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Research in Dynamical Astronomy and the Quest for
Planet Nine

William Moll and Donna D’Alessio
Seton Hall University

Abstract

The field of dynamical systems theory, greatly
advanced by Henri Poincaré in the late 19th cen-
tury, has made invaluable contributions to celes-
tial mechanics, helping to describe motion in the
solar system and beyond. Poincaré famously em-
ployed the techniques of dynamical systems to ad-
dress the Three-Body Problem. In recent years, a
myriad of research has addressed the possibility of
the existence of a new planet (“Planet Nine”) be-
yond Neptune, based on evidence from the unique
structure of various objects observed in the Kuiper
Belt. Initial research out of the California Insti-
tute of Technology has engendered significant con-
troversy over concerns of selection bias and lack
of evidence, despite claims of a high level of cer-
tainty in their results. We created simulations in
Wolfram’s Mathematica and Universe Sandbox to
visualize and further study perturbations caused
by Planet Nine on numerous objects in the Kuiper
Belt. A Lagrange contour plot was produced in
Python to observe Planet Nine’s possible effect
on the solar system. From this research, the ex-
istence of Planet Nine cannot be positively es-
tablished, but a better understanding of the dy-
namics of a system including Planet Nine can be
achieved through the use of simulations and dy-
namical studies.

1. Introduction

In undertaking this project, we embarked with
the goals of achieving a better understanding of
dynamical systems theory, delving into the world
of mathematical astronomy, and exploring an on-
going scientific controversy. With our sights
locked on outer space, Planet Nine research came
into view as a way to advance our knowledge of
mathematics and astronomy as well as perhaps
make a modest contribution to an open scientific
question. Within the last decade, hypotheses about
a distant planet beyond Neptune have taken shape
and evolved into a more realistic proposition than
initially believed. Upon the inspection of clus-
tered argument of perihelion (ω) measurements in
a number of Kuiper Belt objects, hypotheses from
the early 2000s resurfaced in the form of a Trans-
Neptunian perturber in the solar system (Trujillo
& Sheppard, 2014). Following these observations,
Batygin & Brown (2016) examined the evidence
for this distant planet, supporting the idea math-
ematically. Given the estimated distance of this
planet from the Sun, more than two orders of mag-
nitude larger than that of Earth, a mathematical ap-
proach is the best that can be applied at this time.
Fortunately, mathematics and astronomy have a
storied history that is centuries old.

The remainder of this paper is structured as
follows: Section 1.1 provides an overview of
the necessary dynamical systems background, and
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Section 1.2 then reviews the history of Planet Nine
investigations. Section 2 presents our methods and
Sections 3 and 4 then present, respectively, a dis-
cussion and our conclusions.

1.1. Mathematical Foundations

Dynamical systems provide a functional de-
scription of the solution of a mathematical model
describing a problem, e.g., the motion of bodies in
outer space. Dynamical systems theory is a math-
ematical formalization that defines a state space,
a set of times, and an evolution rule. The state
space may be finite or infinite, as well as contin-
uous or discrete. For a continuous system, the set
of observations can be either discrete (and typi-
cally regular in time or some other parameter such
as angle) or itself continuous. The evolution rule
may be deterministic or stochastic, as well as au-
tonomous or time-dependent. Differential equa-
tions are typically used to define a continuous-
time dynamical system. Perko (2001) defines a
dynamical system as a function φ(t,x), defined
for all t ∈ R,x ∈ E ⊂ Rn. This describes how the
points x ∈ E evolve with time. A dynamical sys-
tem on E is a C1-map

φ : R×E → E (1)

where E is an open subset of Rn and if φt(x) =
φ(t,x), then φt satisfies the following:

φ0(x) = x ∀ x ∈ E
φt ◦φs = φt+s ∀ s, t ∈ R,x ∈ E.

Note that if the system evolves from an initial con-
figuration, R can be replaced by R≥0. Celestial
motion is a classical example of such a system. In
fact, problems in dynamical astronomy have moti-
vated many of the developments in dynamical sys-
tems theory.

Modern celestial mechanics owes much to the
pioneering work of Johannes Kepler. His research
led to the modern laws of planetary orbits and
modified the heliocentric theory of Canon Nico-
laus Copernicus. Kepler realized that planetary or-

bits were elliptical rather than circular with epicy-
cle, as had been previously believed, and also ex-
plained how planetary velocities vary. The Kepler
Problem is a special case of the Two-Body Prob-
lem, in which the two bodies interact by a gravita-
tional force that varies in strength as the inverse
square of the distance between them (Kepler &
Donahue, 2015). Sir Isaac Newton et al. (1999)
continued to advance the field with his three laws
of motion and his law of universal gravitation, his
contributions providing a more rigorous founda-
tion for Kepler’s laws.

Following Newton, Joseph-Louis Lagrange
(1811) rigorously studied the Three-Body Prob-
lem, i.e., considering the initial positions and ve-
locities (or momenta) of three point masses and
solving for their subsequent motion according to
Newton’s laws. However, unlike the Two-Body
Problem, no general closed-form solution exists
when a third object is introduced. Lagrange also
analyzed the stability of planetary orbits, and dis-
covered the existence of Lagrangian points, also
known as L-points, or libration points. L-points
are points of equilibrium for small-mass objects
under the influence of two massive orbiting bod-
ies. Lagrangian mechanics is a reformulation
of classical mechanics. Rather than focusing
on “force,” Lagrange’s approach emphasizes “en-
ergy” and is based on the principle of stationary
action. He developed a method by which a sin-
gle polar coordinate equation could be used to de-
scribe any orbit.

In this restricted Three-Body Problem, it is
well known that there are five Lagrange points to
mirror the two-body case as the third mass is ne-
glected. These points are studied for their stability
to see if perturbations will affect the path of an
object that would otherwise remain at the equilib-
rium point. The stability of Lagrange points four
and five in particular is a topic of debate. The find-
ing of asteroids or other celestial bodies at L4 and
L5 in almost all planet-star systems seems to im-
ply that these two Lagrange points are stable. With
further examination, however, it is determined that
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this is not always the case. For these points to
be stable, the heaviest mass, m1, must be substan-
tially heavier than the second heaviest mass, m2.
To find the Lagrange points, one must consider the
bodies in a rotating frame of reference, where two
heavier masses m1 and m2 do not move. The dis-
tance between m1 and m2 will be R, therefore, the
two heavier masses’ positions are:

r1 =

(
− m2R

m1 +m2
,0,0

)
,

r2 =

(
m1R

m1 +m2
,0,0

) (2)

The angular frequency of the rotating frame of ref-
erence, Ω, will only hold because we consider a
circular restricted 3-body problem defined as:

Ω
2R3 = G(m1 +m2) (3)

The Lagrange points, L4 and L5, are obtained by:

L4 =

(
R
2

(
m1 −m2

m1 +m2

)
,

√
3

2
R,0

)
,

L5 =

(
R
2

(
m1 −m2

m1 +m2

)
,−

√
3

2
R,0

) (4)

It is important to look at the generalized potential
about the mass m3 to find the dynamical stability
of motion near the equilibrium points. To find this,
we will add the coriolis acceleration and the cen-
trifugal acceleration because we are observing in
a rotating frame. Let r be the position vector of m3
and Ω the angular velocity such that Ω= (0,0,Ω).
Let d1 and d2 be the distances between m3 and m1
and m3 and m2, respectively.

d2
1 =

(
x+

m2R
m1 +m2

)2

+ y2 + z2,

d2
2 =

(
x− m1R

m1 +m2

)2

+ y2 + z2

(5)

Therefore, the total acceleration, r̈, and the gener-

alized potential, U , are calculated by:

r̈ =−Gm1 (r− r1)

d3
1

− Gm2 (r− r2)

d3
2

−2Ω× ṙ−Ω×Ω× r

U =−Gm1

d1
− Gm2

d2

−2Ω(xẏ− yẋ)− Ω2

2
(
x2 + y2)

(6)

The potential, in addition to position, is dependent
on velocity. It must be taken into consideration for
the stability of the Lagrange points, even though
it does not affect their positions. Therefore, we
must separate the components that are dependent
on velocity to obtain:

U ′ =U +2Ω(xẏ− yẋ)

=−Gm1

d1
− Gm2

d2
− Ω2

2
(
x2 + y2) (7)

We get the following when we reduce Equation (7)
by components:

ẍ =−
Gm1

(
x+ m2R

m1+m2

)
d3

1
−

Gm2

(
x− m1R

m1+m2

)
d3

2

+2Ωẏ+Ω
2x

=−∂U ′

∂x
+2Ωẏ

ÿ =−Gm1y
d3

1
− Gm2y

d3
2

−2Ωẋ+Ω
2y (8)

=−∂U ′

∂y
−2Ωẋ

z̈ =−Gm1z
d3

1
− Gm2z

d3
2

=−∂U ′

∂ z

Using the Taylor series expansion of U ′ around the
Lagrange point (x0,y0,z0), we rewrite the gener-
alized potential as a sum of partial derivatives and
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are left with:

U ′ =U ′
0 +U ′

x (x− x0)+U ′
y (y− y0)

+U ′
z (z− z0)+

1
2

[
U ′

xx (x− x0)
2

+U ′
yy (y− y0)

2 + U ′
zz (z− z0)

2
]

+U ′
xy (x− x0)(y− y0)

+U ′
xz (x− x0)(z− z0)

+U ′
yz (y− y0)(z− z0)

(9)

where U ′
0 = U ′|(x0,y0,z0)

and U ′
X = ∂U

∂X

∣∣∣
(x0,y0,z0)

for

any variable X . However, note that Uxz = Uyz = 0
and that for Lagragange points U ′

x =U ′
y =U ′

z = 0.
Thus,

U ′ =U ′
0 +

1
2

[
U ′

xx (x− x0)
2

+ U ′
yy (y− y0)

2 +U ′
zz (z− z0)

2
]

+ U ′
xy (x− x0)(y− y0)

(10)

We linearize the equations of motion and look
at the small perturbations to analyze the stability
about the equilibrium points in a system. The La-
grange points are fixed points because of the ref-
erence frame. The following equations are given:

x = x0 +δx ẋ = δ ẋ
y = y0 +δy ẏ = δ ẏ
z = z0 +δ z ż = δ ż

(11)

When we plug these values into (10), we acquire:

U ′ =U ′
0 +

1
2
[
U ′

xx(δx)2 +U ′
yy(δy)2

+U ′
zz(δ z)2]+U ′

xyδxδy
(12)

Using (8) and (12), we get:

δ ẍ =−U ′
xxδx−U ′

xyδy+2Ωδ ẏ

δ ÿ =−U ′
yyδy−U ′

xyδx−2Ωδ ẋ

δ z̈ =−U ′
zzδ z

(13)

Therefore, we obtain the following:

d
dt


x
y
z
ẋ
ẏ
ż

=
d
dt


δx
δy
δ z
δ ẋ
δ ẏ
δ ż

= M


δx
δy
δ z
δ ẋ
δ ẏ
δ ż

 (14)

where the matrix M is given by

M =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−U ′
xx −U ′

xy 0 0 2Ω 0
−U ′

xy −U ′
yy 0 −2Ω 0 0

0 0 −U ′
zz 0 0 0

 .

We will start by considering only the z-direction.
All Lagrange points are stable in the z-direction.
To prove this, we will let δx = δy= 0. Using (13),
it is determined that δ z and δ ż are independent
of δx,δ ẋ,δy, and δ ẏ and vice-versa, so we can
reduce the matrix to:

d
dt

(
δ z
δ ż

)
=

(
0 1

−U ′
zz 0

)(
δ z
δ ż

)
We have that:

U ′
zz =

Gm1

d3
1

+
Gm2

d3
2

(15)

by the z̈ equation from (8). Now we have d1,d2 >
0 and thus U ′

zz > 0 because d1,d2 are distances.
The eigenvalues of the matrix above are:

±i
√

U ′
zz.

It is important to note the following corollaries:

Theorem 1.1. Given a system X ′(t) = AX(t)
where A has distinct paired complex eigenvalues,
α1 + iβ1,α1 − iβ1 . . . ,αk + iβk,αk − iβk. Let T be
the matrix such that T−1AT is in canonical form:

T−1AT =

 B1
. . .

Bk
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where

Bi =

(
αi βi
−βi αi

)
Then, the general solution of X ′(t) = AX(t) is
TY (t) where

Y (t) =


a1eα1t cosβ1t +b1eα1t sinβ1t
−a1eα1t sinβ1t +b1eα1t cosβ1t

...
akeαkt cosβkt +bkeαkt sinβkt
−akeαkt sinβkt +bkeαkt cosβkt


Corollary 1.1.1. A point in a dynamical system
whose matrix of equations of motion, A, has an
eigenvalue with positive real part is unstable.

Corollary 1.1.2. A point in a dynamical system
whose matrix of equations of motion, A, has purely
imaginary (non-zero) eigenvalues is stable.

Because the eigenvalues are imaginary, by
Corollary 1.1.2, it is understood that the point is
stable, and it can be concluded that all Lagrange
points are stable in the z-direction.

We can then consider only the x and y direc-
tions in the same way we were able to consider
only the z-direction. The equation then becomes:

d
dt


δx
δy
δ ẋ
δ ẏ

= Mxy


δx
δy
δ ẋ
δ ẏ

 (16)

where the matrix Mxy is given by

Mxy =


0 0 1 0
0 0 0 1

−U ′
xx −U ′

xy 0 2Ω

−U ′
xy −U ′

yy −2Ω 0

 .

The corresponding theorem and its proof are
as follows (Greenspan, 2014):

Theorem 1.2. The Lagrange points L4 and L5 are
stable in all directions if and only if:

m1

m2
≥ 25+3

√
69

2
≈ 24.9599 (17)

Proof. To prove this, we start by using (7) to com-
pute the partial derivatives found in (16). Recall
that for L4 and L5, we have d1 = d2 =R. Therefore
when we evaluate the partial double derivatives at
L4 and L5, we obtain:

U ′
xx =

Gm1

d3
1

+
Gm2

d3
2

−
3Gm1

(
x+ m2R

m1+m2

)2

d5
1

−
3Gm2

(
x− m1R

m1+m2

)2

d5
2

−Ω
2

which, evaluated at x = R
2

(
m1−m2
m1+m2

)
, gives

=
Gm1

R3 +
Gm2

R3

−
3Gm1

(
(m1+m2)R
2(m1+m2)

)2

R2

−
3Gm2

(
−(m1+m2)R
2(m1+m2)

)2

R2 −Ω
2

=
1
4

G(m1 +m2)

R3 −Ω
2

(18)

U ′
yy =

(
Gm1

d3
1

+
Gm2

d3
2

− 3Gm1y2

d5
1

−3Gm2y2

d5
2

−Ω
2
)

which, evaluated at y =±
√

3
2 R, gives

=
G(m1 +m2)

R3 −
3Gm1

(3
4R2)

R5

−
3Gm2

(3
4R2)

R5 −Ω
2

=− 5
4

G(m1 +m2)

R3 −Ω
2

(19)
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and finally,

U ′
xy =−

3Gm1

(
x+ m2R

m1+m2

)
y

d5
1

−
3Gm2

(
x− m1R

m1+m2

)
y

d5
2

which, evaluated at the same x and y values as be-
fore, yields

=∓
3Gm1

(R
2

) √
3

2 R+3Gm2
(
−R

2

) √
3

2 R
R5

=∓3
√

3G(m1 −m2)

4R3

=−3
√

3
4

κ±
G(m1 +m2)

R3

(20)

where κ± = ±(m1 −m2)/(m1 +m2). Using the
definition from Equation (3) of a circular restricted
Three-Body Problem, we get:

U ′
xx =−3

4
Ω

2,

U ′
yy =−9

4
Ω

2,

U ′
xy =−3

√
3

4
κ±Ω

2.

(21)

The matrix from Equation (16) becomes:
0 0 1 0
0 0 0 1

3
4Ω2 3

√
3

4 κ±Ω2 0 2Ω

3
√

3
4 κ±Ω2 9

4Ω2 −2Ω 0


with four eigenvalues:

λ± =±i
Ω

2

√
2−
√

27κ2
±−23,

σ± =±i
Ω

2

√
2+
√

27κ2
±−23.

By Corollary 1.1.1 and Corollary 1.1.2, it is deter-
mined that each of the eigenvalues must be imag-
inary (otherwise there will necessarily be at least

one eigenvalue with Re(λ )> 0, making the point

unstable), so

√
2−
√

27κ2
±−23 must be com-

pletely real. Due to |κ±| ≤ 1,
√

27κ2
±−23 ≤ 2,

the only remaining condition is:

27κ
2
±−23 ≥ 0 (22)

After algebraic manipulation, we end up with:

m1

m2
≥

1+
√

23
27

1−
√

23
27

=
25+3

√
69

2
(23)

This provides the expected condition for the sta-
bility of the Lagrange points, L4 and L5.

“Hamiltonian mechanics” replaces the veloci-
ties used in Lagrangian mechanics with momenta.
Sir William Rowan Hamilton (1834) developed
powerful geometric techniques for studying the
properties of dynamical systems that permit a
much wider class of coordinates than the Newto-
nian or Lagrangian approaches. Hamiltonians de-
scribe the system in terms of components of mo-
mentum and coordinates of space and time while
still considering the conservation of energy of the
system as a whole. Lagrangian mechanics in-
volves one second order ODE while the Hamilto-
nian approach utilizes two first order ODEs. In ad-
dition, Lagrangian mechanics focuses on the con-
figuration space, the representation of all the pos-
sible spatial positions of a given system. Hamil-
tonian mechanics are represented by the phase
space, the portrayal of all the possible motion
states of a system (Hirvonen, n.d.).

One can derive the Hamiltonian formalism out
of the Lagrangian formalism (or vice versa) with
a Legendre transformation (Zia et al., 2009):

L(v,q) =
1
2
⟨v,Mv⟩−V (q), (24)

where (v,q) are coordinates on Rn ×Rn, M is a
positive real matrix, and

⟨x,y⟩= ∑
j

x jy j.
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For every q fixed, L(v,q) is a convex function of
v, while V (q) acts as a constant. Hence, the Leg-
endre transform of L(v,q) as a function of v is the
Hamiltonian function,

H(p,q) =
1
2
⟨p,M−1 p⟩+V (q). (25)

For the Two-Body Problem, the real-valued
function H(q, p) takes its domain on the 2n-
dimensional phase space. The solution of this
Hamiltonian yields results that are consistently
obtainable in these integrable single degree of
freedom systems (Holmes, 1990). This approach
breaks down when another spatial object is intro-
duced in the Three-Body Problem, which can be
formulated as a Hamiltonian system with nine de-
grees of freedom that can be, at best, reduced to
four degrees of freedom by using all 10 classical
integrals of motion. However, the general problem
is still intractable (Arrowsmith & Place, 1992).

The nine degrees of freedom are determined
by nine coupled second order nonlinear ordinary
differential equations (ODEs) (Krishnaswami &
Senapati, 2019):

ma
d2ra

dt2 = ∑
b̸=a

Gmamb
rb − ra

|rb − ra|3
(26)

with position vectors ra for a = 1,2,3. The seven
independent conserved quantities are provided by
the three components of momentum, three compo-
nents of angular momentum, and energy. Due to
the generally unpredictable motions of the three
bodies, closed-form solutions to the problem are
unlikely to be found (Musielak & Quarles, 2014).
To remedy this problem, numerical methods are
employed, an example of which is the use of se-
ries expansions. These expansions yield approxi-
mate solutions that converge slowly, limiting their
usefulness.

Another approach to solving the Three-Body
Problem analytically is by treating it as a restricted
Three-Body Problem. One can simplify the prob-
lem by assuming that there are two large bodies
that travel in circular orbits on a plane with a third

body that is much smaller. When evaluating the
small body relative to a rotating coordinate system
with x-axis as the relative position vector of the
two larger bodies, the smaller body is understood
to have two degrees of freedom and its equations
of motion consist of a single integral.

Well-versed in celestial mechanics, Henri
Poincaré became the first mathematician to iden-
tify a chaotic deterministic system while study-
ing the Three-Body Problem. In the 1880s, Henri
Poincaré discovered aperiodic orbits that are nei-
ther monotonically increasing nor approaching a
fixed point. He was awarded the prize of King
Oscar II of Sweden and Norway for his contribu-
tions to the Three-Body Problem (Alligood et al.,
2010). His work was notable both for his presen-
tation of the Recurrence Theorem and for laying
the basis for local and global analysis of nonlin-
ear differential equations. The Poincaré Recur-
rence Theorem states that specific dynamical sys-
tems will return to a state arbitrarily close to their
starting point after a finite amount of time, con-
tributing significantly to our understanding of or-
bits as dynamical systems (Poincaré, 1993). Other
analytic techniques in this work include Poincaré
maps, stability theory for fixed points, and studies
of periodic orbits. In addition to orbital mechan-
ics, his work is foundational for studies of dynam-
ics encompassing stable and unstable manifolds.

Within the last few years, new strides have
been made in our understanding of the Three-
Body Problem by way of statistical approxima-
tions. Ginat & Perets (2021) shared a new ap-
proximation technique that advanced the under-
standing of the Three-Body Problem significantly
through the use of statistical modeling of stellar
encounters. These models study the results of a
single object with respect to a binary stellar sys-
tem, called a binary-single encounter. By view-
ing these systems as progressions of close triple
approaches, Ginat’s team models the bound non-
hierarchical Three-Body Problem and uses the so-
lution to represent the entire encounter as a ‘ran-
dom walk’. Given the probabilities of movement,
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a random walk is a probabilistic technique for de-
termining the most likely location of a point sub-
ject to random motions. The model developed
by Ginat’s team produces statistically significant
numerical results for measurements of semima-
jor axis distribution, the escaper’s mass distribu-
tion, and the final periapsis distribution, demon-
strating the good fit of the random walk approach
for use with the Three-Body Problem. In addi-
tion, Kol (2021) found that flux-based statistical
testing revealed strong evidence for the formal-
ization of the Three-Body Problem in terms of
flux-based Three-Body statistical measures. Stud-
ies thus far have shown a particularly strong rela-
tionship when studying non-hierarchical states of
escape probabilities, characteristic exponents for
narrow escapes, absorption as a function of binary
energy and binary angular momentum, and life-
time distribution.

With respect to the dynamics of a nearly-
integrable Hamiltonian system, the Kolmogorov-
Arnold-Moser (KAM) Theorem provides condi-
tions under which a chaotic system is restricted in
extent (Moser, 2001). This arises in cases involv-
ing persistence of quasi-periodic motions under
small perturbations. The original theorem, con-
cerned with the stability of motions in Hamilto-
nian systems, fundamentally lends itself to use in
orbital close encounters that may perturb the ex-
pected motion in quasi-periodic orbits. The the-
orem was applied to the Solar System and other
n-body problems, but it was found that the prob-
lem degenerates for numbers of bodies exceeding
three. KAM theory is the basis for understanding
chaos in periodic motion as it pertains to orbital
perturbation and dynamical mechanics. Recently,
Pinzari (2013) developed a rotation-invariant ver-
sion of the theorem showing how to eliminate the
degeneracy of this theorem.

While there is no common, universal defini-
tion of mathematical chaos, Gleick (1987) offers
three helpful descriptions:

• Complicated, aperiodic orbits,

• Recurring behavior that appears to be ran-
dom in a relatively simple dynamical system,

• Irregular, unpredictable evolution of a deter-
ministic, nonlinear dynamical system.

The result of these properties is a definition of
chaotic systems as non-periodic, greatly disor-
dered, and deterministic, while also appearing un-
predictable and random. Today, it is clear that a
system is chaotic if it has sensitive dependence on
initial conditions, which creates large geometric
growth in error for a small relative ∆t.

The simplest chaotic dynamical system is the
Bernoulli shift that is described by Herring & Pal-
more (1989):

xn+1 = D xn mod 1 (27)

where D is an integer that is larger than 1. In base
D arithmetic, x is written as:

x = .a1a2..., (28)

where a(i) takes the values [0,1, ..,D−1]. There-
fore, a shift of the base point to the right by one
digit with each application and mod 1 recovers
the fractional part is the mapping in base D. This
dynamical system on the interval reveals sensitive
dependence on initial conditions (x0) and is clas-
sified by a geometric growth of D with each itera-
tion.

As the Solar System is stable for the relatively
small timescale over which it is observed by hu-
manity, it is unlikely that any of the planets will
collide with each other or be ejected from the sys-
tem in the next few billion years. However, the
planets’ orbits are chaotic when evaluated over
larger timescales. The timescale for which the dy-
namical system is chaotic is called its Lyapunov
time, which is in the range of 2-230 million years
in the case of the Solar System. The Lyapunov
time is the inverse of a system’s largest Lyapunov
exponent (Bezručko & Smirnov, 2010). Alek-
sandr Lyapunov’s influence on the field of dynam-
ics studies should not be understated. He devel-
oped many important approximation methods for
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nonlinear dynamical systems and created the mod-
ern theory of the stability of a dynamical system.
Some of these methods make it possible to define
the stability of sets of ordinary differential equa-
tions (Smirnov, 1992).

1.2. Status Quaestionis

This extensive history in dynamical astronomy
built the foundation for modern research in math-
ematical physics. Well-known physicists associ-
ated with Caltech, Konstantin Batygin and Mike
Brown, published their research relating to a po-
tential “Planet Nine” in the Kuiper Belt (2016).
This paper has faced significant scrutiny and chal-
lenges to its legitimacy due to concerns of (likely
inadvertent) selection bias. For example, a re-
cent study conducted by Napier et al. (2021) could
challenge Brown and Batygin’s findings. On the
other hand, with the James Webb Telescope re-
cently arriving at its final destination, there is hope
in the scientific community that we will be able to
collect images of such a Planet Nine, should it ex-
ist.

Trujillo & Sheppard (2014) observed thirteen
of the most withdrawn objects in the Kuiper Belt.
These objects, with respect to an ambiguous or-
bital feature, shared a similar orbital pattern ob-
tained through the implementation of the Kozai
Mechanism. The Lidov-Kozai Effect is the most
notable dynamical mechanism for constricting the
argument of the periapsis (ω) of a minor plane.
The mechanism causes the argument of pericen-
ter of a minor planet to oscillate about either 90°
or 270°, which means that its periapse, or closest
point to the mass it is orbiting, occurs when the
body is farthest from the equatorial plane. Trujillo
and Sheppard suggested that a massive outer Solar
System perturber may exist that restricts ω for the
inner Oort Cloud Objects, which are icy pieces of
space debris in the Oort Cloud, a spherical shell of
cometary bodies that are believed to surround the
sun beyond the orbits of the outermost planets.

Following Trujillo and Sheppard’s research,

Madigan & McCourt (2016) presented the idea
that the Kuiper Belt could be formed by a cone-
like structure that created a self-gravitational in-
stability. As a result of this structure, they pro-
posed that the minor planets experienced inclina-
tion instability around one to four Galactic years
ago, exponentially growing in inclination, and
evolving a narrow distribution in ω centered on
40° for very eccentric orbits up to about 70° for
lower eccentricity. This proposed solution was
simpler by comparison to the pertuber hypothesis.

In 2016, Batygin & Brown chose six Kuiper
Belt Objects (KBOs) from a set of thirteen that
were observed to be clustered together, a phe-
nomenon claimed to have resulted from Planet
Nine’s gravitational pull. KBOs are a subset of
Trans-Neptunian Objects (TNOs), a group that
also contains scattered disc objects (SDOs) that
are more heavily influenced by the orbit of Nep-
tune than the KBOs studied by Batygin and
Brown. This paper became the first in a number
that quickly followed on this topic.

Dissent ensued in the scientific community
following Batygin and Brown’s research on the
grounds of supposed selection bias. The Outer
Solar System Origins Survey (OSSOS), part of a
project underway to determine observational bi-
ases that manifest within the detected sample,
was conducted from 2013 to 2017 and discov-
ered more than 800 new TNOs (Shankman et al.,
2017). Comparing with existing datasets, re-
searchers involved in the project during this pe-
riod found inconsistencies with the Minor Planet
Center data used by Batygin and Brown.

Brown & Batygin (2019) expounded upon
their existing research and refined some of their
methods; some main points were observational
bias in regards to the longitude of the perihelion,
orbital pole, and a comparison to the OSSOS Sur-
vey. They also refined their simulation and ap-
proach. To determine observational bias as a cause
of the clusterings, they developed a method of
quantifying the observational biases in the obser-
vations of longitude of perihelion and the orbital
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pole position. The paper offered a rebuttal to the
OSSOS analysis by stating that the OSSOS re-
searchers also impose biases by assuming a spe-
cific distribution for the orbital elements of distant
objects.

We note that this research still faces skepti-
cism related to selection bias. Napier et al. (2021)
resurfaced these issues once again following Baty-
gin & Brown’s “new” analysis. Napier et al. ex-
plained that Batygin and Brown observed only a
small portion of the sky at a specific time, dur-
ing a specific year. This observation by Napier
resurfaces the prior concerns of selection bias that

Batygin and Brown received following their first
paper in 2016. Napier and his team selected 14
TNOs from the Outer Solar System Origins Sur-
vey, the Dark Energy Survey, and a third that used
various telescopes. These objects are indicated in
Table 1.

Brown & Batygin (2021) responded to this
criticism, publishing a new set of results, in which
the two updated their bias approach and outlined
new simulation techniques, building upon prior
approaches. With new clustering data through
the adjustment of sampling techniques, Batygin
and Brown updated their statistical significance
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of observed clustering to 99.6%, where 2019 sig-
nificance computation showed 99.8%. This new
clustering analysis arose following a few notable
changes to their approach. First, Batygin and
Brown outline the implementation of a Gaussian
Process emulator in a Markov Chain Monte Carlo
analysis. This process is applied to a new set of
KBOs that is obtained by limiting objects to those
with a semi-major axis 150 < a < 1000 AU and
perihelion q > 42 AU, leaving a smaller sample
of 11 objects. With this new approach, Batygin
and Brown find reason to uphold and update their
analysis from previous work and outline the pa-
rameters of Planet Nine as they reflect simulation
data.

2. Methods

To investigate the claims of selection bias
made by Napier et al. about the KBOs used by
Batygin and Brown, we utilize the JPL Small-
Body Database (SBDB) to run a query from the
parameters given in Brown & Batygin (2021).
This query returns a list of 14 KBOs with both
semi-major axis 150 < a < 1000 AU and perihe-
lion distance q > 42 AU. Table 1 displays the 14
objects used in Napier et al. (2021), 11 in Brown
& Batygin (2021), and the 14 in our paper.

2.1. Universe Sandbox for Orbit Propagation

In Universe Sandbox, we input the orbital pa-
rameters for 14 different KBOs obtained from the
SBDB and Horizons propagation software in tan-
dem. The individual masses are not known for
most of these KBOs, so the known mass of an-
other small object was used as a placeholder be-
fore a statistical approximation could be made.

Figure 1 displays two different perspectives of
Planet Nine with these various KBOs, the Sun,
and other planets at the end of a 500-year prop-
agation period. Universe Sandbox is programmed
as a realistic, physics-based space simulator with
unrivalled graphics. Unsurprisingly, with the re-
quired computing power for maintaining graphi-

cal performance, Universe Sandbox makes use of
Euler’s method for n-body orbit propagation, only
storing 3-4 significant figures and limiting its use-
fulness as a tool for studying high-precision per-
turbations. However, it is useful to visualize the
position and orbit of Planet Nine in the context of
the other objects being observed directly. Use of
the Runge-Kutta Method at the fourth order could
prove to make this technique more reliable, leav-
ing an option for further study.

2.2. Mathematica for Orbit Propagation

Using Mathematica, we were able to imple-
ment an 11-body simulation with the Sun, Planet
Nine, and various KBOs, along with a 10-body
simulation containing the Sun and KBOs. Figure
2 shows the final frame of the 11-body simulation.

These simulations are run for the duration of
the orbital period of Neptune arbitrarily with the
position vector, velocity vector, and mass of each
body. For the mass of Planet Nine in the simu-
lation, we obtained the value of 2.98600 × 1025

kilograms, or five times the mass of Earth, from
Batygin and Brown’s most recent paper. In or-
der to find the hypothesized planet’s position and
velocity vectors, we utilized Matlab. To do this,
we needed Keplerian orbital elements for the ob-
jects. Keplerian orbital elements, or Classical Or-
bital Elements (COEs), comprise a set of infor-
mation that is commonly used to describe the or-
bit of a given object in space relative to the Sun.
The following list comprises a common group of
COEs that were used to compute the information
we needed in Matlab:

• a : Semi-major Axis, the size of the orbit

• e : Eccentricity, the shape of the orbit

• i: Inclination Angle, the angle of the orbit
plane to the central body’s equator

• ω : Argument of Perigee, the angle from the
ascending nodes to perigee point
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Fig. 1. Captures from the Universe Sandbox Simulation
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Fig. 2. This is the output of final position of the 11-body simulation with the Sun, Planet Nine, and various
KBOs. Note that the duration used in this simulation is the duration of Neptune’s solar orbit, 164.79132
Julian Years.

• ν : True Anomaly, the position of the planet
on its orbit

• Ω : Right Ascension of the Ascending Node,
the rotation of the orbit plane from reference
axis.

With this information, we computed instan-
taneous position and velocity vectors for Planet
Nine, the KBOs, and the Sun. These vectors,
along with KBO and Sun parameters, comprised

the information needed to create the simulations
in Mathematica. Excluding Planet Nine from the
simulation, the final image produced looks to be
the same sans the ninth planet, but closer evalu-
ation of final positions revealed perturbations of
position in the fifth decimal place. Mathemat-
ica’s ability to store such precise data is its biggest
strength. Ultimately, the Mathematica simulations
fail to account for the high eccentricities in the or-
bits of these KBOs, instead treating the orbits as
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Fig. 3. The Contour plot of the Sun, Planet Nine, and the five Lagrange points

circular, merely computing the effects of Planet
Nine’s presence on the objects as they pass it on
a plane. Regardless, the influence of Planet Nine
was unmistakably disclosed in the position vec-
tors.

2.3. Python Lagrange Contour Plot

A contour plot was programmed in Python by
making use of matplotlib and NumPy packages.
The code outputs Figure 3.

The value of R is given by the distance be-

tween the Sun and Planet Nine, which is assumed
to be approximately 280 AU in this case. The
equal spacing in the value of µ = 0.1 is repre-
sented by the contour lines. The areas where
the contour pushes away from or toward an open
space are the locations of the Lagrange points.
From this contour plot, we can determine the dy-
namics of the system. Lagrange points 1, 2, and 3
are at saddle points and are in line with the planet
and the Sun. Lagrange points 4 and 5 reside at
local maxima.
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Fig. 4. Python code for Figure 3.

3. Discussion

Analyzing the differences in the final positions
of the KBOs from Mathematica, the results indi-
cate a slight perturbation of orbits for selected ob-
jects. We investigated the discrepancies the KBO
data used in Batygin and Brown’s research with
Napier’s research to find that there are 14 KBOs
in total that satisfy the parameters given by Baty-
gin and Brown in their most recent paper, despite
their use of only 11. This emphasizes our goal to
address the biases suggested by Napier and others.

In Table 1, it is seen that each KBO referenced
by Batygin and Brown is likewise populated in
our SBDB query. The objects seen in the SBDB

defined by Batygin and Brown’s parameters that
were not referenced in their paper are 2014WB556,
2016SD106, and 2018VM35. This inconsistency
could be caused by a difference in orbital propaga-
tion techniques as SBDB uses Horizons. A differ-
ence was also clear between the orbital parameters
noted by Batygin and Brown and those produced
in the Small-Body Data Base.

There are differences in where we obtain our
data in comparison to Batygin and Brown and
Napier et al. Napier obtains the KBOs from the
Outer Solar System Origins Survey, the Dark En-
ergy Survey, and a third that used various tele-
scopes, while Batygin and Brown obtain theirs
from the Minor Planet Center (MPC). We used
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the JPL Small-Body Database (SBDB) to obtain
the data for our simulations. The contour plot cre-
ated in Python creates a good view of the stability
regions in a three-body system including the Sun
and Planet Nine with a smaller KBO.

4. Conclusion and Future Considerations

We do not have conclusive results on Planet
Nine’s existence, but we have a better idea of how
the Planet Nine theory fits in our solar system
through simulations and the application of dynam-
ical systems theory. Moving forward, we hope to
make use of additional computational tools, such
as the mercury6 orbital propagation code or de-
veloping new software capable of storing more
precise data in a friendly UI. We are also work-
ing on a way to approximate KBO masses to
make the simulations more accurate. Other fu-
ture work includes a statistical approximation for
the masses of these objects. The total mass of
the 31 largest objects in the Kuiper Belt is cal-
culated to be 0.0197 times the mass of Earth, or
5.97219×1022 kilograms (Pitjeva & Pitjev, 2018).
This information will be used to find a normalized
mass that can be attributed to these objects for bet-
ter evaluation. The quest for Planet Nine contin-
ues!
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