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LIPSCHITZIAN MULTIFUNCTIONS AND A LIPSCHITZIAN INVERSE
MAPPING THEOREM

A.B. LEVY

We introduce a new class of multifunctions whose graphs under certain “kernel inverting” matri-
ces, are locally equal to the graphs of Lipschitzian (single-valued) mappings. We characterize the
existence of Lipschitzian localizations of these multifunctions in terms of a natural condition on
a generalized Jacobian mapping. One corollary to our main result is a Lipschitzian inverse map-
ping theorem for the broad class of “max hypomonotone” multifunctions. We apply our theoretical
results to the sensitivity analysis of solution mappings associated with parameterized optimization
problems. In particular, we obtain new characterizations of the Lipschitzian stability of stationary
points and Karush-Kuhn-Tucker pairs associated with parameterized nonlinear programs.

1. Introduction. A multifunction S : R” = R™ is a mapping that takes points in R”"
to sets in R™. These objects appear throughout variational analysis and optimization, and
understanding when multifunctions reduce to Lipschitzian (single-valued) mappings is a
basic issue in these fields. For instance, to quantify the sensitivity of solutions to a param-
eterized optimization problem, one could determine that the multifunction giving the set of
solutions for each parameter is actually a Lipschitzian mapping. Usually, it is only neces-
sary that a multifunction have a localization that is a Lipschitzian mapping, so we focus our
attention on conditions under which there is a Lipschitzian mapping F : R” — R™ whose
graph agrees with the graph of the multifunction S near a point (X, y) € gph S (gph S denotes
the graph of S and is the set of all pairs (x, y) € R"™ with y € §(x)). Such a mapping F
is called a Lipschitzian localization of S near (X, y).

An object that turns out to be crucial for our study is a generalized derivative called the
strict derivative. The strict derivative D,S(x]y): R" = R™ of § at x for y is defined for
any w € R” to be the set of limit points of difference quotients obtained from sequences
approaching (X, y, w):

D,S(i[5) (w) = {z

Ax" = x,y" € S(x"),y" = y,w’ — w, 7710 with
(" —y")/1" — z for some y* € S(x¥ +7"w")
When the multifunction happens to be a Lipschitzian mapping F : R” — R™ near X, the strict

derivative at x is written as D,F (x) and can be obtained by considering only sequences x”
approaching x:

F(x" v —F(x¥

D*F()E)(w):{zﬁx”—)i,a'”w with "+ r'w) (X)—>z}.
TV

For Lipschitzian mappings F, single-valuedness of the strict derivative mapping D, F(x)
corresponds to the classical notion of strict differentiability (hence the name “strict derivative
mapping”), and for continuously differentiable mappings, the strict derivative coincides with
the Jacobian. The strict derivative has been studied before (e.g. Rockafellar and Wets 1998

or Kummer 1991 where it is called “Thibault’s directional derivative.)”
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There are already at least two different characterizations for the existence of a
Lipschitzian localization of a general multifunction § : R” = R™; namely Levy and Poliquin
1997, Theorem 2.1, and Rockafellar and Wets (1998, Theorem 9.51). The second of these
utilizes the strict derivative mapping, and they both involve a generalized Lipschitzian prop-
erty for multifunctions called “Aubin continuity.” A multifunction S : R" = R™ is Aubin
continuous at (x,y) € gph § if there are bounded neighborhoods X of ¥ and Y of y, as well
as a positive scalar L such that the inclusion

(M SEHNY S SO +L | x'—x"| B,

holds for all x" and x” in X (here B,, denotes the unit ball in R™). It is easy to see that
a single-valued mapping F : R" — R™ is Aubin continuous at (x, F(x)) if and only if F
is Lipschitzian at x. The two characterizations Levy and Poliquin (1997, Theorem 2.1) and
Rockafellar and Wets (1998, Theorem 9.51) are combined in the following theorem.

THEOREM 1.1. (COMBINATION OF LEvY AND PoLIQUIN 1997, THEOREM 2.1, AND
ROCKAFELLAR AND WETS 1998, THEOREM 9.51). For a multifunction S : R" = R™ and a
pair (X,y) € gph S, the following are equivalent:

(a) S has a Lipschitzian localization near (X, ).
(b) S is Aubin continuous at (x,y) with D,S(x|y)(0) = {0}.
(c) S is Aubin continuous at (x,y) and max hypomonotone near (X, y).

The monotonicity property in (c) involves the existence of a maximal monotone linear
perturbation of S. Specifically, a multifunction S : R" = R" is max hypomonotone near
(x,¥) € gph S if there exists a nonnegative multiple r of the identity mapping / : R* — R”
such that the multifunction S+ r/ is maximal monotone in the usual sense near (X, y + rx).
Max hypomonotonicity for multifunctions from one Euclidean space to a different one is
defined in Levy and Poliquin (1997) by trivially extending the multifunction so that it maps
between the same spaces. Max hypomonotonicity is weaker than maximal monotonicity
(which is just max hypomonotonicity with » = 0) and many multifunctions exhibit this prop-
erty. All Lipschitzian mappings are max hypomonotone (cf. Levy and Poliquin 1997 and the
fact that any monotone single-valued mapping is maximal monotone), and many optimality
conditions can be interpreted as finding the zeroes of max hypomonotone multifunctions.
(See Levy and Poliquin 1997 for more on max hypomonotone multifunctions.)

Our aim in the present paper is to show that for a very large class of multifunctions,
Aubin continuity is automatic under the “kernel condition” in (b) on the strict derivative.
The class of multifunctions on which we focus is previously unidentified and consists
of those multifunctions whose graphs are “kernel inverting Lipschitzian manifolds.” This
definition involves the kernel inverting matrices A € R**" which are distinguished by
having invertible n x n submatrices in the upper right and lower left quadrants, and a zero
n X n submatrix in the upper left quadrant. The graph of a multifunction S : R" = R" is a
kernel inverting Lipschitzian manifold near (x,y) € gph S if there exists a neighborhood U
of (X, y) in the graph space R**, and a Lipschitzian mapping F : R" — R”" for which gph SN
U= (A gph F ) NU for some kernel inverting matrix A € R??". This class includes all
Lipschitzian mappings, all max hypomonotone multifunctions, and even all multifunctions
whose inverses are max hypomonotone. Our main theorem has the following statement.

THEOREM 1.2. For a multifunction S : R" = R" and a pair (x,y) € gph S near which
gph S is a kernel inverting Lipschitzian manifold, the following are equivalent:

(a) S has a Lipschitzian localization near (X, y).

(b) D,S(x[y)(0) = {0}.
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This characterization is in some sense the best we can do, as it is not possible to drop
the kernel condition (b) above in favor of the Aubin continuity property. For example,
consider the mapping S : R> = R? whose inverse mapping S~! assigns to a point with polar
coordinates (r, #) the point (r, 26). Clearly, S(0) = 0 but S is double-valued for all points
near 0. In spite of this double-valuedness, S is Aubin continuous at (0, 0) (see Rockafeller
and Wets 1998). As dictated by Theorem 1.2 however, the strict derivative set D, S(0, 0)(0)
does not reduce to the point 0, but in fact equals the whole space R.

Notice also that our characterization in Theorem 1.2 only includes multifunctions S from
one Euclidean space to itself whereas the characterizations recorded in Theorem 1.1 extend
to multifunctions between any Euclidean spaces. Our focus on multifunctions between the
same Euclidean spaces is necessary to obtain our results, and moreover does not necessarily
restrict our application of this result to multifunctions between the same spaces (as we show
in §4).

In §3, we study max hypomonotonicity and show that multifunctions S that are max
hypomonotone themselves, as well as those multifunctions having max hypomonotone
inverses S~!, are both examples of multifunctions for which gphS is a kernel inverting
Lipschitzian manifold. This fact allows us to prove the following Lipschitzian inverse map-
ping theorem for max hypomonotone multifunctions as a corollary to Theorem 1.2.

THEOREM 1.3.  For a multifunction S : R" = R” that is max hypomonotone near (X, y) €
gph S, the following are equivalent:
(a) S~! has a Lipschitzian localization near (¥, X).
(b) 0 € D,S(x]y)(x) only for x =0.

Since any Lipschitzian mapping is necessarily max hypomonotone, our inverse map-
ping theorem is a direct extension of Kummer’s Lipschitzian inverse mapping theorem for
Lipschitzian mappings (Kummer 1991, Theorem 1.1). Kummer’s (1991) Theorem 1.1 says
that the inverse of a Lipschitzian mapping F : R” — R" has a Lipschitzian localization if and
only if 0 € D, F(x)(x) only for x = 0. This result (and consequently our own Theorem 1.3)
is a natural generalization of the classical inverse mapping theorem, since the strict deriva-
tive reduces to the Jacobian when F is differentiable. However, our Lipschitzian inverse
mapping theorem not only extends the classical inverse mapping theorem, but extends it
very broadly, and with many useful consequences that do not follow from Kummer (1991,
Theorem 1.1).

In the final two sections of this paper, we explore some of these consequences as we apply
Theorem 1.3 to analyze the sensitivity of solutions to parameterized nonlinear programs.
We obtain characterizations of the Lipschitzian stability of stationary points as well as
Karush-Kuhn-Tucker pairs associated with the nonlinear programs. The result about the
stationary points is unprecedented, and the result about the KKT pairs is different from
any of the previously available characterizations. Moreover, our method for obtaining the
latter characterization is new and straightforward, involving only the computation of a strict
derivative. Since the theory developed here is quite general, many other applications to
sensitivity analysis in optimization could be made in the same manner, though we will not
pursue these in the present paper.

2. Kernel inverting Lipschitzian manifolds. The kernel inverting matrices A € R>*?"

have the form
_ 104,
a=[a )

for invertible n x n matrices A, and A;. According to this structure, kernel inverting matrices
are always invertible with inverse given by

A1 = | (CATTALAYY) AT
As! 0 |
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In fact, it is easy to see that the kernel inverting matrices are the same as the class of
invertible matrices A € R*"*?" with zero principal n x n submatrix; the invertibility of the
n x n submatrices A, and A; follows from the invertibility of A.

Recall that gph S is a kernel inverting Lipschitzian manifold near (x, y) € gph S if there
exists a Lipschitzian mapping F : R” — R such that nearby (X, ¥) in the graph space, gph S
and A gph F are the same. If this is the situation, and owing to the invertibility of A, gph S
is also an “n-dimensional Lipschitzian manifold near (X, y)” in the sense of Rockafellar
(1985). (See Levy and Rockafellar 1996 for a discussion of these objects.) General n-
dimensional Lipschitzian manifolds represent all the local transformations, smooth in both
directions, of the graphs of Lipschitzian mappings. Kernel inverting Lipschitzian manifolds
are then special cases of n-dimensional Lipschitzian manifolds, where the local transforma-
tions are linear and have the special form A described above. If gph S is an n-dimensional
Lipschitzian manifold, then gph S~! is too since these graph sets are the same under the
invertible linear transformation

jo— |:0 1 ]
=70l

Moreover, the same Lipschitzian mapping can be associated with both § and S~'. This is
not true for kernel inverting Lipschitzian manifolds, as the matrix I does not necessarily
transform one kernel inverting matrix into another. Nevertheless, we show in Theorem 3.1
that the sets gphS and gphS~! are both kernel inverting Lipschitzian manifolds for max
hypomonotone multifunctions S.

The special form of the linear transformation A provides the motivation for the label
“kernel inverting,” as will be clear after the following lemma is established.

LEMMA 2.1. Let S :R" = R" be a multifunction having gphS a kernel inverting
Lipschitzian manifold near (x,y) € gphS (so gph S is equal to A gph F near (X, y)), and
let u € R" be the base point in the domain of F corresponding to (x,y) (so (u, F(i)) =
A~Y(X,¥)). Then the graph of the strict derivative mapping D,S(X|y) satisfies

(2) gph D, S(x|y) = A gph D,.F ().

Moreover, the vectors in the kernel of the strict derivative D, F(it) are the same as the
vectors obtained by applying the matrix A" (the inverse of the n x n matrix in the lower
left quadrant of the matrix A) to the vectors in the kernel of the strict derivative of the
inverse of S:

0 € D,F(ii)(u) <> A;u € D,S(¥|7)(0) &> 0 € DS (5|%) (A;u).

PrROOF. According to the definition of the strict derivative mapping, its graph
gph D, S(x|y) is the outer limit (in the sense of Painlevé-Kuratowski, see for example Levy
and Rockafellar 1995) of the sets

gph$ —(x,y)
t
for sequences of positive scalars 740 and pairs (x,y) € gph S with (x,y) — (x,¥). Since
gph S equals A gph F near (X, y), this outer limit is the same as the outer limit of the sets
(A gph F — (x, y))/t. Since the matrix A is invertible, this set limit is the same as the outer

limit of the sets A (eph F — (u, F(u)
t
for sequences of points u € R" converging to i. Finally, according to the definition of the
strict derivative of F, this limit set is just A gph D, F (i).
To prove our assertion about the kernels of the strict derivative mappings, we appeal
to identity (2) and see that u € R” satisfies (u,0) € gph D, F (i) if and only if A(u,0) €
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gph D_S(X|y). The form of the kernel inverting matrix A ensures that this occurs if and only
if (0, Ayu) € gph D, S(X|y), which is the meaning of the first equivalence above. The second
equivalence follows directly from the definition of the inverse mapping (see for example
Rockafellar and Wets 1998, Chapter 9). (]

Lemma 2.1 shows that strict derivatives preserve the graphical relationship inherent in
multifunctions whose graphs are kernel inverting Lipschitzian manifolds. (In fact, the first
part of the proof of Lemma 2.1 works for multifunctions whose graphs are any kind
of Lipschitzian manifold.) The final statement in Lemma 2.1 provides the motivation for
the term “kernel inverting”: Even though the transformation A maps gph F' to gph S and
gph D, F(u) to gph D, S(x|y), it “inverts” the kernel of D, F (u) by mapping it via A to the
kernel of the strict derivative of the inverse of S.

The next lemma shows that multifunctions whose graphs are kernel inverting Lipschitzian
manifolds, can actually be expressed directly in terms of the inverse multifunctions obtained
from their associated Lipschitzian mapping.

LEMMA 2.2. Let S :R" = R" be a multifunction whose graph is a kernel inverting
Lipschitzian manifold near (x,y) € gph S:

UNgphS=UN(A gphF) = Uﬁ[f?3 ﬁﬂ gph F,

and let the mapping G : R" = R" be defined by G = (A, + Ay F~ ') A;'. Then the set
gph SN U agrees with the set gph GNU, and S has a Lipschitzian localization near (X, y)
if and only if F~! has a Lipschitzian localization near (F(it), it) (where i € R" is the base
point in the domain of F corresponding to (x,y)).

PrOOE. The local identity between the graphs of S and G is immediate since the set

A gph F is identical to the set
[gi 123] gph F~'.
The claim about the Lipschitzian localizations follows because A, is invertible. |

According to Lemma 2.2, there is a neighborhood Y € R" of y such that the images
S(x)NY are the same as the images G(x)NY for all x € R" near x. Therefore according
to the definition of G, much about the local behavior of the multifunction S is dictated by
the local behavior of the inverse of the Lipschitzian mapping F. This fact together with
Kummer (1991, Theorem 1.1) allows us to prove our Theorem 1.2.

PROOF OF THEOREM 1.2. According to Lemma 2.2, the existence of a Lipschitzian
localization for S near (¥, y) is equivalent to the existence of a Lipschitzian localization
for F~! near (F (i), u) (where (i, F(i1)) = A'(x,y)). By Kummer’s inverse Lipschitzian
mapping theorem (Kummer 1991, Theorem 1.1), this is equivalent to the condition that
0 € D,F(u)(u) only for u =0. Since the lower left n x n submatrix A, is invertible, Lemma
2.1 gives us that this final condition is equivalent to D, S(x|y)(0) = {0}. a

The proof of Theorem 1.2 ultimately depends only on Kummer (1991, Theorem 1.1),
once the relationship between S and the mapping F~! is established in Lemma 2.2. This
highlights the importance of the relationship between § and F~!, and establishes this
relationship as the essential property of multifunctions whose graphs are kernel inverting
Lipschitzian manifolds. For any multifunction whose graph is a Lipschitzian manifold, there
is an associated Lipschitzian mapping, but this association is only between the graphs of
these mappings. However, multifunctions whose graphs are kernel inverting Lipschitzian
manifolds can actually be expressed directly in terms of the inverses of their associated
Lipschitzian mappings via Lemma 2.2. This additional property has powerful consequences
for these multifunctions, as their behavior can be very closely linked to that of their associ-
ated Lipschitzian mappings. These results would not be very important however if there was
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a scarcity of multifunctions whose graphs are kernel inverting Lipschitzian manifolds. The
exciting discovery of this paper is not only that these multifunctions have useful structure
like that exploited to obtain Theorem 1.2, but that these multifunctions are very common
in optimization and variational analysis. This latter topic is the focus of the remaining two
sections of this paper.

3. Max hypomonotone multifunctions. In the Introduction, we discussed multifunc-
tions which possess maximal monotone linear perturbations. In this section we show that the
class of multifunctions whose graphs are kernel inverting Lipschitzian manifolds includes
any multifunction that has a maximal monotone linear perturbation or whose inverse has
such a perturbation. We recall that a multifunction § : R" = R" is said to be max hypomono-
tone near (x,y) € gph S if there exists a nonnegative multiple r of the identity mapping
I :R" = R" such that the multifunction S+ r/ is maximal monotone near (x, y + rx). The
monotonicity part of this property requires that the inequality

(x=x', (y+rx) = ('+rx)) 20,

be satisfied for all x and x’ near x, and all y and y’ near y satisfying y € S(x) and y' € S(x').
The maximality demands that near (x, y+ rx), no other monotone multifunction contains
the graph of S+ r/ in its graph. If » =0, this is just the usual maximal monotonicity property
near (X, y). All Lipschitzian mappings are max hypomonotone (cf. Levy and Poliquin 1997
and the fact that any monotone single-valued mapping is maximal monotone), as well as
many common multifunctions in variational analysis.

The notion of max hypomonotonicity has already received some attention for subdif-
ferential multifunctions df : R” = R", where df(x) denotes the set of limiting proximal
subgradients of the function f : R" — R U {oc} at x. Some of this work has focussed on
multifunctions df associated with “subdifferentially continuous” functions: f is subdiffer-
entially continuous at x for v € df (x) if f(x) is close to f(x) whenever x is close to
X and there exists an element v € df(x) close to v (see Poliquin and Rockafellar 1995).
The class of subdifferentially continuous functions covers many of the functions in opti-
mization including all convex functions, all lower-€2 functions, and all primal lower-nice
functions (see Poliquin 1991 for a discussion of primal lower-nice functions). In particular,
“strongly amenable” functions (compositions of convex functions with C? mappings under
a constraint qualification, see Poliquin and Rockafellar 1995) are primal lower-nice and
hence subdifferentially continuous. Poliquin and Rockafellar (1995) introduced the class
of “prox-regular” functions, and showed that this class also includes all convex functions,
all lower-€? functions, and all primal lower-nice functions. A subdifferentially continuous
function f is called prox-regular at x for y € df (x) if df is max hypomonotone near (X, y).
Thus many of the most common multifunctions in optimization (i.e., the subdifferentials of
prox-regular functions) are locally max hypomonotone. One particular example of such a
multifunction that appears in parameterized optimization is the normal cone mapping N,
associated with a set C € R" defined by the smooth functions g; as follows:

Ci={x:8(x)<0,....,8(x)<0,8,,,(x)=0,....,8,(x)=0}

The normal cone mapping N, is just the subdifferential of the indicator function 6. asso-
ciated with C (the indicator function is zero for points in C and is empty-valued for points
not in C). Under the usual Mangasarian-Fromovitz constraint qualification, the indicator
function 8. is prox-regular and subdifferentially continuous (see Poliquin and Rockafellar
1995), so its subdifferential mapping N, is max hypomonotone.

The following lemma provides an association between locally max hypomonotone mul-
tifunctions and Lipschitzian mappings. This association will be the basis for showing that
locally max hypomonotone multifunctions have graphs that are kernel inverting Lipschitzian
manifolds.
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LEmMA 3.1. If a multifunction S : R" = R" is max hypomonotone near (Xx,y) €
gph S (with r > 0), then for any ¢ > r, the mapping F := (S+cI)™' has a Lipschitzian
localization near y + cXx.

PrROOF. According to the hypomonotonicity of S and the definition of the mapping F,
any elements (y,x) € gphF and (¥, x') € gph F close enough to (y + cx, x), satisfy the
inequality

=y x=x)=(c—r)flx—x"|.

This in turn leads to the inequality

! 1 /
©) [x=x"l=—1y=y1
cC—r

which gives that x = F(y) and x’ = F(y"). The maximality of the hypomonotonicity of §
ensures that F is actually a single-valued mapping with values for all y near y + cx. Finally,
from the bound in (3), we conclude that F is Lipschitzian near y + cx as claimed. g

Another result which will be useful is the following lemma due partly to Poliquin and
Rockafellar (1995).

LEMMA 3.2 (POLIQUIN AND ROCKAFELLAR 1995, LEMMA 4.5). For any multifunction
S:R" = R" and any ¢ > 0, one has the identity

! [1 U+ cs—l)—l] —(S+eD) .

Moreover, the mapping (I +c¢S~")~! has a Lipschitzian localization near y+ cx if and only
if the mapping (S+ cI)~! has a Lipschitzian localization near y -+ cXx.

ProoF. The identity comes from Poliquin and Rockafellar (1995, Lemma 4.5), and the
observation about the Lipschitzian localizations follows from the identity. d

Having furnished Lemmas 3.1 and 3.2, we can now prove that for any multifunction
S :R" = R" which is max hypomonotone or has max hypomonotone inverse, gph § is a
kernel inverting Lipschitzian manifold.

THEOREM 3.1.  For a multifunction S : R" = R" that is max hypomonotone near (X, y) €
gph S, the set gphS is a kernel inverting Lipschitzian manifold near (x,y), and the set
gph S™! is a kernel inverting Lipschitzian manifold near (3, X).

PrOOF. We first show that the max hypomonotonicity of S implies that gph S is a kernel
inverting Lipschitzian manifold near (X, y). According to Lemma 3.1, there is a Lipschitzian
mapping F that agrees with the mapping (S + cI)~! near y + cx. However, the graph of §
is equal to A gph(S+cI)~! for the kernel inverting matrix A given by

0 I
A=|:I —cIi|'

Therefore, gph S is a kernel inverting Lipschitzian manifold near (X, y).

Now we show that gphS~! is a kernel inverting Lipschitzian manifold near (¥, X).
According to Lemmas 3.1 and 3.2, there is a Lipschitzian mapping F : R” — R" that agrees
with (I 4+ ¢S~')~! near y + cx. Because the graph of S~!' is the same as the graph of

(I +c¢S7')7! under the matrix
R
“|1/e —I/c|’

this translates into the existence of a neighborhood U C R?* of (y, x) for which the identity
gphS~!NU = (Agph F) N U holds. The matrix A is clearly a kernel inverting matrix, so
the graph of the inverse multifunction S~ is a kernel inverting Lipschitzian manifold near

(v, X). a
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As we mentioned in the previous section, the result in Theorem 3.1 does not follow
because the sets gph S and gph S~! are the same under the invertible linear transformation
I. Moreover, the Lipschitzian mappings associated with S and S~' are different, but they
are related according to the formula in Lemma 3.2.

Since the subdifferentials of prox-regular functions are max hypomonotone, we get the
following corollary immediately from Theorem 3.1.

CoROLLARY 3.1. For any subdifferentially continuous function f :R" — RU{oco} that is
prox-regular at X for y € df (x), the set gphdf is a kernel inverting Lipschitzian manifold
near (x,y), and the set gphdf ' is a kernel inverting Lipschitzian manifold near (y, %).

We now use our Theorem 1.2 to prove our inverse mapping theorem for max hypomono-
tone multifunctions.

PrOOF OF THEOREM 1.3. This result follows immediately from Theorem 1.2 applied to
the inverse multifunction S~!, since the graph of the inverse multifunction S~! is a kernel
inverting Lipschitzian manifold near (y, x) according to Theorem 3.1. The kernel condition
in (b) of Theorem 1.3 is equivalent to the condition that D,S~!(|x)(0) = {0}. O

As we mentioned in the Introduction, Theorem 1.3 is a direct extension to max
hypomonotone multifunctions of the classical inverse mapping theorem. Again, since the
subdifferentials of prox-regular functions are max hypomonotone, we get the following
immediate corollary to Theorem 1.3.

COROLLARY 3.2. For any subdifferentially continuous function f :R" — RU {co} that
is prox-regular at X for y € df(x), the following are equivalent:
(a) af~! has a Lipschitzian localization near (y, x).
(b) 0 € D*(af)(ﬂj)(x) only for x =0.

The following is the obvious complement to Theorem 1.3.

THEOREM 3.2. For a multifunction S : R" = R” that is max hypomonotone near (X, y) €
gph S, the following are equivalent:
(a) S has a Lipschitzian localization near (X, ).
(b) D.S(x[y)(0) = {0}.

(c) S is Aubin continuous at (X, y).

Proor. Conditions (a) and (c) are equivalent according to Theorem 1.1. The equivalence
of (a) and (b) follows from Theorem 1.2 since gphS is a kernel inverting Lipschitzian
manifold near (%, ) according to Theorem 3.1. g

Notice that in the setting of Theorem 3.2, the kernel condition on the strict derivative
(b) and the Aubin continuity condition (c) are equivalent, which is not the case in the
more general situation covered in Theorem 1.2. Recall the example from the Introduction
where the mapping S : R? = R? was defined by its inverse mapping S~! which assigns to
a point with polar coordinates (r, #), the point (r, 26). Clearly, S(0) =0 but S is double-
valued for all points near 0. In spite of this double-valuedness, S is Aubin continuous near
(0,0). In this case, S~! is max hypomonotone near (0, 0), but the multifunction S is not
max hypomonotone near (0, 0). Therefore, the characterization (a) < (c) in Theorem 3.2
does not apply in this case, even though the characterization (a) < (b) does apply here (cf.
Theorem 1.2).

A final consequence of our Theorem 1.2 when combined with Theorem 1.1, is the fol-
lowing sufficient condition for max hypomonotonicity in certain multifunctions.

CoRrROLLARY 3.3.  For a multifunction S : R" = R" and a pair (x,y) € gph S, if either (i)
gph S is a kernel inverting Lipschitzian manifold near (X, ), or if (i) S is Aubin continuous
at (x,), then S is max hypomonotone near (X, y) as long as D,S(x|y)(0) = {0}.
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4. Applications to solution multifunctions. One type of multifunction whose local
Lipschitzian properties we would like to characterize, is a “solution multifunction” S defined
by

(4) S(z, p):={x:2€ G(x,p) +N(x)},

for some multifunction N : R" = R” that is max hypomonotone near X, and a mapping
G : R — R" which is Lipschitzian in p uniformly in x around (X, p) and which is dif-
ferentiable with respect to x, with partial Jacobian mapping V,G(x, p) depending continu-
ously on (x, p) in a neighborhood of (X, p). The condition z € G(x, p) + N(x) is a type of
generalized variational inequality called a variational condition. Many kinds of optimality
conditions can be formulated in terms of variational conditions, so solution multifunctions
of the type (4) can represent solutions to these optimality conditions (see Levy and Rock-
affellar 1995 for more on variational conditions).

Levy and Poliquin (1997, Theorem 4.1) characterized the existence of Lipschitzian local-
izations for these solution multifunctions in terms of Lipschitzian localizations of the “lin-
earization multifunction” Lg : R" = R" defined by

(35) Lg(z):={x:2€e G(x,p)+ V,G(x, p)(x — %)+ N(x)}.

It is easy to see that the inverse of the linearization multifunction is just the multifunction
x+ G(x,p)+ V.G(x, p)(x — X) + N(x), which is max hypomonotone near x since N
is. Another useful property of the linearization multifunction is that its strict derivative is
always contained in the strict derivative of S.

LEMMA 4.1. For x and p as above, and for 7 € R" with x € Ly(Z), the following rela-
tionships hold for any w € R":

{v :w—V,G(, p)(v) € D,N(X|z— G(X, ﬁ))(v)}
= D,L,(z]x)(w) € D,S(z, p|X)(w).
ProoOE. First we show the inclusion
(6) [v :w—V,G(%, p)(v) € DN (¥|Z-G(X, ﬁ))(v)} € D, Ly(z]x)(w).

For any pair (w,v) with w— V,G(X, p)(v) in the set D,N(¥|Z— G(X, p))(v), there are
sequences x’ — X, ¥ — 7— G(x, p), v’ — v, and #"10 with 7" € N(x”) and " € N(x" +
t’v") satisfying

w= " w—V.G(x, p)(v).

tV

It follows that x” satisfies the two inclusions
X e Ls(z”+G()?, 5)+V.G(F, p)(x" —)Z)),
X e LS<ZV+G()E, 5)+ V.G(E, p)(x* — &) + 1" (w” -I—VXG()E,[_J)(UV))).

From these two inclusions, it follows that v is an element of the set D,Lg(z|X)(w), and the
inclusion (6) is established.

Now we consider a generic element v € D,L(Z]|x)(w), which entails the existence of
sequences ¥ — Z, x¥ — X, w’ — w, and t"10 with x” € L¢(z") and x” € Ly(z" +t"w")
satisfying (¥” —x”)/t" — v. Let €” be defined by

oo GW"p)— G, p) — V.G(E, p)(x" — &)
: - :
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Since the quotient (X" — x")/t” converges to v, we know that €” satisfies

t"e”
letser el
& — x|
for some positive constant ¢ < co. The right side in the above inequality approaches zero
since G(-, p) is strictly differentiable at X, so we conclude that the terms €” also approach
zero. If we define ¥ by

ZV = ZV+G(xV’ I_J) - G(}E’ 13) - VXG()E, p—)(xv _i)’

we know by the strict differentiability of G(-, p) that ¥ — z. Moreover, z" + ' (w” 4+ €")
is contained in the set G(x”, p) + N(x”) and Z” is contained in the set G(x”, p) + N(x"),
which implies that X" is contained in S(z” +¢"(w” +€"), p) and that x” is in S(Z”, p). Since
w’ + €’ — w, it follows that v € D,S(Z, p|x)(w) as claimed above. It also follows that the

limit of the points o _
G, p)—G(", p)

w’ +€” pm
is contained in the set D,N(x|Z— G (X, p))(v). This gives the opposite inclusion to (6),
which establishes the formula above and completes the proof. g

REMARK. The proof of Lemma 4.1 works under more general assumptions than those
made in this section; namely that the mapping G(-, p) is strictly differentiable at x. Note also
that the proof of Lemma 4.1 actually shows that the strict derivative image set D, L(z|x)(w)
is always contained in the strict derivative of the mapping z + S(z, p), which is generally
a smaller set than the strict derivative of the mapping S.

We can now prove our main characterization of Lipschitzian localizations for solution
multifunctions (4).

THEOREM 4.1.  For the solution mapping S (4) and its associated linearization multi-
Sfunction Lg (5), and for (Z, p, X) € gph S, the following are equivalent:
(a) S has a Lipschitzian localization near (Z, p, X).
(b) D,S(z, p|x)(0) = {0}.
() D,Lg(z]x)(0) = {0}.
(d) Lg has a Lipschitzian localization near (Z, X).
(e) —V,.G(x, p)(v) is an element of the set D*N()E|Z— G(x, ﬁ))(v) only for v=0.

Proor. The implication (a) = (b) follows from Theorem 1.1, and both the implica-
tion (b) = (c) as well as the equivalence between (c) and (e) follow from the relation-
ships in Lemma 4.1. Theorem 1.3 gives the equivalence between (c) and (d) since Lg' is
max hypomonotone near (Z, x), and the equivalence of (d) and (a) follows from Levy and
Poliquin (1997, Theorem 4.1). O

Notice that Theorem 4.1 provides a characterization (between (a) and (b)) that is identi-
cal to that in our Theorem 1.2, yet the solution multifunction S above does not necessarily
take points in one Euclidean space to sets in the same space. Of course, the linearization
multifunction does have this property, so Lg serves as a bridge between the solution multi-
function and the setting covered by Theorem 1.2.

We also note that condition (d) above was studied by Robinson (1980) in the case where
the multifunction N represents the normal cone mapping associated with a convex set (in
which case, the solution mapping S represents the solutions to a variational inequality).
Robinson called this property “strong regularity,” and he showed that the Lipschitzian local-
ization property (a) was a consequence of strong regularity. These results were subsequently
extended to solution multifunctions even more general than the ones we consider here; for
example where the mapping N in (4) is assumed only to have locally closed graph (see
Dontchev 1995a, b, Dontchev and Itag 1994a).
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Dontchev and Rockafellar (1996) studied the subclass of solution multifunctions (4)
where the multifunction N is the normal cone mapping associated with a polyhedral convex
set. They characterized the existence of Lipschitzian localizations for these special solution
multifunctions in terms of their Aubin continuity alone, without any conditions on the strict
derivative. It is not known if Lipschitzian localizations of the more general solution mul-
tifunctions S (4) can be similarly characterized. Of course, our Theorem 4.1 provides this
kind of “single condition” characterization, but in terms of the strict derivative, and without
any reference to Aubin continuity.

Our Theorem 4.1 is thus important in two different ways: It gives new characteriza-
tions (in terms of the strict derivative—properties (b), (c), and (e)) of the local Lipschitzian
behavior of solution mappings, and it expands the class of solution mappings whose local
Lipschitzian behavior can be thus characterized. One example whose Lipschitzian stability
cannot be characterized by previous work, is the solution mapping which gives the sta-
tionary points associated with a family of nonlinear programming problems. The nonlinear
programming problems we consider are formulated in terms of smooth functions g, on
R" xR? and g; on R" fori=1,...,m as follows:

(7 minimize g,(x, p) —(z,x) overall x € C,
where the set C C R” is defined by

Ci={x:g(x)<0,....,8(x)<0, g,,(x)=0,....,¢,(x)=0}.

We concentrate our attention on points x that are stationary points for the minimization
problem (7) in the sense of satisfying, in association with some multiplier vector y, the
Karush-Kuhn-Tucker optimality conditions:

(8) 3y = (V1> 5 V) € Ng(g1(x), ..., 8, (x))  with
ng()('x) +y] ngl ()C) + e +ymVXgm('x) = O’

written here for convenience in terms of Ny (u) denoting the set of normal vectors at u to
the polyhedral cone

9) K={ueR":u;<0,...,u,<0,u,,=0,...,u, =0}

m

The Karush-Kuhn-Tucker conditions are of course necessary for a feasible solution x to
be locally optimal under the Mangasarian-Fromovitz constraint qualification, which in turn
takes the form

(10) By =1se o Vm) € Ng(81(5), ... .8, (X))  with
Vg (X)+-+y,V.8,(¥) =0, excepty=0.

Stationary points are sure to be optimal solutions when the minimization problem exhibits
convexity with respect to x, but this is not an issue of concern to us here.

Under the Mangasarian-Fromovitz constraint qualification, the stationary points are
exactly the solutions to the variational condition

z€ V,go(x, p) + Ne(x)

(see Levy and Rockafellar 1995a, for example), so that the solution mapping giving the
stationary points for each parameter pair (z, p) is just

(11) Sz, p) ={x:z2€ V.gy(x, p) + Ne(x)}.
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Notice that the above variational condition is not necessarily a variational inequality (since
the set C is not necessarily convex), nor is the set C polyhedral, so the characterization in
Dontchev and Rockafellar (1996) does not apply in this case. However, the normal cone
mapping N in (11) is max hypomonotone, so our Theorem 4.1 applies here to yield the
following characterization.

CoROLLARY 4.1. [If X is a stationary point of the nonlinear programming problem (7)
for the parameters 7z and p, and if the Mangasarian-Fromovitz constraint qualification holds
at x, then the stationary point mapping (11) has a Lipschitzian localization near (Z, p) if
and only if v=0 is the only solution in R" to

—V;.80(%, p)(v) € D,N¢(X]Z — V,8(%, p))(v).

5. Karush-Kuhn-Tucker pairs. In the previous section, we showed that the stationary
point mapping for a parameterized family of nonlinear programs is one example of a solu-
tion mapping whose sensitivity analysis needs the theory developed here. In this section, we
study a solution mapping whose local Lipschitzian behavior has been characterized before,
but we show how our results can be applied to this mapping to obtain a different char-
acterization of its local Lipschitzian behavior. Thus, the previous section and this section
together illustrate two advances that the theory in this paper provides; now a broader range
of problems can be analyzed, and new insights can be gained into problems already within
the range of the previous theory.

We consider a family of optimization problems very similar to the one in the previous
section, but with an expanded parameterization. Now, all of the g; for i =0- - - m are smooth
functions on R” x R?, and the family of optimization problems becomes

(12) minimize g,(x, p) — (v, x) over all x € C(u, p)
where the set C(u, p) CR”" is defined by

C(u,p):={x:g(x,p)+u <0,....,g,(x,p)+u, <0}

(To simplify the calculations and without loss of generality, we consider only inequality
constraints.) Here, the parameter pair (v, u) € R" x R™ plays a role like that of the canonical
parameter z before, so we denote the pair by z = (v, u).

Again, we focus on the Karush-Kuhn-Tucker optimality conditions, but this time as
expressed in terms of

L(x,y,p) = g(x, p) + »1&:1(x, p) + -+ 3,8, (x, ),
so that the KKT optimality conditions take the form
(13) v=V.L(x,y,p)
u € =VyL(x,y, p)+ Neu(y),

where R” denotes the set of m-vectors with nonnegative components. The conditions (13)
can be combined to yield the variational condition

2 € (VL (x, y, p)s =V, L(x, ¥, ) + Nansr (%, 7).

since the normal cone to R" x R at (x, y) is just the set {0} x N (). Instead of studying
the behavior of the stationary points as before, we now consider the pairs (x, y) satisfying
the KKT optimality conditions, and we construct the following solution mapping:

(14) S(z, p) = {(x,¥) : 2 € G(x, Y, P) + Nygn e (%, ¥)
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where the mapping G is defined by

G(x,y,p) = (V.L(x,y, p), =V,L(x,, p)).

According to Theorem 4.1, we can characterize the local Lipschitzian behavior of the
solution mapping (14) in terms of the strict derivative of the mapping Ny, (analogously
to Corollary 4.1). With this in mind, we compute the strict derivative of this normal cone
mapping. We rely on Lemma 2.1 and the fact that the graph of Npgn g 18 @ kernel inverting
Lipschitzian manifold for the kernel inverting matrix

0 I
=[]

and the Lipschitzian mapping F : R"*" — R"™" defined by

v;=0 forie[n+1,m] with u; <0,
v, =u; else.

Fu) = {v

According to Lemma 2.1, the strict derivative of the normal cone mapping can be computed
in terms of the strict derivative of F which has the form

v; =0 for i € [n+ 1, m] with i; <0,

v; €[0,u;] forie[n+1,m] with i, =0 <u,,

v; € [y;,0] forie[n+1,m] with ii; =0 > u;,

v, =, else.

D, F(it)(u) =13 v

Lemma 2.1 then gives w in the set D, Nga, (X, ¥|2— G(%, y, p))(v) if and only if v is in
the set D,F((%,y)+Z— G(x,, p))(v+ w) which through the previous formula translates

into - - - -
v;=0 fori € [n+1,m] with Z, — G(%, ¥, p); < —Vi,

vw; >0 forie[n+1,m]with z;,— G(X,y, p),=—y;

w; =0 else.
These computations and the definition of the mapping G lead directly to the following
corollary to Theorem 4.1.

CoRrROLLARY 5.1.  If (X, V) is a pair satisfying the KKT conditions (13) for the nonlinear
programming problem (12) for the parameters 7 and p, then the KKT-pair mapping (14)
has a Lipschitzian localization near (Z, p) if and only if (v, u) =0 is the only solution in
R" x R™ to

u, =0 foriel ={i:y,=0>u,+g(x,p)},
u;(V.gi(x,p),v) >0 forielLb:={i:y;,=0=1u;+g(x,p)},
(V.gi(x,p),v) =0 forieli:={i:y,>0=u+g(x,p)}

v VR L(E S ) = = 30 u; V,gi(R, p).

LUl

Many other characterizations of this sort have been made previously for the KKT-pair
mapping (see for example, Dontchev and Rockafellar 1996, Kojima 1988, Kummer 1991,
Klatte and Tammer 1990), but the characterization we present in Corollary 5.1 is different
from any of these. Some of the previous results have been framed in terms of the strong
second-order condition

(15) V2.L(X, ¥, p) is positive definite on {v:v L V g(%, p) for i € I},
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and the linear independence of the constraint gradients for indices in the set I, U I;. Note
that the latter of these conditions follows immediately from the characterization in Corollary
5.1: If there is a combination of u; such that

Z ui ngi()z’ ﬁ) = 0’

LUl

then it follows that the pair (0, u) € R” x R™ (where u is augmented with zeroes in the
components corresponding to indices in ;) satisfies all four conditions in Corollary 5.1.
Note also that the strong second-order condition (15) together with the linear independence
of the constraint gradients for indices in 1, U/, is a sufficient condition for the zero vector
to be the only solution to the four conditions in Corollary 5.1 (multiply both sides of the
last equation by the vector v and apply the first three conditions). In fact, it has been shown
previously that the strong second-order condition (15) paired with the linear independence
of the constraint gradients for indices in I, UI; is indeed equivalent to the existence of
a Lipschitzian localization of the KKT-pair mapping for which the primal elements are
actually locally optimal (see Dontchev and Rockafellar 1996, Theorem 6 or Robinson 1980
and Bonnans and Sulem 1995).
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