We give Γ the discrete topology and put

$$
\Sigma_{N}=\Sigma(W, V)=W \times K / \sim, \quad \text { where }(g, x) \sim(h, y) \Longleftrightarrow x=y \text { and } g^{-1} h \in\left\langle v \mid x \in P_{v}\right\rangle
$$

Observe that W acts on Σ_{N} by left multiplication on the first coordinate. Then Σ_{N} is a contractible topological space on which W acts properly discontinuously: $\{g \in \Gamma \mid g(K) \cap K \neq$ $\emptyset\}$ is finite for all compact $K \subseteq \Sigma$, see [10].

Also, Σ_{N} always admits a $\operatorname{CAT}(0)$ metric, we can interpret Σ_{N} as a cubical complex as follows.

Figure 3.1: Cubification.

Cubification and piecewise Euclidean metric. Let $\sigma \in N$. Identify $\left|x_{0} \sigma^{\prime}\right|$ with the cube $[0,1]^{1+\operatorname{dim} \sigma}$ as follows. The cone point x_{0} corresponds to 0 and the barycenter of a face $\left\{v_{i_{1}}, v_{i_{2}}, \cdots, v_{i_{k}}\right\}$ of σ to $e_{i_{1}}+e_{i_{2}}+\cdots+e_{i_{k}}$, where $e_{i_{1}}, e_{i_{2}}, \cdots$ is the standard basis for Euclidean space (see Figure 3.1). The cubical complex Σ_{N} has a natural piecewise Euclidean CAT(0) metric [25]. This metric is given by taking the Euclidean metric of a unit cube on each of the cubes and extending it to the whole complex by taking the infima of the lengths of chains of segments such that each of these segments is contained in a single cube.

3.3 Visual boundaries of Coxeter groups

Definition 4. L is a full subcomplex of N if the simplices of N spanned by vertices of L are also simplices of L.

The following proposition holds, see [7].

Proposition 3.3.1. ([7]) Let L be a full subcomplex of the nerve N of the group W_{N}. Then W_{L} is a subgroup of W_{N}. In particular, the homomorphism determined by the inclusion map on vertices is injective and the complex Σ_{L} is a convex subcomplex of Σ_{N}. Therefore, from Lemma 2.1.3, the boundary $\partial_{\infty} W_{L}$ is a subspace of the boundary $\partial_{\infty} W_{N}$.

Example 3.3.2. We can now provide more context to our comments at the end of Chapter 2, N is a flag triangulation of the closed orientable surface, then $\partial_{\infty} W_{N} \approx \mathscr{P}$, where \mathscr{P} is the Pontryagin surface.

Chapter 4

Triangulation

In this chapter, we will create a class of special flag triangulations of a closed surface. The Coxeter groups corresponding to Assumption 1 given below have nice properties (see Proposition 5.3.1) which leads to the geometric retraction property of $\left[p, x_{0}\right.$] for $p \in g_{0} W_{L_{b}}$ (see Proposition 6.1.2), by turn deducing the nullity and density properties. The triangulation satisfies Danielski's Theorem 3.4 in [7] which guarantees there is a nonplanar graph in the visual boundary of $W_{N_{1}}$ (see Lemma 7.2.1 in Chapter 7).

4.1 Assumptions

Recall that a simplicial complex L is called a flag complex if each finite, non-empty set of vertices T spans a simplex in L if and only if any two elements of T span an edge (1 -simplex) in L. An empty square in a simplicial complex is a circuit of 4 edges such that neither pair of opposite vertices is connected by an edge.

Our purpose is to construct a class of flag triangulations N of a closed surface such that the following assumptions are satisfied.

Assumption 1. N contains a pair of vertices a and b, such that neither a nor b is contained in an empty square.

Assumption 2. The edge-length distance from a to b is at least 3 .

Assumption 3. $N-(a \cup b)$ contains a full subcomplex Γ which is the barycentric subdivision of one dimensional simplicial complex homeomorphic to the K_{5} graph.

Remark 2. We sometimes call Assumption 1 "no-empty-square" assumption on a and b.
Remark 3. Assumption 1 implies that there does not exist a vertex in $V_{N-c} \backslash V_{L_{c}}$ for $c=a, b$, adjacent with two non-adjacent vertices in $V_{L_{c}}$, where V_{N-c} is the vertex set of $N-c$ and V_{L-c} is the vertex set of the link of c.

To achieve these assumptions, we provide a special construction of the trangulation.

4.2 Construction of the triangulation

Lemma 4.2.1. There exists a (many) triangulation of a closed orientable surface of genus ≥ 1 such that the above assumptions are satisfied.

Proof. We start with a triangulation Q of a closed orientable surface of genus ≥ 1 containing a subcomplex Γ_{0} homeomorphic to K_{5}, see [16, 17]. Let Q^{δ} be the Dranishnikov subdivision of Q (see Figure 4.1 and [7,12]).

Figure 4.1: Dranishnikov subdivision of a 2 -simplex.

Then, by Danieski's Lemma 4.6 in [7], Q^{δ} is flag no-squares, and Γ^{δ} (which is the Dranishnikov subdivision of Γ; and since each side of 2 -simplex in Q is barycentrically divided in the Dranishnikov subdivision, Γ^{δ} is the same as the barycentric subdivision of Γ, that is $\left.\Gamma_{0}^{\prime}\right)$ is a full subcomplex of Q^{δ}, as is every subcomplex of Γ^{δ}.

Next let σ_{a}, σ_{b}, and σ_{c} be pairwise disjoint 2-simplexes from Q, and they are disjoint from K_{5}. Replace σ_{c}^{δ} with the "poison pill" triangulation of σ_{c}^{δ} (see Figure 4.2), leaving the remaining simplices of Q^{δ} intact. Call this new simplicial complex N. It contains a single empty square that lies in $\stackrel{\circ}{\sigma}_{c}$. From each of σ_{a} and σ_{b}, choose a single interior vertex of σ_{a}^{δ} and σ_{b}^{δ} and denote these vertices by a and b, respectively. Each of their star neighborhoods E_{a} and E_{b} is full in N, as are their links (each of which is a pentagon). So too are $N-a, N-b$, and $N-(a \cup b)$. Furthermore, there are no squares in N containing a or b, and Γ_{0}^{\prime} is full in $N-(a \cup b)$. To fit the above notation, we may let Γ_{0}^{\prime} be denoted by Γ.

Figure 4.2: "Poison pill" subdivision.

Remark 4. In Figure 4.2, "Poison pill" contains a single empty square.

Chapter 5

More properties of Davis complex and Coxeter group

In this chapter, we investigate some new properties of Davis complex Σ_{N} and its visual boundary under the "no-empty-square" assumption of triangulation in Chapter 4 (see Assumption 1). More precisely, we prove the disjointness of Pontryagin disks (see Proposition 5.2.1), which will be used to prove the no local cut point property of the visual boundary $\partial_{\infty} \Sigma_{N_{0}}$ (see Chapter 8). We also develop a special property of the Coxeter groups W_{N} which plays an important role to prove the retraction property of geodesic segments (see Proposition 6.1.2).

5.1 Disjointness in the Davis complex

We introduce notations which will be used in this chapter. Let a represent a special vertex in the triangulation (see Chapter 4 Assumption 1).

- A word g ends in v if there exists a reduced representation of g which ends in v; we also call this v as an ending of g. Similarly, we can define g begins in v, see [28].
- $H_{a}^{+}:=\bigcup_{h}\{h K: \ell(a h)<\ell(h)\}, H_{a}^{-}:=\bigcup_{h}\{h K: \ell(a h)>\ell(h)\}$.
- $h_{a}:=\bigcup_{g \in W_{L_{a}}} g P_{a}, P_{a}$ is the panel with respect to a, and h_{a} is sometimes called a wall. Note $h_{a}=H_{a}^{+} \cap H_{a}^{-}$.

Remark 5. Note $\partial_{\infty} \Sigma_{N}=\partial_{\infty} H_{a}^{+} \bigcup_{\partial_{\infty} h_{a}} \partial_{\infty} H_{a}^{-}$, and $\partial_{\infty} h_{a}=S^{1}$ which separates $\partial_{\infty} \Sigma_{N}$ into two homeomorphic parts, and they are Pontryagin disks, see [9].

We also need a special transversal. In the following lemma, let (W, V) be a right angled Coxeter system.

Lemma 5.1.1. ([32]) Let $T \subseteq S$ be a subset and suppose w is a minimal length element in the left coset $w W_{T}$. Then any $w^{\prime} \in w W_{T}$ can be written as $w^{\prime}=w a^{\prime}$ where $a^{\prime} \in W_{T}$ and $\ell\left(w^{\prime}\right)=\ell(w)+\ell\left(a^{\prime}\right)$. Also $w W_{T}$ has a unique minimal length element .

Based on Lemma 5.1.1, we introduce the special transversal

- $\mathcal{T}_{N, a}:=\left\{g^{\prime}, g^{\prime}\right.$ is the minimum length element in coset $\left.g W_{L_{a}}\right\}$.
- $\mathcal{T}_{N, a}^{+}:=\left\{g \in \mathcal{T}_{N, a} \mid \ell(g a)>\ell(g)\right\}$.

Now we turn to prove some basic properties of Davis complex. Firstly, we observe a pair of inclusion relations.

Lemma 5.1.2. Assume $g_{1} \neq g_{2}, g_{i} \in \mathcal{T}_{N, a}^{+}, i=1,2$ i.e. $g_{i}, i=1,2$ does not end in a, then we have the following.

1. If $g_{1}^{-1} g_{2}$ ends in a, then $g_{1} H_{a}^{+} \subseteq g_{2} H_{a}^{+}$.
2. If $g_{1}^{-1} g_{2}$ begins in a, then $g_{2} H_{a}^{+} \subseteq g_{1} H_{a}^{+}$.

Proof. Part 1: Assume $g_{1}^{-1} g_{2}=h a$ which is a reduced representation. Let $h \in W_{N}$, then $g_{2}^{-1} g_{1}=a h^{-1}$, i.e. $g_{1}=g_{2} a h^{-1}$. Since $g_{2} \in \mathcal{T}_{N, a}^{+}$, no letter in h^{-1} can cancel a letter of g_{2} for the element in $V_{N} \backslash\left(V_{L_{a}} \cup a\right)$ do not commute with a and the elements in $V_{L_{a}}$ can not reduce g_{2}. Thus $g_{1} H_{a}^{+} \subseteq g_{2} H_{a}^{+}$.
Part 2: Assume $g_{1}^{-1} g_{2}=a h, h \in W_{N}$, then $g_{2}=g_{1} a h$. Repeating the same argument as above in part 1 , we can easily obtain $g_{2} H_{a}^{+} \subseteq g_{1} H_{a}^{+}$.

The next lemma will be needed shortly in the proof of Lemma 5.2.4.

Lemma 5.1.3. Assume $g_{1} \neq g_{2}, g_{i} \in \mathcal{T}_{N, a}^{+}, i=1,2$ and if $g_{1}^{-1} g_{2}$ does not begin or end in a, then $g_{1} H_{a}^{+} \cap g_{2} H_{a}^{+}=\emptyset$.

Proof. Suppose $g_{1}\left(w_{1}, x\right)=g_{2}\left(w_{2}, x\right)=(w, x)$ with $w_{i} K \subseteq H_{a}^{+}, i=1,2$, i.e. $g_{1} w_{1}=g_{2} w_{2}=$ w, and $w_{1}=g_{1}^{-1} g_{2} w_{2}$. See Figure 5.1. Note $w_{2} K \subseteq H_{a}^{+}$, i.e., w_{2} has a reduced representation

Figure 5.1: $g_{1} H_{a}^{+} \cap g_{2} H_{a}^{+}=\emptyset$.
ah. $g_{1}^{-1} g_{2}$ has a reduced representation which contains a generator $v \in V_{N} \backslash\left(V_{L_{a}} \cup a\right)$ since $g_{i} \in \mathscr{T}_{N, a}^{+}$and $g_{1}^{-1} g_{2}$ does not begin or end in a, with the reduced representation $a h$ where $h \in W_{N}$. So $g_{1}^{-1} g_{2} w_{2}$ takes the form $u_{1} v u_{2} a h$ with $u_{1} v u_{2}$ as a reduced representation of $g_{1}^{-1} g_{2}$ and $v \in V_{N} \backslash\left(V_{L_{a}} \cup a\right)$, where u_{1} and u_{2} may be empty words. Since $g_{1}^{-1} g_{2}$ does not end in a, the beginning a in w_{2} can not be cancelled, which in turn implies the v in $u_{1} v u_{2}$ can not be cancelled since a and v do not commute. (it can at most be cancelled by a, v in h, but that is impossible.) Further reductions are possible for the $v_{i}^{\prime} s, v_{i} \in V_{L_{\alpha}}$, i.e. there is a letter v_{i} in both $u_{1} v u_{2}$ and $a h$, and they cancel each other.

After these reductions, we may suppose $g_{1}^{-1} g_{2} w_{2}=\tilde{u}_{1} v \tilde{u}_{2} a \tilde{h}$ which is reduced.
Claim 1. $a g_{1}^{-1} g_{2} w_{2}=a \tilde{u}_{1} v \tilde{u}_{2} a \tilde{h}$ is a reduced representation of $g_{1}^{-1} g_{2} w_{2}$.
Proof of Claim 1. Since $g_{1}^{-1} g_{2}$ does not begin in a, and a does not commute with
v, the leftmost a in the above representation of $a g_{1}^{-1} g_{2} w_{2}$ can not be cancelled. Thus the representation $a \tilde{u}_{1} v \tilde{u}_{2} a \tilde{h}$ is reduced.

By Claim 1, $\ell\left(a g_{1}^{-1} g_{2} w_{2}\right)>\ell\left(g_{1}^{-1} g_{2} w_{2}\right)$, i.e. $w_{1} K \subseteq H_{a}^{-}$where $w_{1}=g_{1}^{-1} g_{2} w_{2}$, which implies $w_{1} K \subseteq H_{a}^{+} \cap H_{a}^{-}=h_{a}$. Similarly, we have $w_{2} K \subseteq h_{a}$. But this implies that $g_{1}^{-1} g_{2} \in W_{L_{a}}$, contradicting the fact that $g_{i} \in \mathcal{T}_{N, a}$.

5.2 Disjointness in the visual boundary

Now we are ready to prove the disjointness of Pontryagin disk, see Proposition 5.2.1 below, which will be applied to prove the no local cut point property of the visual boundary, see Chapter 8. Our aim in this section is to prove the following proposition in $\partial_{\infty} \Sigma_{N}$.

Proposition 5.2.1. Assume $g_{1} \neq g_{2}, g_{i} \in \mathcal{T}_{N, a}^{+}, i=1,2$ and $g_{1}^{-1} g_{2}$ does not begin or end in a, then $\partial_{\infty}\left(g_{1} H_{a}^{+}\right) \cap \partial_{\infty}\left(g_{2} H_{a}^{+}\right)=\emptyset$.

Remark 6. $\partial_{\infty}\left(g_{i} H_{a}^{+}\right), i=1,2$ are Pontryagin disks.

Proof. Proposition 5.2 .1 can be split into several lemmas as below, i.e., its proof is a combination of Lemma 5.2.4, Lemma 5.2.5, and Lemma 5.2.7.

Before we prove those lemmas, we make a preparation.

Lemma 5.2.2. For any $\xi \in \partial_{\infty}\left(g H_{a}^{+}\right) \backslash \partial_{\infty}\left(g h_{a}\right), g \in \mathcal{T}_{N, a}^{+}$, the representative of ξ emanating from x_{0} must intersect $g h_{a}$.

Proof. Note $g h_{a}$ separates \sum_{N} into two components [33]. Let γ_{1} be the representative of ξ emanating from x_{0}, see Figure 5.2. If $\gamma_{1} \cap g h_{a}=\emptyset$, then γ_{1} must lie in $g H_{a}^{-}$. Pick $y_{0} \in g h_{a}$, let γ_{2} be the representative of ξ emanating from y_{0}, then γ_{2} must contain a point p lying in $g H_{a}^{+} \backslash g h_{a}$ since $\xi \in \partial_{\infty}\left(g H_{a}^{+}\right) \backslash \partial_{\infty}\left(g h_{a}\right)$ and it lies in $g H_{a}^{+}$. Since $g H_{a}^{-}$is convex, $y_{0} \in g H_{a}^{-}$, we also have a representative γ_{3} of ξ emanating from y_{0}. Note γ_{3} must lie in $g H_{a}^{-}$because of the convexity of $g H_{a}^{-}$. But both γ_{2} and γ_{3} are emanating from y_{0}, they should be the

Figure 5.2: Rays intersect the wall $g h_{a}$.
same line since Σ_{N} is $\operatorname{CAT}(0)$ space. However, $g H_{a}^{+} \backslash g h_{a} \ni p$ lies on γ_{2} but not on γ_{3}, a contradiction. So γ_{1} must intersect $g h_{a}$.

Corollary 5.2.3. With the same assumption as in Lemma 5.2.2, there exists a $q \in g H_{a}^{+} \backslash g h_{a}$ which lies in γ and $\gamma \backslash\left[x_{0}, q\right) \subseteq g H_{a}^{+} \backslash g h_{a}$.

Proof. Otherwise, $\gamma \subseteq g H_{a}^{-}$. Let γ_{2}^{\prime} be the representative of ξ emanating from y, which must contain a point $p_{1} \in g H_{a}^{+} \backslash g h_{a}$ since $\xi \in \partial_{\infty}\left(g H_{a}^{+}\right) \backslash \partial_{\infty}\left(g h_{a}\right)$.

Denote $\gamma^{\prime}:=\gamma \backslash\left[x_{0}, y\right)$, then γ^{\prime} represents ξ emanating from y, so $\gamma^{\prime}=\gamma_{2}^{\prime}$, which implies $q \in \gamma^{\prime} \subseteq \gamma$.

Since $g h_{a}$ is convex, $\gamma \backslash\left[x_{0}, q\right) \subseteq g H_{a}^{+} \backslash g h_{a}$.
Now we turn to prove the interiors of $\partial_{\infty}\left(g_{i} H_{a}^{+}\right)$do not intersect.
Lemma 5.2.4. $\forall \xi_{i} \in \partial_{\infty}\left(g_{i} H_{a}^{+}\right) \backslash \partial_{\infty}\left(g_{i} h_{a}\right), i=1,2$, we have $\xi_{1} \neq \xi_{2}$.

Proof. Let $\gamma_{i}, i=1,2$ be the representative of ξ_{i} emamating from x_{0}, see Figure 5.3. By Lemma 5.1.3, $g_{2} H_{a}^{+} \subseteq g_{1} H_{a}^{-}$. Note $x_{0} \in g_{1} H_{a}^{-}$, we have $\gamma_{2} \subseteq g_{1} H_{a}^{-}$; however, by Corollary 5.2.3, γ_{1} contains a point lying in $g_{1} H_{a}^{+} \backslash g_{1} h_{a}$, thus $\gamma_{1} \neq \gamma_{2}$, i.e. $\xi_{1} \neq \xi_{2}$.

Similarly, we also have

Figure 5.3: The interiors of $\partial_{\infty}\left(g_{i} H_{a}^{+}\right)$do not intersect.

Lemma 5.2.5. If $\xi_{1} \in \partial_{\infty}\left(g_{1} H_{a}^{+}\right) \backslash \partial_{\infty}\left(g_{1} h_{a}\right)$ and $\xi_{2} \in \partial_{\infty}\left(g_{2} h_{a}\right)$, then we have $\xi_{1} \neq \xi_{2}$.

Proof. Let $\gamma_{i}, i=1,2$ be the representative of ξ_{i} emamating from x_{0}, see Figure 5.4.

Figure 5.4: The boundary of $\partial_{\infty}\left(g_{2} H_{a}^{+}\right)$does not intersect with the interior of $\partial_{\infty}\left(g_{1} H_{a}^{+}\right)$.

By Lemma 5.1.3, $g_{2} H_{a}^{+} \subseteq g_{1} H_{a}^{-}$. Note $x_{0} \in g_{1} H_{a}^{-}, g_{2} h_{a} \subseteq g_{2} H_{a}^{+}$, and $g_{1} H_{a}^{-}$is convex, we have $\gamma_{2} \subseteq g_{1} H_{a}^{-}$; however, by Corollary 5.2.3, γ_{1} contains a point lying in $g_{1} H_{a}^{+} \backslash g_{1} h_{a}$, thus $\gamma_{1} \neq \gamma_{2}$, i.e. $\xi_{1} \neq \xi_{2}$.

By the completely same process as in Lemma 5.2.5, the following corollary is immediate.
Corollary 5.2.6. If $\xi_{2} \in \partial_{\infty}\left(g_{2} H_{a}^{+}\right) \backslash \partial_{\infty}\left(g_{2} h_{a}\right)$ and $\xi_{1} \in \partial_{\infty}\left(g_{1} h_{a}\right)$, then we have $\xi_{1} \neq \xi_{2}$.

Finally, we prove the boundaries of $\partial_{\infty}\left(g_{i} h_{a}\right)$ do not intersect.

Lemma 5.2.7. Assume $g_{1} \neq g_{2}, g_{i} \in \mathcal{T}_{N, a}^{+}, i=1,2$ and $g_{1}^{-1} g_{2}$ does not begin or end in a, then $\partial_{\infty}\left(g_{1} h_{a}\right) \cap \partial_{\infty}\left(g_{2} h_{a}\right)=\emptyset$.

Proof. Recall L_{a} is the link of $a ; W_{L_{a}}$ is the group generated by the vertices of L_{a}. $\forall \xi_{i} \in$ $\partial_{\infty}\left(g_{i} H_{a}^{+}\right), i=1,2$, there exists a unique geodesic line γ_{i} emanating from $g_{i} x_{0}$, which lies in $g_{i} W_{L_{a}} K$, choose $\gamma_{i}(j)$ such that $\gamma_{i}(j) \in g_{i} h_{i j} K, h_{i j} \in W_{L_{a}}$, and $\ell\left(h_{i j}\right) \rightarrow \infty$ as $j \rightarrow \infty$.

We aim at proving $\xi_{1} \neq \xi_{2}$, i.e. to prove the Hausdorff distance $d_{\mathbb{H}}\left(r_{1}, r_{2}\right)$ ([5] page 70) is unbounded, it is sufficient to prove

$$
\begin{equation*}
\ell\left(\left(g_{1} h_{1 j}\right)^{-1} g_{2} h_{2 j}\right) \rightarrow \infty, \quad \text { as } \quad j \rightarrow \infty . \tag{5.2.1}
\end{equation*}
$$

Note that $\left(g_{1} h_{1 j}\right)^{-1} g_{2} h_{2 j}=h_{1 j}^{-1} g_{1}^{-1} g_{2} h_{2 j}$, since $g_{1} \neq g_{2}, g_{1}^{-1} g_{2} \notin W_{L_{a}}$, which implies every reduced representation of $g_{1}^{-1} g_{2}$ contains some element in $V_{N_{0}} \backslash\left(V_{L_{a}} \cup a\right)$, say v_{3}. By Assumption 1 in Chapter $4, v_{3}$ is adjacent to at most two vertices from L_{a}. Moreover, if there are two such vertices, then they are adjacent, say v_{1} and v_{2}.

Suppose $h_{1 j}^{-1} g_{1}^{-1} g_{2} h_{2 j}$ takes the form of $h_{1 j}^{-1} w_{1} v_{3} w_{2} h_{2 j}$ with $w_{1} v_{3} w_{2}$ as a reduced representation of $g_{1}^{-1} g_{2}\left(w_{1}\right.$ and w_{2} may be the empty word).

After the cancellation between $h_{1 j}^{-1}$ and w_{1}, w_{2} and $h_{2 j}$, we can write $h_{1 j}^{-1} g_{1}^{-1} g_{2} h_{2 j}$ as $\widetilde{h}_{1 j}^{-1} \widetilde{w}_{1} v_{3} \widetilde{w}_{2} \tilde{h}_{2 j}$ with $\widetilde{h}_{1 j}^{-1} \widetilde{w}_{1}$ and $\widetilde{w}_{2} \tilde{h}_{2 j}$ are reduced.

Further reduction are possible only if there is a reduced representation for $\widetilde{w}_{2} \tilde{h}_{2 j}$ beginning with v_{1} or v_{2}, which can lead to at most two additional cancellations since $\widetilde{w}_{2} \tilde{h}_{2 j}$ is reduced. Note

$$
\ell\left(\widetilde{h}_{1 j}^{-1} \widetilde{w}_{1}\right) \geq \ell\left(h_{1 j}\right)-\ell\left(w_{1}\right) \quad \text { and } \quad \ell\left(\widetilde{w}_{2} \tilde{h}_{2 j}\right) \geq \ell\left(h_{2 j}\right)-\ell\left(w_{2}\right)
$$

we have

$$
\begin{align*}
\ell\left(h_{1 j}^{-1} g_{1}^{-1} g_{2} h_{2 j}\right) & =\ell\left(\tilde{h}_{1 j}^{-1} \widetilde{w}_{1} v_{3} \widetilde{w}_{2} \tilde{h}_{2 j}\right) \\
& \geq \ell\left(\tilde{h}_{1 j}^{-1} \widetilde{w}_{1}\right)+\ell\left(\widetilde{w}_{2} \tilde{h}_{2 j}\right)+1-2 \cdot 2 \tag{5.2.2}\\
& \geq \ell\left(h_{1 j}^{-1}\right)-\ell\left(2 \widetilde{c}_{1}\right)+\ell\left(h_{2 j}\right)-\ell\left(w_{2}\right)-3 \rightarrow \infty
\end{align*}
$$

as $j \rightarrow \infty$ since $\ell\left(w_{i}\right)$ is finite (only depends on g_{1} and g_{2}).

5.3 Special property of Coxeter groups

In this section, we assume Assumption 1 holds for vertex a defined in Chapter 4. The following proposition will be used to prove a nice geodesic retraction property, see Proposition 6.1.2 in Chapter 6.

Let us recall $\operatorname{In}(g):=\left\{v \in V_{N} \mid \ell(g v)<\ell(g)\right\}$.

Proposition 5.3.1. Suppose $g \in \mathcal{T}_{N, a}^{+}, h \in W_{L_{a}}$, gh is reduced, i.e., $\ell(g h)=\ell(g)+\ell(h)$, and $\ell(h) \geq 3$, then $\operatorname{In}(g h) \subseteq V_{L_{a}}$.

Remark 7. Since we impose the same assumption on b as on a, this proposition also holds for b.

Proof. Obviously, $a \notin \operatorname{In}(g h)$ because $\ell(g a)>\ell(g)$. Since $g \in \mathcal{T}_{N, a}^{+}, g$ ends in $w \in V_{N-a} \backslash V_{L_{a}}$, and h can be expressed by the vertices only from $L_{a}, g h$ is reduced.

Case 1: h can be represented by a reduced word involving only two generators from $V_{L_{a}}$. In this case, h takes the form $v_{i} v_{j} v_{i} v_{j} \cdots$, where v_{i} and v_{j} do not commute, and $v_{i} \neq v_{j}$.

Claim 2. $w \in V_{N-a} \backslash V_{L_{a}} \Rightarrow w \notin \operatorname{In}(g h)$.

Proof of Claim 2. Otherwise, if $\ell(g h w)<\ell(g h)$, then w must commute with v_{i} and v_{j}, a contradiction to Assumption 1.

Case 2: h can be represented by a reduced word involving more than two generators from $V_{L_{a}}$.

In this case $h=v_{1} v_{2} v_{3} \cdots v_{l}$, where $\left\{v_{1}, \cdots, v_{l}\right\}$ contains three distinct elements, say v_{i}, v_{j}, and v_{k}.

Claim 3. $w_{1} \in V_{N-a} \backslash V_{L_{a}} \Rightarrow w_{1} \notin \operatorname{In}(g h)$.

Proof of Claim 3. Otherwise, if $\ell\left(g h w_{1}\right)<\ell(g h)$, this implies w_{1} can commute with all of $v_{m}^{\prime} s$, but by Assumption 1, v_{i} must commute with each other, $\left\{w_{1}, v_{i}, v_{j}, v_{k}\right\}$ would constitute a 3 -simplex in N, contracting the fact that the trangulation is 2 -dimensional.

If h contains more than two different vertices, say $h=v_{1} v_{2} v_{3} \cdots, v_{1}, v_{2}$ and v_{3} are different, then $\operatorname{In}(g h)$ does not contain any vertex in V_{N-a}; otherwise if there exists $w_{1} \in \operatorname{In}(g h)$, i.e. $\ell\left(g h w_{1}\right)<\ell(g h)$, then w_{1} can cancel some w_{1} in $g\left(h\right.$ does not contain any vertex in $\left.V_{N-a}\right)$, this implies w_{1} can commute with all of $v_{i}, i=1,2,3$, but by Assumption $1, v_{i}, i=1,2,3$ must be adjacent to each other, i.e. they commute pairwise; however, $\left(w_{1}, v_{1}, v_{2}, v_{3}\right)$ would constitute a 3 -simplex, which contradicts the fact that the nerve is 2 -dimensional.

Remark 8. Since we impose the same assumption on b as on a, all of the properties in this chapter holds for b as well.

Chapter 6

Nullity and density

In this chapter, we aim at deriving nice nullity and density properties, i.e., $\left\{\partial_{\infty}\left(\hat{g} H_{a}^{+}\right)\right\}_{\hat{g} \in \mathcal{I}_{N_{0}, a}}$ is null in $\partial_{\infty} \Sigma_{N}$ and $\left\{\partial_{\infty}\left(\hat{g} H_{b}^{+}\right) \cap \partial_{\infty} \Sigma_{N_{0}}\right\}_{\hat{g} \in \mathcal{I}_{N_{0}, b}^{+}}$is dense in $\partial_{\infty} \Sigma_{N_{0}}$. These properties play a crucial role in proving the nonplanar and no local cut point properties of $\partial_{\infty} \Sigma_{N_{0}}$. In particualr, the nullity property is derived from a nice retraction property of geodesic segment, which is based on the fact $\left[p, x_{0}\right]$ intersects the mirrors $g P_{v}$ of $g K$ with some $v \in \operatorname{In}(g)$, and "no-empty-square" assumption on special vertices (see Assumption 1 in Chapter 4). The density property can be deduced similarly.

6.1 Properties of geodesic segments

In this subsection, we need the following notations.

- $h_{v_{i}}:=\bigcup_{g \in W_{L v_{i}}} g P_{v_{i}}$, where $L_{v_{i}}$ is the link of $v_{i}, h_{v_{i}}$ is the fixed set of the reflection v_{i} viewed as an element of W_{N}, it is sometimes called a wall. The wall separates Σ_{N} into two components, denote the closure of the component without the fundamental chamber by $H_{v_{i}}^{+}$and the component containing the fundamental chamber by $H_{v_{i}}^{-}$.
- $\operatorname{In}(g):=\left\{v \in V_{N}: \ell(g v)<\ell(g)\right\}$.

First of all, we would like to prove a special geometric property of geodesic segments
which is useful to establish the nullity and density properties. Denote by $\left[p, x_{0}\right]$ the geodesic segment (with CAT(0) path length metric) starting at p and ending at x_{0} (unique path).

Proposition 6.1.1. For any point $p \in g K,\left[p, x_{0}\right]$ must intersect $\underset{v \in \operatorname{In}(g)}{\bigcup} g P_{v}$.
Proof. We split our proof into three cases.
Case 1. $p \in g P_{v_{i}}$ for some $v_{i} \in \operatorname{In}(g)$, we are done.
Case 2. $p \in g P_{v_{k_{j}}} \backslash \bigcup_{v_{i} \in \operatorname{In}(g)} g P_{v_{i}}, v_{k_{j}} \in \operatorname{Out}(g), 1 \leq j \leq n$.
In this case, p can only lie in the chambers $\tilde{g} K$ with $\tilde{g} \in g W_{V}$, where W_{V} is generated by $V=\left\{v_{k_{1}}, \cdots, v_{k_{n}}\right\}$.
$\forall y \in \tilde{g} K \backslash g K, \tilde{g} \in g\left(W_{V} \backslash\{e\}\right)$, there exists a $v_{k_{i}}, 1 \leq i \leq n$, such that y lies in the side of the wall $g h_{v_{k_{i}}}$ without the fundamental chamber. And $\left[p, x_{0}\right]$ is a geodesic segment which can not across $g h_{v_{k_{i}}}$ twice (see [14], since $g h_{v_{k_{i}}}$ is convex and Σ_{N} is CAT (0) space). Thus

$$
\begin{equation*}
\left[p, x_{0}\right] \bigcap(\tilde{g} K \backslash g K)=\emptyset . \tag{6.1.1}
\end{equation*}
$$

Let $\left[p, x_{0}\right]=\bigcup_{i=1} S_{i}$, each S_{i} is a maximal subsegment of $\left[p, x_{0}\right]$ lies in a single cube of a chamber.

Now we have $S_{1} \bigcap(\tilde{g} K \backslash g K)=\emptyset$ by (6.1.1). But S_{1} should lie in some $\hat{g} K$ with $\hat{g} K \in g W_{v}$, so $S_{1} \subseteq g K$.

Denote $j:=\min \left\{i: S_{i} \backslash g K \neq \emptyset\right.$ but $\left.S_{i-1} \backslash g K=\emptyset\right\}, j$ exists since each cube can only contain one segment and each chamber contains finitely many cubes.

Let $Q:=S_{j} \cap S_{j-1}$, then $Q \in g P_{v_{i}}$ for some $V_{i} \in \operatorname{In}(g)$.
Case 3. $p \in g \circ \stackrel{\circ}{K}$, i.e., p lies in the interior of $g K$. Note $g N$ separates Σ_{N}, so $\forall p \in$ $g K,\left[p, x_{0}\right] \cap g N \neq \emptyset$, then Case 3 is reduced to Case 1 and Case 2.

Thus we complete the proof of this proposition.

Now we are devoted to proving the following property: $\forall p \in g K, g \in \hat{g} W_{L_{b}}, \hat{g} \in \mathcal{T}_{N_{0}, b}^{+}, p$ retracts to some point around $\hat{g} K$, see Proposition 6.1.2.

Let

$$
G_{1, \hat{g}}=\left\{g \in \hat{g} W_{L_{b}} \mid \ell\left(\hat{g}^{-1} g\right) \leq 2\right\}, \quad G_{2, \hat{g}}=\hat{g} W_{L_{b}} \backslash G_{1, \hat{g}},
$$

where $W_{L_{b}}$ is subgroup generated by $V_{L_{b}}, \hat{g}$ is the minimum length element (word metric) in a coset $\hat{g} W_{L_{b}}$ for $W_{N_{0}}$.

Proposition 6.1.2. Assume Assumption 1 in Chapter 4 holds, then $\forall p \in g K, g \in G_{2, \hat{g}}$, we have $\left[p, x_{0}\right] \cap G_{1, \hat{g}} K \neq \emptyset$.

Proof. Case 1: For $g \in G_{2}$ with $\ell\left(\hat{g}^{-1} g\right) \geq 5$.
Note $g P_{v_{i}}=\left(g v_{i}\right) P_{v_{i}}$, from Proposition 6.1.1, $\forall p \in g K,\left[p, x_{0}\right] \cap\left(g v_{i}\right) K \neq \emptyset$, for some $v_{i} \in \operatorname{In}(g) \subseteq V_{L_{b}}$ with $g v_{i} \in G_{2}$ (by Proposition 5.3.1 and Remark 8).

Note $\ell\left(g v_{i} \hat{g}^{-1}\right) \geq 4$, by Proposition 5.3.1, $\operatorname{In}\left(g v_{i}\right) \subseteq V_{L_{b}} ;$ then for some $v_{j} \in \operatorname{In}\left(g v_{i}\right)$, $\left[p, x_{0}\right] \cap\left(g v_{i} v_{j}\right) K \neq \emptyset$ (by Proposition 6.1.1) with $g v_{i} v_{j} \in G_{2}$.

Since $\ell\left(\hat{g}^{-1} g v_{i} v_{j}\right)<\ell\left(\hat{g}^{-1} g v_{i}\right)<\ell\left(\hat{g}^{-1} g\right)$, i.e., $\ell\left(\hat{g}^{-1} g\right)$ with $g \in G_{2}$ is decreasing, inductively applying Proposition 6.1.1 and Proposition 5.3.1 on the length $\ell\left(\hat{g}^{-1} g\right)$ completes the proof.

Case 2: For $g \in G_{2}$ with $\ell\left(\hat{g}^{-1} g\right) \leq 4$.
Repeating the above process in two steps is enough.

Remark 9. The propositions above hold for a vertex as well since we impose the same assumptions as b vertex.

6.2 Nullity property

With the above preparation, we are ready to prove $\left\{\partial_{\infty}\left(\hat{g} H_{a}^{+}\right)\right\}_{\hat{g} \in \mathcal{I}_{N_{0}, a}}$ is null in $\partial_{\infty} \Sigma_{N}$ and $\left\{\partial_{\infty}\left(\hat{g} H_{b}^{+}\right) \cap \partial_{\infty} \Sigma_{N_{0}}\right\}_{\hat{g} \in \mathcal{T}_{N_{0}, b}^{+}}$is dense in $\partial_{\infty} \Sigma_{N_{0}}$, which will be used to prove the nonplanar property in Chapter 7.

Before we prove the nullity property above, we introduce notations and definitions needed in this section.

- $\forall \xi \in \partial_{\infty} \Sigma_{N}$, let γ_{ξ} represent the ray for ξ based at x_{0}, or simply γ if no confusion arises.
- $V(\gamma, n)=\left\{\beta \in \partial_{\infty} X \left\lvert\, d(\beta(n), \gamma(n))<\frac{1}{n}\right.\right\}$.
- $\Pi_{\delta}(\xi)$: the projection of ξ onto $\partial B\left(x_{0}, \delta\right), \quad \Pi_{\delta}: \partial_{\infty} \Sigma_{N} \longrightarrow \partial B\left(x_{0}, \delta\right)$.
- $U_{\Pi_{\delta}(\xi)}$: a neighborhood of $\Pi_{\delta}(\xi)$ in $\partial B\left(x_{0}, \delta\right)$.
- $W_{L_{b}} K \bigcap\left(b W_{L_{b}}\right) K=h_{b} ; \quad\left(g W_{L_{b}}\right) K \bigcap\left(g b W_{L_{b}}\right) K=g h_{b}$.
- Denote $\mathcal{T}_{N_{0}, b}:=\left\{g^{\prime}: g^{\prime}\right.$ is the unique minimum length element in coset $g W_{L_{b}}$ of $\left.W_{N_{0}}\right\}$;

$$
\mathscr{T}_{N_{0}, b}^{+}:=\left\{g \in \mathscr{T}_{N_{0}, b}: \ell(g b)>\ell(g)\right\} .
$$

Fact 1. Let

$$
\widetilde{G}_{1, \hat{g}}=\left\{g \in W_{N_{0}} \mid \ell\left(\hat{g}^{-1} g\right) \leq 10\right\}, \quad \widetilde{G}_{1, \hat{g}} K=\bigcup_{g \in \widetilde{G}_{1, \hat{g}}} g K
$$

then there exists an $A>0$, which is independent of \hat{g}, such that $\operatorname{diam}\left(\widetilde{G}_{1, \hat{g}} K\right) \leq A$.
Lemma 6.2.1. Let $g_{1} \in \mathcal{T}_{N_{0}, b}, t \in W_{L_{b}}$, and $g_{1} t$ is reduced, $s \in V_{N_{0}}$ and does not commute with any generator of $W_{L_{b}}$, then $g_{1} t s \in \mathcal{T}_{N_{0}, b}^{+}$, and $g_{1} t s$ is reduced.

Proof. Note $g_{1} t$ is reduced, by assumption, s can not cancel any s (if there is any) in $g_{1} t$, so $g_{1} t s$ is reduced. Also, b does not commute with s, thus $g_{1} t s \in \mathcal{T}_{N_{0}, b}^{+}$.

Proposition 6.2.2. $\forall n>0, \xi \in \partial_{\infty} \Sigma_{N_{0}}$ and $V(\xi, n) \subseteq \partial_{\infty} \Sigma_{N}$, there exists a $\hat{g} \in \mathcal{T}_{N_{0}, b}^{+}$such that $\partial_{\infty}\left(\hat{g} H_{b}^{+}\right) \subseteq V(\xi, n)$.

Proof. Note $\forall x \in \Sigma_{N_{0}}, \exists g \in \mathcal{T}_{N_{0}, b}$ such that $x \in\left(g W_{L_{b}}\right) K$, we have $\forall \gamma \in \partial_{\infty} \Sigma_{N_{0}}, \forall R>0$, $\exists h \in W_{N_{0}}$, such that $\gamma(R) \in h K$ and $\exists g_{1} \in \mathcal{T}_{N_{0}, b}$, such that $h \in g_{1} W_{L_{b}}$, so $\gamma(R) \in\left(g_{1} W_{L_{b}}\right) K$. Applying this to ξ, let $\xi(R) \in h K$ for some $h \in W_{N_{0}}$, we can rewrite $h=g_{1} t, t \in W_{L_{b}}, g_{1} \in$ $\mathcal{T}_{N_{0}, b}$ (If t is trivial, then $h=g_{1}$). Take $\hat{g}=g_{1} t s$, where $s \in V_{N_{0}}$ does not commute with any vertex in L_{b}, see Figure 6.1, by Lemma 6.2.1, $\hat{g} \in \mathcal{T}_{N_{0}, b}^{+}$. We can choose R sufficiently large such that $\operatorname{diam}\left(\Pi_{n}\left(\widetilde{G}_{1, \hat{g}} K\right)\right)<\frac{1}{2 n}$ by Lemma 2.1.2. Note $\xi(n) \in \Pi_{n}\left(\widetilde{G}_{1, \hat{g}} K\right)$, we have

Figure 6.1: $\widetilde{G}_{1, \hat{g}} K$ retracts onto $\partial B\left(x_{0}, n\right)$ and $\Pi_{n}\left(\widetilde{G}_{1, \hat{g}} K\right) \subseteq B_{\frac{1}{n}}(\xi(n))$.
$\Pi_{n}\left(\widetilde{G}_{1, \hat{g}} K\right) \subseteq B_{\frac{1}{n}}(\xi(n))$. Since $G_{1, \hat{g}} K \subseteq \widetilde{G}_{1, \hat{g}} K$, we have $\Pi_{n}\left(G_{1, \hat{g}} K\right) \subseteq \Pi_{n}\left(\widetilde{G}_{1, \hat{g}} K\right)$. Note $\forall \eta \in \partial_{\infty}\left(\hat{g} H_{b}^{+}\right), \gamma_{\eta} \bigcap G_{1, \hat{g}} K \neq \emptyset$, we deduce that each ray based at x_{0} that intersects $G_{1, \hat{g}} K$ is contained in $V(\xi, n)$, thus completes the proof.

Now the following corollary is immediate since $V(\xi, n)$ is a basis of $\partial_{\infty} \Sigma_{N}$.

Corollary 6.2.3. $\forall \xi \in \partial_{\infty} \Sigma_{N_{0}}$, let U be a neighborhood of ξ in $\partial_{\infty} \Sigma_{N}$, then there exists a $\hat{g} \in \mathcal{T}_{N_{0}, b}^{+}$such that $\partial_{\infty}\left(\hat{g} H_{b}^{+}\right) \subseteq U$.

Then we can further deduce the density property.

Corollary 6.2.4. (Density) $\left\{\partial_{\infty}\left(\hat{g} H_{b}^{+}\right) \cap \partial_{\infty} \Sigma_{N_{0}}\right\}_{\hat{g} \in \mathcal{J}_{N_{0}, b}}$ is dense in $\partial_{\infty} \Sigma_{N_{0}}$, i.e., $\forall \widehat{U} \subseteq \partial_{\infty} \Sigma_{N_{0}}, \exists \hat{g}$ s.t. $\partial_{\infty}\left(\hat{g} H_{b}^{+}\right) \cap \partial_{\infty} \Sigma_{N_{0}} \subseteq \widehat{U}$.

Proof. $\forall \widehat{U} \subseteq \partial_{\infty} \Sigma_{N_{0}}, \exists U \subseteq \partial_{\infty} \Sigma_{N}$ s.t. $\widehat{U}=U \cap \partial_{\infty} \Sigma_{N_{0}}$ by the subspace topology.
By Corollary 6.2.3, $\exists \hat{g} \in \mathcal{T}_{N_{0}, b}^{+}$s.t. $\partial_{\infty}\left(\hat{g} H_{b}^{+}\right) \cap \partial_{\infty} \Sigma_{N_{0}} \subseteq U \cap \partial_{\infty} \Sigma_{N_{0}}=\widehat{U}$.
The above argument can be applied to prove the nullity property. Let us recall a basic fact about the nullity.

Recall that a family of subsets \mathscr{L} is null in a metric space X if for every $\epsilon>0$ the set $\{Z \in \mathscr{L} \mid \operatorname{diam} Z>\epsilon\}$ is finite.

Lemma 6.2.5. A collection $\left\{A_{n}\right\}_{n=1}^{\infty}$ of subsets of a compact metric space X is a null sequence if for any $\epsilon>0$ and open cover $\mathcal{U}_{\epsilon}=\left\{B\left(x, \frac{\epsilon}{2}\right)\right\}$ of $X, \exists M(\epsilon)>0$ s.t. each A_{n} is contained in some \mathcal{U}_{ϵ} if $n>M$.

Proof. This follows immediately from the definition of nullity.
Proposition 6.2.6. $\left\{\partial_{\infty}\left(g H_{a}^{+}\right)\right\}_{g \in \mathcal{I}_{N_{0}, a}}$ is null.
Proof. By Lemma 2.1.1, for \mathcal{U}_{ϵ} as in Lemma 6.2.5, there exists an $n_{0}(\epsilon)$ such that $V\left(\xi, n_{0}\right)$ is contained in some element of u_{ϵ} for any $\xi \in \partial_{\infty} \Sigma_{N}$. Note that we impose the same assumption on a as on b, by the same process as in Proposition 6.2.2, we have, for $g \in \mathcal{T}_{N_{0}, a}$ with $d(g, 1)$ sufficiently large such that $\forall \xi \in \partial_{\infty}\left(g H_{a}^{+}\right), \partial_{\infty}\left(g H_{a}^{+}\right) \subseteq V\left(\xi, n_{0}\right)$, which completes the proof.

Chapter 7

Locally nonplanar property

With the density property obtained in last chapter, we are ready to prove the locally nonplanar property. More precisely, we are going to prove the statement: for any $\xi \in \partial_{\infty} \Sigma_{N_{0}}$, and any neighborhood \widehat{U} of ξ, there exists a \widetilde{U}_{j} and a nonplanar graph $G_{n o n}$ such that $G_{n o n} \subseteq \partial_{\infty} \widetilde{U}_{j} \cap \partial_{\infty} \Sigma_{N_{0}} \subseteq \widehat{U}$. Firstly, by the triangulation, especially Assumption 3 in Chapter 4, and Danielski's Theorem 3.4 in [7], we can find a nonplanar graph $G_{n o n} \subseteq \partial_{\infty} \Sigma_{N_{1}}$. Secondly, since $\partial_{\infty} \Sigma_{N_{1}} \subseteq \partial_{\infty} \Sigma_{N}$, and there are copies of $G_{n o n}$ in $\partial_{\infty} \widetilde{U}_{j}$ for any j; thanks to the density property, we can derive that there exists a $G_{n o n}$ in any open set $\widehat{U} \subseteq \partial_{\infty} \Sigma_{N_{0}}$, i.e., locally nonplanar property.

7.1 Notations

We need the following notations.

- $N_{0}:=N-a, N_{1}:=N-(a \cup b)$.
- $\mathcal{T}_{N_{0}, b}$: a special transversal of $W_{N_{0}}$ for $W_{L_{b}}$, i.e.
$\mathcal{T}_{N_{0}, b}:=\left\{g^{\prime}: g^{\prime}\right.$ is the unique minimum length element in coset $\left.g W_{L_{b}}\right\}$.

$$
\mathcal{T}_{N_{0}, b}^{+}:=\left\{g \in \mathscr{T}_{a} \mid \ell(g a)>\ell(g)\right\} .
$$

- $g H_{a}^{+}$: the translation of H_{a}^{+}by $g \in \mathcal{T}_{N_{0}, a}$, where
$\mathcal{T}_{N_{0}, a}:=\left\{g^{\prime}: g^{\prime}\right.$ is the unique minimum length element in a coset $\left.g W_{L_{a}}\right\}$.
- $\mathcal{U}_{i}:=g_{i} H_{a}^{+}, g_{i} \in \mathcal{T}_{N_{0}, a} ; \widetilde{U}_{j}:=g_{j} H_{b}^{+}, g_{j} \in \mathcal{T}_{N_{0}, b}^{+}$(see Figure 7.1, Figure 7.2, Figure 7.3, and Figure 7.4).

7.2 Proof of the locally nonplanar property

We need the following lemma.

Lemma 7.2.1. ([7, 19]) The visual boundary of the Davis complex for the barycentric subdivision of one dimensional simplicial complex homeomorphic to the K_{5} graph contains a nonplanar graph.

Remark 10. This lemma is a simple application of Theorem 3.4 in [7].
To show the locally nonplanar property, it suffices to prove the following proposition.
Proposition 7.2.2. $\forall \xi \in \partial_{\infty} \Sigma_{N_{0}}$, and any neighborhood \widehat{U} of $\xi, \widehat{U} \subseteq \partial_{\infty} \Sigma_{N_{0}}$, there exists a nonplanar graph $G_{\text {non }} \subseteq \widehat{U}$.

Proof. By Lemma 7.2.1 and Assumption 3 in Chapter 4, i.e., the subdivision of K_{5} is full, there exists a nonplanar graph $G_{n o n} \subseteq \partial_{\infty} \Sigma_{N_{1}}$ (see Figure 7.3, the green star in the boundary represents $G_{n o n}$); since each \widetilde{U}_{j} contains a copy of $\Sigma_{N_{1}}$ by the following Lemma 7.2.3, (see Figure 7.2 and Figure 7.4, the yellow part in \widetilde{U}_{j} is $\Sigma_{N_{1}}$), we also have a copy of $G_{\text {non }}$ in $\partial_{\infty} \widetilde{u}_{j}$ for each j and $G_{n o n} \subseteq \partial_{\infty} \Sigma_{N_{0}}$. By the subspace topology, there exists a U such that $\widehat{U}=U \cap \partial_{\infty} \Sigma_{N_{0}}$. By Corollary 6.2.4, it holds $\left(\partial_{\infty} \widetilde{U}_{j}\right) \cap \partial_{\infty} \Sigma_{N_{0}} \subseteq \widehat{U}$. Thus $G_{n o n} \subseteq \widehat{U}$.

The following lemma indicates the copy of $\Sigma_{N_{1}}$ in \widetilde{u}_{j} for each j would miss any u_{i}.

Lemma 7.2.3. $\forall h \in W_{N_{1}}, g_{1} \in \mathcal{T}_{N_{0}, b}^{+}, g \in \mathcal{T}_{N_{0}, a},\left(g_{1} b g_{1}^{-1}\right) h \subseteq g H_{a}^{-}$.

Proof. Note h, g, g_{1} do not contain the element a, however, any chamber lying in $g H_{a}^{+}$must take a (reduced) form $g a w$, where $g \in \mathcal{T}_{N_{0}, a}$ and $w \in W_{N}$, thus $\left(g_{1} b g_{1}^{-1}\right) h \subseteq g H_{a}^{-}$.

Figure 7.1: Davis complex $\Sigma_{N_{1}}$: 2-dimensional.

Remark 11. In Figure 7.1, the shaded part is the Davis complex $\Sigma_{N_{1}}$, with the interiors of red and blue regions u_{i} and \widetilde{u}_{j} removed.

Figure 7.2: Davis complex $\Sigma_{N_{0}}$: 2-dimensional.

Remark 12. The shaded part is $\Sigma_{N_{0}}$, with all the red regions removed; in particular the red half-space in blue regions also needs to be removed. And $\Sigma_{N_{1}} \subseteq \Sigma_{N_{0}}$.

Figure 7.3: Davis complex $\Sigma_{N_{1}}$: 3-dimensional.

Remark 13. In Figure 7.3, the purple star represents the $G_{\text {non }}$ graph lying in N_{1} and the green star represents a nonplanar graph $G_{n o n}$ lying in $\partial_{\infty} \Sigma_{N_{1}}$. And the red and the blue regions are removed.

Figure 7.4: Davis complex $\Sigma_{N_{0}}$: 3-dimensional.
Remark 14. In Figure 7.4, all the red regions are removed, particularly, the red regions in the blue regions also need to be removed.

Chapter 8

No local cut point

In this chapter, we aim to prove $\partial_{\infty} \Sigma_{N_{0}}$ has no local cut point, i.e., for any neighborhood U of p_{0}, there exists a neighborhood V^{\prime} of p_{0} such that $V^{\prime} \subseteq U$ and each pair (q, r) in $\left(V^{\prime} \backslash\left\{p_{0}\right\}\right) \backslash\left(\bigcup_{k=1}^{\infty} \stackrel{\circ}{B}_{k}\right)$ can be connected by a path l in $\left(U \backslash\left\{p_{0}\right\}\right) \backslash\left(\bigcup_{k=1}^{\infty} \stackrel{\circ}{B}_{k}\right)$, where B_{k} is defined shortly.

Our starting point is that the Pontryagin surface \mathscr{P} is locally path connected and has no local cut point. From this fact, we can always find a path l in $\mathscr{P}=\partial_{\infty} \Sigma_{N}$ connecting (q, r), but l may go into the interiors of $B_{k}^{\prime} s$ (see Figure 8.1) which are not in $\partial_{\infty} \Sigma_{N_{0}}$ (We want to prove $\partial_{\infty} \Sigma_{N_{0}}$ has no local cut point). To do so, our strategy is to push the parts in the Pontryagin disks $B_{k}^{\prime} s$ to their boundaries (in our case they are circles). The process is described in Figure 8.4 and Figure 8.5. In one aspect, we should not push the path out of U, which can be guaranteed by Lemma 8.2.1. In another aspect, we need the "new path" to be continuous, especially when the path goes into and out of the $B_{k}^{\prime} s$ infinitely many times (oscillations). In order to prove this, we need the oscillation to be null, i.e., $\left\{C_{p q}\right\}$ is null (see Proposition 8.1.2), also the Pontryagin disk to be null which was derived in Chapter 6.

We split the proof into two cases, case 1: $p_{0} \notin B_{k_{0}}$ for any k_{0} and case 2: $p_{0} \in B_{k_{0}}$ for some k_{0}. For case 2, we need to deal with the special Pontryagin disk $B_{k_{0}}$ where p_{0} lies in.

To proceed, we need the following notations.

1. Let N be a flag triangulation of a closed surface, and denote $N_{0}=N-a$.
2. Let $f: \mathbb{S}^{1} \rightarrow S$ be a homeomorphism, \mathbb{S}^{1} is the standard circle in \mathbb{R}^{2}. See Figure 8.2. For any $p, q \in S$, denote by $p^{\prime}=f^{-1}(p), q^{\prime}=f^{-1}(q), A_{p^{\prime} q^{\prime}} \cup B_{p^{\prime} q^{\prime}}=\mathbb{S}^{1}, A_{p^{\prime} q^{\prime}} \cap B_{p^{\prime} q^{\prime}}=$ $\left\{p^{\prime}, q^{\prime}\right\}$. Let $A_{p^{\prime} q^{\prime}}$ denote the shorter arc in \mathbb{S}^{1} (if the arcs are of the same length, pick one of them $), A_{p q}=f\left(A_{p^{\prime} q^{\prime}}\right)$ is the homeomorphic image of $A_{p^{\prime} q^{\prime}}$, i.e. $A_{p q} \approx A_{p^{\prime} q^{\prime}}$.
3. Denote the path segment between p and q in the Pontryagin disks $B_{k}^{\prime} s$ by $I_{p q}$.
4. Denote $C_{p q}:=I_{p q} \cup A_{p q}$. See Figure 8.1.
5. Since the cardinality $\sharp \mathcal{T}_{N_{0}, a}$ is countably many, we can enumerate the Pontryagin disks removed as $\left\{B_{k}\right\}_{k=1}^{\infty}$; $B_{k}:=\partial_{\infty}\left(g_{k} H_{a}^{+}\right), g_{k} \in \mathcal{T}_{N_{0}, a} ; \stackrel{\circ}{B}_{k}:=\partial_{\infty}\left(g_{k} H_{a}^{+}\right) \backslash \partial_{\infty}\left(g_{k} h_{a}\right)$. By proposition 5.2.1 $B_{k}^{\prime} s$ are disjoint.

Figure 8.1: The path goes into and out of Pontryagin disk.

8.1 $C_{p q}$ is null

In this section, we prove $C_{p q}$ is null which is useful to verify that the "new path" after infinitely many times adjustments is continuous.

The proof of nullity of $C_{p q}$ bases on that $\left\{A_{p q}\right\}$ and $\left\{I_{p q}\right\}$ are both null. For $\left\{A_{p q}\right\}$, we need the uniform continuity.

Fact 2. f is continuous, and \mathbb{S}^{1} is compact, thus f is uniformly continuous, i.e. for any $\epsilon>0$, there exists a $\delta>0$, such that for every pair of points $y_{0}, y_{1} \in \mathbb{S}^{1}$ with the metric inherited from $\mathbb{R}^{2}, d_{\mathbb{S}^{1}}\left(y_{0}, y_{1}\right)<\delta$ implies $d_{S}\left(f\left(y_{0}\right), f\left(y_{1}\right)\right)<\epsilon$. So is f^{-1}.

Lemma 8.1.1. For any $\epsilon>0$, there exists an $\tilde{\epsilon}$ such that $d(p, q)<\tilde{\epsilon}$ implies diam $A_{p q}<\epsilon$, where $A_{p q}$ inherits the metric of the visual boundary. In particular, $\left\{A_{p q}\right\}_{p, q}$ is null.

Proof. By the uniform continuity of f, for any $\epsilon>0$, there exists a $\delta>0$, such that

$$
\begin{equation*}
d\left(x^{\prime}, y^{\prime}\right)<\delta \Longrightarrow d(x, y)<\epsilon, \tag{8.1.1}
\end{equation*}
$$

where $x^{\prime}=f^{-1}(x), y^{\prime}=f^{-1}(y)$.

Figure 8.2: $\left\{A_{p q}\right\}_{p, q}$ is null.

By the uniform continuity of f^{-1}, for the chosen δ, there is an $\tilde{\epsilon}$ such that

$$
d(p, q)<\tilde{\epsilon} \Longrightarrow d\left(p^{\prime}, q^{\prime}\right)<\delta
$$

Note in S^{1}, for any pair of points $x^{\prime}, y^{\prime} \in A_{p^{\prime} q^{\prime}}$,

$$
d\left(x^{\prime}, y^{\prime}\right) \leq d\left(p^{\prime}, q^{\prime}\right)<\delta
$$

By (8.1.1) and the arbitrariness of x^{\prime} and y^{\prime}, coupled with the fact that $A_{p q} \approx A_{p^{\prime} q^{\prime}}$, we deduce $\operatorname{diam} A_{p q}<\epsilon$, see Figure 8.2.

Proposition 8.1.2. $\left\{C_{p q}\right\}_{p, q}$ is a null sequence.

Proof. Note $f^{-1}\left(\stackrel{\circ}{B}_{k}\right)=\bigcup_{i=1}^{\infty} \stackrel{\circ}{I}_{i}$, where I_{i} is null. $f\left(\partial I_{i}\right) \in \partial B_{k}$ and denote $f\left(\partial I_{i}\right)$ by $\left\{p_{i}, q_{i}\right\} ;$ denote $f\left(I_{i}\right)$ by $I_{p q}$ and $\left\{I_{p q}\right\}_{p, q}$ is null.

Note $\left\{I_{i}\right\}$ is a null sequence, and $\{d(p, q)\}_{p, q}$ is null as well, this implies $\left\{I_{p q}\right\}_{p, q}$ and $\left\{A_{p q}\right\}_{p, q}$ are both null sequences by the uniform continuity of f and Lemma 8.1.1, thus $\left\{C_{p q}\right\}_{p, q}$ is a null sequence.

8.2 Small B_{k} inclusion

In what follows, we prove that we do not push the path out of U. This can be achieved by the following observation that for any $p_{0} \in \partial_{\infty} \Sigma_{N_{0}}$, and any neighborhood $U \ni p_{0}$, the $B_{k}^{\prime} s$ near p_{0} with small size will be contained in U, see Figure 8.3. More precisely, we have the following lemma.

Lemma 8.2.1. For any $p_{0} \in U$, let $\delta>0$ such that $B\left(p_{0}, \delta\right) \subseteq U$, and $V:=B\left(p_{0}, \frac{\delta}{2}\right)$, then for all $B_{k}^{\prime} s$ with $B_{k} \cap V \neq \emptyset$ and diam $\left(B_{k}\right) \leq \frac{\delta}{3}$, we have $B_{k} \subseteq U$.

Proof. The proof is immediate from the triangle inequality.

Figure 8.3: $B_{k}^{\prime} s$ with $\operatorname{diam}\left(B_{k}\right) \leq \frac{\delta}{3}$ are included in U.

$8.3 p_{0}$ is not a local cut point

With the above preparation, now we are ready to prove the no local cut point property. We split the proof into two cases.

8.3.1 Case 1: $p_{0} \in \mathscr{P} \backslash \bigcup_{k=1}^{\infty} B_{k}$

Proposition 8.3.1. For any neighborhood U of p_{0}, with $p_{0} \notin B_{k}$ for any k, there exists a neighborhood V^{\prime} of p_{0} such that $V^{\prime} \subseteq U$ and each pair (q, r) in $\left(V^{\prime} \backslash\left\{p_{0}\right\}\right) \backslash\left(\bigcup_{k=1}^{\infty} \stackrel{\circ}{B}_{k}\right)$ can be connected by a path l in $\left(U \backslash\left\{p_{0}\right\}\right) \backslash\left(\bigcup_{k=1}^{\infty} \stackrel{\circ}{B}_{k}\right)$.

Proof. We can take a Pontryagin disk V^{\prime} such that $p_{0} \in V^{\prime} \subseteq V$, and $V^{\prime} \cap B_{k}=\emptyset$ with $\operatorname{diam}\left(B_{k}\right) \geq \frac{\delta}{3}$ (The number of $B_{k}^{\prime} s$ with $\operatorname{diam}\left(B_{k}\right) \geq \frac{\delta}{3}$ is finite since $\left\{B_{k}\right\}$ is null).

For each pair (q, r) in $\left(V^{\prime} \backslash\left\{p_{0}\right\}\right) \backslash\left(\bigcup_{k=1}^{\infty} \AA_{k}\right)$, they can be connected by a path l in V^{\prime} since V^{\prime} has no local cut point. But l may go into $B_{k}^{\prime} s$ (the interior of the red ball in Figure 8.4), which is not in $\partial_{\infty} \Sigma_{N_{0}}$.

To achieve our goal, we must push the path segments in $B_{k}^{\prime} s$ out. More precisely, we change the path segments from $I_{p q}$ to $A_{p q}$. From Lemma 8.1.1, the new path can not go

Figure 8.4: The purple path goes into the Pontryagin disks.
beyond U by the choice of V^{\prime}.
Additionally, we need to justify the "new path" after these adjustments to be continuous. Thanks to the nullity properties of Proposition 8.1.2 and the fact $\left\{B_{k}\right\}_{k=1}^{\infty}$ is null from Proposition 6.2.6, we can prove that the "new path" is a real path as shown in Figure 8.5.

Infinitely many oscillations. The most involved situation is that the path goes in and out of the Pontryagin ball for infinitely many times, we call this phenomenon "oscillation", see Figure 8.4

Step 1. Adjust the path in one Pontryagin disk.
Choose a strictly decreasing sequence $\left\{\delta_{i}\right\}_{i=1}^{\infty}$, i.e. $\delta_{1}>\delta_{2}>\delta_{3}>\cdots$, such that $\delta_{i} \rightarrow 0$ as $i \rightarrow \infty$.

Since $\left\{C_{p q}\right\}_{p, q}$ is null, either $\operatorname{diam}\left(C_{p q}\right)>\delta_{1}$, or $\delta_{i+1}<\operatorname{diam}\left(C_{p q}\right) \leq \delta_{i}$; and the number of oscillations between δ_{i+1} and δ_{i} is finite. Denote by g_{0} the initial path before the adjustment, for the first stage, change the path segment $I_{p q}$ in the Pontryagin disk to $A_{p q}$, where

Figure 8.5: Push the path segments in $B_{k}^{\prime} s$ out.
Remark 15. After the push, the path would not go beyond U. The green path is the new one which lies in $\partial_{\infty} \Sigma_{N_{0}}$.
$\operatorname{diam}\left(C_{p q}\right)>\delta_{1}$, and denote the resulting path by g_{1}. Then at the i th stage change the path segment $I_{p q}$ in the Pontryagin disk to $A_{p q}$ with $\delta_{i+1}<\operatorname{diam}\left(C_{p q}\right) \leq \delta_{i}$, denote the resulting path by g_{i}; then we could repeat this process forever, and obtain a sequence $\left\{g_{i}\right\}_{i=1}^{\infty}$.

Claim 4. $\left\{g_{i}\right\}_{i=1}^{\infty}$ is a Cauchy sequence.
Proof. For any $\epsilon>0$, take an N such that $\delta_{N}<\epsilon\left(\right.$ since $\left.\delta_{i} \rightarrow 0\right)$, then for $n, m>N$, we have $d\left(g_{n}, g_{m}\right) \leq \delta_{m+1}<\delta_{N}<\epsilon$.

By Claim 4, we are ready to conclude that the limit of $\left\{g_{i}\right\}_{i=1}^{\infty}$ is a continuous path.
Step 2. Adjust the path in all of the Pontryagin disks.
Now we can use the similar trick as above, choose a strictly decreasing sequence $\left\{\mathcal{E}_{i}\right\}_{i=1}^{\infty}$, i.e. $\mathscr{E}_{1}>\mathscr{E}_{2}>\mathscr{E}_{3}>\cdots$, such that $\mathscr{E}_{i} \rightarrow 0$ as $i \rightarrow \infty$.

By nullity property, we have $\left\{\operatorname{diam}\left(B_{k}\right)\right\}$ is null, either $\operatorname{diam}\left(B_{k}\right)>\mathcal{E}_{1}$, or $\mathscr{E}_{i+1}<$ $\operatorname{diam}\left(B_{k}\right) \leq \mathcal{E}_{i}$ for some i; and the number of Pontryagin disks with diameter between \mathcal{E}_{i+1} and \mathscr{E}_{i} is finite.

Denote by f_{0} the initial path before the adjustment, for the 1 st stage, change the path segments in the Pontryagin disks with diameter greater than \mathcal{E}_{1} as above; and denote the resulting path by f_{1}; repeat this process, generally, at the i th stage, we change the path segments in the Pontryagin disks with $\mathscr{E}_{i+1}<\operatorname{diam}\left(B_{k}\right) \leq \mathscr{E}_{i}$, denote the resulting path by f_{i}, then we obtain a sequence $\left\{f_{i}\right\}_{i=1}^{\infty}$.

Claim 5. $\left\{f_{i}\right\}_{i=1}^{\infty}$ is a Cauchy sequence.
Proof. For any $\epsilon>0$, take an N such that $\mathcal{E}_{N}<\epsilon\left(\right.$ since $\left.\mathscr{E}_{i} \rightarrow 0\right)$, then for $n, m>N$, we have $d\left(f_{n}, f_{m}\right) \leq \mathscr{E}_{m+1}<\mathscr{E}_{N}<\epsilon$.

By Claim 5 , there exists a limit f of $\left\{f_{i}\right\}_{i=1}^{\infty}$ and f is a path. Let f be denoted by l^{\prime}, the proof is completed.

8.3.2 Case 2: $p_{0} \in B_{k_{0}}$ for some k_{0}

Figure 8.6: Case 2: $p_{0} \in \partial B_{k_{0}}$.

Proposition 8.3.2. For any neighborhood U of p_{0} in \mathscr{P}, where $p_{0} \in \partial B_{k_{0}}$ for some k_{0}, there exists a neighborhood V^{\prime} of p_{0} such that $V^{\prime} \subseteq U$ and each pair (\tilde{q}, r) in $\left(V^{\prime} \backslash\left\{p_{0}\right\}\right) \backslash\left(\bigcup_{k=1}^{\infty} \stackrel{\circ}{B}_{k}\right)$ can be connected by a path l in $\left(U \backslash\left\{p_{0}\right\}\right) \backslash\left(\bigcup_{k=1}^{\infty} \dot{B}_{k}\right)$.

Proof. Take V to avoid $B_{k}^{\prime} s$ with $\operatorname{diam}\left(B_{k}\right)>\frac{\delta}{3}$ (possibly except $B_{k_{0}}$) $k \neq k_{0}$ as in Lemma 8.2.1. Note there exists a map f such that $f\left(B_{k_{0}}\right)=\mathscr{P} \backslash B_{k_{0}}$ fixing $\partial B_{k_{0}}$. Take a small enough Pontryagin disk $V^{\prime} \ni p_{0}$ such that $f\left(V^{\prime}\right) \subseteq V$, as shown in Figure 8.6. For any pair of point (\tilde{q}, r) in $\left(V^{\prime} \backslash\left\{p_{0}\right\}\right) \backslash\left(\bigcup_{k=1}^{\infty} \stackrel{\circ}{B}_{k}\right)$, note V^{\prime} has no local-cut point, $\forall p, q \in V^{\prime} \cap S$, there is a path l connecting p and q, such that $l \subseteq V^{\prime}$ and $p_{0} \notin l$. See Figure 8.7.

Figure 8.7: Reroute the path l.

Let $C=l^{-1}\left(B_{k_{0}}\right)$ and $D=l^{-1}\left(P \backslash \stackrel{\circ}{B}_{k_{0}}\right)$ closed subsets of $[0,1]$ such that $C \cap D=\{t \mid$ $l(t) \in S\}$.

Define $\tilde{l}:[0,1] \rightarrow \mathscr{P}$ by

$$
\tilde{l}(t)= \begin{cases}l(t), & \text { if } t \in D \\ f \circ l(t), & \text { if } t \in C\end{cases}
$$

Denote the modified path by \tilde{l}, repeat the process in Proposition 8.3.1 to push the segment in $B_{k}^{\prime} s$ with $\operatorname{diam}\left(B_{k}\right) \geq \frac{\delta}{3}$ onto the ∂B_{k}, denote the new path by l^{\prime}, this completes the case 2.

Chapter 9

Other properties of $\partial_{\infty} \Sigma_{N_{0}}$

Now we turn to verify the other properties of $\partial_{\infty} \Sigma_{N_{0}}$.

9.1 Path connected and locally path connected

The following propositions are completely similar repetitions of process to prove the no local cut point, see Proposition 8.3.1, so we omit the proofs.

Proposition 9.1.1. For any pair $(p, q) \in \mathscr{P} \backslash\left(\bigcup_{k=1}^{\infty} \stackrel{\circ}{B}_{k}\right)$, there exists a path connecting them in $\mathscr{P} \backslash\left(\bigcup_{k=1}^{\infty} \stackrel{\circ}{B}_{k}\right)$.

Proposition 9.1.2. For any neighborhood U of p_{0} in \mathscr{P}, where $p_{0} \in \mathscr{P} \backslash\left(\bigcup_{k=1}^{\infty} \stackrel{\circ}{B}_{k}\right)$, there exists a neighborhood V^{\prime} of p_{0} such that $V^{\prime} \subseteq U$ and each pair (q, r) in $V^{\prime} \backslash\left(\bigcup_{k=1}^{\infty} \stackrel{\circ}{B}_{k}\right)$ can be connected by a path ℓ in $U \backslash\left(\bigcup_{k=1}^{\infty} \stackrel{\circ}{B}_{k}\right)$.

9.2 Visual boundary is 1-dimensional

On the one hand, $\operatorname{dim}_{\infty} W_{N_{0}}=\max \left\{n: \widetilde{H}^{n}\left(N_{0}\right) \neq 0\right.$ or $\widetilde{H}^{n}\left(N_{0} \backslash \Delta\right) \neq 0$ for some simplex $\Delta \subseteq$ $\left.N_{0}\right\}$ (where \widetilde{H}^{*} denotes the reduced cohomology) (proof of Lemma 2.5 [30]). Since N_{0} and $N_{0} \backslash \Delta$ are both homotopy equivalent to bouquets of circles, we have $\widetilde{H}^{2}\left(N_{0}\right)=0$,
or $\widetilde{H}^{2}\left(N_{0} \backslash \Delta\right)=0$, for any simplex $\Delta \subseteq X$., i.e. $\operatorname{dim} \partial_{\infty} W_{N_{0}} \leq 1$. On the other hand, $\operatorname{dim} \partial_{\infty} W_{N_{0}} \geq 1$ since it contains a subset homeomorphic to the cirlce S^{1}. Thus $\operatorname{dim} \partial_{\infty} W_{N_{0}}=$ 1.

9.3 Completion of the main theorem

Combining with Proposition 7.2.2, Proposition 8.3.1, and Proposition 8.3.2, we complete the proof of Theorem 1.1.1.

Chapter 10

Closing comments and open questions

It is worthy to mention that our methods can be applied to the high dimensional case which needs to be investigated further. Exploiting the method applied in 2-dimensional case, we can also get the following theorem which allows us to expand upon the work of Lafont-Tshishiku [23].

Recall that the homology sphere is a closed manifold with the same homology as S^{n}; the homology ball can be obtained by removing a single vertex from a triangulated homology sphere. A Jakobsche space and a Jakobsche ball are higher dimensional analogues of the Pontryagin surface and Pontryagin disk respectively. I expect to be able to prove: there exist infinitely many different Gromov boundaries for hyperbolic aspherical 4-manifold groups.

However, there are numerous questions left unanswered. The following is a special case of a conjecture due to Świa̧tkowski-Zawiślak [34].

Conjecture 10.0.1. Let K be a flag triangulation of a closed manifold, K_{0} a subcomplex obtained by removing a single vertex, and W_{0} be the Coxeter group with nerve K_{0}, then the CAT(0) boundary of W is homeomorphic to $\mathcal{X}^{r}\left(K_{0}\right)$.

A positive answer to Conjecture 10.0.1 will allow us to solve:

Conjecture 10.0.2. For each homology 3 -sphere H^{3}, there exists an aspherical 4-manifold M^{4} with boundary such that $\pi_{1}\left(M^{4}\right)$ is hyperbolic and the Gromov boundary of $\pi_{1}\left(M^{4}\right)$ is the

Sierpinski-Jakobsche space $\mathcal{X}^{r}\left(H_{0}^{3}\right)$. (See [34] for a precise definition.)

BIBLIOGRAPHY

[1] P. Abramenko and K. Brown. Buildings: Theory and Applications. Springer, 2008.
[2] R. D. Anderson. A characterization of the universal curve and a proof of its homogeneity. Annals of Mathematics 67 (2):313-324, 1958.
[3] R. D. Anderson. One-dimensional continuous curves and a homogeneity theorem. Annals of Mathematics 68 (1):1-16, 1958.
[4] A. Bartels, W. Lück, and S. Weinberger. On hyperbolic groups with spheres as boundary. Journal of Differential Geometry 86 (1):1-16, 2010.
[5] M. R. Bridson and A. Haefliger. Metric space of non-positive curvature. Springer-Verlag, Berlin, 1999.
[6] F. Dahmani, V. Guirardel, and P. Przytycki. Random groups do not split. Mathematische Annalen 349 (3): 657-673, 2011.
[7] D. Danielski. Right-angled Coxeter groups with Menger curve boundary. Bulletin of the London Mathematical Society 54 (3): 977-995, 2022.
[8] D. Danielski and J. Świa̧tkowski. A note on the complete characterizations of hyperbolic Coxeter groups with Sierpiński curve boundary and with Menger curve boundary. arXiv:2110.01922, 2023.
[9] R. J. Daverman and T. L. Thickstun. Degree-one, monotone self-maps of the pontryagin surface are near-homeomorphisms. Pacific Journal of Mathematics 303 (1): 93-131, 2019.
[10] M. Davis. Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Mathematische Annalen 117 (2): 93-131, 1983.
[11] . The Geometry and Topology of Coxeter Groups. London Mathematical Society Monograph Series, Princeton University Press, 2008.
[12] A. N. Dranishnikov. Boundaries of Coxeter groups and simplicial complexes with given links. Journal of Pure and Applied Algebra 137 (2): 139-151, 1999.
[13] H. Fischer. Boundaries of right-angled Coxeter groups with manifold nerves. Topology 42 (2): 423-446, 2003.
$[14]$. Visual boundaries of right angled Coxeter groups and reflection manifolds. Dissertation, The University of Wisconsin-Milwaukee, 1998.
[15] C. Guilbault, M. Moran, and C. Tirel. Boundaries of Baumslag-Solitar groups. Algebraic and Geometric Topology 19 (4): 2077-2097, 2019.
[16] A. Gagarin and W. Kocay. Embedding graphs containing K_{5}-subdivisions on the torus. Journal of Combinatorial Mathematics and Combinatorial Computing 80: 207-223, 2012.
[17] A. Gagarin and W. Kocay. Embedding K_{5} and $K_{3,3}$ on orientable surfaces. Discrete Applied Mathematics: https://doi.org/10.1016/j.dam.2023.05.018., 2023.
[18] M. Haulmark. Boundary classification and 2-ended splittings of groups with isolated flats. Journal of Topology 11 (3): 645-665, 2018.
[19] M. Haulmark, G. C. Hruska, and B. Sathaye. Nonhyperbolic Coxeter groups with Menger boundary. L'Enseignement Mathématiqu 65 (1-2): 207-220, 2019.
[20] W. Jakobsche. Homogeneous cohomology manifolds which are inverse limits. Fundamenta Mathematicae 137 (2):81-95, 1991.
[21] M. Kapovich and B. Kleiner. Hyperbolic groups with low-dimensional boundary. Annales Scientifiques de l'É. N.S. 4^{e} série 33 (5):647-669, 2000.
[22] F. Dahmani, V. Guirardel, and P. Przytycki. Random groups do not split. Mathematische Annalen 349 (3):657-673, 2011.
[23] J-F Lafont and B. Tshishiku. Hyperbolic groups with boundary an n-dimensional Sierpinski space. Journal of Topology and Analysis 11 (01):233-247, 2019.
[24] W. J. R. Mitchell, D. Repovš, and E.V. Ščepin. On 1-cycles and the finite dimensionality of homology 4-manifolds. Topology 31 (3): 605-623, 1992.
[25] G. Moussong. Hyperbolic Coxeter groups. Dissertation (Ph.D.)-The Ohio State University, 1988.
[26] J. R. Munkres. Elements of Algebraic Topology. Addison Wesley Publishing Company, 1984.
[27] J. R. Stallings. On torsion-free groups with infinitely many ends. Annals of Mathematics 88 (2): 312-334, 1968.
[28] M. Ronan. Lectures on Buildings. Academic Press, INC, 1989.
[29] J. Śsia̧tkowski. Trees of manifolds as boundaries of spaces and groups. Geometry \& Topology 24 (2): 593 - $622,2020$.
[30] . Hyperbolic Coxeter groups with Sierpinski carpet boundary. Bulletin of the London Mathematical Society 48 (4):708-716, 2016.
[31] P. Scott and T. Wall. Homological Group Theory. London Mathematical Society Lecture Note Series 36, Cambridge University Press, 1979.
[32] A. Thomas. Geometric and Topological Aspects of Coxeter Groups and Buildings. Nachdiplomvorlesung an der ETH Zürich im FS, 2016.
[33] D. Wise. From Riches to Raags: 3-Manifolds, Right-Angled Artin Groups, and Cubical Geometry. American Mathematical Society, 2012.
[34] P. Zawiślak. Trees of manifolds with boundary. Colloquium Mathematicum 139 (1):1-24, 2015.
[35] —. Trees of manifolds and boundaries of systolic groups. Fundamenta Mathematicae 207 (1):71-99, 2010.

