
Wilfrid Laurier University Wilfrid Laurier University 

Scholars Commons @ Laurier Scholars Commons @ Laurier 

Theses and Dissertations (Comprehensive) 

2024 

Genome-Based Pathogenicity Potential of Salmonella Isolated Genome-Based Pathogenicity Potential of Salmonella Isolated 

from Diverse Sources from Diverse Sources 

Jared MR Crocco 
Wilfrid Laurier University, croc0500@mylaurier.ca 

Follow this and additional works at: https://scholars.wlu.ca/etd 

 Part of the Bacteria Commons, and the Genetic Phenomena Commons 

Recommended Citation Recommended Citation 
Crocco, Jared MR, "Genome-Based Pathogenicity Potential of Salmonella Isolated from Diverse Sources" 
(2024). Theses and Dissertations (Comprehensive). 2599. 
https://scholars.wlu.ca/etd/2599 

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for 
inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ 
Laurier. For more information, please contact scholarscommons@wlu.ca. 

https://scholars.wlu.ca/
https://scholars.wlu.ca/etd
https://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F2599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/985?utm_source=scholars.wlu.ca%2Fetd%2F2599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/934?utm_source=scholars.wlu.ca%2Fetd%2F2599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/etd/2599?utm_source=scholars.wlu.ca%2Fetd%2F2599&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


Jared Crocco 2023 ©  

Genome-Based Pathogenicity 

Potential of Salmonella 

Isolated from Diverse Sources 

by  

Jared Mitchell Rong Crocco 

Honours Bachelor of Science in Biology and Chemistry, Wilfrid Laurier University, 

2020 

THESIS 

Submitted to the Department of Biology 

Faculty of Science 

in partial fulfilment of the requirements for the  

Master of Science in Integrative Biology 

Wilfrid Laurier University 



2 

 

Abstract 

Bacterial human pathogens are among the leading causes of death around the world, especially in 

low income and developing countries. One important element in a bacterium’s ability to cause 

disease are genes that directly contribute to pathogenicity called virulence factors. A second 

significant aspect are antimicrobial resistance genes which allow microorganisms to persist in the 

presence of antimicrobial agents. In this project I aimed to determine if Salmonella isolated from 

different sources differed in pathogenicity profiles based on the complement of genes identified 

through genomic analysis. Accordingly, Salmonella genomes were organized into 8 groups: 

animal, clinical, human, environmental, food, water source, plant, and nut. A negative control, 

consisting primarily of non-pathogenic E. coli, was also included. To determine disease-causing 

potential, the proteins encoded by these genomes were compared against the Virulence Factor 

Database (VFDB), the PathFam database, and the Comprehensive Antimicrobial Database 

(CARD). The negative controls coded for significantly fewer proteins matching the VFDB and 

PathFams, but significantly more matching the CARD, than all other groups. Though visibly 

overlapping, most isolation sources were found to be significantly different to each other (p 

value < 0.05), aside from the very small nut and plant groups. When clustered by their specific 

matches to the VFDB and CARD, genomes from the same environmental groups did not cluster 

together. Therefore, while the groups were statistically different from each other in number of 

matches, those differences were not due to group-specific virulence factors. Though most 

isolation source groups were found to be significantly different in VFDB, CARD and PathFam 

matches, further analyses are needed to determine if that difference is large enough to influence 
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Salmonella’s disease-causing potential. Methods and results from this analysis can be built upon 

in the future to better identify potential pathogens isolated from different environments.     
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Ch. 1 - Introduction 

1. 1 The Information Age  

With the rise of the information age, large amounts of data are being collected and need 

to be analyzed. Now more than ever, humans are generating large amounts of data, along with 

technological advancements that make collecting and analyzing enormous amounts of data 

possible. This is also evident in the scientific community, most prevalent in the -informatics 

fields, where the amount of raw data from experiments can pile up. Next generation sequencing 

techniques make it possible to sequence millions of base pairs at low error rates, while still being 

cost effective (Slatko et al., 2018). This sequencing revolution has resulted in large amounts of 

genome sequences from bacteria that cannot efficiently be experimentally tested. Bacteria and 

pathogens themselves are constantly evolving in new ways to cause disease, a better 

understanding of them can lead to new preventative measures and remedies. To determine the 

pathogenicity potential of isolates by sequence analysis, it might be necessary to manage the 

large number of sequences when experimental analyses might not be feasible. Pathogenic 

potential inferred from sequence comparison may be done by uncovering the presence of genes 

whose products directly participate in an organism’s ability to cause disease. However, the lack 

of experimental confirmation of the pathogenic phenotype should be considered. Therefore, in 

this thesis, the term pathogenicity is more appropriate when referring to a Salmonella’s potential 

to cause disease. 
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1.2 Horizontal Gene Transfer 

Evolution of bacteria can happen in two main ways: divergence of vertically inherited 

genetic material and horizontal gene transfer. Vertically inherited genetic material is the transfer 

of genetic information from parents to offspring, while horizontal gene transfer is the lateral 

transfer of genetic information between organisms (Daubin et al., 2016). Horizontal gene 

transfer can occur by three main mechanisms: transformation, conjugation, and transduction. 

Transformation is the uptake of genetic information from its surrounding environment, and 

conjugation is the transmission of genetic information to another cell via a pilus (Daubin et al., 

2016). Plasmids can carry a wide variety of genes, such as those conferring antimicrobial 

resistance that may be beneficial for survival in a given environment (Daubin et al., 2016). 

Transduction is caused when a bacteriophage transfers genetic information from one cell to 

another (Daubin et al., 2016). Horizontal gene transfer is the most common way new genomic 

material is introduced to a host organism and may lead to the acquisition of beneficial genes. 

Horizontal gene transfer can introduce large segments of foreign genetic information between 

different species within a single generation, which is a far faster process for the acquisition of 

new characteristics than divergence of vertically inherited genes (Daubin et al., 2016).  

1.3 Pathogenicity islands  

A bacterium can acquire pathogenicity-related genomic regions, known as pathogenicity 

islands, through horizontal gene transfer. Genomic islands are long segments of DNA that are 

tightly associated together and flanked by mobile genetic elements (ex transposons) (Messerer et 

al., 2017). This movement of large segments of closely associated DNA may lead to immediate 
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fitness advantages in the long and short term. Pathogenicity islands contain genes coding for 

several virulence factors, which include proteins that contribute to the overall virulence, or 

disease-causing ability, of an organism (Desvaux et al., 2020). These pathogenicity islands can 

code for a seemingly endless variety of pathogenic effector proteins or large structures useful in 

the transport of effectors to the host’s cells. Some products of pathogenicity island genes are 

toxins that can be injected into a target cell, adherence proteins that allow for continual close 

contact with a target cell, or invasion proteins that allow for cell penetration through larger 

structures such as epithelial linings (Kombade and Kaur, 2021).  

Toxins are substances produced by a pathogenic organism that directly or indirectly 

affect the target host in a negative way. Toxins can be broken down into two major categories: 

endotoxins and exotoxins. Endotoxins are typically found in the membranes of Gram-negative 

bacteria and can be released into an environment upon death or cell lysis of a bacterium (Popoff, 

2018).  For example, Lipid A, an endotoxin, acts as an anchor for lipopolysaccharides (LPS) that 

form the outer membrane in Gram-negative bacteria (Śmiechowicz, 2022). Upon cell death, 

endotoxins are released into the surrounding environment and trigger the innate immune 

response in humans. Endotoxins can cause an exaggerated immune response by binding to 

surface cell receptors such as TLR4/CD14/MD2, leading to the secretion of proinflammatory 

cytokines, nitric oxide, and eicosanoids (Farhana and Khan, 2023). This causes an intense 

inflammatory response from the host immune system, if enough endotoxin accumulates, septic 

shock can occur leading to damaged organs (Gyawali et al., 2019).  

Exotoxins are toxins that are secreted by an organism or can be released upon cell lysis, if 

they had been accumulating in a cell. For example, Clostridium tetani is a spore forming 
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bacterium. After entering the body, the spores germinate and form vegetative cells after an 

incubation period of 3-12 days (Sheehan et al., 2023). Clostridium tetani releases the exotoxin 

tetanospasmin, which travels via retrograde axonal transport to the spinal cord and stops 

inhibitory neurotransmitter release from inhibitory neurons (Sheehan et al., 2023). This exotoxin 

causes sustained muscle contractions, since the inhibitory neurotransmitters are needed to stop 

muscle contractions, which are being blocked by the tetanospasmin (Sheehan et al., 2023).    

Another large group of virulence factors found in pathogenicity islands are proteins 

related to the adherence and invasion of target cells. Protein structures protruding extracellularly, 

such as fimbriae and pili, allow for adherence and association of pathogens to target cells. 

Pathogens, such as Pseudomonas aeruginosa, use type IV pili to latch onto target cells, leading 

to the upregulation of exotoxin virulence factors, resulting in Pneumonia infections (Persat et al., 

2015). Yersinia enterocolitica is a common bacterial pathogen that can be ingested from 

improperly cooked or prepared food, causing severe abdominal pains and diarrhea (Uliczka et 

al., 2011). Yersinia enterocolitica produces extracellular surface invasin proteins YadA (Yersinia 

adhesin A) and Ail (attachment invasion locus) (Uliczka et al., 2011). Invasin can be found 

encoded chromosomally or in plasmids from horizontal gene transfer in pathogenic strains of Y. 

enterocolitica. Invasin allows for tight attachment to mammalian epithelial cells of the 

gastrointestinal tract, leading to the manifestation of yersinosis (Uliczka et al., 2011). After 

penetration through the epithelial wall, Y. enterocolitica colonizes lymphoid tissue, then makes 

its way to other organs in the infected host (Aziz et al., 2023). Yersinosis manifests as a typical 

gastrointestinal bacteria-based disease, with common symptoms of diarrhea, nausea, vomiting 

and fever (Aziz et al., 2023). 
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1.4 Salmonella enterica 

Salmonella infections are among the most common food-borne pathogen illnesses around 

the world with Salmonella enterica being the most pathogenic species (Jajere et al., 2019 and 

Ferrari et al., 2019). S. enterica causes salmonellosis; an infection caused by the ingestion of 

improperly cooked/prepared food, with common symptoms being diarrhea and vomiting. The 

Centre for Disease Control and Prevention (CDC) estimates that 1.35 million people in the 

United States of America alone are infected by Salmonella each year (CDC, 2020). 

Salmonellosis is typically a mild infection that can be easily prevented but becomes a serious 

problem in underdeveloped countries with poor sanitation and food quality. Contaminated water 

with human or animal fecal matter harbours numerous amounts of pathogenic bacteria. Over 

2000 serovars of S. enterica have been characterized along with pathogenicity islands SPI-1 

(Salmonella pathogenicity island 1), SPI-2 and other SPIs. Serovars/Serotypes are strains found 

within a species that can be classified into distinct groups, depending on surface structures found 

on the bacterial lipopolysaccharides (LPS), flagella and polysaccharides (Ferrari et al., 2019). 

Salmonella enterica Typhi, is a serotype of S. enterica that causes typhoid fever. Surface 

polysaccharides, such as Vi antigen, produced by S. enterica Typhi, inhibit signalling pathways 

in a host's immune response by targeting membrane signaling molecules and signify a unique 

group of Salmonella (Parween et al., 2019). Furthermore, pathogenicity islands, such as SP-1 

and SP-2 contain other virulence factors that encode for capsule formation, adhesion systems, 

and type 3 secretion systems that can provide unique phenotypes during infection (Jajere, 2019).  
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1.5 Average Nucleotide Identity (ANI) and Mash  

Average nucleotide identity (ANI) is a metric used to determine if a set of genomes 

belong to the same species, by using a threshold of more than 95 percent similarity (Ciufo et al., 

2018). ANI is a determinant of how similar two genomes are to one another and can be used to 

confirm the taxonomy of an unidentified bacterium. ANI is an accurate tool that can be almost 

universally applied to several genomic analyses. ANI can also be used to reclassify previously 

misclassified genomes (Ciufo et al., 2018).   

An alternative to calculating ANI is using the Mash software for estimating how similar 

genomes are to one another. The Mash software uses a MinHash approach (Ondov et al., 2016) 

where a sample of k-mers, which are DNA segments 20-40 base pairs long, is taken from a 

genome (Ondov et al., 2016). These k-mers are transformed into hashes, and these hashes are 

stored into a “sketch” of the genome. These sketches can then be efficiently compared to one 

another for matching k-mers (Ondov et al., 2016). The proportion of matching k-mers is then 

used to compute an estimate of the similarity of the genomes. Mash can produce similar results 

as ANI but is orders of magnitude faster (Hernández-Salmerón et al., 2023). Mash achieves this 

increased speed because it only takes k-mers from a portion of the genome and extrapolates for 

the rest of the genome. ANI on the other hand, uses the entire genome, resulting in much longer 

runtimes than those of mash (Hernández-Salmerón & Moreno-Hagelsieb, 2022). 

1.6 Hidden Markov models  

 Hidden Markov models (HMM) are statistical models that are used to describe the 

evolution of some observable variable that depend on internal factors (hidden states) that cannot 
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be directly observed (Yoon, 2009). Each hidden state has transition probabilities between each 

state that are affected by the hidden state which came before it. Each hidden state also influences 

the observed variable, and the hidden variable can be determined based on the probabilities of 

the observed variables (Yoon, 2009). For example, we can determine the weather (hidden state) 

of a distant town that we cannot directly observe, by talking to a citizen of that town over the 

phone (observed variable) (Jurafsky and Martin 2020). The person’s mood changes depending 

on the weather of that day, he/she is more likely to be happy if the day was sunny, and more 

likely to be sad if it was raining. HMMs are used in a large variety of applications such as 

finance, signal processing and pattern recognition. They have been extensively used in the field 

of bioinformatics for modeling eukaryotic genes and in the construction of protein family 

profiles (Yoon, 2009). Protein family profiles, built on the basis of a multiple alignment of 

homologous proteins, consider the probability of each amino acid residue occurring at each 

position in the alignment, as well as its influence on what residue comes next, while also 

accounting for insertions and deletions. Once constructed, HMM protein profiles can be used to 

classify unknown proteins into corresponding protein families and thus determine their potential 

functions. 

HMMs can be made from all known sequences for certain protein families that contribute 

to the virulence of a bacterium, such as the proteins that constitute type III secretion systems. 

These HMM can then be compared to newly discovered or unknown protein sequences to help 

identify the protein and determine its function. An HMM can do a better job than a standard 

pairwise alignment because of the increased sensitivity and specificity that it provides. HMMs 
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can accurately identify pathogenicity-related proteins from a newly isolated bacteria and help 

determine treatment options if it is found to be pathogenic. 

1.7 Pairwise vs Hidden Markov models (HMM) alignments 

Pairwise alignment such as blast alignments are the standard in computational biology for 

comparing DNA or protein sequences to one another. An alignment compares each nucleotide 

base or amino acid residues of the two input sequences to assess their degree of similarity. 

Pairwise alignments are fast and simple to run, but also have difficulty in identifying distant 

homologs (Park et al., 1998). An alternative to the standard pairwise alignment is using Hidden 

Markov models (HMM) described above.  

1.8 Hierarchical clustering  

 Hierarchical clustering is a data analysis technique that is used in diverse disciplines for 

grouping data into clusters based on a shared metric (Zhang et al., 2017). These clusters can be 

visualized as dendrograms, branching tree-like structures that have data points as “leaves”, and 

“branches” which link data that share the clustering metric. The clustering metric could be a 

genome similarity measure such as ANI or Mash, grouping together genomes that are genetically 

similar to one another. Other metrics could be based on shared matches with databases such as 

the Pfam, to assess whether the same proteins from the databases are being matched with 

proteins in different genomes.  
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1.8 Antimicrobial resistance  

Bacterial infections can be aggravated when the pathogenic bacteria also harbour genes 

that confer antimicrobial resistance. Microorganisms can typically be killed by a variety of 

antimicrobial agents that impede their growth and/or reproduction. Microorganisms can also 

develop mechanisms to protect themselves from the effects of antimicrobial agents, allowing 

them to persist and survive in the presence of an antimicrobial compound. Resistance to 

antimicrobials can come in many forms, such as reduced permeability of the outer membrane 

that limits the amount of antimicrobial that can accumulate inside a cell. Gram-negative bacteria 

have this added potential for innate resistance because of their additional lipopolysaccharide 

(LPS) outer membrane, as opposed to a Gram-positive bacterium with no LPS outer membrane 

(Darby et al., 2023). Another form of innate resistance to antimicrobials are efflux pumps, they 

can be found encoded on the chromosomes of organisms. Efflux pumps are transmembrane 

proteins that allow for the transport of molecules out of a cell. They are essential for transporting 

waste out of a cell and creating ion gradients for more energy demanding processes. Efflux 

pumps can be used to rapidly transport incoming antimicrobials out of the cell, not allowing 

them to accumulate and bind to their target (Reygaert, 2018). 

 Biofilms are formed by the colonization of bacterial communities and can also provide a 

physical barrier against antimicrobials and prevent them from entering the cell (Vestby et al., 

2020). Microorganisms can also modify or protect the target of the antimicrobial, reducing the 

ability for the antimicrobial to bind and perform its function. Antimicrobials typically target 

essential processes for a cell, limiting their ability for growth and leading to their eventual death. 

For example, fluoroquinolones are a class of drugs that target DNA gyrase and topoisomerase 
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IV, two essential proteins in the DNA replication process (Reygaert, 2018). Biofilms can prevent 

fluoroquinolone class drugs from reaching its intended target, resulting in the drug being 

ineffective because it cannot bind to its target protein inside the target cell. 

Instead of modifying the target, microorganisms can also modify an incoming 

antimicrobial to inhibit its effects. Two common strategies for modification of an antimicrobial 

drug are drug inactivation and degradation. A drug can become inactivated by the transfer of a 

chemical group such as an acetyl or adenyl group, reducing the binding potential of the drug to 

its target (Reygaert, 2018). An antimicrobial can be degraded using enzymes that cleave off its 

functional groups via hydrolysis (De Pascale et al., 2010). These functional groups are essential 

for the antimicrobial to bind to its target, without any binding occurring, it is rendered useless 

(De Pascale et al., 2010). Antimicrobial resistance mechanisms can allow pathogenic bacteria to 

persist in an environment, allowing them to survive and propagate disease. Antimicrobial 

resistance may not directly be related to virulence, but it can be a tool used by pathogenic 

bacteria to help them survive in a host.      

1.9 Environmental and Clinical bacteria  

 Clinical bacteria isolates are taken from a host that has been infected by that bacterium, 

typically taken from hospital patients that had been showing symptoms from a disease. 

Environmental bacteria isolates would be taken from the outside environment, typically from soil 

samples where large populations of bacteria would reside. Clinical isolates can be expected to be 

pathogenic because they are taken from a host already infected by a known disease-causing 

bacterium, while an environmental bacterium with the same genetic classification might be less 
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pathogenic, or have less pathogenic potential. Pathogenic and non-pathogenic strains of bacteria 

have been observed within the same species. For example, Escherichia coli K-12 is a non-

pathogenic strain of E. coli, while E. coli O157:H7 is a pathogenic strain of E. coli that can cause 

intestinal hemorrhages (Stromberg et al., 2018). Salmonella isolates are all typically considered 

pathogenic, but non-pathogenic strains might still be undiscovered. Comparing the genomes of 

environmental Salmonella to clinical isolates may uncover differences between the two groups in 

their capacity to cause disease. Specifically, clinical genomes may have key virulence factors 

that may not be present in the genomes of environmentally isolated pathogens.           
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Hypothesis and Objectives 

Hypothesis 

Salmonella genomes isolated from the environment will show less pathogenicity potential 

than genomes isolated from pathogenicity-related sources, such as clinical or human samples. 

Objectives 

Overarching Objective - To determine if there is a relationship between the isolation source of 

Salmonella enterica and their pathogenic potential.  

Objective 1 - To determine the complement of virulence factor genes and antimicrobial 

resistance potential of Salmonella genomes to give insight into their overall pathogenic potential.   

Objective 2 - To determine if there is a relationship between the isolation sources of Salmonella 

genomes and their virulence factor complements and/or antimicrobial resistance-related genes.  
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Ch. 2 - Methods 

2.1 Salmonella enterica genomes  

Seventy-five environmental Salmonella enterica bacteria were isolated from Clair and 

Silver Lakes within the Laurel Creek sub-watershed of the Grand River in the 

Kitchener/Waterloo region by Dr. Robin Slawson’s lab at Wilfrid Laurier University (Thomas et 

al., 2013). These genomes were downloaded from the Salfos database 

(https://salfos.ibis.ulaval.ca). Another 165 clinical S. enterica genomes were downloaded from 

the National Center for Biotechnology Information (NCBI). The genome dataset was later 

expanded to include approximately 6000 S. enterica genomes taken from the Bacterial and Viral 

Bioinformatics research center (BV-BRC), formally known as the Pathosystems Resource 

Integration Center (PATRIC) (Olson et al., 2023).   

2.2 Negative control genomes 

Bacteria closely related to Salmonella, such as E. coli, that were classified as non-

pathogenic by Cosentino S et al., (2013) were used to construct a negative control dataset. This 

set of genomes was used as a non-disease-causing negative control dataset to compare against all 

Salmonella (Table 1).    

 

 

 

 

https://salfos.ibis.ulaval.ca/
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Table 1. Bacteria name and strain of non-pathogenic negative control genomes 

Organism Strain 

Escherichia coli  K-12 substr. MG1655 

Escherichia coli  B str.REL606 

Escherichia coli  ATCC 8739 

Escherichia coli  APEC 078 

Escherichia coli  SE15 

Escherichia coli  KO11FL 

Escherichia coli  IAI1 

Escherichia coli  BL21(DE3) 

Escherichia coli  BL21-Gold(DE3)pLysS AG 

Escherichia coli  SE11 

Escherichia coli  ABU 83972 

Escherichia coli  SMS-3-5 

Escherichia coli  DH1 

Escherichia coli  HS 

Salmonella enterica  subsp. enterica serovar Choleraesuis str. SC-B67 
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2.3 Isolation source classification 

Information about the isolation sources of Salmonella genomes was taken from metadata 

available at the BV-BRC database (Olson et al., 2023). The genomes were categorized and 

grouped depending on where the bacteria were isolated from. Isolation source groups consisted 

of human, animal, plant, environmental, water source, food and nuts. An ad hoc python script 

was written to assign each genome into an isolation source group based on their isolation source 

provided in the metadata table. Lists of all unique isolation sources and groups can be found in 

Figure 21 in the Appendix. Any fecal or tissue sample taken from a human patient was classified 

into the “human” grouping. Uncharacterized isolation sources, such as just “humans”, were also 

added to the human grouping. Different varieties of animals, such as chickens, cows and pigs, 

were put into the “animal” category. Environmental and water source groups were separated to 

see if the two would group separately when comparing their pathogenicity. Environmental 

genomes consisted of samples taken from farms or non-specific locations that were designated as 

just “environmental”. Seeds were categorized into the plant grouping and could potentially be 

merged with the nut grouping if no clear distinction can be observed between the two. Most of 

the clinical genomes were labelled as just “clinical” in the metadata, but potentially could be 

reclassified into the human grouping depending on results. Unspecified clinical genomes could 

be reclassified into the human grouping depending on the results, since they were most likely 

taken from a human subject. A large majority of the genomes did not have an isolation source 

listed in the metadata table, they were omitted from the grouping process and further analysis. 

Isolation sources that had no specific designation of where it came from such as “liver”, were 

omitted from the grouping process. With such a large number of unique isolation sources and 
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inaccurate wording in the metadata, many genomes were not given a grouping because the 

python script used keywords in order to add a grouping, and sorting the genomes one-by-one by 

hand would be too lengthy of a task.  

2.4 Non-redundant Salmonella protein database  

  A non-redundant Salmonella protein database was compiled using all the proteins 

annotated in the Salmonella genomes in this project. Since the very same proteins are likely to be 

annotated in thousands of the genomes analysed, a non-redundant dataset was produced using an 

ad-hoc program written by Dr Moreno-Hagelsieb, to avoid working with the same proteins 

thousands of times.  

2.5 Pairwise protein comparisons  

 To infer virulence factors, the proteins annotated in all genomes used in this study were 

aligned against the Virulence Factor Database (VFDB) (Liu et al., 2022), using the DIAMOND 

alignment software (Buchfink et al., 2015). To infer antimicrobial resistance, initial comparisons 

against the Comprehensive Antibiotic Resistance Database (CARD) (Alcock et al., 2023) were 

also performed using DIAMOND (Buchfink et al., 2015), but later produced and classified using 

the Resistance Gene Identifier (RGI) software pipeline produced by the same group that 

compiled the CARD database (Alcock et al., 2023).    

2.6 Comparison against Hidden Markov Models (HMM)  

 All genomes taken from the BV-BRC database, environmental samples isolated from the 

Kitchener/Waterloo region, and negative controls were compared against Hidden Markov 
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Models (HMMs) from the Pfam database (Mistry et al., 2021), and from the VFDB produced by 

de Nies et al. (de Nies et al., 2021). The alignments were performed with hmmscan, from the 

HMMER software (Finn et al., 2011).  

2.7 Hierarchical clusters and tanglegrams  

A custom python script was made to produce matrices that outline the number of 

occurrences of each individual match against the VFDB, Pfam and CARD for all genomes. 

These matrices were used to produce hierarchical clusters to visualize the similarities and 

differences between clustering metrics. Hierarchical clusters can help determine if different 

metrics produce groups that are related to one another by different characteristics, and whether 

different metrics produce similar hierarchies. These hierarchical clusters were produced using the 

divisive clustering method implemented as “diana” in the cluster package available in R (Ihaka 

and Gentleman, 1996). Hierarchical clusters were used to produce tanglegrams to calculate 

entanglement values, to better determine how similar the clustering metrics are. Tanglegrams and 

Basker’s correlations were produced using the package dendextend in R (Galili, 2015).  
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Ch. 3 - Results  

3.1 Initial results: Clinical versus Environmental Salmonella 

Initially, this research was aimed at comparing 75 genomes of Salmonella isolated from 

the environment, specifically, those isolated primarily from Clair and Silver Lakes in the 

Waterloo region by Dr. Slawson’s lab at Wilfrid Laurier University, against 165 clinical isolates. 

The initial hypothesis was that the genome analyses would show that the lake samples had a 

lower pathogenicity potential.  

3.1.1 Average Nucleotide Identity 

To verify that the S. enterica genomes were correctly classified and thus belonged to a 

single species, their average nucleotide identity was calculated. Most genomes had an average 

nucleotide identity above the species threshold of 95% (Fig. 1) (Jain et al., 2018).  
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3.1.2 Alignment with the Virulence Factor Database (VFDB) 

The clinical and environmental genomes were compared against the VFDB to identify 

potential pathogenicity-related proteins (Fig. 2). The clinical samples of S. enterica were found 

to have a median value of 961, minimum of 923 and a maximum of 1022 (Fig. 2). The 

environmental samples of S. enterica were found to have a median value of 968, a minimum 

value of 936 and a maximum value of 1015 (Fig. 2). The clinical samples also had 3 outlier 

values that were 1.5 times larger than the interquartile range, while the environmental samples 

had none. The clinical samples were found to be non-normally distributed after a Shapiro-Wilks 

Figure 1. Average nucleotide identity (ANI) scores of clinical and environmental genomes. 

The ANI between almost all genomes were above the 95% threshold, within each group and 

against each group, confirming that all genomes belong to isolates of a single species. The 

bolded horizontal line represents the median of the data, and the box represents the middle 

50% of all data from the sample. The whiskers that extend from the box are the maximum 

and minimum values that are not outliers. The white circles beyond the whiskers are values 

that are outliers, outliers are defined as data that is 1.5 times larger or smaller than the 

interquartile range. 

          Clinical           Environmental      ClinicalvsEnvironmental    
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test was conducted resulting in a test statistic W = 0.977 and a p-value of 8.40x10-3. This value is 

lower than the alpha value of 0.05, so the null hypothesis that the data was normally distributed 

was rejected.  The environmental data set was also found to be non-normally distributed after a 

Shapiro-Wilks test was conducted resulting in a test statistic W = 0.898 and a p-value of 1.93x10-

5. 

 

Figure 2. Number of virulence factors in the VFDB that match a protein in the genomes of 

clinical and environmental S. enterica. The clinical and environmental genomes have similar 

amounts of matches with the VFDB. The clinical S. enterica were found to have a median of 961 

matches, while the environmental ones had a median of 968 matches. 
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3.1.3 Completeness of Virulence Factor Sets  

 Larger virulence factor proteins or structures, such as efflux pumps, would require 

multiple genes to produce a functional protein. All genes that are required to produce an efflux 

pump make up a virulence factor set. The percent completeness of virulence factor sets was 

calculated for the clinical and environmental genomes to give insight into their pathogenic 

potential. The clinical and environmental genomes were found to have almost the same amount 

of virulence factor sets completed, around 41% (Fig. 3).  

 

 

Figure 3. Percent completeness of virulence factor gene sets in the clinical and environmental S. 

enterica genomes. The clinical and environmental genomes have a similar amount of complete 

virulence factor sets, with around 41% being complete. 
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3.1.4 Alignment with the Comprehensive Antibiotic Resistance Database (CARD) 

The clinical and environmental genomes were aligned with the CARD database, the 

clinical genomes were found to have a median of 27.41 matches, while the environmental 

genomes had a median of 13.81 matches (Fig. 4). The clinical genomes had a total number of 

matches of 4522, and the environmental genomes had 1036 matches total. It should be noted that 

there are approximately double the number of environmental genomes than there are clinical, on 

average the clinical genomes had double the number of matches than environmental when 

sample size is considered.  

 

Figure 4. Number of proteins that matched the Comprehensive Antibiotic Resistance database 

(CARD) in both sets of S. enterica. The clinical genomes were found to have more matches than 

the environmental genomes. The clinical genomes had an average of 27.41 matches, and the 

environment an average of 13.81 matches.    
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3.1.5 Cluster analysis 

The clinical and environmental genomes were clustered by their ANI scores to determine 

if phylogeny played a part in their pathogenicity (Fig. 5). The two genome sets did not produce 

large distinct clusters from one another, instead they had smaller “clusters of clusters” mixed 

throughout the hierarchical cluster. When the genomes were clustered by their matches with the 

CARD, the environmental genomes had two large clusters at the bottom of the hierarchical 

clusters, with smaller clusters scattered throughout (Fig. 5). The CARD cluster also had one very 

large branch containing almost half the genomes in the entire cluster at the bottom of the cluster 

(Fig. 5). Even when the genome sets were clustered by their matches with the VFDB, two 

distinct clusters were not produced, and the genomes were mixed throughout the hierarchical 

cluster (Fig. 6). Tanglegrams were produced to compare how similar two hierarchical clusters 

were to one another as this can help determine if two clustering metrics are related. Tanglegrams 

have an entanglement value that ranges from 0.00-1.00, the larger the value, the less similar the 

two hierarchical clusters are to one another. An entanglement value of 0.00 would mean that the 

two hierarchical clusters are identical, and the two-clustering metrics would produce the same 

results. The comparison between the clustering metrics of matches with the CARD and VFDB 

had an entanglement score of 0.59 (Fig. 7), a fairly high level of entanglement. The comparison 

of the CARD and ANI hierarchical clusters produced a similar entanglement score of 0.64 (Fig. 

8), and ANI compared with the VFDB had a much lower entanglement score of 0.32 (Fig. 9). 
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Figure 5. Hierarchical clusters of clinical and environmental S. enterica genomes. Cluster based 

on Average Nucleotide Identity (ANI, left) and on matches with the Comprehensive Antibiotic 

Database (CARD, right). The two genome sets when clustered by ANI did not have a distinct 

separation between the two groups, while clustering by CARD matches produced slightly larger 

distinct clusters. The CARD cluster also has one very large branch at the bottom of the cluster, 

almost half the size of the cluster. 

 

CARD 

Figure 6. Clinical and environmental S. enterica genomes clustered by genes that produce a 

match with the Virulence Factor Database (VFDB). The genome sets did not produce two very 

distinct groups, but smaller clustered groups can be seen. 
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Figure 7. Comparison between hierarchical clusters by the CARD and VFDB matches in both 

sets of S. enterica genomes. With entanglement values ranging from 0.00-1.00, a value of 0.59 

has a high level of entanglement between the two clusters. The colored lines represent regions of 

the clusters that are shared between one another.  

 

 

VFDB CARD 
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Figure 8. Comparison between hierarchical clusters by the CARD matches and ANI scores in 

both sets of S. enterica genomes. With entanglement values ranging from 0.00-1.00, a value of 

0.64 has a high level of entanglement between the two clusters.  

 

CARD ANI 
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Figure 9. Comparison between the hierarchical clusters by ANI scores and the VFDB matches in 

both sets of S. enterica genomes. Entanglement values range from 0.00-1.00, a value of 0.32 has 

a moderate level of entanglement between the two clusters. 

 

3.2 Expanded genome dataset 

The genome dataset was expanded to include approximately 6,000 Salmonella genomes 

from the Bacterial and Viral Bioinformatics Resource Center (BV-BRC), specifically those 

containing enough information to be classified into different isolation source categories. 

3.2.1 Isolation Source groups of Salmonella taken from the BV-BRC 

The dataset of Salmonella genomes was categorized based on their isolation source (Fig. 

10). The largest genome groups were genomes isolated from animal and human sources, such as 

organ tissue and feces. The next largest groups were genomes isolated from water sources such 

ANI VFDB 
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as lakes and riverbeds, or environmental samples from farms and forests. The nut, plant, food, 

and negative control genomes were the smallest of the groups, but they were included because 

they are a vastly different environment than an animal or human source. A Salmonella found on 

a nut, or a plant would be exposed to different environmental conditions than a Salmonella found 

in an animal. These different environmental conditions may give rise to phenotypic differences 

as well, resulting in genomic differences that may be detectable.     

 

Figure 10. Isolation sources of Salmonella genomes. Isolation data was taken from metadata 

available at the Bacterial and Viral Bioinformatics Resource Center (BV-BRC). Salmonella 

isolated from human and animal sources make up the majority of the genomes, while water 

source and environment comprised the next largest datasets. The food, nut, plant, and negative 

control groups were the smallest of the groups. 
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3.2.2 Inference of pathogenicity potential 

The number of proteins that produced a match with the VFDB was determined to give 

insight into the pathogenic potential of the Salmonella genomes (Fig. 11). The negative control 

genomes were found to have fewer matches than all other genome datasets, with a mean of 1014 

matches (Fig. 11). This difference in matches was found to be statistically significant because the 

p-value from an un-paired two sample Wilcoxon test was less than the threshold value of 0.05 

(Table 2). A P-value of <0.05 shows that the difference in means is very unlikely due to random 

chance, while a value of >0.05 would mean that the difference in means is most likely due to 

random chance. The nut and plant groups were consistently found to be not significantly 

different than the other groups (Table 2). The clinical and environmental groups were also found 

to be not significantly different from one another (Table 2). The number of proteins that 

produced a match with the HMM-VFDB was determined for Salmonella genomes isolated from 

different sources (Fig. 12). The negative controls had fewer matches with the HMM-VFDB, but 

over 2800 genes related to pathogenicity is too many when compared to the total number of 

genes a Salmonella has in its genome.   
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Figure 11. Number of proteins that produced a match with the VFDB by sequence alignment. 

The negative control Salmonella genomes were found to have less proteins that matched the 

VFDB than other isolation sources.  
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Table 2. P-Values from an un-paired two sample Wilcoxon test comparing VFDB matches.   

 Animal Clinical Environmental Food Human Nut Plant WaterSource 

Negative

Control 

4.7e-05 1.96e-05 1.81e-06 1.48e

-05 

1.96e-05 4.96e

-05 

1.20e-

05 

9.64e-07 

Animal  1.42e0-5 9.32e-11 6.82e

-13 

<2.2e-16 7.00e

-04 

2.48e-

06 

0.01 

Clinical  0.84 0.047

5 

6.07e-4 0.29 0.20 2.64e-03 

Environ

-mental 

 6.05e

-03 

1.93e-06 0.15 0.01 5.43e-04 

Food  0.82 0.98 0.66 3.75e-08 

Human  0.94 0.71 <2.2e-16 

Nut  0.76 0.01 

Plant  1.69e-03 

Legend:   = Significant difference  = No significant difference 
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Figure 12. Number of proteins that produced a match with the HMM-VFDB. The negative 

control was found to have a higher number of matches with the HMM-VFDB than all other 

groups.   

 

The PathFam database was produced by Lobb et al. in 2021 and ranked all Pfam protein 

domains from most pathogenic associated, to least pathogenic associated (Lobb et al., 2021). The 

protein domains were ranked by how often they were found in the genomes of pathogenic 

bacteria compared to non-pathogenic bacteria. The Salmonella proteins were compared against 

the highest-ranking domains to determine the amounts of pathogenicity associated domains of 

the different environmental groups. The negative controls were found to have significantly less 
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pathogenicity associated domains than all other groups (Fig. 13 and Table 3). The nut and plant 

groupings were, once again, not found to be significantly different to some of the other groups, 

as well as the human group when compared to the clinical and environmental groups (Table 3). 

The human group was also found to be most similar to the clinical and environmental groups 

(Table 3). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Number of Pfam domains that produced a match with the most pathogenicity 

associated domains from the PathFams database. The negative control genomes were found to 

have less matches with pathogenicity associated domains from the PathFam database than all 

other groups.   
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Table 3. P-Values from an un-paired two sample Wilcoxon test comparing PathFam 

matches. 

 Animal Clinical Environmental Food Human Nut Plant WaterSource 

Negative

Control 

1.60e-

04 

1.63e-03 5.4e-04 0.01 4.9e-04 0.02 4.4e-

03 

1.04e-04 

Animal  1.42e-05 2.32e-04 <2.2e

-16 

3.91e-08 3.37e

-05 

1.65e-

07 

0.18 

Clinical  0.23 7.50e

-04 

0.14 9.10e

-04 

8.10e-

03 

1.12e-06 

Environ

-mental 

 1.09e

-07 

0.86 1.26e

-03 

5.99e-

04 

<2.2e-16 

Food  9.27e-08 0.35 0.43 <2.2e-16 

Human  4.47e

-03 

9.76e-

04 

1.34e-07 

Nut  0.09 3.20e-06 

Plant  0.09 

Legend:   = Significant difference  = No significant difference 

 

3.2.3 Antimicrobial resistance genes  

The number of proteins that produced a match with the CARD database was determined 

to give insight into the antibiotic resistant capabilities of the Salmonella genomes. The negative 

control dataset was found to have more matches with the CARD than the other datasets with a 

mean of 56.5 matches (Fig. 14). This difference was found to be statistically significant based on 

the results of an unpaired two sample Wilcoxon test between the negative controls and each 

individual grouping (Table 4). All matches were classified as either strict or perfect matches to 
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ensure no false positives were present. Perfect matches are identical matches to the protein in the 

database, while a strict is a variant of that protein, that falls within the inputted blast cut-off 

threshold (Alcock et al., 2023). Even when filtered for only perfect matches, the negative control 

genomes had significantly more matches than all other groups (Fig. 15).  

 

Figure 14. Number of proteins that produced a match with the CARD. The Negative controls 

were found to have a higher amount of CARD matches than all other datasets. 
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Figure 15. Number of perfect matches with the CARD. The negative control genomes were 

found to have significantly more matches than other isolation sources. 
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Table 4. P-Values from an un-paired two sample Wilcoxon test comparing CARD matches. 

 Animal Clinical Environmental Food Human Nut Plant WaterSource 

Negative

Control 

2.59e-

10 

1.8e-10 7.14e-11 4.21e

-10 

1.97e-10 1.74e

-08 

4.82e-

10 

1.00e-11 

Animal  0.14 <2.2e-16 5.18e

-07 

<2.2e-16 9.63e

-09 

3.00e-

14 

<2.2e-16 

Clinical  4.42e-13 9.99e

-05 

1.16e-08 6.93e

-07 

1.01e-

09 

<2.2e-16 

Environ

-mental 

 5.67e

-03 

9.33e-03 9.44e

-03 

8.26e-

03 

2.82e-04 

Food  0.467 3.17e

-04 

7.28e-

06 

1.53e-09 

Human  4.07e

-03 

5.90e-

04 

1.98e-12 

Nut  0.47 0.13 

Plant  0.25 

Legend:   = Significant difference  = No significant difference 

 

3.2.4 Cluster analyses 

The Salmonella genomes were clustered together by their matches with the Pfam, only 

the human grouping produced a large distinct cluster on the right side of the hierarchical cluster 

(Fig. 16). The human grouping also had medium sized clusters grouped together on the left side 

of the hierarchical cluster, but still mingling with other groups. The water source grouping also 

produced some small clusters that were grouped together at the far right of the dendrogram, as 
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well as the animal grouping at the bottom of the hierarchical cluster. Overall, all groups were 

mixed and not distinct from one another, only the human group produced one large distinct 

cluster (Fig. 16). When the Salmonella genomes were clustered by which proteins they matched 

in the VFDB, the human grouping once again produced a large distinct cluster on the right side 

of the hierarchical cluster (Fig. 17). Genomes from the water source grouping clustered together 

near the bottom of the hierarchical cluster, but not very distinct from other groups. The animal 

grouping produced a small distinct cluster near the bottom right of the hierarchical cluster. 

Besides the one large distinct human cluster, no groupings were found in a distinct large cluster 

separated from the other groups. When the Salmonella genomes were clustered together by their 

Mash scores, the human grouping produced a large distinct cluster at the top right of the 

hierarchical cluster, as well as smaller clusters spread out near the bottom left (Fig. 18). The 

animal grouping produced a large distinct cluster on the left side of the hierarchical cluster, but 

also has a lot of smaller clusters scattered all around. The water source grouping had some 

medium sized clusters at the bottom of the hierarchical cluster, but they were still mixed with 

other groups. None of the groups produced large clusters that were distinct from all other groups, 

besides the large human cluster on the right side. The hierarchical clusters from clustering by 

VFDB and Mash were compared using a tanglegram to determine if there was a relationship 

between the two (Fig. 19). A tanglegram lines up two hierarchical clusters and determines if the 

same genomes are found in the same spots in each of the clusters, producing an entanglement 

value. Entanglement values range from 0.00 to 1.00, with 0.00 being no entanglement, and 1.00 

have full entanglement between the two clusters. No entanglement between the two clusters 

means that the genomes line up identically, and the same genomes are found in the same spots in 
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the clusters. An entanglement value of 0.00 can still be achieved with different clusters, if the 

genomes line up the same when compared, the branching within the hierarchical cluster can still 

differ. The VFBD and Mash had an entanglement value of 0.17, a moderate level of 

entanglement, and the two clusters are fairly similar to one another (Fig. 19). The Baker Gamma 

correction correlation is a measure of similarity between two hierarchical clusters that ranges 

from -1 to 1, with values closer to 0 mean the two trees are not similar. A Baker’s Gamma 

correction correlation has an inverse relationship with entanglement values, a lower 

entanglement value will result in a higher Baker’s Gamma value. The VFDB and mash clusters 

had a Baker’s Gamma correction correlation of 0.73, meaning the two clusters are very similar. 

The hierarchical clusters for the VFDB and Pfam were similar to one another because of their 

low entanglement value of 0.09 (Fig. 20). The VFDB and Pfam clusters were also very similar to 

one another with a Baker’s gamma of 0.66.  
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Figure 16. Pfam-based Hierarchical cluster of Salmonella genomes. The human isolation group 

was the only one with a large distinct cluster, as well as a lot of smaller clusters. All groups 

mixed with one another, and none were distinctly separated from the rest. 
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Figure 17. VFDB-based hierarchical cluster of Salmonella genomes. As in the Pfam-based 

cluster, the human group produced the largest and most abundant clusters, followed by the 

animal group. Each group did not separate into distinct clusters, but were found mixed 

throughout.  
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Figure 18. Mash distance-based hierarchical cluster of Salmonella genomes. The human group 

had one large distinct cluster (top right), with many smaller clusters spread throughout. The 

water source group produced a large relatively distinct cluster (bottom right), as well as the 

animal group (left side). 
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Entanglement: 0.17 

 

Figure 19. Comparison between hierarchical clusters of VFDB matches (left) and Mash scores 

(right) for all Salmonella genome groups. With an entanglement score of 0.17, the two clusters 

have little entanglement, and the clustering metrics produce similar results. The clusters had a 

corresponding Baker’s Gamma correlation coefficient of 0.73. 

 

MASH VFDB 
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Entanglement: 0.09 

 

Figure 20. Comparison between hierarchical clusters of VFDB and Pfam matches for all 

Salmonella genome groups. With an entanglement score of 0.09, the two clusters have very little 

entanglement, and produce similar results. The clusters had a corresponding Baker’s Gamma 

correlation coefficient of 0.66. 

 

 

Pfam VFDB 
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Ch. 4 - Discussion  

4.1 Analysis of the initial clinical and environmental Salmonella  

The initial genome dataset consisted of the environmental samples isolated primarily 

from Clair and Silver Lakes in the Kitchener/Waterloo region (Thomas et al., 2013) and clinical 

samples of known virulence taken from the Pathosystems Resource Integration Center 

(PATRIC) database, now known as the Bacterial and Viral Bioinformatics Resource Center (BV-

BRC). The initial goal was to compare the two genome datasets and determine the pathogenic 

potential of the newly isolated environmental samples to those of the known disease-causing 

clinical samples. Both genome sets were annotated with Prokka and aligned against the VFDB 

and CARD using DIAMOND. The clinical genomes had a median of 961 proteins that matched 

proteins in the VFDB, while the environmental genomes had a median of 968 (Fig. 1). This was 

an unexpected result, I initially hypothesized that the clinical genomes would have a lot more 

matches with the VFDB than the environmental genomes. The clinical genomes were taken from 

a database of known disease-causing bacteria, so I initially thought that would also be reflected 

in their alignment with the VFDB.  

The clinical genomes had a median 27.41 matches with the CARD, while the 

environmental genomes had a lower median of 13.81 matches (Fig. 4). This was a somewhat 

predicted result because I hypothesized that the clinical samples would have more antibiotic 

resistance related genes because they are taken from a database of known disease-causing 

pathogens. Patients infected with these pathogenic bacteria would likely have been exposed to 

antimicrobial drugs during their treatment process. Exposer to antimicrobial drugs may give rise 
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to antimicrobial resistance, as well as genomic differences in their amount of antimicrobial 

resistance genes.  

The genome datasets did not group separately from each other when clustered by ANI, 

VFDB and CARD matches (Figs. 5 and 6). Instead, the hierarchical clusters showed the clinical 

and environmental genomes interspersed with each other. Thus, the pathogenicity potential 

differences were not related to the genome similarity, or to similarity in specific protein family 

content. The CARD cluster had a very large branch that contained almost half of the genomes in 

the cluster (Fig. 5). All the genomes in that branch matched the same proteins in the CARD, but 

there was insufficient data to distinguish them based on the number of matches with CARD. 

Alignment with the CARD on average produced 13.81 matches for the environmental genomes, 

and 27.41 for the clinical genomes (Fig. 4). With so few matches, there might not be enough 

information to properly differentiate genomes from one another. The VFDB and ANI had little 

relation because of the high entanglement value produced when both hierarchical clusters were 

compared to one another (Fig. 9). Since ANI is a metric of how similar genomes are to one 

another (Ciufo et al., 2018) genomes that were similar to one another did not match the same 

proteins in the VFDB (Fig. 9). Comparing clusters produced with CARD and ANI showed a 

similar result, with an entanglement value of 0.64. Therefore, the overall genome similarity had 

no relationship on matches with the CARD and antibiotic resistance potential (Fig. 8). The 

hierarchical clusters made from the CARD and VFDB matches had a large entanglement value 

of 0.59, meaning that both clusters were very different from each other (Fig. 7). The proteins 

from the CARD and VFDB matched different proteins in the Salmonella genomes, and there was 

no relationship between the CARD and VFDB matches, as suggested by the entanglement value 
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(Fig. 7). Though these results are apparently contradictory, ANI is based only on the parts of the 

genomes that can be aligned with each other (Ciufo et al., 2018), thus shared, while CARD and 

VFDB matches can happen against any proteins (Camacho et al, 2009 and Newell et al., 2013), 

whether the genes coding for them are shared or not.   

 Since both genome sets could not be differentiated by the pairwise alignment with the 

VFDB, Hidden Markov models (HMM) were employed to potentially produce a distinction 

between the two. With the initial environmental and clinical datasets, HMMs were going to be 

used to reduce the number of false positives that may have arisen from a standard pairwise 

alignment. HMMs tend to have higher specificity than pairwise alignments because they can take 

into account the amino acid (or nucleotide) that came before and after an amino acid (or 

nucleotide) during an alignment (Yoon, 2009).  

  HMMs would reduce false positives by ensuring that the protein of interest is not 

matching any unwanted proteins that might flag a non-pathogenic protein as a pathogenic one. 

This can happen when a pathogenicity-related protein is related by homology with a non-

pathogenic protein homolog (Diepol et al., 2015). For example, Type III Secretion Systems 

(T3SS) share numerous closely related proteins with flagella proteins (Diepol et al., 2015). 

Flagella proteins could potentially be falsely flagged as a pathogenicity-related protein. A 

program using HMMs was going to be developed by me, to address this problem and help to 

determine a bacterium’s pathogenic potential more accurately. However, an article was 

published producing both HMM for VFDB and software to address this exact issue (Nies et al., 

2021), while I was still working on mine. Thus, instead of producing my own HMMs and 
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software pipeline, I worked on trying to implement the other group’s software and use their 

HMM. Before proceeding, I decided to expand the dataset of Salmonella genomes. 

4.2 Expanding the dataset to include ~6000 Salmonella genomes from different 

isolation sources. 

The dataset of Salmonella genomes was expanded to try and incorporate ~11,000 

genomes taken from the PATRIC (Now BV-BRC) database as of December 2021, as well as 

their metadata information. The genomes were then sorted and grouped by their isolation source 

listed in the metadata table (Figure 21 in the Appendix). Some genomes had either no isolation 

source information or there was not a sufficient amount to be placed into a group, resulting in the 

number of genomes being trimmed down to ~6000. Some overlap between the different isolation 

sources should be noted due to the limited information that was available in the metadata table. 

Genomes listed with an unspecified “Clinical” isolation source could have also potentially 

categorized into the “Human” group since they were most likely taken from a human in a clinical 

setting. Genomes listed with an unspecified “Environmental” isolation source could have been 

grouped together with those with the water source isolation. “Water source” was made its own 

distinct group because of the abundant number of genomes that had a more specific isolation 

source than just “environmental”. The negative control dataset was constructed with genomes 

that were closely related to Salmonella and were classified as non-pathogenic (Cosentino et al., 

2013). A total of 14 genomes were used to create the negative control dataset and were compared 

with the Salmonella isolated from multiple sources.  
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 A Hidden Markov Model (HMM) made from the Virulence Factor Database (VFDB) was 

constructed by de Nies et al (2021). Unfortunately, I was unable to install the full software 

pipeline developed by the authors, despite trying to install it under different operating systems 

(Darwin and Linux). Still, I aligned this HMM dataset with all sets of Salmonella proteins. With 

the added sensitivity and specificity that HMMs can provide, isolation sources could be better 

distinguished from one another. This was not the case and the alignment produced far too many 

matches when compared to the total number of genes in a Salmonella’s genome. Salmonella 

genomes typically have ~5000 coding genes (Stevens et al., 2018) and the alignment with the 

HMM VFDB produced ~3000 matches (Fig. 12), this would mean that over half the genome 

would be related to the bacterium's virulence. The setup and construction of the HMM may play 

a large role in its efficacy and should be fine tuned to a project's desired needs. The HMM used 

also contained HMMs from multiple different databases and not just the VFDB, which could 

have played a part in the number of matches that were produced. It is also possible that the 

software pipeline I could not install would have cleaned the HMM results and reduced the total 

number of matches.  

  The pairwise alignment with the Virulence Factor Database (Non-HMM) resulted in the 

negative control genomes producing less matches than all other genome groups (Fig. 11). This 

was an expected result since the negative control genomes were chosen because they should be 

less pathogenic than regular Salmonella genomes. The negative controls having fewer matches 

than the other genome groups reinforced the concept that an alignment with the VFDB can 

differentiate non-pathogenic from pathogenic bacteria (Liu et al., 2022). There was a clear visual 

decrease in the number of matches with the VFDB (Fig. 11), but this was reaffirmed after an 
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unpaired two-sample Wilcoxon test showed that there was also a statistically significant 

difference between the negative controls and all other groups (Table 2). A surprising result was 

that even though the other groups had a similar number of matches to the VFDB, most were 

found to be significantly different from one another (Table 2). The only groups that were 

consistently not significantly different from one another were the plant and nut groups, which 

may have been because those groups had very few genomes compared to the others. Even with 

the nut and plant grouping not being as large as the other groups, they were included because 

they are a vastly different environment than an animal or human, this difference in conditions 

may have given rise to genomic differences as well. The genomes from the nut and plant groups 

could be reclassified into the environmental grouping, or more genomes added to those groups to 

have a more accurate representation.  

All genome groups had a large number of total matches with the VFDB, approximately 

1000-1100, which represents between one fifth and one quarter of the total number of genes in a 

Salmonella’s genome. Similar genome analysis projects with S. enterica saw 193 genes that 

matched the VFDB (Cui et al., 2021), but the matches were also filtered by sequence identity, as 

well as by coverage of the VFDB protein. Sequence identity is how many matches are shared 

between two sequences as a percentage, while sequence coverage is the percentage of the protein 

length covered by the alignment (Newell et al., 2013). A coverage of at least 70% of the VFDB 

matched protein was used in the alignments. A sequence identity threshold was not used because 

it may exclude genes and protein sequences that have diverged a lot, but the protein still retained 

its original function. Different percent identity thresholds could be tested in the future to try and 
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filter out some non-pathogenicity related sequences that may have matched with a virulence 

factor, while still maintaining a high percent coverage.  

 The Comprehensive Antibiotic Resistance Database (CARD) has frequently been used to 

help determine the pathogenic potential of a bacterium by providing information on 

antimicrobial resistance genes (Alcock et al., 2023). Antimicrobial resistance genes are key 

features for pathogens that help them persist in an environment and propagate diseases. The 

negative controls had more proteins that produced a match with the CARD, with all matches 

being either strict or perfect (Fig. 14). Proteins that produced a “perfect” match were identical to 

the sequence in the CARD, while a “strict” match is a protein that is similar to a functional 

variant in the CARD (Alcock et al., 2023). Even when filtered for just perfect matches, the 

negative controls produced more matches with the CARD than that of the other genome groups 

(Fig. 15). A large majority of the matches were to efflux pumps in the CARD database, a 

common antimicrobial resistance mechanism that will rapidly pump out antimicrobials from a 

cell. This was also consistent with the CARD:Live project, where 60% of genomes submitted 

were found to have an antimicrobial resistant gene (ARG) from the major facilitator superfamily 

antibiotic efflux pumps (Alcock et al., 2023).  

Efflux pumps are an intrinsic gene found chromosomally on all bacteria and are used to 

transport molecules in and out of a cell. High-level multidrug resistance is often caused by many 

different resistance mechanisms working synergistically, with the efflux pump being a gateway 

to the activation of other mechanisms in some instances (Saw et al., 2016; Nolivos et al., 2019; 

Buckner et al., 2017). For example, if the acrAB gene is deleted or inhibited in Enterobacterales, 

it had downstream effects and can lead to decreased expression of OmpF, a gene that encodes for 
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outer membrane protein F (Porins) (Saw et al., 2016). Porins are outer membrane proteins that 

allow for the diffusion of molecules into a cell, such as antimicrobials. With decreased 

expression of the OmpF gene, less channels would be available for an antimicrobial to enter a 

cell, reducing its effectiveness. Efflux pumps were also found to be instrumental in acquiring 

new plasmids through horizontal gene transfer in E. coli (Nolivos et al., 2019). For example, in 

the presence of the antibiotic tetracycline, which inhibits translation in bacteria, the AcrAB-TolC 

efflux pump was needed for the intake of plasmids that carry the gene for tetracycline resistance; 

TetA (Nolivos et al., 2019). The AcrAB-TolC efflux pump would rapidly pump out incoming 

tetracycline, so the newly acquired plasmid with TetA can be successfully translated. The same 

can be seen in Klebsiella pneumoniae, where the acquisition of multi-drug-resistant plasmids 

caused an increase in the transcription of efflux genes (Buckner et al., 2017). This would help 

explain why most of the matches with the CARD in all groups were efflux pumps. The efflux 

pump proteins themselves can be used in antimicrobial resistance mechanisms and can also have 

downstream regulatory effects, as well as being essential in the horizontal gene transfer of 

plasmids (Saw et al., 2016; Nolivos et al., 2019; Buckner et al., 2017).       

The negative controls having more matches with the CARD might be explained by the 

relationship between antimicrobial resistance and virulence. Antimicrobial resistance has been 

suggested to come at a fitness cost in an antimicrobial free environment because of the high 

genetic burden needed for resistance (Beceiro et al., 2013). S. enterica expressing the AmpC 

gene that codes for resistance to beta-lactam targeting antimicrobials, were found to have 

decreased invasion rates of target cells and decreased intracellular replication inside the invaded 

cells (Morosini et al., 2000). The Salmonella colonies also appeared flattened and rough 
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(normally smooth and raised) when producing AmpC beta-lactamase, but the inclusion of the 

regulatory AmpR gene reversed these characteristics (Morosini et al., 2000). Ciprofloxacin-

resistant S. enterica were found to have lower growth rates and formed smaller colonies when 

compared to their non-resistant counterparts (O’Regan et al., 2010). Resistant S. enterica were 

also more susceptible to environmental stresses such as pH increases and osmotic susceptibility 

by the addition of salts (O’Regan et al., 2010). Ciprofloxacin-resistant S.enterica were also 

found to be more susceptible to other types of antibiotics such as; ampicillin, chloramphenicol 

and tetracycline (O’Regan et al., 2010). These changes also compounded into decreased 

virulence in the form of significantly decreased swim motility, swarm motility, and invasion of 

target cells (O’Regan et al., 2010). In contrast, other studies showed that antimicrobial resistant 

Salmonella had increased virulence (Tamayo et al., 2002 and Eswarappa et al., 2008). Other 

studies have also found that the addition of antimicrobial resistance genes had no associated cost 

for Salmonella due to compensatory mutations (Nilsson et al., 2006 and Andersson et al., 2010). 

Since the negative control dataset was primarily composed of E. coli, the same three outcomes 

from the addition of antimicrobial resistance have been observed (Beceiro et al., 2013). The 

negative controls having fewer matches with the VFDB and more matches with the CARD, 

which suggests that increased antimicrobial resistance decreases virulence.       

The PathFam matches displayed a similar result as the pairwise alignment with the 

VFDB. Matches with the PathFam database helped determine how much pathogenicity-

associated protein families there were in each of the groups. The negative controls were found to 

have less pathogenicity-associated protein families than all other groups (Fig. 13). This 

difference was found to be statistically significant as well using an unpaired two sample 
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Wilcoxon test (Table 4). Similar to the matches with the VFDB, the negative controls should 

have less pathogenicity-associated protein families than the other groups because they should be 

non-disease-causing bacteria. The PathFam database is shown to be a good tool in differentiating 

non-pathogenic from pathogenic bacteria and can be used in the future for pathogen 

identification of an unknown sample. The PathFam database was also better at differentiating the 

nut and plant groups from the other groups. The nut and plant groups were significantly different 

from more groups when comparing their PathFam matches than when comparing their VFDB 

matches (Tables 2 and 3).  

When clustered by the VFDB, Pfam and Mash scores, the isolation groups did not 

separate into corresponding distinct clusters from one another, instead they mixed throughout the 

hierarchical clusters (Figs. 16,17,18). Aside from one large animal cluster in each dendrogram, 

no group was found to be distinctly clustered on its own (Figs. 16,17,18). The CARD match 

clustered because the original dataset clustered (Fig. 5) and showed that there was not sufficient 

information to properly group genomes, resulting in a large single branch. VFDB matches and 

Mash scores produced similar results because of their low entanglement score of 0.17 (Fig. 19). 

With the two clusters having a low level of entanglement, genomes that were similar to one 

another also matched the same proteins in the VFDB. This relationship was not due to a 

Salmeonlla’s isolation source, if it were, genomes from the same grouping would be clustered 

together in the hierarchy (Fig. 17). Genomes that are similar to one another were matching the 

same proteins in the VFDB, but not because they were from the same isolation group. If 

Salmonella from the same groups were matching the same proteins in the VFDB, that would be 

reflected in large distinct clusters in the hierarchical cluster.  
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With an entanglement value of 0.09, the VFDB and Pfam clusters were very similar, 

sharing a lot of the same branches (Fig. 20). Since the Pfam is a protein domain database, and 

virulence factors are a subset of protein families, the similar clusters were expected. Virulence 

factors themselves being a small subset of proteins inside larger protein families and domains, 

they should be similar to matches from the Pfam. This is also a similar case as the relationship 

between VFDB and Mash (Fig. 19), the VFDB and Pfam matches (Fig. 20) in the Salmonella 

genomes were similar, because the genomes are so similar. If the VFDB and Pfam relationship 

was due to a Salmonella’s isolation source, the groups would have been clustered together in the 

hierarchical clusters (Figs. 16 and 17). To reiterate, even though these clustering metrics are 

found to be similar, the causation of this similarity is not due to a Salmonella’s isolation source.  

With all these results in mind, all isolation groups were found to have similar levels of 

virulence due to their similar number of matches with the VFDB. Even though most groups were 

found to be significantly different in this metric, more analysis is needed to further highlight key 

differences in the groups to provide a definitive answer. The environmental genomes being 

potentially just as pathogenic as the clinical genomes contrasted my initial hypothesis. 

Salmonella from diverse isolation sources all around the world seem to have the same potential 

to be pathogenic, regardless of isolation source.   
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Ch. 5 Future directions 

 Different percent identity thresholds can be experimented with, to further filter down the 

total number of matches with the VFDB. HMMs and pairwise alignments could be used in 

tandem to make use of the benefits of each, while minimizing each other's weakness. HMM 

models would need to be tailored for specific projects since “one size fits all” models did not 

give good results. I would also expand the negative control dataset to include more Salmonella 

genomes and increase the size in general. The reclassification of the groupings might be needed 

to merge some smaller groups with larger ones that consistently did not have a significant 

difference with other groups. The genome groupings were also be constructed to contain the 

same number of genomes as each other, to limit the effect of sample size differences in further 

analysis. Lastly, I would create a more updated workflow for identifying virulence and 

antimicrobial resistance related genes. More post alignment steps could be utilized to further 

reduce the total number of matches with the VFDB, or looking at specific genes in the VFDB 

that are found in Salmonella.   



68 

 

Ch. 6 Integrative Biology Statement  

To me, integrative biology is the idea of using different fields of biology to solve 

problems through different perspectives. Biology projects might span several disciplines within 

biology such as: ecology, pathology, molecular genetics, physiology etc. With the invention of 

the internet, it has become easier than ever to communicate and share information with anyone 

around the world. This network has allowed for the coordination between people that have 

diverse backgrounds and expertise. These collaborations can add new perspectives to problems 

and questions that may arise and help us to understand large biological systems that may span 

multiple fields of biology.  

My thesis project was integrative in nature because I was able to work with Salmonella 

genomes isolated by Dr. Slawson’s lab. They were able to isolate the Salmonella from the 

environment and used molecular genetics techniques to sequence the genomes for me to analyze. 

My analysis used predominantly computational biology techniques, such as blast alignments, to 

better understand the Salmonella’s potential to cause disease, investigating the pathology of 

them. I also used statistical analysis techniques such as Hidden Markov Models and hierarchical 

clusters to better visualize and understand trends within the genomes. This is why I believe that 

my thesis was integrative, I collaborated with people from different fields and did not strictly use 

techniques and ideas from my discipline alone.  
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Ch. 7 Summary  

 The initial environmental genomes isolated from the Waterloo region and clinical lab 

isolates were found to have a similar number of matches with the VFDB, suggesting a similar 

amount of pathogenic potential. The environmental genomes were found to have less matches 

with the CARD than the clinical lab isolates, suggesting less antibiotic resistant potential than the 

clinical genomes. The dataset was then expanded to include ~6000 genomes from the BV-BRC 

database. These new genomes were sorted into different groups based on their isolation source, 

in order to determine if there is a relationship between isolation source and pathogenic potential. 

The negative control dataset was found to have significantly less matches with the VFDB, as 

well as significantly more matches with the CARD than other groups. Most groups were found to 

be significantly different from others besides the very small nut and plant groups. The PathFam 

database was able to differentiate between the negative control group because it had less 

pathogenic associated domains. When clustered by Mash scores, matches with the VFDB, and 

matches with the CARD, the groups did not produce distinct clusters and were found dispersed 

throughout. The difference in VFDB matches was not due to different isolation sources but was 

attributed to the genomes being similar. Isolation source did not seem to have an effect on a 

Salmonella’s disease-causing potential, but further analysis is needed to confirm this conclusion.    
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Appendix 

 

Figure 21. Snapshot of information for all genomes used in this study, contains isolation source 

information and grouping information, as well as counts from all alignments. Full table available 

upon request. 
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