
Received January 28, 2021, accepted March 5, 2021, date of publication March 22, 2021, date of current version March 31, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3067815

A Data-Aware Scheduling Strategy for Executing
Large-Scale Distributed Workflows
SALVATORE GIAMPÀ 1, LORIS BELCASTRO 1, FABRIZIO MAROZZO 1,2,
DOMENICO TALIA 1,2, AND PAOLO TRUNFIO 1,2
1DIMES, University of Calabria, 87036 Rende, Italy
2DtoK Lab Srl, University of Calabria, 87036 Rende, Italy

Corresponding author: Fabrizio Marozzo (fmarozzo@dimes.unical.it)

This work was supported by the ASPIDE Project through the European Union’s Horizon 2020 Research and Innovation Programme under
Agreement 801091.

ABSTRACT Task scheduling is a crucial key component for the efficient execution of data-intensive
applications on distributed environments, by which many machines must be coordinated to reduce execution
times and bandwidth consumption. This paper presents ADAGE, a data-aware scheduler designed to
efficiently execute data-intensive workflows in large-scale computers. The proposed scheduler is based on
three key features: i) critical path analysis, for discovering the critical tasks of a workflow and reducing
data transferring between nodes; ii) work giving, a new dynamic planning strategy for migrating tasks from
overloaded to unloaded nodes; and iii) task replication, which executes task replicas on different nodes
for improving both execution time and fault tolerance. Experiments performed on a distributed computing
environment composed of up to 1,024 processing nodes show that ADAGE achieves better performances
than existing scheduling systems, obtaining an average reduction of up to 66% in execution time.

INDEX TERMS Data-aware scheduler, workflow scheduling, distributed workflows, parallel programming,
distributed computing, exascale computing.

I. INTRODUCTION
The term Exascale refers to the capabilities of future comput-
ing systems, still to be implemented, which should be capable
of calculating at least one exaFLOPS (i.e., 1018 FLOPS),
far exceeding the most advanced existing computing systems
(about 1015 FLOPS). To reach the Exascale size, other than
new hardware solutions, it is required to define new pro-
gramming models, languages and algorithms that combine
abstraction with both scalability and performance [1]. Hybrid
models (based on shared/distributed memory) and commu-
nication mechanisms based on data locality and grouping
are currently investigated as promising approaches. Parallel
applications running on Exascale systems will require to
control a high number of tasks running on a very large set
of computing resources [2]. Such applications will need to
avoid or limit synchronization, use less communication and
remote memory, and handle software and hardware faults that
can occur. In order to achieve such computational speeds,

The associate editor coordinating the review of this manuscript and

approving it for publication was Daniel Grosu .

more and more novel solutions are being proposed with the
aim of harnessing the computational power of a large set of
machines operating in parallel [3].

The problem of coordinating many machines in a complex
distributed system is widely represented as a task scheduling
problem. Task scheduling has long been recognized as a
NP-Hard problem, which represents a major challenge for
researchers, especially if the scheduling is performed dynam-
ically and in real time (as required by modern systems). The
scheduling aims at identifying the most suitable resources
for executing the workloads on time and optimizing resource
utilization. In particular, it must also allow for many tasks to
run simultaneously and for the exchange of large amounts of
data. This paper presents ADAGE (A Data-aware scheduler
based on criticAl path, work assiGnment, and rEplication),
a data-aware scheduler designed to efficiently execute data-
intensive workflows in a large-scale computer network. The
proposed scheduler is based on three key features: i) critical
path analysis, for discovering the critical tasks of a workflow
and reducing data transferring between nodes; ii)work giving,
a new dynamic planning strategy for migrating tasks from

47354 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-1003-1391
https://orcid.org/0000-0001-6324-8108
https://orcid.org/0000-0001-7887-1314
https://orcid.org/0000-0003-1910-9236
https://orcid.org/0000-0002-5076-6544
https://orcid.org/0000-0003-2340-5433


S. Giampà et al.: Data-Aware Scheduling Strategy for Executing Large-Scale Distributed Workflows

overloaded to unloaded nodes; and iii) task replication, which
executes task replicas on different nodes for improving both
execution times and fault tolerance.

ADAGE is composed of the following components:
i)DecisionMaker (DM), which runs on each node and assigns
the tasks to the current node or remote nodes; ii) Local Ready
Queue (LRQ), which contains the tasks that are ready to be
executed, sorted by execution priority; iii) Load Balancer
(LB), which moves tasks from the LRQ to the least loaded
neighboring nodes whenever the current node is overloaded;
and iv) Validator, which checks and updates the status of the
tasks in LRQ. These components work together to effectively
execute the submitted workflow, which is composed of many
tasks with dependencies, on a pool of computing nodes in a
distributed platform.

To evaluate our strategy, we carried out several exper-
iments on different workflows by varying both the num-
ber of tasks and computing nodes. In our evaluations,
we compared the designed scheduling strategy with two
state-of-the-art systems, i.e., Matrix [4] and Albatross [5].
In particular, five existing workflows (i.e., CyberShake,
Epigenomics, Inspiral, Montage, Sipht), which can generate
up to 10,000 tasks, were evaluated. Experiments performed
on a HPC distributed system composed of 1,024 computing
nodes show that ADAGE achieves better performance than
existing scheduling systems, obtaining an average reduction
of up to 66% in execution time. For the purpose of using the
code of our scheduler and allowing the reproducibility of the
experiments, an open-source version of ADAGE is available
at https://github.com/SCAlabUnical/ADAGE.

Compared to existing techniques, our scheduler includes
the following innovative aspects: i) it combines both static
and dynamic planning strategies for reducing execution time
of data-intensive workflows; ii) it exploits a novel algorithm
for moving tasks from overloaded to unloaded nodes at run-
time; iii) it takes advantage of task replication on different
nodes to improve both execution times and fault tolerance.

The remainder of the paper is organized as follows.
Section II discusses related work. Section III describes the
proposed scheduling strategy. Section IV shows the experi-
mental results and Section V concludes the paper.

II. RELATED WORK
With the increasing popularity of data-intensive workflows,
several research projects have been carried out to define
data-aware scheduling algorithms [6]– [8] aiming at improv-
ing scalability, energy efficiency and execution performance.
In particular, due the imminent implementation of Exascale
systems, task scheduling for massively parallel applications
has become an important and strategic research area [3].
In particular, several algorithms and systems have been pro-
posed to cope with the needs of large scale data-intensive
applications, exploiting both static and dynamic schedul-
ing [9]– [11].

Kosar et al. [12] proposed a data scheduler, namely Stork,
that allows for planning data allocation and data transfer

among computing nodes in a network. In particular, Stork
uses the ClassAd [17] language to represent data manage-
ment tasks, while computational workflows are executed
using both Pegasus [18] for data-aware planning andHTCon-
dor DAGMan [19] for managing task dependencies. Stork
exposes four main data scheduling strategies: first fit, largest
fit, smallest fit and best fit. The first three strategies are
heuristics, while the fourth one is an exact algorithm that
discovers the best data allocation using a greedy approach.

Wei et al. [13] proposed a data-aware scheduling strat-
egy obtained as the combination of two existing systems:
LSF (Load Sharing Facility) [20] and GFarm [21]. LSF is
a job scheduler expressively designed for HPC systems that
exposes a set of scheduling tools for managing global work-
loads and resources. GFarm is a distributed file system that
is designed for data sharing in large clusters. The proposed
strategy exploits data location information retrieved from
GFarm for evaluating data affinity of tasks and automatically
transfer data among nodes.

Acevedo et al. [14] proposed a data-aware scheduling algo-
rithm based on a variant of the critical path algorithm [22],
named Critical Path File Location (CPFL). The algorithm is
designed to schedule workflow tasks by declaring inter-task
and data dependencies. It also allows to execute an appli-
cation composed of multiple workflows by merging them
in a single meta-workflow. The scheduler exploits a pre-
scheduling stage to establish where data should be allocated.
Then, the critical path algorithm is used to assign a prior-
ity value to each task of the meta-workflow. Subsequently,
the scheduler manages each task using priority and assigns it
to a computing node based on its data dependencies.

Marozzo et al. [15] proposed a composition of two sys-
tems, the Data Mining Cloud Framework (DMCF) [23] and
Hercules [24], to obtain a data-aware workflow scheduling
for Cloud environments. DMCF allows to process and sched-
ule workflow tasks, while Hercules manages temporary files
generated during computation. The scheduling strategy is
inspired by the one proposed in [25], but it uses a new local
queue on the executor node, called locallyActivatedTask,
to obtain data-awareness. For each node, the scheduler selects
the best task to run, choosing it from the global or local task
queue. In particular, the scheduler tries to execute the task
whose dependencies have been resolved and for which the
current node is the best concerning data allocation.

MATRIX (MAny-Task computing execution fabRIc at
eXascale) [16] is a system that implements a data-aware
scheduling strategy based onwork stealing [26]. It extends the
classical work stealing strategy to support data-awareness by
maintaining information about data dependencies of sched-
uled tasks. The system consists of three entities: client, sched-
uler and executor. The network nodes are fully connected,
which means that they can communicate each other. On each
node, three basic components run: executor, scheduler, and
ZHT (Zero-hop distributed HashTable) server [27]. In par-
ticular, the last component allows to implement a shared
DKVS (Distributed Key-Value Store) that stores information

VOLUME 9, 2021 47355



S. Giampà et al.: Data-Aware Scheduling Strategy for Executing Large-Scale Distributed Workflows

TABLE 1. Comparison with main related systems.

about tasks, including data dependencies and data locality.
MATRIX exploits three local queues to manage tasks, which
contain respectively: tasks that are not ready to run; strictly
data-dependent tasks that read much data from well-defined
nodes; and not strictly data-dependent tasks that read some
temporary data.

Albatross [5] is a system that improves some features
of MATRIX. For example, it enhances fault tolerance by
replacing the local queue containing not ready tasks with
Fabriq [28]. Fabriq is a distributed message queue (DMQ)
that runs on top of a distributed hash table, which prevents
losing tasks when a node fails. Albatross assign tasks to nodes
by using a late-binding technique. Specifically: i) when a task
becomes ready (i.e., all its dependencies are solved), the load
balancer pulls it from the DMQ and tries to send it to the
best node according to data locality; ii) if the remote node is
overloaded or data are local, the task is assigned to the local
queue of the current node; iii) when the task is pulled from
a local queue, the load balancer tries again to send it to the
best node and, if the assignment is not possible, the task is
executed on the current node.

Table 1 shows a comparison among the referred related
works. For each work, the table reports the metadata manage-
ment and storage systems, implementation language, features
of the scheduler, and performance metrics that have been
evaluated. Differently from existing techniques, ADAGE
combines both static and dynamic planning strategies for
improving the execution performances of data-intensive
workflows. In particular, a static planning strategy, based
on the critical path algorithm, is used to optimally assign
tasks to the nodes during the workflow submission. Then,
a novel dynamic strategy, named work-giving, is used by
overloaded nodes for assigning tasks to other nodes. Further-
more, ADAGE exploits task replication on different nodes to
improve both execution times and fault tolerance.

III. PROPOSED SCHEDULER
ADAGE is a new data-aware scheduler that exploits data
locality to reduce data movement among nodes and improve

the execution time of data-intensive workflows. To reach this
goal, ADAGE combines both static and dynamic planning
strategies.

The static planning strategy is based on the critical path
algorithm [22], which permits to find the critical tasks of a
workflow, i.e. tasks that cannot be delayed without delay-
ing the execution of the entire workflow. Starting from the
knowledge of the critical path, our strategy minimizes data
movement and memory latency by executing a task on the
node that holds the largest amount of input data.

A dynamic planning strategy is used for assigning tasks
to computing nodes at runtime. We designed a new dynamic
planning strategy, called work-giving, which is used for
migrating tasks from overloaded to unloaded nodes. Specifi-
cally, if a node is overloaded, it tries to send some of its tasks
to unloaded nodes in its neighborhood. Such behavior differs
from the work-stealing approach, in which an entity runs on
the unloaded nodes and, during the computation, searches
and steals tasks from the overloaded ones. It should be noted
that the stealing process is activated many times and in many
nodes. This behavior can limit the scalability in large-scale
computing systems (such as Exascale computers), where the
unloaded nodes are usually much more than the overloaded
ones. Additionally, each unloaded node competes with the
others to steal tasks, which can lead to a highly random
distribution of tasks in the system. Differently, the work-
giving strategy is executed on a much smaller number of
nodes, which improves the system scalability. In addition,
this approach limits the random distribution of the tasks by
allowing an overloaded node to assign tasks to a limited
number of nodes in its neighborhood.

For increasing the application reliability and finishing
computation faster, ADAGE exploits task replication to exe-
cute speculative copies of tasks on different nodes. As stated
in [29], the use of task replicas (also called backup tasks) is
essential to significantly reduce the completion time of large
workflow applications. In fact, some computing nodes may
take an unusually long time to complete some tasks (e.g.,
due to overhead or hardware/software issues), negatively

47356 VOLUME 9, 2021



S. Giampà et al.: Data-Aware Scheduling Strategy for Executing Large-Scale Distributed Workflows

FIGURE. 1. Scheduler block diagram and execution flow.

affecting the completion time of the entire application. This
mechanism marks a task as completed when the primary or a
replica execution ends.

More details on the architecture, metadata and algorithms
exploited by ADAGE are provided in the following sections.

A. ARCHITECTURE
The software structure of ADAGE consists of the following
macro-components:

• Client: given a workflow composed of several tasks,
it executes the critical path algorithm to pre-assign the
tasks to the nodes and calculates the priority for each of
them.

• Distributed Hash Table (DHT): it stores all the necessary
information about tasks, such as the running state, parent
tasks, and actual number of replicas.

• Distributed Message Queue (DMQ): it stores the iden-
tifiers of tasks waiting to be executed by a processing
node.

• Scheduler: it executes a dynamic scheduling strategy,
named work-giving, which is discussed in Section III.

An instance of the scheduler runs on each node of the
system. Specifically, such a scheduler instance is composed
of the following components:

• Decision Maker (DM): it statically assigns tasks to the
current node or remote nodes.

• Local Ready Queue (LRQ): it contains the ready tasks,
which are tasks whose dependencies are solved; such
tasks are sorted by the execution priority calculated with
the critical path algorithm.

• Load Balancer (LB): when the current node is over-
loaded, the LB selects and sends some tasks from the
LRQ to less loaded neighbor nodes.

• Validator: it checks the completion of tasks in the LRQ;
if a task is completed, the Validator removes it from the
queue; otherwise, if the task execution is still pending,
the heartbeat is updated and stored in the DHT.

Figure 1 shows the block diagram and execution flow of
the scheduling system. Each node can dispose of one or more
Executors, which pull ready tasks from the LRQ. If the LRQ
is empty, the execution of the Decision Maker is triggered.
As shown in Figure 1, the client starts storing taskmetadata

in the DHT (1) and tasks in the DMQ (2) (also specifying
the preferred execution node for each of them). In particular,
the client executes the critical path algorithm to find an
optimal planning solution for assigning the tasks to nodes.
On each node, an instance of the Decision Maker (DM) takes
one or more tasks from the DMQ (3) and decides on which
node they have to be executed. Specifically, if a task has been
assigned by the client to the current node, it is put in the Local
Ready Queue (LRQ) (4); otherwise, such a task is sent to
another node, which is chosen based on data locality (5), and
inserted in the LRQ (6).
The Executors get the tasks with the highest priorities from

the LRQ (7) for running them, while the Load Balancer (LB)
gets those with the lowest priorities (8). In the latter case,
the tasks are replicated and sent to some neighbor nodes that
are less charged than the current one (9). In particular, each
replicated task is inserted in the LRQ of the chosen neighbor
node (10). The maximum number of replicas for a task is
specified by the client during the workflow submission and
stored in the DHT.
Only the tasks that are assigned to the current node can be

replicated by the LB. In fact, as shown in Figure 1, the LRQ
is logically split in two parts so as to distinguish between
the tasks that have been assigned to the current node and
replicas that have been received from neighbors. More details

VOLUME 9, 2021 47357



S. Giampà et al.: Data-Aware Scheduling Strategy for Executing Large-Scale Distributed Workflows

TABLE 2. The task metadata stored in the DHT.

TABLE 3. The possible states of a task.

about the different components of the scheduling system are
provided in the following subsections.

B. TASK METADATA AND STATES
Table 2 reports the main metadata of a task. In particular,
the field state represents the current state of the task, which
can take one of the values reported in Table 3.

Figure 2 shows the state diagram describing the life cycle
of a task. When it is submitted by the client, a task is in the
waiting state, which means the task is waiting for termination
of some parent task. The field parents contains the number of
parents the task is waiting for. Such a number is decreased
every time a parent task terminates.

The task switches to the ready state when all its parents
have been completed successfully. In such a state, the node
can start preparing the task for execution, getting the needed
data. When this happens, the task goes in the stage-in state.
Once the stage-in process is completed, the task is executed,
passing in the running state. If the task fails its execution
due to a self-generated error (e.g., a programming error or an
unhandled exception), it goes in the failed state and all its
children fail in cascade. Alternatively, if the task successfully
completes its execution, the scheduler starts to write the

FIGURE. 2. State diagram describing the life-cycle of a task.

Listing 1. Pseudo-code of the Executor component. It invokes the
Decision Maker when no tasks are present in the Local Ready Queue.

output data in the storage and the task is switched in the stage-
out state. Finally, the task goes in the complete state when the
output data have been fully stored.

C. DECISION MAKER AND EXECUTOR
When an Executor terminates its current work, it selects
another task from the LRQ. If the queue is empty, it activates
theDecisionMaker (DM), which starts to load new tasks from
the DMQ to the LRQ. Then, the Executor tries again to get
a task from the LRQ and, if found, executes it; otherwise it
activates the DM again. However, to limit the network over-
load due to subsequent calls to the DMQ, the Executor awaits
a short time before activating the DM again. Listing 1 shows
the pseudo-code of the Executor component.

After executing a task, the Executor updates metadata of
the task and its children. In particular:

• the state field is set to complete;
• a new timestamp for the complete state is added to the
state-history field;

• for each child in the children field, the parents field is
decreased.

The Decision Maker performs an initial distribution of
tasks to nodes based on data locality. In particular, it performs
the following steps:

1) It checks the DMQ looking for non-finished tasks that
have been assigned to the current node and whose

47358 VOLUME 9, 2021



S. Giampà et al.: Data-Aware Scheduling Strategy for Executing Large-Scale Distributed Workflows

Listing 2. Pseudo-code of the Decision Maker.

heartbeats are not up-to-date. If some tasks are found,
the DM inserts them in the LRQ and terminates
its execution; otherwise, it proceeds to the second
phase.

2) It scans the DMQ again looking for non-finished tasks
that are not assigned to the current node and whose
heartbeats are not up-to-date (i.e., the tasks that have
been pulled from the DMQ but whose assignee node
failed). If the DM gets any tasks matching such criteria,
it decides where to send them. Specifically, if a task
is assigned to the current node, it is inserted in the
LRQ; otherwise, such a task is sent to another node in
the system, which is optimally chosen based on data
locality.

The DM aims at improving the fault tolerance of the sys-
tem when the pre-assignment of tasks (made by the client)
is no longer feasible (e.g., because some assignee node is
failed or unreachable). Listing 2 shows the pseudo-code of
the DM.

In particular, when a task cannot be executed by the
assignee node, the DM sends it to another node for execution.
The new assignee node is chosen using a heuristic that takes
into account the location of the input data used by the task.
Listing 3 shows the pseudo-code of the procedure used to
find the best node for executing a task according to its input
data locality. Similarly to what was proposed by Acevedo
et al. [14], such a procedure aims at minimizing the total
transfer time of all input data. In particular, the transfer time
of a file is calculated as the ratio between file size and
bandwidth of the node. Given a node, the total transfer time is
calculated by considering all the input files, required by the

Listing 3. Pseudo-code of the procedure used to find the best node for
executing a task.

task, that are owned by the node itself. Then, the node that
grants the smallest total transfer time is chosen.

The time complexity of the Decision Maker function is
O(t * n), where t is the number of submitted tasks and n is
the number of nodes in the computer network.

D. LOAD BALANCER
The Load Balancer (LB) is a periodic thread that monitors
the workload of all nodes in the neighborhood in order to
efficiently distribute tasks among them.

Listing 4 shows the pseudo-code of the LB component. In
particular, after setting an initial waiting time lbTime, the LB
gets the list of neighbor nodes, which can be retrieved by
using a static or a dynamic approach. According to the static
approach, the neighborhood does not change over time, while
using the dynamic one it can be calculated many times. For
example, MATRIX [4] uses a dynamic selection strategy
that randomly chooses a number of neighbor nodes equal to
the square root of the total number of nodes. Then, if the
local node is the most overloaded one in the neighborhood,
the LB sends half of the tasks to the less overloaded neighbor
node. However, such operation can fail if: i) the local node
is not the most overloaded one in the neighborhood; ii) a
communication error happens; iii) the LRQ is empty. In such
cases, lbTime is doubled and the LB performs a new attempt
after sleeping for that time. To avoid too long waits, lbTime
is doubled until it reaches a maximum allowed value. On the
other hand, if the tasks are sent successfully, the waiting time
is reset to the initial value (e.g., 1 millisecond). Before send-
ing tasks to a neighbor, the LB replicates them and maintains
the original copies in the LRQ. In such a way, the different
replicas of a task compete each other to be executed first. The
first replica that completes its execution determines the end
of the task and, consequently, causes the termination of all
other running replicas.

VOLUME 9, 2021 47359



S. Giampà et al.: Data-Aware Scheduling Strategy for Executing Large-Scale Distributed Workflows

Listing 4. Pseudo-code of the Load Balancer.

As it can be observed from Listing 4, the time complexity
of the Load Balancer function is O(t + n), where t is the
number of submitted tasks and n is the number of nodes in
the network.

E. VALIDATOR
As explained in Section III-D, the Load Balancer can repli-
cate the tasks on the neighborhood of the current node. In par-
ticular a replica of a task is inserted in the LRQ of a neighbor
node. An additional component, namely the Validator, moni-
tors the LRQ looking for tasks that completed their execution.
If any are found, the local replicas of such tasks are removed
and not executed again. This operation can be accomplished
by querying the DHT, which stores all the needed information
about the tasks that are currently running in the system. The
Validator also updates the heartbeats of both the tasks in the
LRQ and those that are currently running. Listing 5 shows the
pseudo-code of the Validator component.

On the single node, the Validator function has a time
complexity that is linear in the number of tasks in the LRQ.
Considering all the nodes, the total time complexity results to
be O(t), where t is the number of submitted tasks.

IV. CASE STUDIES AND EXPERIMENTS
We experimentally evaluated the performance of our schedul-
ing strategy using WorkflowSim [30], a widely used toolkit
for running distributed workflows, which allows to consider
many aspects of the system, such as machine bandwidth,
storage types (e.g., RAM, local disk or distributed file sys-
tems), hardware specifics (e.g., number of cores and clock
speed) and power consumption. Each computing node in our
tests has been configured with 4 CPU cores at 2,000 MIPS,
8 GB of RAM, 1 Gbps of bandwidth, and 1 TB of
storage.

In our experiments, we used five existing workflows that
are defined in [31]: CyberShake, Epigenomics, Inspiral,

Listing 5. Pseudo-code of the Validator.

Montage, Sipht. To assess the effectiveness of our scheduling
strategy, we compared it with two related systems:
MATRIX [4] and Albatross [5]. In particular, we evaluated
the execution time by varying both the number of nodes
and tasks, the throughput as the number of completed tasks
per second, and the distribution of the completed tasks over
the execution time.

A. EXPERIMENT RESULTS
Figure 3 reports the elapsed execution time of the dif-
ferent scheduling systems when executing the five dif-
ferent workflows by varying the number of nodes from
1 to 1,024 (i.e., up to 4,096 cores). Specifically, each
workflow has been configured to spawn 1,000 tasks.
Each test has been configured with the following
parameters:

• number of replicas for each task: 2;
• heartbeat expiration period: 125 s;
• period between two subsequent activations of the Val-
idator: 62.5s (i.e., half of the heartbeat expiration
period).

As shown in Figure 3(a), for the Sipht application, our
strategy results to be on average 21% and 13% faster than
Albatross and MATRIX respectively. For other applica-
tions, the reduction of execution time ranges from 15% to
30% for Epigenomics (Figure 3(b)), from 20% to 31% for
Inspiral (Figure 3(c)), from 18% to 66% for CyberShake
(Figure 3(d)), and from 1% to 23% for Montage
(Figure 3(e)).

Since our scheduler was designed to support Exascale
applications, which can be composed of tens of thousands
of tasks, we carried out additional experiments to evaluate
the execution times when the number of tasks is increased
up to 10,000. For the sake of brevity, we compared the
performance of the three systems using only theMontage and
CyberShake workflows. Figure 4 shows the execution time
obtained by increasing the number of tasks up to 10,000 on
1,024 computing nodes. In particular, as the number of
tasks increases, in both Figures 4(a) and (b) the execu-
tion time of ADAGE grows slower than that of the other

47360 VOLUME 9, 2021



S. Giampà et al.: Data-Aware Scheduling Strategy for Executing Large-Scale Distributed Workflows

FIGURE. 3. Comparison of the execution times by varying the number of compute nodes (five workflows and 1,000 tasks).

FIGURE. 4. Comparison of the execution times by increasing the number of tasks up to 10,000 (two
workflows and 1,024 compute nodes).

two systems. This experiment demonstrates a greater
ability of our scheduler to manage large computational
resources.

Figure 5 illustrates the throughput of the different schedul-
ing systems, which has been calculated as the number of
completed tasks per second. As shown, ADAGE achieves sig-
nificantly better results than the other systems. In particular,
as the number of available nodes increases, the throughput

of our scheduler considerably increases compared to that of
the two other strategies, which demonstrates how ADAGE
is particularly suitable for very large distributed computa-
tion systems. By executing the CyberShake workflow with
1,024 compute nodes, ADAGE obtains a throughput that is
83% and 1377% greater than that of Albatross and MATRIX
respectively (Figure 5(a)). In the Montage workflow case,
using 1,024 nodes, the throughput of ADAGE is 11%

VOLUME 9, 2021 47361



S. Giampà et al.: Data-Aware Scheduling Strategy for Executing Large-Scale Distributed Workflows

FIGURE. 5. Comparison of number of tasks completed per second (throughput) vs the number of compute
nodes.

FIGURE. 6. Comparison of task completion times using 1,024 compute nodes.

and 50% greater (Figure 5(b)) of Albatross and MATRIX
respectively.

Figure 6 shows the distribution of the completed tasks over
the execution time. The plotted results show that ADAGE
achieves the peak of completed tasks much faster than the
other two systems. This figure reports how the execution time
of tasks is greatly reduced by using ADAGE, which means
that computational resources are released in a shorter time
with reference to the other two approaches.

Overall, the obtained results and the wide number of exper-
iments carried out on different workflows demonstrated how
the proposed scheduling strategy offers better performance
than other existing systems. This is especially true when
a very large number of nodes is used. This feature makes
the proposed algorithm particularly interesting for supporting
massive task execution in the upcoming Exascale systems.

V. CONCLUSION
In this paper we presented ADAGE, a new data-aware
scheduling strategy for large distributed computation
environments, such as the upcoming Exascale systems.

Differently from existing techniques, ADAGE combines both
static and dynamic planning strategies for improving the
execution time of data-intensive workflows. In particular,
it is based on three key features: i) critical path analysis, for
discovering the critical tasks of a workflow and reducing data
transferring between nodes; ii) work giving, a new dynamic
planning strategy for migrating tasks from overloaded to
unloaded nodes; and iii) task replication, which executes
task replicas on different nodes for improving both execu-
tion times and fault tolerance. Experiments performed on a
distributed environment composed of up to 1,024 compute
nodes showed that ADAGE achieves better performances
than existing techniques, obtaining a reduction of up to 66%
in execution time. Moreover, as the number of available
nodes increases, ADAGE outperformed the other techniques
in terms of throughput, demonstrating that is particularly
suitable for very large distributed computing systems.

In future work, additional research issues will be inves-
tigated. In particular, since our scheduler supports different
workflows patterns (e.g., map-reduce, divide-and-conquer,
pipeline), we plan to investigate its usability in combination

47362 VOLUME 9, 2021



S. Giampà et al.: Data-Aware Scheduling Strategy for Executing Large-Scale Distributed Workflows

with Apache Hadoop and Spark, which are widely used for
developing and executing general-purpose high performance
applications.

DATA AND CODE AVAILABILITY STATEMENT
For the purpose of using the code of our sched-
uler, an open-source version of ADAGE is available at
https://github.com/SCAlabUnical/ADAGE along with some
sample workflows and instructions for running experiments.

REFERENCES

[1] G. Da Costa, T. Fahringer, J.-A. Rico-Gallego, I. Grasso, A. Hristov,
H. D. Karatza, A. Lastovetsky, F. Marozzo, D. Petcu, G. L. Stavrinides,
D. Talia, P. Trunfio, and H. Astsatryan, ‘‘Exascale machines require new
programming paradigms and runtimes,’’ Supercomput. Frontiers Innov.,
vol. 2, no. 2, pp. 6–27, 2015.

[2] L. Belcastro, F.Marozzo, and D. Talia, ‘‘Programmingmodels and systems
for big data analysis,’’ Int. J. Parallel, Emergent Distrib. Syst., vol. 34, no. 6,
pp. 632–652, Nov. 2019.

[3] D. Talia, P. Trunfio, F. Marozzo, L. Belcastro, J. Garcia-Blas, D. D. Rio,
P. Couvée, G. Goret, L. Vincent, A. Fernández-Pena, D. M. de
Blas, M. Nardi, T. Pizzuti, A. Spătaru, and M. Justyna, ‘‘A novel
data-centric programming model for large-scale parallel systems,’’
in Euro-Par 2019: Parallel Processing Workshops (Lecture Notes
in Computer Science). Gottingen, Germany: Springer, Aug. 2020,
pp. 452–463.

[4] A. Rajendran, K. Wang, and I. Raicu, ‘‘MATRIX: MAny-Task computing
execution fabRIc at eXascale,’’ in Proc. 2nd Greater Chicago Area Syst.
Res. Workshop (GCASR), Chicago, IL, USA, 2013.

[5] I. Sadooghi, G. Kumar, K. Wang, D. Zhao, T. Li, and I. Raicu, ‘‘Alba-
tross: An efficient cloud-enabled task scheduling and execution framework
using distributed message queues,’’ in Proc. IEEE 12th Int. Conf. e-Sci.,
Oct. 2016, pp. 11–20.

[6] T. Kosar and M. Balman, ‘‘A new paradigm: Data-aware scheduling in
grid computing,’’ Future Gener. Comput. Syst., vol. 25, no. 4, pp. 406–413,
Apr. 2009.

[7] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J. Franklin, and
I. Stoica, ‘‘The power of choice in data-aware cluster scheduling,’’ in
Proc. 11th USENIX Symp. Oper. Syst. Design Implement. (OSDI), 2014,
pp. 301–316.

[8] J. Jin, J. Luo, A. Song, F. Dong, and R. Xiong, ‘‘BAR: An efficient
data locality driven task scheduling algorithm for cloud computing,’’ in
Proc. 11th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput., May 2011,
pp. 295–304.

[9] C. L. P. Chen and C.-Y. Zhang, ‘‘Data-intensive applications, challenges,
techniques and technologies: A survey on big data,’’ Inf. Sci., vol. 275,
pp. 314–347, Aug. 2014.

[10] J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso, ‘‘A survey of data-
intensive scientific workflow management,’’ J. Grid Comput., vol. 13,
no. 4, pp. 457–493, Dec. 2015.

[11] K. Wang, K. Qiao, I. Sadooghi, X. Zhou, T. Li, M. Lang, and I. Raicu,
‘‘Load-balanced and locality-aware scheduling for data-intensive work-
loads at extreme scales,’’Concurrency Comput., Pract. Exp., vol. 28, no. 1,
pp. 70–94, Jan. 2016.

[12] T. Kosar, M. Balman, E. Yildirim, S. Kulasekaran, and B. Ross, ‘‘Stork
data scheduler: Mitigating the data bottleneck in e-science,’’ Philos.
Trans. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 369, pp. 3254–3267,
Aug. 2011.

[13] X. Wei, W. Li, O. Tatebe, G. Xu, L. Hu, and J. Ju, ‘‘Implement-
ing data aware scheduling in Gfarm(R) using LSF(TM ) scheduler plu-
gin mechanism,’’ in Proc. Int. Conf. Grid Comput. Appl., Jan. 2005,
pp. 3–10.

[14] C. Acevedo, P. Hernández, A. Espinosa, and V. Méndez, ‘‘A critical path
file location (CPFL) algorithm for data-aware multiworkflow schedul-
ing on HPC clusters,’’ Future Gener. Comput. Syst., vol. 74, pp. 51–62,
Sep. 2017.

[15] F. Marozzo, F. R. Duro, J. G. Blas, J. Carretero, D. Talia, and
P. Trunfio, ‘‘A data-aware scheduling strategy for workflow execution in
clouds,’’ Concurrency Comput., Pract. Exp., vol. 29, no. 24, Dec. 2017,
Art. no. e4229.

[16] K. Wang, X. Zhou, T. Li, D. Zhao, M. Lang, and I. Raicu, ‘‘Opti-
mizing load balancing and data-locality with data-aware schedul-
ing,’’ in Proc. IEEE Int. Conf. Big Data (Big Data), Oct. 2014,
pp. 119–128.

[17] R. Raman, M. Solomon, M. Livny, and A. Roy, ‘‘The classads language,’’
in Grid Resource Management. Norwell, MA, USA: Kluwer, Jan. 2004,
pp. 255–270.

[18] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and
D. S. Katz, ‘‘Pegasus: A framework for mapping complex scientific work-
flows onto distributed systems,’’ Sci. Program., vol. 13, no. 3, pp. 219–237,
2005.

[19] D. Thain, T. Tannenbaum, and M. Livny, ‘‘Distributed computing in prac-
tice: The condor experience,’’ Concurrency Comput., Pract. Exp., vol. 17,
nos. 2–4, pp. 323–356, 2005.

[20] S. Zhou, X. Zheng, J. Wang, and P. Delisle, ‘‘Utopia: A load sharing
facility for large, heterogeneous distributed computer systems,’’ Softw.,
Pract. Exp., vol. 23, no. 12, pp. 1305–1336, Dec. 1993.

[21] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and S. Sekiguchi, ‘‘Grid
datafarm architecture for petascale data intensive computing,’’ in Proc.
2nd IEEE/ACM Int. Symp. Cluster Comput. Grid (CCGRID), May 2002,
p. 102.

[22] J. E. Kelley, ‘‘Critical-path planning and scheduling: Mathematical basis,’’
Oper. Res., vol. 9, no. 3, pp. 296–320, Jun. 1961.

[23] F. Marozzo, D. Talia, and P. Trunfio, ‘‘A workflow management system
for scalable data mining on clouds,’’ IEEE Trans. Serv. Comput., vol. 11,
no. 3, pp. 480–492, May 2018.

[24] F. R. Duro, J. G. Blas, and J. Carretero, ‘‘A hierarchical paral-
lel storage system based on distributed memory for large scale sys-
tems,’’ in Proc. 20th Eur. MPI Users-Group Meeting (EuroMPI).
New York, NY, USA: Association for Computing Machinery, 2013,
pp. 139–140.

[25] F. Marozzo, D. Talia, and P. Trunfio, ‘‘JS4Cloud: Script-based workflow
programming for scalable data analysis on cloud platforms,’’ Concurrency
Comput., Pract. Exp., vol. 27, no. 17, pp. 5214–5237, Dec. 2015.

[26] R. D. Blumofe and C. E. Leiserson, ‘‘Scheduling multithreaded com-
putations by work stealing,’’ J. ACM, vol. 46, no. 5, pp. 720–748,
Sep. 1999.

[27] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K.Wang, A. Rajendran, Z. Zhang,
and I. Raicu, ‘‘ZHT: A light-weight reliable persistent dynamic scalable
zero-hop distributed hash table,’’ in Proc. IEEE 27th Int. Symp. Parallel
Distrib. Process., May 2013, pp. 775–787.

[28] I. Sadooghi, K. Wang, D. Patel, D. Zhao, T. Li, S. Srivastava, and I. Raicu,
‘‘FaBRIQ: Leveraging distributed hash tables towards distributed publish-
subscribe message queues,’’ in Proc. IEEE/ACM 2nd Int. Symp. Big Data
Comput., Dec. 2015, pp. 11–20.

[29] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data processing on
large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[30] W. Chen and E. Deelman, ‘‘WorkflowSim: A toolkit for simulating scien-
tific workflows in distributed environments,’’ in Proc. IEEE 8th Int. Conf.
E-Sci., Oct. 2012, pp. 1–8.

[31] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and
K. Vahi, ‘‘Characterization of scientific workflows,’’ in Proc. 3rd
Workshop Workflows Support Large-Scale Sci., vol. 10, Nov. 2008,
pp. 1–10.

SALVATORE GIAMPÀ received the master’s
degree in computer engineering in 2019. He is cur-
rently a Research Fellow of computer engineering
with the University of Calabria, Italy. His research
interests include distributed and parallel com-
puting, programming framework, and software
engineering.

VOLUME 9, 2021 47363



S. Giampà et al.: Data-Aware Scheduling Strategy for Executing Large-Scale Distributed Workflows

LORIS BELCASTRO received the Ph.D. degree in
information and communication engineering with
the University of Calabria, Italy. He is currently
a Research Fellow of computer engineering with
the University of Calabria. His research interests
include cloud computing, social media and big
data analysis, distributed knowledge discovery,
and data mining. In 2012, he received the schol-
arship from the Institute for High-Performance
Computing and Networking of the Italian National

Research Council (ICAR-CNR).

FABRIZIO MAROZZO received the Ph.D. degree
in systems and computer engineering with the
University of Calabria. From 2011 to 2012, he
visited the Barcelona SuperComputing Center for
a research internship, with the Grid Computing
Research Group, Computer Sciences Department.
He is currently an Assistant Professor of computer
engineering with the University of Calabria. His
research interests include distributed systems, data
mining, cloud computing, social media, big data

analysis, and peer-to-peer networks. He is also serving as an Associate
Editor for IEEE ACCESS and the International Journal of Intelligent Systems
Technologies and Applications.

DOMENICO TALIA is currently a Professor
of computer engineering with the University of
Calabria. His research interests include parallel
and distributed data mining algorithms, cloud
computing, grid services, distributed knowledge
discovery, peer-to-peer systems, and parallel pro-
gramming models. He is also a member of the
Editorial Board of Future Generation Computer
Systems, IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, the International Journal of
Web and Grid Services, the Journal of Cloud Computing: Advances, Systems
and Applications, Scalable Computing: Practice and Experience, and the
International Journal of Next-Generation Computing.

PAOLO TRUNFIO was a Research Collabora-
tor with the Institute of Systems and Computer
Science of the Italian National Research Coun-
cil (ISI-CNR), from 2001 to 2002. In 2007 he
was a Visiting Researcher with the Swedish Insti-
tute of Computer Science (SICS), Stockholm.
He is currently an Associate Professor of com-
puter engineering with the University of Calabria.
His research interests include cloud computing,
social-media analysis, service-oriented architec-

tures, distributed knowledge discovery, and peer-to-peer systems. He is
also in the Editorial Board of Future Generation Computer Systems, IEEE
TRANSACTIONS ON CLOUD COMPUTING, and Journal of Big Data.

47364 VOLUME 9, 2021


