
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3076245, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Efficient Hardware Implementation of the
LEDAcrypt Decoder
KRISTJANE KOLECI1, (Student Member, IEEE), PAOLO SANTINI2(Member, IEEE),
MARCO BALDI2, (Senior Member, IEEE), FRANCO CHIARALUCE2, (Senior Member, IEEE),
MAURIZIO MARTINA1, (Senior Member, IEEE), and GUIDO MASERA1, (Senior
Member, IEEE)
1Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy (e-mail: name.surname@polito.it)
2Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy, (e-mail: n(ame).surname@staff.univpm.it)

Corresponding author: Kristjane Koleci (e-mail: kristjane.koleci@polito.it).

ABSTRACT This work describes an efficient implementation of the iterative decoder that is the main part
of the decryption stage in the LEDAcrypt cryptosystem, recently proposed for post-quantum cryptography
based on low-density parity-check (LDPC) codes. The implementation we present exploits the structure of
the variables in order to accelerate the decoding process while keeping the area bounded. In particular, our
focus is on the design of an efficient multiplier, the latter being a fundamental component also in view of
considering different values of the cryptosystem’s parameters, as it might be required in future applications.
We aim to provide an architecture suitable for low cost implementation on both Field Programmable Gate
Array (FPGA) and Application Specific Integrated Circuit (ASIC) implementations. As for the FPGA, the
total execution time is 0.6 ms on the Artix-7 200 platform, employing at most 30% of the total available
memory, 15% of the total available Look-up Tables and 3% of the Flip-Flops. The ASIC synthesis has been
performed for both STM FDSOI 28 nm and UMC CMOS 65 nm technologies. After logic synthesis with
the STM FDSOI 28 nm, the proposed decoder achieves a total latency of 0.15 ms and an area occupation of
0.09 mm2. The post-Place&Route implementation results for the UMC 65 nm show a total execution time
of 0.3 ms, with an area occupation of 0.42 mm2 and a power consumption of at most 10.5 mW.

INDEX TERMS applied cryptography, post-quantum cryptography, hardware design, ASIC, FPGA, bit-
flipping decoding, LDPC codes.

I. INTRODUCTION

Quantum computing is becoming a reality, besides being
an active and appealing research field, due to its rapid ad-
vancement in recent years [1]–[4]. The expected comput-
ing power of quantum computers can deeply change our
world. Quantum computers will enable dramatic reductions
in the complexity of solving some widespread problems,
but also pose a serious threat on the security of Public Key
Cryptography (PKC). One of the security requirements upon
which an asymmetric cryptosystem is built is the hardness of
discovering the Secret Key (SK) from the Public Key (PK):
the PK is computed by applying a one-way function to the
SK, and inverting this function should be computationally
infeasible. One of the most widespread one-way functions
used in current PKC is based on integer factorization. Fac-
torizing large integers is believed to be a Non-Polynomial
(NP) problem with classical computers. However, it has been

demonstrated that by using Shor’s quantum algorithm [5],
the problem can actually be solved in polynomial time. This
breaks the security of asymmetric cryptosystems relying on
such a problem, like the well-known Rivest-Shamir-Adleman
(RSA) algorithm. Similarly, security of Elliptic Curve Cryp-
tography (ECC) relies on the difficulty of discovering the dis-
crete logarithm of a random elliptic curve, which is another
problem easily solvable by means of quantum computers.

The above threats has encouraged the cryptographic com-
munity to begin migrating to quantum-resistant asymmetric
algorithms: this research area is known as Post-Quantum
Cryptography (PQC). As evidence of this, in December
2016 the National Institute of Standards and Technology
(NIST) started a selection process to define new standards for
post-quantum PKC [6]. Initially, 69 candidate cryptosystems
were considered, based on various approaches arising from
different families of hard mathematical problems. One of

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3076245, IEEE Access

K. Koleci et al.: Efficient Hardware Implementation of the LEDAcrypt Decoder

these problems is that of decoding an arbitrary linear code,
which in [7] has been proven to be NP-hard. As arguably
the most remarkable example of cryptosystems based on
such a problem, we can mention Classic McEliece, which
is among the schemes admitted to the third round of the
NIST competition [8], and is widely recognized as one of
the most secure and promising solutions. Classic McEliece is
substantially based on the work of McEliece in 1978 [9], who
introduced the first ever proposed code-based cryptosystem
employing binary Goppa codes as secret keys. Despite its
largely recognized security, the original McEliece scheme
relying on Goppa codes has a major drawback in its very
large public keys (hundreds of kilobytes for 128 bits of
security).

For the above reason, in recent years researchers have put
significant efforts to the goal of reducing the public key size
of McEliece-like cryptosystems. One of the most promising
solutions in this respect consists in replacing the underlying
secret code employed in the original McEliece system with
a Quasi-Cyclic (QC) random or pseudorandom code [10].
Basically, the idea is that of using codes that admit a compact
geometric representation, which leads to a clearly less mem-
ory demanding implementation, with respect to unstructured
large linear codes (such as Goppa codes). Indeed, such an
approach has been used in different NIST submissions, like
LEDAcrypt [11], BIKE [12] and HQC [13].

In this work we focus on the implementation of the
LEDAcrypt cryptosystem, which uses a class of state-of-the-
art error correcting codes named Low-Density Parity-Check
(LDPC) codes [14], [15] as secret codes. In its general formu-
lation, the secret LDPC code used in LEDAcrypt is defined
by a sparse QC parity-check matrix that can be written as the
product of other two QC sparse matrices. Such a structure
enables the use of a very efficient decoding algorithm, named
Q-decoder, which derives from the classical Bit Flipping
(BF) decoder [14]. The Q-decoder is specifically tailored for
the code structure of LEDAcrypt, and it is significantly faster
than classical BF decoding on general LDPC codes (we refer
the interested reader to [16, Lemma 2] for more details).

Notice that, while LEDAcrypt was successfully admitted
to the first two selection rounds of the NIST PQC competi-
tion, it was not admitted to the third round due to the recent
discovery of some families of weak keys [17]. However,
such an attack is not destructive, and may still be countered
with some cautious choices of the system parameters. In
this paper, we refer to the LEDAcrypt parameters that were
adopted for the second round of the NIST PQC competition.
However, we remark that our implementation is completely
scalable, i.e., independent of the particularly considered pa-
rameters, and thus remains valid also for other versions of
LEDAcrypt, that is, characterized by different parameters.
Furthermore, we observe that some of the elements that
are used in LEDAcrypt (like the ones for multiplications
over quotient polynomial rings) are also used in other cryp-
tosystems (such as the aforementioned BIKE and HQC);
hence, our results can additionally be employed for other

cryptosystems based on pseudorandom QC codes.
A fundamental component of cryptographic functions

based on error correcting codes is the decoder. Thus, in this
paper we focus on the implementation of the Q-decoder,
that is, one of the LEDAcrypt peculiarities, as mentioned
above. Actually, the interest for such a decoder goes beyond
its cryptographic application, since efficient decoders are
also required in conventional coded transmissions, where the
main goal is to ensure reliable reception at a reasonable
cost (in terms of transmitted power or, equivalently, signal-
to-noise ratio). It should be noted, however, that in cryp-
tographic applications impressively low error rates (in the
order of 2−128 or less) are required to avoid some types of
attacks. These values can be reached through a proper design
of the LDPC code, able to avoid the appearance of error floor
phenomena [16], [18].

Our contribution
Implementations of the Q-decoder have already appeared in
the literature [19]–[22]. Moreover, a multiplier specifically
designed to handle the arithmetic required in LEDAcrypt
has been studied in [23], but it has an area comparable
to complete implementations of the LEDAcrypt decoder,
like those discussed in [19], [22]. The present work aims
to provide an architecture suitable for low-cost implemen-
tation on both programmable logic devices, namely Field
Programmable Gate Arrays (FPGAs), as well as Application
Specific Integrated Circuits (ASICs). The implementation we
present in this work extends the scalability and improves
the performance of the preliminary implementation in [22]:
in particular, in this work we achieve a linear, rather than
exponential, growth of the implementation complexity by
exploiting parallelism. This study is compared with the most
recent prototyping of LEDAcrypt [19], [21], in which the
decoder has been implemented trying to reduce the resource
utilization or the execution time of the decoding process. We
propose an architecture that can achieve a further reduced
execution time, while keeping a limited resource utilization.
For the proposed ASIC design, we fully characterize our
implementation in terms of post-Place&Route area, delay
and power figures.

The paper is organized as follows: Section II describes
the LEDAcrypt encryption and decryption stages, Section
III summarizes the approaches known in the literature to
implement a multiplier for cyclic variables, in Section IV
the complete architecture of the decoder is presented, in
Section V the execution time and area/resource occupation
are compared to previous works and, finally, in Section VII
some conclusions are drawn.

II. LEDACRYPT
Given an r × n binary matrix H called parity-check matrix,
an r × 1 binary vector s called syndrome and an integer t,
the so-called Syndrome Decoding Problem (SDP) consists
in expressing s as the linear combination of no more than t
columns of H. In other words, the SDP consists in finding

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3076245, IEEE Access

K. Koleci et al.: Efficient Hardware Implementation of the LEDAcrypt Decoder

a 1 × n binary vector e of Hamming weight not greater
than t such that HeT = s, where T denotes transposition.
For the binary case we consider, in which all variables lie
in the binary finite field F2, the decisional version of the
SDP has been proven to be NP-complete in [7]. The 1 × n
binary vectors c corresponding to a null syndrome, i.e., such
that HcT = 0, are called codewords belonging to the code
described by H. Such a code hence corresponds to a linear
subspace of Fn2 , where n is the codeword length. Notice that
the same code admits multiple representations: in fact, if H
is a valid parity-check matrix for one code, then each r × n
binary matrix M = SH, where S is a non-singular r × r
binary matrix, is another valid parity-check matrix for the
same code.

Based on the above considerations, each time a codeword
is transmitted and no errors occur during transmission, the
same codeword is received and the associated syndrome is
null. If instead transmission errors occur, they can be mod-
eled as an error vector added to the transmitted codeword,
that is, ĉ = c + e, where ĉ is the vector received upon
transmission of c, and the sum is binary. In such a case, we
have HĉT = H(c + e)T = HeT = s, hence solving the
SDP for s means discovering the error vector e. Then, the
transmitted codeword can be recovered as c = ĉ+e. For this
reason, codes of this type are called error correcting codes.
The solution of the SDP for a given code may be unique up
to a certain Hamming weight t. Such a value of t is called the
error correction capability of the code. For given parameters
r and n, the larger the error correction capability, the better
the code. While the SDP is exponentially hard for random
instances (i.e., for randomly picked parity-check matrices),
there exist families of codes for which it can be efficiently
solved. Algorithms that aim at solving the SDP are called
decoders. Code-based encryption schemes, initiated by the
seminal works of McEliece [9] and Niederreiter [24], are
constructed upon codes of this kind.

In this paper we focus on the Niederreiter framework
which, in a nutshell, is represented in Fig. 1 (the asterisk
denotes matrix/vector multiplication).

e

M

H
e

Encryption Decryption

*
x

FIGURE 1. Representation of the Niederreiter operating principle.

With reference to the notation introduced in Section I, the
SK is the parity-check matrix H of some error correcting
code, which must be equipped with an efficient decoding
algorithm, while the PK is derived by applying a secret linear
transformation to the secret key. The public key M obtained

through such a transformation must be indistinguishable
from the parity-check matrix of a random code. The plaintext
message is mapped onto a small weight vector e, which is
encrypted into a syndrome via multiplication through the
public matrix M. To decrypt, the legitimate user inverts the
secret linear transformation used to produce the public key,
and uses the decoding algorithm to retrieve the plaintext.

The security of the scheme is based on the fact that an
adversary, that does not know the secret code, has no efficient
way of decoding (i.e., of finding the plaintext); in an analo-
gous way, the adversary must not be able to retrieve the secret
key from the public key; otherwise, he could employ the
associated decoder to decrypt the ciphertext. Many families
of error correcting codes have failed in fulfilling this last
requirement. This is not the case of binary Goppa codes for
which, since the first proposal in 1978 [9], no efficient attack
is known. Yet, these codes are characterized by remarkably
large public keys: for instance, the Classic McEliece NIST
PQC candidate, which is based on the Niederreiter frame-
work with binary Goppa codes, requires public keys more
than 32 kB long for a 128-bit security level1. Given these
large public keys, as mentioned in Section I, researchers have
focused their effort along the years in trying to find other
families of codes, with the goal of reducing the public key
size.

One of the most promising solutions in this sense
is based on Quasi-Cylic Low-Density Parity-Check (QC-
LDPC) codes [25] and Quasi-Cylic Moderate Density Parity-
Check (QC-MDPC) codes [26], which require less memory
to be stored owing to the QC structure of their characteristic
matrices. As also mentioned in Section I, QC-LDPC codes
are at the base of the LEDAcrypt cryptosystem. Quasi-
cyclicity implies that the code can be described by a parity-
check matrix made of circulant blocks, i.e., square matrices in
which each row is obtained by cyclically shifting the previous
row by one position, as shown in (1) for a generic p × p
circulant matrix A

A =

a0 a1 a2 . . . ap−1

ap−1 a0 a1 . . . ap−2

ap−2 ap−1 a0 . . . ap−3

...
...

...
. . .

...
a1 a2 a3 . . . a0

 . (1)

To store a circulant matrix, it is evident that only a row (say,
the first one) is required; furthermore, this geometric struc-
ture allows for a very efficient algebra, as we will describe in
the following sections.

Moreover, in LDPC codes the parity-check matrix is very
sparse, i.e., most of its elements are null; this property allows
the design of very efficient decoders, with complexity that
grows linearly with the code length. The implications of this
property will be also discussed below.

1We say that a system reaches a λ-bits security level if every algorithm
that recovers the secret key or deciphers intercepted ciphertexts has a
computational complexity that is not lower than 2λ.

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3076245, IEEE Access

K. Koleci et al.: Efficient Hardware Implementation of the LEDAcrypt Decoder

A. LEDAKEM
LEDAcrypt [11] is a suite of cryptographic public key algo-
rithms; it contains LEDApkc, which is a Public-Key Encryp-
tion (PKE) algorithm built upon the McEliece framework,
and LEDAkem, a Key-Encapsulation Mechanism (KEM)
built upon the Niederreiter framework. In this paper we focus
on the implementation of LEDAkem with ephemeral keys,
i.e., with key-pairs that are refreshed after a single use [11],
[27]. The peculiar aspect of the LEDAcrypt version here
considered is that, instead of using a single parity-check
matrix H, the secret key is composed by two matrices H and
Q, with the following structure

H = [H0,H1, . . . ,Hn0−1], (2)

Q =

Q0,0 Q0,1 . . . Q0,n0−1

Q1,0 Q1,1 . . . Q1,n0−1

...
...

. . .
...

Qn0−1,0 Qn0−1,1 . . . Qn0−1,n0−1

 . (3)

Each Hi and Qi,j is circulant; the weight of the columns in
Hi is dH , while the weights of the blocks in Q are defined
by the matrix

WQ =

w0 w1 . . . wn0−1

wn0−1
w0 . . . wn0−2

...
...

. . .
...

w1 wn0−1 . . . w0

 , (4)

such that Qi,j has weight equal to the element in the i-th row
and j-th column of WQ, which is again a circulant matrix
with first row wQ = [w0, w1, . . . , wn0−1]. We denote with
m =

∑n0−1
i=0 wi the sum of the elements in each row and

column of WQ.
To derive the public key, one first computes L = HQ =

[L0,L1, . . . ,Ln0−1], where each block Li is again a circulant
matrix with size p, such that n = pn0. Once L has been
computed, the weights of its blocks are checked: if cancel-
lations occur, i.e., if the weight of any circulant block in L
is lower than mdH , the secret key is discarded and a new
pair of matrices H and Q is generated. The matrix L is then
obfuscated as

M = L−1
n0−1L = [Ml, Ip],

where Ip is the identity matrix of size p. The plaintext is
represented by a vector e with weight t; to encrypt, one
simply performs syndrome computation, that is x = MeT .
To decrypt, one first computes

s = Ln0−1x = LeT = HQeT = H(eQT)T ,

and then exploit the sparsity of L to retrieve e. The decoder
employed in LEDAcrypt is detailed in the next section.

The LEDAkem parameters we have considered in this
work are reported in Table 1 [16, Table 2].

TABLE 1. Considered LEDAkem parameters.

Security (in bits) n0 p dH wQ t

128
2 14,939 11 [4, 3] 136
3 8,269 9 [4, 3, 2] 86
4 7,547 13 [2, 2, 2, 1] 69

192
2 25,693 13 [5, 3] 199
3 16,067 11 [4, 4, 3] 127
4 14,341 15 [3, 2, 2, 2] 101

256
2 36,877 11 [7, 6] 267
3 27,437 15 [4, 4, 3] 169
4 22,691 13 [4, 3, 3, 3] 134

B. THE Q-DECODER

In LEDAkem, the decryption phase finds the low-weight er-
ror vector that, in the encryption phase, has been mapped into
the syndrome ciphertext; this is realized with an improved BF
algorithm [14]. Crucial quantities in a generic BF algorithm
are the Unsatisfied Parity Check (UPC) counters, which cor-
respond to the number of unsatisfied parity equations for each
element of the unknown error vector. The UPC counters are
then employed to locate the errors positions, through a simple
threshold criterion: the positions with a counter exceeding the
chosen threshold are deemed as error affected. The threshold
values selection can be performed in many different ways,
depending on the particular BF variant employed.

The BF variant used in LEDAkem is called Q-Decoder; it
takes into account the particular code structure (i.e., multipli-
cation between H and Q) to speed-up the decryption phase.
The Q-Decoder procedure is detailed in Algorithm 1. The
decoder takes as input the syndrome s, that is, the product
between the secret circulant block Ln0−1 and the ciphertext
x, and either returns an estimate of the error vector e or
reports decoding failure. Decoding is performed through an
iterative procedure, that is, the error vector estimate and the
syndrome are continuously updated until a null syndrome
is obtained or the maximum number of iterations Itmax is
reached. In the first case, decoding has been successful and
the algorithm returns the estimated error vector e, otherwise
decoding has failed and the algorithm reports the failure
event.

Note that, together with e, the decoder updates another
vector ẽ, such that it always corresponds to eQT . To do this,
each time a bit is flipped in e, ẽ is coherently updated by
adding the corresponding row of QT (in the algorithm, qi
denotes the i-th row of QT). This vector is used to update
the syndrome at the end of each iteration, by summing the
product HẽT to the initial syndrome (which is stored as s(0)).

The decisions on the bits to be flipped are taken on the
base of the correlation values, collected in a vector ρ, which
are computed in two steps. The current syndrome s is first
multiplied by H, obtaining σ. Note that this multiplication
is performed in the integer domain, and as such the resulting
vector σ takes values in [0; dH]. Then, σ gets multiplied by
Q to obtain ρ, which takes values in [0;mdH] and whose
entries provide the UPC counters for the BF algorithm.

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3076245, IEEE Access

K. Koleci et al.: Efficient Hardware Implementation of the LEDAcrypt Decoder

Algorithm 1 Q-Decoder

Input: syndrome s ∈ Fp2, parity-check matrix H ∈ Fp×n0p
2 ,

Input: sparse matrix Q ∈ Fn0p×n0p
2 , maximum number of

Input: iterations Itmax ∈ N
Output: estimated error e or failure report

1: It = 0 . Iterations counter
2: s(0) = s . Store the initial syndrome in s(0)

3: e = 0, ẽ = 0 . Null vectors with length n0p
4: while It < Itmax or s = 0 do
5: σ = sT ?H
6: ρ = [ρ0, . . . , ρn−1] = σ ?Q
7: b = f(s) . Compute threshold
8: P = {i ∈ [0, n− 1]|ρi > b}
9: for i ∈ P do

10: ei = ei ⊕ 1 . Update error vector estimate
11: ẽ = ẽ⊕ qi
12: end for
13: s = s(0) ⊕HẽT . Update syndrome
14: It = It+ 1 . Increase iterations counter
15: end while
16: if s = 0 then
17: return e . Decoding is successful
18: else
19: Report failure . Decoding has failed
20: end if

It is important to note that the encrypted message, the
syndrome and all the matrices are binary while, as mentioned,
σ and ρ are vectors of integers. To evidence multiplications
that are computed in the integer domain, in Algorithm 1 we
have used the operator ?. In analogous way, the operator⊕ is
employed to indicate sums that are performed in the binary
finite field.

In LEDAkem, the threshold, noted by b, is chosen ac-
cording to a law f(s), that is a piece-wise function of the
syndrome weight. Such a function, which depends on the
code size and on the desired correction capabilities of the
decoder, is efficiently stored as a Look-Up Table (LUT) filled
with pairs (wi, bi), where wi ∈ [0; p] represents the syn-
drome weight and bi ∈ [dmdH/2e ;mdH] is the associated
threshold value. On input s, the function finds the largest wi,
among those that are lower than the weight of s, and returns
the associated threshold value bi. For more details about how
the LUT is built, we refer the reader to [27, Section 2.4]. On
the base of the chosen threshold, the error estimate and the
syndrome are coherently updated.

It can be easily seen that ρj (i.e., the j-th entry of vector
ρ) is obtained by summing the entries of s that are indexed
by set entries in the j-th column of L. Hence, the values in ρ
correspond to the UPC counters. However, as we will discuss
afterwards, the Q-decoder exploits the particular geometry of
the secret L and performs the counters computation through
a two-steps procedure; by doing this, the execution time
gets significantly reduced, with respect to a traditional BF

decoder.

Computational complexity and comparison with other
decoders
In principle, any LDPC or MDPC decoder can be used in the
decryption phase of LEDAkem2. Indeed, all such decoding
techniques are solely based of the sparseness of the employed
parity-check matrix, a characteristic that holds true also for
the codes employed in LEDAkem. Recent works have pro-
posed and analyzed decoders for generic MDPC codes (for
instance, see [28]–[31]). All of such algorithms employ a
very low latency, iterative procedure, where in each iteration
some common operations (i.e., counters computation and
syndrome update) are performed: the difference between
different techniques lies in how the counters are processed
(i.e., how error affected positions are located).

As we have already said, any MDPC decoder may replace
the Q-decoder in the LEDAkem decryption phase. However,
these algorithms are designed to be used for generic MDPC
codes, and hence do not take into account the particular prod-
uct structure of the secret parity-check matrix in LEDAkem.
This is where the peculiarity of the Q-decoder comes into
play: it integrates the factorization of the parity-check matrix
L into H and Q, to speed up the decoding procedure. By
doing this, one can easily prove that the counters computation
and each syndrome update come with a cost of O((m +
dH)n) and O(m + dH) elementary operations, respectively
[16, Lemma 2].

For an MDPC code with column weight v, the counters
computation is done with O(nv) elementary operations,
while for each flipped bit the syndrome update is performed
with a cost of O(v). In LEDAkem, the secret key L has
columns of weight v = mdH ; hence, we can roughly
estimate the computational advantage of the Q-decoder (with
respect to generic MDPC decoders) as

mdH + 1

m+ dH + 1
≈
(
m−1 + d−1

H

)−1
.

To make a numerical example, let us consider the LEDAkem
parameters for the 128-bits security instance with n0 = 2:
since dH = 11 and m = 7, we have m−1 + d−1

H = 0.234,
implying that the Q-decoder is expected to run approximately
4 times faster than MDPC decoding schemes.

Taking the above cost estimates into account, as in [16], the
computational complexity of the Q-decoder can be assessed
as

O

(
nItmax(m+ dH) + (m+ dH + 1)t

)
.

Notice that the above cost has been derived under the as-
sumption that the Q-decoder performs exactly t bit flips, i.e.,

2The term MDPC, introduced in [26], refers to a code which can be
described by a parity-check matrix whose density is only slightly higher
than that of a typical LDPC code. Hence, the matrix is still somehow sparse.
From a decoding perspective, there is no meaningful difference between the
two families of codes and, hence, they can be decoded through the same
techniques.

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3076245, IEEE Access

K. Koleci et al.: Efficient Hardware Implementation of the LEDAcrypt Decoder

that no bit is wrongly estimated as error affected. In practice,
one observes that the decoder always makes a very limited
number of wrong flips, so that the above estimate is always
quite accurate.

III. CIRCULANT MATRIX PRODUCT
The multiplication of a vector by a circulant matrix is a
recurrent operation in LEDAcrypt: many processing tasks
(such as encrypting, computing s and the correlation values)
are indeed the result of a circulant matrix product.

To describe this operation, we can consider the product
r = vA, with v = [v0, v1, . . . , vp−1] being a length-p
row vector and A a square circulant matrix of size p (i.e.,
with structure as in (1)). The result is the length-p vector
r = [r0, r1, · · · , rp−1] where each entry ri is obtained as

ri =

p−1∑
j=0

vja mod (i−j,p).

Notice that the result is the same as the carry-less product
between integers or the polynomial multiplication evaluated
in F2[x]/(x

p+1) (see [27] for more details about the relation
between operations with circulant matrices and the algebra of
polynomials).

The most common method to evaluate r is the School-
book algorithm. However, this should be adapted in or-
der to efficiently implement the multiplications present in
LEDAcrypt. In particular, we must note that the multipliers
for LEDAcrypt involve vectors with size of several thousands
(see the parameter p in Table 1). Hence, it becomes important
to further explore implementations of multipliers that can
compute circulant matrix products in an efficient way.

A. STATE OF THE ART
A multiplier for large integer or polynomial multiplications
can be efficiently implemented by means of two main ap-
proaches: the Karatsuba [32] and the Schönhage–Strassen
[33] algorithms. To compare the algorithms, we employ the
time complexity metric, that is, the number of required binary
operations as a function of the input length p. As shown in
Fig. 2, the complexity of the Schoolbook algorithm grows as
p2, while for the Karatsuba and Schönhage–Strassen multi-
plications it evolves as plog2 (3) and p log2(p) log2 (log2 (p)),
respectively [33].

101 102 103 104 105 106
100

105

1010 Schoolbook
Karatsuba
Schönhage-Strassen

FIGURE 2. Comparison between the time complexity of multiplication
algorithms, as a function of the input size p.

While Karatsuba and Schönhage–Strassen are generally
faster than the Schoolbook multiplication, they are however
characterized by a larger hardware complexity [23], [34],
[35]. Indeed, while the Schoolbook algorithm uses only a
large adder, the Karatsuba multiplier (in its basic version)
employs two adders and a small multiplier, while Schön-
hage–Strassen requires a multiplier plus a Fast Fourier Trans-
form (FFT) module. Hence, as discussed in [36], more logic
elements are necessary to implement Karatsuba and Schön-
hage–Strassen multipliers than the Schoolbook multiplier.

In the present study we use a simplified version of the
Schoolbook multiplier, and we adapt it to the case of very
sparse circulant matrices. We will refer to the resulting mul-
tiplier as Vector by Sparse Circulant (VbSC).

In particular, VbSC reduces the time complexity from p2 to
pd, where d is the number of ones in the first row (or column)
of the matrix. The sparsity of the matrix can reduce the
Schoolbook multiplier time complexity, up to the point that,
for very sparse matrices (as those employed in LEDAcrypt)
its running time becomes comparable to that of the Karatsuba
and Schönhage–Strassen algorithms. Notice that a similar
idea has already been exploited in QcBits [37], for software
implementation of a method to multiply moderately dense
matrices.

In this work, we adapt such modified multiplication
method for hardware implementation, with the purpose of
further reducing both the execution time and the area occu-
pation.

B. VECTOR BY SPARSE CIRCULANT

The way the Schoolbook algorithm evaluates r = vA
is similar to the canonical vector by matrix multiplication.
However, due to the sparsity of the employed matrix (i.e.,
most of its elements are null), we can avoid to compute many
elements, since they will be null: this way, we can save a
significant amount of time.

Moreover, the execution can be further simplified since
the presence of a circulant matrix reduces the result to the
sum of cyclic rotations of the input vector v. These rotated
input vectors are referred to as partial products, v(i), with
i = 0, 1, . . . dA − 1, where dA corresponds to the number of
non zero elements in the first row (or any other row) of A.

To clarify the derivation of our proposed algorithm, we
show an example for the case of p = 5. The components
of the vector r are calculated as

r0 = v0a0 + v1a1 + v2a2 + v3a3 + v4a4,
r1 = v0a4 + v1a0 + v2a1 + v3a2 + v4a3,
r2 = v0a3 + v1a4 + v2a0 + v3a1 + v4a2,
r3 = v0a2 + v1a3 + v2a4 + v3a0 + v4a1,
r4 = v0a1 + v1a2 + v2a3 + v3a4 + v4a0.

(5)

If sparsity is included, for example with a0 = a2 = a3 = 1
and a1 = a4 = 0, after a rearrangement of the output, the

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3076245, IEEE Access

K. Koleci et al.: Efficient Hardware Implementation of the LEDAcrypt Decoder

result becomes

r0 = v0 + v2 + v3
r1 = v1 + v3 + v4
r2 = v0 + v2 + v4
r3 = v0 + v1 + v3
r4 = v1 + v2 + v4

=
=
=
=
=

v0 + v2 + v3,
v1 + v3 + v4,
v2 + v4 + v0,
v3 + v0 + v1,
v4 + v1 + v2,

(6)

The example clearly shows that it is enough to generate the
rows by rotating the input. This remark is helpful for large p.

The formal description of the VbSC is shown in Algorithm
2. The input v is stored as a 1 × p vector, while to represent
the matrix A we use the set SA containing the positions of
asserted entries in the first row. The quantities dA and SA(i)
denote the length of the position vector and the i-element of
SA, respectively.

Algorithm 2 Vector by Sparse Circulant (VbSC)
Input: length-p vector v, weight of A (interpreted as the
Input: weight of each row and column) dA ∈ N, first row
Input: of A represented as a list of positions SA with size dA
Output: length-p vector r = vA

1: r = 0 . Initialized as null vector with length p
2: for i = 0 to dA − 1 do
3: k = SA(i)
4: v(i) = [vk, vk+1, · · · , vp−1, v0, v1, · · · , vk−1]
5: r = r+ v(i) . Update r with new partial product
6: end for
7: return r

Clearly, the advantage of this approach is in the generation
of the partial products: one iteration of the algorithm is
enough to obtain one partial product. Notice that, when A
is a matrix containing only zeros and ones, with the same
algorithmic structure we can perform both the integer mul-
tiplication (i.e., v ? A) and the canonical product over the
binary finite field (that is, vA). Indeed, when both v and A
are defined over the finite field F2, it is enough to update r by
xor-ing it with each partial product v(i).

The hardware implementation of the multiplier is de-
scribed in the following sections.

1) Memory
The efficient mapping of memories onto physical compo-
nents available in FPGA devices or ASICs is a critical aspect,
because of the large values of p in Table 1.

Let nb, a power of two, denote the machine word size (i.e.,
the register size for the chosen architecture). The input and
output vectors of VbSC are divided into h words, with h =
dp/nbe, as follows

r = [r0 ··· rnb−1︸ ︷︷ ︸
0

nb entries

· · · r(h−2)nb
··· r(h−1)nb−1︸ ︷︷ ︸

(h− 1)
nb entries

r(h−1)nb
··· rp−1︸ ︷︷ ︸

h
p− (h− 1)nb entries

].

The first h − 1 words contain nb entries, while we use the
last one to store the remaining p− (h− 1)nb entries. Since p
must be a prime, in order to avoid cryptanalysis exploiting

factorization [27], the last word will always represent a
number of entries that is lower than nb, and the remaining
elements of the register will be filled with zeros.

Hence, in the design we have that the input and the result
vectors, v and r, are stored as matrices of size h× nb, which
we refer to as Mv and Mr, respectively. The element in
position (i, j) in the matrix corresponds to the vector entry
in position inb + j.

To store the matrix A, as already mentioned, we exploit
the fact that it is sparse and hence we represent it as a list of
positions.

In particular, we can consider only the first row of A, and
just represent its dA asserted positions. To do this, we employ
a format that is analogous to that for r and v, and hence
use two memories Madx and Mshift. For each position,
dlog2(p)e bits are required: the first dlog2(p)e − log2(nb)
are stored in Madx, while for the last log2(nb) bits we use
Mshift. Finally, we useMshift(i) andMadx(i) to denote the
access to the representation of the i-th asserted entry in the
first row of A (so, we have 0 ≤ i ≤ dA − 1).

2) Execution
The architecture of VbSC generates nb elements of each
partial product v(i) (for 0 ≤ i ≤ dA − 1) in a single
iteration. The starting point is the i-th asserted element in
the first row of A, whose position is stored through Madx(i)
and Mshift(i). Remember that v is represented as an h× nb
matrixMv , and that v(i) is obtained by rotating the input v by
the value of SA(i) (see Algorithm 2). The rotation is realized
in two steps: we initially rotate the rows ofMv by the amount
stored in Madx(i), and then apply a final column-shift of
Mshift(i). In details, letM i

v denote the matrix representation
for v(i); its j-th row is obtained from the rows ofMv with in-
dices mod(Madx(i) + j, h) and mod(Madx(i) + j + 1, h):
the rows are loaded in memory in a 2nb large register and
connected to the collapse unit together with Mshift(i). At
this point the unit extracts the portion of bits of the result,
which is loaded in memory, too. In the next cycle, mod
(Madx(i) + j + 2, h) row is loaded, mod(Madx(i) + j, h)
discarded and mod(Madx(i) + j + 1, h) moved in the first
position of the 2nb register; then, extraction and load in Mr

are completed. The process goes on until the complete v(i) is
generated. For i = 0, we simply load the words of the partial
product v(0) in memory; for the remaining values of i, each
generated word is xor-ed with the value already present in
memory.

Figure 3 provides an example of the VbSC execution, for
the case of h = 6 and nb = 4. The two consecutive rows are
read from memory and loaded in the datapath; the portion of
v(i) to extract is highighted in Mv; the update of the result
is done reading the j-th row of Mr and then xor-ed with the
current v(i) row. Finally, the j-th word of Mr is updated.
These two operations on the words of Mr are highlighted in
Fig. 3 with a lighter and darker blue color, respectively.

The function of the collapse unit is to extract the target
nb bits from the initially loaded 2nb bits. In [22], this unit

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3076245, IEEE Access

K. Koleci et al.: Efficient Hardware Implementation of the LEDAcrypt Decoder

Collapse to nb

v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15

v16 v17 v18 v19

v20 v21 v22 v23

v11 v12 v13 v14

v8 v9 v10 v11 v12 v13 v14 v15
r0 r1 r2 r3

r4 r5 r6 r7

r8 r9 r10 r11

r12 r13 r14 r15

r16 r17 r18 r19

r20 r21 r22 r23

⋮

Bit wise xor

r0 r1 r2 r3

r0 r1 r2 r3

Mv
Mr

+
Madx(i)

j

j

Mshift(i)

v8 v9 v10 v11 v12 v13 v14 v15

Collapse to 6

Collapse to 5

Collapse to 4

v11 v12 v13 v14

v10 v11 v12 v13 v14 v15

v11 v12 v13 v14 v15

0 1
s

nb + nb/2

v0 v1 v2 v3 v4 v5 v6 v7 2nb

v2 v3 v4 v5 v6 v7

FIGURE 3. Detailed representation of the VbSC execution, for h = 6 and
nb = 4.

Collapse to 𝑛𝑏

𝑣0 𝑣1 𝑣2 𝑣3

𝑣4 𝑣5 𝑣6 𝑣7

𝑣8 𝑣9 𝑣10 𝑣11

𝑣12 𝑣13 𝑣14 𝑣15

𝑣16 𝑣17 𝑣18 𝑣19

𝑣20 𝑣21 𝑣22 𝑣23

𝑣11 𝑣12 𝑣13 𝑣14

𝑣8 𝑣9 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 𝑣15
𝑟0 𝑟1 𝑟2 𝑟3

𝑟4 𝑟5 𝑟6 𝑟7

𝑟8 𝑟9 𝑟10 𝑟11

𝑟12 𝑟13 𝑟14 𝑟15

𝑟16 𝑟17 𝑟18 𝑟19

𝑟20 𝑟21 𝑟22 𝑟23

⋮

Bit wise xor

𝑟0 𝑟1 𝑟2 𝑟3

𝑟0 𝑟1 𝑟2 𝑟3

𝑀𝑣
𝑀𝑟

+
𝑀𝑎𝑑𝑥(i)

𝑗

𝑗

𝑀𝑠ℎ𝑖𝑓𝑡(i)

𝑣8 𝑣9 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 𝑣15

Collapse to 6

Collapse to 5

Collapse to 4

𝑣11 𝑣12 𝑣13 𝑣14

𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 𝑣15

𝑣11 𝑣12 𝑣13 𝑣14 𝑣15

0 1
s

𝑛𝑏 + 𝑛𝑏/2

𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 2𝑛𝑏

𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7

FIGURE 4. The collapse unit reduces 2nb bits to nb + nb/2 bits.

has been implemented as a single multiplexer that takes as
input all the possible p bits which can be selected from v.
In this work we have considered a different version for the
multiplexer, which we call logarithmic version: the rotation
is organized in log2(nb) levels, such that the `-th level (where
` goes from log2(nb) to 0) operates a rotation of nb/2`−1,
plus one rotation at the end. This strategy results in a cascade
of log2(nb) + 1 multiplexers with only two inputs. In Fig. 4
the example for one layer of collapse is shown: the choice,
made through s, is to reduce the number of bits from 2nb to
nb + nb/2 by taking the first nb + nb/2 bits or the last nb +
nb/2 bits; these operations correspond either to a rotation by
nb/2, or by 0 positions. The rotation that covers a wide range
of possibilities is realized with a series of cascaded collapse
units. The example in Fig. 5, for nb = 4, shows how one can
perform a rotation of at most four positions. This is achieved
with three layers (since log2(4) + 1 = 3); each layer has a
two input multiplexer that selects between a rotation of 0 or
nb/2

l and its output is the input of the next multiplexer level.

The total number of clock cycles required to compute a
multiplication can be easily derived as

NV bSC
cycles (h, dA) = 3hdA + 2dA. (7)

Each word of the result is computed in three clock cycles,
as it requires to load the rows of Mv , extract v(i) and then
to load the updated Mr row (each of these operations is
performed in just one clock cycle). Furthermore, we have to
take into account the cost of two loads from memory: the

Collapse to 𝑛𝑏

𝑣0 𝑣1 𝑣2 𝑣3

𝑣4 𝑣5 𝑣6 𝑣7

𝑣8 𝑣9 𝑣10 𝑣11

𝑣12 𝑣13 𝑣14 𝑣15

𝑣16 𝑣17 𝑣18 𝑣19

𝑣20 𝑣21 𝑣22 𝑣23

𝑣11 𝑣12 𝑣13 𝑣14

𝑣8 𝑣9 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 𝑣15
𝑟0 𝑟1 𝑟2 𝑟3

𝑟4 𝑟5 𝑟6 𝑟7

𝑟8 𝑟9 𝑟10 𝑟11

𝑟12 𝑟13 𝑟14 𝑟15

𝑟16 𝑟17 𝑟18 𝑟19

𝑟20 𝑟21 𝑟22 𝑟23

⋮

Bit wise xor

𝑟0 𝑟1 𝑟2 𝑟3

𝑟0 𝑟1 𝑟2 𝑟3

𝑀𝑣
𝑀𝑟

+
𝑀𝑎𝑑𝑥(i)

𝑗

𝑗

𝑀𝑠ℎ𝑖𝑓𝑡(i)

𝑣8 𝑣9 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 𝑣15

Collapse to 6

Collapse to 5

Collapse to 4

𝑣11 𝑣12 𝑣13 𝑣14

𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 𝑣15

𝑣11 𝑣12 𝑣13 𝑣14 𝑣15

0 1
s

𝑛𝑏 + 𝑛𝑏/2

𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 2𝑛𝑏

𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7

FIGURE 5. Rotation by three positions, for the case nb = 4.

rows from Madx, together with Mshift, and the first read
from Mv .

C. SPARSE VECTOR BY SPARSE CIRCULANT
The unit VbSC can be further improved, in order to reduce
the time complexity, when the input vector is also sparse. To
show how the multiplication gets simplified in this case, let
us refer again to the example in (6), and further assume that
v0 and v4 are the only non null entries in v. This yields

r0
r1
r2
r3
r4

=
=
=
=
=

v0
0
v0
v0
0

+
+
+
+
+

0
0
0
0
0

+
+
+
+
+

0
v4
v4
0
v4

=
=
=
=
=

v0,
v4,

v0 + v4,
v0,
v4.

(8)

The result in (8), with respect to that in (6), requires a reduced
number of evaluations. More in general, for a vector v that
has dv non zero elements and a circulant matrix A with
rows and columns with weight dA, the number of elements to
generate for the resulting r = vA is only dvdA. In this case,
one can compute products through the approach we report in
Algorithm 3.

Algorithm 3
Input: weight of v dv ∈ N, weight of A (interpreted as
Input: the weight of each row and column) dA ∈ N,
Input: vector v represented as a list of positions Sv with size
Input: dv , first row of A represented as a list of positions
Input: SA with size dA
Output: length-p vector r = vA

1: r = 0 . Initialize r as a null vector with length p
2: for iA = 0 to dA − 1 do
3: for iv = 0 to dv − 1 do
4: ir = mod (Sv(iv) + SA(iA), p)
5: rir = rir + 1 . Update entry in position ir
6: end for
7: end for
8: return r

Sparse Vector by Sparse Circulant (SVbSC) is an almost
direct mapping of Algorithm 3. The only difference is in the

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3076245, IEEE Access

K. Koleci et al.: Efficient Hardware Implementation of the LEDAcrypt Decoder

evaluation of mod(a, p): it is split in two cycles in order to
speed up the execution.

Actually, it can be easily proved that the total number of
cycles becomes

NSV bSC
cycles (dA, dv) = dA + dv + 6dAdv. (9)

IV. DECODER ARCHITECTURE
The decoder architecture consists of three main sections, the
Data Path, the Control Unit and the Memory block. The
multipliers are key components in the Data Path, exploited
to compute and update s and ρ in Algorithm 1. One rele-
vant element of flexibility in the decoder is the design-time
selection of the degree of parallelism, which ranges from 8
to 256. The choice reduces the overall execution time thanks
to the presence of parallelizable units, but is limited by the
components that do not have such feature. As discussed next,
this aspect has been analyzed in detail and two versions of
the decoder have been derived.

A. DATA PATH
In this section we analyze each internal unit of the Data
Path, which is the most complex component of the decoder.
The high-level view of this component is depicted in Fig.
6, where the connections with Memory, Control Unit and
inner units are highlighted; precisely, bold lines connect the
Memory to the inner units, dotted lines connect the Data
Path with the Control Unit, while red lines are used for
internal signals. The Data Path includes a dedicated unit for
each key processing part of the Q-decoder (Algorithm 1),
which we divide as Syndrome (computation of s which is
given as input to the decoder), Correlation (computation of
the vectors σ and ρ), Syndrome Update (computation of
the syndrome which is given as input to the next iteration),
Error Position Search (i.e., determination of the positions in
the estimated e that need to be updated), Syndrome Weight
together with Threshold Evaluation (threshold computation
through the LUT based on the current syndrome weight).
In the remainder of this section, we describe each unit and
its execution time, which we express in terms of required
number of cycles. Notice that such a quantity depends on the
code parameters (i.e., n0, p and the weights of the blocks
in the matrices H and Q), as well as the word size nb,
which determines the value of h = dp/nbe. Furthermore,
some units have a running time that may change depending
on some characteristic parameters of the considered iteration
(such as the number of performed flips); to highlight this
dependence, where present, we will use the iteration counter
(It) as a superscript.

1) Syndrome and Correlation
These units are connected to the input and output memo-
ries, which are addressed by the VbSC module. Since the
Syndrome and Correlation units work on different types of
input and output vectors, each unit employs its own VbSC
multiplier.

To evaluate s, consider that

s = Ln0−1x =

n0−1∑
i=0

Hi (Qi,n0−1x) ,

where each Hi has weight dH while, recalling (4), Qi,n0−1

has weight wn0−1−i. Since x is dense, we first use VbSC
to compute the products Qi,n0−1x, and then use it again to
multiply each product by Hi. So, we measure the number of
cycles to compute s as

NSyn = n0N
V bSC
cycles (h, dH) +

n0−1∑
i=0

NV bSC
cycles (h,wi). (10)

Recalling Algorithm 1, we have that since the product HQ
leads to a matrix L with full weight (i.e., no cancellations
occur), the following relation holds

ρ = sT ? L =
(
sT ?H

)
?Q = σ ?Q.

Such a computation is performed in two steps. First, we
compute the integer product σ using for n0 times the VbSC
algorithm, considering as circulant matrices the blocks in H
(each with weight dH). Then, we use VbSC again for n20
times, to compute the integer product σ ? Q. Hence, we
estimate the number of cycles as

NCorr = n0

(
NV bSC
cycles (h, dH)

+

n0−1∑
i=0

NV bSC
cycles (h,wi)

)
, (11)

where, as in (4), wi refers to the weights of the blocks in Q.

2) Syndrome Update
The Syndrome Update unit performs the multiplication be-
tween the matrix L = HQ and the estimated error vector
eT = [eT0 , e

T
1 , . . . , e

T
n0−1].

We remark that, in principle, both VbSC and SVbSC can
be used for such operation. Actually, we must remember that
the asserted entries of e are assessed as the iterations go
on, and that e starts as the null vector. Hence, its Hamming
weight likely grows as the iterations go on, it is always
rather sparse and reaches the value t � n0p at the end
of the decoding procedure. Hence, we may rely on SVbSC
to perform the syndrome update. Let us consider the It-th
iteration, and suppose that the weight of the i-th block in e is
w

(It)
e,i . Since each block in L has weight mdH , we have that

the required number of cycles for this unit, when SVbSC is
used, is given by

NSV bSC
SynUpt(It) =

n0−1∑
i=0

NSV bSC
cycles

(
mdH , w

(It)
e,i

)
. (12)

Notice that we expect to have
∑n0−1
i=0 (w

(It)
e,i) ≤ t, so that

as a very rough but reliable upper bound on the number of
cycles, independently of the iteration number, we can use
n0N

SV bSC
cycles (mdH , t).

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3076245, IEEE Access

K. Koleci et al.: Efficient Hardware Implementation of the LEDAcrypt Decoder

start end

SVbSC
pos/bin

Syndrome Update

start end

VbSC
bin/bin

Syndrome

𝑀𝐸𝑀(𝑖)𝒙
𝑯(𝑗)

𝑸(𝑗)

𝑀𝐸𝑀(𝑘)𝒔
(𝐼𝑡)

𝑀𝐸𝑀(𝑘)𝝆
(𝐼𝑡)

start end

VbSC
bin/int

Correlation

𝑯𝑇(𝑗)

𝑸𝑇(𝑗)

𝑀𝐸𝑀(𝑖)𝒔
(𝐼𝑡)

𝑳(𝑘)

𝑀𝐸𝑀(𝑖)𝒔
(𝐼𝑡)

𝑀𝐸𝑀(𝑗)𝒆
(𝐼𝑡) 𝑀𝐸𝑀 𝑡 𝒔

(𝐼𝑡+1)

start end

𝑤(𝒔)/𝑏
pair

LUT

Threshold Evaluation

𝑤(𝒔)(𝐼𝑡)

start end

1’s
Counter

Syndrome Weight

Position
Search

Error Position
Search

𝑀𝐸𝑀(𝑖)𝒔
(𝐼𝑡)

𝑀𝐸𝑀(𝑖)𝝆
(𝐼𝑡)

𝑀𝐸𝑀(𝑘)𝒆
(𝐼𝑡)

𝑤(𝒔)(𝐼𝑡) 𝑏(𝐼𝑡)

FIGURE 6. Schematic representation of the Data Path, with its elements and connections.

In principle, we can also choose to neglect the sparsity of
e, and perform the syndrome update via the VbSC unit. By
doing this, we obtain a number of cycles that is given by

NV bSC
SynUpt = n0N

V bSC
cycles (h,m+ dH). (13)

We notice that, in this case, the cost of updating the syndrome
is independent of the iteration number (since it does not
depend on the weight of the current e).

3) Error Position Search
The Error Position Search unit evaluates the error positions
from the correlation values and stores them in the address
(rows) and shift (column) format, in order to make the posi-
tions available to the SVbSC multiplier. This search requires
to read the Correlation vector, and to compare its entries with
the threshold value: if there are no matches, the next row
is processed; in case of a match, the complete row is read
to store all error positions (nb elements are processed, thus
nb + 1 cycles are required to read the elements and store the
positions).

Hence, if we denote with w(It)
e =

∑n0−1
i=0 w

(It)
e,i the weight

of e in the It-th iteration, we have that the required number
of cycles is

NErr(It) = 2h+ (nb + 1)w(It)
e . (14)

4) Syndrome Weight and Threshold Evaluation
The Syndrome Weight unit reads each line of the Syndrome
memory and counts the number of asserted entries. The
resulting weight, w(s)(It), is used to address the LUT con-
taining the thresholds, in order to obtain the current threshold
b(It).

A number h of cycles is necessary to read the rows from
the Syndrome memory, while additional h cycles are used to

1

Number of
Cycles

0

Me

Mρ

Ms

Mx

Syndrome
computation

1st iteration

100,000 200,000 300,000 400,000

Fig. 1. The memory accesses during the execution of a decoding step. On the
y-axes the memories are listed.

Number of
Cycles

0

Syndrome
Update

Error Position
Search

Syndrome
Weight

Correlation

Syndrome

1st iteration 2nd iteration 3rd iteration

200,000 400,000 600,000 800,000

Fig. 2. Time evolution of the Decoding process. On the y-axes the state of the
control unit are listed.

I. INTRODUCTION

FIGURE 7. Time evolution of the decoding process. On the y-axis the
operations performed by the Decoder are listed.

count the number of asserted entries. Finally, two cycles are
needed to load the threshold. Therefore, the resulting overall
number of cycles is

NSynW+Th = 2h+ 2. (15)

B. CONTROL UNIT
The Control unit provides the start signals to the units
in the Data Path and collects their end signals in order
to properly synchronize the operations and the syndrome
weight w(s)(It), in order to decide whether to end or not the
algorithm. The scheduling of the operations is shown in Fig.
7 for an example with p = 8, 269, n0 = 3, nb = 8 and three
decoding iterations.

In general, at the end of each iteration, the value of the
syndrome weight, w(s)(It), is checked and if it is not equal
to zero and the maximum number of iterations has not been
reached then the next iteration is started. In the figure, the
same (orange) color is used for the successive processing
steps in the Q-decoder while a different (blue) color is used
for the initial evaluation of the syndrome.

We now derive an estimate on the number of cycles which
are necessary to perform a full execution of the Q-decoder.

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3076245, IEEE Access

K. Koleci et al.: Efficient Hardware Implementation of the LEDAcrypt Decoder

We are going to use Itdec to denote the number of performed
iterations; notice that we are not able to predict in advance
its value, and can thus only claim that, in the worst case,
it is equal to Itmax. Since the execution is sequentially
scheduled, the execution time for each iteration is obtained
by summing over the times taken by each unit. In particular,
we consider two versions for the decoder, which only differ
in the unit which is used to perform the syndrome update:

- In version 1 (v1), for all iterations we perform the
syndrome update with the SVbSC unit. Hence, for the
It-th iteration, we estimate the number of cycles as

NIter,I(It) =NCorr +NSynW+Th

+NErr(It) +NSV bSC
SynUpt(It). (16)

We notice that the terms NCorr and NSynW+Th only
depend on the code parameters, while NErr(It) and
NSV bSC
SynUpt(It) additionally depend on the iteration num-

ber;
- In version 2 (v2), we use both SVbSC and VbSC units

to perform the syndrome update at the end of each
iteration. When the VbSC unit is employed for the
syndrome update in the It-th iteration, we have the
following cost for the iteration

NIter,II(It) =NCorr +NSynW+Th

+NErr(It) +NV bSC
SynUpt. (17)

We notice that, for this version, the only iteration
dependent term is NErr(It). Hence, in this decoder
version, we switch from one choice to the other, in
order to improve the decoder performances (in terms
of number of required cycles). To decide between the
two possibilities, it is enough to derive the conditions
upon which the approach based on VbSC performs
better than that based on SVbSC. Using (12) and (13),
one easily finds that the SVbSC based version is more
convenient if the current vector e has weightw(It)

e such
that

w(It)
e <

n0(m+ dH)(1 + 3h)

1 + 6n0mdH
.

Starting from this consideration and having realized a
series of simulations, we have found that using SVbSC
is more convenient if nb < 64, independently of the
iteration number, or if nb ≥ 64 and It ≥ 2. In the other
cases, relying on VbSC offers better performances.

Given the above considerations, we are ready to derive an
estimate for the number of cycles that are performed by a
full Q-decoder execution. For version 1, we can estimate the
overall number of cycles as

Ndec,I = NSyn +

Itdec−1∑
It=0

NIter,I(It), (18)

1

Number of
Cycles

0

Me

Mρ

Ms

Mx

Syndrome
computation

1st iteration

100,000 200,000 300,000 400,000

Fig. 1. The memory accesses during the execution of a decoding step. On the
y-axes the memories are listed.

Number of
Cycles

0

Syndrome
Update

Error Position
Search

Syndrome
Weight

Correlation

Syndrome

1st iteration 2nd iteration 3rd iteration

200,000 400,000 600,000 800,000

Fig. 2. Time evolution of the Decoding process. On the y-axes the state of the
control unit are listed.

I. INTRODUCTION

FIGURE 8. The memory accesses during the execution of a decoding step.
On the y-axes the memories are listed.

while for version 2 (assuming nb ≥ 64), we have

Ndec,II = NSyn +
1∑

It=0

NIter,II(It) +

Itdec−1∑
It=2

NIter,I(It)

(19)
where NIter,I and NIter,II are given by (16) and (17),
respectively. Notice that, in order to derive a closed form
theoretical estimate, we would need to know in advance
both the number of performed iterations, as well as how the
weight of e evolves throughout the iteration and distributes
among the blocks in e. These quantities are hardly to predict
and a probabilistic analysis would produce only a rough
estimate of the relevant quantities. For this reason, in Section
V we will present results obtained through, more significant,
experimental evaluations.

C. MEMORY

The Memory unit includes the components employed to store
the decoder variables. The dense vectors are stored in the
matrix memory format (i.e., divided into words of size nb),
and each block vector is considered as a distinct memory.
The matrices are stored as a list of positions. The main
memory components are: Mx storing the ciphertext, Ms for
the syndrome, Mρ for the correlation and Me for the error.
Additional memories are allocated to store matrices L, H and
Q and their transposes.

The accesses to the memory in each phase of the decoding
process are shown in Fig. 8, where read (dark areas) and
write (light areas) operations are reported for each memory
component along one iteration.

V. SYNTHESIS RESULTS
The architecture has been implemented by using Design
Compiler® with two different technologies: STM FDSOI 28
nm and UMC CMOS 65 nm. The FPGA implementation has
been carried out with Vivado® Design Suite HLx, targeting
the Xilinx Artix -7 xc7a200tfbg484-2 device, which is large
enough to support the most resource demanding version
of the decoder. The results have been obtained for all the
possible conditions of parallelism, for given security levels
and values of n0.

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3076245, IEEE Access

K. Koleci et al.: Efficient Hardware Implementation of the LEDAcrypt Decoder

A. EXECUTION TIME
The decoder total execution time is computed as

Tdecrypt =
Ncycles
fmax

, (20)

where fmax is the maximum operating frequency andNcycles
is the total number of cycles employed by the decoder. fmax
depends on the technology (or device) used to synthesize the
architecture and the design choices made to implement each
unit. The maximum frequency, shown in Fig. 9, is obtained
as the reciprocal of tcp,min, the minimun critical path delay.

8 16 32 64 128 256

200

400

600
65 nm 28 nm FPGA

FIGURE 9. The maximum frequency as function of the parallelism degree for
different technologies.

Ncycles can be computed as the sum of the contributions from
the main decoder units in Fig. 6 for both version 1, when (18)
applies, and version 2, when (19) applies.

The execution time is shown in Figs. 10 and 11 as a
function of the degree of parallelism, for version 1 and
version 2, respectively, and for all values of p considered in
Table 1. In all cases, the given results are derived from the
STM FDSOI 28 nm synthesis.

According to the plots, as expected, by increasing the
parallelism, one can progressively reduce the total execu-
tion time. However, the achieved speed-up is approximately

8 16 32 64 128 256
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

p=14,939
p=25,693
p=36,877

p=8,269
p=16,067
p=27,437

p=7,547
p=14,341
p=22,691

FIGURE 10. The total execution time for version 1 of the decoder.

8 16 32 64 128 256
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

p=14,939
p=25,693
p=36,877

p=8,269
p=16,067
p=27,437

p=7,547
p=14,341
p=22,691

FIGURE 11. The total execution time for version 2 of the decoder.

proportional to the parallelism in the range from 8 to 32,
and becomes gradually marginal with higher values. The
effectiveness of the parallelism increase is limited by three
factors: the increase of the critical path delay, the contribution
of non parallelizable units, such as SVbSC, and the decoding
capabilities of the code. The latter is intrinsic to the choice
made by the user: for instance, for the case n0 = 2, the
number of errors found in a single iteration is on average
larger than in the other cases, so requiring more cycles to
detect all the errors and then update the syndrome. The limit
related to the hardware implementation of the multipliers is
mitigated in version 2 of the decoder, which adopts VbSC
in the Syndrome Update phase. As a consequence of this
modification, the high-parallelism implementations of Fig.
11 are significantly faster than those in Fig. 10. The execution
times of the single units are reported, for better evidence,
in Figs. 12 and 13 for version 1 and version 2, respectively,
assuming n0 = 2 and p = 14, 939.

We observe, in Fig. 12, that the time required by the
Syndrome Update unit increases with the parallelism. This
is a consequence of the increase in the critical path delay,
tcp. Indeed, the synthesis reports showed that the critical
path, both for the ASIC and FPGA implementations, is
placed in the VbSC multiplier, along the collapse unit, of the
Correlation unit.

Finally, Fig. 13 shows that the Syndrome Update con-
tribution is reduced in version 2, thanks to the different
algorithm employed for updating; despite the increase in the
critical path, version 2 still benefits from the increase of the
parallelism.

B. AREA OCCUPATION AND RESOURCES UTILIZATION
The decoder area occupation depends on the specified paral-
lelism, while it is weakly affected by the parameters in Table
1. Figure 14 shows the area breakdown for the most important
units of the decoder.

The figure is referred to version 1, but the area is practi-

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3076245, IEEE Access

K. Koleci et al.: Efficient Hardware Implementation of the LEDAcrypt Decoder

8 16 32 64 128 256
0

1

2

3

4

5

Syndrome
UPC
Syndrome Upt
Error Update

FIGURE 12. Breakdown of the execution time of decoder (version 1) for the
most relevant functions, n0 = 2 and p = 14, 939.

8 16 32 64 128 256
0

1

2

3

4

5

Syndrome
UPC
Syndrome Upt
Error Update

FIGURE 13. Breakdown of the execution time of the decoder (version 2) for
the most relevant functions, n0 = 2 and p = 14, 939.

cally the same for version 2. This is because the difference
between the two versions is limited to a small part of the
Control unit, thus having a negligible effect on the total area.

According with the implementation presented in [22], the
area occupation grows faster than linearly with the paral-
lelism while, in the present work, the increase in the area
is almost linear, thanks to the logarithmic structure of the
collapse unit.

The total area occupation as a function of the parallelism
is shown in Fig.15 for both the UMC CMOS 65 nm and
STM FDSOI 28 nm technologies. The results are referred to
a single line of Table 1, with p = 14, 939. Independently of
the technology, the increase in the area is almost linear with
the parallelism.

Finally, Fig. 16 shows the percentage of resource utiliza-
tion for the FPGA implementation. The target FPGA is the
Artix-200 platform; this device has 133, 800 LUTs, 367, 600
Flip-Flops (FFs) and 365 Block Random Access Memories

8 16 32 64 128 256
0

0.02

0.04

0.06

0.08

Syndrome
UPC
Syndrome Upt
Error Update

FIGURE 14. The area occupation of the decoder for a 28 nm technology.

8 16 32 64 128 256

0

0.05

0.1

0.15

0.2

0.25
UMC 65 nm FDSOI 28 nm

FIGURE 15. Total area occupation of the decoder as a function of the
parallelism.

(BRAMs). The number of occupied LUTs and FFs tends to
increase linearly with the parallelism. However, the number
of used BRAMs grows in a less regular way: in the small
parallelism range, the number of BRAMs is constant because
the size of a single BRAM is enough. On the contrary, in
the large parallelism range, the number of required BRAMs
grows almost linearly.

C. POWER ESTIMATION AND PLACE&ROUTE RESULTS
In this paper we have not specifically addressed a low power
implementation and, consequently, no option to reduce the
power consumption has been adopted. Yet, to complete the
characterization of our work, in this section, we provide the
power estimation for our implementation. In particular, we
have considered both versions of the decoder, assuming the
UMC CMOS 65 nm technology with 0.9 V supply voltage
and an operating frequency fixed to 100 MHz.

The dissipated power estimate has been carried out with
the following procedure: initially the design has been synthe-
sized with Design Compiler®; then, the Verilog netlist has
been extracted and simulated with Questa®, using the SDF
(Standard Delay Format) delay-based full timing annotation
to obtain the switching activity information. Finally, the re-
sult has been employed by Design Compiler® to evaluate the

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3076245, IEEE Access

K. Koleci et al.: Efficient Hardware Implementation of the LEDAcrypt Decoder

8 16 32 64 128 256
0

5

10

15

20

25

30

LUT
FF
BRAM

FIGURE 16. Percentage of resource utilization for Artix 7 200.

8 16 32 64 128 256
0

2

4

6

8

10

12

Version 1 Version 2

FIGURE 17. Total power consumption for both decoder versions, for the
instance with n0 = 2, p = 14, 939.

dynamic power consumption together with the static power.
With this approach, we have been able to estimate the total

power consumption of the design, which we have reported
in Figure 17. The results show that for nb = 256 the
architectural choices for version 2 reduce, together with the
execution time (as we have already observed in the previous
section), also the power consumption.

We have also completed the Place&Route for the UMC
CMOS 65 nm; the result, which we have obtained with
Cadence® Innovus™, starting from the netlist generated by
Design Compiler®, is reported in Table 2. As in Figs. 14 and
15, the area is referred to version 1 but, as already mentioned,
version 2 has almost the same area occupation. Compared to
the pre-Place&Route design, it is possible to verify that the
total area increases, as expected, at most by 60%.

Finally, the power consumption for the design generated
after the Place&Route has been derived, too. The Verilog
netlist and SDF file are generated by Cadence® Innovus™,
while the input is the Verilog netlist resulting from the
synthesis with Design Compiler®. The switching activity
is generated with Questa® and then the file is passed to
Cadence® Innovus™ to obtain the power estimate, with
the same operating conditions used for the pre-Place&Route

TABLE 2. Total Area and Power Consumption of the Chip after Place&Route
in mm2. Results are referred to UMC CMOS 65 nm technology.

8 bit 16 bit 32 bit 64 bit 128
bit

256
bit

Area (mm2) for v1 version
0.027 0.039 0.059 0.141 0.209 0.417

Power (mW)
v1 0.42 0.68 1.19 2.70 4.35 10.98
v2 0.42 0.68 1.19 2.64 4.23 7.26

case (0.9 V supply voltage and 100 MHz clock frequency).
The post-Place&Route total power consumption, reported in
Table 2 for both version 1 and version 2, does not differ
significantly from the pre-Place&Route estimation.

VI. COMPARISONS
In order to assess the proposed decoder architecture, the
obtained results are compared with those appeared in recent
literature for two FPGA implementations of LEDAcrypt [19],
[21]. The comparison is reported in Table 3, that shows the
synthesis results of our LEDAcrypt system for the two target
devices used in [19] and [21], i.e., a Spartan-6 device and
the Artix-7 c7a200tfbg484. It must be taken into account that
[21] considered the Q-decoder only, while in [19], similarly
to our analysis, the syndrome computation has been included
as well. Comparison has been adapted accordingly, assuming
n0 = 4, p ≈ 7, 000, nb = 128 for the Artix-7 case and
n0 = 2, p = 14, 939, nb = 32 for the Spartan-6 case.

By comparing the two Artix-7 implementations, one can
notice that our solution is slower than [21] by a factor 7.5,
but much cheaper in terms of occupied FPGA elements, with
percentages of saved resources equal to 88%, 82% and 83%
for LUTs, FFs and BRAMs, respectively3. In order to have
a comprehensive figure of merit, we provide in Table 3 the
product of the execution time (in ms) by the number of
occupied LUTs (Latency × LUTs), which combines both
the speed and the hardware complexity achieved by each
implementation. This special metric gives very similar values
for the two Artix-7 cases, with a relative difference as small
as 8%.

As a further comment on these results, we notice that
the 0.53 ms latency of our design is short enough for the
implementation of the LEDAcrypt algorithm on both client
and server sides. On the other hand, in our solution the
BRAMs usage is significantly reduced; this is because, in our
design, only a partial product is addressed during the update
by VbSC, while in [21] more partial products are generated
in the same iteration.

As for the Spartan-6 designs, we see from the table that
the proposed implementation achieves a much shorter latency
than [19], at the cost of a slightly larger number of occupied
resources; moreover, for our implementation, the Latency ×
LUTs metric is lower by a factor greater than 6.

3In Table 3, the absolute numbers of resources used for the implementa-
tion in [21] are estimated from the percentage values given in the paper.

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3076245, IEEE Access

K. Koleci et al.: Efficient Hardware Implementation of the LEDAcrypt Decoder

TABLE 3. Comparison among LEDAcrypt FPGA implementations.

Our work [21] [19]
Artix-7

200
Spartan-6 Artix-7

200
Spartan-6

Ex. Time 0.53 2 0.07 16.1(ms)
fmax 142 120 100 140(MHz)
LUTs 9,237 2,854 75,962 2,222
FFs 6,003 1,631 32,517 658
BRAMs 58 43 339 13
Ex. Time
× LUTs
(ms)

4,895 5,708 5,317 35,774

This latency improvement is mainly due to the collapse
unit that can rotate up to nb elements in a single cycle,
while in [19] the complete rotation of the row is obtained
through multiple steps, thus increasing the latency of the
whole process.

Another relevant issue concerns the comparison with dif-
ferent designs of PQC schemes, also proposed for the NIST
competition. Some relevant examples are shown in Table
4, where we compare the presented architecture against a
number of recently published FPGA implementations of
well-known PQC algorithms. No ASIC implementations are
available for comparisons, for the time being. Details on
the algorithms can be found in the references quoted in
the first column of the table. All the considered schemes
are code-based, except for SIKE that exploits supersingular
isogeny graphs. For BIKE and Classic McEliece different
implementations have been considered.

The showed comparisons are not entirely fair, as the
considered cryptosystems are heterogeneous and not always
a direct comparison makes sense. However, the data reported
in the table allow for a global overview of the implementation
performance and cost of several algorithms proposed in the
frame of the NIST competition. From the given figures, it can
be seen that LEDAcrypt offers very low latency and complex-
ity with respect to the other cryptosystems. In particular, from
the rightmost column in the Table, which gives the Latency
× LUTs product, we see that LEDAcrypt (with nb = 8
and n0 = 2) shows the lowest value of this metric among
all considered implementations. Moreover, despite the BIKE
algorithm is similar to LEDAcrypt, its implementation turns
out to be more expensive than LEDAcrypt in terms of occu-
pied resources. On the whole, the reported results suggest that
the proposed implementation is an effective way to realize a
post-quantum cryptosystem.

Finally, in Table 5, we give a comparison with a few
public-key cryptography schemes that are widely used nowa-
days, such as ECC and RSA.

Of course, the security level of these systems is not compa-
rable with the security provided by LEDAcrypt and the other

PQC systems. However, the purpose of such a table is to have
a first evaluation of the additional latency and complexity of
a post-quantum cryptosystem, like LEDAcrypt, with respect
to quantum-vulnerable schemes which are currently in use.

In the first part of the table, we compare our architecture
mapped on an Artix-7 device, for the case p = 14, 939 and
nb = 128, against the Virtex-4 implementation proposed
in [44]. The second part of the table presents instead the
comparison between our UMC CMOS 65 nm implemen-
tation and four ASIC designs: one for for RSA [45] and
three for ECC [46]–[48]; a large number of additional ECC
implementations are reported in [49], but the comparison
with them is here omitted for the sake of brevity. As for the
ASIC case, we notice that the difference between our post-
quantum cryptosystem (with p = 14, 939 and nb = 128) and
the other ones is limited in terms of latency: in particular,
the LEDAcrypt ASIC implementation is faster than the con-
sidered ECC designs by a factor ranging from 1.2 to 4. The
ASIC implementation of LEDAcrypt is also much faster than
the reported RSA design. On the contrary, the differences
in terms of equivalent gates result to be much larger: while
LEDAcrypt needs 165 · 106 equivalent gates, the complexity
of the considered ECC implementations is in the order of
10 · 103 equivalent gates. A slightly higher complexity is
required for the ASIC RSA design. The increase in the
number of gates, however, is quite obvious and expected,
and must be interpreted as the price to pay for designing
cryptosystems able to resist against quantum computers.

VII. CONCLUSIONS
This work has introduced significant improvements with
respect to previous implementations of the recently pro-
posed LEDAcrypt code-based post-quantum cryptosystem.
In particular, we have presented an ASIC implementation,
which was missing in existing literature, to the best of our
knowledge. Moreover, as regards the FPGA implementation,
already studied in the literature, our architecture is charac-
terized by an excellent trade-off between execution time and
area occupation. In particular, by assuming the Latency ×
LUTs product as a figure of merit, we have shown that our
design is able to significantly reduce it, up to a factor of 6
for the Spartan-6 device. Moreover, our implementation com-
pares favorably with other code-based schemes proposed for
PQC and is even faster than known realizations of classical
public-key cryptography schemes like ECC or RSA.

Our focus has been on the implementation of a KEM with
ephemeral keys and assuming the parameters chosen for the
second round of the NIST PQC competition. However, the
design can be extended to different scenarios, as well as
easily scaled for taking into account parameters updating, as
probably required in future versions of the algorithm.

REFERENCES
[1] M. Giles, “IBM new 53 qubit quantum computer is the most powerful

machine you can use,” MIT, 2018.
[2] J. Hsu, “Ces 2018: Intel’s 49-qubit chip shoots for quantum supremacy,”

IEEE Spectrum Tech Talk, 2018.

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3076245, IEEE Access

K. Koleci et al.: Efficient Hardware Implementation of the LEDAcrypt Decoder

TABLE 4. Comparison between our work and different FPGA implementations of post-quantum cryptography algorithms.

Ref. Algorithm Security
Level

Ex. Time Device Resources Ex. Time
× LUTs

(NIST) (ms) LUTs FF BRAM (ms)
[38] BIKE 1 13.02 Artix -7 9,557 3,969 10 124k

4.57 16,349 4,331 15 74k
1.9 3,0977 5,092 29 58k

5 47.76 8,913 3,974 16 425k
14.81 16,606 4,377 16 245k
6.11 30,772 5,096 30 188k

[39] BIKE 1 11.8 Arria 10 51,207 600k
[40] Classic

McEliece
1 47.39 Zynq 77,357 41,338 3.6M

UltraScale+
[41] Classic

McEliece
1 0.14 Artix-7 25,327 49,383 168 3.5k

0.1 39,766 70,453 213 3.9k
0.09 81,339 132,190 236 7k

5 0.25 38,669 74,858 303 9k
0.17 57,134 97,056 349 9k
0.11 Virtex-7 109,484 168,939 446 12k

[42] HQC 1 1.46 Artix -7 11,236 7,836 19.5 16k
[43] SIKE 1 7.4 Artix-7 21,946 24,328 26.5 162k

2 9.23 24,610 27,759 33.5 227k
3 14.2 29,447 33,198 39.5 418k
5 18.4 40,792 49,982 43.5 750k

Our Work LEDAcrypt 1 2.4 Artix -7 1,043 582 21.5 2.5k
3 5.8 1,354 716 32 7.8k
5 11 1,510 785 44.5 11.7k

TABLE 5. Comparison of LEDAcrypt with other cryptosystems.

Ref. Device LUTs Ex. Time (ms) Algorithm

FPGA [44] Virtex-5 212 11 ECC
Our work Artix-7 9,237 0.6 LEDAcrypt

Ref. Technology GE×103 Cycles Algorithm

ASIC
[45] 0.35 µm 135 529,200 RSA
[46] 65 nm 11 106,700 ECC
[47] 65 nm 15 351,856 ECC
[48] 65 nm 11 177,707 ECC

Our Work 65 nm 165,000 87,110 LEDAcrypt

[3] J. Porter, “Google confirms ‘quantum supremacy’ breakthrough,” VERGE,
2019.

[4] F. Arute, K. Arya, R. Babbush et al., “Quantum supremacy using a
programmable superconducting processor,” Nature, vol. 574, pp. 505–510,
2019.

[5] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in Proceedings 35th Annual Symposium on Foundations
of Computer Science, Santa Fe, NM, USA, Nov. 1994, pp. 124–134.

[6] National Institute of Standards and Technology, “Post-Quantum Crypto
Project,” http://csrc.nist.gov/groups/ST/post-quantum-crypto/.

[7] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent in-
tractability of certain coding problems,” IEEE Transactions on Informa-
tion Theory, vol. 24, no. 3, pp. 384–386, 1978.

[8] G. Alagic, J. Alperin-Sheriff, D. C. Apon, D. A. Cooper, Q. H.
Dang, J. M. Kelsey, Y.-K. Liu, C. A. Miller, D. Moody, R. C.
Peralta, R. A. Perlner, A. Y. Robinson, and D. C. Smith-Tone.
(2020, Jul.) Status report on the second round of the NIST Post-
Quantum cryptography standardization process. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf

[9] R. J. McEliece, “A public-key cryptosystem based on algebraic coding
theory,” Deep Space Network Progress Report, vol. 44, pp. 114–116, Jan.
1978.

[10] M. Baldi, F. Chiaraluce, and M. Bianchi, “Security and complexity of the
McEliece cryptosystem based on Quasi-Cyclic Low-Density Parity-Check
codes,” IET Information Security, vol. 7, no. 3, pp. 212–220, 2013.

[11] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini, “LEDAkem
and LEDApkc website,” https://www.ledacrypt.org/.

[12] N. Aragon, P. S. L. M. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C.
Deneuville, P. Gaborit, S. Ghosh, S. Gueron, T. Güneysu, C. A. Melchor,
R. Misoczki, E. Persichetti, N. Sendrier, J.-P. Tillich, V. Vasseur, and
G. Zémor, “BIKE website,” https://bikesuite.org/.

[13] N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J. Bos, J.-C. Deneuville,
P. Gaborit, C. A. Melchor, E. Persichetti, J.-M. Robert, P. Véron, and
G. Zémor, “HQC website,” https://https://pqc-hqc.org/.

[14] R. Gallager, “Low-density parity-check codes,” IRE Transactions on In-
formation Theory, vol. 8, no. 1, pp. 21–28, 1962.

[15] T. Richardson and R. Urbanke, “The capacity of low-density parity-check
codes under message-passing decoding,” IEEE_J_IT, vol. 47, no. 2, pp.
599–618, 2001.

[16] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini,
“LEDAcrypt: QC-LDPC code-based cryptosystems with bounded decryp-
tion failure rate,” in Code-Based Cryptography, M. Baldi, E. Persichetti,
and P. Santini, Eds. Cham: Springer International Publishing, 2019, pp.
11–43.

[17] D. Apon, R. Perlner, A. Robinson, and P. Santini, “Cryptanalysis of
LEDAcrypt,” in Advances in Cryptology – CRYPTO 2020, D. Micciancio
and T. Ristenpart, Eds. Cham: Springer International Publishing, 2020,
pp. 389–418.

[18] P. Santini, M. Battaglioni, M. Baldi, and F. Chiaraluce, “Analysis of the
error correction capability of LDPC and MDPC codes under parallel bit-
flipping decoding and application to cryptography,” IEEE Transactions on
Commmunications, vol. 68, no. 8, pp. 4648–4660, 2020.

[19] J. Hu, M. Baldi, P. Santini, N. Zeng, S. Ling, and H. Wang, “Lightweight
key encapsulation using LDPC codes on FPGAs,” IEEE Transactions on

16 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3076245, IEEE Access

K. Koleci et al.: Efficient Hardware Implementation of the LEDAcrypt Decoder

Computers, vol. 69, no. 3, pp. 327–341, 2019.
[20] B. Bui. Hardware implementation of Q-decoding algorithm in

LEDAkem encapsulation mechanism. [Online]. Available: https://people-
ece.vse.gmu.edu/coursewebpages/ECE/ECE646/F19/project.html

[21] D. Zoni, A. Galimberti, and W. Fornaciari, “Efficient and scalable FPGA-
oriented design of QC-LDPC bit-flipping decoders for post-quantum cryp-
tography,” IEEE Access, vol. 8, pp. 163 419–163 433, 2020.

[22] K. Koleci, M. Baldi, M. Martina, and G. Masera, “A hardware imple-
mentation for code-based post-quantum asymmetric cryptography,” in
Proceedings ITASEC 2020, 3rd Italian Conference on Cybersecurity.
Ancona, Italy: CEUR Workshop Proceedings 2597, Feb. 2020, pp. 141–
152.

[23] D. Zoni, A. Galimberti, and W. Fornaciari, “Flexible and scalable FPGA-
oriented design of multipliers for large binary polynomials,” IEEE Access,
vol. 8, pp. 75 809–75 821, 2020.

[24] H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding the-
ory,” Probl. Contr. and inform. Theory, vol. 15, pp. 159–166, 1986.

[25] M. Baldi, M. Bodrato, and F. Chiaraluce, “A new analysis of the McEliece
cryptosystem based on QC-LDPC codes,” in Security and Cryptography
for Networks, R. Ostrovsky, R. De Prisco, and I. Visconti, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 246–262.

[26] R. Misoczki, J. Tillich, N. Sendrier, and P. S. L. M. Barreto, “MDPC-
McEliece: New McEliece variants from moderate density parity-check
codes,” in 2013 IEEE International Symposium on Information Theory,
Istanbul, Turkey, Jul. 2013, pp. 2069–2073.

[27] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini,
“LEDAkem: A post-quantum key encapsulation mechanism based on QC-
LDPC codes,” in Post-Quantum Cryptography, T. Lange and R. Stein-
wandt, Eds. Cham: Springer International Publishing, 2018, pp. 3–24.

[28] N. Drucker, S. Gueron, and D. Kostic, “QC-MDPC decoders with several
shades of gray,” in Post-Quantum Cryptography, J. Ding and J.-P. Tillich,
Eds. Cham: Springer International Publishing, 2020, pp. 35–50.

[29] ——, “On constant-time QC-MDPC decoders with negligible failure rate,”
in Code-Based Cryptography, M. Baldi, E. Persichetti, and P. Santini, Eds.
Cham: Springer International Publishing, 2020, pp. 50–79.

[30] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini, “A failure
rate model of bit-flipping decoders for QC-LDPC and QC-MDPC code-
based cryptosystems,” in Proceedings of the 17th International Joint
Conference on e-Business and Telecommunications - Vol. 3: SECRYPT,
Paris, France, Jul. 2020, pp. 238–249.

[31] N. Sendrier and V. Vasseur, “About low DFR for QC-MDPC decoding,”
in Post-Quantum Cryptography, J. Ding and J.-P. Tillich, Eds. Cham:
Springer International Publishing, 2020, pp. 20–34.

[32] A. Karatsuba and Y. Ofman, “Multiplication of many-digital numbers by
automatic computers,” Dokl. Akad. Nauk SSSR, vol. 145, no. 2, pp. 293–
294, 1962.

[33] A. Schönhage and V. Strassen, “Schnelle multiplikation grosser zahlen,”
Computing, vol. 7, no. 3-4, pp. 281–292, 1971.

[34] K. Millar, M. Łukowiak, and S. Radziszowski, “Design of a flexible
Schönhage-Strassen FFT polynomial multiplier with high-level synthesis
to accelerate HE in the cloud,” in Proceedings 2019 International Con-
ference on ReConFigurable Computing and FPGAs (ReConFig), Cancun,
Mexico, Dec. 2019, pp. 1–5.

[35] X. Feng, S. Li, and S. Xu, “RLWE-oriented high-speed polynomial mul-
tiplier utilizing multi-lane Stockham NTT algorithm,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 67, no. 3, pp. 556–559,
2020.

[36] C. Rafferty, M. O’Neill, and N. Hanley, “Evaluation of large integer
multiplication methods on hardware,” IEEE Transactions on Computers,
vol. 66, no. 8, pp. 1369–1382, 2017.

[37] T. Chou, “QcBits: Constant-time small-key code-based cryptography,” in
Cryptographic Hardware and Embedded Systems – CHES 2016, B. Gier-
lichs and A. Y. Poschmann, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2016, pp. 280–300.

[38] J. Richter-Brockmann, J. Mono, and T. Güneysu, “Folding BIKE: Scalable
hardware implementation for reconfigurable devices,” Cryptology ePrint
Archive, Report 2020/897, 2020, https://eprint.iacr.org/2020/897.

[39] A. H. Reinders, R. Misoczki, S. Ghosh, and M. R. Sastry, “Efficient
BIKE hardware design with constant-time decoder,” in Proceedings 2020
IEEE International Conference on Quantum Computing and Engineering
(QCE), Denver, CO, USA, Oct. 2020, pp. 197–204.

[40] M. López-García and E. Cantó-Navarro, “Hardware-software implemen-
tation of a McEliece cryptosystem for post-quantum cryptography,” in
Advances in Information and Communication, K. Arai, S. Kapoor, and

R. Bhatia, Eds. Cham: Springer International Publishing, 2020, pp. 814–
825.

[41] M. Albrecht, D.J.Bernstein, T. Chou, C. Cid, J. Gilcher, T. L. V. Maram,
I. von Maurich, R. Misoczki, R. Niederhagen, K. Paterson, E. Persichetti,
C. Peters, P. Schwabe, N. Sendrier, J. Szefer, C.J.Tjhai, M.Tomlinson,
and W.Wang, “Classic McEliece,” online, 2020. [Online]. Available:
https://classic.mceliece.org/hardware.html

[42] C. Aguilar Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J. Bos,
J. Deneuville, A. Dion, P. Gaborit, J. Lacan, E. Persichetti, J. Robert,
P. Véron, and G. Zemor, “Hamming Quasi-Cyclic (HQC) - Third round
version - Updated version 10/01/2020,” online, p. 47, 2020. [Online].
Available: http://pqc-hqc.org/doc/hqc-specification_2020-10-01.pdf

[43] B. Koziel, A.-B. Ackie, R. El Khatib, R. Azarderakhsh, and M. M. Ker-
mani, “SIKE’d up: Fast hardware architectures for supersingular isogeny
key encapsulation,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 67, no. 12, pp. 4842–4854, 2020.

[44] D. B. Roy, P. Das, and D. Mukhopadhyay, “ECC on your fingertips: A
single instruction approach for lightweight ECC design in GF (p),” in
International Conference on Selected Areas in Cryptography. Springer,
2015, pp. 161–177.

[45] S. Yesil, A. N. Ismailoglu, Y. C. Tekmen, and M. Askar, “Two fast RSA
implementations using high-radix montgomery algorithm,” in Proceedings
2004 IEEE International Symposium on Circuits and Systems, vol. 2,
Vancouver, BC, Canada, May 2004, pp. 557–560.

[46] R. Azarderakhsh, K. U. Järvinen, and M. Mozaffari-Kermani, “Efficient
algorithm and architecture for elliptic curve cryptography for extremely
constrained secure applications,” IEEE Transactions on Circuits and Sys-
tems I: Regular Papers, vol. 61, no. 4, pp. 1144–1155, 2014.

[47] B. Koziel, R. Azarderakhsh, and M. Mozaffari-Kermani, “Low-resource
and fast binary Edwards curves cryptography,” in International Conference
on Cryptology in India. Springer, 2015, pp. 347–369.

[48] S. S. Roy, K. Järvinen, and I. Verbauwhede, “Lightweight coprocessor
for Koblitz curves: 283-bit ECC including scalar conversion with only
4300 gates,” in International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2015, pp. 102–122.

[49] C. A. Lara-Nino, A. Diaz-Perez, and M. Morales-Sandoval, “Elliptic curve
lightweight cryptography: A survey,” IEEE Access, vol. 6, pp. 72 514–
72 550, 2018.

KRISTJANE KOLECI received the M.S. in Elec-
tronic Engineering from Politecnico di Torino,
Italy in 2019. She is currently a PhD student in
the VLSI-lab group, Politecnico di Torino. Her re-
search interests include the design hardware archi-
tectures of algorithms for Post-Quantum Cryptog-
raphy and Error Correcting Codes. She is currently
Vice-chair of the IEEE Women In Engineering
Student Branch Affinity Group at Politecnico di
Torino.

PAOLO SANTINI received the master degree
(Hons.) in Electronic Engineering and the PhD
degree in Electronic, Computer and Telecommu-
nications Engineering from the Universita Politec-
nica delle Marche in 2016 and 2020, respectively,
where he is currently working as postdoctoral re-
search fellow. From November 2019 to February
2020, he has been a research associate at Florida
Atlantic University. His research interests include
coding theory, security and cryptography. He has

participated to the NIST PQC standardization process as a team member of
LEDAcrypt.

VOLUME 4, 2016 17

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3076245, IEEE Access

K. Koleci et al.: Efficient Hardware Implementation of the LEDAcrypt Decoder

MARCO BALDI (Senior Member, IEEE) is As-
sociate Professor of Telecommunications at the
Polytechnic University of Marche Ancona (Italy)
– Department of Information Engineering, where
he also coordinates the local node of the CINI
Cybersecurity National Laboratory and takes part
in the Research and Service Center for Privacy
and Cybersecurity (CRiSPY). He is co-author of
over 150 scientific articles and one book, and holds
four patents. His research interests are focused

on cybersecurity, with special interest in coding and cryptography for
information security and reliability. His research activity is carried out in
collaboration with national and international companies and institutions. He
has received numerous awards for research activities. He has given numerous
invited speeches and seminars at international conferences and international
research institutions. He is a member of AEIT, EURACON, CINI, CNIT,
GTTI, IEEE Communications Society, IEEE Information Theory Society
and IEEE senior member. He currently serves as a Senior Associate Editor
for IEEE Communications Letters and as an Associate Editor for the
EURASIP Journal on Wireless Communications and Networking and the
Information journal (MDPI).

FRANCO CHIARALUCE (Senior Member,
IEEE) was born in Ancona, Italy, in 1960. He
received the Laurea degree (summa cum laude)
in Electronic Engineering from the Università di
Ancona in 1985. Since 1987, he has been with
the Department of Electronics and Automatics,
Università di Ancona. He is currently a Full Pro-
fessor in Telecommunications with the Università
Politecnica delle Marche, Ancona where he is also
the Coordinator of the PhD Course in Information

Engineering. He has coauthored more than 300 scientific articles and three
books, and holds three patents. On his research topics, he collaborates with
national and international companies. His main research interests involve
various aspects of communication systems theory and design, with a special
emphasis on error correcting codes, cryptography, and physical layer secu-
rity. He is also a member of the IEICE.

MAURIZIO MARTINA (Senior Member, IEEE)
received the M.S. and Ph.D. in electronic engi-
neering from Politecnico di Torino, Italy, in 2000
and 2004, respectively. He is currently an Asso-
ciate Professor of the VLSI-Lab group, Politec-
nico di Torino. His research interests include VLSI
design and implementation of architectures for
digital signal processing, video coding, commu-
nications, artificial intelligence, machine learning
and event-based processing. He has more than

100 scientific publications and he is now an Associate Editor of IEEE
Transactions on Circuits and Systems I. Maurizio Martina is the counselor of
the IEEE Student Branch at Politecnico di Torino and a professional member
of IEEE HKN.

GUIDO MASERA (Senior Member, IEEE) re-
ceived the Dr.-Ing. (summa cum laude) and Ph.D.
degrees in Electronic Engineering from Politec-
nico di Torino, Italy. He is a Professor with
the Electronic Department, Politecnico di Torino,
since 1992. His research interests include several
aspects in the design of digital integrated circuits
and systems, with a special emphasis on high-
performance architectures for communications,
forward error correction, image and video coding,

cryptography and hardware accelerators for machine learning. He has more
than 200 publications, two patents and was a designer of several ASIC
components. Dr. Masera is an Associate Editor of MDPI Electronics and a
former Associate Editor of the IEEE Transactions on Circuits and Systems I,
IEEE Transactions on Circuits and Systems II and the IET Circuits, Devices
& Systems.

18 VOLUME 4, 2016

