
The Journal of Systems and Software 165 (2020) 110564

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Scalability Assessment of Microservice Architecture Deployment

Configurations: A Domain-based Approach Leveraging Operational

Profiles and Load Tests

Alberto Avritzer b , Vincenzo Ferme

f , Andrea Janes a , Barbara Russo

a , André van Hoorn

d , ∗,
Henning Schulz

c , Daniel Menasché e , Vilc Rufino

e

a Free University of Bozen-Bolzano, Bolzano, Italy
b EsulabSolutions, Inc., Princeton, NJ, USA
c Novatec Consulting GmbH, Leinfelden-Echterdingen, Germany
d University of Stuttgart, Stuttgart, Germany
e Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
f Kiratech S.p.A., Paradiso (Lugano), Switzerland

a r t i c l e i n f o

Article history:

Received 24 April 2019

Revised 11 December 2019

Accepted 20 February 2020

Available online 24 February 2020

a b s t r a c t

Microservices have emerged as an architectural style for developing distributed applications. Assessing

the performance of architecture deployment configurations — e.g., with respect to deployment alterna-

tives — is challenging and must be aligned with the system usage in the production environment. In

this paper, we introduce an approach for using operational profiles to generate load tests to automati-

cally assess scalability pass/fail criteria of microservice configuration alternatives. The approach provides

a Domain-based metric for each alternative that can, for instance, be applied to make informed decisions

about the selection of alternatives and to conduct production monitoring regarding performance-related

system properties, e.g., anomaly detection.

We have evaluated our approach using extensive experiments in a large bare metal host environment and

a virtualized environment. First, the data presented in this paper supports the need to carefully evaluate

the impact of increasing the level of computing resources on performance. Specifically, for the experi-

ments presented in this paper, we observed that the evaluated Domain-based metric is a non-increasing

function of the number of CPU resources for one of the environments under study. In a subsequent series

of experiments, we investigate the application of the approach to assess the impact of security attacks on

the performance of architecture deployment configurations.

© 2020 Elsevier Inc. All rights reserved.

1

2

c

p

t

s

i

b

fl

t

c

i

(

c

o

t

d

e

m

f

h

0

. Introduction

Background The microservices architectural style (Newman,

015) is an approach for creating software applications as a

ollection of loosely coupled software components. These com-

onents are called microservices and are supposed to be au-

onomous, automatically and independently deployable, and cohe-

ive (Newman, 2015). This architecture lends itself to decentral-

zed deployment, and for continuous integration and deployment

y developers. Several large companies (e.g., Amazon and Net-

ix) are reporting significant success with microservice architec-

ures (Francesco et al., 2017).
∗ Corresponding author.

E-mail address: van.hoorn@informatik.uni-stuttgart.de (A. v. Hoorn).

ttps://doi.org/10.1016/j.jss.2020.110564

164-1212/© 2020 Elsevier Inc. All rights reserved.
Currently, several configuration alternatives are possible for mi-

roservices deployment, for example, serverless microservices us-

ng functions (e.g., Amazon Lambda 1), container-based deployment

e.g., Docker 2), virtual machines per host, and several hosts. Of

ourse, depending on the microservice granularity, a combination

f these mechanisms could be used. The available architecture al-

ernatives and their parameters imply a large space of architecture

eployment configurations (Taylor et al., 2009) to choose from.

Challenges Microservices are supposed to be independent of

ach other. However, the underlying deployment environment

ight introduce coupling and impact the overall application per-

ormance. Coupling can occur at the load balancer, at the DNS
1 https://aws.amazon.com/lambda/ .
2 https://www.docker.com/ .

https://doi.org/10.1016/j.jss.2020.110564
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110564&domain=pdf
mailto:van.hoorn@informatik.uni-stuttgart.de
https://aws.amazon.com/lambda/
https://www.docker.com/
https://doi.org/10.1016/j.jss.2020.110564

2 A. Avritzer, V. Ferme and A. Janes et al. / The Journal of Systems and Software 165 (2020) 110564

Fig. 1. Overview of methodology steps and framework architecture.

v

w

fi

t

i

b

C

b

e

t

c

D

t

u

e

i

p

e

t

a

p

p

(

f

t

s

o

s

p

l

m

S
lookup, and at the different hardware and software layers that are

shared among the microservices. Ueda et al. (2016) report the per-

formance degradation of microservice architectures as compared to

an equivalent monolithic deployment model. The authors have an-

alyzed the root cause of performance degradation of microservice

deployment alternatives (e.g., due to virtualization associated with

Docker) and have proposed performance improvements to over-

come such a degradation. Therefore, microservice architects need

to focus on the performance implications of architecture deploy-

ment alternatives. In addition, the impact of the expected produc-

tion workloads on the performance of specific microservice deploy-

ment configurations needs to be taken into account. The alterna-

tives for microservice architecture deployment considered in this

paper are memory allocation, CPU fraction used, and the number

of (Docker) container replicas assigned to each microservice.

Goals In this paper, we introduce a quantitative approach for

the performance assessment of microservice deployment alterna-

tives. The approach uses automated performance testing results to

quantitatively assess each architecture deployment configuration

in terms of a Domain-based metric introduced in this paper. For

performance testing, we focus on load tests based on operational

workload situations (Jiang and Hassan, 2015; Vögele et al., 2018),

e.g., arrival rates or the concurrent number of users.

Methodology The proposed methodology steps and framework

architecture for scalability assessment are illustrated in Fig. 1 . The

steps are briefly introduced in the following and are detailed in

Section 3 . We combine analysis of operational profile data with

performance testing results to generate a domain metric dash-

board. The dashboard illustrates system scalability with respect to

operational profile distribution in production, i.e., empirical distri-

bution of workload situations, and performance results in the load

test environment. Operational profile data is used to estimate the

probability of occurrence of each workload situation in production.

Scalability requirements are used to assess each architecture de-

ployment configuration. The resulting quantitative assessment is a

metric value between 0–1 that assesses the fitness of a certain ar-

chitecture alternative to perform under a defined workload situa-

tion.

Experiments We evaluate and apply the proposed approach in

two types of experiments.

First, we have computed the introduced Domain-based metric

for twelve different configurations based on two different mem-

ory allocations, two different CPU allocations, and three different
alues for the number of microservice replicas. The experiments

ere executed in two data center environments. We have identi-

ed, for each environment, the architecture deployment configura-

ion that produced the best value for the Domain-based metric. It

s very significant that in both environments, increasing the num-

er of replicas for the service being evaluated or the fraction of

PU allocation did not guarantee better performance, as assessed

y the Domain-based metric. Additional experiments in one of the

nvironments were executed as a basis for our subsequent inves-

igation of the Domain-based metric’s sensitivity concerning the

onfigured scalability requirement.

Second, we have evaluated the impact of security attacks on the

omain-based metric for scenarios with and without security at-

acks.

Contributions This paper’s key contributions are as follows:

• Methodology for scalability assessment: A new quantitative ap-

proach and framework for the assessment of microservice ar-

chitecture configuration alternatives.
• Experimental validation: The experimental validation of the pro-

posed approach for scalability assessment with and without at-

tacks.

Prior art Our approach for the Domain-based metric eval-

ation is based on the input domain partition testing strat-

gy (Weyuker and Jeng, 1991) and domain-based load test-

ng (Avritzer and Weyuker, 1995). In partition testing based on in-

ut domains, the input domain is divided into subsets that have

quivalent fault-revealing behavior. In domain-based load testing,

he load testing domain is divided into subsets that have equiv-

lent workload situations (Avritzer and Weyuker, 1995). This pa-

er is an extension of our previous works on the proposed ap-

roach (Avritzer et al., 2018) and the framework implementation

 Avritzer et al., 2019b). The relation to the previous works is as

ollows. First, this paper is a self-contained and revised presenta-

ion of the previously separated materials. It includes an extended

ensitivity analysis of the scalability assessment scenario. More-

ver, this paper presents an additional application and experiment

tudy for assessing the performance under attacks using the pro-

osed approach and metric (see Table 1).

Paper outline The remainder of this paper is organized as fol-

ows. Section 2 contains a summary of the reviewed literature on

icroservice architecture challenges and performance assessment.

ection 3 contains an overview of the proposed approach and

A. Avritzer, V. Ferme and A. Janes et al. / The Journal of Systems and Software 165 (2020) 110564 3

Table 1

The contributions of this paper in comparison with the previous work of the authors.

Signatures for security Fully automated Customer-affecting metrics Server-side metrics

Partition testing (Avritzer and Weyuker, 1995) ✕

Performance signatures (Avritzer et al., 2010) ✕ ✕

Assessment of architecture alternatives (Avritzer et al., 2018) ✕

PPTAM framework (Avritzer et al., 2019b) ✕

This paper ✕ ✕ ✕

i

t

p

p

g

o

2

t

c

t

v

2

p

p

l

(

t

p

t

c

m

t

A

o

c

t

t

s

a

l

a

M

a

t

a

a

o

f

m

t

r

i

r

m

E

d

m

c

t

i

a

t

a

S

2

v

t

t

c

r

i

e

e

i

p

v

d

s

b

(

2

i

a

l

t

w

a

t

e

t

s

a

2

w

c

o

b

a

n

p

nfrastructure for performance assessment of microservice archi-

ectures. Sections 4 –7 describe the experimental design, and re-

ort and discuss the experimental results obtained by applying the

roposed approach. Section 8 presents our conclusions and sug-

estions for future research. A reproducibility package is provided

nline (Avritzer et al., 2020).

. Related work

In this section, we present a summary of the previous work by

he authors, the reviewed literature on microservice architecture

hallenges, the performance assessment of microservice architec-

ures, and intrusion detection tools. In each case, we relate the re-

iewed literature to this paper’s contributions.

.1. Previous work of the authors

Table 1 provides an overview of the relationship between this

aper’s contributions and the contributions by our previous related

ublications, as detailed hereinafter.

The current paper is an extension of a previous work pub-

ished at the 12th European Conference on Software Architecture

ECSA 2018) (Avritzer et al., 2018) and also includes the con-

ents of a two-page tool paper (Avritzer et al., 2019b). The pa-

er at ECSA 2018 introduced the quantitative approach based on

he Domain-based metric to evaluate different microservice ar-

hitecture deployment alternatives and compared them in bare-

etal and virtual environments. In the ECSA 2018 paper, we ex-

ended previous work (Avritzer and Weyuker, 1995; Weyuker and

vritzer, 2002) to define a new methodology for the assessment

f microservice deployment alternatives — also referred to as (ar-

hitecture) configurations . In (Weyuker and Avritzer, 2002), we in-

roduced a metric to assess software scalability. This metric uses

he requirement definition, high-level architecture modeling, and

ystem measurement results to assess the system architecture’s

bility to meet performance requirements as a function of work-

oad increases. In (Avritzer and Weyuker, 1995), we introduced an

pproach for the assessment of telecommunication systems using

arkovian approximations. This approach uses operational data

nd a resource-based Markov state definition to derive an efficient

est suite that is then used as the basis for the domain-based reli-

bility assessment of the system under test (SUT). The Markovian

pproximation is used to estimate the steady-state probability of

ccurrence of each test case. In this way, the test suite can be ef-

ectively reduced to focus on the performance test cases that are

ost likely to represent production usage. In domain-based load

esting, the input domain is the workload, e.g., in terms of the ar-

ival rate or the concurrent number of users. The total workload

s divided into subsets that are related to the probability of occur-

ence of each workload situation (Avritzer and Weyuker, 1995).

The tool paper (Avritzer et al., 2019b) proposed a fully auto-

ated framework to implement the approach introduced in the

CSA 2018 paper. The approach enables experimental replication in

ifferent contexts, and result visualization using a dashboard (e.g.,

obile device).
The current paper conveys all previous work and further in-

ludes: (i) New experiments that incorporate security attacks using

he Mirai tool (Barker, 2016), (ii) new experiments in the virtual-

zed environment (UNIBZ) using a different operational profile and

dditional CPU and memory resources, (iii) a sensitivity analysis of

he performance threshold in the experiments with and without

ttacks in the UNIBZ environment.

For a description of the UNIBZ environment please refer to

ection 4.3 .

.2. Microservice architectural challenges

Alshuqayran et al. (2016) present a comprehensive literature re-

iew of microservice architectural challenges. The authors focus on

he challenges, the architecture descriptions, and their quality at-

ributes. They have found that most of the current research on mi-

roservice architecture quality attributes has focused on scalability,

eusability, performance, fast agile development, and maintainabil-

ty. Pahl and Jamshidi (2016) present a systematic survey of the

xisting research on microservices and their application in cloud

nvironments. They have found that microservices research is still

mmature and there is a need for additional experimental and em-

irical evaluation of the application of microservices to cloud en-

ironments. Their literature survey has also identified the need to

evelop microservices tool automation. In this paper, we address

ome of these concerns by: (i) Presenting a methodology for scala-

ility assessment that can be integrated into tool automation, and,

 ii) conducting experiments to validate the proposed methodology.

.3. Performance assessment of microservice architectures

Casalicchio and Perciballi (2017) address the problem of select-

ng more appropriate performance metrics to activate auto-scaling

ctions. Specifically, they investigate the use of relative and abso-

ute metrics and propose a new autoscaling algorithm that is able

o reduce the response time by a factor between 0.66 and 0.5,

hen compared to the actual Kubernetes’ horizontal auto-scaling

lgorithm. In this paper, we introduce a new Domain-based metric

hat captures: (i) Scalability testing results in the SUT using sev-

ral architecture deployment configurations, (ii) expected produc-

ion usage derived from operational data analysis.

Therefore, the metric represents the system’s ability to satisfy

calability requirements for the evaluated workload situations and

rchitecture deployment configurations.

.4. Intrusion detection system tools

A comprehensive survey of intrusion detection systems (IDS)

as presented by Milenkoski et al. (2015) , where IDS tools were

lassified by: (i) Monitored platform (host-based, network-based,

r hybrid), (ii) attack detection method (misuse-based, anomaly-

ased, hybrid), and, (iii) deployment architecture (non-distributed

nd distributed). In the anomaly-based IDSs, a baseline profile of

ormal operations is developed and deviations from the baseline

rofile are identified as intrusions using performance signatures.

4 A. Avritzer, V. Ferme and A. Janes et al. / The Journal of Systems and Software 165 (2020) 110564

n

S

a

i

d

c

c

t

t

p

c

w

o

n

i

f

s

p

Avritzer et al. (2010) proposed an architecture for intrusion de-

tection systems using off-the-shelf IDSs complemented by perfor-

mance signatures. The authors have shown that the performance

signature of well-behaved systems and of several types of security

attacks could be identified in terms of certain performance metrics,

such as CPU and memory percentage or number of active threads.

In this paper, we evaluate the impact of security intrusions on the

Domain-based metric.

3. Methodology and framework

Our methodology is designed to support the automated as-

sessment of architecture deployment configurations. For each con-

figuration, this results in a measure—the so-called Domain-based

metric—that quantifies the configuration’s ability to satisfy scala-

bility requirements under a given operational profile. We define

workload situation as an abstract concept to represent the out-

put of operational data analysis per application domain. Specifi-

cally, the number of concurrent users is the focus of this paper.

However, in other application domains, such as banking, transac-

tion rate could be used.

For a complex system under test, such as the microservice ar-

chitecture under study in this paper, it would be difficult to assess

resource saturation, as several types of services are executed that

demand work from several software and hardware resources, vir-

tualization engines, load balancers, CPU, memory, I/O, and network.

Therefore, the importance of the proposed methodology resides in

its ability to assess system scalability for different architecture con-

figurations in complex microservice architectures.

This section describes the approach (Section 3.1), applications

(Section 3.2), and the tooling infrastructure (Section 3.3). For the

sake of the reader, Table 2 summarizes the notations used in the

approach.

3.1. Computation of the domain-based metric

The approach introduced in this paper and illustrated in

Fig. 1 consists of the following steps:

1. Collection of operational data , i.e., data on normal system usage

(e.g., HTTP requests) in a given time window are collected,

2. Analysis of operational data , i.e., the quantitative estimation of

the probability of occurrence of a certain workload situation

(e.g., number of concurrent users) based on the analysis of the

operational data,

3. Experiment generation , i.e., the automated generation of the load

test cases for the architecture deployment configurations under

evaluation,
Table 2

Table of notation.

Variable Description

� set of workload situations

λ workload situation, λ ∈ �
p (λ) probability of occurrence of λ

f (λ) frequency of occurrence of λ

s j j -th service

λ0 baseline workload situation

�j (λ0) pass/fail threshold for s j
� j (λ0) = x (λ0) j + 3 × σ (λ0) j

x (λ0) j mean response time of s j for λ0

σ (λ0) j standard deviation of s j for λ0

x (λ) j mean response time of s j for λ

α architecture deployment configuration

δj fraction of calls to service s j
ˆ s (λ) fraction of successful calls to all services

D (α, S) Domain-based metric

D (α, S) =

∑

i p(λi) ̂ s (λi)

s

t

v

b

t

r

c

t

m

a

t

b

a

f

r

u

4. Baseline computation, quantitative definition of the scalability re-

quirements , i.e., the quantitative definition of the scalability re-

quirements that consist of the expected pass/fail criteria for the

load tests, e.g., based on a specified threshold of the system re-

sponse time for the expected workload,

5. Experiment execution , i.e., the execution of load test cases for

the architecture deployment configurations specified in the ex-

periment generation step, and the computation of the Domain-

based metric.

In this section, we illustrate the approach with a run-

ing example, which is based on the experiments reported in

ections 4 and 5 . The operational profile is taken from publicly

vailable information about a video streaming service, as described

n Section 4.5 .

Step 1—Analysis of operational data. The operational profile

escribes for each workload situation λ ∈ �, its probability of oc-

urrence p (λ), which is estimated by the relative frequency of oc-

urrence f (λ) in the SUT. The operational profile is used to answer

wo questions: (i) How do we identify the workload situations to

est? (ii) How representative are the selected tests with respect to

roduction usage?

To illustrate this step, we first analyze the operational data to

reate the operational profile as frequency of occurrence of the

orkload situations found in the system at a certain time t . The

perational profile is the output of Step 1 in Fig. 1 . To reduce the

umber of tests to execute, the workload situations are aggregated

n bins λ1 , ..., λk and the final operational profile represents the

requency of occurrence of such bin values, f (λ1), ..., f (λk). The test

uite coverage criterion is based on the values of such frequencies.

Step 2—Experiment Generation. In this step, we define the ex-

eriment settings for the test cases. The elements of this step are:

1. The load test sequence is obtained by selecting the workload

situations defined in Step 1 (i.e., the bins of the operational pro-

file of the SUT),

2. The load test specification consists of a workload situation of

the load test sequence and a choice of an architecture deploy-

ment configuration,

3. The baseline requirement defines, for each service s j , the test

pass/fail criteria based on a performance metric. We make no

specific assumption about such a performance metric. An exam-

ple used in this work is the average response time of a service

for a reference architecture deployment configuration,

4. A test case consists of a set of experiments performed accord-

ing to a load test specification and evaluated against a base-

line requirement. In this work, we performed 60 experiments

for each test case.

Step 3—Baseline computation, quantitative definition of the

calability requirements. In this step, we describe the approach

hat we used to calculate the fraction of correctly executed ser-

ices ˆ s i for test case i . Initially, a test case is run to identify the

aseline requirement. The test is performed according to a load

est specification defined by a deployment configuration with high

esources α0 ∈ A and a low workload λ0 ∈ �. For such a test

ase, the average response time, x (λ0) j , and the standard devia-

ion, σ (λ0) j for each service s j , under the baseline workload λ0 are

easured. The scalability requirement for service s j is then defined

s � j (λ0) = x (λ0) j + 3 × σ (λ0) j . This is an innovative approach for

he definition of scalability requirements that employs a measured

aseline performance to automatically identify a tolerance for scal-

bility degradation under load.

Table 3 shows the baseline requirements �j (λ0) we measured

or the services s j of the SUT used in our study. As the scalability

equirement is the same for all test cases, the values in Table 3 are

sed as scalability requirements for all load test specifications.

A. Avritzer, V. Ferme and A. Janes et al. / The Journal of Systems and Software 165 (2020) 110564 5

Fig. 2. System scalability illustrating response time as a function of workload situations, for two services: one that passes the scalability test, and the other that fails, given

the considered operating point. Note that x (λ) 1 and x (λ) 2 refer to the mean response times of services 1 and 2 under baseline load for one specific architecture deployment

configuration. �(λ0) for i = 1 , 2 are the baseline measurements for the corresponding services.

Table 3

Scalability requirements based on baseline requirements (in seconds).

s j createOrder basket getCatalogue getItem login . . .

x (λ0) j 0.018 0.008 0.011 0.012 0.033 . . .

σ (λ0) j 0.008 0.003 0.002 0.009 0.025 . . .

�j (λ0) 0.042 0.017 0.017 0.039 0.108 . . .

t

l

i

F

u

s

t

t

n

o

s

c

t

s

i

d

p

t

p

e

s

l

w

c

o

s

e

s

t

w

a

a

Table 4

Pass/fail based on scalability requirements (in seconds) for

workload specification λ.

s j createOrder basket . . . login . . .

�j (λ0) 0.042 0.017 . . . 0.108 . . .

x (λ) j 0.015 0.009 . . . 2.164 . . .

Pass/fail pass pass . . . fail . . .

δj 1.26 % 1.26 % . . . 2.58 % . . .

s

r

b

t

l

D

w

w

w

t

t

c

D

c

w

t

a

d

t

t

g

a

t

o

m

3

v
Fig. 2 illustrates our approach for two services with response

ime as metric and �0 as the baseline requirement and for a work-

oad situation referred to as the operating point . Response time

s averaged over the experiments of the test case. The curves in

ig. 2 represent the average response time of the two services

nder increasing workload situations (λ). At the operating point,

ervice s 1 fails and service s 2 succeeds as the average response

ime over the given experiments of s 1 (x (λ) 1) exceeds the baseline

hreshold �1 (λ0) before the operating point whereas x (λ) 1 does

ot. In general, service s 1 and s 2 fail at a given operating point

nce their average response time exceeds �1 (λ0) and �2 (λ0), re-

pectively. The workload situation for which this occurs is indi-

ated as the maximum tolerated workload situation and corresponds

o the maximum tolerated response time .

Step 4a—Experiment execution (Pass/Fail assessment). In this

tep, each service s j is tested under a certain load test specification,

.e., workload λ ∈ � and configuration α ∈ A . In the following, we

rop the configuration α to simplify the notation, as these com-

utations are repeated for each workload situation and configura-

ion. Each test case executes the set of n services { s 1 , . . . , s n } and

roduces { δ1 , . . . , δn } , each of which is the fraction of service ex-

cutions that were assessed as successful by comparison with the

calability requirement. Each service s j is marked as pass for work-

oad λ and configuration α, if x (λ) j < �j (λ0). In this case, c j = 1

ill be set to denote that service s j has passed the test, otherwise

 j = 0 will be set. Therefore, the fraction ˆ s of successful executions

f all services can be evaluated as:

ˆ
 (λ) =

n ∑

j=1

δ j c j (1)

Eq. 1 assumes that the execution of the services j is mutually

xclusive, which is accurate for the microservice architecture con-

idered in this paper. However, for a more general applicability of

he approach it would be more accurate to develop a queuing net-

ork model to compute ˆ s (λ) . The reader is referred to Denning

nd Buzen (1978) for a detailed review of the required assumptions

nd limitations for the applicability of queuing network models.
Table 4 illustrates the pass/fail estimation for one load test

pecification where λ = 100 . For this test case, the fraction of cor-

ectly executed services was evaluated as ˆ s = 74 . 81% (Eq. 1).

Step 4b—Experiment execution (Computation of domain-

ased metric). Finally, the total Domain-based metric D (α, S) for

he configuration α, with respect to a test suite S defined by work-

oad situations λ1 , ..., λz can be evaluated as:

 (α, S) =

z ∑

i =1

p(λi) ̂ s (λi) (2)

here p (λi) is the probability of occurrence corresponding to

orkload situation λi (as in Step 1). The Domain-based metric per

orkload situation is D (α, S, i) = p(λi) ̂ s (λi) . The resulting quan-

itative assessment is a measure between 0–1 that can be used

o assess the performance of different architecture deployment

onfigurations. For the running example, as illustrated in Fig. 1 ,

 (α, S) was evaluated as 0.615 and the contribution of the test

ase reported at the end of Step 4a was 0.142, i.e., 0.19 × 74.81%

here 0.19 is the frequency of occurrence of the workload situa-

ion λ = 100 in the operational profile (Fig. 3).

The contribution to the Domain-based metric of workload situ-

tions in a load test sequence can be displayed in plots. Such a plot

epicts the degree to which a given system deployment configura-

ion satisfies the fail/pass criterion. In the example shown in Fig. 3 ,

he plots at the workload situations of the load test sequence show

aps between the total probability mass (outer polygon, light blue)

nd the obtained measurements (inner polygons) for two architec-

ure deployment configurations. These gaps represent the impact

f the measured performance degradation on the Domain-based

etric.

.2. Applications

In this work, we perform a set of case studies to illustrate and

alidate the approach introduced in this paper. Our first case study

6 A. Avritzer, V. Ferme and A. Janes et al. / The Journal of Systems and Software 165 (2020) 110564

Fig. 3. Plots of Domain-based metric per workload situation for different architec-

ture deployment configurations of the test environment

t

t

a

i

b

m

e

d

r

n

u

4

t

r

l

o

t

a

f

e

a

t

c

o

a

e

4

v

W

s

c

v

T

v

T

T

t

d

was presented in our previous work (Avritzer et al., 2018) and con-

cerned the comparison between load testing in a bare-metal envi-

ronment (HPI) and in a virtual environment (UNIBZ). Such analysis

is described in Section 5.1 . We have then performed a new case

study to assess the sensitivity of the domain metric with respect

to the scalability requirement, by scaling the threshold by a fac-

tor between 0.2 and 50 times the original value as described in

Section 6 . The last case study, which is presented in Section 5.2 ,

compares the system under test (SUT) normal behavior with its

behavior under security attacks.

3.3. Framework architecture

Fig. 1 includes details on the tool ecosystem used to implement

the proposed approach. It comprises the following major compo-

nents:

(i) An analysis component that gathers the operational profile

from a production system and computes the baseline proba-

bility of finding the system at a given state (workload situa-

tion).

(ii) An infrastructure that generates and executes load test ex-

periments with different architecture deployment configu-

rations to collect system performance against a baseline

(fail/pass criteria).

(iii) A graphical user interface that calculates and visualizes the

current performance metric in a report and on a smartphone

user interface (UI).

Each of these components is operated by a series of tools that

we developed or integrated. For gathering the operational profile,

we utilize Application Performance Monitoring (APM) (Heger et al.,

2017) tools, e.g., an open-source tool from the OpenAPM initiative. 3

These tools commonly utilize time-series databases, e.g., Influx-

Data, for storing the monitored operational data. Our tool (pack-

aged as a Jupiter Notebook 4) connects to an InfluxData, retrieves

the raw operational data, and generates the empirical distribution

of the workload situations (best test masses) defined in the script.

The infrastructure for load testing uses the open-source BenchFlow

tool (Ferme and Pautasso, 2018) to automate the deployment of

the defined experiments (building on container-based virtualiza-

tion using Docker) for the defined workload situations and system

configurations. The Faban load testing framework is used to run
3 https://openapm.io/ .
4 https://jupyter.org/ .
he experiments, to collect the performance measures, and to au-

omate the analysis of the testing results. Load test specifications

re either manually defined or extracted automatically (e.g., us-

ng ContinuITy (Schulz et al., 2019)). R scripts (as a Jupyter Note-

ook and Rshiny 5 application) are used to evaluate the perfor-

ance of the test against a baseline, compute the performance for

ach test at each state of the system, generate the plots of total

istribution mass and the previously obtained Domain-based met-

ic curves, and compute the sensitivity analysis and plots. React-

ative, a Javascript framework for building native mobile apps, is

sed to create the UI. 6

Our PPTAM tool including a demo is publicly available. 7

. Experiment design

In our evaluation, we show how to use our approach as illus-

rated in Fig. 1 and Section 3.1 to compute the Domain-based met-

ic and assess the system scalability and performance during regu-

ar behavior and under attack. The evaluation considers: (i) A given

perational environment, (ii) a specific SUT, and, (iii) its architec-

ure deployment configuration alternatives.

We use the operational profile from Step 1 in Section 3.1 and

pply it to the SUT Sock Shop microservices demo in the two dif-

erent environments as described in Section 4.1 . We execute the

xperiments generated by our Step 2 and compare the results

gainst individual baselines as per Step 3.

In designing a load testing methodology, approaches are needed

o help cope with the test space explosion. In our methodology, we

ope with the state space explosion in the following ways:

• We aggregate the number of workload situations to be mea-

sured by combining neighboring workload situations. In the

following, to simplify notation, we use concurrent number of

users to represent workload situations.
• We create a small number of architecture deployment config-

urations to be tested by focusing on CPU, memory and the

number of instances of one microservice, namely cart . This was

done because cart was the mostly used microservice.
• We generate pass/fail results, for each architecture deployment

configuration for the constant number of workload situations

identified. Therefore, for each architecture deployment configu-

ration, we run a small number of tests.

The remainder of this section describes the precise details of

ur experiment design. The experimental settings and the associ-

ted results are included in our reproducibility package (Avritzer

t al., 2020).

.1. System under test

As system under test (SUT), we utilize the Sock Shop microser-

ices demo (most recent version as per March 28, 2018 8) built by

eaveworks. It represents a sample e-commerce website that sells

ocks, implemented using 12 microservices, one of which is named

art , handling the users’ shopping carts. For the implementation,

arious technologies were used, e.g., Java, .NET, Node.js, and Go.

he Sock Shop has been found to be a representative microser-

ice application regarding several aspects (Aderaldo et al., 2017).

he main criteria used for selecting Sock Shop as the SUT were: (i)

he usage of well-known microservice architectural patterns, (ii)

he automated deployment in containers, and, (iii) the support for

ifferent deployment options.
5 https://shiny.rstudio.com .
6 https://facebook.github.io/react-native .
7 https://github.com/pptam .
8 https://microservices-demo.github.io/ .

https://openapm.io/
https://jupyter.org/
https://shiny.rstudio.com
https://facebook.github.io/react-native
https://github.com/pptam
https://microservices-demo.github.io/

A. Avritzer, V. Ferme and A. Janes et al. / The Journal of Systems and Software 165 (2020) 110564 7

4

i

t

F

D

c

p

v

a

t

q

i

t

B

a

e

4

e

m

(

t

E

i

t

(

w

w

t

a

w

w

1

t

4

u

c

r

r

r

R

fi

f

p

a

s

e

Fig. 4. Overview of the testing infrastructures.

c

p

S

n

t

s

i

a

m

i

4

s

W

u

s

t

fi
.2. Load testing tool

We use BenchFlow (Ferme and Pautasso, 2018) as the load test-

ng tool. BenchFlow is an open-source framework 9 that automates

he end-to-end process of executing performance testing. Bench-

low reuses and integrates state-of-the-art technologies, such as

ocker, 10 Faban, 11 and Apache Spark. 12 BenchFlow reliably exe-

utes load tests, automatically collects performance data, and com-

utes performance metrics and statistics. BenchFlow is also used to

alidate the reliability of the obtained results.

BenchFlow users define their performance intent by relying on

 declarative domain-specific language (DSL) for goal-driven load

ests. Declarative templates are provided for expressing tests’ re-

uirements such as: the test goals, the test types, the metrics of

nterest, the test stop conditions (e.g., maximum test execution

ime), and the parameters to vary during the test execution. The

enchFlow framework implements strategies and processes that

re driven by the user’s input specification. In addition, during test

xecution, BenchFlow monitors the real-time state of the SUT.

.3. Testing infrastructure

We deployed the load testing tool and the SUT to two differ-

nt infrastructures. The first one supports containerized deploy-

ent to bare metal at the Hasso Plattner Institute (HPI) Future SOC

Service-Oriented Computing) Lab. The second one enables con-

ainerized deployment in virtual machines on top of the VMware

SXi 13 hypervisor at the Free University of Bozen-Bolzano (UNIBZ).

The containerized bare metal machines (HPI) have the follow-

ng characteristics: Load driver server — 32GB RAM, 24 cores (2

hreads each) at 2300 MHz and SUT server — 896GB RAM, 80 cores

2 threads each) at 2300 MHz. Both machines use magnetic disks

ith 15 0 0 0 rpm and are connected using a shared 10 Gbit/s net-

ork infrastructure.

The containerized deployment in virtual machines (UNIBZ) has

he following characteristics: Load driver server — 4GB RAM, 1 core

t 2600 MHz and SUT server — 8GB RAM, 4 cores at 2600 MHz

ith SSDs. Both machines use an EMC VNC 5400 series net-

ork attached storage solution

14 and are connected using a shared

0 Gbit/s network infrastructure.

We rely on Docker CE v17.12 for the deployment of the con-

ainerized application on both infrastructures.

.4. Definition and execution of performance tests

By relying on BenchFlow’s DSL (Ferme and Pautasso, 2018),

sers can specify performance tests in a declarative manner. In our

ase, we defined a load test exploring different system configu-

ations, as presented in Section 4.6 . BenchFlow supports a wide

ange of variables to be automatically explored during configu-

ation tests, e.g.: (i) number of concurrent users, (ii) amount of

AM/CPU share assigned to each deployed service, (iii) service con-

gurations, through environment variables, (iv) number of replicas

or each service.

We rely on BenchFlow’s DSL to define all the experiments re-

orted in this section, and on the BenchFlow framework for their

utomated execution, test execution quality verification, and re-

ults retrieval. The environment is deployed as Docker contain-

rs, with each container implementing a distinct microservice. The
9 https://github.com/benchflow .
10 http://docker.com .
11 http://faban.org .
12 http://spark.apache.org .
13 https://www.vmware.com/products/esxi- and- esx.html .
14 http://www.emc-storage.co.uk/emc-vnx-5400 .

t

i

W

o

t

t

ontainers run on top of the Docker engine, executing as a daemon

rocess on a hypervisor.

Fig. 4 a depicts the deployment at HPI, showing the Docker

warm including the Docker manager node, and the Docker worker

ode that includes the Docker containers. These containers execute

he microservice components. For the HPI deployment, the Docker

warm is deployed on a bare metal machine. The same deployment

s used at UNIBZ. However, for the UNIBZ deployments, there is an

dditional virtualization layer, as shown in Fig. 4 b. There, the bare

etal server runs VMWare ESXi, which runs two virtual machines

n exactly the same configuration as at HPI.

.5. Operational profiles of workload situations

In this study, we use the operational profile of two production

ystems: a video streaming application, as shown in Fig. 5 a, and

ikipedia, as shown in Fig. 5 b. These operational profiles are built

sing the frequency of occurrence of workload situations, which is

pecified in terms of the number of concurrent users. To be able

o compare the results derived from two different operational pro-

les, their maximum workload intensity levels have been scaled to

he same maximum number of users (300).

All experiments have been performed using the video stream-

ng application operational profile and were replicated using the

ikipedia operational profile, as presented in Section 6 . The scaled

perational profiles were used in two steps: (i) The generation of

he workload situations by BenchFlow, and, (ii) for the computa-

ion of the Domain-based metric.

https://github.com/benchflow
http://docker.com
http://faban.org
http://spark.apache.org
https://www.vmware.com/products/esxi-and-esx.html
http://www.emc-storage.co.uk/emc-vnx-5400

8 A. Avritzer, V. Ferme and A. Janes et al. / The Journal of Systems and Software 165 (2020) 110564

Fig. 5. The operational profiles used in the study. Workload situations are scaled to an equal maximum value (300).

c

d

c

t

e

l

e

i

l

4

c

t
Design of synthetic user behavior

Even if we are not focusing on the behavior of an individual

user, we need to generate a representative workload on the target

system when evaluating its performance. Therefore, we model a

synthetic user behavior that is replayed with different numbers of

users during the experiments. This approach represents the types

of users that are likely to use Sock Shop in the operational envi-

ronment that is modeled in this paper. We model the following

behavior mix (Vögele et al., 2018): Three types of users with the

respective relative frequency and a maximum allowed 5% deviation

for the defined frequency distribution:

• visitor (40%): visits the home page, views the catalog and the

details of some products.
• buyer (30%): visits the home page, logs in, views the catalog

and some details, adds a product to the cart, visits the cart, and

creates an order.
• order visitor (30%): visits the home page, logs in, and views the
stored orders. w

Table 5

Summary of requests, their numbers of occurrence by

tor), and actual overall workload relative frequency (M

Label Path

home /index.html

login /login

getCatalogue /catalogue

catalogueSize /catalogue/size?size = {}

cataloguePage /catalogue?page = {}&size = {}

catalogue /category.html

getItem /catalogue/{}

getRelated /catalogue?sort = {}&size = {}&ta

showDetails /detail.html?id = {}

tags /tags

getCart /cart

addToCart /cart

basket /basket.html

createOrder /orders

getOrders /orders

viewOrdersPage /customer-orders.html

getCustomer /customers/{}

getCard /card

getAddress /address
The summary of all requests sent to Sock Shop, and their oc-

urrence number, per user type, are provided in Table 5 . We have

efined a workload intensity function (Vögele et al., 2018) that in-

luded a 1 minute ramp-up, and 30 min of steady-state execution,

o ensure that the system reaches the steady state during the test

xecution. At the end of the test run, the performance data is col-

ected. We have added a negative exponential think time, which is

xecuted between every two requests, with 0, 1, and 5 s for min-

mum, mean, and maximum think time, respectively, and an al-

owed deviation of 5% from the defined think time.

.6. Architecture deployment configurations

We deployed the SUT using different architecture deployment

onfigurations, as specified by the experiment generation step of

he methodology introduced in Section 3 . The parameters that

ere varied over the different deployment configurations were the
 user types (V = visitor, B = buyer, O = order visi-

ix).

Method V B O Mix (%)

GET 2 3 2 11.85%

GET 0 1 1 3.21%

GET 2 4 2 12.56%

GET 1 1 0 3.07%

GET 1 1 0 3.07%

GET 1 1 0 3.07%

GET 1 5 1 8.42%

gs = {} GET 1 2 0 3.78%

GET 1 2 0 3.78%

GET 1 1 0 3.07%

GET 4 9 3 23.34%

POST 0 1 0 0.71%

GET 0 1 0 0.71%

POST 0 1 0 0.71%

GET 0 1 1 3.21%

GET 0 1 1 3.21%

GET 2 5 1 10.78%

GET 0 1 0 0.71%

GET 0 1 0 0.71%

A. Avritzer, V. Ferme and A. Janes et al. / The Journal of Systems and Software 165 (2020) 110564 9

a

c

t

c

i

s

0

T

S

S

d

o

W

r

2

4

c

d

S

p

d

r

u

p

S

fi

c

w

S

i

t

S

{

c

o

s

W

l

4

t

S

A

u

p

h

s

K

t

u

(

t

e

i

a

r

w

o

s

t

e

c

f

t

c

f

c

a

n

t

t

5

o

a

i

f

t

5

a

s

(

a

t

r

t

m

s

15 https://github.com/queupe/Mirai- Source- Code .
mount of available RAM, the CPU share, and the replicas for the

art service.

We targeted the cart service, as most of the requests issued by

he designed workload, as described in Section 4.5.1 , targeted the

art service. The different configurations we explored are reported

n the table of Fig. 6 c. RAM configurations were selected from the

et {0.5 GB, 1 GB}, CPU shares were selected from the set {0.25,

.5}, and the number of replicas was selected from the set {1, 2, 4}.

he remaining resources of the server on which we deployed the

UT were shared among all the other services that are part of the

ock Shop application and managed by the Docker engine. In or-

er to avoid containers to be “killed” during the execution in case

f out-of-memory, we disabled this behavior in the Docker engine.

e further replicated the experiments with architecture configu-

ations of increased memory (8 and 16 GB). In total, we executed

64 experiments with different configurations.

.7. Baseline requirement

To assess the impact of the workload situations and of the ar-

hitecture deployment configurations on the response time, we

efined a baseline response time �j , as defined in Step 3 in

ection 3.1 , and we evaluated the fraction of the services that ex-

erienced a response time higher than the considered baseline as

efined in Step 4a in Section 3.1 .

The baseline requirement is measured through an experiment

un with the workload situation λ0 = 2 (i.e., two concurrent

sers) and the highest memory resources allocated for the ex-

eriments with normal workload. Thus, for the experiments in

ection 5.1 and 5.2 , we used the architecture deployment con-

guration of 4 GB memory, 1 CPU share, and 1 replica for the

art service. To discuss the choice of such a baseline requirement,

e further performed a sensitivity analysis, which is presented in

ection 6 .

By relying on the operational data presented in Section 3 , we

dentified the following aggregated workload situations as load

est specification {50, 100, 150, 20 0, 250, 30 0} as described in

tep 2 of Section 3.2 . In addition, 19 services of Sock Shop, S =
 s 1 , s 2 , . . . , s 19 } were configured in the SUT. Each concurrent user

alls multiple services while accessing the system. For instance,

ne service may be called by a user to insert an item into the

hopping cart, to proceed to checkout, and to confirm the order.

e have observed that most of the requests issued by such work-

oad situations target the cart microservice.

.8. Attacks

The attacks reported in this paper were conducted in

he controlled UNIBZ lab environment that was described in

ection 4.3 , and used a modified version of the Mirai malware.

ntonakakis et al. (2017) describe the Mirai botnet that was

sed to create a DDoS attack in 2016. This attack harnessed the

ower of insecure IoT (Internet of Things) devices. The authors

ave also presented an analysis of the Mirai timeline covering

even months, which included up to 600k security intrusions.

ambourakis et al. (2017) presented a review of Mirai and its mu-

ations and alerted to the risks posed by large botnets formed by

sing compromised IoT devices.

Mirai is composed of two components (Barker, 2016):

• The “command and control” (CNC) server, written in Go, pro-

vides the admin interface that is used to perform attacks, to

store the list of available bots, to parse, format, and build shell

commands, and to send the commands to the appropriate bots.
• One or more bots, written in C, are used to perform the actual

attacks and infect new devices. To find and infect new devices,
a bot performs a brute force scan over a range of IP addresses.

Once it finds an IP address, it performs a port scan against it. If

the bot is able to successfully connect to an IP address and port,

it tries to authenticate using frequently used credentials (e.g.,

admin/admin, support/support, or admin/12345). If the bot is

able to authenticate, it tries to enable the system’s shell, to ac-

cess it, and to report back to the CNC server the just discovered

new bot, i.e., the IP address, the port, and the authentication

credentials (Barker, 2016).

A bot is able to perform attacks using different protocols

 Barker, 2016): it performs denial-of-service attacks using the

ransport protocols UDP or TCP, flooding target devices with pack-

ts, or sending malformed packets; it is also able to attack us-

ng HTTP, sending HTTP GET or POST requests containing cookies

nd random data. As long as the connection is held, i.e., a valid

esponse is returned, the bot continually floods the target device

ith HTTP requests, with the goal to render the target devices in-

perable, or to consume excessive amounts of resources on routers,

ervers, and intrusion prevention systems/intrusion detection sys-

ems devices. From the publicly available Mirai source code 15 , we

xtracted the bot to conduct Mirai attacks to a given target, for a

onfigurable time. We removed the scanner part, which searches

or new devices to infect. In a test with attacks, we start the load

est in the same way as without attacks but also run a parallel pro-

ess, which waits for 3 min and then starts one Mirai bot with the

ollowing parameters:

• duration of attack: long attacks of 20 min (1200 s) and short

attacks of 5 min (300 s);
• protocol used: HTTP;
• IP address to attack: the IP address of the SUT, i.e., the machine

with Sock Shop installed;
• number of threads: 256.

The attacks were conducted from the load driver server ma-

hine, which is configured with 4 GB RAM, 1 core at 2600 MHz

nd is connected to the SUT server machine through a 10 0 0 MBit

etwork.

After the attack, the test continues as before for the remaining

ime, i.e., for 7 min, resulting in a total testing time of 30 min for

he tests with attack and without attack.

. Experiments

In this section, we analyze and discuss the results of our sets

f experiments on Sock Shop that uses the video streaming oper-

tional profile. This set of experiments compares the two testing

nfrastructures, as described in Section 5.1 , and evaluates the ef-

ects on the Domain-based metric of the attacks on Sock Shop in

he virtual environment, as presented in Section 5.2 .

.1. Domain-based metrics — Bare metal vs. virtual environment

Fig. 6 shows the Domain-based metric computed for each

rchitecture deployment alternative, for the defined workload

ituations, and for the two environments: HPI (Fig. 6 a), and UNIBZ

 Fig. 6 b). The total Domain-based metric for each investigated

rchitecture deployment configuration is shown in the table con-

ained in Fig. 6 c. The outer plot in the figure represents the theo-

etical maximum (i.e., the total probability mass of the given opera-

ional profile as described in Step 1 in Section 3.2). The theoretical

aximum is reached if all tests pass and it corresponds to the

et of frequency values of the operational profile at the workload

https://github.com/queupe/Mirai-Source-Code

10 A. Avritzer, V. Ferme and A. Janes et al. / The Journal of Systems and Software 165 (2020) 110564

Fig. 6. Domain-based metric per workload situations ((a) and (b)) and in total

(c) in the two environments (HPI, UNIBZ) for the operational profile of the Video

streaming application over different configurations α. Blue area = total probabil-

ity mass, green area = best configuration, violet area = best configuration for low

loads.

a

v

f

c

t

s

c

H

f

w

p

a

F

1

c

a

c

r

S

e

R

p

p

a

c

s

(

r

0

m

t

p

i

p

f

c

t

p

i

g

a

5

S

c

t

t

t

t

a

t

i

b

a

b

fi

m

r
situations. The other lines in the figure represent the Domain-

based metric computed for an investigated architecture deploy-

ment configuration. None of the analyzed architecture deploy-

ments reached the theoretical maximum, because of the scalability

assessment failures identified.

For the HPI environment, the configuration with 1 GB of RAM,

0.5 CPU share, and four cart replicas did not exhibit scalability as-

sessment failures for up to 150 concurrent users. However, when

the number of concurrent users was increased to values greater

than 150, we observed a significant decrease in the value of the

Domain-based metric, as shown by the violet area in Fig. 6 a. The

best observed value for the Domain-based metric, D (α, S) ≈ 0.78,

was achieved for the configuration with 1 GB of RAM, 0.25 CPU

share, and one cart replica. The addition of cart replicas resulted in

performance degradation as assessed by the Domain-based metric,
s illustrated in the table of Fig. 6 c. In contrast, the worst observed

alue for the Domain-based metric, D (α, S) ≈ 0.37, was achieved

or the configuration with 1 GB of RAM, 0.25 CPU share, and four

art replicas. This is an interesting result with significant implica-

ions for the assessment of architecture deployment alternatives,

ince adding additional replicas with the same memory and CPU

onfiguration may decrease the application’s performance for the

PI environment.

The results for the UNIBZ experiments show a significant per-

ormance degradation as assessed by the Domain-based metric

hen compared to the HPI experiment. In addition, most of the ex-

eriment results are within a narrow Domain-based metric range

s can be seen from Fig. 6 b, where most of the lines overlap.

ig. 6 b does not show scalability assessment failures for up to

00 concurrent users. Further increases in the number of con-

urrent users causes the Domain-based metric to decrease with

 similar rate, for all architecture deployment configurations. The

onfiguration with 0.5 GB of RAM, 0.5 CPU share, and four cart

eplicas showed the best value for the Domain-based metric, D (α,

) ≈ 0.55. The worst value achieved for the Domain-based metric

mployed an architecture deployment configuration with 1 GB of

AM, 0.25 CPU share, and one cart replica.

Discussion . These results show that determining the best de-

loyment configuration for a system requires the systematic ap-

lication of engineering approaches for quantitative performance

ssessment. We have found that adding more CPU power or in-

reasing the number of Docker container replicas may not result in

ystem performance improvement in the bare-metal environment

HPI). In the virtual environment (UNIBZ), the Domain-based met-

ic oscillates over a narrow range. Scaling beyond 0.5 GB of RAM,

.5 CPU share, and 4 cart replicas does not lead to a better perfor-

ance if the number of users is greater than 150.

The difference in the Domain-based metric assessment between

he HPI and UNIBZ environments, for the same architecture de-

loyment configurations, as shown in the table of Fig. 6 c, seems to

ndicate that additional architecture factors, such as VMware Hy-

ervisor overhead, I/O bandwidth, may be impacting system per-

ormance.

These findings support the recommendation that practitioners

an benefit from the application of the methodology proposed in

his paper, by evaluating the expected operational profile and de-

loyment alternatives in their own context. Moreover, these find-

ngs suggest that bottleneck analysis and careful performance en-

ineering activities should be executed before additional resources

re added to the architecture deployment configuration.

.2. Performance under attacks

In this section, we evaluate the performance degradation of the

UT when it is under attack. In our experiments, we executed se-

urity intrusions in parallel to the normal workload, and computed

he Domain-based metric for each of the considered setups. The at-

acks were launched with the Mirai botnet. BenchFlow, Mirai, and

he SUT were executed on different servers.

Table 6 compares the total Domain-based metric computed for

he different deployment configurations for “short attacks”, “long

ttacks”, and “no attack” tests. Rows in the table show that cer-

ain security attacks, such as the one used in our experiments, may

nfluence system performance and therefore impact the Domain-

ased metric – the effect being more prominent under the “long

ttack” (20 min attack). While in the “no attack” test the Domain-

ased metric is assessed as D (γ , L;S) � 0 . 55 under all system con-

gurations, for “short attack” and “long attack”, the Domain-based

etric varied in a broader range. The worst Domain-based met-

ic assessment is for the 20-minute attack with the deployment

A. Avritzer, V. Ferme and A. Janes et al. / The Journal of Systems and Software 165 (2020) 110564 11

Table 6

Domain-based metric per configuration with and without attacks

of different duration. The best configurations with respect to the

Domain-based metric are highlighted.

Configuration (α) Domain-based metric

RAM CPU # Replicas Attack duration

5m 20m no attack

0.5 GB 0.25 1 0.516 0.541 0.541

0.5 GB 0.5 1 0.517 0.498 0.548

0.5 GB 0.5 2 0.460 0.512 0.541

0.5 GB 0.5 4 0.514 0.540 0.550

1 GB 0.25 1 0.541 0.407 0.539

1 GB 0.25 2 0.517 0.512 0.548

1 GB 0.25 4 0.540 0.543 0.543

1 GB 0.5 1 0.499 0.407 0.541

1 GB 0.5 2 0.473 0.495 0.541

1 GB 0.5 4 0.543 0.467 0.543

c

D

s

i

s

i

r

f

p

6

r

m

a

e

v

e

t

t

d

e

o

s

B

t

h

m

o

o

s

c

s

w

w

t

i

T

t

F

c

b

e

p

p

p

t

n

m

t

r

c

t

y

0

C

a

p

o

w

D

s

a

(

t

s

c

l

a

onfiguration of 1 GB RAM, 0.25 CPU and 1 replica, where the

omain-based metric was assessed as D (γ , L;S) � 0 . 407 .

Discussion . The obtained results indicate that developers of

ophisticated algorithms for intrusion detection of performance-

mpacting attacks may use customer-affecting metrics (e.g., re-

ponse times) as one of the approaches to detect intrusions. Specif-

cally, in large mission-critical systems, where performance met-

ics are baselined and tracked, detecting deviations from the per-

ormance baseline could be implemented as a simple add-on to

erformance tracking.

. Experiments and analysis’ variations with increased

esources

The assessment of the Domain-based metric in virtual environ-

ent experiments with limited resources has shown small vari-

bility with respect to the architecture deployment configurations

valuated, as shown in Fig. 6 b. To understand how much the en-

ironment influences the experiments, we performed new sets of

xperiments with increased environmental resources: we changed

he configuration of the VMware ESXi-based virtual machine for

he SUT to 8 CPUs with 1 core and 16 GB RAM. The variations

iscussed in the following sections are performed within this new

nvironment.

Increased memory. We replicated the experiments in the table

f Fig. 6 c by including new configurations with increased memory

izes, either 8 or 16 GB was used, as shown in the table of Fig. 7 b.

y comparing Fig. 6 a and the table of Fig. 6 c with Fig. 7 a and

he table of Fig. 7 b, respectively, we see that the added memory
Fig. 7. Domain-based metric over configurations, per workload situation (a) and tota
ad little impact on scalability assessment, as the Domain-based

etric only improved by about 0.030. Nonetheless, more variation

f the Domain-based metric among different configurations can be

bserved, when comparing Figs. 6 a and 7 a.

Under attack. In order to obtain the results of Section 5.2 , we

elected a 20-minutes long security attack. This was done to fa-

ilitate the analysis of the impact on the Domain-based metric, as

hown in Table 6 . In the experiment where additional resources

ere added to the testing environment, and the security attack

as run for 20 min, we were able to observe performance degrada-

ion of the SUT as reflected by the Domain-based metric, as shown

n Fig. 8 . In particular, the blue area in Fig. 8 and first row in

able 6 , which represents the Domain-based metric obtained for

he best architecture deployment configuration, and the red area in

ig. 8 , which represents the Domain-based metric obtained best ar-

hitecture deployment configuration for low loads, were impacted

y the security attack.

A different operational profile. To assess the impact of differ-

nt operational profiles on the proposed methodology, we have re-

eated the analysis using a different operational profile.

For this analysis, we replicated our study on the operational

rofile extracted from a Wikimedia dump of accesses to Wikipedia

ages during the whole month of July 2016. The scaled loads ex-

racted from such a database are illustrated in Fig. 5 b.

The scalability assessment results obtained when using this

ew operational profile are shown in Fig. 9 , where the perfor-

ance impact of security attacks can be seen in every architec-

ure deployment configuration. The theoretical Domain-based met-

ic maximum is reached up to the workload situations of 100 con-

urrent users, with and without attacks.

Sensitivity Analysis. To discuss the choice of the baseline

hreshold, described in Section 3 , we performed a sensitivity anal-

sis by scaling the threshold vector by a factor t (scale) between

.2 and 50, including the case t = 1 for the original threshold.

hoosing a threshold lower than the original one may result in

 lower Domain-based metric as more services would in princi-

le fail. Vice-versa, choosing a threshold greater than the original

ne may result in a higher Domain-based metric as fewer services

ould fail. In the latter case, we can study the increase of the

omain-based metric over the scaled thresholds. This will give us a

ense of the goodness of the choice of the original threshold. Such

nalysis is performed for all experiments with and without attack

 Fig. 8 a) and with more resources (Fig. 7 a). Table 7 summarizes

he major findings in the three cases. Figs. 10 and 11 illustrate the

ensitivity analysis in two cases: for the architecture deployment

onfiguration that achieves the best Domain-based metric for low

oads, and the overall architecture deployment configuration that

chieves the best Domain-based metric.
l (b) — configurations with 8 or 16 GB of memory — Video streaming profile.

12 A. Avritzer, V. Ferme and A. Janes et al. / The Journal of Systems and Software 165 (2020) 110564

Fig. 8. Domain-based metric over configurations per workload situation ((a) and (b)) and total (c), without and with Mirai attack — Video streaming profile.

Fig. 9. Domain-based metric over configurations per workload situation ((a) and (b)) and total (c), without and with Mirai attack — Wikipedia.

Table 7

Sensitivity analysis for the best configuration of experiment for normal be-

haviour, with attack, and with more resources - operation profile of the stream-

ing video application.

Experiment Best Configuration Max Load Max scale

Memory CPU Replicas

No attack 0.5 0.25 2 150 t = 7

Attack 1 0.25 2 150 t = 9

More resources 8 0.25 4 150 t = 9

v

s

o

r

W

t

g

D

t

w

s

o

r

i

f

t

t

b

u

w

t

i

w

s

D

t

t
Fig. 10 illustrates the analysis for the configuration that

achieved the best value for the Domain-based metric, for low

loads, which corresponds to the red area in Fig. 8 a. In Fig. 10 , the

top six plots show the values of the Domain-based metric over the

scale t , for each of the six workload situations (50–300).

Each plot reports both the value of t and the corresponding

threshold value on the x-axis and the Domain-based metric for

the given threshold on the y-axis. The (blue) dashed horizontal line

represents the value of the operational profile for the given work-

load situation, whereas the (red) dashed vertical line indicates the

value of the original threshold, t = 1 (i.e., 0.43). In the legend of

the plot, we report the workload situation (load), the value of the

scale t at which the Domain-based metric reaches its maximum

within the interval [0.2,50], the final gap in percentage between

such maximum, and the theoretical maximum of the horizontal

dashed line, which is the value obtained from the operational pro-

file.

The polygon and the table at the bottom of Fig. 10 illustrate the

Domain-based metric over workload situations, under the original

threshold (i.e., t = 1), for the configuration that achieved the best
alue of the Domain-based metric of the SUT’s normal behavior, as

hown in Fig. 8 a.

The plots show that the theoretical maximum, i.e., the value

btained from the operational profile, is reached within the scale

ange, for workload situations (loads) up to 150 concurrent users.

hen the workload situation (load) is increased, the gap be-

ween the Domain-based metric and the theoretical maximum is

reater than 11%. When using those thresholds, the value of the

omain-based metric can increase (e.g., for the workload situa-

ions of 150 and 250). However, there is no unique scale factor

ithin the chosen range that could be adopted for all workload

ituations.

In addition, with a small increment (at most t = 1 . 76) of the

riginal threshold, in four out of six cases the Domain-based met-

ic value is constant for up to t = 20 , which indicates that even

ncreasing the original threshold by a scale of 20, the number of

ailing services (and the Domain-based metric) do not change for

he majority of the loads.

Fig. 11 reports the sensitivity analysis for the overall archi-

ecture deployment configuration that achieved the best Domain-

ased metric, as illustrated by the blue area in Fig. 8 a. Similarly, no

nique scale factor within the chosen range can be adopted for all

orkload situations. Again, with a small increment of the original

hreshold, in five out of six cases the Domain-based metric value

s constant up to t = 19 scale.

Table 7 illustrates the sensitivity analysis experimental results

ith attack, without attack, and with the use of additional re-

ources. The table shows the configuration that achieved the best

omain-based metric, the maximum number of workload situa-

ions at which the theoretical maximum obtained from the opera-

ional profile is achieved, within the interval [0.2,50] of the scale t,

A. Avritzer, V. Ferme and A. Janes et al. / The Journal of Systems and Software 165 (2020) 110564 13

Fig. 10. Sensitivity analysis for the best configuration for low loads as red polygon in Fig. 6 a that is illustrated by the plot and the table at the bottom.

a

t

m

m

5

t

i

e

e

a

a

s

s

t

D

F

a

t

l

s

t

l

o

i

u

g

p

T

fi

a

1

w

o

o

c

l

t

m

f

nd the scale at which such optimum is reached. The table shows

hat regardless of the state of the system (under or no attack) and

ore resources for the test, the SUT does not reach the theoretical

aximum for loads greater than 150 even when the threshold is

0 times the original one.

Discussion . In this section, we have analyzed the sensitivity of

he Domain-based metric to the value of the scalability threshold

ntroduced in Step 3 of Section 3.2 . Specifically, we were inter-

sted in assessing if the selected value of the threshold is sensitive

nough to correctly determine the pass/fail criteria for scalability

ssessment. As it can be seen from Fig. 10 , for the load levels of 50

nd 100 concurrent users, the employed threshold value of 0.43 is

ufficient to achieve the fraction of the total probability mass as-

igned the load levels of 50 and 100. The figure depicts the case of

he architecture deployment configuration that achieved the best

omain-based metric, for low workload situations (red polygon in

ig. 8 a). Therefore, we can observe that for the load levels of 50

nd 100, the Domain-based metric scalability is not sensitive to

he threshold value, because the system is scalable for these load

evels. In contrast, for the load levels of 150, 200, 250 and 300, the
calability metric is sensitive to the threshold multiplication fac-

or, because of the degradation in performance observed for these

oad levels. For example, for the load level of 150, a scale factor

f seven is required to achieve the fraction of the total probabil-

ty mass of the operational profile associated with 150 concurrent

sers. For increased load levels, even a threshold scalability factor

reater than 50 is required. A similar result holds true for the ex-

eriments run under Mirai attack and more resources (shown in

able 7). Fig. 11 illustrates the sensitivity analysis for the best con-

guration (blue polygon in Fig. 8 a). For this case, the plots show

 clear distinction between the workload situations of less than

00 concurrent users, and more than 100 concurrent users. For the

orkload situation of more than 100 concurrent users, a threshold

f over 50 times the original threshold was required to achieve the

ptimal value of the Domain-based metric. Therefore, we can con-

lude that using a threshold of � = x (λ) + 3 × σ (λ) for the base-

ine λ (as proposed in Step 3 of Section 3.2) is adequate to de-

ect scalability degradation, as the sensitivity of the Domain-based

etric to the threshold value is related to system scalability issues

or the larger load level values of 150, 200, 250 and 300.

14 A. Avritzer, V. Ferme and A. Janes et al. / The Journal of Systems and Software 165 (2020) 110564

Fig. 11. Sensitivity analysis for the best configuration as the dark blue polygon in Fig. 6 a that is illustrated by the plot and the table at the bottom.

O

a

r

W

t

a

d

t

f

a

p

s

s

a

7

w

u

t
7. Discussion

7.1. Summary of the analysis

In this section, we summarize the results obtained from the

analysis of the experiments and their replications.

Testing infrastructure . We have found that adding more CPU

power or increasing the number of Docker container replicas in

a bare-metal testing infrastructure may not result in system per-

formance improvement. On the other hand, limited resources al-

located to a virtual testing infrastructure constraints performance

within a narrow range and do not lead to a better performance if

the number of users is large. The observed difference in the per-

formance assessment between the bare metal and a virtual testing

infrastructure seems to indicate that additional architecture factors

may be impacting system performance, such as VMware Hyper-

visor overhead, I/O bandwidth, etc. Also, in limiting cases mea-

surement noise is common. The methodology results show the

importance of executing a detailed performance analysis in such

systems.

Having more Docker containers improves the performance of

the services regardless of the presence or duration of the attacks.
n the other hand, fewer replicas simplify the traceability of the

ttack. Providing additional resources to the testing infrastructures

educes the need for replicas.

Scalability assessment and detection of security breaches .

e have shown that the proposed quantitative approach consis-

ently reports the same findings with different operational profiles

nd more resources allocated to the experiments. We have further

emonstrated that using customer-affecting metrics (e.g., response

imes) to detect intrusions constitutes an efficient and privacy-

riendly solution, as those metrics are intrinsically publicly avail-

ble. Finally, we can conclude that our baseline threshold com-

uted on the statistical distance from the average behavior of a

mall number of users accessing a relatively large amount of re-

ources for the interaction with the SUT is adequate to detect scal-

bility degradation.

.2. Threats to Validity

In this work, we have introduced a methodology and a frame-

ork for scalability assessment of microservice architecture config-

rations by leveraging operational profiles and load tests, as illus-

rated in Fig. 1 . We have identified the following threats to validity:

A. Avritzer, V. Ferme and A. Janes et al. / The Journal of Systems and Software 165 (2020) 110564 15

i

t

h

p

a

t

l

a

w

t

p

o

W

i

e

w

a

a

o

i

t

e

o

w

w

t

t

p

t

s

b

e

m

e

h

t

e

f

t

c

p

i

u

t

p

u

m

e

c

f

o

v

8

f

p

e

q

b

fi

r

m

r

e

p

a

b

b

i

w

w

e

p

t

r

f

w

p

t

p

s

d

A

t

n

s

G

M

b

a

t

R

A

A

A

A

A

A

A

A

B

C

D
Operational profile data analysis. The Domain-based metric

ntroduced in this paper relies on the careful analysis of produc-

ion usage operational profile data. Many organizations will not

ave access to accurate operational profile data, which might im-

act the accuracy of the Domain-based metric assessments. Several

pproaches can be used to overcome the lack of accurate opera-

ional profile data (Avritzer and Weyuker, 1995), such as: using re-

ated systems as a proxy for the SUT, conducting user surveys, and

nalyzing log data from previous versions of the SUT. In this paper,

e opted for the first option and performed the experiments on

he SUT based on the operational profile of a video streaming ap-

lication. This choice might have bound our results to the specific

perational profile. Thus, we further replicated the analysis on the

ikipedia operational profile. The results of the two sets of exper-

ments are very similar and support our choice.

Experiment generation. Experiment generation requires the

stimation of each performance test case probability of occurrence,

hich is based on the operational profile data. When the oper-

tional profile data granularity is coarse, there is a threat to the

ccuracy of the estimated operational profile distribution. Some

f the suggested approaches to overcome the coarse granular-

ty of the operational profile data are: performing the computa-

ion of operational profile data using analytic or simulation mod-

ls (Weyuker and Avritzer, 2002), and developing heuristics based

n Markovian approximations (Avritzer and Weyuker, 1995). In this

ork, we used data derived from two different operational profiles,

hich enriched our studies with different granularities and opera-

ional distributions.

Baseline computation. The suggested approach for the quan-

itative definition of the scalability requirements proposed in this

aper consisted of defining the expected pass/fail criteria for sys-

em scalability based on a specified percentile (e.g., 3 × σ) of the

ystem response. This approach works well if we assume that a

aseline performance for each microservice was validated. How-

ver, the approach could provide a worst-case scalability require-

ent, if one of the microservices’ baseline performance is already

xhibiting significant performance degradation. In this work, we

ave validated our choice by performing a sensitivity analysis on

he original threshold.

Experiment execution. The proposed approach for automated

xecution and analysis of the load test cases needs to be assessed

or continuous improvement using a declarative approach and au-

omated deployment. To this extent, we have built a framework

alled PPTAM that can be easily deployed and redistributed in a

roduction environment (Avritzer et al., 2019b). The reproducibil-

ty package is also publicly available (Avritzer et al., 2020).

Domain-based metric calculation. The implicit assumption

sed in the calculation of the Domain-based metric is that the frac-

ion of calls for the service s j occurs with rate δj and can be com-

uted from the application’s access log. This assumption can be

sed to support good heuristics to compute δj , for several practical

icroservice architectures. However, in general, the activation of

ach of the microservices might not be mutually exclusive. In such

ases, the application of queueing network modeling approaches

or the computation of the microservices activation rates δj from

verall input rates and transition probabilities between microser-

ices might be required (Denning and Buzen, 1978).

. Conclusion

In this paper, we have introduced a new four-step approach

or the quantitative assessment of microservice architecture de-

loyment configuration alternatives. Our approach consists of op-

rational profile data analysis, experiment generation, baseline re-

uirements computation, and experiment execution. Our Domain-

ased metric is computed for each microservice alternative, speci-
ed as an architecture deployment configuration. The metric (0–1)

eflects the ability of the deployed configuration to meet perfor-

ance requirements for the expected production usage load.

We have applied our approach to several deployment configu-

ations in a large bare-metal testing environment and a virtualized

nvironment. The approach took advantage of the automated de-

loyment of Docker containers using a state-of-the-art load test

utomation tool. Our approach contributes to the state of the art

y automatically deriving baseline performance requirements in a

aseline run and assessing pass/fail criteria for the load tests, us-

ng a baseline computation of these requirements. In addition, we

ere able to fully automatize our approach and provide a frame-

ork called PPTAM that can be deployed in any real production

nvironment.

We have found that in auto-scaling cloud environments, careful

erformance engineering activities shall be executed before addi-

ional resources are added to the architecture deployment configu-

ation, because if the bottleneck resource is located downstream

rom the place where additional resources are added, increased

orkload at the bottleneck resource may result in a significant

erformance degradation. We also found that our model is able

o capture performance degradation related to intrusions. The ap-

roach we proposed is stable under the variation of experimental

ettings like reference operational profile and baseline threshold to

etect service failure.

cknowledgments

This work has been partly supported by EsulabSolutions, Inc.,

he German Federal Ministry of Education and Research (grant

o. 01IS17010, ContinuITy), the European Union’s Horizon 2020 re-

earch and innovation programme (grant no. 825040 , RADON), the

AUSS national research project, which has been funded by the

IUR under the PRIN 2015 program (Contract 2015KWREMX), and

y the Swiss National Science Foundation (project no. 178653). The

uthors would like to thank the HPI Future SOC Lab for providing

he infrastructure.

eferences

deraldo, C.M. , Mendona, N.C. , Pahl, C. , Jamshidi, P. , 2017. Benchmark requirements
for microservices architecture research. In: Proc. 1st IEEE/ACM International

Workshop on Establishing the Community-Wide Infrastructure for Architec-
ture-Based Software Engineering, (ECASE@ICSE 2017). IEEE, pp. 8–13 .

lshuqayran, N. , Ali, N. , Evans, R. , 2016. A systematic mapping study in microser-
vice architecture. In: Proc. IEEE 9th International Conference on Service-Ori-

ented Computing and Applications (SOCA 2016), pp. 44–51 .

ntonakakis, M. , April, T. , Bailey, M. , Bernhard, M. , Bursztein, E. , Cochran, J. , Du-
rumeric, Z. , Halderman, J.A. , Invernizzi, L. , Kallitsis, M. , et al. , 2017. Understand-

ing the Mirai botnet. In: USENIX Security Symposium, pp. 1092–1110 .
vritzer, A. , Ferme, V. , Janes, A. , Russo, B. , Schulz, H. , van Hoorn, A. , 2018. A quan-

titative approach for the assessment of microservice architecture deployment
alternatives by automated performance testing. In: Proceedings of the 12th Eu-

ropean Conference on Software Architecture (ECSA), pp. 159–174 .

vritzer, A., Ferme, V., Janes, A., Russo, B., van Hoorn, A., Schulz, H., Menasché, D.,
Rufino, V., 2020. Reproducibility Package for “Scalability assessment of mi-

croservice architecture deployment configurations: A Domain-based approach
leveraging operational profiles and load tests” https://doi.org/10.5281/zenodo.

3689500 .
vritzer, A. , Menasché, D.S. , Rufino, V. , Russo, B. , Janes, A. , Ferme, V. , van Hoorn, A. ,

Schulz, H. , 2019. PPTAM: production and performance testing based application

monitoring. In: Companion of the 2019 ACM/SPEC International Conference on
Performance Engineering (ICPE), pp. 39–40 .

vritzer, A. , Tanikella, R. , James, K. , Cole, R.G. , Weyuker, E. , 2010. Monitoring for
security intrusion using performance signatures. In: Proceedings of the first

joint WOSP/SIPEW International Conference on Performance Engineering (ICPE).
ACM, pp. 93–104 .

vritzer, A. , Weyuker, E.J. , 1995. The automatic generation of load test suites and
the assessment of the resulting software. IEEE Trans. Softw. Eng. 21 (9) .

arker, C., 2016. Mirai (DDoS) source code review. https://medium.com/@cjbarker/

mirai- ddos- source- code- review- 57269c4a68f .
asalicchio, E. , Perciballi, V. , 2017. Auto-scaling of containers: the impact of relative

and absolute metrics. In: Proc. FAS ∗W@SASO/ICCAC, pp. 207–214 .
enning, P.J. , Buzen, J.P. , 1978. The operational analysis of queueing network models.

ACM Comput. Surv. 10 (3), 225–261 .

https://doi.org/10.13039/501100007601
https://doi.org/10.13039/501100003407
https://doi.org/10.13039/100000001
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0001
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0001
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0001
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0001
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0001
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0002
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0002
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0002
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0002
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0004
https://doi.org/10.5281/zenodo.3689500
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0007
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0007
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0007
https://medium.com/@cjbarker/mirai-ddos-source-code-review-57269c4a68f
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0009

16 A. Avritzer, V. Ferme and A. Janes et al. / The Journal of Systems and Software 165 (2020) 110564

e

f

a

r

A

H

v

t

i

S

B

h

r

s

I

i

a

w

e

E

t

a

A

a

t

o

i

p

o

H

a

l

T

s

z

D

U

w

d

e

a

a

V

e

f

F

n

c

Ferme, V. , Pautasso, C. , 2018. A declarative approach for performance tests execu-
tion in continuous software development environments. In: Proceedings of the

2018 ACM/SPEC International Conference on Performance Engineering (ICPE),
pp. 261–272 .

Francesco, P.D. , Malavolta, I. , Lago, P. , 2017. Research on architecting microservices:
trends, focus, and potential for industrial adoption. In: Proc. 2017 IEEE Interna-

tional Conference on Software Architecture (ICSA 2017), pp. 21–30 .
Heger, C. , van Hoorn, A. , Mann, M. , Okanovic, D. , 2017. Application performance

management: state of the art and challenges for the future. In: Proceedings

of the 2017 ACM/SPEC International Conference on Performance Engineering
(ICPE), pp. 429–432 .

Jiang, Z.M. , Hassan, A.E. , 2015. A survey on load testing of large-scale software sys-
tems. IEEE Trans. Softw. Eng. 41 (11), 1091–1118 .

Kambourakis, G. , Kolias, C. , Stavrou, A. , 2017. The Mirai botnet and the IoT zombie
armies. In: Proceedings of the Military Communications Conference (MILCOM

2017). IEEE, pp. 267–272 .

Milenkoski, A. , Vieira, M. , Kounev, S. , Avritzer, A. , Payne, B.D. , 2015. Evaluating com-
puter intrusion detection systems: a survey of common practices. ACM Comput.

Surv. (CSUR) 48 (1), 12 .
Newman, S. , 2015. Building Microservices, 1st O’Reilly Media, Inc. .

Pahl, C. , Jamshidi, P. , 2016. Microservices: a systematic mapping study. In: Proc.
6th International Conference on Cloud Computing and Services Science (CLOSER

2016), pp. 137–146 .

Schulz, H. , Okanovic, D. , van Hoorn, A. , Ferme, V. , Pautasso, C. , 2019. Behavior-driven
load testing using contextual knowledge—approach and experiences. In: Com-

panion of the ACM/SPEC International Conference on Performance Engineering
(ICPE). ACM .

Taylor, R.N. , Medvidovic, N. , Dashofy, E.M. , 2009. Software Architecture: Founda-
tions, Theory and Practice. John Wiley & Sons, Inc. .

Ueda, T. , Nakaike, T. , Ohara, M. , 2016. Workload characterization for microservices.

In: Proc. IISWC, pp. 1–10 .
Vögele, C. , van Hoorn, A. , Schulz, E. , Hasselbring, W. , Krcmar, H. , 2018. WESSBAS:

extraction of probabilistic workload specifications for load testing and perfor-
mance prediction—a model-driven approach for session-based application sys-

tems. Softw. Syst. Model. 17 (2), 443–477 .
Weyuker, E.J. , Avritzer, A. , 2002. A metric for predicting the performance of an ap-

plication under a growing workload. IBM Syst. J. 41 (1), 45–54 .

Weyuker, E.J. , Jeng, B. , 1991. Analyzing partition testing strategies. IEEE Trans. Softw.
Eng. 17 (7), 703–711 .

Alberto Avritzer received a Ph.D. in Computer Science from the University of Cali-
fornia, Los Angeles, an M.Sc. in Computer Science for the Federal University of Mi-

nas Gerais, Brazil, and a B.Sc. in Computer Engineering from the Technion, Israel
Institute of Technology. He is the founder and CEO of Esulabsolutions, Inc., which

specializes in software scalability assessment of large industrial systems. He held a

Senior Member position of the technical staff in the Software Engineering Depart-
ment at Siemens Corporate Research, Princeton, New Jersey for 11 years, where he

published extensively on monitoring and management of mission-critical systems
for survivability. Before moving to Siemens Corporate Research, he spent 13 years at

AT&T Bell Laboratories, where he developed tools and techniques for performance
testing and analysis. His research interests are in software engineering, software

testing, monitoring and rejuvenation of smoothly degrading systems, and metrics to

assess software architecture, and he has published over 70 papers in journals and
refereed conference proceedings in those areas. He is a Senior Member of ACM.

Vincenzo Ferme is a Cloud and DevOps Expert at Kiratech Switzerland and a Ph.D.
Candidate at the University of Lugano (USI), Switzerland. He has received his Bach-
lor’s degree from University of Federico II, Naples (Italy) and his Master’s degree
rom the University Milano-Bicocca, Milan (Italy). Before starting his Ph.D., he was

 Software Engineer and Java Developer at Connexun s.r.l. for one year. Vincenzo’s
esearch is focused on the automation of Performance Testing in DevOps.

ndrea Janes is a researcher with a fixed-term contract at the Free University of
Bolzano-Bozen (Italy). His research interests include Lean and Agile software de-

velopment, value-based software engineering, and empirical software engineering.

e received his Master’s degree in business informatics from the Technical Uni-
ersity of Vienna, Austria and received a doctorate in computer science (with dis-

inction) from the University of Klagenfurt (Austria). Since 2017 he is also involved
n technology transfer projects within the Smart Data Factory at the NOI Techpark

dtirol/Alto Adige in Bolzano.

arbara Russo is a full professor at the Free University of Bozen-Bolzano, Italy. She

olds a PhD in Mathematics from the University of Trento, Italy. She was a visiting

esearcher at the Max-Planck Institute for Mathematics in Bonn, Germany and re-
earch fellow at the University of Liverpool, UK. She is a permanent member of the

nternational Software Engineering Network. She published more than 100 papers
n international conferences and journals in computer science and mathematics. She

cts as a reviewer for the major conferences (e.g., International Conference on Soft-
are Engineering) and journals in software engineering. Her current research inter-

st is in the field of data mining for software engineering (e.g., Empirical Software

ngineering Journal). In particular, her research focuses on building theories and
esting the feasibility of solutions for software systems using empirical evidence

nd data gathered from different contexts and sources.

ndré van Hoorn is a senior researcher with the Institute of Software Technology

t the University of Stuttgart, Germany. He received his Ph.D. degree (with distinc-
ion) from Kiel University, Germany and his Master’s degree from the University

f Oldenburg, Germany. His research focuses on designing, operating, and evolv-

ng trustworthy distributed software systems, focusing on quality attributes such as
erformance, reliability, and resilience. Currently, André investigates challenges and

pportunities in the context of continuous software engineering and DevOps.

enning Schulz is a consultant for Application Performance Management (APM)

t Novatec Consulting GmbH, Germany, and an external Ph.D. candidate at the Re-
iable Software System’s Group of the University of Stuttgart (Institute of Software

echnology), Germany. He received his Master’s degree in Informatics from the Karl-

ruhe Institute of Technology, Germany. His research focus is workload characteri-
ation and representative load testing in continuous software engineering.

aniel Sadoc Menasché received the Ph.D. degree in computer science from the
niversity of Massachusetts, Amherst, in 2011. Currently, he is an Assistant Professor

ith the Computer Science Department, Federal University of Rio de Janeiro, Rio
e Janeiro, Brazil. His interests are in modeling, analysis, security and performance

valuation of computer systems. Dr. Menasché was a recipient of best paper awards

t GLOBECOM 2007, CoNEXT 2009, INFOCOM 2013 and ICGSE 2015. He is currently
n affiliated member of the Brazilian Academy of Sciences.

ilc Queupe Rufino received the B.S. degree in computer engineering from Fed-
ral University of Espírito Santo, in 1999, and the M.S. degree in Computer Science

rom the University of São Paulo, in 2009. He is currently pursuing his Ph.D. at the
ederal University of Rio de Janeiro (UFRJ). He has been in the Navy Corps of Engi-

eers as technical officer since 20 0 0. His interests include modeling and analysis of

omputer systems, with special focus on security aspects.

http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0011
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0011
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0011
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0011
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0018
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0018
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0018
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0018
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0018
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0018
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30042-X/sbref0023

	Scalability Assessment of Microservice Architecture Deployment Configurations: A Domain-based Approach Leveraging Operational Profiles and Load Tests
	1 Introduction
	2 Related work
	2.1 Previous work of the authors
	2.2 Microservice architectural challenges
	2.3 Performance assessment of microservice architectures
	2.4 Intrusion detection system tools

	3 Methodology and framework
	3.1 Computation of the domain-based metric
	3.2 Applications
	3.3 Framework architecture

	4 Experiment design
	4.1 System under test
	4.2 Load testing tool
	4.3 Testing infrastructure
	4.4 Definition and execution of performance tests
	4.5 Operational profiles of workload situations
	Design of synthetic user behavior

	4.6 Architecture deployment configurations
	4.7 Baseline requirement
	4.8 Attacks

	5 Experiments
	5.1 Domain-based metrics - Bare metal vs. virtual environment
	5.2 Performance under attacks

	6 Experiments and analysis’ variations with increased resources
	7 Discussion
	7.1 Summary of the analysis
	7.2 Threats to Validity

	8 Conclusion
	Acknowledgments
	References

