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ABSTRACT

NON-HYPERBOLIC RIGHT-ANGLED COXETER GROUPS WITH
MENGER CURVE BOUNDARY

by

Cong He

The University of Wisconsin–Milwaukee, 2023
Under the Supervision of Professor Craig Guilbault

We find a class of simplicial complexes as nerves of non-hyperbolic right-angled Coxeter

groups, with boundary homeomorphic to the Menger curve. The nerves are triangulations of

compact orientable surfaces with boundary. In particular, the nerves are non-graphs.
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LIST OF NOTATIONS

• N : the abstract simplicial complex corresponding to a flag triangulation of a closed

surface.

• K = cone(N ′) is called the chamber, N ′ denotes the barycentric subdivision of N.

• N0 := N − a,N1 := N − (a ∪ b).

• VN := vertex set of N .

• Lb: the link of b.

• WLb : group generated by the vertices of Lb.

• TN0,b : a special transversal of WN0 for WLb , i.e.

TN0,b := {g′ : g′ is the unique minimum length element in coset gWLb}.

T+
N0,b

:= {g ∈ Ta | `(ga) > `(g)}.

• hvi :=
⋃

g∈WLvi

gPvi , Pvi is a panel, and hvi is sometimes called a wall, see Chapter 3. The

wall separates ΣN into two components, denote the closure of the component without

the fundamental chamber by H+
vi
, and H+

vi
=
⋃
h

{hK : `(vih) < `(h)}.

• gH+
a : the translation of H+

a by g ∈ TN0,a, where

TN0,a: transversal of WN0 for WLa , i.e.

TN0,a := {g′ : g′ is the unique minimum length element in a coset gWLa}.

• For any convex set U , denote by ∂∞U the geodesic equivalent class in U .

• Πδ(ξ) : the projection of ξ onto ∂B(x0, δ).

• UΠδ(ξ) : a neighborhood of Πδ(ξ) in ∂B(x0, δ).

• `(g) is the length of any reduced representation of g.

• In(g) := {v ∈ VN | `(gv) < `(g)}, and Out(g) := {v ∈ VN | `(gv) > `(g)}.

viii
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Chapter 1

Introduction

1.1 Overview

In [30], Świa̧tkowski gave a necessary and sufficient condition for a hyperbolic Coxeter

group with planar nerve to have Sierpiński curve as its Gromov boundary. And hyperbolic

right-angled Coxeter groups with Gromov boundary as Menger curve were studied by Daniel

Danielski [7]. Recently, Danielski and Świa̧tkowski gave complete characterizations (in terms

of nerves) of the word hyperbolic Coxeter groups whose Gromov boundary is homeomorphic

to the Sierpiński curve and to the Menger curve, respectively, see [8]. A theorem by Dahmani,

Guirardel, and Przytycki [6] implies that a random group at density less than 1
2
in Gromov

density model has a boundary homeomorphic to the Menger curve. As for nonhyperbolic

CAT(0) groups, there are many examples which are known to have Sierpiński carpet boundary,

but as recently as 2019, the following question was open.

Question 1. (Ruane) Does there exist a non-hyperbolic CAT(0) group G with the Menger

curve boundary ?

Haulmark, Hruska, and Sathaye [19], in 2019, produced the first known examples of

non-hyperbolic CAT(0) groups whose visual boundary is homeomorphic to the Menger curve.

Their examples are non-right-angled Coxeter groups whose nerves are complete graphs on
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vertices for n ≥ 5. The construction in [19] depended on a slight extension of Sierpiński’s

theorem on embedding 1–dimensional planar compacta into the Sierpiński carpet.

One of the main results in this dissertation is the following:

Theorem 1.1.1. An orientable surface with a single boundary component admits (many) tri-

angulations which are nerves of right-angled Coxeter groups with the Menger curve boundaries.

Among them are many non-hyperbolic groups.

Theorem 1.1.1 gives a new collection of positive answer to Question 1. Our examples are

right-angled Coxeter groups (RACGs) whose nerves are triangulations of compact orientable

surfaces with boundary, and the nerves are non-graphs. One of the key assumptions on

these triangulations is “no-empty-square” condition at two special vertices, which is useful to

deduce the nullity and density properties; these properties will then be exploited to prove the

no local-cut point and nonplanar properties for the Menger curve.

Our proofs are based on a classical characterization of the Menger curve due to Anderson,

theorems by Fischer and Świa̧tkowski which implies the visual boundary of ∂∞ΣN (or the

boundary of the right-angled Coxeter groups WN) is Pontryagin surface, and a perturbing

trick for the paths.

An outline of the proof. Now let us move on to sketching our proof. Here are several

crucial steps to prove Theorem 1.1.1.

1. Denote by N a flag triangulation of an orientable surface, and WN the corresponding

right-angled Coxeter group defined as following:

WN := 〈vi ∈ V | v2
i = 1 for all i, (vivj)2 = 1 if vi, vj are adjacent〉,

where V represents the vertices of N.

2. Construct the Davis CAT(0) cube complex ΣN for the Coxeter group WN with nerve

N. Then WN acts geometrically on ΣN . See [10,11] for related definitions.

2



3. By a theorem of Fischer [13], ∂∞ΣN is a Pontryagin surface.

4. Denote by N0 a subcomplex obtained by removing a single vertex from N, and WN0

Coxeter group with nerve N0, then the Davis complex for W0 is a convex subcomplex

ΣN0 of ΣN , so ∂∞ΣN0 ⊆ ∂∞ΣN . Note that N0 is homeomorphic to a compact surface

with a single boundary component.

5. Now we show that ∂∞ΣN0 can be obtained from ∂∞ΣN by removing the interiors of a

pairwise disjoint, dense sequence of Pontryagin disks whose diameters converge to zero.

This step requires the application of some special properties of Coxeter groups.

6. With a lot of additional work we are able to verify that ∂∞ΣN0 satisfies all of the

conditions of a famous characterization of the Menger curve due to Anderson [2, 3].

The key steps are showing that ∂∞ΣN0 has no local cut points and no planar open

subsets. In order to accomplish these steps (and portions of the previous step), the

triangulation N from Step 1 must be chosen to satisfy some technical conditions. By

adding an additional condition, we can assure that WN0 is not hyperbolic.

1.2 Organization

Now we turn to state the organization of the dissertation.

In Chapter 2, we introduce CAT(0) spaces and boundary of groups, particularly some

typical examples.

In Chapter 3, we discuss general properties and geometry of right-angled Coxeter groups,

especially the Davis complex.

In Chapter 4, we construct a class of special triangulations. One of the key assumptions

of the triangulation is “non-empty-square” property at two special vertices.

With these assumptions of the triangulations, we further investigate some special properties

of the Davis complex in Chapter 5.

3



The “no-empty-square” property is used to deduce the nullity and density properties

in Chapter 6, and the nonplanar property in Chapter 7. It is worth mentioning that an

additional assumption the triangulation contains a full subcomplex Γ which is a subdivision

of the barycentric subdivision of K5 is also exploited.

In Chapter 8, we take advantage of the nullity property developed in Chapter 6, and a

perturbation trick of paths to prove there is no local cut point.

Finally, we briefly prove the other properties of Menger curve, such as the visual boundary

is 1-dimensional and locally connected.
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Chapter 2

CAT(0) spaces and groups

2.1 CAT(0) spaces

Roughly speaking, a CAT(0) space [5] is a geodesic metric space in which all its geodesic

triangles are thinner than its Euclidean triangles. More precisely, we give the definition as

below.

Definition 1. (CAT(0) space) Let X be a geodesic metric space and ∆ be a geodesic triangle

in X. A triangle ∆̄ = ∆(p̄, q̄, r̄) in Euclidean space En is called a comparison triangle for

∆ = ∆([p, q], [q, r], [r, p]) if d(p̄, q̄) = d(p, q), d(q̄, r̄) = d(q, r) and d(p̄, r̄) = d(p, r). See Figure

2.1. ∆ is said to satisfy the CAT(0) inequality if for all x, y ∈ ∆ and all comparison

points x̄, ȳ ∈ ∆̄, d(x, y) ≤ d(x̄, ȳ) holds. And X is called CAT(0) space if it is a geodesic

space all of whose geodesic triangles satisfy the CAT(0) inequality.

Definition 2. The boundary of a proper CAT(0) space X, denoted by ∂∞X, is the set of

equivalence classes of rays, where two rays are equivalent if and only if they are asymptotic.

We say that two geodesic rays α, α′ : [0,∞)→ X are asymptotic if there is some constant

k such that d(α(t), α′(t)) ≤ k for every t ≥ 0.

Once a base point is fixed, there is a unique representative geodesic ray from each

equivalence class [5].

5
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Figure 2.1: CAT(0) inequality.

We may endow X = X ∪ ∂X, with the cone topology, described below, which makes ∂X

a closed subspace of X and X compact (as long as X is proper). With the topology on ∂X

induced by the cone topology on X, the boundary is often called the visual boundary. In

what follows, the term ‘boundary’ will always mean ‘visual boundary’. Furthermore, we will

slightly abuse terminology and call the cone topology restricted to ∂∞X simply the cone

topology if it is clear that we are only interested in the topology on ∂∞X.

One way in which to describe the cone topology on X, denoted T(x0) for x0 ∈ X, is by

giving a basis. A basic neighborhood of a point at infinity has the following form: given a

geodesic ray c and positive numbers r > 0, ε > 0, let

U(c, r, ε) = {x ∈ X | d(x, c(0)) > r, d(Πr(x),Πr(c)) < ε},

where Πr is the natural projection of X onto B(c(0), r). Then a basis for the topology T(x0),

on X consists of the set of all open balls B(x, r) ⊂ X, together with the collection of all sets

of the form U(c, r, ε), where c is a geodesic ray with c(0) = x0.

If we restrict to ∂∞X, a basis of open sets for ∂∞X is given by all the

U(c, r, ε) = {ξ ∈ ∂∞X : d(Πr(x),Πr(c)) < ε},

where c is a geodesic ray, with c(0) = x0 and ε, r > 0.

Remark 1. For all x0, x
′
0 ∈ X,T(x0) and T(x′0) are homeomorphic, see [5] Proposition 8.8.
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We need the following Lebesgue-like lemma for cone topology on ∂∞X when (X, d) is a

proper CAT(0) space.

Lemma 2.1.1. ([15])

1. For each γ ∈ ∂∞X and n > 0, let

V (γ, n) =
{
β ∈ ∂∞X | d(β(n), γ(n)) <

1

n

}
.

Then
{
V (γ, n) | γ ∈ ∂∞X and n > 0

}
is a basis for the cone topology on ∂∞X.

2. For any open cover U of ∂∞X, there is an n0 > 0 such that each V (ξ, n0) is contained

in some element of U, where ξ ∈ ∂∞X.

We now prove some geometric properties from the CAT(0) inequality. Denote by Pδ

the projection of X\B(x0, δ) onto ∂B(x0, δ), S a subset in a CAT(0) space X, assume

diam(S) ≤ A, and S is outside the δ ball.

Lemma 2.1.2. Let κ be a constant such that κ ≥ 2. If there exists a point p1 ∈ S with

d(x0, p1) ≥ κA, then diam(Pδ(S)) ≤ 4δ
κ
.

Proof. Note for any p ∈ S, we have

d(x0, p) ≥ d(x0, p1)− d(p1, p) ≥ κA− A ≥ κA

2
.

Denote R′ = d(x0, p1), R = d(x0, p), without loss of generality, we assume R′ ≥ R, see Figure

2.2, then m := R′ − R ≤ d(p1, p) ≤ A. Let q be the point on the geodesic segment [x0, p1]

with d(x0, q) = R, then

d(p, q) ≤ d(p1, q) + d(p1, p) ≤ m+ A ≤ 2A.

Let q′ and p′ be the points on the geodesic line [x0, p1] and [x0, p] with d(x0, q
′) = δ and

d(x0, p
′) = δ respectively. Correspondingly, in the Euclidean triangle, let q̃′, p̃′ be the the

7



points on the geodesic line [x̃0, p̃1] and [x̃0, p̃] with d(x̃0, q̃
′) = δ and d(x̃0, p̃

′) = δ; also denote

q̃ the point on the geodesic line [x̃0, p̃1] with d(x̃0, q̃) = R.

By CAT(0) inequality, we get

d(p′, q′) ≤ d(p̃′, q̃′) =
d(p̃, q̃)

R
δ ≤ 2A

1
2
κA

δ ≤ 4δ

κ
.

x̃0

p̃1

p̃

q̃

q̃′
p̃′

≤ 2A

≤ A

m

R′

δ

R

δ

x0

p1

p

q

q′

p′

≤ A

≤ 2A

m

R′

δ

R

δ

Figure 2.2: Comparison triangle.

We now give a definition of a convex set to proceed.

A subset U of X is convex if every p, q ∈ U can be joined by a geodesic segment contained

totally in U.

Lemma 2.1.3. If (X, d) is CAT(0) space and Y is a closed convex subspace of X, then

(Y, d |Y ) is a CAT(0) space and ∂∞Y is a subspace of ∂∞X.

Proof. Choose a basepoint x0 lying in Y, each geodesic ray in Y based at x0 is also a geodesic

ray in X.

2.2 δ-hyperbolic spaces

A δ-hyperbolic space is a geodesic metric space with the following property: there exists a

δ > 0 so that the third side of any triangle lies in the δ-neighborhood of the other two. A

8



group G that acts geometrically (properly, cocompactly, by isometries) on a CAT(0) space

[hyperbolic space] is called a CAT(0) [hyperbolic] group. A similar strategy to Definition

2 allows one to define ∂X for hyperbolic space X, which is called Gromov boundary, see

[5]. ∂X is also called the boundary of G .

In the case when X is δ-hyperbolic CAT (0) space, the visual and Gromov boundaries

are the same.

2.3 Examples of group boundaries

Here are some examples of groups and their boundaries.

Example 2.3.1.

• The boundary of Z is two points, since it can act geometrically on the real line by

translation; since R is both CAT(0) and hyperbolic, so is Z .

• Similarly, the boundary of Z⊕ Z is a circle; Z⊕ Z is CAT(0) but not hyperbolic.

• The boundary of 4-valent tree is the Cantor set; the free group on two generators F2

can act on the 4-valent tree, which is both CAT(0) and hyperbolic.

Some interesting and famous fractal spaces play important roles in this dissertation

because they can occur as group boundaries. Here is an informal description of a few of them.

2.3.1 Sierpiński carpet and Menger curve

The classical construction of a Sierpiński carpet (see Figure 2.3, sometimes called Sierpiński

curve) is analogous to the construction of a Cantor set: start with the unit square in the plane,

subdivide it into nine equal subsquares, remove the middle open square, and then repeat this

procedure inductively on the remaining squares. The Menger curve can be obtained by a

similar but more complicated construction, see Figure 2.4.

9



Figure 2.3: The Sierpiński carpet.

Figure 2.4: The Menger curve.
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The Menger curve has the following well-known characterization:

Theorem 2.3.2. ([2, 3]) A compact metric space M is a Menger curve provided: M is

1-dimensional, connected, locally connected, has no local-cut points, and no non-empty open

subset of M is planar.

Kapovich and Kleiner [21] investigated the hyperbolic groups with Sierpiński carpet

and Menger curve boundaries. Dahmani, Guirardel, and Przytycki [22] proved that most

hyperbolic groups have a boundary homeomorphic to the Menger curve. This explains the

motivation of Question 1.

2.3.2 Pontryagin surface as the boundary of right-angled Coxeter

group

Starting from 2-sphere S2, remove the interiors of a disjoint dense collection of closed disks

with diameters approaching zero, then glue punctured tori along the boundaries. Repeating

this process infinitely many times, we get an inverse limit of an inverse sequence of connected

sum of tori. We call the inverse limit the Pontryagin surface [9, 20, 24] denoted by P, see

Figure 2.5.

If we start from a Euclidean disk D2, and then do the same process as S2 avoiding the

boundary of D2, we get the Pontryagin disk [24] denoted by BP as an inverse limit of an

inverse sequence of D2 with handles, intuitively see the part above S1 in Figure 2.5.
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Figure 2.5: Pontryagin surface.
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The Pontryagin surface P has several good properties [9, 13,24]. For instance,

• P is compact, connected and 2-dimensional.

• Any separating circle S1 divides P into two components whose closures are homeomor-

phic to the Pontryagin disks, i.e. P ≈ BP ∪S1 BP.

• For every positive integer k, P is k-homogeneous, i.e., for any given two collections

{x1, x2, · · · , xk} and {y1, y2, · · · , yk} of k distinct points in P, there is a homeomorphism

h : P→ P such that h(xi) = yi.

• For any neighborhood U of p ∈ P, there is a Pontryagin disk such that p ∈ BP ⊆ U.

• P is locally path connected, and it has no local cut points.

A special case of Fischer’s theorem [13,29] is: if the nerve N of a right-angled Coxeter

group WN is a flag triangulation of a closed orientable surface, then the boundary of WN is

homeomorphic to the Pontryagin surface [13,24,34,35], i.e. ∂∞WN ≈ P, see more in Chapter

3.
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Chapter 3

The geometry of RACGs

In Chapter 2, we introduced the Pontryagin surface as the visual boundary of right-angled

Coxeter groups. In this chapter, we will explain the geometry of right-angled Coxeter groups.

In this dissertation, we restrict ourselves to surface nerve N which is a flag triangulation

of a surface; N corresponds to a Coxeter group WN , denote chamber K = cone(N), gluing

chambers gK (which are copies of K with g ∈ W ) according to the structure of Coxeter

groups, we obtain the Davis complex which Coxeter groups W act on.

3.1 Coxeter groups

Definition 3. Let V be a finite set and m : V × V → {∞, 1, 2} a function with the property

that m(u, v) = 1 if and only if u = v, and m(u, v) = m(v, u) for all u, v ∈ V. Then the group

W =
〈
V | (uv)m(u,v) = 1 for all u, v ∈ V

〉
defined in terms of generators and relators is

called right angled Coxeter group. The pair (W,V ) is called a right angled Coxeter

system.

An important feature of right angled Coxeter system is its nerve, the abstract simplicial

complex

N = N(W,V ) = {∅ 6= S ⊆ V | 〈S〉 is finite}
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(where 〈S〉 is the subgroup of Γ generated by S), i.e., the faces correspond to vertex sets S

such that m(u, v) = 2 for all u, v ∈ S, u 6= v. |N | will denote a geometric realization of N. If

N is a finite flag complex with vertex set V, then

W = 〈V | v2 = 1 for all v ∈ V and (uv)2 = 1 for all {u, v} ∈ N〉

is a right angled Coxeter system whose nerve is N (see [10], Lemma 11.3). Therefore, the

above describes a one-to-one correspondence between finite flag complexes N and right angled

Coxeter system (W,V ).

3.2 Davis complexes

We introduce the star and the link of a vertex v denoted respectively by St(v) and Lv.

Let v be a vertex of the complex S, define

St(v) = {σ ∈ S | ∃τ ∈ S, s.t. v ∈ τ and σ ≤ τ}, (3.2.1)

and

Lv = {σ ∈ St(v) | v /∈ σ}. (3.2.2)

Let (W,V ) be the right angled Coxeter system with nerve N. N ′ denotes the first barycentric

subdivision of N. K := cone(N ′) is called a chamber. Divide N ′ into panels

{
Pv = |St(v,N ′)| | v ∈ V

}
.

We give Γ the discrete topology and put

ΣN = Σ(W,V ) = W ×K/ ∼, where (g, x) ∼ (h, y)⇐⇒ x = y and g−1h ∈ 〈v | x ∈ Pv〉.
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Observe that W acts on ΣN by left multiplication on the first coordinate. Then ΣN is a

contractible topological space on whichW acts properly discontinuously: {g ∈ Γ | g(K)∩K 6=

∅} is finite for all compact K ⊆ Σ, see [10].

Also, ΣN always admits a CAT(0) metric, we can interpret ΣN as a cubical complex as

follows.

x0σ
′

x0 v2

v3

w1

w

w2

w3

v1

[0, 1]1+dim σ
0 v

′
2

v
′
1

v
′
3 w

′
2

w
′

w
′
3

w
′
1

•

•

•

•

Figure 3.1: Cubification.

Cubification and piecewise Euclidean metric. Let σ ∈ N. Identify |x0σ
′| with the

cube [0, 1]1+dim σ as follows. The cone point x0 corresponds to 0 and the barycenter of a

face {vi1 , vi2 , · · · , vik} of σ to ei1 + ei2 + · · ·+ eik , where ei1 , ei2 , · · · is the standard basis for

Euclidean space (see Figure 3.1). The cubical complex ΣN has a natural piecewise Euclidean

CAT(0) metric [25]. This metric is given by taking the Euclidean metric of a unit cube on

each of the cubes and extending it to the whole complex by taking the infima of the lengths

of chains of segments such that each of these segments is contained in a single cube.

3.3 Visual boundaries of Coxeter groups

Definition 4. L is a full subcomplex of N if the simplices of N spanned by vertices of L

are also simplices of L.

The following proposition holds, see [7].
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Proposition 3.3.1. ([7]) Let L be a full subcomplex of the nerve N of the group WN . Then

WL is a subgroup of WN . In particular, the homomorphism determined by the inclusion map

on vertices is injective and the complex ΣL is a convex subcomplex of ΣN . Therefore, from

Lemma 2.1.3, the boundary ∂∞WL is a subspace of the boundary ∂∞WN .

Example 3.3.2. We can now provide more context to our comments at the end of Chapter 2,

N is a flag triangulation of the closed orientable surface, then ∂∞WN ≈ P, where P is the

Pontryagin surface.
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Chapter 4

Triangulation

In this chapter, we will create a class of special flag triangulations of a closed surface.

The Coxeter groups corresponding to Assumption 1 given below have nice properties (see

Proposition 5.3.1) which leads to the geometric retraction property of [p, x0] for p ∈ g0WLb

(see Proposition 6.1.2), by turn deducing the nullity and density properties. The triangulation

satisfies Danielski’s Theorem 3.4 in [7] which guarantees there is a nonplanar graph in the

visual boundary of WN1 (see Lemma 7.2.1 in Chapter 7).

4.1 Assumptions

Recall that a simplicial complex L is called a flag complex if each finite, non-empty set of

vertices T spans a simplex in L if and only if any two elements of T span an edge (1-simplex)

in L. An empty square in a simplicial complex is a circuit of 4 edges such that neither pair

of opposite vertices is connected by an edge.

Our purpose is to construct a class of flag triangulations N of a closed surface such that

the following assumptions are satisfied.

Assumption 1. N contains a pair of vertices a and b, such that neither a nor b is contained

in an empty square.
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Assumption 2. The edge-length distance from a to b is at least 3.

Assumption 3. N− (a∪ b) contains a full subcomplex Γ which is the barycentric subdivision

of one dimensional simplicial complex homeomorphic to the K5 graph.

Remark 2. We sometimes call Assumption 1 “no-empty-square” assumption on a and b.

Remark 3. Assumption 1 implies that there does not exist a vertex in VN−c \ VLc for c = a, b,

adjacent with two non-adjacent vertices in VLc , where VN−c is the vertex set of N − c and

VL−c is the vertex set of the link of c.

To achieve these assumptions, we provide a special construction of the trangulation.

4.2 Construction of the triangulation

Lemma 4.2.1. There exists a (many) triangulation of a closed orientable surface of genus

≥ 1 such that the above assumptions are satisfied.

Proof. We start with a triangulation Q of a closed orientable surface of genus ≥ 1 containing

a subcomplex Γ0 homeomorphic to K5, see [16, 17]. Let Qδ be the Dranishnikov subdivision

of Q (see Figure 4.1 and [7, 12]).

Figure 4.1: Dranishnikov subdivision of a 2-simplex.
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Then, by Danieski’s Lemma 4.6 in [7], Qδ is flag no-squares, and Γδ (which is the

Dranishnikov subdivision of Γ; and since each side of 2-simplex in Q is barycentrically divided

in the Dranishnikov subdivision, Γδ is the same as the barycentric subdivision of Γ, that is

Γ
′
0) is a full subcomplex of Qδ, as is every subcomplex of Γδ.

Next let σa, σb, and σc be pairwise disjoint 2-simplexes from Q, and they are disjoint

from K5. Replace σδc with the “poison pill” triangulation of σδc (see Figure 4.2), leaving the

remaining simplices of Qδ intact. Call this new simplicial complex N . It contains a single

empty square that lies in σ̊c. From each of σa and σb, choose a single interior vertex of σδa and

σδb and denote these vertices by a and b, respectively. Each of their star neighborhoods Ea

and Eb is full in N , as are their links (each of which is a pentagon). So too are N − a,N − b,

and N − (a ∪ b). Furthermore, there are no squares in N containing a or b, and Γ
′
0 is full in

N − (a ∪ b). To fit the above notation, we may let Γ
′
0 be denoted by Γ.

Figure 4.2: “Poison pill” subdivision.

Remark 4. In Figure 4.2, “Poison pill” contains a single empty square.
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Chapter 5

More properties of Davis complex and

Coxeter group

In this chapter, we investigate some new properties of Davis complex ΣN and its visual bound-

ary under the “no-empty-square” assumption of triangulation in Chapter 4 (see Assumption

1). More precisely, we prove the disjointness of Pontryagin disks (see Proposition 5.2.1),

which will be used to prove the no local cut point property of the visual boundary ∂∞ΣN0

(see Chapter 8). We also develop a special property of the Coxeter groups WN which plays an

important role to prove the retraction property of geodesic segments (see Proposition 6.1.2).

5.1 Disjointness in the Davis complex

We introduce notations which will be used in this chapter. Let a represent a special vertex in

the triangulation (see Chapter 4 Assumption 1).

• A word g ends in v if there exists a reduced representation of g which ends in v; we

also call this v as an ending of g. Similarly, we can define g begins in v, see [28].

• H+
a :=

⋃
h

{hK : `(ah) < `(h)}, H−a :=
⋃
h

{hK : `(ah) > `(h)}.
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• ha :=
⋃

g∈WLa

gPa, Pa is the panel with respect to a, and ha is sometimes called a wall.

Note ha = H+
a ∩H−a .

Remark 5. Note ∂∞ΣN = ∂∞H
+
a

⋃
∂∞ha

∂∞H
−
a , and ∂∞ha = S1 which separates ∂∞ΣN into

two homeomorphic parts, and they are Pontryagin disks, see [9].

We also need a special transversal. In the following lemma, let (W,V ) be a right angled

Coxeter system.

Lemma 5.1.1. ([32]) Let T ⊆ S be a subset and suppose w is a minimal length element

in the left coset wWT . Then any w′ ∈ wWT can be written as w′ = wa′ where a′ ∈ WT and

`(w′) = `(w) + `(a′). Also wWT has a unique minimal length element.

Based on Lemma 5.1.1, we introduce the special transversal

• TN,a := {g′, g′ is the minimum length element in coset gWLa}.

• T+
N,a := {g ∈ TN,a | `(ga) > `(g)}.

Now we turn to prove some basic properties of Davis complex. Firstly, we observe a pair

of inclusion relations.

Lemma 5.1.2. Assume g1 6= g2, gi ∈ T+
N,a, i = 1, 2 i.e. gi, i = 1, 2 does not end in a, then we

have the following.

1. If g−1
1 g2 ends in a, then g1H

+
a ⊆ g2H

+
a .

2. If g−1
1 g2 begins in a, then g2H

+
a ⊆ g1H

+
a .

Proof. Part 1: Assume g−1
1 g2 = ha which is a reduced representation. Let h ∈ WN , then

g−1
2 g1 = ah−1, i.e. g1 = g2ah

−1. Since g2 ∈ T+
N,a, no letter in h−1 can cancel a letter of g2 for

the element in VN\(VLa ∪ a) do not commute with a and the elements in VLa can not reduce

g2. Thus g1H
+
a ⊆ g2H

+
a .

Part 2: Assume g−1
1 g2 = ah, h ∈ WN , then g2 = g1ah. Repeating the same argument as

above in part 1, we can easily obtain g2H
+
a ⊆ g1H

+
a .
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The next lemma will be needed shortly in the proof of Lemma 5.2.4.

Lemma 5.1.3. Assume g1 6= g2, gi ∈ T+
N,a, i = 1, 2 and if g−1

1 g2 does not begin or end in a,

then g1H
+
a ∩ g2H

+
a = ∅.

Proof. Suppose g1(w1, x) = g2(w2, x) = (w, x) with wiK ⊆ H+
a , i = 1, 2, i.e. g1w1 = g2w2 =

w, and w1 = g−1
1 g2w2. See Figure 5.1. Note w2K ⊆ H+

a , i.e., w2 has a reduced representation

(w1, x)

(w2, x)

(w, x)

g1

g2

Figure 5.1: g1H
+
a ∩ g2H

+
a = ∅.

ah. g−1
1 g2 has a reduced representation which contains a generator v ∈ VN\(VLa ∪ a) since

gi ∈ T+
N,a and g−1

1 g2 does not begin or end in a, with the reduced representation ah where

h ∈ WN . So g−1
1 g2w2 takes the form u1vu2ah with u1vu2 as a reduced representation of g−1

1 g2

and v ∈ VN\(VLa ∪ a), where u1 and u2 may be empty words. Since g−1
1 g2 does not end in a,

the beginning a in w2 can not be cancelled, which in turn implies the v in u1vu2 can not be

cancelled since a and v do not commute. (it can at most be cancelled by a, v in h, but that

is impossible.) Further reductions are possible for the v′is, vi ∈ VLa , i.e. there is a letter vi in

both u1vu2 and ah, and they cancel each other.

After these reductions, we may suppose g−1
1 g2w2 = ũ1vũ2ah̃ which is reduced.

Claim 1. ag−1
1 g2w2 = aũ1vũ2ah̃ is a reduced representation of g−1

1 g2w2.

Proof of Claim 1. Since g−1
1 g2 does not begin in a, and a does not commute with
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v, the leftmost a in the above representation of ag−1
1 g2w2 can not be cancelled. Thus the

representation aũ1vũ2ah̃ is reduced.

By Claim 1, `(ag−1
1 g2w2) > `(g−1

1 g2w2), i.e. w1K ⊆ H−a where w1 = g−1
1 g2w2, which

implies w1K ⊆ H+
a ∩ H−a = ha. Similarly, we have w2K ⊆ ha. But this implies that

g−1
1 g2 ∈ WLa , contradicting the fact that gi ∈ TN,a.

5.2 Disjointness in the visual boundary

Now we are ready to prove the disjointness of Pontryagin disk, see Proposition 5.2.1 below,

which will be applied to prove the no local cut point property of the visual boundary, see

Chapter 8. Our aim in this section is to prove the following proposition in ∂∞ΣN .

Proposition 5.2.1. Assume g1 6= g2, gi ∈ T+
N,a, i = 1, 2 and g−1

1 g2 does not begin or end in a,

then ∂∞(g1H
+
a ) ∩ ∂∞(g2H

+
a ) = ∅.

Remark 6. ∂∞(giH
+
a ), i = 1, 2 are Pontryagin disks.

Proof. Proposition 5.2.1 can be split into several lemmas as below, i.e., its proof is a

combination of Lemma 5.2.4, Lemma 5.2.5, and Lemma 5.2.7.

Before we prove those lemmas, we make a preparation.

Lemma 5.2.2. For any ξ ∈ ∂∞(gH+
a )\∂∞(gha), g ∈ T+

N,a, the representative of ξ emanating

from x0 must intersect gha.

Proof. Note gha separates ∑
N into two components [33]. Let γ1 be the representative of ξ

emanating from x0, see Figure 5.2. If γ1 ∩ gha = ∅, then γ1 must lie in gH−a . Pick y0 ∈ gha,

let γ2 be the representative of ξ emanating from y0, then γ2 must contain a point p lying in

gH+
a \gha since ξ ∈ ∂∞(gH+

a )\∂∞(gha) and it lies in gH+
a . Since gH−a is convex, y0 ∈ gH−a ,

we also have a representative γ3 of ξ emanating from y0. Note γ3 must lie in gH−a because

of the convexity of gH−a . But both γ2 and γ3 are emanating from y0, they should be the
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x0

γ

γ1

y0
y

γ2

γ3

gha

p
p1q

γ′2

Figure 5.2: Rays intersect the wall gha.

same line since ΣN is CAT(0) space. However, gH+
a \gha 3 p lies on γ2 but not on γ3, a

contradiction. So γ1 must intersect gha.

Corollary 5.2.3. With the same assumption as in Lemma 5.2.2, there exists a q ∈ gH+
a \gha

which lies in γ and γ\[x0, q) ⊆ gH+
a \gha.

Proof. Otherwise, γ ⊆ gH−a . Let γ′2 be the representative of ξ emanating from y, which must

contain a point p1 ∈ gH+
a \gha since ξ ∈ ∂∞(gH+

a )\∂∞(gha).

Denote γ′ := γ\[x0, y), then γ′ represents ξ emanating from y, so γ′ = γ′2, which implies

q ∈ γ′ ⊆ γ.

Since gha is convex, γ\[x0, q) ⊆ gH+
a \gha.

Now we turn to prove the interiors of ∂∞(giH
+
a ) do not intersect.

Lemma 5.2.4. ∀ξi ∈ ∂∞(giH
+
a )\∂∞(giha), i = 1, 2, we have ξ1 6= ξ2.

Proof. Let γi, i = 1, 2 be the representative of ξi emamating from x0, see Figure 5.3. By

Lemma 5.1.3, g2H
+
a ⊆ g1H

−
a . Note x0 ∈ g1H

−
a , we have γ2 ⊆ g1H

−
a ; however, by Corollary

5.2.3, γ1 contains a point lying in g1H
+
a \g1ha, thus γ1 6= γ2, i.e. ξ1 6= ξ2.

Similarly, we also have
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x0

γ1

γ2

g1H
+
a

g2H
+
a

Figure 5.3: The interiors of ∂∞(giH
+
a ) do not intersect.

Lemma 5.2.5. If ξ1 ∈ ∂∞(g1H
+
a )\∂∞(g1ha) and ξ2 ∈ ∂∞(g2ha), then we have ξ1 6= ξ2.

Proof. Let γi, i = 1, 2 be the representative of ξi emamating from x0, see Figure 5.4.

x0

γ1

γ2

g1H
+
a

g2H
+
a

Figure 5.4: The boundary of ∂∞(g2H
+
a ) does not intersect with the interior of ∂∞(g1H

+
a ).

By Lemma 5.1.3, g2H
+
a ⊆ g1H

−
a . Note x0 ∈ g1H

−
a , g2ha ⊆ g2H

+
a , and g1H

−
a is convex, we

have γ2 ⊆ g1H
−
a ; however, by Corollary 5.2.3, γ1 contains a point lying in g1H

+
a \g1ha, thus

γ1 6= γ2, i.e. ξ1 6= ξ2.

By the completely same process as in Lemma 5.2.5, the following corollary is immediate.

Corollary 5.2.6. If ξ2 ∈ ∂∞(g2H
+
a )\∂∞(g2ha) and ξ1 ∈ ∂∞(g1ha), then we have ξ1 6= ξ2.
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Finally, we prove the boundaries of ∂∞(giha) do not intersect.

Lemma 5.2.7. Assume g1 6= g2, gi ∈ T+
N,a, i = 1, 2 and g−1

1 g2 does not begin or end in a, then

∂∞(g1ha) ∩ ∂∞(g2ha) = ∅.

Proof. Recall La is the link of a; WLa is the group generated by the vertices of La. ∀ξi ∈

∂∞(giH
+
a ), i = 1, 2, there exists a unique geodesic line γi emanating from gix0, which lies in

giWLaK, choose γi(j) such that γi(j) ∈ gihijK,hij ∈ WLa , and `(hij)→∞ as j →∞.

We aim at proving ξ1 6= ξ2, i.e. to prove the Hausdorff distance dH(r1, r2) ([5] page 70) is

unbounded, it is sufficient to prove

`
(
(g1h1j)

−1g2h2j

)
→∞, as j →∞. (5.2.1)

Note that (g1h1j)
−1g2h2j = h−1

1j g
−1
1 g2h2j, since g1 6= g2, g

−1
1 g2 /∈ WLa , which implies every

reduced representation of g−1
1 g2 contains some element in VN0\(VLa∪a), say v3. By Assumption

1 in Chapter 4, v3 is adjacent to at most two vertices from La. Moreover, if there are two

such vertices, then they are adjacent, say v1 and v2.

Suppose h−1
1j g

−1
1 g2h2j takes the form of h−1

1j w1v3w2h2j with w1v3w2 as a reduced represen-

tation of g−1
1 g2 (w1 and w2 may be the empty word).

After the cancellation between h−1
1j and w1, w2 and h2j, we can write h−1

1j g
−1
1 g2h2j as

h̃−1
1j w̃1v3w̃2h̃2j with h̃−1

1j w̃1 and w̃2h̃2j are reduced.

Further reduction are possible only if there is a reduced representation for w̃2h̃2j beginning

with v1 or v2, which can lead to at most two additional cancellations since w̃2h̃2j is reduced.

Note

`(h̃−1
1j w̃1) ≥ `(h1j)− `(w1) and `(w̃2h̃2j) ≥ `(h2j)− `(w2),

we have
`(h−1

1j g
−1
1 g2h2j) = `(h̃−1

1j w̃1v3w̃2h̃2j)

≥ `(h̃−1
1j w̃1) + `(w̃2h̃2j) + 1− 2 · 2

≥ `(h−1
1j )− `(w1) + `(h2j)− `(w2)− 3→∞,

(5.2.2)
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as j →∞ since `(wi) is finite (only depends on g1 and g2).

5.3 Special property of Coxeter groups

In this section, we assume Assumption 1 holds for vertex a defined in Chapter 4. The

following proposition will be used to prove a nice geodesic retraction property, see Proposition

6.1.2 in Chapter 6.

Let us recall In(g) := {v ∈ VN | `(gv) < `(g)}.

Proposition 5.3.1. Suppose g ∈ T+
N,a, h ∈ WLa , gh is reduced, i.e., `(gh) = `(g) + `(h), and

`(h) ≥ 3, then In(gh) ⊆ VLa .

Remark 7. Since we impose the same assumption on b as on a, this proposition also holds for

b.

Proof. Obviously, a /∈ In(gh) because `(ga) > `(g). Since g ∈ T+
N,a, g ends in w ∈ VN−a\VLa ,

and h can be expressed by the vertices only from La, gh is reduced.

Case 1: h can be represented by a reduced word involving only two generators from VLa .

In this case, h takes the form vivjvivj · · · , where vi and vj do not commute, and vi 6= vj.

Claim 2. w ∈ VN−a\VLa ⇒ w /∈ In(gh).

Proof of Claim 2. Otherwise, if `(ghw) < `(gh), then w must commute with vi and vj,

a contradiction to Assumption 1.

Case 2: h can be represented by a reduced word involving more than two generators

from VLa .

In this case h = v1v2v3 · · · vl, where {v1, · · · , vl} contains three distinct elements , say

vi, vj, and vk.

Claim 3. w1 ∈ VN−a\VLa ⇒ w1 /∈ In(gh).
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Proof of Claim 3. Otherwise, if `(ghw1) < `(gh), this implies w1 can commute with

all of v′ms, but by Assumption 1, vi must commute with each other, {w1, vi, vj, vk} would

constitute a 3-simplex in N, contracting the fact that the trangulation is 2-dimensional.

If h contains more than two different vertices, say h = v1v2v3 · · · , v1, v2 and v3 are different,

then In(gh) does not contain any vertex in VN−a; otherwise if there exists w1 ∈ In(gh), i.e.

`(ghw1) < `(gh), then w1 can cancel some w1 in g (h does not contain any vertex in VN−a),

this implies w1 can commute with all of vi, i = 1, 2, 3, but by Assumption 1, vi, i = 1, 2, 3

must be adjacent to each other, i.e. they commute pairwise; however, (w1, v1, v2, v3) would

constitute a 3-simplex, which contradicts the fact that the nerve is 2-dimensional.

Remark 8. Since we impose the same assumption on b as on a, all of the properties in this

chapter holds for b as well.
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Chapter 6

Nullity and density

In this chapter, we aim at deriving nice nullity and density properties, i.e., {∂∞(ĝH+
a )}ĝ∈TN0,a

is null in ∂∞ΣN and {∂∞(ĝH+
b ) ∩ ∂∞ΣN0}ĝ∈T+

N0,b
is dense in ∂∞ΣN0 . These properties play

a crucial role in proving the nonplanar and no local cut point properties of ∂∞ΣN0 . In

particualr, the nullity property is derived from a nice retraction property of geodesic segment,

which is based on the fact [p, x0] intersects the mirrors gPv of gK with some v ∈ In(g), and

“no-empty-square” assumption on special vertices (see Assumption 1 in Chapter 4). The

density property can be deduced similarly.

6.1 Properties of geodesic segments

In this subsection, we need the following notations.

• hvi :=
⋃

g∈WLvi

gPvi , where Lvi is the link of vi, hvi is the fixed set of the reflection vi

viewed as an element of WN , it is sometimes called a wall. The wall separates ΣN

into two components, denote the closure of the component without the fundamental

chamber by H+
vi

and the component containing the fundamental chamber by H−vi .

• In(g) := {v ∈ VN : `(gv) < `(g)}.

First of all, we would like to prove a special geometric property of geodesic segments
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which is useful to establish the nullity and density properties. Denote by [p, x0] the geodesic

segment (with CAT(0) path length metric) starting at p and ending at x0 (unique path).

Proposition 6.1.1. For any point p ∈ gK, [p, x0] must intersect
⋃

v∈In(g)

gPv.

Proof. We split our proof into three cases.

Case 1. p ∈ gPvi for some vi ∈ In(g), we are done.

Case 2. p ∈ gPvkj \
⋃

vi∈In(g)

gPvi , vkj ∈ Out(g), 1 ≤ j ≤ n.

In this case, p can only lie in the chambers g̃K with g̃ ∈ gWV , where WV is generated by

V = {vk1 , · · · , vkn}.

∀y ∈ g̃K\gK, g̃ ∈ g(WV \{e}), there exists a vki , 1 ≤ i ≤ n, such that y lies in the side of

the wall ghvki without the fundamental chamber. And [p, x0] is a geodesic segment which

can not across ghvki twice (see [14], since ghvki is convex and ΣN is CAT (0) space). Thus

[p, x0]
⋂

(g̃K\gK) = ∅. (6.1.1)

Let [p, x0] =
⋃
i=1

Si, each Si is a maximal subsegment of [p, x0] lies in a single cube of a

chamber.

Now we have S1

⋂
(g̃K\gK) = ∅ by (6.1.1). But S1 should lie in some ĝK with ĝK ∈ gWv,

so S1 ⊆ gK.

Denote j := min{i : Si\gK 6= ∅ but Si−1\gK = ∅}, j exists since each cube can only

contain one segment and each chamber contains finitely many cubes.

Let Q := Sj ∩ Sj−1, then Q ∈ gPvi for some Vi ∈ In(g).

Case 3. p ∈ gK̊, i.e., p lies in the interior of gK. Note gN separates ΣN , so ∀p ∈

gK, [p, x0] ∩ gN 6= ∅, then Case 3 is reduced to Case 1 and Case 2.

Thus we complete the proof of this proposition.

Now we are devoted to proving the following property: ∀p ∈ gK, g ∈ ĝWLb , ĝ ∈ T+
N0,b

, p

retracts to some point around ĝK, see Proposition 6.1.2.
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Let

G1,ĝ = {g ∈ ĝWLb | `(ĝ−1g) ≤ 2}, G2,ĝ = ĝWLb \G1,ĝ,

where WLb is subgroup generated by VLb , ĝ is the minimum length element (word metric) in

a coset ĝWLb for WN0 .

Proposition 6.1.2. Assume Assumption 1 in Chapter 4 holds, then ∀p ∈ gK, g ∈ G2,ĝ, we

have [p, x0] ∩G1,ĝK 6= ∅.

Proof. Case 1: For g ∈ G2 with `(ĝ−1g) ≥ 5.

Note gPvi = (gvi)Pvi , from Proposition 6.1.1, ∀p ∈ gK, [p, x0] ∩ (gvi)K 6= ∅, for some

vi ∈ In(g) ⊆ VLb with gvi ∈ G2 (by Proposition 5.3.1 and Remark 8).

Note `(gviĝ−1) ≥ 4, by Proposition 5.3.1, In(gvi) ⊆ VLb ; then for some vj ∈ In(gvi),

[p, x0] ∩ (gvivj)K 6= ∅ (by Proposition 6.1.1) with gvivj ∈ G2.

Since `(ĝ−1gvivj) < `(ĝ−1gvi) < `(ĝ−1g), i.e., `(ĝ−1g) with g ∈ G2 is decreasing, induc-

tively applying Proposition 6.1.1 and Proposition 5.3.1 on the length `(ĝ−1g) completes the

proof.

Case 2: For g ∈ G2 with `(ĝ−1g) ≤ 4.

Repeating the above process in two steps is enough.

Remark 9. The propositions above hold for a vertex as well since we impose the same

assumptions as b vertex.

6.2 Nullity property

With the above preparation, we are ready to prove {∂∞(ĝH+
a )}ĝ∈TN0,a

is null in ∂∞ΣN and

{∂∞(ĝH+
b ) ∩ ∂∞ΣN0}ĝ∈T+

N0,b
is dense in ∂∞ΣN0 , which will be used to prove the nonplanar

property in Chapter 7.

Before we prove the nullity property above, we introduce notations and definitions needed

in this section.
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• ∀ξ ∈ ∂∞ΣN , let γξ represent the ray for ξ based at x0, or simply γ if no confusion arises.

• V (γ, n) =
{
β ∈ ∂∞X | d(β(n), γ(n)) < 1

n

}
.

• Πδ(ξ) : the projection of ξ onto ∂B(x0, δ), Πδ : ∂∞ΣN −→ ∂B(x0, δ).

• UΠδ(ξ) : a neighborhood of Πδ(ξ) in ∂B(x0, δ).

• WLbK
⋂

(bWLb)K = hb; (gWLb)K
⋂

(gbWLb)K = ghb.

• Denote TN0,b := {g′ : g′ is the unique minimum length element in coset gWLb of WN0};

T+
N0,b

:= {g ∈ TN0,b : `(gb) > `(g)}.

Fact 1. Let

G̃1,ĝ = {g ∈ WN0 | `(ĝ−1g) ≤ 10}, G̃1,ĝK =
⋃

g∈G̃1,ĝ

gK,

then there exists an A > 0, which is independent of ĝ, such that diam(G̃1,ĝK) ≤ A.

Lemma 6.2.1. Let g1 ∈ TN0,b, t ∈ WLb , and g1t is reduced, s ∈ VN0 and does not commute

with any generator of WLb , then g1ts ∈ T+
N0,b

, and g1ts is reduced.

Proof. Note g1t is reduced, by assumption, s can not cancel any s (if there is any) in g1t, so

g1ts is reduced. Also, b does not commute with s, thus g1ts ∈ T+
N0,b

.

Proposition 6.2.2. ∀n > 0, ξ ∈ ∂∞ΣN0 and V (ξ, n) ⊆ ∂∞ΣN , there exists a ĝ ∈ T+
N0,b

such

that ∂∞(ĝH+
b ) ⊆ V (ξ, n).

Proof. Note ∀x ∈ ΣN0 , ∃g ∈ TN0,b such that x ∈ (gWLb)K, we have ∀γ ∈ ∂∞ΣN0 ,∀R > 0,

∃h ∈ WN0 , such that γ(R) ∈ hK and ∃g1 ∈ TN0,b, such that h ∈ g1WLb , so γ(R) ∈ (g1WLb)K.

Applying this to ξ, let ξ(R) ∈ hK for some h ∈ WN0 , we can rewrite h = g1t, t ∈ WLb , g1 ∈

TN0,b (If t is trivial, then h = g1 ). Take ĝ = g1ts, where s ∈ VN0 does not commute with

any vertex in Lb, see Figure 6.1, by Lemma 6.2.1, ĝ ∈ T+
N0,b

. We can choose R sufficiently

large such that diam(Πn(G̃1,ĝK)) < 1
2n

by Lemma 2.1.2. Note ξ(n) ∈ Πn(G̃1,ĝK), we have
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retraction image of
G̃1,ĝK, ĝ = g1ts

x0

∂B(x0, n)

ξ

g1H
+
b g1tsH

+
b

g1tK g1tsK

Figure 6.1: G̃1,ĝK retracts onto ∂B(x0, n) and Πn(G̃1,ĝK) ⊆ B 1
n
(ξ(n)).

Πn(G̃1,ĝK) ⊆ B 1
n
(ξ(n)). Since G1,ĝK ⊆ G̃1,ĝK, we have Πn(G1,ĝK) ⊆ Πn(G̃1,ĝK). Note

∀η ∈ ∂∞(ĝH+
b ), γη

⋂
G1,ĝK 6= ∅, we deduce that each ray based at x0 that intersects G1,ĝK

is contained in V (ξ, n), thus completes the proof.

Now the following corollary is immediate since V (ξ, n) is a basis of ∂∞ΣN .

Corollary 6.2.3. ∀ξ ∈ ∂∞ΣN0 , let U be a neighborhood of ξ in ∂∞ΣN , then there exists a

ĝ ∈ T+
N0,b

such that ∂∞(ĝH+
b ) ⊆ U.

Then we can further deduce the density property.
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Corollary 6.2.4. (Density) {∂∞(ĝH+
b ) ∩ ∂∞ΣN0}ĝ∈TN0,b

is dense in ∂∞ΣN0 , i.e.,

∀ Û ⊆ ∂∞ΣN0 ,∃ ĝ s.t. ∂∞(ĝH+
b ) ∩ ∂∞ΣN0 ⊆ Û .

Proof. ∀ Û ⊆ ∂∞ΣN0 ,∃ U ⊆ ∂∞ΣN s.t. Û = U ∩ ∂∞ΣN0 by the subspace topology.

By Corollary 6.2.3, ∃ ĝ ∈ T+
N0,b

s.t. ∂∞(ĝH+
b ) ∩ ∂∞ΣN0 ⊆ U ∩ ∂∞ΣN0 = Û .

The above argument can be applied to prove the nullity property. Let us recall a basic

fact about the nullity.

Recall that a family of subsets Z is null in a metric space X if for every ε > 0 the set

{Z ∈ Z | diam Z > ε} is finite.

Lemma 6.2.5. A collection {An}∞n=1 of subsets of a compact metric space X is a null

sequence if for any ε > 0 and open cover Uε = {B(x, ε
2
)} of X, ∃M(ε) > 0 s.t. each An is

contained in some Uε if n > M.

Proof. This follows immediately from the definition of nullity.

Proposition 6.2.6. {∂∞(gH+
a )}g∈TN0,a

is null.

Proof. By Lemma 2.1.1, for Uε as in Lemma 6.2.5, there exists an n0(ε) such that V (ξ, n0)

is contained in some element of Uε for any ξ ∈ ∂∞ΣN . Note that we impose the same

assumption on a as on b, by the same process as in Proposition 6.2.2, we have, for g ∈ TN0,a

with d(g, 1) sufficiently large such that ∀ξ ∈ ∂∞(gH+
a ), ∂∞(gH+

a ) ⊆ V (ξ, n0), which completes

the proof.
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Chapter 7

Locally nonplanar property

With the density property obtained in last chapter, we are ready to prove the locally

nonplanar property. More precisely, we are going to prove the statement: for any ξ ∈ ∂∞ΣN0 ,

and any neighborhood Û of ξ, there exists a Ũj and a nonplanar graph Gnon such that

Gnon ⊆ ∂∞Ũj∩∂∞ΣN0 ⊆ Û . Firstly, by the triangulation, especially Assumption 3 in Chapter

4, and Danielski’s Theorem 3.4 in [7], we can find a nonplanar graph Gnon ⊆ ∂∞ΣN1 . Secondly,

since ∂∞ΣN1 ⊆ ∂∞ΣN , and there are copies of Gnon in ∂∞Ũj for any j; thanks to the density

property, we can derive that there exists a Gnon in any open set Û ⊆ ∂∞ΣN0 , i.e., locally

nonplanar property.

7.1 Notations

We need the following notations.

• N0 := N − a,N1 := N − (a ∪ b).

• TN0,b : a special transversal of WN0 for WLb , i.e.

TN0,b := {g′ : g′ is the unique minimum length element in coset gWLb}.

T+
N0,b

:= {g ∈ Ta | `(ga) > `(g)}.

• gH+
a : the translation of H+

a by g ∈ TN0,a, where
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TN0,a := {g′ : g′ is the unique minimum length element in a coset gWLa}.

• Ui := giH
+
a , gi ∈ TN0,a; Ũj := gjH

+
b , gj ∈ T+

N0,b
(see Figure 7.1, Figure 7.2, Figure 7.3,

and Figure 7.4).

7.2 Proof of the locally nonplanar property

We need the following lemma.

Lemma 7.2.1. ([7, 19]) The visual boundary of the Davis complex for the barycentric

subdivision of one dimensional simplicial complex homeomorphic to the K5 graph contains a

nonplanar graph.

Remark 10. This lemma is a simple application of Theorem 3.4 in [7].

To show the locally nonplanar property, it suffices to prove the following proposition.

Proposition 7.2.2. ∀ξ ∈ ∂∞ΣN0 , and any neighborhood Û of ξ, Û ⊆ ∂∞ΣN0 , there exists a

nonplanar graph Gnon ⊆ Û .

Proof. By Lemma 7.2.1 and Assumption 3 in Chapter 4, i.e., the subdivision of K5 is full,

there exists a nonplanar graph Gnon ⊆ ∂∞ΣN1 (see Figure 7.3, the green star in the boundary

represents Gnon); since each Ũj contains a copy of ΣN1 by the following Lemma 7.2.3, (see

Figure 7.2 and Figure 7.4, the yellow part in Ũj is ΣN1), we also have a copy of Gnon in

∂∞Ũj for each j and Gnon ⊆ ∂∞ΣN0 . By the subspace topology, there exists a U such that

Û = U ∩ ∂∞ΣN0 . By Corollary 6.2.4, it holds (∂∞Ũj) ∩ ∂∞ΣN0 ⊆ Û . Thus Gnon ⊆ Û .

The following lemma indicates the copy of ΣN1 in Ũj for each j would miss any Ui.

Lemma 7.2.3. ∀h ∈ WN1 , g1 ∈ T+
N0,b

, g ∈ TN0,a, (g1bg
−1
1 )h ⊆ gH−a .

Proof. Note h, g, g1 do not contain the element a, however, any chamber lying in gH+
a must

take a (reduced) form gaw, where g ∈ TN0,a and w ∈ WN , thus (g1bg
−1
1 )h ⊆ gH−a .
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Ũj

Ui

Ui

Figure 7.1: Davis complex ΣN1 : 2-dimensional.

Remark 11. In Figure 7.1, the shaded part is the Davis complex ΣN1 , with the interiors of
red and blue regions Ui and Ũj removed.
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Ũj

Ui

Ui

Figure 7.2: Davis complex ΣN0 : 2-dimensional.

Remark 12. The shaded part is ΣN0 , with all the red regions removed; in particular the red
half-space in blue regions also needs to be removed. And ΣN1 ⊆ ΣN0 .
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Ũj Ui

Figure 7.3: Davis complex ΣN1 : 3-dimensional.

Remark 13. In Figure 7.3, the purple star represents the Gnon graph lying in N1 and the
green star represents a nonplanar graph Gnon lying in ∂∞ΣN1 . And the red and the blue
regions are removed.
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Ũj

Ui

Figure 7.4: Davis complex ΣN0 : 3-dimensional.

Remark 14. In Figure 7.4, all the red regions are removed, particularly, the red regions in the
blue regions also need to be removed.

41



Chapter 8

No local cut point

In this chapter, we aim to prove ∂∞ΣN0 has no local cut point, i.e., for any neighborhood

U of p0, there exists a neighborhood V ′ of p0 such that V ′ ⊆ U and each pair (q, r) in
(
V ′\{p0}

)
\
( ∞⋃
k=1

B̊k

)
can be connected by a path l in

(
U\{p0}

)
\
( ∞⋃
k=1

B̊k

)
, where Bk is defined

shortly.

Our starting point is that the Pontryagin surface P is locally path connected and has

no local cut point. From this fact, we can always find a path l in P = ∂∞ΣN connecting

(q, r), but l may go into the interiors of B′ks (see Figure 8.1) which are not in ∂∞ΣN0 (We

want to prove ∂∞ΣN0 has no local cut point). To do so, our strategy is to push the parts in

the Pontryagin disks B′ks to their boundaries (in our case they are circles). The process is

described in Figure 8.4 and Figure 8.5. In one aspect, we should not push the path out of

U, which can be guaranteed by Lemma 8.2.1. In another aspect, we need the “new path” to

be continuous, especially when the path goes into and out of the B′ks infinitely many times

(oscillations). In order to prove this, we need the oscillation to be null, i.e., {Cpq} is null (see

Proposition 8.1.2), also the Pontryagin disk to be null which was derived in Chapter 6.

We split the proof into two cases, case 1: p0 /∈ Bk0 for any k0 and case 2: p0 ∈ Bk0 for

some k0. For case 2, we need to deal with the special Pontryagin disk Bk0 where p0 lies in.

To proceed, we need the following notations.
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1. Let N be a flag triangulation of a closed surface, and denote N0 = N − a.

2. Let f : S1 → S be a homeomorphism, S1 is the standard circle in R2. See Figure 8.2.

For any p, q ∈ S, denote by p′ = f−1(p), q′ = f−1(q), Ap′q′ ∪Bp′q′ = S1, Ap′q′ ∩Bp′q′ =

{p′, q′}. Let Ap′q′ denote the shorter arc in S1 (if the arcs are of the same length, pick

one of them), Apq = f(Ap′q′) is the homeomorphic image of Ap′q′ , i.e. Apq ≈ Ap′q′ .

3. Denote the path segment between p and q in the Pontryagin disks B′ks by Ipq.

4. Denote Cpq := Ipq ∪ Apq. See Figure 8.1.

5. Since the cardinality ]TN0,a is countably many, we can enumerate the Pontryagin disks

removed as {Bk}∞k=1;

Bk := ∂∞(gkH
+
a ), gk ∈ TN0,a; B̊k := ∂∞(gkH

+
a )\∂∞(gkha). By proposition 5.2.1 B′ks are

disjoint.

• •
p

q

Apq

Ipq

Figure 8.1: The path goes into and out of Pontryagin disk.

8.1 Cpq is null

In this section, we prove Cpq is null which is useful to verify that the “new path” after infinitely

many times adjustments is continuous.
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The proof of nullity of Cpq bases on that {Apq} and {Ipq} are both null. For {Apq}, we

need the uniform continuity.

Fact 2. f is continuous, and S1 is compact, thus f is uniformly continuous, i.e. for any ε > 0,

there exists a δ > 0, such that for every pair of points y0, y1 ∈ S1 with the metric inherited

from R2, dS1(y0, y1) < δ implies dS(f(y0), f(y1)) < ε. So is f−1.

Lemma 8.1.1. For any ε > 0, there exists an ε̃ such that d(p, q) < ε̃ implies diamApq < ε,

where Apq inherits the metric of the visual boundary. In particular, {Apq}p,q is null.

Proof. By the uniform continuity of f, for any ε > 0, there exists a δ > 0, such that

d(x′, y′) < δ =⇒ d(x, y) < ε, (8.1.1)

where x′ = f−1(x), y′ = f−1(y).

S1

−→
f

•

•

q
′

p
′

•
•

p

q

S

Figure 8.2: {Apq}p,q is null.

By the uniform continuity of f−1, for the chosen δ, there is an ε̃ such that

d(p, q) < ε̃ =⇒ d(p′, q′) < δ.
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Note in S1, for any pair of points x′, y′ ∈ Ap′q′ ,

d(x′, y′) ≤ d(p′, q′) < δ.

By (8.1.1) and the arbitrariness of x′ and y′, coupled with the fact that Apq ≈ Ap′q′ , we

deduce diamApq < ε, see Figure 8.2.

Proposition 8.1.2. {Cpq}p,q is a null sequence.

Proof. Note f−1(B̊k) =
∞⋃
i=1

I̊i, where Ii is null. f(∂Ii) ∈ ∂Bk and denote f(∂Ii) by {pi, qi};

denote f(Ii) by Ipq and {Ipq}p,q is null.

Note {Ii} is a null sequence, and {d(p, q)}p,q is null as well, this implies {Ipq}p,q and

{Apq}p,q are both null sequences by the uniform continuity of f and Lemma 8.1.1, thus

{Cpq}p,q is a null sequence.

8.2 Small Bk inclusion

In what follows, we prove that we do not push the path out of U. This can be achieved by

the following observation that for any p0 ∈ ∂∞ΣN0 , and any neighborhood U 3 p0, the B′ks

near p0 with small size will be contained in U, see Figure 8.3. More precisely, we have the

following lemma.

Lemma 8.2.1. For any p0 ∈ U, let δ > 0 such that B(p0, δ) ⊆ U, and V := B(p0,
δ
2
), then

for all B′ks with Bk ∩ V 6= ∅ and diam(Bk) ≤ δ
3
, we have Bk ⊆ U.

Proof. The proof is immediate from the triangle inequality.
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i) diam Bk ≤ δ
3

ii) diam Bi >
δ
3

iii) Bk ⊆ U

p0

V ′

Bk

Bi V
U

Figure 8.3: B′ks with diam(Bk) ≤ δ
3
are included in U.

8.3 p0 is not a local cut point

With the above preparation, now we are ready to prove the no local cut point property. We

split the proof into two cases.

8.3.1 Case 1: p0 ∈ P\
∞⋃
k=1

Bk

Proposition 8.3.1. For any neighborhood U of p0, with p0 /∈ Bk for any k, there exists a

neighborhood V ′ of p0 such that V ′ ⊆ U and each pair (q, r) in
(
V ′\{p0}

)
\
( ∞⋃
k=1

B̊k

)
can be

connected by a path l in
(
U\{p0}

)
\
( ∞⋃
k=1

B̊k

)
.

Proof. We can take a Pontryagin disk V ′ such that p0 ∈ V ′ ⊆ V, and V ′ ∩ Bk = ∅ with

diam(Bk) ≥ δ
3
(The number of B′ks with diam(Bk) ≥ δ

3
is finite since {Bk} is null).

For each pair (q, r) in
(
V ′\{p0}

)
\
( ∞⋃
k=1

B̊k

)
, they can be connected by a path l in V ′ since

V ′ has no local cut point. But l may go into B′ks (the interior of the red ball in Figure 8.4),

which is not in ∂∞ΣN0 .

To achieve our goal, we must push the path segments in B′ks out. More precisely, we

change the path segments from Ipq to Apq. From Lemma 8.1.1, the new path can not go
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p0•
•q

•r

U
V

Figure 8.4: The purple path goes into the Pontryagin disks.

beyond U by the choice of V ′.

Additionally, we need to justify the “new path” after these adjustments to be continuous.

Thanks to the nullity properties of Proposition 8.1.2 and the fact {Bk}∞k=1 is null from

Proposition 6.2.6, we can prove that the “new path” is a real path as shown in Figure 8.5.

Infinitely many oscillations. The most involved situation is that the path goes in and

out of the Pontryagin ball for infinitely many times, we call this phenomenon “oscillation”,

see Figure 8.4

Step 1. Adjust the path in one Pontryagin disk.

Choose a strictly decreasing sequence {δi}∞i=1, i.e. δ1 > δ2 > δ3 > · · · , such that δi → 0

as i→∞.

Since {Cpq}p,q is null, either diam(Cpq) > δ1, or δi+1 < diam(Cpq) ≤ δi; and the number of

oscillations between δi+1 and δi is finite. Denote by g0 the initial path before the adjustment,

for the first stage, change the path segment Ipq in the Pontryagin disk to Apq, where
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p0•
•q

•r

U
V

Figure 8.5: Push the path segments in B′ks out.
Remark 15. After the push, the path would not go beyond U. The green path is the new one
which lies in ∂∞ΣN0 .

diam(Cpq) > δ1, and denote the resulting path by g1. Then at the ith stage change the path

segment Ipq in the Pontryagin disk to Apq with δi+1 < diam(Cpq) ≤ δi, denote the resulting

path by gi; then we could repeat this process forever, and obtain a sequence{gi}∞i=1.

Claim 4. {gi}∞i=1 is a Cauchy sequence.

Proof. For any ε > 0, take an N such that δN < ε (since δi → 0), then for n,m > N, we have

d(gn, gm) ≤ δm+1 < δN < ε.

By Claim 4, we are ready to conclude that the limit of {gi}∞i=1 is a continuous path.

Step 2. Adjust the path in all of the Pontryagin disks.

Now we can use the similar trick as above, choose a strictly decreasing sequence {Ei}∞i=1,

i.e. E1 > E2 > E3 > · · · , such that Ei → 0 as i→∞.

By nullity property, we have {diam(Bk)} is null, either diam(Bk) > E1, or Ei+1 <

diam(Bk) ≤ Ei for some i; and the number of Pontryagin disks with diameter between Ei+1

and Ei is finite.
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Denote by f0 the initial path before the adjustment, for the 1st stage, change the path

segments in the Pontryagin disks with diameter greater than E1 as above; and denote the

resulting path by f1; repeat this process, generally, at the ith stage, we change the path

segments in the Pontryagin disks with Ei+1 < diam(Bk) ≤ Ei, denote the resulting path by

fi, then we obtain a sequence {fi}∞i=1.

Claim 5. {fi}∞i=1 is a Cauchy sequence.

Proof. For any ε > 0, take an N such that EN < ε (since Ei → 0), then for n,m > N, we

have d(fn, fm) ≤ Em+1 < EN < ε.

By Claim 5, there exists a limit f of {fi}∞i=1 and f is a path. Let f be denoted by l′, the

proof is completed.

8.3.2 Case 2: p0 ∈ Bk0 for some k0

q̃•

•r
•p0 V ′

V

U

∂Bk0

Figure 8.6: Case 2: p0 ∈ ∂Bk0 .

Proposition 8.3.2. For any neighborhood U of p0 in P, where p0 ∈ ∂Bk0 for some k0, there

exists a neighborhood V ′ of p0 such that V ′ ⊆ U and each pair (q̃, r) in (V ′\{p0})\(
∞⋃
k=1

B̊k)

can be connected by a path l in (U\{p0})\(
∞⋃
k=1

B̊k).
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Proof. Take V to avoid B′ks with diam(Bk) >
δ
3
(possibly except Bk0) k 6= k0 as in Lemma

8.2.1. Note there exists a map f such that f(Bk0) = P\Bk0 fixing ∂Bk0 . Take a small enough

Pontryagin disk V ′ 3 p0 such that f(V ′) ⊆ V, as shown in Figure 8.6. For any pair of point

(q̃, r) in (V ′\{p0})\(
∞⋃
k=1

B̊k), note V ′ has no local-cut point, ∀p, q ∈ V ′ ∩ S, there is a path l

connecting p and q, such that l ⊆ V ′ and p0 /∈ l. See Figure 8.7.

V ′

q1

p0

q2

p

q

r

q̃

p1
p2

Figure 8.7: Reroute the path l.

Let C = l−1(Bk0) and D = l−1(P\B̊k0) closed subsets of [0, 1] such that C ∩ D = {t |

l(t) ∈ S}.

Define l̃ : [0, 1]→ P by

l̃(t) =





l(t), if t ∈ D,

f ◦ l(t), if t ∈ C.

Denote the modified path by l̃, repeat the process in Proposition 8.3.1 to push the segment

in B′ks with diam(Bk) ≥ δ
3
onto the ∂Bk, denote the new path by l′, this completes the case

2.
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Chapter 9

Other properties of ∂∞ΣN0

Now we turn to verify the other properties of ∂∞ΣN0 .

9.1 Path connected and locally path connected

The following propositions are completely similar repetitions of process to prove the no local

cut point, see Proposition 8.3.1, so we omit the proofs.

Proposition 9.1.1. For any pair (p, q) ∈ P\
( ∞⋃
k=1

B̊k

)
, there exists a path connecting them

in P\
( ∞⋃
k=1

B̊k

)
.

Proposition 9.1.2. For any neighborhood U of p0 in P, where p0 ∈ P\
( ∞⋃
k=1

B̊k

)
, there

exists a neighborhood V ′ of p0 such that V ′ ⊆ U and each pair (q, r) in V ′\
( ∞⋃
k=1

B̊k

)
can be

connected by a path ` in U\
( ∞⋃
k=1

B̊k

)
.

9.2 Visual boundary is 1-dimensional

On the one hand, dim∂∞WN0 = max{n : H̃n(N0) 6= 0 or H̃n(N0\∆) 6= 0 for some simplex ∆ ⊆

N0} (where H̃∗ denotes the reduced cohomology) ( proof of Lemma 2.5 [30]). Since N0

and N0\∆ are both homotopy equivalent to bouquets of circles, we have H̃2(N0) = 0,
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or H̃2(N0\∆) = 0, for any simplex ∆ ⊆ X. , i.e. dim∂∞WN0 ≤ 1. On the other hand,

dim∂∞WN0 ≥ 1 since it contains a subset homeomorphic to the cirlce S1. Thus dim∂∞WN0 =

1.

9.3 Completion of the main theorem

Combining with Proposition 7.2.2, Proposition 8.3.1, and Proposition 8.3.2, we complete the

proof of Theorem 1.1.1.
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Chapter 10

Closing comments and open questions

It is worthy to mention that our methods can be applied to the high dimensional case which

needs to be investigated further. Exploiting the method applied in 2-dimensional case, we can

also get the following theorem which allows us to expand upon the work of Lafont-Tshishiku

[23].

Recall that the homology sphere is a closed manifold with the same homology as Sn; the

homology ball can be obtained by removing a single vertex from a triangulated homology

sphere. A Jakobsche space and a Jakobsche ball are higher dimensional analogues of the

Pontryagin surface and Pontryagin disk respectively. I expect to be able to prove: there exist

infinitely many different Gromov boundaries for hyperbolic aspherical 4-manifold groups.

However, there are numerous questions left unanswered. The following is a special case of

a conjecture due to Świa̧tkowski-Zawiślak [34].

Conjecture 10.0.1. Let K be a flag triangulation of a closed manifold, K0 a subcomplex

obtained by removing a single vertex, and W0 be the Coxeter group with nerve K0, then the

CAT(0) boundary of W is homeomorphic to Xr(K0).

A positive answer to Conjecture 10.0.1 will allow us to solve:

Conjecture 10.0.2. For each homology 3−sphere H3, there exists an aspherical 4−manifold

M4 with boundary such that π1(M4) is hyperbolic and the Gromov boundary of π1(M4) is the
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Sierpinski-Jakobsche space Xr(H3
0 ). (See [34] for a precise definition.)
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