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Successive approximation methods appear throughout numerical optimization, where a solution to an optimization
problem is sought as the limit of solutions to a succession of simpler approximation problems. Such methods
include essentially any standard penalty method, barrier method, trust region method, augmented Lagrangian
method, or sequential quadratic programming (SQP) method, as well as many other methods. The approximation
problems on which a successive approximation method is based typically depend on parameters, in which case
the performance of the method is related to the corresponding sequence of parameters. For many successive
approximation methods, the sequence of parameters might need only approach some parameter target set for the
method to have nice convergence properties. Successive approximation methods could be analyzed as examples of
a generic inclusion solving method from Levy [23] because the solutions to the approximation problems satisfy
necessary optimality inclusions. However, the inclusion solving method from Levy [23] was developed for single-
parameter target points. In this paper, we extend the results from Levy [23] to allow parameter target sets and
apply these results to the convergence analysis of successive approximation methods. We focus on two important
convergence issues: (1) the rate of convergence of the iterates generated by a successive approximation method
and (2) the validity of the limit as a solution to the original problem. An augmented Lagrangian method allowing
quite general parameter updating is explored in detail to illustrate how the framework presented here can expose
interesting new alternatives for numerical optimization.

Key words: constrained optimization; numerical optimization; penalty methods; barrier methods; trust region
methods; augmented Lagrangian methods; sequential quadratic programming; convergence analysis; inclusion
solving; variational analysis; generalized continuity
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1. Introduction. The general constrained optimization problem we will consider is
min fy(x) over x € X (1)

with X some subset of the normed linear space % and with €' objective function
fo: & — R. The successive approximation methods described in this paper solve the general
constrained optimization problem (1) by successively solving unconstrained approximation
problems whose objective functions include a quadratic term ¢, ,: % — R, approximating
fo at the current iterate x. As the notation suggests, these quadratic functions are defined
by a fixed parameter i from the space # of linear mappings from % to its dual %*, and
they moreover satisfy g, .(x) = fy(x) and Vg, (x') = Vfy(x) +h[x' —x] for all x’ € %. The
classic example of such a quadratic approximation g, , for smooth objective functions f; is
the quadratic Taylor approximation, in which case the linear mapping # is just the Hessian
V2£,(x). Other choices of h cover various “quasi-Newton” methods that could be applied
in both the constrained and unconstrained cases (when the set X is the whole space %).

Successive approximation methods. Given a current iterate x, and parameter u, :=
(. hy), choose the next iterate x,,, = x’ by solving the (unconstrained) approximation
problem

ming, . (x)+n, . (x) overall x'e?, )

where g, , is a quadratic approximation to f, at x as outlined above, and n,, ,: % — RU {00}
is some family of functions.
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Successive approximation methods are quite common, including essentially any standard
penalty method, barrier method, trust region method (where n,, , includes a penalty for vio-
lating the trust region), augmented Lagrangian method, or SQP method. As we will illustrate
with two simple penalty examples in §2, the parameters w, in successive approximation
methods might need only approach a parameter target set M for the method to have nice con-
vergence properties. For instance, a typical parameter target set for an exact penalty method
is a semi-infinite interval M := [, 00), indicating that the real-valued penalty parameter
need only be big enough.

The iterates generated by a successive approximation method satisfy the inclusions

_thk,xk ('x/) € an’y,k,xk ('x/)’ (3)

encoding the basic necessary condition for optimality associated with the approximation
problem (2). This inclusion is an “approximating inclusion” for the inclusion

—Vfo(x) € Nx(x), 4)

encoding the basic necessary optimality condition associated with the original minimization
problem (1). In Levy [23], a generic algorithm was studied for solving inclusions of the form

f(x) e F(x), ®)

which includes (4) with f(x) := —Vf,(x) and F(x) := Ny(x) by successively solving
approximating inclusions of the form

a(u,x,x') € A(u, x, x), (6)

which includes (3) with u := (u, h), a(u, x, x') := —Vg, (x'), and A(u, x, x') :=dn,  (x').
The convergence of the generic algorithm was analyzed with a variety of tools developed
in Levy [23], including generalized rate functions, “appropriate” sequences of parameters,
and “valid” approximating inclusions. We would like to apply the results in Levy [23]
to analyze the convergence of successive approximation methods, however, the tools in
Levy [23] were all developed in terms of a single parameter target i, and evidently many
successive approximation methods use more general parameter target sets U. Therefore, in
this paper, we extend many of the tools and results from Levy [23] to allow parameter
target sets. To make these extensions, we develop new notions of “appropriate” sequences
of parameters and of “valid” approximating inclusions, and we explore new connections
between nonsingularity conditions and continuity properties of set-valued mappings. Once
we develop the necessary extensions, we apply the results to analyze the convergence of
successive approximation methods.

Our results for successive approximation methods cover two major convergence issues:
(1) convergence rate (developed in §2) and (2) the validity as a solution to the original
problem of the limit of the iterates generated by a successive approximation method (devel-
oped in §3). We say that a successive approximation method is valid at X for U if whenever
the sequence of parameters {u,} converges to the target set U and the sequence of iter-
ates generated by the corresponding successive approximation method converges, then those
iterates converge to a solution of the basic necessary optimality condition (4) associated
with the original minimization problem (1). In §3, we develop a useful sufficient condition
for validity of a successive approximation method and apply this condition in the cases of
the two simple penalty examples from §2, as well as in the cases of a new primal SQP
method and a new primal augmented Lagrangian method. In the final section of this paper,
we apply our general convergence rate results to analyze the convergence rate for our primal
augmented Lagrangian method, which illustrates how our approach can expose interesting
new alternatives for numerical optimization.
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There is a vast amount of literature on particular successive approximation methods and the
reader can consult Boukari and Fiacco [3] for a survey of penalty, exact penalty, and multi-
plier methods through 1993. For basic background, we refer the reader to Nocedal and Wright
[24] and Fletcher [22], which are comprehensive textbooks on numerical optimization. There
are too many particular examples to cite here, but some recent contributions include (in rough
categories): penalty methods DiPillo and Facchinei [8], DiPillo [7], Facchinei et al. [21],
Facchinei and Lucidi [20], DiPillo et al. [12], Demyanov et al. [6], DiPillo et al. [10],
Facchinei [18], Facchinei and Lucidi [19], Contaldi et al. [5], Facchinei [17], Byrd et al. [4];
barrier methods DiPillo and Facchinei [9], DiPillo et al. [14]; augmented Lagrangian meth-
ods DiPillo et al. [11], DiPillo et al. [13], Ben-Tal and Zibulevsky [1]; SQP methods Boggs
and Tolle [2]; and trust region methods Sadjadi and Ponnambalam [26]. Our results here are
unusual in their scope and breadth, and there are several benefits to be gained from this. First,
new insight into particular existing methods can be gained by recognizing a broader sur-
rounding category. We illustrate this by showing that the standard parameter update scheme
associated with a classical augmented Lagrangian method is just one among many new
possibilities that lead to similar convergence results. Other optimization methods, where
parameters are specified as part of an updating scheme, can similarly be expanded within
our framework. Not only does our framework allow the expansion of existing methods of
optimization, but also it provides a template for creating and analyzing entirely new meth-
ods. Moreover, the knowledge that any particular method fits into a more general framework
deepens our understanding of that method and exposes its connections to other methods in
the framework. Such connections can be exploited to translate and propagate specialized
results throughout the entire framework.

2. Convergence rate. To motivate our extension here of the results in Levy [23], we
now consider the simple constrained minimization problem

min f,(x) :=x] +x; over x € X := {x = (x;, x,) € R* with x; +x, = 1}, (7)
whose solution is x = (1/2, 1/2). Since the objective function f, is quadratic itself, the
quadratic approximation in this case can be g, ,(x') := f,(x) = (x})* 4 (x})*. One choice
for the n, , is the exact penalty functions of the form

np,,x(x/) ::I"le; +x;_ ll’ (8)
defined by penalty parameters w € [0, 00). The solution to the approximation problem (2)
in this case is _
_ (/2 e /2)  if py €0, 1]
(1/2,1/2)  if g, e[l,00)

so for the successive approximation method to identify the solution x = (1/2, 1/2) to the
original minimization problem (7), the parameters need to approach the parameter target set
[1, 00) (such parameter target sets are typical in exact penalty methods).

Another simple choice for the n, , in this case is inexact penalty functions like

4

np,,x(-x/) = lu‘(xg +x/2 - 1)2’ (9)

again defined by penalty parameters u € [0, c0). The solution to the approximation prob-
lem (2) with this choice of functions n,, , is x" = (s, /(1 +2p;), i /(1 +2p,)). Thus, for
the successive approximation method to identify the solution x = (1/2, 1/2) to the original
minimization problem (7), the parameters need to approach the parameter target set {oo}
(which is the typical parameter target set for inexact penalty methods). It is clear from
this example that parameter target sets (and not just finite target points) need to be used if
penalty methods are to be accommodated.
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2.1. Convergence rate for the generic algorithm with a parameter target set. We
recall the following definition from Levy [23]: A function ¢: R — R is called a convergence
function if it is nondecreasing on Rt with (0) =0. As in Levy [23], we will use families
of convergence functions i, , parameterized by (u, u’) € U x U for some parameter set U
in the parameter space %, as well as a notion of the “target appropriateness” of a sequence
of parameters. Extending the definition from Levy [23] to parameter target sets U C U, we
say that a sequence of parameters u, € U is target set appropriate for (s, 5, ry) with target
set U if the sequence of scalars {r,} defined by

ros i :=1nf i, 5 (ny) fork=1,2,...
uel -

converges to zero. The definition from Levy [23] of target appropriateness with parameter
target i is covered by target set appropriateness with a singleton target set U := {i}.

The following theorem generalizes Levy [23, Theorem 3.2] to allow parameter target
sets. This result uses the closed ball B(x; €,) € % defined for some €, > 0 by

B(x;€,):={xeZ|[x—X| <el,

as well as the concept of a family of bivariate convergence functions ¢, ,: R? > R
parameterized by (u, u’) € U x U and defined by the sublinearity inequality

Gy 7) Py (r)+ar’ forall (u,u')eUxU and (r,r') eR* xR*

in terms of a family of convergence functions ¢, ,, and a fixed sublinearity constant
a e (0, ).

THEOREM 2.1 (CONVERGENCE RATE FOR THE GENERIC ALGORITHM WITH A PARAMETER
TARGET SET). For the generic iteration mapping

G(u, x) := (A(u, x, ) — a(u, x,-))(0),

if there exist scalars a € (0, 00) and €, > 0, a parameter set U C U, a parameter target set
U C U, and a single-valued mapping o U x U x X x X x ¥ — Y such that the following
pair of conditions hold:

o (Target set a-approximation) There exists a family of bivariate convergence func-
tions d)ém ) parameterized by (u,u’) € U x U and with sublinearity constant 1/(2a) such
that any trio (u, x,x') € U x B(X; €,) x G(u, x) NB(X; €,) satisfies

lor(u, @, x, &, )| < gy (lx = %[ [|¥' = %) Vel

o (Target set nonsingularity) There exists a family of bivariate convergence func-
tions d)fu ) parameterized by (u,u’) € U x U and with sublinearity constant a such that
any trio (u, x,x") € U x B(x; €,) X G(u, x) NB(x; €,) satisfies

I = 7] < inf 6, (v = 7. o, 7. x, ¥, D).

then any sequence {x,} C B(X; €,) initiated from x, and conforming to the generic algorithm
X1 € G(uy, x;) with a sequence of parameters {u,} C U satisfies

I = 1 = inf 1 (I = ) (10)
u
in terms of the convergence functions s, ,, defined by

w(u, u’)(r) = 2alwlj(lu, u’)(r) + 2¢(2u,u’)(r)'

Moreover, if the sequence of parameters {u,} is target set appropriate for (¥, z
lxo — x||) with target set U, then the sequence {x,} converges to X.
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Proor. Since x; € B(x; €,), u, € U, and x| € G(uy, x,) NB(X; €,), we can apply the
target set nonsingularity bound with (u, x, x) := (i, x;, x;,,) to deduce that

e — X[ < Pe]zf/ d)%uk,ﬁ)(”xk = X[, llo (uy, i, xp5 xp 415 X))
u
< inf g2, (I = 51+ @0, 7 5, D,
ue

where the second inequality comes from the sublinearity of ¢>. Applying the target set
o-approximation bound to this inequality, we get

Iy = = inf 9, o (g = 51D+ g (e = 7] iy = 71)
u
< inf 07, (I = F) + ey, g (e = 5 + e =

where the second inequality comes from the sublinearity of ¢!. After collecting the
[l %41 — X||-terms and multiplying through by 2, we get the desired bound (10).

If the sequence of parameters {u, } is target appropriate for (¢, z), ||xo —X||) with target i,
we know that the sequence of scalars

ry = |lxo — X|| r = i_ggllf(ukihﬁ)(rkfl) fork=1,2,... (11)
converges to zero. From the bound (10) in the case when k =0, we deduce that
o = %1 < inf s, (g = 71D = s, 1 () = 1.
Likewise, from the bound (10) in the case when k = 1, we deduce that
[[x, — x| < Ll_llelg iy lx, —X|) < 1171;{7 B, m(r) =1,

where the second inequality follows from the preceeding bound and fact that ¢ is nonde-
creasing on R*. We can continue in this way inductively to deduce the general bound

lx, — x| <r, fork=0,1,2,....

Since we know that the sequence of scalars {r,} converges to zero, we conclude that
x,—x. O
REMARK. If the convergence functions ¢, 7 in (10) satisfy

Yo.n(r)<r forallueU, ueU, and rel0,F],

then as long as the initial point x, is close enough to X, all iterates are at least as close to x
as the initial point, in which case the requirement that {x,} C B(Xx; €,) does not restrict the
algorithm.

2.2. Target set nonsingularity and continuity. In Levy [23], connections were shown
between a generalized continuity property and target nonsingularity (for a single parameter
target ), and this too can be extended to cover the more general case of parameter target
sets. The continuity property we need is a parametric version of “selection calmness” for
set-valued mappings (also sometimes called “local upper Lipschitz continuity” and “upper
Lipschitz continuity at a point”). We say that a set-valued mapping Z: % x % =3 Z has
calm selections near ((X,5), z) if there exist scalars a € (0, o), €, >0, €, >0, and €, > 0
such that

Z(x,y) NB(z; €) SB(Z afl(x, y) = (%, D)) ¥ (x,y) B €,) xB(y; €).
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To connect the target set nonsingularity bound with this continuity property, we extend
the definition of selection calmness by considering parameterized families of set-valued
mappings and replacing the term on the right side of calmness bound with a bivariate
convergence function. A family of set-valued mappings Z, ,: ¥ x % = Z parameterized
by (u,u’) € U x U is said to have ¢-calm selections near ((X,¥), Z) for parameter target
set U if there is a parameter set U C 9 containing U, and scalars €. >0, e >0, and
€, > 0 such that the family of bivariate convergence functions ¢, . paraméterized by
(u,u’) € U x U satisfies

sup 2=zl = b o (lx =X Iy = 31D
2€Z (3, 7) (x, Y)NB(Z:€;) _
V(u,u,x,y) € UxUxB(x;€,) xB(y; €,). (12)

When the target set is a singleton U := {i}, the ¢-calmness bound (12) is equivalent to the
inclusion

Z(, 0 (X, ))NB(Z; €) SB(Z ¢ (X = X[, [y=YID))  V(u,x,y) €U xB(X;€,) xB(¥:€,),

which is precisely the inclusion used in Levy [23] to define selection ¢-calmness in the
case of a single parameter target #. Moreover, it is easy to see that the original selection
calmness property for an unparameterized set-valued mapping Z: R"” x R™ =2 Z is covered
in this case by ¢, ,(r, 1) :==a/r* + (1)

The next result shows a relationship between selection ¢-calmness and target set nonsin-
gularity of the generic iteration mapping over the restricted parameter target set

L_,(u,x,x/,)?) =UnNo(u,- x,x', %) (B; €,)) (13)
defined in terms of the inverse image in the second component of ¢ of the € -ball about
the origin.

PrROPOSITION 2.1.  The following are equivalent:
o The family of partial inverse mappings X, ,: ® X Y =3 % defined by
X(u,u’)(x’ y) = G(M, )C) N O'(Ll, u/’ X, f)_l(y) (14)

has ¢>-calm selections near ((x,0), X) for parameter target set U.

o There exist scalars €, > 0 and €, > 0, and a parameter set U C U containing U
such that any trio (u,x,x') € U x B(x; €,) x G(u, x) N B(X; €,) satisfies the target set
nonsingularity bound in the Q-convergence condition with o, ¢*, and restricted parameter
target set (13).

Proor.  Since x" € X, ; (x,y) if, and only if, x" € G(u, x) and y := o (u, u, x, X', X), the
selection ¢>-calmness assumption in this case is equivalent to

sup  [lx' =% < &F, o (lx =X, llo(u, &, x, %', D))
X' eG(x,y)NB(xX;€,)

holding for all (u, i, x) € U x U x B(X; €,) satisfying ||o(u, &, x, x', X)|| < €,. This is the
same as the bound

I =% =< inf ¢, 5 (lx =X, o (u, @, x, 2", D))

UEU(y, x,x, %)

holding for all trios (u, x, x') € U x B(X; €,) x G(u, x) NB(X; €,) as claimed. O
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REMARK. Recall from the statement of Theorem 2.1 that what we would really like
from Proposition 2.1 is the target set nonsingularity bound holding over the parameter
target set U and not just its restriction (13). However, in practice, it turns out that these
parameter sets can often be assumed equal by shrinking U and €, if necessary, so that the
target set nonsingularity bound provided by Proposition 2.1 is enough to make exactly the
same conclusions as in Theorem 2.1.

Note that Levy [23, Proposition 4.1.2] is covered by Proposition 2.1 when U := {i} since
then the restricted set (13) is just {#} whenever the image of X, 7 (x,y) is nonempty.

2.3. Convergence rate for successive approximation methods. We have already noted
that the convergence analysis of the generic algorithm for solving inclusions can be applied
to study the convergence of successive approximation methods by using the identities

() = —Vhy()
F(x) := Ny(x)
u = (w, h)
a(u,x,x') == —Vg, .(x)
A(u, x,x') :=dn, (X).

Theorem 2.1 will be applied directly to these to obtain the following result, which uses the
(set-valued) solution mapping SolAp defined by:

SolAp(u, h, x) := {x" € Z such that —Vg, .(x') € dn, (¥')}.

THEOREM 2.2 (CONVERGENCE OF VALID SUCCESSIVE APPROXIMATION METHODS). Con-
sider a successive approximation method that is valid at X for U := M x {}_l} Assume the
following:

o The family of mappings X, ,): € x X* 3 % defined for u= (w, h) € U := M x # by

(15)

SolAp(w, b, x)  if y = Vfo(X) — Vfy(x) — h[¥ — x],
X(u,u’)('x’ y) =

otherwise

has §*-calm selections near ((x,0),X) (with scalars €, > 0 and €, > 0) for parameter
target set U, with bivariate convergence functions (b%”‘u,) parameterized by (u,u’') € U x U
for U := M x H having sublinearity constant «.

o There exists a family of convergence functions t,[/(qh‘ i) parameterized by (h,W)eHxH
such that

IVFo(X) — Vfy(x) — h[Xx — x]|| < lp(qh,]-i)(nx —X||) forall xeB(x;e,) and he H. (16)

o There exists a sequence of parameters u, € U with d(uy, U) — O that is target set
appropriate for (i, ||x,—X||) with target set U for the family of convergence functions s,
defined by

. 2
Wi,y (1) =208, ) (1) + 2455, ) (7).
Then, every sequence {x,} CB(X; €,) conforming to the successive approximation method
for the sequence of parameters {u,} satisfies x, — x, where X solves the necessary condi-
tions for optimality —Vf,(x) € Ny(x) associated with the original optimization problem (1),
and moreover the convergence rate is governed by

o1 — XNl < inf g,z (e — X1)- (17)
uelU
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ProOF. Theorem 2.1 applies since any solution to the approximation problem (2) defin-
ing the successive approximation method is also a solution to the inclusion (3).
If we define the mapping o by

o(u, i, x,x',x) = Vfy(x) — Vfy(x) — h[x — x], (18)

then the condition (16) gives the target set o-approximation bound in Theorem 2.1 with
(bivariate) convergence functions ¢>(1u’u,)(r, r'):= (bé’h’ i ()

The mappings X, ) from Proposition 2.1 work out in this case as (15), so the target set
nonsingularity condition in Theorem 2.1 for the restricted parameter target set (13) follows.
From the definition (18) of o, we know that the inverse image in the expression for the
restricted parameter target set (13) satisfies

WU if |V (X) — Viy(x) —hlx —x]|| <€,
o x 2, T (B(O0: €,)) = VAo (X) — Vo (x) — h[ I <e
’ & otherwise.

It is clear that by shrinking H and €, if necessary, we can ensure that this inverse image
is the entire parameter space U, so the “restricted” parameter target set (13) is the same as
the parameter target set UU. Thus, Theorem 2.1 applies in this case to give the convergence
bound (17) and the convergence of {x,} to Xx.

Under the assumption that the sequence of parameters {u,} approaches the target set U,
we can conclude that X solves the inclusion —Vf;(x) € Ny(x) from the validity of the
successive approximation method since we have already established the convergence to
(x, x) of the sequence of pairs (x, x) := (x;, x;y;). O

REMARKS. Note that we could have used a parameter target set H for the matrices h € H
in Theorem 2.2, however, the singleton parameter target & is sufficient in this case to cover
all the important examples. For instance, in the classic case when g, . is the quadratic Taylor
approximation at x of a smooth objective function f, (so h = V2f,(x)), condition (16) is
satisfied with parameter target / := V> fo(X), parameter set H = the union of the Hessians
V2£,(x) over x € B(X; €,), and convergence functions Y (1) == €r? for some € > 0.

2.3.1. Example: Newton’s method. One famous successive approximation method
to which Theorem 2.2 applies is Newton’s method for the (unconstrained) minimization
of fy(x). In this case, the quadratic Taylor approximation is used for g, ., the approxima-
tion function n, , is identically zero, and, consequently, the nonempty images X, ,(x,y)
contain precisely the points x" for which —Vf,(x) — V2f,(x)[x’ — x] = 0. This, together with
the fact that Vf,(x) =0, generates the identity

{x — V2 fo(x) 7'V (x) if y=—Vfy(x) = V2 fo(x)[X — x],

X(u,u’)(x’ y): (19)

otherwise,

where the familiar rule from Newton’s method for minimization x,,, = x, — V2f;(x,) ™" -
Vf,(x,) appears. The traditional nonsingularity condition assuring the convergence of New-
ton’s method for minimization is the invertibility of the Hessian V2f,(X) at the target
solution X, which immediately implies that the inverse Hessians satisfy |[V2f,(x)7'|| < «
for some a € (0, o) and all x € B(X; €,). Under these circumstances and according to the
identity (19), any point x" € X, ,(x, y) satisfies

¥ =% = [x = V2£o(0) ' Viy(x) — |

=[x+ V2o (0 [y + V([ — 2]] - 7|
hazemnl
allyl)-

IA
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This series of inequalities evidently implies that the family X, ,, has ¢?*-calm selec-
tions near ((x,0), X) for any parameter target set U with (bivariate) convergence functions
¢%M,M,)(r, r') := ar’. Applying Theorem 2.2 in this case, the bound (17) translates into
X1 — X|| < 2ae|lx, — X||*, which is the familiar statement of quadratic convergence for
this method.

3. Valid successive approximation methods. Recall from the Introduction that a suc-
cessive approximation method is said to be valid at X for U if, whenever the sequence of
parameters {u,} converges to the target set U and the sequence of iterates generated by the
corresponding successive approximation method converges, then those iterates converge to
a solution of the basic necessary optimality condition (4) associated with the original mini-
mization problem (1). Note that validity ensures only that X solves the necessary conditions
for optimality in the original minimization problem (1). To conclude that X is a minimizer,
we either need more information about the data in (1) (for example, convexity of X and f;
ensures that stationary points are minimizers) or more information about the data in the
approximation problems (2) (since the iterates are minimizers of the approximating prob-
lems, their limit will be a minimizer of the original problem if the approximations are good
enough).

As we will describe in detail in the following section, validity can be assured if the
approximating inclusions (3) are good enough approximations of the original inclusion (4).

3.1. Valid approximating inclusions. The characterization of quality for approximat-
ing inclusions that we develop here uses the following outer limit set

limsup (aNA)(u,x,x") :={y|3(u, x,x’,y) with y € (anN A)(u, x, x'),
(x, x')—>(x, %)

d(u, )0 (x,x,y) = (%,X,y), and d(u, U) — 0}
of the set-valued mapping a N A defined by

a(u,x,x') if a(u,x,x") € A(u, x, x'),
(anA)(u, x,x"):=a(u, x, xYNA(u, x,x') =
otherwise.

An approximating inclusion (6) is a valid approximation of (5) at X for U if the following
two conditions hold:
e f(X)€ limsup (aNA)(u,x,x")

(x,x")—(X,X)
d(u, U)—0

e limsup (aNA)(u,x,x)CF(X).
(x,x")—>(X,X)
d(u, U)—0
The notion of validity at ¥ for U generalizes a similar concept from Levy [23] for a single
parameter target point u#, where an approximating inclusion (6) was said to be a valid
approximation of (5) at X for u if it satisfies the criteria

(i) a is continuous at (i, X, x) and a(i, X, x) = f(X)

(20)

(ii) A is outer semicontinuous at (i, x, X) and A(«, X, X) C F(X).

ProPOSITION 3.1.  If an approximating inclusion (6) is a valid approximation of (5) at X
for u according to the definition (20) from Levy [23], then it is also a valid approximation
of (5) at X for U :={u} as long as there exists a sequence (u, x, x') — (i, X, X) for which
a(u,x,x') € A(u, x, x').

ProoF. Because of the existence of a sequence (u, x, x') — (u, X, x) for which y:=
a(u, x, x') € A(u, x, x"), we can conclude from condition (i) of (20) that y — f(x). Since in
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this case, the stipulation d(u, U) — 0 is the same as convergence u — i, we conclude that
f(x) is an outer limit point of aN A at (i, x, x), which verifies the first condition for target
set validity.

To show the second criterion for target set validity, we consider any element y of the
outer limit set

ye limsup (anNA)(u,x,x).

(x.x)=> (%9

d(u,U)—0
By the definition of the outer limit, there exists a sequence of trios {(u, x, x")} converging
to (i, X, X) (again d(u, U) — 0 is equivalent to u — i since U = {it}) with a corresponding
sequence y € a(u, x,x’) N A(u, x, x') that satisfies y — y. It follows from condition (i)
in (20) that y = f(x), so condition (ii) in (20) implies that y = f(x) € A(u, X, X) € F(X).
Since y was an arbitrary element of the outer limit set, we conclude that second condition
for validity at X for U also holds. O

REMARK. Notice that the assumption in Proposition 3.1 of the existence of a sequence
(u, x, x') — (u, x, x) for which a(u, x, x') € A(u, x, x) is automatically assured when valid-
ity is used in Levy [23, Theorem 3.2] to establish that the limit X of the iterates conforming
to the generic algorithm for solving inclusions is a solution to the inclusion (5).

Notice also that the new definition of a valid approximation of (5) at x for U in the case
of a singleton target U = {u} is generally a weaker condition than the original definition
of validity from Levy [23]. In this sense, the new definition is an improvement over the
original even in the setting native to the original definition.

PROPOSITION 3.2.  [f the approximating inclusion (6) is a valid approximation of (5)
at x for U, then X solves the original inclusion (5).

Proor. This follows since the combination of inclusions indicated by target set validity
immediately gives f(x) € F(x). O

REMARK. Note that in Levy [23, Theorem 3.2], the parameter sequence {u,} was
assumed to converge to the single parameter target u to conclude that X solves the inclu-
sion (5), but in Proposition 3.2, no such assumption is necessary to make the same
conclusion.

3.2. Sufficient condition or validity of successive approximation methods. The va-
lidity of a successive approximation method is closely connected to the question of whether
the approximating inclusion

Vg, (x') € 9n,, (X) (21)
is a valid approximation of
—Vfo(x) € Nx(x) (22)

at x for U := M x {h}. In this case, the two conditions defining validity of the approximating
inclusions are
o —Vfy(x) € limsup (—Vg, . (x')Ndn, (x'))
(x,x')—>(x, %)
d(u, U)—0
e limsup (—Vg, (x)Nan, (x)) S Nx(X).
(x,x")—>(X,X)
d(u, U)—0
If the intersection set
_th,x(x,) N anﬂ,,x(x,) (23)

is nonempty, then it evidently reduces to the singleton {—Vg, .(x")}. According to its defi-
nition, the quadratic approximation satisfies Vg, ,(x") = Vf,(x) 4 h[x" — x], which has limit
point Vf,(X) for any sequence {(u,x, x')} with (x, x') — (%, X) and d(u, U) — 0. Thus,
if the sequence of intersection sets (23) is nonempty for some sequence {(u, x, x')} with
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(x,x") — (X, %) and d(u, U) — 0, it has the limit point —Vf,(X). Therefore, the first condi-
tion defining validity follows from the nonemptiness of the intersection sets (23) for some
sequence {(u, x, x')} with (x,x’) — (X, ) and d(u, U) — 0. Such nonemptiness is pre-
sumed in the definition of a valid successive approximation method, so only the second
condition for validity will need to be verified in the following theorem.

THEOREM 3.1 (SUFFICIENT CONDITION FOR VALIDITY OF SUCCESSIVE APPROXIMATION
METHODS). If the inclusion

limsup (—Vg, (x')Ndn, (x')) S Ny (¥) (24)
(x, x")—> (X, %)
d(u, U)—0
holds, then the corresponding successive approximation method is valid at X for U.

Proor. To verify the validity of the successive approximation method, we presume the
existence of a sequence (g, X;, X;,,) satisfying d(uy, U) — 0 and (x;, x.,,) — (%, %),
where (x;, x;,,) corresponds to the successive approximation method for the parameter
sequence {u,}. Since the approximating inclusion (21) encodes the necessary optimality
condition for the approximation problem defining the successive approximation method, we
can conclude that the intersection sets (23) corresponding to (i, x;, X;,,) are nonempty.
Then, it follows from the above discussion and the assumed inclusion (24) that (21) is a
valid approximation of (22) at X for U. The validity of the successive approximation then
follows from Proposition 3.2. [

REMARK. The proof of Theorem 3.1 shows why we have chosen the same terminology
of validity to describe successive approximation methods and approximating inclusions.

3.3. Penalty examples. Recall from the beginning of §2, the optimization problem of
minimizing f(x) := x? 4+ x3 over the constraint set

X :={x=(x;, x,) € R* with x; + x, = 1} (25)
and the corresponding quadratic approximation function
G, o (x) 1= ()7 + (x)*.
The normal cone to X at any X in this case is
U [r} if ¥e X,
Ny ()C) =3 rerLT

(%} otherwise

(26)

and we considered two different families of penalty functions n, , in §2.

3.3.1. Exact penalty example. The first family of functions n, , we considered in §2
was the family of exact penalty functions defined by (8):

n, (x') = plx; + x5 — 1.

The subgradients of the n,, , at x’ in this case are given by

I:'u] if xj+x,>1
i
r .
=1 U |7 itae=1, @)
re[—p, pu]
—|:Mi| if x]+x, <1
i
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so the intersection sets in the outer limit set on the left side of (24) are given by

|:'ui| if X +x,>1and u=—-2x] =—-2x,
®

1
—|:1] ifxj=x,=3and p>1

_VQh,x('x,) N 8”;1,, x('x,) = (28)
M 3 / / / /

—|: ] if xj +x;, <1 and pu =2x; =2x},

o

%) otherwise.

As long as the normal cone Ny (X) is nonempty, it is clear that the intersection sets in (28)
are contained in Ny (X), so the closedness of the normal cone in this case ensures that the
corresponding outer limit set in (24) is also contained in Ny (X). According to Theorem 3.1
then, the successive approximation method using the exact penalty functions n, , defined
by (8) is valid at any X € X for U := M x {V2f,(X)} with M any parameter target set.

3.3.2. Inexact penalty example. The second family of functions n, , we considered
in §2 was the family of inexact penalty functions defined by (9):

n/.L,X(x/) = ’“L(x; +x; - 1)2

There is a single subgradient associated with each function in this family, and it is given by

2u(xy +x5—1)
Oy () = N E (29)
2p(x)+ x5 — 1)
so the intersection sets in the outer limit set on the left side of (24) are given by
2u/(1+2u) o
' / _|: xp=xb=mp/(1+2u) and p # —1,
—Vg, (xX)Nan, (x)= 2u/(1+2u)
Z otherwise.

(30)
As long as the normal cone Ny (X) is nonempty, it is clear that the intersection sets in (28)
are contained in Ny (X), so the closedness of the normal cone in this case ensures that the
corresponding outer limit set in (24) is also contained in Ny (X). According to Theorem 3.1
then, the successive approximation method, using the exact penalty functions n, , defined
by (8) is valid at any X € X for U := M x {V2f,(X)} with M any parameter target set.
Both of the examples given so far have involved families of penalty functions that are
independent of the variable x. In the next subsections, we give examples involving well-
known classes of functions, which are neither of these things.

3.4. SQP example. The SQP method for solving nonlinear programs is one of the most
famous methods in numerical optimization. The standard nonlinear program is

min fy(x) over x € X :={x € R" with f;(x) <0 for i € .¥, and f;(x) =0 for i € €}

for smooth functions f;: R" — R and index sets .¥ and € together containing m indices.
Notice that if we define the set K € R™ by

K :={ze€R" with z; <0 for i € .¥ and z; =0 for i € €},
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then we can rewrite the standard nonlinear program in the equivalent (unconstrained) form
min f(x) + 64 (g(x)) over x e R" (31)
in terms of the “indicator function”

0 ifzek,
oo otherwise

Ok (2) =

and the constraint mapping

8(x) :=(fi(x), o(x)s - - -, £ (X))

The composite indicator term 64 (g(x)) in (31) is evidently a nonsmooth penalty function,
which enforces the constraints x € X from the constrained version of the problem.

The classical SQP method takes a current primal-multiplier pair (x, ;) € R” x R™ and
solves the following approximation problem for the next primal iterate x,; = x":

min f, (x;) + Vo (xp) [x" — x ] + %[x/ - xk]T : szo(xk)[x, —x ]+ Ny x, (x),

where the family of functions n is defined by

n, () =3[ —x]" - V2, (0)[x" — x] + 8 (Ve (1) [x' — x] + g(x)) (32)
in terms of the functions
g () =p" - ((0),. ... f,,(x). (33)

The multiplier is then updated by adding the multiplier associated with the solution x’ to the
approximation problem and the process is repeated. However, our successive approximation
methods allow general parameter updating, so we will consider a generalization of the
classical SQP method, where only the updating of the primal variables x is specified.

3.4.1. The primal SQP method. Given a current iterate x, and parameter u,, choose
the next iterate x,,, = x’ by solving the (unconstrained) approximation problem

min f(x,) + Vo (x)[x = x ]+ 3 [x' —x]"- V2 fo(x)[x —x ] +n,, , (x)  over all X' eR",

where the family of functions n, , is defined by (32).

For the classical SQP method with the usual multiplier updating, the multipliers typically
converge to the multiplier w associated with the primal solution. The following lemma
shows that a familiar constraint qualification ensures that the primal SQP method is a
valid successive approximation method at X for U := M x {V?f,(x)} with M any bounded
parameter target set.

LeEmMA 3.1. Under the Mangasarian-Fromovitz constraint qualification at X:

the primal SQP method is valid at X for U := M x {V?f,(¥)} with M any bounded parameter
target set.

ProoF. Under the Mangasarian-Fromovitz constraint qualification, Rockafeller and Wets
[25, Example 10.8] gives the subgradients of n,, , for x near X as

dny, (x') = Vg, (0)[x" = x]+ Vg (x)" - N (Vg(x)[x' — x] +g(x))
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as well as the formula
Ny (%) = Vg(X)" - Ny (g(%)) (34)

for the normal cone to X at x. According to Theorem 3.1, we need to verify the inclu-
sion (24), and evidently, the intersection sets in the outer limit set on the left side of (24)
in this case are given by

(=Vfo(x) = V2 fo(0)[x' = x]) N (V2g,, (%) [ = x]+ Vg (x)" - N (Vg (x)[x' — x]+g(x))).  (35)

From the definition of the functions g, in (33) and the fact that the parameter target set M
is bounded, it follows that the term V? 8, (¥)[x" — x] in the intersection (35) approaches zero
as (x,x') — (X, %) and d(u, U) — 0. The outer limit set of the intersection sets (35) is thus
contained in the outer limit set

limsup Vg(x)" - Ny (Vg(x)[x" — x] +g(x)).

(x,x')=>(X, %)

This, together with the formula (34), implies that the inclusion (24) from Theorem 3.1
follows in this case from the inclusion

limsup Vg(x)" - Ne(Vg(x)[x" — x]+g(x)) S Vg(X)" - N (8(%)). (36)

(x, x')—>(X,X)

We can deduce this inclusion from the Mangasarian-Fromovitz constraint qualification as
follows: Any element z in the outer limit set on the left side of the inclusion (36) is the
limit point of a sequence Vg(x)” - v for vectors v € Ng(Vg(x)[x — x]+ g(x)). If z=0, it
is trivially in the set Vg(x)T - Ny (g(X)) since the zero vector is always in the normal cone.
We therefore suppose z # 0.

Case 1. The vectors v are bounded. Then, at least some subsequence of them has a limit
point v, which must satisfy z = Vg(x)T - v. Moreover, the outer semicontinuity of the normal
cone mapping (c.f. Rockafeller and Wets [25, Proposition 6.6]) implies that v € Ny (g(X)),
so the inclusion (36) holds in this case.

Case 2. The vectors v are not bounded. Then, due to the fact that Ny is a cone, we know
that the unit vectors p := v/||v|| are also in the normal cone N (Vg(x)[x — x] + g(x)).
Moreover, at least some subsequence of them has a limit point p, which is a unit vector and
must satisfy p € Ny (g(x)) because of the outer semicontinuity of the normal cone mapping.
However, from the convergence Vg(x)” - v — z, we know that

lim Vg(x)" - p=1im Vg(x)" - v/|v|| = lim z/||v]| =0.

This implies that Vg(x)” - p = 0, which contradicts the Mangasarian-Fromovitz constraint
qualification at x. O

REMARK. Note that our primal SQP method is still a valid successive approximation
method when more general functions g, than the classical ones (33) are used, as long as
the terms Vg, (x)[x" — x] in the intersection (35) still approach zero as (x, x') — (X, X) and
d(u, U) — 0. For instance, we could instead use functions of the form g, (x) := pllg(x)|?
for w € [0, c0), which act as penalty functions in the case when all the constraints are
equations (i.e., .5 = @).

3.5. Augmented Lagrangian example. Augmented Lagrangian methods have been
developed for solving nonlinear programs like

min fy(x) over x e X:={xeR": fi(x)=0fori=1,2,...,m},



Downloaded from informs.org by [139.140.97.245] on 24 October 2023, at 12:37 . For personal use only, all rights reserved.

Levy: Convergence of Successive Approximation Methods with Parameter Target Sets
Mathematics of Operations Research 30(3), pp. 765-784, © 2005 INFORMS 779

where the f; are smooth functions on R". The standard approach is to construct a family of
“augmented Lagrangian” functions L, (x) := fy(x) + p,(x) from the vector-scalar parameter
pairs u:= (A, ) € R" x R* and the functions

Pu(0) = XA+ S ()

where (A); denotes the ith component of the vector A € R™. For a given parameter u,,
the (unconstrained) augmented Lagrangian function L, is then approximately minimized
via some appropriate scheme. If Newton’s method is used to minimize the augmented
Lagrangian, we get the following “primal” augmented Lagrangian method (so called because
only an update on the primal variable x is specified).

The primal augmented Lagrangian method. Given a current iterate x, and param-
eter u, choose the next iterate x,,, = x’ by solving the (unconstrained) approximation
problem

min f, (x,) + Vo (xp) [x" — x, ] + %[x/ - xk]T : sz()(xk)[x/ —x ]+ Ny x, (x'),
where the family of functions n,, , is defined by
n, (X) 1= pu(x) + Vp, (O)[x = x] + 3[x" = x]" - V2p, () [« = x] (38)

in terms of the functions p, from (37).
The single subgradient associated with each of the n, , is given by

ny, (x') = Vp,(x) + V2p, (0)[x" = x] (39)

and the normal cone to X at X is

{Zrin,.(x) r € R} if xe X,
Ny(x) =3 L= (40)
1%} otherwise.
From the definition (37) of the functions p,, it is clear that their gradients satisfy
VP (x) = 3 0(A + 20£,(x) Vfi(x). (41)
i=1

If the Hessian matrices V> P, (x) have uniformly bounded norm for all u near the parameter
target set M and all x near ¥, then according to (39), any limit point from the sets dn,, (x')
with (x, x") — (X, X) and d(u, M) — 0 is just the limit of the corresponding Vp, (x). The
formulas (41) and (40) ensure that such a limit point will be in the normal cone Ny(X),
which leads to the following lemma.

LEMMA 3.2. If the Hessian matrices Vzpﬂ(x) have uniformly bounded norm for all w
near the parameter target set M and all x near X, then the primal augmented Lagrangian
method is valid at X for U := M x {V*f,(X)}.

ProoF. This follows from Theorem 3.1 and the discussion preceding the statement of
the lemma since any element of the intersection on the left side of (24) is automatically in
the set dn,, (x'). O

Notice that we are taking a more general approach here to parameters than is typical.
The classical augmented Lagrangian method involves essentially two stages at each step
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of the algorithm: The inner stage involves the complete approximate minimization of the
augmented Lagrangian function

L,(5) = 6) + L) + 1 ()’

for a fixed value of the parameter u = (A, 1), with as many steps as are necessary to
achieve an acceptable approximate minimizer. The outer stage then updates the iterate x,
to be the approximate minimizer from the inner stage, possibly increases the parameter 7,
from m, and updates the multiplier according to

Nt = N 20 (1 () - s fa(30))- (42)

Since it requires no special parameter update scheme, our primal augmented Lagrangian
method allows a whole array of new possibilities beyond the classical updating scheme. For
instance, our method allows new schemes, where the multiplier A is updated via (42) after
each step in the inner stage approximate minimization of the Lagrangian, or perhaps after
only some of the steps in the inner stage, so that the two stages from the classical approach
are no longer necessarily distinct in our method. In addition, our method allows entirely
different parameter update schemes having no connection to the classical formula (42).

Of course, completely arbitrary multiplier updating will not necessarily produce nice
convergence results. In the next section, we apply Theorem 2.2 to analyze the convergence
rate for our primal augmented Lagrangian method and, consequently, develop conditions on
the parameter updating that ensure nice convergence properties.

4. Convergence rate for the primal augmented Lagrangian method. To apply The-
orem 2.2 to the primal augmented Lagrangian method, we first notice that the bound (16)
in this case is satisfied by the convergence functions

Wiy iy (1) = er’+|h—H|r, (43)
where € > 0 satisfies
IV (%) = Vo (x) + V2 £ (D) [x = K]l < ellx = X|*  for x e B(X: €,),
since then the following series of inequalities holds for all x € B(x; €,) and h € H:
IV/o(%) = Vfo(x) — A[x — x]|
= IV (%) = Vfo (x) + V2 £ () [x = X] + (7 = V2 fy () [x — 7] |
< V(%) = Vfo(x) + V2o (D)[x = Z][ + | (h = V2 £, (3))[x — 7]
< €llx =X+ [1h = V2 fo(Dllx - X]|.

The approximating inclusion —Vg, .(x') € dn, (x') defining our primal augmented
Lagrangian method is equivalent to the equation

=Vfo(x) = hlx" = x] = Vp, (x) + V?p, (x)[x' — ], (44)
which can be immediately rewritten in terms of any fixed x € R" as
(h+ V2P, ()Y = T = = Vfy(x) = BT = x] = Vp, () = V2p, (1) [T —x].

By adding and subtracting the term Vf(X) + Vp,(¥) on the right side of this equation, we
get the equivalent expression

(h+ V?p,(0))[x' = X] = Vfy(¥) = Vfy(x) = A[X = x] + Vp,.(¥) = Vp,.(x)
=V2p, (0)[X = x] = Vfo (%) = Vp,(3).
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As long as the matrix &+ V? p,(x) is invertible with inverse having norm less than or equal
to the same « € (0, o0) for all (u, i, x) € U x B(X; €,), we conclude that

Ix' =Xl < ellyll+allVp, (¥) = VP, (x) = V2 p, ()X = x]ll + ]l = Vo () = Vp, (D), (45)

where we have substituted the identity y = Vf,(x) — Vf,(x) — h[x — x] from the expression
for the family of mappings X, , defined in (15). Because of the form of the function p,
in this case, we know that the bound holds that

IV, (%) = Vp, (x) = V2p, ()[X = ][] < (allAll +bn) | x — X

for some scalar a > 0 corresponding to the Taylor linear approximation at x € B(X; €,)
of the gradient mapping associated with the mapping x — (f;(x), ..., f,(x)), and b >0
corresponding to the Taylor linear approximation of the gradient mapping associated with
the function x — Y7, (f:(x))?. Moreover, as long as there exists a Lagrange multiplier
A eR” for X, we know that —Vf,(¥) = > A, Vf,(¥) and f,(X) =0, in which case the last
term on the right side of (45) is bounded above by

allA = A 2NV

i=1

Under these assumptions then, and according to the bound (45), the family of mappings
X(u,uy(x,y) from Theorem 2.2 in this case has ¢>-calm selections for parameter target set

U = (M} x [7, 00) x {V2y (%)} (46)
(for any 17 € R™) with bivariate convergence functions defined by
Gy (1. 1) 1= a(al| Al + om)r? + ac|A = X + e, (47)

where ¢:=321, [ VA(X)].

According to Theorem 2.2 and the preceding discussion of this example, we need to
consider sequences of parameters that are target set appropriate for (i, ||x, — x||) for the
convergence functions defined by

Wiy (r) 1= 2a(e + al| A + bn)r? + 2al|h — '||r +2ac[|]A = X'

in terms of ¢ >0, b >0, and ¢ > 0 from (47) and € > 0 from (43). Thus, we need to
establish the convergence to zero of the sequence of scalars defined by r, := ||x, — X|| and

ri=2a(e+al Ayl + bnkfl)r]?—l +2allhy_; — szo(f)””kq +2ac|| Ay — /_\”’ (48)

where the infimum over the parameter target set U is unnecessary since only the
n-component of U is nonsingleton, and ¢ does not depend on 7. To conclude from (48)
that r, — 0, we need first the following lemma for general quadratic iteration functions.

LeEMMA 4.1.  Consider a family of quadratic functions q,: R— R indexed by k=0,
1,2,... and defined by q,(r):=A,r*+ B,r+C,. Assume that there exist A€ (0,00) and B €
[0, 1) such that the coefficients satisfy A, € (0, A], B, €[0, B], and C, €[0, (1 —B)*/(4A)) for
all k. If, in addition, C, — 0 and ry € [0, 7] for r:=(1—B)/(2A), then the sequence of scalars
defined by r,=q,_,(r,_,) converges to zero.

ProoF. First, notice that since C, — 0 and C, are strictly less than (I — B)?/(4A)
for all k, we can assume that the coefficients C, are actually all less than or equal to
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(1 — B)?/(4A) — € for some small € > 0. It follows that the family of quadratic functions
satisfies
q,(r)e[0,7—e€] forall r €0, 7] and all k, (49)

so that r, € [0, ¥ — €] for all k > 1. If we define

o (=B)— V(B —1)? —4A,C,
ke 24, ’

it follows that g, (r}) = r; and that r;; — 0. Since r;" is evidently in the interval [0, 7], it
follows from (49) and the fact that r; = g, (r{") that ;" is actually in the interval [0, 7 — €]
for all k. From the mean value theorem, we get the following series of inequalities for
all k> 1:

I7ier = 7l = Nlg(r) = g (rO|
= g (£)(re —ro)|l - for some &, € [0, 7 — €]
< (1 =24¢)[lr, = r{-

If we combine this with the fact that

17t = el = Wrie = rll =+ Wl = ra s
we get
Ireer = réall = (U =24&) [re = rfll + [l = r - (50)

Since the sequence {r;} converges to zero, we know that ||rf —r;, || = 0, so we can
conclude from (50) that the sequence of differences {r, — r;'} converges to zero. Moreover,
since r; — 0, this means that the sequence {r,} also converges to zero as claimed. O

From Lemma 4.1 and the expression (48) for r, as the output of a quadratic function
at r,_,, we can conclude that the sequence {r,} converges to zero as long as the following
conditions are met:

e 35, €[0,1/(2a)) such that ||z, — V2 fy(X)| <8, Vk=0,1,2,...
e 35, ¢ R" such that ||\, <8, Vk=0,1,2,...
e 35, € R" such that », <8; Vk=0,1,2,...
(1=208,)? (51
Vk=0,1,2,...
16a2c(e + ad, + bés)
_ 1—2aé,
x| < .
4a(e+ ad, + boy)

o A\, — A with [[A, —A|| <

o ryi=|lx,—

To conclude, we state the following corollary to Theorem 2.2, which consolidates what
we have discovered about the primal augmented Lagrangian method.

CoOROLLARY 4.1 (CONVERGENCE OF THE PRIMAL AUGMENTED LAGRANGIAN METHOD).
Assume that the following constraint qualification holds:

o There exists a Lagrange multiplier AeR” for X,
and that there exists a scalar €, >0 and a set U CR™ x RT x R™" containing the target
set U defined in (46) for some 1 € R* such that the following generalized second-order
condition holds:

e There exists an o € (0,00) such that for all (u,h,x) € U x B(X; €,), the matrix
h+ Vzpﬂ(x) is invertible with inverse having norm less than or equal to .
If the conditions (51) hold, then any sequence of iterates {x,} € B(X; €,) generated by the
primal augmented Lagrangian method for parameters u, = (A, 0, h,) with d(u,, U) — 0
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satisfies x, — X, where X solves —Vf,(x) € Ny(x), and moreover the convergence rate is
governed by

e — %I < 2a(e +all Al + b0 lx, = ZI° + 2a by — V2 fo(F) 13, — 1| + 2ac]|A, = A

for the scalars a>0, b >0, and ¢ >0 from (47) and € > 0 from (43).

Proor. This follows from Lemma 3.2 and Theorem 2.2 since the assumption in
Lemma 3.2 that the Hessian matrices Vzpﬂ(x) have uniformly bounded norm for all w
near the parameter target set M and all x near x follows from the generalized second-order
condition here. [

REMARK. Corollary 4.1 complements and extends existing results for the classical aug-
mented Lagrangian method. For instance, see Nocedal and Wright [24, Theorem 17.6]
where the standard choice of h, := V2f,(x,) is used, the stronger constraint qualification
of linearly independent Vf;(x) is assumed, and the standard second-order sufficient condi-
tion that the Hessian in x at (X, /_\) of the standard Lagrangian is positive definite on the
critical cone. In the proof of Nocedal and Wright [24, Theorem 17.5], these conditions
are shown to imply the uniform positive definiteness (and hence invertibility) of the matrix
V2 f, (%) + V2p;’n(x) for all ) € [7, 00). In this situation, our second-order condition in
Corollary 4.1 follows from the continuity of the mapping (u, &, x) — (h+ Vzpy(x)). The
existing results like Nocedal and Wright [24, Theorem 17.6] for augmented Lagrangian
methods use the standard multiplier update based on (42), but our Corollary 4.1 provides
convergence results for any sequence of parameters approaching the target set.
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