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Abstract. Nonlinear Schrödinger (NLS) systems are important examples of
physically-significant nonlinear evolution equations that can be solved by the
inverse scattering transform (IST) method. In fact, the IST for discrete and
continuous, as well as scalar and vector, NLS systems all fit into the same
framework, which is reviewed here. The parallel presentation of the IST for
each of these systems not only clarifies the common structure of the IST,
but also highlights the key variations. Importantly, these variations manifest
themselves in the dynamics of the solutions. With the IST approach, one can
explicitly construct the soliton solutions of each of these systems, as well as
formulas from which one can determine the dynamics of soliton interaction. In
particular, vector solitons, both continuous and discrete, are partially charac-
terized by a polarization vector, which is shifted by soliton interaction. Here,
we give a complete account of the nature of this polarization shift. The po-
larization vector can be used to encode the value of a binary digit (“bit”) and
the soliton interaction arranged so as to effect logical computations.
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Figure 1. Integrable nonlinear Schrödinger systems

1. Introduction

1.1. Overview. The nonlinear Schrödinger equation (NLS)

(1.1) iqt = qxx ± 2 |q|
2
q

describes the evolution of generic small-amplitude, slowly varying wave packets in a
nonlinear medium [22]. For example, NLS has been derived in the modeling of deep
water waves [23, 90], plasmas [91], nonlinear optical fibers [47, 48], and magneto-
static spin waves [87, 52, 95]. In addition to its importance as a model of physical
systems, NLS has been the subject of extensive attention by mathematicians due to
its rich mathematical structure. In particular, NLS can be solved via the inverse-
scattering transform (IST) and has soliton solutions (localized traveling waves that
interact elastically) [92]. Moreover, as is typical of evolution equations solvable by
the IST, NLS has a Hamiltonian structure with an infinite number of conserved
quantities.

We note that the NLS equation (1.1) with a “minus” sign in front of the non-
linear term is sometimes referred to as the “defocusing” case and the equation with
a “plus” sign is referred to as the “focusing” case. In contrast to the focusing NLS,
the defocusing NLS equation does not admit soliton solutions that vanish at infinity.
However, the defocusing NLS does admit soliton solutions which have a nontrivial
background intensity, often referred to as “dark solitons” [48, 93]. For a discussion
of dark solitons see [24, 56, 58, 83, 94]. In this review, we only consider solutions
that decay at infinity and, therefore, we only consider the bright solitons of focus-
ing NLS and the corresponding focusing forms of the related nonlinear Schrödinger
systems.

The mathematical theory of the IST can be profitably extended to related
nonlinear Schödinger systems. Specifically, in this review, we consider both the
spatial discretization and vector generalization of NLS. Thus, we consider three
systems in addition to NLS (1.1): the vector generalization of NLS (i.e. VNLS),
the integrable discretization (IDNLS) and the integrable discretization of the vector
system (IDVNLS). See Figure 1.1. The parallel presentation of the IST for each
of these systems (in Sections 2–5) clarifies, in a fundamental way, both the overall
similarities and important differences between these systems.

Making concrete use of the IST, we derive explicit expressions for the soliton
solutions of all four systems. Further, we present explicit formulas, also derived
with the machinery of the IST, that describe the dynamics of soliton interaction
for each of the systems. This approach was used by Zakharov and Shabat [92] to
analyze the soliton interaction in NLS and by Manakov [64] to derive the equivalent
formulae for VNLS. In Section 6 we extend the method to the analysis of discrete-
soliton interactions. Moreover, in Section 7, we show how these formulas can be
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Figure 2. Scheme of the Inverse Scattering Transform

applied to the construction of logic gates with vector solitons (both continuous and
discrete).

1.2. Inverse Scattering Transform. Beyond its applications to nonlinear
Schrödinger systems, the IST method allows one to solve a broad class nonlinear
evolution equations (cf., e.g., [2, 13, 28, 34, 38, 70]). While the details of the IST
depend on the particular evolution equation studied, there is a common framework.
Moreover, many of the details of the IST are similar for all the nonlinear Schrödinger
systems considered here.

An essential precondition for solving a nonlinear evolution equation via the IST
is the association of a pair of linear problems (Lax pair) such that the given equa-
tion results as compatibility condition between them: an associated (generalized)
eigenvalue problem (or spectral problem), and an auxiliary spectral problem fixing
the time dependence.

The operation of the IST is analogous to the Fourier Transform solution of
linear evolution equations (see Figure 1.2.) At a fixed time (say t = 0), one applies
a transformation of the solution from a function of the spatial variable (x) to a
function of the spectral variable (k), the “forward” or “direct” problem. In the case
of the IST, the solution of the direct problem includes the reflection coefficient ρ(k),
which is a function of the spectral variable, and the eigenvalues of the associated
scattering problem along with additional constants, the “norming constants”. This
function of the spectral variable, along with the eigenvalues and the constants,
are referred to collectively as the “scattering data”. The time evolution of the
scattering data is simple (in particular, the eigenvalues are independent of the time
evolution). The solution at a later time is obtained by an inverse transformation,
the “inverse” problem.

The Inverse Scattering Transform is, however, more involved than the Fourier
transform. In the IST, both the forward and inverse transformations require an
intermediate step in which one computes a function that depends on both the spatial
variable and the spectral variable. Moreover, the solution of the forward problem
involves the solution of a linear integral equation and the solution of the inverse
problem requires the solution of a Riemann-Hilbert boundary-value problem.

While both the forward and inverse problems are necessary steps in the solu-
tion of the initial-value problem, one can use the inverse problem on its own to
generate special solutions of the evolution equation. We obtain a special solution
by specifying the scattering data and then solving the inverse problem with the
time-dependence included. In particular, the solitons of nonlinear Schrödinger sys-
tems (as well as many other nonlinear evolution equations) correspond to scattering
data that consist of only eigenvalues and their associated constants (i.e., no con-
tinuous spectrum). We note that, for nonlinear Schrödinger systems, when there is
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no continuous spectrum, the Riemann-Hilbert boundary-value problem reduces to
a finite-dimensional linear system and we obtain explicit soliton solutions.

1.3. Nonlinear Schrödinger Systems. The system

iq
(1)
t = q(1)xx + 2

(

|q(1)|2 + |q(2)|2
)

q(1)

iq
(2)
t = q(2)xx + 2

(

|q(1)|2 + |q(2)|2
)

q(2),

sometimes referred to in the literature as the coupled NLS equation, was posited
by Manakov [64] as a model for the propagation of the electric field in a waveguide.
In Manakov’s formulation, each equation governs the evolution of one of the com-
ponent of the field transverse to the direction of propagation. More generally, this
system can be derived as a model for wave propagation under conditions similar
to those where NLS applies and there are two wavetrains moving with nearly the
same group velocity [73, 88]. In recent years, this system was derived as a key
model for light-wave propagation in optical fibers (cf. [37, 65, 66, 85]).

We refer to the N -component vector generalization of the two-component sys-
tem,

(1.2) iqt = qxx + 2 ‖q‖
2
q,

where q is an N -component vector and ‖·‖ is the Euclidean norm, as vector NLS
(VNLS). The vector system can be derived, with some additional conditions, as
an asymptotic model of the interaction of N wavetrains in a weakly nonlinear,
conservative medium (cf. [73]).

Like the scalar NLS (1.1), VNLS (1.2) is integrable by the IST ([61, 63]. While
Manakov first formulated the IST for two-component system, the extension to the
N -component system is straightforward. Moreover, little adaptation is required to
extend Manakov’s method to the system

iQt = Qxx + 2QQHQ

where Q is an N ×M matrix and H denotes the Hermitian (conjugate) transpose
[10]. Indeed, as we show by our presentation here, the IST for the matrix system
parallels the IST for NLS in a step-by-step manner.

The vector-soliton solutions of VNLS are the counterpart of the scalar solitons
of NLS. A vector soliton is characterized, in part, by a polarization vector, which
has no counterpart in the soliton solution of the scalar equation. Moreover, vector-
soliton interactions can induce a shift in the polarization of the individual vector
solitons. This polarization shift is the key feature that distinguishes the dynamics
of the solitons of VNLS (vector solitons) from the solitons of NLS (scalar solitons).
Although described accurately by Manakov [64], the polarization shift has been
the subject of continuing attention (e.g., [72, 54]). In particular, the polarization
shift has been investigated as a mechanism for computation [76]. Also, Vector NLS
solitons and their properties have been investigated experimentally [18, 19, 30,
53, 59].

Spatial discretizations of both NLS (1.1) and VNLS (1.2) have been studied
extensively, not only as the basis of numerical schemes for the solution of the
respective PDEs, but also as models of spatially discrete physical systems (e.g.,
Davydov [31]-[33], Eilbeck et al. [35], Claude et al. [27], Christodoulides and
Joseph [29], Its et al. [49] Aceves et al [14, 15], Eisenberg et al. [36], Morandotti
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et al [67, 68], Vakhnenko et al. [80, 81] ). However, among the discretizations of
NLS, the system

(1.3) i
d

dτ
Qn = ∆Qn + |Qn|

2
(Qn−1 +Qn+1) ,

where

∆Qn = Qn−1 − 2Qn +Qn+1,

plays a very special role: it is solvable via the IST, has soliton solutions and
infinitely-many conserved quantities as well as a Hamiltonian structure [5]-[8], [60],
[40]-[44]. Because (1.3) is solvable by the IST, we refer to it as the integrable dis-
crete NLS or IDNLS. (In the literature, eq. (1.3) is sometimes referred to as the
Ablowitz-Ladik system.) Unlike other discretizations of NLS, IDNLS reproduces
the characteristic soliton-interaction dynamics of NLS. Moreover, with the change
of variables Qn = hqn = hq(nh) and τ = h−2t, IDNLS takes the form

(1.4) i
d

dt
qn =

1

h2
(qn−1 − 2qn + qn+1) + |qn|

2 (qn+1 + qn−1) ,

whose solutions (as well as soliton interaction formulas) converge to solutions of
NLS in the continuum limit (h→ 0).

We note that, while IDNLS reproduces the soliton dynamics of NLS, the dis-
crete system (i.e., IDNLS) has additional traveling “breather” solutions that have
no counterpart in the the PDE. These solutions are discussed in Section 3.

For IDNLS, we present not only the soliton interaction formulae, but also the
IST of (1.3) in a manner that parallels as closely as possible the IST for NLS. In
particular, unlike the earlier presentation of Ablowitz and Ladik [5]-[8], we present
the inverse problem as a Riemann-Hilbert boundary-value problem so as to mirror
our treatment of the inverse problem for NLS.

Given the integrable discretization of NLS (i.e., IDNLS (1.3) ) and the inte-
grable vector generalization of NLS (i.e., VNLS (1.2)), it is natural to propose the
semi-discrete system

(1.5) i
d

dτ
Qn = ∆Qn + ‖Qn‖

2
(Qn−1 + Qn+1) ,

where Q is an N -component vector,

∆Qn = Qn−1 − 2Qn + Qn+1,

and

‖Qn‖
2

= |Q(1)
n |

2 + · · ·+ |Q(N)
n |2,

as an integrable discretization of VNLS. Indeed, as detailed in Section 5, eq. (1.5)
is integrable via the IST and has soliton solutions. Moreover, as in the scalar case,
the discrete system reproduces the soliton interaction dynamics of its continuous
limit, in this case VNLS (1.2).

Despite the apparent parallel between the integrable discretization of NLS and
the integrable discretization of VNLS, the vector case has some novel aspects.
Specifically, the discrete vector system (1.5) has traveling-wave solutions, which
we refer to as “composite” solitons, that have no counterpart in the other nonlinear
Schrödinger systems. However, these composite solitons are related to the discrete
breather solutions of IDNLS. This relation is best understood by comparison of
these solutions in the context of IST.
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Surprisingly, in order to construct (via the IST) the discrete, composite solitons
as well as the discrete “fundamental” solitons (the counterpart of the vector-solitons
of the continuous limit i.e., VNLS), we must consider (1.5) as the reduction of
a discrete matrix system. This, more than anything else, is the motivation for
our consideration of the continuous matrix system in Section 4. The requirement
that we consider a discrete matrix system is not merely a technical hurdle in the
formulation of the IST for the discrete vector system in Section 5. Rather, the
existence of the composite soliton solutions of IDVNLS is a manifestation of a
necessary additional symmetry reduction. This additional symmetry is required in
order to obtain the discrete vector equation (1.5) from the discrete matrix system
described in Section 5.

2. Scalar Nonlinear Schrödinger equation (NLS)

2.1. Compatibility condition. For the purpose of the IST, it is convenient
to consider the scalar, focusing nonlinear Schrödinger equation (1.1) in the equiva-
lent form

iqt = qxx − 2rq2(2.1a)

−irt = rxx − 2qr2(2.1b)

where r = −q∗. Note that the defocusing equation is equivalent to the same system
with r = q∗.

The linear eigenvalue problem associated with the system (2.1a)–(2.1b) is

(2.2) vx =

(

−ik q
r ik

)

v,

where v is a 2-component vector, v(x, t) =
(

v(1)(x, t), v(2)(x, t)
)T

(cf. [13, 28, 70]).
(This linear system is often referred to as the AKNS scattering problem [4].) The
association of the scattering problem and the evolution equation proceeds as follows:
if the evolution of v is governed by

(2.3) vt =

(

2ik2 + iqr −2kq − iqx
−2kr + irx −2ik2 − iqr

)

v,

then, the evolution equations (2.1a)–(2.1b) are equivalent to the statement that
vxt = vtx, i.e. the mixed derivatives are equal.

2.2. Direct Scattering Problem. When the potentials q, r → 0 rapidly as
x→ ±∞, solutions of the scattering problem (2.2) can be defined by the following
boundary conditions

(2.4a) φ(x, k) ∼

(

1
0

)

e−ikx, φ̄(x, k) ∼

(

0
1

)

eikx as x→ −∞

(2.4b) ψ(x, k) ∼

(

0
1

)

eikx, ψ̄(x, k) ∼

(

1
0

)

e−ikx as x→ +∞.

However, in the following, we find it convenient to consider related functions with
constant boundary conditions (the so-called “Jost functions”):

M(x, k) = eikxφ(x, k), M̄(x, k) = e−ikxφ̄(x, k),(2.5a)

N(x, k) = e−ikxψ(x, k), N̄(x, k) = eikxψ̄(x, k).(2.5b)
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These Jost functions are solutions of the integral equations

M(x, k) =

(

1
0

)

+

∫ +∞

−∞

G+(x− x′, k)Q̂(x′, k)M(x′, k) dx′(2.6a)

N(x, k) =

(

0
1

)

+

∫ +∞

−∞

G̃+(x− x′, k)Q̂(x′, k)N(x′, k) dx′(2.6b)

M̄(x, k) =

(

0
1

)

+

∫ +∞

−∞

G̃−(x − x′, k)Q̂(x′, k)M̄(x′, k) dx′(2.6c)

N̄(x, k) =

(

1
0

)

+

∫ +∞

−∞

G−(x − x′, k)Q̂(x′, k)N̄(x′, k) dx′,(2.6d)

where

Q̂ =

(

0 q
r 0

)

and the Green’s functions are

G±(x, k) = ±θ(±x)

(

1 0
0 e2ikx

)

, G̃±(x, k) = ∓θ(∓x)

(

e−2ikx 0
0 1

)

,

where

θ(x) =

{

1, x > 0

0, x < 0

is the Heaviside function.
Eqs. (2.6a)–(2.6d) are Volterra integral equations from which we can determine

properties of the Jost functions. One can show, by the method of iteration, that
if q,r ∈ L1(R), then the Neumann series of the integral equations for M(x, k) and
N(x, k) converge absolutely and uniformly (in both x and k) in the upper half k-
plane (i.e., Im k ≥ 0). Similarly, the Neumann series of the integral equations for
M̄(x, k) and N̄(x, k) converge absolutely and uniformly (in x and k) in the lower half
k-plane (i.e., Im k ≤ 0). (See, e.g., [10] for detailed proofs.) Consequently, the Jost
functionsM(x, k) andN(x, k) are analytic functions of the complex variable k in the
region Im k > 0 and continuous in the region Im k ≥ 0. Moreover, M̄(x, k), N̄ (x, k)
are analytic functions of k in the region Im k < 0 and continuous in the region
Im k ≤ 0.

With the integral equations (2.6a)–(2.6d) one can derive asymptotic expansions
functions of the Jost functions:

M(x, k) =

(

1− 1
2ik

∫ x

−∞ q(x′)r(x′)dx′

− 1
2ik r(x)

)

+O(k−2)(2.7a)

N̄(x, k) =

(

1 + 1
2ik

∫ +∞

x q(x′)r(x′)dx′

− 1
2ik r(x)

)

+O(k−2)(2.7b)

N(x, k) =

(

1
2ik q(x)

1− 1
2ik

∫ +∞

x q(x′)r(x′)dx′

)

+O(k−2)(2.7c)

M̄(x, k) =

(

1
2ik q(x)

1 + 1
2ik

∫ x

−∞
q(x′)r(x′)dx′

)

+O(k−2),(2.7d)

which are valid for large k.



246 M. J. ABLOWITZ, B. PRINARI, AND A. D. TRUBATCH

We now use the solutions of the scattering problem to define scattering data
that are independent of the spatial variable, x, but depend on the complex scatter-
ing variable, k.

The solutions φ(x, k) and φ̄(x, k) of the scattering problem (both with boundary
conditions specified as x → −∞) are linearly independent. Because the trace of
the matrix in the scattering problem vanishes, the Wronskian of any two solutions
is independent of x. That is,

W
(

φ, φ̄
)

= lim
x→−∞

W
(

φ(x, k), φ̄(x, k)
)

= 1,

where, for any u,v

W (u, v) = u(1)v(2) − u(2)v(1).

Similarly,

(2.8) W
(

ψ, ψ̄
)

= lim
x→+∞

W
(

ψ(x, k), ψ̄(x, k)
)

= −1.

We conclude that both
{

φ(x, k), φ̄(x, k)
}

and
{

ψ(x, k), ψ̄(x, k)
}

are sets of linearly-
independent solutions of (2.2). Therefore, because the scattering problem is a
second-order system of linear ODEs, the left eigenfunctions, φ(x, k) and φ̄(x, k),
are linear combinations of ψ(x, k) and ψ̄(x, k) and vice-versa.

The coefficients of the linear combinations depend on k. Hence, the relations

φ(x, k) = b(k)ψ(x, k) + a(k)ψ̄(x, k)(2.9a)

φ̄(x, k) = ā(k)ψ(x, k) + b̄(k)ψ̄(x, k)(2.9b)

hold for any k such that all four functions exist. In particular, (2.9a)–(2.9b) are
valid on the line Im k = 0 and define the scattering coefficients a(k),ā(k),b(k) and
b̄(k) there.

Using both (2.9a)–(2.9b) and the x-invariance of the Wronskian to compute
W
(

φ(x, k), φ̄(x, k)
)

in the limit x→∞, we observe that the scattering data satisfy
the so-called unitarity relation

(2.10) a(k)ā(k)− b(k)b̄(k) = 1.

Similarly, by examining the limits x → ±∞, one can verify the following formulas
for the scattering data in terms of the Jost functions:

a(k) = W (M(x, k), N(x, k)) , b(k) = −W
(

M(x, k), N̄(x, k)
)

e−2ikx,(2.11a)

ā(k) = −W
(

M̄(x, k), N̄(x, k)
)

, b̄(k) = W
(

M̄(x, k), N(x, k)
)

e−2ikx.(2.11b)

Alternatively, one can derive the following integral relationships for the scat-
tering coefficients

a(k) = 1 +

∫ +∞

−∞

q(x′)M (2)(x′, k)dx′(2.12a)

b(k) =

∫ +∞

−∞

e−2ikx′

r(x′)M (1)(x′, k)dx′(2.12b)

ā(k) = 1 +

∫ +∞

−∞

r(x′)M̄ (1)(x′, k)dx′(2.12c)

b̄(k) =

∫ +∞

−∞

e2ikx
′

q(x′)M̄ (2)(x′, k)dx′(2.12d)
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where M (j), M̄ (j) for j = 1, 2 denote the j-th component of vectors M and M̄
respectively (cf. [2]).

The analyticity properties of the Jost functions and the formulae for the scat-
tering data imply that a(k) can be extended analytically in the region Im k > 0 of
the complex k-plane, while ā(k) can be extended analytically in the region Im k < 0.
However, in general, one cannot conclude that b(k) and b̄(k) can be extended off
the real k-axis.

From the integral representations (2.12a) and (2.12c) and the asymptotic ex-
pansions (2.7a), (2.7d) we obtain the expansions

a(k) = 1−
1

2ik

∫ +∞

−∞

q(x′)r(x′)dx′ +O(k−2) Im k > 0(2.13a)

ā(k) = 1 +
1

2ik

∫ +∞

−∞

q(x′)r(x′)dx′ +O(k−2) Im k < 0,(2.13b)

which are valid for large k.
To obtain the scattering data in a form that is convenient for the inverse prob-

lem, we rewrite eqs. (2.9a)-(2.9b) as

µ(x, k) = N̄(x, k) + ρ(k)e2ikxN(x, k)(2.14a)

µ̄(x, k) = N(x, k) + ρ̄(k)e−2ikxN̄(x, k)(2.14b)

where

(2.15) µ(x, k) = M(x, k)a−1(k), µ̄(x, k) = M̄(x, k)ā−1(k)

are meromorphic in the regions Im k > 0 and Im k < 0, respectively, and

(2.16) ρ(k) = b(k)a−1(k), ρ̄(k) = b̄(k)ā−1(k),

which we refer to as the “reflection coefficients”, are, in general, only defined on
Im k = 0.

The scattering problem (2.2) may include proper eigenvalues. A proper eigen-
value, kj = ξj + iηj , in the upper k-plane (i.e., ηj > 0) occurs precisely where
a(kj) = 0. If a(kj) = 0, it follows from (2.11a) that φ(x, kj) and ψ(x, kj) are
linearly-dependent functions of x That is, there exists a complex constant, bj , such
that

φ(x, kj) = bjψ(x, kj).

Consequently,

M(x, kj) = bje
2ikjxN(x, kj).

Similarly, the eigenvalues in the region Im k < 0 are the zeros of ā(k). These zeros,
denoted k̄j = ξ̄j + iη̄j , where η̄j < 0, are such that

φ̄(x, k̄j) = b̄jψ̄(x, k̄j)

and

M̄(x, k̄j) = b̄je
−2ik̄jxN̄(x, k̄j).

for some complex constant b̄j.
Because the eigenvalues, kj , are the zeroes of a(k), they correspond to the poles

(in k) of µ(x, k) (in the region Im k > 0). For each simple pole we have

(2.17a) Res {µ; kj} =
bj

a′(kj)
e2ikjxN(x, kj) = Cje

2ikjxN(x, kj)
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where the last equality defines the “norming constant”, Cj , corresponding to the
eigenvalue kj and ′ denotes derivative with respect to k. Similarly, the eigenvalues
in the region Im k < 0, denoted k̄j , are the zeroes of ā(k), and correspond to the
poles (in k) of µ̄(x, k). Again, for each simple pole, we have

(2.17b) Res
{

µ̄; k̄j
}

=
b̄j

ā′(k̄j)
e−2ik̄jxN̄(x, k̄j) = C̄je

−2ik̄jxN̄(x, k̄j)

where the last equality defines the norming constant, C̄j , corresponding to the
eigenvalue k̄j .

As stated above, the focusing NLS (1.1) is a special case of the system (2.1a)–
(2.1b) under the symmetry reduction r = −q∗. This symmetry in the potential in-
duces a symmetry in the scattering data. Indeed, if v(x, k) = (v(1)(x, k), v(2)(x, k))T

satisfies eq. (2.2) and the symmetry holds, then

v̂(x, k) = (v(2)(x, k∗),−v(1)(x, k∗))H

also satisfies the scattering problem. Therefore, because the solutions of the scat-
tering problem are uniquely determined by their respective boundary conditions,
(2.4a))–(2.4b), we obtain the symmetry relations:

ψ̄(x, k) =

(

0 1
−1 0

)

ψ∗(x, k∗), φ̄(x, k) =

(

0 −1
1 0

)

φ∗(x, k∗).

It follows that
ā(k) = a∗(k∗), b̄(k) = −b∗(k∗).

Consequently,
ρ̄(k) = −ρ∗(k)

on the line Im k = 0. Moreover, it follows that kj is a zero of a(k) in the the region
Im k > 0 if, and only if, k∗j is a zero for ā(k) where Im k̄j < 0. Therefore, with
this symmetry between the potentials q and r, the eigenvalues appear in complex-
conjugate pairs. Finally, one can show that the norming constants satisfy the
condition

C̄j = −C∗
j

where k̄j = k∗j .

Recall that, if r = q∗, then the system (2.1a)–(2.1b) is equivalent to the defo-
cusing NLS. In this case, the operator in the scattering problem (2.2) is Hermitian
and, therefore, the spectrum lies on the real axis. Moreover,

ψ̄(x, k) =

(

0 1
1 0

)

ψ∗(x, k∗), φ̄(x, k) =

(

0 1
1 0

)

φ∗(x, k∗)

and it follows that, as before,
ā(k) = a∗(k∗)

while

b̄(k) = b∗(k∗).

Hence, the unitarity relation becomes

(2.18) |a(k)|2 − |b(k)|2 = 1

on Im k = 0. We conclude that |a(k)| > 0 on Im k = 0. Also, for r = q∗, the
problem is self-adjoint. Hence, when r = q∗ and q → 0 sufficiently rapidly as
|x| → ∞, there are no discrete eigenvalues.
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2.3. Inverse Scattering Problem. The inverse problem consists of con-
structing a map from the scattering data back to the potentials. Specifically, the
scattering data consists of:

• reflection coefficients ρ(k) and ρ̄(k) defined on Im k = 0,

• eigenvalues and norming constants {kj , Cj}
J
j=1 and

{

k̄j , C̄j
}J̄

j=1
in the

regions Im k > 0 and Im k < 0, respectively.

First, we use these data to recover the Jost functions. Then, we recover the poten-
tials in terms of the Jost functions.

Implicit in our description of the scattering data, is the assumption that the
potential is such that the scattering coefficients a(k) and ā(k) have a finite number of
simple zeros in the regions Im k > 0 and Im k < 0, respectively. As we have shown,
these simple zeroes correspond to the eigenvalues given in the scattering data. (If
the eigenvalues are not simple zeros, one can study the problem by considering the
coalescence of simple poles [92] and Section 2.5 below.) We further assume that
a(k) 6= 0, ā(k) 6= 0 on Im k = 0.

The equations (2.14a)–(2.14b) can be considered the the jump conditions of
a Riemann-Hilbert boundary-value problem (with poles) for the to-be-determined,
sectionally meromorphic (in k) functions, µ(x, k) and µ̄(x, k), and sectionally ana-
lytic functions, N(x, k) and N̄(x, k). To recover these functions from the scattering
data, we convert the Riemann-Hilbert problem to a system of linear integral equa-
tions with the use of projection operators and Plemelj formula (cf. [3]). Taking
into account the asymptotics (2.7a)–(2.7d) and (2.17a)-(2.17b), we obtain:

N̄(x, k) =

(

1
0

)

+
J
∑

j=1

Cje
2ikx

(k − kj)
N(x, kj) +

1

2πi

∫ +∞

−∞

ρ(κ)e2iκx

κ− (k − i0)
N(x, κ) dκ

(2.19a)

N(x, k) =

(

0
1

)

+

J̄
∑

j=1

C̄je
−2ikxN̄(x, k̄j)

(k − k̄j)
−

1

2πi

∫ +∞

−∞

ρ̄(κ)e−2iκx

κ− (k + i0)
N̄(x, κ)dκ,

(2.19b)

where k + i0 indicates the limit ǫ → 0 of k + iǫ, with ǫ > 0, and, similarly, k − i0
indicates the limit ǫ→ 0 of k− iǫ, with ǫ > 0. Note that (2.19a) is valid for k such
that Im k ≤ 0, while (2.19b) is valid for k such that Im k ≥ 0. In the absence of
eigenvalues (poles), the system (2.19a)–(2.19b) reduces to a pair of coupled, linear
integral equations on the line Im k = 0.

On the other hand, in the presence of poles, we must evaluate eq. (2.19a) at
the poles k = k̄j , j = 1, . . . , J̄ and (2.19b) at the poles k = kj , j = 1, . . . , J in order
to close the system. These evaluations yield:

(2.20a) N̄(x, k̄j) =

(

1
0

)

+

J
∑

ℓ=1

Cℓe
2ikℓx

(k̄j − kℓ)
N(x, kℓ)

+
1

2πi

∫ +∞

−∞

ρ(κ)e2iκx

κ− k̄j
N(x, κ) dκ
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(2.20b) N(x, kj) =

(

0
1

)

+

J̄
∑

ℓ=1

C̄ℓe
−2ik̄ℓx

(kj − k̄ℓ)
N̄(x, k̄ℓ)

−
1

2πi

∫ +∞

−∞

ρ̄(κ)e−2iκx

κ− kj
N̄(x, κ) dκ.

Together, equations (2.19a)–(2.19b) and (2.20a)–(2.20b) constitute a linear system
of algebraic-integral equations that determines the Jost function N(x, k) in the
upper-half k-plane, Im k ≥ 0, and the Jost function N̄(x, k) in the lower-half k-
plane, Im k ≤ 0.

To recover the potentials from the Jost functions, we compare the large-k as-
ymptotic expansions of the right-hand sides of (2.19a) and (2.19b) to the expansions
(2.7b) and (2.7c), respectively. These comparisons yield

(2.21a) r(x) = −2i

J
∑

j=1

e2ikjxCjN
(2)(x, kj) +

1

π

∫ +∞

−∞

ρ(κ)e2iκxN (2)(x, κ) dκ

(2.21b) q(x) = 2i

J̄
∑

j=1

e−2ik̄jxC̄jN̄
(1)(x, k̄j) +

1

π

∫ +∞

−∞

ρ̄(κ)e−2iκxN̄ (1)(x, κ) dκ

where, as before, the superscript (ℓ) denotes the ℓ-th component of the correspond-
ing vector. These relations are explicit expressions for q and r in terms of the Jost
functions and the scattering data and, therefore, complete the formulation of the
inverse problem.

Alternatively, it is possible to recover the potentials with Gel’fand-Levitan-
Marchenko (GLM) integral equations. In this approach, we represent the Jost
functions in terms of triangular kernels

(2.22a) N(x, k) =

(

0
1

)

+

∫ +∞

x

K(x, s)e−ik(x−s)ds s > x, Im k > 0

(2.22b) N̄(x, k) =

(

1
0

)

+

∫ +∞

x

K̄(x, s)eik(x−s)ds s > x, Im k < 0.

With these representations, (2.19a)-(2.19b) may be rewritten as the GLM equations:

K̄(x, y) +

(

0
1

)

F (x+ y) +

∫ ∞

x

K(x, s) F (s+ y) ds = 0

K(x, y) +

(

1
0

)

F̄ (x+ y) +

∫ ∞

x

K̄(x, s) F̄ (s+ y) ds = 0

where

F (x) = −i

J
∑

j=1

Cje
ikjx +

1

2π

∫ +∞

−∞

ρ(κ)eiκx dκ

F̄ (x) = i
J̄
∑

j=1

C̄je
−ik̄jx +

1

2π

∫ +∞

−∞

ρ̄(κ)e−iκx dκ.

The GLM equations constitute a coupled system of integral equations that deter-
mine the kernels K and K̄ in terms of the scattering data.
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We obtain explicit expressions for the potentials in terms of the GLM kernels
by substituting the representations (2.22a)–(2.22b) into eqs. (2.21a)–(2.21b). The
resulting expressions are

q(x) = −2K(1)(x, x), r(x) = −2K̄(2)(x, x)

where, as before, K(j) and K̄(j) for j = 1, 2 denote the j-th component of the
vectors K and K̄ respectively.

In our formulation of the inverse problem we have focused on the concrete for-
mulae. In particular, we have not been concerned with the existence and uniqueness
of solutions for the linear systems that we obtained. Existence and uniqueness of
solutions of the inverse problem have been considered in a more general context
in [20]-[21]. Also, in [10], it was shown that the inverse problem admits a unique
solution if the GLM integral equations are Fredholm. For instance, if the potentials
are in the Schwartz class, then the kernels F and F̄ decay sufficiently rapidly to
ensure that the GLM equations are indeed Fredholm.

2.4. Time evolution. The auxiliary problem (2.3) determines the evolution
of the scattering data. Specifically, one can show that (cf. [10])

a(k, t) = a(k, 0), ā(k, t) = ā(k, 0)(2.24a)

b(k, t) = e−4ik2tb(k, 0), b̄(k, t) = e4ik
2tb̄(k, 0).(2.24b)

It follows immediately from (2.24a) that the eigenvalues of the scattering prob-
lem, which are equivalent to the zeros of a(k) and ā(k), are constant in time. Not
only the number of eigenvalues, but also their locations are fixed. Thus, the eigen-
values are time-independent discrete states of the evolution. In fact, the persistence
of solitons of NLS is a manifestation of the underlying invariance of the eigenvalues.

The evolution of the reflection coefficients is also determined by (2.24a)–(2.24b).
Specifically,

ρ(k, t) = e−4ik2tρ(k, 0), ρ̄(k, t) = e4ik
2tρ̄(k, 0).

We remark that ρ(k, t) = 0 for all t if, and only if, ρ(k, 0) = 0, and similarly for
ρ̄(k, t).

Finally, the evolution of the norming constants is

(2.25) Cj(t) = e−4ik2
j tCj(0), C̄j(t) = e4ik̄

2
j tC̄j(0).

2.5. Soliton Solution . In the case where the scattering data comprise proper
eigenvalues (and their norming constants) and

ρ(k) = 0 and ρ̄(k) = 0

for all k ∈ R, the system (2.20a)–(2.20b) reduces to finite-dimensional linear alge-
braic system for

{N(x, kj)}
J
j=1 and

{

N̄(x, k̄j)
}J̄

j=1
.

Moreover, in this case, eqs. (2.21a)-(2.21b) express q and r in terms N̄(x, k̄j) and
N(x, kj). Therefore, given such “reflectionless” data, we can obtain an explicit
expression for the solution.
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Recall that, when r = −q∗, the eigenvalues appear in complex conjugate pairs.
The one-soliton solution of focusing NLS corresponds to a single pair of complex-
conjugate eigenvalues (i.e., J = J̄ = 1). Specifically, the one-soliton solution corre-
sponding to the eigenvalue pair

k1 = ξ + iη, k̄1 = k∗1 = ξ − iη

is

(2.26) q(x, t) = −ie−i(2ξx−4(ξ2−η2)t+ψ)2η sech(2ηx− 8ξηt− δ),

where

(2.27) eδ =
|C1(0)|

2η
, eiψ =

C1(0)

|C1(0)|

and C1(0) is the norming constant (associated with the eigenvalue, k1) at t = 0. The
velocity of the sech envelope –described by |q(x, t)|– is 4ξ and its amplitude is 2η. In
fact, the envelope velocity is proportional to the wavenumber (inverse wavelength)
of the complex modulation. We note that, unlike the solitons of the Korteweg-de
Vries equation, the amplitude and velocity of NLS solitons are independent.

A J-soliton solution is constructed from scattering data composed of J complex-
conjugate pairs of eigenvalues and the associated norming constants. Because,
generically, the solitons’ speeds are unequal, the individual solitons become well-
separated in the long-time limits (t→ ±∞). When the solitons are well-separated,
the eigenvalue pair associated with each individual soliton determines the amplitude
and velocity of that soliton, just as in the one-soliton case. The details of soliton
interactions are described in Section 6.1.

If one considers scattering data that include only simple poles, it is not pos-
sible construct solutions in which two solitons have both the same amplitude and
the same velocity. However, in contrast to the generic case described in the pre-
vious paragraph, one can construct a solution from scattering data in which two
(or more) pairs of eigenvalues have the same imaginary part, but different real
parts. In the resulting solution, the envelope peaks travel with the same velocity
and, consequently, the distance between peaks does not increase in the long-time
limit. However, in this special case, the amplitudes of the individual peaks oscillate
periodically [92].

Solutions that correspond to scattering data with poles that are not simple can
be derived by the coalescence of simple poles. For instance, we consider the coa-
lescence of two pairs eigenvalues where the coalescence is parallel to the imaginary
k-axis. We denote the two eigenvalues in the upper-half k-plane as

k1 = ξ + iη, k2 = k1 + iǫ

and the corresponding norming constants as

C1(0) = ǫ−1C, C2(0) = −C1(0).

In the limit ǫ→ 0, one obtains the solution

q(x, t) = −iC∗eiζ(x,t)
A(x, t)

B(x, t)



INTEGRABLE NONLINEAR SCHRÖDINGER SYSTEMS 253

where

A(x, t) =

[

2

η
θ(x, t) + 16iηt

]

e−θ(x,t) −
|C|2

8η5

[

θ(x, t) + 8iη2t+ 2
]

e−3θ(x,t)

B(x, t) = 1 +
|C|2

4η4

[

(θ(x, t) + 1)2 + 64η4t2 +
1

2

]

e−2θ(x,t) +
|C|4

256η8
e−4θ(x,t)

and

θ(x, t) = 2ηx− 8ξηt, ζ(x, t) = 2ξx− 4(ξ2 − η2)t.

While this solution appears ungainly, if we treat the terms in square brackets as
constants (with respect to θ) we obtain a pair of sech-like envelopes that both
travel with velocity 4ξ. The θ-dependence in the square-bracketed terms causes
a spatial modulation of the sech envelopes, which is, for large θ, overwhelmed
by the exponential decay in θ. On the other hand, the explicit t-dependence in
square-bracketed terms causes these peaks to separate with distance O(log |t|) in
the long-time limit.

3. Integrable Discrete Nonlinear Schrödinger equation (IDNLS)

3.1. Compatibility Condition. As in the continuous case, it is convenient
to consider the system

i
d

dτ
Qn = Qn−1 − 2Qn +Qn+1 −QnRn (Qn−1 +Qn+1)(3.1a)

−i
d

dτ
Rn = Rn−1 − 2Rn +Rn+1 −QnRn (Rn−1 +Rn+1) ,(3.1b)

which reduces to focusing IDNLS (1.3) under the reduction Rn = −Q∗
n. (The

defocusing IDNLS is equivalent to the reduction Rn = Q∗
n.)

The counterpart of the equality of the mixed derivatives in compatibility con-
dition for NLS (cf. Section 2.1) is the discrete compatibility condition

d

dτ
vn+1 =

(

d

dτ
vm

)

m=n+1

,

where the discrete scattering problem is

(3.2a) vn+1 =

(

z Qn
Rn z−1

)

vn

and the time-dependence is

(3.2b)
d

dτ
vn =

(

iQnRn−1 −
i
2 (z − z−1)2 −i(zQn − z

−1Qn−1)
i(z−1Rn − zRn−1) −iRnQn−1 + i

2 (z − z−1)2

)

vn.

The scattering problem (3.2a) is sometimes referred to as Ablowitz-Ladik scattering
problem.

With the change of variables

(3.3)
Qn(τ)→ hqn(t) = hq(nh, t), Rn(τ)→ hrn(t) = hr(nh, t),

τ → h−2t, z → e−ikh,

the discrete scattering problem (3.2a) converges to the scattering problem for NLS
(2.2) in the limit h→ 0, nh→ x. Similarly, in this limit, the time-dependence equa-
tion (3.2b) converges to the time dependence equation for NLS (2.3). Moreover,
this is precisely the transformation under which (3.1a)–(3.1b) becomes (2.1a)–(2.1b)
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and, consequently, IDNLS (1.3) converges to NLS (1.1). In fact, with this transfor-
mation, many of the formulas for the discrete IST given in the following sections
converge to the corresponding formula in the IST for NLS.

3.2. Direct Scattering Problem. As in the direct scattering problem asso-
ciated with NLS, we define scattering data, which are independent of the spatial
variable, from the potentials {Qn, Rn}

∞
n=−∞. However, in this section, the spatial

variable is the discrete index n instead of the continuous variable x. Also, as before,
the scattering data are determined in terms of Jost functions that depend on both
n and the scattering parameter, in this case z.

For potentials Qn, Rn such that |Qn| , |Rn| → 0 sufficiently rapidly as n→ ±∞,
the solutions of the scattering problem (3.2a) are characterized by the boundary
conditions

φn(z) ∼ zn
(

1
0

)

, φ̄n(z) ∼ z−n
(

0
1

)

as n→ −∞(3.4a)

ψn(z) ∼ z
−n

(

0
1

)

, ψ̄n(z) ∼ z
n

(

1
0

)

as n→ +∞.(3.4b)

As in the continuous case, it is also convenient to consider the related Jost
functions with constant boundary conditions:

Mn(z) = z−nφn(z), M̄n(z) = znφ̄n(z),(3.5a)

Nn(z) = znψn(z), N̄n(z) = z−nψ̄n(z).(3.5b)

The Jost functions are solutions of the summation equations:

Mn(z) =

(

1
0

)

+

+∞
∑

k=−∞

Gℓ
n−k(z)Q̂kMk(z)(3.6a)

N̄n(z) =

(

1
0

)

+

+∞
∑

k=−∞

Ḡr
n−k(z)Q̂kN̄k(z)(3.6b)

M̄n(z) =

(

0
1

)

+
+∞
∑

k=−∞

Ḡℓ
n−k(z)Q̂kM̄k(z)(3.6c)

Nn(z) =

(

0
1

)

+

+∞
∑

k=−∞

Gr
n−k(z)Q̂kNk(z)(3.6d)

where

Q̂n =

(

0 Qn
Rn 0

)
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and the respective Green’s functions are

Gℓ
n(z) = z−1θ(n− 1)

(

1 0

0 z−2(n−1)

)

Ḡr
n(z) = −z−1θ(−n)

(

1 0
0 z−2(n−1)

)

Ḡℓ
n(z) = zθ(n− 1)

(

z2(n−1) 0
0 1

)

Gr
n(z) = −zθ(−n)

(

z2(n−1) 0
0 1

)

,

where is θ(n) is the discrete version of the Heaviside function:

(3.8) θ(n) =
n
∑

k=−∞

δ0,k =

{

1 n ≥ 0
0 n < 0

.

These summation equations may be derived by the Fourier transform method or
by the application of a summation factor.

In analogy with the continuous case, one can prove that, if

‖Q‖1 =

+∞
∑

−∞

|Qn| <∞ and ‖R‖1 =

+∞
∑

−∞

|Rn| <∞,

then Mn(z),Nn(z), defined by (3.6a) and (3.6d) respectively, are analytic functions
of z for |z| > 1 and continuous for |z| ≥ 1. Similarly, M̄n(z),N̄n(z) defined by (3.6b)
and (3.6c), respectively, are analytic functions of z for |z| < 1 and continuous for
|z| ≤ 1. Moreover, the solutions of the summation equations (3.6a)–(3.6d) are
unique in the space of bounded functions (cf. [10]).

Because the Jost functions M̄n(z) and N̄n(z) are analytic in the region |z| < 1,
they have convergent power series expansions about z = 0. From the summation
equations, we determine that these expansions are of the form

M̄n(z) =

(

zQn−1 +O(z3, odd)
1 +O(z2, even)

)

(3.9a)

N̄n(z) =

(

c−1
n +O(z2, even)

−zc−1
n Rn +O(z3, odd)

)

(3.9b)

where “even” indicates that the higher-order terms are even powers of z−1, “odd”
indicates that the higher-order terms are odd powers and

cn =

+∞
∏

k=n

(1−QkRk).

Note that the products cn converge absolutely for all n if ‖Q‖1 , ‖R‖1 < ∞, the
same condition that guarantees the well-posedness of the summation equations.

Similarly, because the Jost functionsMn(z) andNn(z) are analytic in the region
|z| > 1, they have convergent Laurent series expansions in powers of z−1. From the
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respective summation equations, we determine that

Mn(z) =

(

1 +O(z−2, even)
z−1Rn−1 +O(z−3, odd)

)

(3.9c)

Nn(z) =

(

−z−1c−1
n Qn +O(z−3, odd)

c−1
n +O(z−2, even).

)

(3.9d)

The scattering problem (3.2a) is a linear, second-order difference equation.
Therefore, for a given value of z, all of the solutions can be expressed as linear
combinations of any two linearly-independent solutions. In order to evaluate the
linear independence of solutions, say un and vn, we consider their Wronskian:

W (un, vn, ) = det |un, vn| = u(1)
n v(2)

n − u
(2)
n v(1)

n ,

which satisfies the relation

W (un+1, vn+1) = (1−RnQn)W (un, vn).

In particular, the boundary conditions (3.4a)–(3.4b) imply that

W
(

φn(z), φ̄n(z)
)

=

n−1
∏

k=−∞

(1−RkQk)(3.10a)

W
(

ψ̄n(z), ψn(z)
)

=
+∞
∏

k=n

(1−RkQk)
−1.(3.10b)

If, as we have previously assumed, ‖Qn‖1, ‖Rn‖ < ∞, and also either Rn = −Q∗
n

or |Qn|, |Rn| < 1 for all n, then the products are nonzero for all n and the above
infinite products are convergent .

The nonvanishing of the Wronskians implies that, for a given z, both
{

φn(z), φ̄n(z)
}

and
{

ψ̄n(z), ψn(z)
}

span the space of solutions to the scattering problem. Conse-

quently, one can express φn(z) and φ̄n(z) as linear combinations of ψn(z) and
ψ̄n(z), or vice-versa. The coefficients of these linear combinations depend on z. To
be concrete, the relations

φn(z) = b(z)ψn(z) + a(z)ψ̄n(z)(3.11a)

φ̄n(z) = ā(z)ψn(z) + b̄(z)ψ̄n(z)(3.11b)

hold for any z such that all four eigenfunctions φn(z), φ̄n(z), ψn(z) and ψ̄n(z) exist.
In particular, these relations are valid and well-defined on the unit circle |z| = 1.
Therefore, eqs. (3.11a)–(3.11b) define the n-independent scattering coefficients,
a(z),ā(z),b(z) and b̄(z), on |z| = 1.

By evaluating Wronskians in the limits as n → ±∞, one obtains explicit ex-
pressions for the scattering coefficients in terms of the Jost functions:

b(z) = z2ncnW
(

N̄n(z),Mn(z)
)

(3.12a)

b̄(z) = z−2ncnW
(

M̄n(z), Nn(z)
)

(3.12b)

a(z) = cnW (Mn(z), Nn(z))(3.12c)

ā(z) = cnW
(

N̄n(z), M̄n(z)
)

(3.12d)

where, as before,

cn =

+∞
∏

k=n

(1−RkQk).
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Alternatively, the scattering coefficients may be expressed as explicit sums of the
Jost functions and the potentials (cf. [10]):

a(z) = 1 +

+∞
∑

k=−∞

z−1QkM
(2)
k (z)(3.13a)

b(z) =

+∞
∑

k=−∞

z2k+1RkM
(1)
k (z)(3.13b)

ā(z) = 1 +

+∞
∑

k=−∞

zRkM̄
(1)
k (z)(3.13c)

b̄(z) =

+∞
∑

k=−∞

z−2k−1QkM̄
(2)
k (z).(3.13d)

Comparing the limits of W
(

φn(z), φ̄n(z)
)

as n→ ±∞ we obtain the relation

(3.14) a(z)ā(z)− b(z)b̄(z) = c−∞

where

(3.15) c−∞ = lim
n→−∞

cn =

+∞
∏

k=−∞

(1 −RkQk).

We remark that the above relation stands in contrast to (2.10), its counterpart in
Zakharov-Shabat scattering problem associated with NLS equation; eq. (2.10) does
not depend on the potentials.

It follows immediately from the analytic properties of the Jost functions and
(3.12c)-(3.12d) that a(z) has an analytic extension in the region |z| > 1 while ā(z)
has an analytic extension in the region |z| < 1. Substituting the z expansions of
the Jost functions, (3.9c), (3.9d) and (3.9b)–(3.9a), into (3.12c)–(3.12d), we obtain
the expansions

a(z) = 1 +O(z−2, even) |z| > 1(3.16a)

ā(z) = 1 +O(z2, even) |z| z < 1,(3.16b)

where, as before, “even” indicates that the higher-order terms contain only even
powers. Moreover, both a(z) and ā(z) are are continuous up to |z| = 1.

Depending on the potentials, there may exist values of the spectral parameter,
z, for which there is a solution of the scattering problem that vanishes as n →
±∞. Such values of z are the discrete eigenvalues of the scattering problem. The
eigenvalues in the region |z| > 1 correspond to the zeroes of a(z) in that region while
the eigenvalues in the region |z| < 1 correspond to the zeroes of ā(z). Consider zj
such that |zj| > 1 and a(zj) = 0. Then,

W (φn(zj), ψn(zj)) = 0

and the vanishing of the Wronskian implies that φn(zj) and ψn(zj) linearly depen-
dent. Equivalently,

φn(zj) = bjψn(zj)
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for some complex constant bj. In this case,

φn(zj)→

(

0
0

)

as n → ±∞ and zj is an eigenvalue. Conversely, if zj is an eigenvalue, then the
Wronskian must vanish and, therefore a(zj) = 0. Similarly, ā(z̄j) = 0 for z̄j such
that |z̄j | < 1, if, and only if,

φ̄n(z̄j) = b̄jψ̄n(z̄j)

and, therefore, z̄j is an eigenvalue of the scattering problem. In terms of the Jost
functions, we have the relations

(3.17) Mn(zj) = bjz
−2n
j Nn(zj), M̄n(z̄j) = b̄j z̄

2n
j N̄n(z̄j),

where the first relation holds if, and only if, zj is an eigenvalue such that |zj | > 1
and the second holds if, and only if, z̄j is an eigenvalue such that |z̄j | < 1.

In the formulation of the inverse problem, it is convenient to introduce the
functions

µn(z) =
Mn(z)

a(z)
=

(

1 +O(z−2)
z−1Rn−1 +O(z−3)

)

(3.18a)

µ̄n(z) =
M̄n(z)

ā(z)
=

(

zQn−1 +O(z3)
1 +O(z2)

)

(3.18b)

as well as the reflection coefficients

(3.19) ρ(z) =
b(z)

a(z)
, ρ̄(z) =

b̄(z)

ā(z)
.

In terms of these new functions, the conditions (3.11a)–(3.11b) may be restated as

µn(z)− N̄n(z) = z−2nρ(z)Nn(z)(3.20a)

µ̄n(z)−Nn(z) = z2nρ̄(z)N̄n(z).(3.20b)

We remark that µn(z) is meromorphic in the region |z| > 1 with poles corresponding
to the zeros of a(z), while µ̄n(z) is meromorphic in the region |z| < 1 with poles at
the zeros of ā(z).

If a(z) has J simple zeros

{zj : |zj| > 1}Jj=1

and ā(z) has J̄ simple zeros at the points

{z̄j : |z̄j | < 1}
J̄
j=1 ,

then

Res(µn; zj) =
Mn(zj)

a′(zj)
=

bj
a′(zj)

z−2n
j Nn(zj) = z−2n

j CjNn(zj)(3.21a)

Res(µ̄n; z̄ℓ) =
M̄n(z̄ℓ)

ā′(z̄ℓ)
=

b̄ℓ
ā′(z̄ℓ)

z̄2n
ℓ N̄n(z̄ℓ) = z̄2n

ℓ C̄ℓN̄n(z̄ℓ)(3.21b)

where ′ denotes derivative with respect to the spectral parameter, z. As in the
continuous scattering problem, we refer to the constant Cj , defined by (3.21a), as
the norming constant associated with the eigenvalue zj and to the constant C̄j ,
defined by (3.21b), as the norming constant associated with the eigenvalue z̄ℓ.



INTEGRABLE NONLINEAR SCHRÖDINGER SYSTEMS 259

Because the scattering coefficient a(z) is an even function of z, we have a(−z) =
0 if, and only if, a(z) = 0. Consequently, the eigenvalues in the region |z| > 1 appear
in pairs ±zj. Moreover, the norming constant associated with the eigenvalue −zj
is equal to the norming constant associated with the eigenvalue zj . Similarly, as
ā(z) is an even function of z, the eigenvalues in the region |z| < 1 appear in pairs
±z̄j, where the norming constant associated with the eigenvalue −z̄j is equal to the
norming constant associated with the eigenvalue z̄j . We remark that this symmetry
in the eigenvalues does not depend on any symmetry in the potentials and has no
counterpart in the continuous scattering problem.

The focusing IDNLS (1.3) is a special case of the compatibility condition (3.2a)–
(3.2b) in which Rn = −Q∗

n. This symmetry in the potentials induces a symmetry
in the scattering coefficients:

ā(z) = a∗(1/z∗)(3.22a)

b̄(z) = −b∗(1/z∗)(3.22b)

Consequently, the reflection coefficients satisfy the symmetry

(3.23) ρ̄(z) = −ρ∗(1/z∗).

Furthermore, the symmetry (3.22a) implies that for each eigenvalue zj such
that |zj | > 1, there is an eigenvalue z̄j = 1/z∗j with |z̄j | < 1 and vice-versa. It
follows that the number of eigenvalues outside the unit circle equals that of the
eigenvalues inside. Thus, taking into account the two symmetries, we conclude
that the discrete spectrum is made up of quartets of eigenvalues

{

zj ,−zj, 1/z
∗
j ,−1/z∗j

}J

j=1
.

Finally, the symmetry (3.22a) induces a symmetry in the corresponding norming
constants. Specifically,

(3.24) C̄j =
b̄j

ā′(z̄j)
=

−b∗j
−(z2

ja
′(zj))∗

= (z∗j )
−2C∗

j .

Recall that the defocusing IDNLS is equivalent to (3.1a)–(3.1b) under the sym-
metry reduction Rn = Q∗

n. Under this symmetry, there are no discrete eigenvalues
with |zj | 6= 1. Indeed, like in the continuous case, the scattering problem with
this reduction is self-adjoint. Moreover, from (3.14) and the symmetry relations
(3.22a)–(3.22b) it follows that, on |z| = 1,

|a(z)|2 − |b(z)|2 =
+∞
∏

k=−∞

(1− |Qk|)
2.

Therefore, if |Qn| < 1 for all n, we have |a(z)|2 > 0 on |z| = 1. Hence, in this case
there are no discrete eigenvalues for the associated scattering problem.

3.3. Inverse Scattering Problem. The inverse problem consists of recon-
structing the potentials in terms of the scattering data

{ρ(z), ρ̄(z) for |z| = 1} ∪ {±zj, Cj}
J
j=1 ∪

{

±z̄j , C̄j
}J̄

j=1
.

As before, this process proceeds in two steps: first, we reconstruct the Jost functions
from the scattering data; then, we recover the potentials from the Jost functions.

In the solution of the inverse problem, we assume all properties of the Jost
functions and scattering data that we derived in the previous section. In particular,
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the to-be-determined functions µn(z) and µ̄n(z) are meromorphic in the regions
|z| > 1 and |z| < 1, respectively, while the functions Nn(z) and N̄n(z) are analytic
in the regions |z| > 1 and |z| < 1, respectively.

We make the additional assumption that a(z), ā(z) 6= 0 on |z| = 1. Conse-
quently, we are guaranteed that there are finitely-many eigenvalues. Finally, we
assume that the all eigenvalues correspond to simple zeros of a(z) and ā(z). (If the
eigenvalues are not simple zeros, one can study the situation by the coalescence of
simple poles, in analogy with the continuous case as in Section 3.5.)

The equations (3.20a)–(3.20b) can be considered to define the jump conditions
for a Riemann-Hilbert boundary-value problem (with poles) for the functions µn(z),

¯µn(z), Nn(z) and N̄n(z), where the regions of analyticity are bounded by the unit
circle |z| = 1 [26]. However, in the previous section, we determined that the
boundary condition for Nn(z) on the unit circle |z| = 1 depends on Qk and Rk for
all k ≥ n, where Qn and Rn are unknowns in the inverse problem. Therefore, in
order to remove this dependence, we introduce the modified functions

N ′
n =

(

1 0
0 cn

)

Nn =

(

−z−1c−1
n Qn

1

)

+O(z−2)(3.25a)

µ′
n =

(

1 0
0 cn

)

µn =

(

1
z−1cnRn−1

)

+O(z−2)(3.25b)

N̄ ′
n =

(

1 0
0 cn

)

N̄n =

(

c−1
n

−zRn

)

+O(z2)(3.25c)

µ̄′
n =

(

1 0
0 cn

)

µ̄n =

(

zQn−1

cn

)

+O(z2)(3.25d)

where the z-expansions in (3.25a)–(3.25b) are valid in the region |z| > 1 and the
z-expansions in (3.25c)–(3.25d) are valid in the region |z| < 1.

These modified functions satisfy modified jump conditions

µ′
n(z)− N̄

′
n(z) = z−2nρ(z)N ′

n(z)(3.26a)

µ̄′
n(z)−N

′
n(z) = z2nρ̄(z)N̄ ′

n(z)(3.26b)

on |z| = 1. Furthermore, the poles and norming constants of µ′
n(z) and µ̄′

n(z) are
the same as the poles and norming constants of µn(z) and µ̄n(z).

To solve the Riemman-Hilbert problem, we apply the Plemelj formula where
the regions of analyticity (meromorphicity) are the regions |z| > 1 and |z| < 1. The
resulting equations are:

(3.27a) N̄ ′
n(z) =

(

1
0

)

+

J
∑

j=1

Cjz
−2n
j

[

1

z − zj
N ′
n(zj) +

1

z + zj
N ′
n(−zj)

]

− lim
ζ→z
|ζ|<1

1

2πi

∮

|w|=1

w−2nρ(w)

w − ζ
N ′
n(w) dw



INTEGRABLE NONLINEAR SCHRÖDINGER SYSTEMS 261

(3.27b) N ′
n(z) =

(

0
1

)

+

J̄
∑

j=1

C̄j z̄
2n
j

[

1

z − z̄j
N̄ ′
n(z̄j) +

1

z + z̄j
N̄ ′
n(−z̄j)

]

+ lim
ζ→z
|ζ|>1

1

2πi

∮

|w|=1

w2nρ̄(w)

w − ζ
N̄ ′
n(w) dw,

where N ′
n(zj) is N ′

n(z) evaluated at the eigenvalue zj , N
′
n(−zj) is N ′

n(z) evaluated
at the eigenvalue −zj and similarly for N̄ ′

n(z̄j) and N̄ ′
n(−z̄j). Here we have explic-

itly accounted for the fact that the eigenvalues arise in pairs ±zj in |z| > 1 and
±z̄j in |z| < 1 and the symmetry in the corresponding norming constants satisfy.
Equations (3.27a)–(3.27b) constitute a linear system of integral equations for N ′

n(z)
and N̄ ′

n(z) on |z| = 1.
In the absence of poles, equations (3.27a)–(3.27b), in principle, determine the

Jost functions. However, in the presence of poles, the system depends on the vectors

{N ′
n(zj), N

′
n(−zj)}

J

j=1 and
{

N̄ ′
n(z̄j), N̄

′
n(−z̄j)

}J̄

j=1
.

To close the system, we obtain expressions for these vectors by evaluating (3.27a) at
the points ±z̄j and (3.27b) at the points ±zj. These evaluations yield the equations:

(3.27c) N̄ ′
n(z̄j) =

(

1
)

+
J
∑

k=1

Ckz
−2n
k

[

1

z̄j − zk
N ′
n(zk) +

1

z̄j + zk
N ′
n(−zk)

]

−
1

2πi

∮

|w|=1

w−2nρ(w)

w − z̄j
N ′
n(w) dw

(3.27d) N̄ ′
n(−z̄j) =

(

1
0

)

−

J
∑

k=1

Ckz
−2n
k

[

1

z̄j + zk
N ′
n(zk) +

1

z̄j − zk
N ′
n(−zk)

]

−
1

2πi

∮

|w|=1

w−2nρ(w)

w + z̄j
N ′
n(w) dw

(3.27e) N ′
n(zj) =

(

0
1

)

+

J̄
∑

k=1

C̄kz̄
2n
k

[

1

zj − z̄k
N̄ ′
n(z̄k) +

1

zj + z̄k
N̄ ′
n(−z̄k)

]

+
1

2πi

∮

|w|=1

w2nρ̄(w)

w − zj
N̄ ′
n(w) dw

(3.27f) N ′
n(−zj) =

(

0
1

)

−

J̄
∑

k=1

C̄kz̄
2n
k

[

1

zj + z̄k
N̄ ′
n(z̄k) +

1

zj − z̄k
N̄ ′
n(−z̄k)

]

+
1

2πi

∮

|w|=1

w2nρ̄(w)

w + zj
N̄ ′
n(w) dw

where (3.27c)–(3.27d) hold for each eigenvalue {z̄j}
J̄
j=1 and (3.27e)–(3.27f) hold

for each eigenvalue {zj}
J
j=1. Together, eqs. (3.27a)–(3.27f) constitute a linear

algebraic-integral system for the modified Jost functions N ′
n(z) and N̄ ′

n(z).
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The Plemelj formula also yields

(3.28) µ̄′
n(z) =

(

0
1

)

+

J̄
∑

j=1

C̄j z̄
2n
j

[

1

z − z̄j
N̄ ′
n(z̄j) +

1

z + z̄j
N̄ ′
n(−z̄j)

]

+
1

2πi

∮

|w|=1

w2nρ̄(w)

w − z
N̄ ′
n(w) dw,

which is an explicit expression for µ̄′
n(z) in terms of the modified Jost function

N̄ ′
n(z). A similar formula exists for the modified Jost function µ′

n(z), but this
formula is not necessary for the reconstruction of the potentials.

To recover the potentials from the Jost functions we compare the power-series
expansions (in z) of the right-hand side of (3.27a) with (3.25c) and the power-series
expansion of the right-hand side of (3.28) with (3.25d). These comparisons yield
the explicit expressions:

(3.29a) Rn = 2
J
∑

j=1

Cjz
−2(n+1)
j N ′(2)

n (zj)

+
1

2πi

∮

|w|=1

w−2(n+1)ρ(w)N ′(2)
n (w) dw

(3.29b) Qn−1 = −2

J̄
∑

j=1

C̄j z̄
2(n−1)
j N̄ ′(1)

n (z̄j)

+
1

2πi

∮

|w|=1

w2(n−1)ρ̄(w)N̄ ′(1)
n (w) dw.

As in the continuous case, one can also reconstruct the potentials by means of
a GLM equations. To obtain these equations, we represent the eigenfunctions in
terms of triangular kernels

ψn(z) =

+∞
∑

j=n

z−jK(n, j) |z| > 1(3.30a)

ψ̄n(z) =

+∞
∑

j=n

zjK̄(n, j) |z| < 1.(3.30b)

The kernels satisfy the coupled equations

(3.31a) K̄(n,m) +

+∞
∑

j=n

K(n, j)F (m+ j) =

(

1
0

)

δm,n m ≥ n

(3.31b) K(n,m) +

+∞
∑

j=n

K̄(n, j)F̄ (m+ j) =

(

0
1

)

δm,n m ≥ n
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where

F (n) =

J
∑

j=1

z−n−1
j Cj +

1

2πi

∮

|z|=1

z−n−1ρ(z) dz

F̄ (n) = −

J̄
∑

j=1

z̄n−1
j C̄j +

1

2πi

∮

|z|=1

zn−1ρ̄(z) dz.

It is more convenient to write the equations (3.31a)-(3.31b) as forced summation
equations. To obtain such equations, we introduce κ (n,m) and κ̄(n,m) such that

κ(n, n) =

(

0
1

)

κ̄(n, n) =

(

1
0

)

and, for m > n,

K(n,m) =
+∞
∏

j=n

(1−RjQj) κ(n,m)

K̄(n,m) =

+∞
∏

j=n

(1−RjQj) κ̄(n,m).

Then, eqs. (3.31a)–(3.31b) are equivalent to

κ̄(n,m) +

(

0
1

)

F (m+ n) +
+∞
∑

j=n+1

κ(n, j)F (m+ j) = 0 m > n

κ(n,m) +

(

1
0

)

F̄ (m+ n) +

+∞
∑

j=n+1

κ̄(n, j)F̄ (m+ j) = 0 m > n

which constitute a coupled system for κ(n,m) and κ̄(n,m). Finally, the potentials
are obtained from κ(m,n) and κ̄(m,n) by the relations:

Qn = −κ(1)(n, n+ 1), Rn = −κ̄(2)(n, n+ 1).

3.4. Time evolution. The operator (3.2b) determines the evolution of the
Jost functions. From this, one deduces the time evolution of the scattering data.
The evolution of scattering coefficients is:

b(z, τ) = b(z, 0)e2iωτ a(z, τ) = a(z, 0)

ā(z, τ) = ā(z, 0) b̄(z, τ) = b̄(z, 0)e−2iωτ .

where

ω =
1

2

(

z − z−1
)2
.

It follows immediately that the eigenvalues (i.e., the zeros of a(z) and ā(z)) are
constant as the solution evolves. As in the continuous scattering problem, not only
the number of eigenvalues, but also their locations are fixed.

As determined by the evolution of the scattering coefficients, the evolution of
the reflection coefficients is given by:

ρ(z, τ) = e2iωτρ(z, 0)

ρ̄(z, τ) = e−2iωτ ρ̄(z, 0).
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In particular, if ρ(z, 0) = 0, then ρ(z, τ) = 0 for all τ , and similarly for ρ̄(z, τ).
Finally, the evolution of the norming constants is

(3.33) Cj(τ) = Cj(0)e2iωjτ , C̄j(τ) = C̄j(0)e−2iω̄jτ

where

ωj =
1

2

(

zj − z
−1
j

)2
, ω̄j =

1

2

(

z̄j − z̄
−1
j

)2
.

3.5. Soliton Solution. The one-soliton of IDNLS corresponds to scattering
data composed of a single quartet of eigenvalues

{

±z1,±
1

z∗1

}

,

and the associated norming constant C1 where ρ(z) = ρ̄(z) = 0 for z = 1. Note
that we need to only specify the norming constant associated with the eigenvalue z1
because the symmetry Rn = −Q∗

n fixes the the norming constant associated with
the eigenvalue 1/z∗1 .

We write the eigenvalue z1 as

z1 = eα+iβ ,

where, without loss of generality, α > 0 and −π2 < β ≤ π
2 . With this scattering

data, eqs. (3.27c)–(3.27f) reduce to a finite-dimensional linear system that can be
solved explicitly. Taking into account the time-dependence of the norming constant
(3.33), we obtain the IDNLS soliton:

(3.34) Qn(τ) = −ei(2β(n+1)+2wτ−ψ) sinh(2α) sech (2α(n+ 1)− 2vτ − d)

where

v = − sinh(2α) sin(2β), w = 1− cosh(2α) cos(2β),(3.35a)

ed =
|C1(0)|

sinh(2α)
, eiψ =

C1(0)

|C1(0)|
.(3.35b)

Like the soliton solution of NLS (cf. (2.26)), the soliton solution of IDNLS is a
traveling sech envelope, modulated by a complex carrier phase.

The one-soliton solution of IDNLS is more easily compared to the one-soliton
solution of NLS if we apply the transformation (3.3), which gives the one-soliton
solution of eq. (1.4), the version of IDNLS that explicitly contains the grid size, h.
The one-soliton solution of (1.4) is

(3.36) qn(t) = −e−i(2ξ(n+1)h−2wt+ψ) sinh(2ηh)

h
sech (2η(n+ 1)h− 2vt− d)

where

v =
sinh(2ηh) sin(2ξh)

h2
w =

1− cosh(2ηh) cos(2ξh)

h2
,

ed =
|C1(0)|

sinh(2ηh)
, , eiψ =

C1(0)

|C1(0)|

and

z1 = eα+iβ = eηh−iξh.

For a fixed t, the solution, qn(t), converges to the one soliton solution of NLS in
the limit h→ 0, nh→ x, with an error of O

(

h2
)

.
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Like the PDE case (i.e., NLS), in IDNLS, the amplitude of the of the sech
envelope is determined by the parameter η. However, for the discrete soliton, the
velocity of the sech envelope depends on both ξ and η. In contrast, for the contin-
uous soliton, the velocity depends only on ξ, which, in both cases, is proportional
to the spatial frequency of the complex modulation. In the discrete case, the spa-
tial frequency of the complex modulation is limited by h, the distance between the
lattice points.

Combining the preceding observations, we deduce a qualitative difference be-
tween discrete solitons and their continuous counterparts: for an IDNLS soliton,

|v| ≤ h−1A,

where v is the velocity of the sech envelope and A = sinh(2ηh)
h is its amplitude. There

is, however, no bound on the envelope velocity of NLS solitons of any amplitude.
A second qualitative difference between the solitons of NLS and IDNLS is that,

on the lattice, the relation between the frequency of the complex modulation and
the velocity of the sech envelope is not one-to-one. This can be most easily seen in
terms of the parameter α, which determines the amplitude of the discrete soliton
(cf. (3.34)) and the parameter β, which determines the complex modulation. The
soliton corresponding to the parameter pair {α, β′} where 0 ≤ β ≤ π

2 has the same
velocity as the soliton corresponding to the pair {α, β′}, where

β′ =
π

2
− β.

A similar formula holds for −π2 < β < 0. More generally, for a fixed eigenvalue

z1 = eα+iβ , there is a curve (in the complex z-plane) of eigenvalues z′1 = eα
′+iβ′

such that

sinh(2α′) sin(2β′) = sinh(2α) sin(2β)

where β′ 6= β for any α. Thus, a soliton corresponding to the eigenvalue z′1 has a
sech envelope with the same velocity as the envelope of a soliton corresponding to
the eigenvalue z1 even though the frequencies of complex modulation are unequal.

As a consequence of the property described in the preceding paragraph, IDNLS
has a class of breather solutions that has no counterpart in NLS [12]. These
breathers correspond to reflectionless scattering data composed of two quartets of
eigenvalues, where z1 from the first quartet and z2 from the second quartet are as in
the preceding paragraph. The envelopes of these breathers travel with the velocity
of the simple soliton associated with the eigenvalue z1 (or, equivalently, z2) and
oscillate periodically in time. For any fixed τ , these breathers decay exponentially
as n→ ±∞.

The solution of IDNLS corresponding to a double pole in the discrete spectrum
can be obtained by considering the coalescence of two simple poles. For example,
we consider the poles

z1 = ea+ib, z2 = ea+i(b+ǫ)

in the limit ǫ→ 0. If the corresponding norming constants are chosen such that

C1(0) =
1

ǫ
C, C2(0) = −C1(0) =

1

ǫ
C,

one obtains the solution

Qn(τ) = 2iC∗eiζ(n,τ)
An(τ)

Bn(τ)
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where

An(τ) = [f(n, τ)− 2i sinh (2α) cos (2β)τ ] e−θ(n,τ)

+
|C|2

sinh6 (2α)
[f(n, τ)− 2i sinh (2α) cos (2β)τ − 4 coth (2α)] e−3θ(n,τ)

Bn(τ) = 1 +
64|C|2

sinh2(2α)

[

(sinh(2α)f(n, τ) − 2 cosh(2α))2

+2e−2α sinh3(2α) cos2(2β)τ2 + 2
]

e−2θ(n,τ)

+
4|C|4

sinh6(2α) cosh4(2α)
e−4θ(n,τ)

and

θ(n, τ) = 2α(n+ 1) + sinh 2α sin 2βτ,

ζ(n, τ) = 2(n+ 1)β + (1− cosh 2α cos 2β) τ

f(n, τ) = n+ 1− 2 cosh (2α) sin (2β)τ.

That is, as for NLS, the coalescence solution is the ratio of polynomials in the
phase variable θ(n, τ), with a complex modulation due to ζ(n, τ). Moreover, the
qualitative behavior is similar to that of the coalescence solution obtained for NLS.
If the terms in square brackets are treated as constants, with respect to θ(n, τ),
the solution can be rewritten as a pair of travelling sech-like envelopes in the phase
variable θ(n, τ). The term f(n, τ) generates a spatial distortion. However, the
strength of this distortion diminishes as |τ | gets large. Moreover, for large θ(n, τ),
the spatial distortion is overwhelmed by the spatial exponential decay. Finally,
the τ -dependence in the square-bracketed terms, both explicit and through f(n, τ),
causes the sech-envelope peaks to separate with distance O(log |τ |) in the long-time
limits.

4. Vector Nonlinear Schrödinger (VNLS) equation

4.1. Compatibility Condition. In this section, we describe the IST for the
coupled matrix system

iQt = Qxx − 2QRQ(4.1a)

−iRt = Rxx − 2RQR,(4.1b)

where Q is an N×M matrix and R is an M×N matrix. Eqs. (4.1a)–(4.1b) reduce
to VNLS (1.2) when

R = −QH ,

where the superscript H denotes the Hermitian (conjugate) transpose, and N = 1
or M = 1. This coupled matrix system reduces to the coupled scalar system (2.1a)–
(2.1b), which is related to NLS, when N = M = 1. The IST for (4.1a)–(4.1b) is a
straightforward generalization of the IST for the two-component VNLS (1.2) that
was developed by Manakov [64].

The compatibility condition for the matrix nonlinear Schrödinger equation is a
direct matrix generalization of the compatibility condition for the scalar NLS. That
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is, substituting the matrix functions Q and R for the scalar functions q and r in
(2.2)–(2.3), we obtain

vx =

(

−ikIN Q
R ikIM

)

v(4.2a)

vt =

(

2ik2IN + iQR −2kQ− iQx

−2kR + iRx −2ik2IM − iRQ

)

v(4.2b)

where v is an N +M -component column vector and IN , IM are, respectively, the
N ×N and M ×M identity matrices. With this pair, the compatibility condition
vxt = vtx is equivalent to evolution equations (4.1a)–(4.1b).

4.2. Direct Scattering Problem. When Q,R → 0 sufficiently rapidly as
x→ ±∞, the solutions of of the scattering problem (4.2a) are characterized by the
boundary conditions

φ(x, k) ∼

(

IN
0

)

e−ikx, φ̄(x, k) ∼

(

0
IM

)

eikx as x→ −∞(4.3a)

ψ(x, k) ∼

(

0
IM

)

eikx, ψ̄(x, k) ∼

(

IN
0

)

e−ikx, as x→ +∞(4.3b)

where φ, φ̄,ψ, ψ̄ are matrix-valued functions with the following dimensions:

φ(x, k) : (N +M)×N, φ̄(x, k) : (N +M)×M

ψ(x, k) : (N +M)×M, ψ̄(x, k) : (N +M)×N.

As in the preceding sections, it is convenient to consider functions with constant
boundary conditions. Hence, we define the Jost functions as follows:

M(x, k) = eikxφ(x, k), M̄(x, k) = e−ikxφ̄(x, k),(4.4a)

N(x, k) = e−ikxψ(x, k), N̄(x, k) = eikxψ̄(x, k).(4.4b)

These functions are solutions of the linear integral equations

M(x, k) =

(

IN
0

)

+

∫ +∞

−∞

G+(x− x′, k)Q̃(x′)M(x′, k) dx′(4.5a)

N(x, k) =

(

0
IM

)

+

∫ +∞

−∞

G̃+(x− x′, k)Q̃N(x′, k) dx′(4.5b)

M̄(x, k) =

(

0
IM

)

+

∫ +∞

−∞

G̃−(x− x′, k)Q̃(x′)M̄(x′, k) dx′(4.5c)

N̄(x, k) =

(

IN
0

)

+

∫ +∞

−∞

G−(x− x′, k)Q̃(x′)N̄(x′, k) dx′,(4.5d)

where

Q̃(x) =

(

0 Q(x)
R(x) 0

)

and the Green’s functions are

G±(x, k) = ±θ(±x)

(

IN 0
0 e2ikxIM

)

,

G̃±(x, k) = ∓θ(∓x

(

e−2ikxIN 0
0 IM

)

,

where θ(x) is the Heavyside step function.
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The proof of existence and uniqueness of the Jost functions associated with
the NLS scattering problem (2.2) (cf. Section 2.2) can be generalized to the block-
matrix scattering problem. Specifically, we hypothesize that Q,R ∈ L1(R) with
respect to any matrix norm. That is,

‖Q‖1 =

∫ +∞

−∞

‖Q‖a (x)dx <∞

‖R‖1 =

∫ +∞

−∞

‖R‖a (x)dx <∞,

where ‖·‖a is any matrix norm. Under this condition, the Jost functions M(x, k)
and N(x, k) are analytic functions of k in the region Im k > 0, while M̄(x, k) and
N̄(x, k) are analytic functions of k in the region Im k < 0. All four Jost functions
are continuous up to the line Im k = 0. Moreover, these solutions of the integral
equations are unique in the space of continuous functions. (See, e.g., [10] for
details.)

From the integral equations (4.5a)–(4.5d) we obtain the asymptotic expansion,
for large k, of the Jost functions:

M(x, k) =

(

IN −
1

2ik

∫ x

−∞ Q(x′)R(x′) dx′

− 1
2ikR(x)

)

+O(k−2)(4.6a)

N̄(x, k) =

(

IN + 1
2ik

∫ +∞

x Q(x′)R(x′) dx′

− 1
2ikR(x)

)

+O(k−2)(4.6b)

N(x, k) =

( 1
2ikQ(x)

IM −
1

2ik

∫ +∞

x
R(x′)Q(x′) dx′

)

+O(k−2)(4.6c)

M̄(x, k) =

(

1
2ikQ(x)

IM + 1
2ik

∫ x

−∞ R(x′)Q(x′) dx′

)

+O(k−2).(4.6d)

The matrix functions φ and φ̄ constitute, together, N+M linearly-independent
vector solutions of the scattering problem (4.2a). Similarly, ψ and ψ̄ constitute
another collection of N + M linearly-independent vector solutions. To see that
these solutions are linearly independent, we consider the Wronskian

W (u,v) = det |u,v| ,

where u and v are matrices with N +M rows and a total of N +M columns. If
u(x, k) and v(x, k) are solutions of the scattering problem, then

∂xW (u(x, k),v(x, k)) = i(M −N)kW (u(x, k),v(x, k)) .

Therefore, the linear independence of each set of solutions is demonstrated by
considering the respective Wronskians the limits x→ ±∞.

Because ψ and ψ̄ together constitute a complete set of linearly-independent
solutions of the scattering problem, we can write

φ(x, k) = ψ(x, k)b(k) + ψ̄(x, k)a(k)(4.7a)

φ̄(x, k) = ψ(x, k)ā(k) + ψ̄(x, k)b̄(k),(4.7b)

where a(k) and ā(k) are square matrices of dimension N ×N and M ×M , respec-
tively, while b(k) is an M ×N matrix and b̄(k) is an N ×M matrix. The relations
(4.7a)–(4.7b) hold for any k such that all four eigenfunctions exist. Moreover, these
relations define the scattering coefficients: a(k), ā(k), b(k) and b̄(k). Similarly,
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because φ and φ̄ together also constitute a complete set of linearly-independent
solutions of the scattering problem, we have:

ψ(x, k) = φ(x, k)d(k) + φ̄(x, k)c(k)(4.8a)

ψ̄(x, k) = φ(x, k)c̄(k) + φ̄(x, k)d̄(k),(4.8b)

which defines a second set of k-dependent scattering coefficients. The preceding
relations imply that

W (φ(x, k),ψ(x, k)) = deta(k)(4.9a)

W (ψ̄(x, k), φ̄(x, k)) = det ā(k).(4.9b)

and

det |a(k)| = det c(k)(4.10a)

det ā(k) = det c̄(k).(4.10b)

The scattering coefficients can be written as explicit integrals of the potentials
and the Jost functions. The expressions are:

a(k) = IN +

∫ +∞

−∞

Q(x)M(dn)(x, k) dx(4.11a)

b(k) =

∫ +∞

−∞

e−2ikxR(x)M(up)(x, k) dx(4.11b)

ā(k) = IM +

∫ +∞

−∞

R(x)M̄(up)(x, k) dx(4.11c)

b̄(k) =

∫ +∞

−∞

e2ikxQ(x)M̄(dn)(x, k) dx(4.11d)

and

c̄(k) = IN −

∫ +∞

−∞

Q(x)N̄(dn)(x, k) dx(4.12a)

d̄(k) = −

∫ +∞

−∞

e−2ikxR(x)N̄(up)(x, k) dx(4.12b)

c(k) = IM −

∫ +∞

−∞

R(x)N(up)(x, k) dx(4.12c)

d(k) = −

∫ +∞

−∞

e2ikxQ(x)N(dn)(x, k) dx.(4.12d)

In the above expressions, we introduce the superscript notation (up) and (dn) to
indicate, respectively, the top N rows and the bottom M rows of a matrix. That
is, A(up) is the N × J upper block and A(dn) is the lower M × J block of the
(N +M)× J matrix A.

Given the integral representation (4.11a) and the fact that, for suitable poten-
tials, Q(x) and R(x), the Jost function M(x, k) is an analytic function of k in the
region Im k > 0, we conclude that a(k) is also an analytic function of k in the the
upper-half k-plane. Similarly, from expression (4.11c), we conclude that ā(k) is
analytic in the lower-half k-plane. Moreover, both a(k) and ā(k) are continuous up
to the line Im k = 0. In contrast, the scattering coefficients b(k) and b̄(k) cannot,
in general, be continued off the real k-axis.
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From the integral representations (4.11a) and (4.11c) and the asymptotic ex-
pansions (4.6a) and (4.6d), we obtain the asymptotic expansions

a(k) = IN −
1

2ik

∫ +∞

−∞

Q(x)R(x) dx+O(k−2)(4.13a)

ā(k) = IM +
1

2ik

∫ +∞

−∞

R(x)Q(x) dx+ O(k−2),(4.13b)

which are valid for large k.
For a more convenient formulation of the inverse problem, we rewrite (4.7a)-

(4.7b) as

µ(x, k) = N̄(x, k) + e2ikxN(x, k)ρ(k)(4.14a)

µ̄(x, k) = N(x, k) + e−2ikxN̄(x, k)ρ̄(k),(4.14b)

where

µ(x, k) = M(x, k)a−1(k), µ̄(x, k) = M̄(x, k)ā−1(k)

and the reflection coefficients are

ρ(k) = b(k)a−1(k), ρ̄(k) = b̄(k)ā−1(k).

It follows immediately from the above that the function µ(x, k) is meromorphic,
in k, in the region Im k > 0 and the poles of µ(x, k) correspond to the zeroes
of det |a(k)|. Similarly, the function µ̄(x, k) is meromorphic, in k, in the region
Im k < 0 and the poles of µ̄(x, k) correspond to the zeroes of det |ā(k)|.

As before, we define an eigenvalue of the scattering problem (4.2a) to be a
(complex) value of k for which there is a bounded solution that decays as x→ ±∞.
From eq. (4.9a) we conclude that the eigenvalues in the region Im k > 0 are exactly
the points k = kj such that det |a(kj)| = 0. On the other hand, from eq. (4.9b) we
conclude that the eigenvalues in the region Im k < 0 are the exactly the points k̄j
such that det |ā(k̄j)| = 0.

The eigenvalues in the region Im k > 0 correspond to the poles of µ(x, k). If kj
is a simple pole of µ(x, k) and (4.14a) is defined in a neighborhood of kj , then

(4.15a)
Res {µ; kj} = e2ikjxN (x, kj)

1

a′(kj)
b(kj)α(kj)

= e2ikjxN (x, kj)Cj

where a(k) = det |a(k)|, α(k) is the cofactor matrix of a(k) and ′ denotes the deriv-
ative with respect to k. The last line defines the matrix-valued norming constant
Cj associated with the eigenvalue kj . Similarly, if k̄j (with Im k̄j < 0) is a simple
pole of µ̄(x, k) and (4.14b) is defined in a neighborhood of k̄j , then

(4.15b) Res
{

µ̄; k̄j
}

= e−2ik̄jxN̄
(

x, k̄j
)

C̄j

where ā(k) = det ā(k) and ᾱ(k) is the cofactor matrix of ā(k).

The focusing vector NLS is a special case of the matrix system (4.1a)-(4.1b)
under the symmetry R = −QH . This symmetry in the potentials induces a sym-
metries in the scattering data, even in the matrix system (i.e., M > 1 and N > 1).
Specifically,

(4.16) ρ̄H(k) = −ρ(k)
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on the line Im k = 0 and

āH(k∗) = c(k)(4.17a)

c̄H (k∗) = a(k).(4.17b)

The symmetries (4.17a)-(4.17b), together with (4.10a)-(4.10b), imply that

det |a(kj)| = det |ā(k∗j )|.

Therefore, under the symmetry R = −QH , a point kj in the region Im k > 0 is an
eigenvalue if, and only if, k̄j = k∗j is an eigenvalue in the region Im k < 0. Moreover,
one can show that

(4.18) C̄j = CH
j ,

where Cj is the norming constant corresponding to the eigenvalue kj and C̄j is the
norming constant corresponding to the eigenvalue k̄j = k∗j .

We remark that, like the scalar case, when R = QH the scattering operator
(4.2a) is Hermitian and therefore, in this reduction, the scattering problem (4.2a)
with potentials decaying rapidly enough as x → ±∞ does not admit eigenvalues,
kj , with Im kj 6= 0.

4.3. Inverse Scattering Problem. As in the preceding sections, the inverse
problem proceeds in two steps: first, the reconstruction of the Jost functions from
the scattering data and, second, the recovery of the potentials from the Jost func-
tions. Also, as before, the scattering data are composed of the reflection coefficients,
ρ(k) and ρ̄(k) defined for Im k = 0 and the eigenvalues and norming constants

{kj ,Cj}
J
j=1 and

{

k̄j , C̄j

}J̄

j=1

where Im kj > 0 and Im k̄j < 0. In our formulation of the inverse problem, we
assume that all eigenvalues correspond to simple poles of the unknown (in the
inverse problem) meromorphic Jost functions.

The equations (4.14a)–(4.14b), defined on Im k = 0 are the jump conditions
of a Riemann-Hilbert problem for the matrix-valued functions N(x, k) and µ(x, k),
which are, respectively, analytic and meromorphic in the region Im k > 0 and
N̄(x, k) and µ(x, k), which are, respectively, analytic and meromorphic in the region
Im k < 0.

With the Plemelj formula, we obtain the the integral equations

(4.19a) N̄(x, k) =

(

IN
0

)

+
J
∑

j=1

e2ikjx

(k − kj)
N(x, kj)Cj

+
1

2πi

∫ +∞

−∞

e2iκx

κ− (k − i0)
N(x, κ)ρ(κ) dκ

(4.19b) N(x, k) =

(

0
IM

)

+

J̄
∑

j=1

e−2ik̄jx

(k − k̄j)
N̄(x, k̄j)C̄j

−
1

2πi

∫ +∞

−∞

e−2iκx

κ− (k − i0)
N̄(x, κ)ρ̄(κ) dκ,
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where (4.19a) is defined for k such that Im k ≤ 0, while (4.19b) is defined for k
such that Im k ≥ 0. In the absence of poles (eigenvalues), eqs. (4.19a)– (4.19b)
constitute a coupled system of (matrix) integral equations defined on Im k = 0.

In order to close the system (4.19a)– (4.19b) –when the scattering data include
poles– we evaluate eq. (4.19a) at the poles k = k̄j , j = 1, . . . , J̄ and (4.19b) at the
poles k = kj , j = 1, . . . , J . These evaluations yield:

(4.19c) N̄(x, k̄j) =

(

IN
0

)

+

J
∑

ℓ=1

e2ikℓx

(k̄j − kℓ)
N(x, kj)Cj

+
1

2πi

∫ +∞

−∞

e2iκx

κ− k̄ℓ
N(x, κ)ρ(κ) dκ

(4.19d) N(x, kj) =

(

0
IM

)

+
J̄
∑

ℓ=1

e−2ik̄ℓx

(kj − k̄ℓ)
N̄(x, k̄ℓ)C̄ℓ

−
1

2πi

∫ +∞

−∞

e−2iκx

κ− kj
N̄(x, κ)ρ̄(κ) dκ.

Together, eqs. (4.19a)–(4.19d) constitute a linear algebraic-integral system of equa-
tions that determine the Jost functions N(x, k) and N̄(x, k) in terms of the scat-
tering data.

In order to recover the potential from the Jost functions, we compare the as-
ymptotic expansions, for large k, of the right-hand sides of (4.19a) and (4.19b)
with, respectively, the expansions (4.6b) and (4.6c), which are also valid for large
k. The comparisons yield:

(4.20a) R(x) = −2i
J
∑

j=1

e2ikjxN
(dn)
j (x, kj)Cj +

1

π

∫ +∞

−∞

e2iκxNdn)(x, κ)ρ̄(κ) dκ

(4.20b) Q(x) = 2i

J̄
∑

j=1

e−2ik̄jxN̄(up)(x, k̄j)C̄j+
1

π

∫ +∞

−∞

e−2iκxN̄(up)(x, κ)ρ̄(κ) dκ,

which are explicit expressions for the potentials in terms of the Jost functions and
the scattering data.

One can also restate the inverse problem in terms of the GLM integral equa-
tions. In analogy with the scalar case, we represent the Jost functions as integrals
of triangular kernels:

N(x, k) =

(

0
IM

)

+

∫ +∞

x

K(x, s)e−ik(x−s)ds s > x, Im k > 0(4.21a)

N̄(x, k) =

(

IN
0

)

+

∫ +∞

x

K̄(x, s)eik(x−s)ds s > x, Im k < 0(4.21b)
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where K and K̄ are, respectively, (N +M)×M and (N +M)×N matrices. These
kernels satisfy the integral equations

K̄(x, y) +

(

0
IM

)

F(x+ y) +

∫ +∞

x

K(x, s)F(s+ y) ds = 0(4.22a)

K(x, y) +

(

IN
0

)

F̄(x + y) +

∫ +∞

x

K̄(x, s)F̄(s+ y) ds = 0,(4.22b)

where

F(x) = −i
J
∑

j=1

eikjxCj +
1

2π

∫ +∞

−∞

eiκxρ(κ) dκ(4.23a)

F̄(x) = i
J̄
∑

j=1

e−ik̄jxC̄j +
1

2π

∫ +∞

−∞

e−iκxρ̄(κ) dκ.(4.23b)

Inserting the representations (4.21a)–(4.21b) for the Jost functions into the eqs.
(4.20a)–(4.20b) one obtains expressions for the potentials in terms of the kernels of
GLM equations:

Q(x) = −2K(dn)(x, x), R(x) = −2K̄(up)(x, x).

The examination of existence and uniqueness for the inverse problem follows the
same lines as for the inverse scattering problem associated with the scalar NLS. In
particular, the inverse problem has a unique solution if the GLM integral equations
are Fredholm. Moreover the GLM equations are indeed Fredholm, if the potentials
are in Schwartz class [10].

4.4. Time evolution. Eq. (4.2b), which specifies the evolution of the eigen-
functions, also determines the evolution of the scattering data. Precisely, it can be
shown that

a(k, t) = a(k, 0), ā(k, t) = ā(k, 0)(4.24)

b(k, t) = e−4ik2tb(k, 0), b̄(k, t) = e4ik
2tb̄(k, 0).(4.25)

From (4.24) we obtain the familiar result that the eigenvalues are constant as the
solutions evolve. As before, not only the number of eigenvalues, but also their loca-
tions are fixed. On the other hand, it follows from (4.24)-(4.25) that the evolution
of the norming constants is given by:

(4.26) Cj(t) = Cj(0)e−4ik2
j t, C̄j(t) = C̄j(0)e4ik̄

2
j t.

Similarly, the evolution of the reflection coefficients is given by:

ρ(k, t) = ρ(k, 0)e−4ik2t, ρ̄(k, t) = ρ̄(k, 0)e4ik
2t.

4.5. Soliton Solutions. As for the NLS scattering problem, we obtain pure
soliton solutions from scattering data composed of complex-conjugate pairs of proper
eigenvalues and

ρ(k) = ρ̄(k) = 0

for all k ∈ R. With such data, the algebraic-integral system (4.19a)–(4.19d) reduces
to a system of linear algebraic equations and can be solved explicitly.

We obtain the pure one-soliton solution when the scattering data are composed
of a single pair of poles, k1 = ξ+ iη and k̄1 = k∗1 , and associated norming constants,
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C1(t), and C̄1(t) = C∗
1(t). Taking into account the time dependence of the norming

constants (4.26), we obtain

Q(x, t) = p 2η e−2iξx+4i(ξ2−η2)t−iπ/2 sech(2ηx− 8ξηt− 2δ)

where

e2δ =
‖C1(0)‖

2η
p =

CH
1 (0)

‖C1(0)‖
.

Note that, when N = 1 or M = 1 (i.e., vector, not matrix, NLS), p is a unit vector.
In the vector case, we refer to p as the “polarization” of the vector soliton.

We remark that the one-soliton solution of VNLS – a vector soliton– is of the
form

q(x, t) = p q(x, t)

where q(x, t) is the one-soliton solution of scalar NLS (cf. (2.26)). Therefore, an
individual soliton of VNLS is, on its own, fundamentally governed by the scalar
NLS. All properties particular to VNLS are embedded in the polarization vector.
More generally, for any solution of this form, q(x, t) is a solution of scalar NLS and
vice-versa.

As for NLS, distinct solitons (corresponding to distinct pairs of poles/eigenvalues
in the scattering data) will, generically have different speeds and will therefore sep-
arate spatially with a distance that grows linearly in time as t → ±∞. However,
when solitons with different polarizations collide, the interaction is governed by
VNLS. Typically, the polarizations of the individual solitons shift as a result of the
collision. These vector-soliton interactions are described in Section 6.3.

5. Integrable Discrete Vector Nonlinear Schrödinger equation
(IDVNLS)

5.1. Compatibility Condition. The integrable matrix generalization of ID-
VNLS (1.5) is

(5.1a) i
d

dτ
Qn = Qn−1 − 2Qn + AQn + QnB + Qn+1

−QnRnQn−1 −Qn+1RnQn

(5.1b) − i
d

dτ
Rn = Rn−1 − 2Rn + BRn + RnA + Rn+1

−RnQnRn−1 −Rn+1QnRn

where Qn and Rn are, respectively, N ×M and M × N matrices. This system
of evolution equations is equivalent to the compatibility condition of the discrete
scattering problem

(5.2a) vn+1 =

(

zIN Qn

Rn z−1IM

)

vn

and the time dependence

(5.2b)
d

dτ
vn =

(

iQnRn−1 −
i
2

(

z − z−1
)2

IN − iA −izQn + iz−1Qn−1

iz−1Rn − izRn−1 −iRnQn−1 + i
2

(

z − z−1
)2

IM + iB

)

vn,
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where IN is the N × N identity matrix and IM is the M × M identity matrix
[9, 77]. We remark that the IST for an equivalent scattering problem is formulated
in [40, 41].

The matrices A and B in the system (5.1a)–(5.1b) and in the time-dependence
(5.2b) can be absorbed by the gauge transformation

(5.3) Q̂n = eiτAQne
iτB, R̂n = e−iτBRne

−iτA, v̂n =

(

eiτA 0
0 e−iτB

)

vn.

Moreover, in the gauge

A = B = 0,

the time-dependence (5.2b) is the direct matrix generalization of the time-dependence
for discrete scalar IDNLS (cf. Section 3.1). However, as we discuss below, the gauge
plays a key role in the reduction of (5.1a)–(5.1b) to the discrete, vector system, i.e.
IDVNLS (1.5).

In contrast to the other nonlinear Schrödinger systems considered in this review,
the system (5.1a)–(5.1b) does not, in general, reduce to a single, consistent (matrix)
equation under the symmetry

(5.4) Rn = ∓QH
n

where, as before, the superscript H denotes the Hermitian conjugate (conjugate
transpose). However, if we require the additional symmetry

(5.5) RnQn = QnRn = αnI,

where I is the N ×N identity matrix and αn is real when (5.4) holds, then (5.1a)–
(5.1b) reduces to the single (matrix) equation

(5.6) i
d

dτ
Qn = Qn−1 − 2Qn + AQn + QnB + Qn−1 − αn (Qn+1 + Qn−1)

under the familiar symmetry (5.4).
The symmetry (5.5) requires that Qn and Rn are square matrices of the same

size. In particular, the 2× 2 matrices

(5.7) Qn =

(

Q
(1)
n Q

(2)
n

(−1)nR
(2)
n (−1)n+1R

(1)
n

)

, Rn =

(

R
(1)
n (−1)nQ

(2)
n

R
(2)
n (−1)n+1Q

(1)
n

)

satisfy the condition (5.5) with

αn = R(1)
n Q(1)

n +R(2)
n Q(2)

n .

One can obtain a similar result forN components (cf. [10, 78]), but here we restrict
our attention to the two-component case.

To obtain IDVNLS (1.5) from (5.6), we choose the gauge A = B = 0. However,
the symmetry condition (5.5) (in the two-component case (5.7)) is, in general, not
consistent with the time evolution of the system (5.1a)–(5.1b). In particular, the
symmetry is not preserved in the gauge A = B = 0. On the other hand, in the
gauge

(5.8) A = B = I,

the time evolution of the system (5.1a)–(5.1b) preserves the symmetry (5.5). There-
fore, in order to obtain solutions of IDVNLS, one first determines the evolution of
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potentials Q̂n and R̂n that satisfy system (5.1a)–(5.1b) with gauge (5.8). Then,
with the invertible transformations

Qn(τ) = eiτAQ̂n (τ) eiτB = e2iτ Q̂n(τ)(5.9a)

Rn(τ) = e−iτBR̂n (τ) e−iτA = e−2iτ R̂n(τ)(5.9b)

one obtains the solution of (5.1a)–(5.1b) with gauge A = B = 0.

5.2. Direct Problem. For potentials such that Qn,Rn → 0 sufficiently rapidly
as n → ±∞, the solutions of the difference equation (5.2a) are characterized by
boundary conditions

(5.10a) φn(z) ∼ z
n

(

IN
0

)

, φ̄n(z) ∼ z
−n

(

0
IM

)

as n→ −∞

and

(5.10b) ψn(z) ∼ z
−n

(

0
IM

)

, ψ̄n(z) ∼ z
n

(

IN
0

)

as n→ +∞.

These solutions are matrix-valued functions with the following dimensions:

φn(z) : (N +M)×N, φ̄n(z) : (N +M)×M

ψn(z) : (N +M)×M, ψ̄n(z) : (N +M)×N.

As in the IST for the other scattering problems, we introduce Jost functions
with constant boundary conditions as n→ ±∞:

Mn(z) = z−nφn(z), M̄n(z) = znφ̄n(z),(5.11a)

Nn(z) = znψn(z), N̄n(z) = z−nψ̄n(z).(5.11b)

These Jost functions are solutions of the summation equations

Mn =

(

IN
0

)

+

+∞
∑

k=−∞

Gℓ
n−kQ̃kMk(5.12a)

N̄n =

(

IN
0

)

+

+∞
∑

k=−∞

Ḡr
n−kQ̃kN̄k(5.12b)

M̄n =

(

0
IM

)

+

+∞
∑

k=−∞

Ḡℓ
n−kQ̃kM̄k(5.12c)

Nn =

(

0
IM

)

+

+∞
∑

k=−∞

Gr
n−kQ̃kNk,(5.12d)

where

Q̃n =

(

0 Qn

Rn 0

)
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and the Green’s functions are

Gℓ
n(z) = z−1θ(n− 1)

(

IN 0

0 z−2(n−1)IM

)

Ḡr
n(z) = −z−1θ(−n)

(

IN 0

0 z−2(n−1)IM

)

Ḡℓ
n(z) = zθ(n− 1)z−1

(

z2(n−1)IN 0
0 IM

)

Gr
n(z) = −zθ(−n)

(

z2(n−1)IN 0
0 IM

)

.

As before, θ(n) is the discrete Heavyside step function.
One can verify the existence of solutions for the above summation equations

by iteration. (See [10] for details.) In particular, if

‖Q‖1 =

+∞
∑

n=−∞

‖Qn‖a <∞, ‖R‖1 =

+∞
∑

n=−∞

‖Rn‖a <∞,

where ‖·‖a is any matrix norm, then Mn(z) and Nn(z) defined, respectively, by
(5.12a) and (5.12d) are analytic functions of z for |z| > 1 and continuous for
|z| ≥ 1. Similarly, the functions N̄n(z) and M̄n(z) defined, respectively, by (5.12b)
and (5.12c) are analytic functions of z in the region |z| < 1 and continuous in
the region |z| ≤ 1. Moreover, all these Jost functions are unique in the space of
continuous functions.

Note that, in order to uniquely determine Nn(z) and N̄n(z), which are specified
by a boundary condition in the limit n→ +∞, the matrix in the scattering problem
(5.2a) must be invertible. Therefore, in the following, we assume the condition

det (IM −RnQn) = det (IN −QnRn) 6= 0.

Note that if symmetry (5.5) holds and Rn = −QH
n , then the above condition is

satisfied.
It follows immediately, from the analytic properties of the Jost functions stated

above, that Nn(z) and Mn(z) have Laurent series expansions in z−1 that converge
in the region |z| > 1. Similarly, N̄n(z) and M̄n(z) have power series expansions
in z that converge in the region |z| < 1. The coefficients of these expansions can
be determined from the corresponding summation equations (5.12a)–(5.12b). The
leading terms in these expansions are:

Mn(z) =

(

IN +O(z−2, even)
z−1Rn−1 +O(z−3, odd)

)

(5.14a)

M̄n(z) =

(

zQn−1 +O(z3, odd)
IM +O(z2, even)

)

,(5.14b)

Nn(z) =

(

−z−1Qn∆
−1
n +O(z−3, odd)

∆−1
n +O(z−2, even)

)

(5.14c)

N̄n(z) =

(

Ω−1
n +O(z2, even)

−zRnΩ
−1
n +O(z3, odd)

)

,(5.14d)
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where

Ωn = . . . (IM −Qn+1Rn+1) (IM −QnRn) =

+∞
∏

k=n
left

(IN −QkRk)(5.15a)

∆n = . . . (IM −Rn+1Qn+1) (IM −RnQn) =

+∞
∏

k=n
left

(IM −RkQk) ,(5.15b)

and, as before, “even” (“odd”) indicates that higher-order terms are even (odd)
powers of z. The notation “left” indicates that, in the matrix product, the matrix
with index k occurs to the left of the matrix with index k − 1.

The matrix-valued eigenfunctions ψ̄n(z) and ψn(z) together constitute N +M
linearly-independent vector solutions of an (N + M) × (N + M) linear difference
equation, namely eq. (5.2a). To see this, we evaluate the Wronskian of these
solutions:

W
(

ψ̄n(z),ψn(z)
)

= det
∣

∣ψ̄n(z),ψn(z)
∣

∣ =
zn(N−M)

∏∞
l=n det (IM −RlQl)

.

Hence, the solutions in φn(z) and φ̄n(z) are linearly dependent on the set of solu-
tions ψn(z) and ψ̄n(z). This dependence can be expressed as

φn(z) = ψn(z)b(z) + ψ̄n(z)a(z)

φ̄n(z) = ψn(z)ā(z) + ψ̄n(z)b̄(z)

where b(z) is an M×N matrix, a(z) is an N×N matrix, ā(z) is an M ×M matrix
and b̄(z) is an N×M matrix. In terms of the Jost functions, we have the relations:

Mn(z) = z−2nNn(z)b(z) + N̄n(z)a(z)(5.17a)

M̄n(z) = Nn(z)ā(z) + z2nN̄n(z)b̄(z).(5.17b)

These equations define the coefficients a(z), ā(z), b(z) and b̄(z) for any z such that
all four Jost functions exist. In particular, they hold on the unit circle, |z| = 1.

Similarly, the matrix-valued eigenfunctions φn(z) and φ̄n(z) together consti-
tute a second set of N + M linearly-independent vector solutions of (5.2a), as
determined by the evaluation of the Wronskian

W
(

φn(z), φ̄n(z)
)

= zn(N−M)
n−1
∏

j=−∞

det (IM −RjQj) .

Therefore, we can write

ψn(z) = φn(z)d(z) + φ̄n(z)c(z)

ψ̄n(z) = φn(z)c̄(z) + φ̄n(z)d̄(z),

which defines the scattering coefficients c(z), c̄(z), d(z) and b̄(d) for any z such
that all four Jost functions exist.
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The scattering coefficients can be expressed as explicit sums of the eigenfunc-
tions:

a(z) = IN +

+∞
∑

k=−∞

z−1QkM
(dn)
k (z)(5.19a)

b(z) =

+∞
∑

k=−∞

z2k+1RkM
(up)
k (z)(5.19b)

ā(z) = IM +

+∞
∑

k=−∞

zRkM̄
(up)
k (z)(5.19c)

b̄(z) =

+∞
∑

k=−∞

z−2k−1QkM̄
(dn)
k (z)(5.19d)

c(z) = IM −

+∞
∑

k=−∞

zRkN
(up)
k (z)(5.19e)

d(z) = −

+∞
∑

k=−∞

z−2k−1QkN
(dn)
k (z)(5.19f)

c̄(z) = IN −

+∞
∑

k=−∞

z−1QkN̄
(dn)
k (z)(5.19g)

d̄(z) = −
+∞
∑

k=−∞

z2k+1RkN̄
(up)
k (z).(5.19h)

The expressions (5.19a) and (5.19c) imply, respectively, that a(z) is analytic in the
same region as Mn(z) (i.e., |z| > 1) while ā(z) is analytic in the same region as
M̄n(z) (i.e., |z| < 1). Similarly, (5.19e) and (5.19g) imply, respectively, that c(z)
is analytic in the same region as Nn(z) while c̄(z) is analytic in the same region
as N̄n(z). Moreover, a(z),ā(z), c(z) and c̄(z) are even functions of the spectral
parameter z. In contrast, the scattering coefficients b(z),b̄(z), d(z) and d̄(z) are
odd functions of z.

Inserting the z-expansions (5.14a)–(5.14d) of the Jost functions into the sum-
mation representations (5.19a)–(5.19g), we obtain the power series and Laurent
expansions for the analytic scattering coefficients. The leading terms are:

a(z) = IN +O(z−2, even), c̄(z) = IN +
+∞
∑

k=−∞

RkQk∆
−1
k +O(z2, even)

(5.20a)

ā(z) = IM +O(z2, even), c(z) = IM +

+∞
∑

k=−∞

QkRkΩ
−1
k +O(z−2, even)

(5.20b)

where ∆n and Ωn are given by (5.15b) and (5.15a), respectively.
For the purpose of the inverse problem, it is convenient to define the meromor-

phic (in z) functions

(5.21) µn(z) = Mn(z)a
−1(z), µ̄n(z) = M̄n(z)ā

−1(z).
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In terms of these functions, the relations (5.17a)–(5.17b) can be restated as

µn(z)− N̄n(z) = z−2nNn(z)ρ(z)(5.22a)

µ̄n(z)−Nn(z) = z2nN̄n(z)ρ̄(z)(5.22b)

where the reflection coefficients,

(5.23) ρ(z) = b(z)a−1(z), ρ̄(z) = b̄(z)ā−1(z),

are part of the (n-independent) scattering data.

Just as for the other scattering problems, we define a proper eigenvalue of the
scattering problem (5.2a) to be a (complex) value of z such that there is a solution
of the scattering problem that decays as n→ ±∞. By an argument similar to that
for the continuous block-matrix scattering problem (cf. Section 4.2), one can show
that the eigenvalues in the region |z| > 1 are the points z = zj , j = 1, . . . , J , such
that det a(zj) = 0. Also, the eigenvalues in the region |z| < 1 are the points z = z̄ℓ,
ℓ = 1, . . . , J̄ , such that det ā(z̄ℓ) = 0.

The meromorphic function µn(z) (resp. µ̄n(z)) has poles precisely at the points
z = zj (resp. z = z̄j) such that deta(zj) = 0 (resp. det ā(z̄j) = 0). We assume that
all the poles are simple, that (5.22a) is well-defined in the neighborhood of each
pole in the region |z| > 1 and that (5.22b) is well-defined in the neighborhood of
each pole in the region |z| < 1. We conclude that, for each simple pole (eigenvalue)
in the region |z| > 1,

(5.24a) Res {µn; zj} = z−2n
j Nn(zj)Cj ,

while, for each simple pole in the region |z| < 1,

(5.24b) Res {µ̄n; z̄j) = z̄2n
j N̄n(z̄j)C̄j .

The M ×N matrix Cj is the norming constant associated with the discrete eigen-
value zj and the N ×M matrix C̄j is the norming constant associated with the
discrete eigenvalue z̄j .

The scattering data –the reflection coefficients, the eigenvalues and the asso-
ciated norming constants– defined in this section are subject to three symmetries.
One symmetry (Symmetry 1 below) does not depend on any symmetry in the poten-
tials and is analogous to a symmetry in the discrete scattering problem associated
with IDNLS. Another symmetry (Symmetry 3 below) is associated with the the
reduction (5.4), i.e. Rn = −QH

n , and is analogous to a similar symmetry reduction
of each of the other three scattering problems considered in the preceding sections.
The remaining symmetry (Symmetry 2 below), however, has no counterpart in the
other scattering problems considered in this review. Importantly, this new symme-
try is a prerequisite for the the familiar symmetry reduction of Symmetry 3. The
symmetries are as follows. (Proofs can be found in [10, 77].)

Symmetry 1: All the eigenvalues appear in pairs ±zj (±z̄j). Moreover,
the norming constant associated with −zj (respectively, −z̄j) is equal
to the norming constant associated with +zj (respectively, +z̄j). This
symmetry does not depend on any symmetry between the potentials Qn

and Rn. Rather, it is a manifestation of the fact that a(z) and ā(z) are
even functions of z.



INTEGRABLE NONLINEAR SCHRÖDINGER SYSTEMS 281

Symmetry 2: In order to obtain potentials that satisfy the condition (5.5)
with N = M = 2, we require that the potentials be of the form (5.7). For
such potentials:
(1) the reflection coefficients satisfy the symmetry

ρ̄(z) = −iP ρT (i/z) P

where

P =

(

0 1
−1 0

)

;

(2) the eigenvalue ẑj = i/zj is an eigenvalue such that |ẑj | < 1 if, and
only if, zj is an eigenvalue such that |zj| > 1;

(3) the norming constants associated with these poles have the symmetry

(5.25) Ĉj = −z−2
j P CT

j P

where Cj is the norming constant associated with zj and Ĉj is the
norming constant associated with ẑj .

Symmetry 3: If the potentials satisfy the symmetry Rn = ∓QH
n (5.4), in

addition to the symmetry (5.5), then:
(1) the reflection coefficients satisfy the symmetry

ρ̄(z) = ∓ρH(1/z∗);

(2) z̄j = 1/z∗j is an eigenvalue such that |z̄j | < 1 if, and only if, zj is an
eigenvalue such that |zj | > 1;

(3) the norming constants associated with these paired eigenvalues sat-
isfy the symmetry

(5.26) C̄j = ±(z∗j )
−2CH

j

where Cj is the norming constant associated with zj and C̄j is the
norming constant associated with z̄j .

As a consequence of Symmetry 2, the eigenvalue z̃j = iz̄−1
j is an eigenvalue

such that |z̃j| > 1 if, and only if, z̄j is an eigenvalue such that |z̄j| < 1. Moreover,
the associated norming constants satisfy the symmetry

(5.27) C̃j = z̄−2
j P C̄T

j P,

where C̄j is the norming constant associated with z̄j and C̃j is the norming constant
associated with z̃j .

If all three symmetries hold, then the eigenvalues appear in sets of eight,

(5.28)
{

±zj, ±i/zj,±1/z∗j ,±iz
∗
j

}J

j=1

and the norming constants associated with the members of each eigenvalue octet
are related by eqs. (5.25), (5.26) and (5.27). Without loss of generality, we assume
that, for any eigenvalue octet, |zj| > 1 and −π2 < Arg zj ≤

π
2 . Note that, given

zj, the locations of the other eigenvalues are fixed by the symmetries. Hence,
the complete octet is implicitly specified by a single given eigenvalue. Moreover,
the symmetries fix all the associated norming constants in terms of the norming
constant, Cj, associated with zj.
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5.3. Inverse Scattering Problem. As in the solution of the inverse scatter-
ing problems associated with the other nonlinear Schrödinger systems considered
here, the solution of the inverse scattering problem for the difference equation (5.2a)
proceeds in two steps. First, we derive an equation for the Jost functions in terms
of the scattering data. Second, we determine a formula for the potentials in terms
of the recovered Jost functions and the scattering data.

In order to formulate the first step of inverse problem as a Riemann-Hilbert
problem in the complex variable z, we must specify:

• the limits of the sectionally analytic and meromorphic eigenfunctions as
|z| → ∞,
• the “jump condition” on the boundary |z| = 1,
• the locations of the poles of the meromorphic functions µn(z) and µ̄n(z)

(i.e., the eigenvalues) and
• equations that determine the residues of these poles.

Moreover, to find solutions of IDVNLS (1.5), we must explicitly take into account
the symmetries in the scattering data.

From the expansions (5.14a), (5.14c), and (5.20a) as well as eq. (5.21), we
obtain the limits:

Nn(z)→

(

0

∆−1
n

)

, µn(z)→

(

IN
0

)

as |z| → ∞, where ∆n is given by (5.15b). However, in the inverse problem, ∆n

(which depends on the potentials Qn and Rn) is unknown. Therefore, in order to
remove this dependence on an unknown, we define the modified functions

N′
n =

(

IN 0
0 ∆n

)

Nn =

(

−z−1Qn∆
−1
n +O(z−3)

IM +O(z−2)

)

(5.29a)

µ′
n =

(

IN 0
0 ∆n

)

µn =

(

IN +O(z−2)
z−1∆nRn−1 +O(z−3)

)

(5.29b)

N̄′
n =

(

IN 0
0 ∆n

)

N̄n =

(

Ω−1
n +O(z2)

−z∆nRnΩ
−1
n +O(z3)

)

(5.29c)

µ̄′
n =

(

IN 0
0 ∆n

)

µ̄n =

(

zQn−1 +O(z3)
∆n +O(z2)

)

,(5.29d)

where Ωn is given by (5.15a) and, as before, ∆n is given by (5.15b). The z-
expansions in (5.29a)–(5.29b) are valid in the region |z| > 1, while the z-expansions
in (5.29c)–(5.29d) are valid in the region |z| < 1

The modified functions satisfy the relations (5.22a)–(5.22b), which are the jump
conditions on |z| = 1. Also, the poles of µ′

n(z) and µ̄′
n(z) are the same as the poles

of µn(z) and µ̄n(z), respectively. Moreover, the modified functions satisfy (5.24a)-
(5.24b) at these poles with the same norming constants. Thus, there is, sufficient
information to formulate problem of the recovery of the modified Jost functions as
a Riemann-Hilbert problem.

The Riemann-Hilbert problem can be restated as a linear system of summation
equations by the application of projection operators to both sides of (5.22a)–(5.22b).
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The resulting equations are:

(5.30a) N̄′
n(z) =

(

IN
0

)

+

J
∑

j=1

z−2n
j

[

1

z − zj
N′
n(zj) +

1

z + zj
N′
n(−zj)

]

Cj

− lim
ζ→z
|ζ|<1

1

2πi

∮

|w|=1

w−2n

w − ζ
N′
n(w)ρ(w) dw

(5.30b) N′
n(z) =

(

0
IM

)

+

J̄
∑

j=1

z̄2n
j

[

1

z − z̄j
N̄′
n(z̄j) +

1

z + z̄j
N̄′
n(−z̄j)

]

C̄j

+ lim
ζ→z
|ζ|>1

1

2πi

∮

|w|=1

w2n

w − ζ
N̄′
n(w)ρ̄(w) dw

where N′
n(zj) is N′

n(z) evaluated at the eigenvalue zj , N′
n(−zj) is N′

n(z) evaluated
at the complementary eigenvalue −zj and similarly for N̄′

n(z̄j) and N̄′
n(−z̄j). Note

that, in eqs. (5.30a)–(5.30b), we have poles in ± pairs with the appropriate norming
constants (cf. Symmetry 1). In the absence of poles, the sums in (5.30a)–(5.30b)
vanish and the equations constitute a coupled system of linear matrix integral
equations that, in principle, determine the Jost functions Nn(z) and N̄n(z).

If the scattering data include eigenvalues (poles), we evaluate (5.30a) at the
points ±z̄j and (5.30b) at the points ±zj in order to close the system of equations.
With these evaluations, we obtain the relations:

(5.30c) N̄′
n(z̄j) =

(

IN
0

)

+

J
∑

k=1

z−2n
k

[

1

z̄j − zk
N′
n(zk) +

1

z̄j + zk
N′
n(−zk)

]

Ck

−
1

2πi

∮

|w|=1

w−2n

w − z̄j
N′
n(w)ρ(w) dw

(5.30d) N̄′
n(−z̄j) =

(

IN
0

)

−
J
∑

k=1

z−2n
k

[

1

z̄j + zk
N′
n(zk) +

1

z̄j − zk
N′
n(−zk)

]

Ck

−
1

2πi

∮

|w|=1

w−2n

w + z̄j
N′
n(w)ρ(w) dw

(5.30e) N′
n(zj) =

(

0
IM

)

+

J̄
∑

k=1

z̄2n
k

[

1

zj − z̄k
N̄′
n(z̄k) +

1

zj + z̄k
N′
n(−z̄k)

]

C̄k

+
1

2πi

∮

|w|=1

w2n

w − zj
N̄′
n(w)ρ̄(w) dw

(5.30f) N′
n(−zj) =

(

0
IM

)

−
J̄
∑

k=1

z̄2n
k

[

1

zj + z̄k
N̄′
n(z̄k) +

1

zj − z̄k
N′
n(−z̄k)

]

C̄k

+
1

2πi

∮

|w|=1

w2n

w + zj
N̄′
n(w)ρ̄(w) dw
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where (5.30c)–(5.30d) hold for each eigenvalue

{

z̄j : |z̄j | < 1, −
π

2
< Arg z̄j ≤

π

2

}J̄

j=1

and (5.30e)–(5.30f) hold for each eigenvalue

{

zj : |zj| > 1, −
π

2
< Arg zj ≤

π

2

}J

j=1
.

In the presence of poles, equations (5.30a)–(5.30f) constitute a linear system of
algebraic-integral equations that, in principle, determine the Jost functions.

Note that (5.30c)–(5.30f) include neither the effects of Symmetry 2 nor the
effects of Symmetry 3 explicitly. If Symmetry 2 holds, then there is an equal
number eigenvalues in each of the regions |z| > 1 and |z| < 1. Specifically, the set
of of eigenvalues is of the form

{±z̄j , ±i/z̄j : |z̄j| < 1}
J̄
j=1 ∪ {±zj, ±i/zj : |zj | > 1, }

J
j=1 ,

where −π2 < Arg zj ,Arg z̄j ≤
π
2 . Therefore J and J̄ must be replaced by J + J̄ in

(5.30a)–(5.30f). Moreover, the norming constants associated with the eigenvalues
±i/zj and ±i/z̄j are fixed by (5.25) and (5.27). If, in addition, the data satisfy
Symmetry 3, then J̄ = J , z̄j = 1/z∗j and the norming constants are related by
(5.26).

The potentials are reconstructed by means of the power series expansions (in
z) of the Jost function N̄′

n(z) and the Laurent expansion of N′
n(z). Including the

effects of Symmetries 1 and 2 on the eigenvalues, we obtain

(5.31a) Qn = −2

J̄
∑

j=1

z̄2n
j N̄

′(up)
n+1 (z̄j)C̄j

− 2

J
∑

j=1

(−1)nz−2n
j N̄

′(up)
n+1 (i/zj)Ĉj

+
1

2πi

∮

|w|=1

w2nN̄
′(up)
n+1 (w)ρ̄(w) dw

(5.31b) Rn = 2

J
∑

j=1

z
−2(n+1)
j N′(dn)

n (zj)Cj

+ 2

J̄
∑

j=1

(−1)n+1z̄
2(n+1)
j N′(dn)

n (i/z̄j)C̃j

+
1

2πi

∮

|w|=1

w−2(n+1)N′(dn)
n (w)ρ(w) dw

where, as before, (up) denotes the first two rows of the matrix, (dn) denotes the
bottom two rows and, moreover, the norming constants satisfy (5.25) and (5.27).

As in the solution of the other scattering problems, one can alternatively re-
formulate the inverse problem as system of GLM-type equations. To obtain this
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formulation, we represent the eigenfunctions ψn and ψ̄n in terms of triangular
kernels:

ψn(z) =

+∞
∑

j=n

z−jK(n, j) |z| > 1(5.32a)

ψ̄n(z) =

+∞
∑

j=n

zjK̄(n, j) |z| < 1(5.32b)

where

K(n, j) =

(

K(up)(n, j)
K(dn)(n, j)

)

, K̄(n, j) =

(

K̄(up)(n, j)
K̄(dn)(n, j)

)

.

These kernels satisfy the equations:

K̄(n,m) +
+∞
∑

j=n

K(n, j)F(m+ j) =

(

IN
0

)

δm,n m ≥ n(5.33a)

K(n,m) +

+∞
∑

j=n

K̄(n, j)F̄(m+ j) =

(

0
IM

)

δm,n m ≥ n,(5.33b)

where

F(n) =

J
∑

j=1

z−n−1
j Cj +

1

2πi

∮

|z|=1

z−n−1ρ(z) dz.

F̄(n) = −

J̄
∑

j=1

z̄n−1
j C̄j +

1

2πi

∮

|z|=1

zn−1ρ̄(z) dz.

We can rewrite the eqs. (5.33a)–(5.33b) as forced summation equations. We
make the change of variable

K(n,m) =

(

Ω−1
n 0

0 ∆−1
n

)

κ(n,m)

K̄(n,m) =

(

Ω−1
n 0

0 ∆−1
n

)

κ̄(n,m)

for m > n and

κ(n, n) =

(

0
IM

)

, κ̄(n, n) =

(

IN
0

)

.

With this transformation, (5.33a)-(5.33b) become

k̄(n,m) +

(

0
IM

)

F(n+m) +

+∞
∑

j=n+1

κ(n, j)F(m+ j) = 0 m > n

κ(n,m) +

(

IN
0

)

F̄(n+m) +
+∞
∑

j=n+1

κ̄(n, j)F̄(m+ j) = 0 m > n,

which is a linear system that determines κ(n,m) and κ̄(n,m).
If Symmetry 2 applies, the potentials are recovered via the relations

Qn = −κ(up)(n, n+ 1) Rn = −κ̄(dn)(n, n+ 1).
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The problem of existence and uniqueness of solutions for the inverse problem
was partially addressed in [10], where it was shown that the inverse problem has a
unique solution if the GLM integral equations are Fredholm.

5.4. Time evolution. The operator (5.2b) determines the evolution of the
eigenfunctions. In turn, the time evolution of the eigenfunctions determines the
time evolution of the scattering data. One can deduce that:

b(z, τ) = ei(z
2+z−2)τb(z, 0) a(z, τ) = a(z, 0)(5.36a)

ā(z, τ) = ā(z, 0) b̄(z, τ) = e−i(z
2+z−2)τ b̄(z, 0).(5.36b)

in the gauge A = IN ,B = IM . It follows immediately that:

ρ(z, τ) = ei(z
2+z−2)τρ(z, 0)

ρ̄(z, τ) = e−i(z
2+z−2)τ ρ̄(z, 0).

Eqs. (5.36a)–(5.36b) also imply that eigenvalues (i.e., the zeros of deta(z) and
det ā(z)) are constant as the solution evolves. As in the other systems, the eigen-
values are time-invariant discrete states of the evolution equation. The norming
constants associated with these eigenvalues are, however, not fixed. Eqs. (5.36a)–
(5.36b) imply that

(5.38) Cj(τ) = ei(z
2
j +z−2

j
)τCj(0), C̄j(τ) = e−i(z̄

2
j +z̄−2

j
)τ C̄j(0).

Recall that, in order to obtain the solutions of (5.1a)–(5.1b) with the gauge

A,B = 0, one first determines the evolution of the potentials Q̂n, R̂n with gauge
A = B = I such that

Q̂n (τ0) = Qn (τ0) , R̂n (τ0) = Rn (τ0)

at a given initial time τ0 (for instance, τ0 = 0) and then uses the transformations

Qn (τ) = e−i(τ−τ0)AQ̂n (τ) e−i(τ−τ0)B = e−2i(τ−τ0)Q̂n(τ)

Rn (τ) = ei(τ−τ0)BR̂n (τ) ei(τ−τ0)A = e2i(τ−τ0)R̂n(τ)

to get the evolved potentials.

5.5. Soliton Solution. In order to obtain a one-soliton solution, we consider
“reflectionless” scattering data (i.e, ρ(z) = ρ̄(z) = 0 on |z| = 1) composed of a sin-
gle octet of eigenvalues (5.28), with the associated norming constants satisfying the
symmetries (5.25)–(5.26). Because the data are reflectionless, the system (5.30c)–
(5.30f) reduces to a finite-dimensional linear algebraic system and it is possible find
an explicit solution.

For reasons explained below, we write the norming constant associated with
the eigenvalue z1 in the form

C1 =

(

γ
(1)
1 δ

(2)
1

γ
(2)
1 −δ

(1)
1

)

where we introduced the 2-component vectors

γ1 =

(

γ
(1)
1

γ
(2)
1

)

, δ1 =

(

δ
(1)
1

δ
(2)
1

)

.

The symmetries (5.25)–(5.26) fix the remaining norming constants in terms of these
vectors.
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To obtain a “fundamental” one-soliton solutions of IDVNLS (1.5), we set

δ1 = 0.

Then, if we write z1 = eα+iβ (where we have assumed, without loss of generality,
that α > 0 and −π2 < β ≤ π

2 ), the fundamental soliton is:

(5.40) Qn(τ) = p sinh(2α)ei(2β(n+1)+2ωτ) sech (2α(n+ 1)− 2vτ − d)

where

(5.41) v = − sinh(2α) sin(2β), ω = 1− cosh(2α) cos(2β),

and

p = −
γ∗

1(0)

‖γ1(0)‖
, ed =

‖γ1(0)‖

sinh(2α)
.

A brief inspection reveals that the fundamental soliton is the one-soliton solution of
IDNLS (cf. (3.34)), multiplied by a polarization vector, p (a complex unit vector).
That is, the fundamental soliton bears the same relationship to the one-soliton
solution of IDNLS as the one-soliton solution of VNLS bears to the one-soliton
solution of NLS (cf. Section 4.5).

The case δ1 6= 0, γ1 = 0 is equivalent to (5.40). Note that the eigenvalues z1
and ẑ1 = ±iz∗1 (where the sign is chosen so that sign of Re ẑ1 ≥ 0) are the two
members of the eigenvalue octet that are in the region |z| > 1, Re ẑ1 ≥ 0. There
is no intrinsic property that distinguishes one eigenvlue from the other. In fact,
the choice of δ1 6= 0, γ1 = 0 vs. γ1 6= 0, δ1 = 0 is equivalent to the choice of
identification of z1 and ẑ1 among two members of the octet in the region |z| > 1,
Re z ≥ 0.

More generally, there are reflectionless potentials for which both γ 6= 0 and
δ 6= 0. We refer to these potentials as “composite” solitons because they may
be obtained by the regular coalescence of two “fundamental” soliton octets. That
is, we consider reflectionless scattering data composed of two fundamental soliton
octets, where the first octet is as above and the second octet includes the eigenvalue
z2 = ẑ1 + ǫ with the associated norming constant

C2 =
(

γ2 0
)

.

In the coalescence limit, ǫ → 0, the scattering data is a single octet (the octet
related to z1) in which γ1 is unchanged, δ1 = γ2 and the potential, Qn(τ), con-
verges to a composite soliton solution of VNLS. In general, the explicit formula of a
composite soliton is ungainly and unilluminating. However, the composite soliton
itself consists of a localized travelling envelope with both temporal and spatial os-
cillations, as well as a complex spatial modulation. The oscillating envelope travels
with a constant velocity equal to that of a fundamental soliton associated with the
eigenvalue octet anchored by z1.

We gain further insight into the nature of the composite soliton by considering
the special cases W (γ∗

1, δ1) = 0 (“parallel”) and γ1 · δ1 = 0 (“perpendicular”). In
the parallel case, the composite soliton is a reduction solution, i.e., of the form

Qn = pQn,

where p is a complex unit vector (i.e., a polarization vector) parallel to γ∗
1 and Qn is

the solution of IDNLS that corresponds to two quartets of eigenvalues anchored by
z1 and z2 = ẑ1 respectively. (cf. Section 3.5). Therefore, surprisingly, this special
case of the composite-soliton does not have a minimal spectrum when considered
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as a solution of the scalar equation (i.e., IDNLS). This illustrates the composite
(i.e., non-atomic) nature of the composite solitons.

On the other hand, in the perpendicular case, the composite-soliton formula
takes on the simplified form

Qn(τ) =
[

cos(µ)pe2i(β(n+1)+ωτ) + sin(µ)p⊥(−1)ne−2i(β(n+1)+ω′τ)
]

sinh(2α) sech(2α(n+ 1)− vτ − d)

where

cos(µ)p = −
γ∗

1

(

‖γ1‖
2

+ ‖δ1‖
2
)

1
2

, sin(µ)p⊥ =
δ1

(

‖γ1‖
2
+ ‖δ1‖

2
)

1
2

,

the velocities v and ω are given by (5.41) and

ω′ = 1 + cosh(2α) cos(2β), ed =

(

‖γ1‖
2
+ ‖δ1‖

2
)

1
2

sinh(2α)
.

In this case, the two frequencies of complex modulation oscillate perpendicular
to one another and, therefore, the two perpendicular components of the envelope
are not, when considered separately, subject to temporal oscillation and spatial
modulation. We remark that the (−1)n term in the complex modulation shows
that this solution has no counterpart in the continuous limit. More generally,
unlike fundamental solitons, composite solitons have no counterpart in VNLS, the
continuous limit of IDVNLS.

6. Soliton Interactions

6.1. NLS: Scalar, Continuous Soliton interaction. Zabusky and Kruskal
[89] coined the term “soliton” to describe solitary waves that retain their individual
characteristic form (and hence their individual characteristic velocity) after passing
through one another. Indeed, the solitons of NLS are well-known to have this
property. The underlying mechanism is the invariance of the eigenvalues, which, as
we have seen, determine the envelope amplitude and velocity of individual solitons.
The soliton interaction, however, induces a shift in the location of the envelope
peak and overall complex phase of the individual solitons (a phase shift). This
phase shift is a typical characteristic of soliton interactions in integrable nonlinear
Schrödinger systems and other integrable nonlinear evolution equations.

In a generic multisoliton solution of NLS, the solitons will have unequal ve-
locities. Therefore, in the long time limits (t → ±∞), the solitons are spatially
well-separated and the solution is of the form

(6.1) q±(x, t) ≈
J
∑

j=1

q±j (x, t)

where: there are J solitons; for j = 1, . . . , J , q±j is a one-soliton solution of NLS
corresponding to the eigenvalue kj = ξj + iηj; the minus sign corresponds to the
backward (t → −∞) long-time limit while plus sign corresponds to the forward
(t → +∞) long-time limit. That is, q−j (x, t) is of the form (2.26)–(2.27) with
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ξ = ξj , η = ηj , δ = δ−j and ψ = ψ−
j , while q+j (x, t) is of the same form with δ = δ+j

and ψ = ψ+
j .

To fix ideas, we assume that

ξ1 < ξ2 < · · · < ξJ

so that

v1 < v2 < · · · < vJ

where vj = 4ξj is the velocity of the envelope of the j-th soliton. Hence, as t→ −∞
the solitons become spatially well-separated and they are distributed along the x-
axis in the order:

J (J − 1) . . . 2 1

where j indicates the relative position of the j-th soliton. The order of the soliton
sequence is reversed as t → +∞. That is, the soliton are again spatially well-
separated, but arranged along the x-axis in the order

1 2 . . . (J − 1) J

as t → +∞. In the passage from the backward (t → −∞) to the forward (t →
+∞) long-time limit, the solitons pass through one another and these interactions
generate the phase shifts.

One method to compute the phases of the individual solitons in the long-time
limits is to compute the scattering data as the net result of scattering by J (spa-
tially) sequential reflectionless potentials (i.e., solitons). In fact, this method was
used in [92] (cf. [10] for details.) The analysis yields the relation

(6.2) e2(δ
+

j
−δ−

j
)+i(ψ+

j
−ψ−

j
) =

j−1
∏

ℓ=1

(

kj − kℓ
kj − k∗ℓ

)2 J
∏

m=j+1

(

kj − k
∗
m

kj − km

)2

.

Thus, (6.2) gives the net phase shift of the j-th soliton that is induced by interaction
with the other J−1 solitons. The difference in the real part of the exponent, δ+j −δ

−
j ,

corresponds to the shift in the envelope peak of the j-th soliton, while the imaginary
part, ψ+

j − ψ
−
j , corresponds to the shift in its overall complex phase.

We note that, in the passage from the limit t→ −∞ to the limit t→ +∞, the
order of soliton interactions is not unique. For example, with three solitons, the
ordering of the solitons can proceed as

3 2 1→ 2 3 1→ 1 2 3

or

3 2 1→ 3 1 2→ 1 2 3,

depending on the relative distance between the solitons for large negative t. The
number of possibilities increases rapidly with the number of solitons. However,
formula (6.2) implies that, in general, the total net phase shift for each soliton is
independent of the order of soliton interaction. Moreover, the total net phase shift
(both the displacement of the envelope peak and the shift in the overall phase of
the complex modulation) for the each soliton is the simple sum of the individual
phase shifts induced by the pairwise interactions with the other J − 1 solitons.
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6.2. IDNLS: Scalar, Discrete Soliton interaction. The soliton interac-
tion in IDNLS is similar to that of NLS. As in the the continuous case, we consider
a J-soliton solution with eigenvalues z1, . . . , zJ such that

v1 < v2 < · · · < vJ

where vj is the velocity of the j-th solition as determined by (3.35a) where α = αj ,
β = βj and zj = eαj+iβj . Then, as before, the solitons, passing through one
another, reverse their spatial order in the passage from the limit τ → −∞ to the
limit τ → +∞. Moreover, the solitons are spatially well-separated in each of the
long-time limits. Again, because the eigenvalues are τ -independent, each soliton
retains its characteristic shape and velocity (cf. eq. (3.34)–(3.35b)) in the passage
from the limit τ → −∞ to the limit τ → +∞ even though each soliton undergoes
a shift in the location of its envelope peak and overall complex phase.

An analysis similar to that for NLS (cf. [10] for a derivation) yields the formula
for the total net phase shift of the j-th soliton in a J-soliton solution:

e2(d
+

j
−d−

j
)+i(ψ+

j
−ψ−

j
) =

j−1
∏

l=1

(

z2
j − z

2
l

z2
j − (z∗l )

−2

)2 J
∏

m=j+1

(zmz
∗
m)

−2

(

z2
j − (z∗m)−2

z2
j − z

2
m

)2

,

where, in (3.35b), d = d±j and ψ = ψ±
j in the forward (+) and backward (−) long-

time limits. The expression for the discrete-soliton phase shift converges to that for
NLS solitons (6.2) in the limit h → 0, where zj = e−ikjh and z̄j = e−ik

∗
jh. In the

discrete case (i.e., even for h > 0), for each soliton, the total phase shift as a result
of collision with the other J − 1 solitons is the sum of phase shifts induced by the
pairwise interaction with each of the other solitons and is therefore independent of
the order of the soliton interactions.

6.3. VNLS: Vector, Continuous Soliton Interaction. The interaction of
vector solitons is more complex than that of scalar solitons. While the individual
vector solitons retain their characteristic shape and velocity in interactions with
other vector solitons (again, due to the invariance of the eigenvalues), the polariza-
tion vector of each soliton is subject to a phase shift. That is, while a scalar solitons
is subject to a shift in its overall scalar complex phase, the phase shift of vector soli-
tons includes a shift in the polarization vector. In particular the magnitude of the
components of the polarization vector may change (subject to the constraint that
the polarization vector is always a unit vector, i.e. its total magnitude equals1).
In addition, just as in the scalar case, the peak of the vector-soliton envelope is
shifted by interaction with other vector solitons. The shift in the magnitude of
the components of the polarization vector is, however, the distinctive feature of
vector -soliton interactions.

As before, we assume that the discrete eigenvalues of a J-soliton solution of
VNLS are such that

ξ1 < ξ2 < · · · < ξJ

where the eigenvalues are of the form kj = ξj+ iηj. Therefore, the soliton velocities
are such that

v1 < v2 < · · · < vJ .
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Then, in the long time limits, the solitons are spatially well-separated and the
J-soliton solution is of the form

q±(x, t) ∼

J
∑

j=1

p±q±j (x, t)

where: as before, ± denote the forward and backward long-time limits; q±j is a one-

soliton solution of NLS (cf. (2.26)) with ξ = ξj , η = ηj , δ = δ±j and ψ = π. (The
overall complex phase represented by ψ is absorbed in to the complex polarization
vector.) In the passage from the backward long-time limit to the forward long-time
limit, the solitons reverse their spatial order and, in this process, pass through one
another, thereby inducing shifts in each others polarization vectors and envelope
peaks.

To determine the phase shifts between between the limits t → −∞ and t →
+∞, one can proceed as for scalar solitons and analyze the scattering data under
the assumption that the total scattering from x→ −∞ to x→ +∞ is the net effect
of scattering by the (spatially) sequential individual soliton potentials [64]. The
resulting formula, however, is not as simple as in in the scalar case.

For the interaction of J solitons, the phase shifts in the long-time limits are
expressed by

(6.3) p±
j =

(

s±j
)H

∥

∥s±j
∥

∥

eδ
±

j =
∥

∥s±j
∥

∥ ,

where s±j is a vector that satisfies the relation

(6.4) s+
j =

j−1
∏

ℓ=1

1

aℓ(kj)

J
∏

ℓ=j+1

aℓ(kj)

J
∏

ℓ=j+1
right

c+
ℓ (kj)

j−1
∏

ℓ=1
right

[

c−ℓ (kj)
]−1

s−j .

In the products above, we define
∏b
ℓ=a = 1 for a > b and, as before, the notation

“right” indicates that the matrix with index ℓ is to the right of the matrix with index
ℓ− 1. The coefficients in eq. (6.4) –the transmission coefficients of the individual
solitons– are given by:

aj(k) =
k − kj
k − k∗j

c±j (k) = IM −
kj − k

∗
j

k − k∗j

1
∥

∥s±j
∥

∥

2 (s±j )Hs±j

where IM is the M ×M identity matrix and (s±j )Hs±j is an M ×M matrix.

With (6.4) one can determine s+
j (and, therefore, p+

j , according to (6.3)) in

terms of s−1 , . . . , s−J . First, one obtains s+
J as this depends on sJ and, through the

coefficients c−j (kJ ), on s−1 , . . . , s−J−1. Then, one can explicitly obtain s+
J−1, as this

depends on s−1 , . . . , s−J−1 and s+
J . Proceeding inductively, one determines s+

1 , . . . ,

s+
J−2.

In contrast to the formula for scalar soliton interaction (6.2), it is not apparent
from formula (6.4) that the vector-soliton phase shifts are independent of the order
of the soliton interactions. Nor is it apparent that the interaction of multiple vector
solitons is equivalent to the net effect of all the pair-wise interactions considered
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separately. However, in fact, this is so. A proof requires only a direct calculation
for the three-soliton case as the interactions of a greater number of solitons can
be reduced to this case [10]. We note that this result on the order-invariance of
vector soliton interaction is also obtained in [79] by a completely different argument
and was partially addressed in [25, 55, 71]. Fundamentally, the vector-soliton
interaction is the order-independent net effect of pairwise interactions because the
maps that define these interactions satisfy the Yang-Baxter relation [45, 75, 84].

The polarizations of two vector solitons after their interaction can be written
explicitly in terms of the polarizations before their interaction:

p+
2 =

1

χ

k1 − k
∗
2

k∗1 − k
∗
2

[

p−
2 +

k∗1 − k1

k∗2 − k
∗
1

(

p− ∗
1 · p−

2

)

p−
1

]

(6.5a)

p+
1 =

1

χ

k1 − k
∗
2

k1 − k2

[

p−
1 +

k∗2 − k2

k2 − k1

(

p− ∗
2 · p−

1

)

p−
2

]

(6.5b)

where

χ2 =

∣

∣

∣

∣

k1 − k
∗
2

k1 − k2

∣

∣

∣

∣

2
[

1 +
(k∗1 − k1) (k2 − k

∗
2)

|k1 − k2|
2

∣

∣p−∗
1 · p

−
2

∣

∣

2

]

.

It follows immediately from (6.5a)–(6.5b) that the magnitudes of the components of
polarization vectors will shift due to the soliton interaction unless the polarizations
are perpendicular (i.e., p−∗

1 · p−
2 = 0) or parallel (i.e., p−

2 = eiφp−
1 ) before the

solitons interact.
Alternatively, the polarization shift in a two-component, two-soliton interaction

can be described by a fractional linear transformation (FLT) of a (scalar) complex
polarization state [76]. We define

(6.6) ρ±j =
p
(1)±
j

p
(2)±
j

for j = 1, 2. If p
(2)
j = 0, then we take ρj =∞. It follows directly from (6.5a)–(6.5b)

that the complex polarization states satisfy the FLT:

(6.7a) ρ+
2 =

a1ρ
−
2 + b1

c1ρ
−
2 + d1

,

where the coefficients

a1 = 1 +
k∗2 − k1

k∗2 − k
∗
1

|ρ−1 |
2

b1 =
k∗1 − k1

k∗2 − k
∗
1

ρ−1

c1 =
k∗1 − k1

k∗2 − k
∗
1

(ρ−1 )∗

d1 =
k∗2 − k1

k∗2 − k
∗
1

+ |ρ−1 |
2

depend only on the eigenvalues k1, k2 and the polarization state ρ−1 . Similarly,

(6.7b) ρ+
1 =

a2ρ
−
1 + b2

c2ρ
−
1 + d2
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where the coefficients are functions of the eigenvalues and ρ−2 :

a2 = 1 +
k∗2 − k1

k2 − k1
|ρ−2 |

2

b2 =
k∗2 − k2

k2 − k1
ρ−2

c2 =
k∗2 − k2

k2 − k1
(ρ−2 )∗

d2 =
k∗2 − k1

k2 − k1
+ |ρ−2 |

2.

The order-invariance of the shift in the polarization state due to vector-soliton
interactions can also be shown by the use of the FLT formulas [11].

6.4. IDVNLS: Vector, Discrete Soliton Interaction. The interaction of
the discrete vector solitons of IDVNLS is similar to that of VNLS. Again, the
distinctive feature of vector-soliton interaction is the shift in the polarization vectors
that results from soliton collisions. In fact, in their interactions, discrete vector
solitons reproduce the dynamics of continuous vector solitons and the analogous
formulas converge to their counterparts in the continuum limit.

As before, we assume that the eigenvalues of the J solitons, (z1, . . . , zJ) are
such that

v1 < v2 < · · · < vJ

where vj is the envelope velocity of the j-th soliton. Then, in the long-time lim-
its, the solitons are spatially well-separated. If moreover, all of the solitons are
fundamental solitons, then

Q±
n (τ) ∼

J
∑

j=1

p±
j Q

±
n,j(τ),

where: ± denote the forward and backward long-time limits; Q±
n,j is a one-soliton

solution of IDNLS (cf. (3.34)) with α = αj , β = βj , d = d±j and ψ = π. Again, in
the passage from the backward long-time limit to the forward long-time limit the
solitons reverse their spatial order. In this process, the solitons pass through one
another and thereby induce shifts in each others polarization vectors and envelope
peaks.

The method of Manakov [64] for analysis of continuous vector solitons can be
adapted to the discrete vector case (cf. [10]). Such an analysis yields the relation

(6.8) S+
j =

J
∏

ℓ=j+1
right

c+
ℓ (zj)

j−1
∏

ℓ=1
right

[

c−ℓ (zj)
]−1

S−
j

J
∏

ℓ=j+1
right

a−
ℓ (zj)

j−1
∏

l=1
right

[

a+
ℓ (zj)

]−1

where: S±
j , j = 1, . . . , J , are 2×2 matrices; as before, the notation “right” indicates

that the matrix with index ℓ is to the right of the matrix with index ℓ− 1 and we
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define
∏b
a = 1 for a > b. If the solitons are all fundamental solitons, then

S±
j =

(

s
(1)±
j 0

s
(2)±
j 0

)

(6.9a)

aj(z) =







z2−z2j
z2−z̄2

j

0

0
z2+z̄−2

j

z2+z−2

j






(6.9b)

cj(z) =
z̄2
j + z−2

z2
j + z−2

[

I +
(z̄2
j − z

2
j )(z̄

2
j + z−2

j )

(z2 − z̄2
j )(z̄

2
j + z−2)

s∗js
T
j

||sj ||2

]

,(6.9c)

where: z̄j = 1/z∗j ; sj = (s
(1)
j , s

(2)
j )T , are column vectors; the polarization vector of

the j-th soliton in the forward (+) and backward (−) long-time limits is

p±
j =

(

s±j
)∗

∥

∥s±j
∥

∥

.

In order to determine s+
j (and, hence p+

j ) in terms of s−1 , . . . , s
−
J , we proceed in-

ductively. First, using (6.8), we compute s+
J as it depends on s−1 , . . . , s

−
J . Next, we

compute s+
J−1, as it depends on s−1 , . . . , s

−
J−1 and s+

J , and so on.
Although it is not apparent form (6.8), the J-soliton interaction of fundamen-

tal, discrete, vector solitons is equivalent to the order-independent composition of
J(J − 1)/2 pairwise interactions. As for the continuous case, this only needs to
be verified directly from (6.8), (6.9a)–(6.9c) for the three-soliton interaction [10].
Moreover, as in the continuous, case the order-invariance of the soliton interaction
is a manifestation of the fact that the map governing the polarization shift satisfies
the Yang-Baxter relation [12].

In the case of two fundamental vector solitons, we obtain from eqs. (6.8),
(6.9a)–(6.9c) the relations

p+
2 =

1

χ

(z2
1 − z̄

2
2)(z̄

2
1 + z̄−2

2 )

(z̄2
1 − z̄

2
2)(z

2
1 + z̄−2

2 )

(

p−
2 +

(z2
1 − z̄

2
1)(z̄2

1 + z−2
1 )

(z̄2
1 − z̄

2
2)(z̄2

1 + z̄−2
2 )

(p−∗
1 · p

−
2 )p−

1

)

(6.10a)

p+
1 =

1

χ

(z2
1 − z̄

2
2)(z

2
2 + z−2

1 )

(z2
1 − z

2
2)(z̄

2
2 + z−2

1 )

(

p−
1 +

(z̄2
2 − z

2
2)(z2

2 + z̄−2
2 )

(z2
2 − z

2
1)(z2

2 + z−2
1 )

(p−∗
2 · p

−
1 )p−

2

)

(6.10b)

where

χ2 =

∣

∣

∣

∣

(z2
1 − z̄

2
2)(z̄

2
1 + z̄−2

2 )

(z̄2
1 − z̄

2
2)(z

2
1 + z̄−2

2 )

∣

∣

∣

∣

2

χ̃2,

χ̃2 = 1 +
(z2

1 − z̄
2
1)(z2

2 − z̄
2
2)(z̄2

1 + z−2
1 )(z̄−2

2 + z2
2)

(z2
2 − z

2
1)(z̄2

1 − z̄
2
2)(z2

2 + z−2
1 )(z̄2

1 + z̄−2
2 )

∣

∣p− ∗
1 · p−

2

∣

∣

2
.

Eqs. (6.10a)–(6.10b) are the analog of Manakov’s formulas for the polarization
shift of two interacting vector solitons (6.5a)–(6.5b). In fact, with zj = e−ikjh,

z̄j = 1/z∗j = e−ik
∗
jh the equations for the discrete soliton interaction converge to the

equations for the continuous soliton interaction in the limit h→ 0 (the continuum
limit).

The polarization shift in the interaction of two fundamental solitons can also
be described by a fractional linear transformation (FLT). Just as in the continuous
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case, we describe the polarization state of each soliton by a single complex number
(6.6). Then, from (6.10a)–(6.10b) one obtains the FLT:

(6.11a) ρ+
2 =

A1ρ
−
2 +B1

C1ρ
−
2 +D1

,

where the coefficients are functions of the particle in state ρ−1 :

A1 = 1 +
(z2

1 − z̄
2
2)(z̄

2
2 + z−2

1 )

(z̄2
1 − z̄

2
2)(z̄

2
2 + z̄−2

1 )
|ρ−1 |

2

B1 =
(z2

1 − z̄
2
1)(z̄

2
1 + z−2

1 )

(z̄2
1 − z̄

2
2)(z̄

2
1 + z̄−2

2 )
ρ−1

C1 =
(z2

1 − z̄
2
1)(z̄

2
1 + z−2

1 )

(z̄2
1 − z̄

2
2)(z̄

2
1 + z̄−2

2 )
(ρ−1 )∗

D1 =
(z2

1 − z̄
2
2)(z̄

2
2 + z−2

1 )

(z̄2
1 − z̄

2
2)(z̄

2
2 + z̄−2

1 )
+ |ρ−1 |

2

and the FLT:

(6.11b) ρ+
1 =

A2ρ
−
1 +B2

C2ρ
−
1 +D2

,

where the coefficients are functions the eigenvalues and ρ−2 :

A2 = 1 +
(z̄2

2 − z
2
1)(z

2
1 + z̄−2

2 )

(z2
2 − z

2
1)(z

2
1 + z−2

2 )
|ρ−2 |

2

B2 =
(z̄2

2 − z
2
2)(z

2
2 + z̄−2

2 )

(z2
2 − z

2
1)(z

2
2 + z−2

1 )
ρ−2

C2 =
(z̄2

2 − z
2
2)(z

2
2 + z̄−2

2 )

(z2
2 − z

2
1)(z

2
2 + z−2

1 )
(ρ−2 )∗

D2 =
(z̄2

2 − z
2
1)(z

2
1 + z̄−2

2 )

(z2
2 − z

2
1)(z

2
1 + z−2

2 )
+ |ρ−2 |

2.

The coefficients of (6.11a)–(6.11b) converge to the the coefficients of the FLTs that
describe the the continuous vector-soliton interaction (6.7a)–(6.7b) in the contin-
uum (h→ 0) limit.

7. Vector Soliton Logic

An interesting, recent application of vector solitons is the construction of logic
gates by means of vector-soliton interactions. By logic gates we mean input-output
systems that encode the operations of binary logic such as AND, NOT, OR, etc. As
a computer is, in a theoretical sense, a connected array of logic gates, the existence
of soliton-based logic gates implies the possibility of soliton-based computing. The
underlying motivation is the goal of all-optical digital information processing (in a
nonlinear optical medium that supports solitons).

In fact, it is possible to construct vector-soliton-based logic gates with VNLS
solitons such that these gates are, collectively, “computationally universal” in the
sense of Turing equivalence [17], [50]. Moreover, one can construct logic gates
with discrete vector solitons by the substitution of the formulas that describe the
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(z2, y2) (z1, y1) (zin, in)

garbage • • • actuator
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? ? ?

�

Figure 3. Elementary Soliton Logic Gate

interaction of the discrete solitons of IDVNLS for the formulas that describe the
interaction of the discrete solitons of IDVNLS [12].

In both the discrete and continuous cases, the logic gates are constructed with
the help of the FLTs that describe the shift of soliton polarization (i.e., (6.7b)–(6.7a)
for VNLS and (6.11b)–(6.11a) for IDVNLS). In either case, to encode a binary logic
“bit” in the polarization state of a soliton, we identify the complex polarization
state ρ = 1 with the logical bit value 1 and the complex polarization state ρ = 0
with the logical bit value 0. Digital logic operations are then implemented by the
polarization shifts induced via sequences of controlled vector-soliton interactions
(cf. [17]).

The elementary structure of a vector-soliton logic gates is the four-soliton,
three-collision soliton interaction introduced in [76]. (See Figure 3.) The actuator
soliton (labeled “actuator”) is initially in the logical/polarization state 0 and carries
information from the input soliton to the output soliton. The speeds (determined
by the eigenvalues zin, z1 and z2) and initial separations of the other solitons are
chosen so that they do not interact with each other, but only with the actuator
soliton. The polarization state of the input soliton (with polarization state in before
the collision with the actuator) carries a logical value (i.e., in = 0 or in = 1). The
polarization states of the remaining solitons before interaction, denoted by y1 and
y2 respectively, remain to be specified. The polarization state out is the output
of the gate while “garbage” indicates that the states of these solitons, after the
collisions comprised by the gate, are not used for further computations.

The key to the design of logic gates is the determination of states y1 and y2
such that one can realize a logical operation. For instance, for the COPY gate,
one requires that out = in, justifying the name COPY. A priori, it is reasonable to
expect that such parameter values exist, because there are four degrees of freedom
in the two complex numbers y1 and y2, and two complex equations to satisfy: (i)
out = 1 when in = 1 and (ii) out = 0 when in = 0. Similarly, the NOT gate is such
that out=0 when in=1 and vice-versa. Computation is then carried out by the
arrangement solitons so that the output solitons cascade in to inputs of subsequent
soliton interactions. To achieve computational universality these elementary gates
must be combined is appropriate ways [76].

8. Conclusions

As the preceding sections show in detail, the basic IST framework is an effective
tool for all the nonlinear Schrödinger systems considered here. In all cases, the key is
the formulation of the inverse problem as a Riemann-Hilbert problem, which can be
rewritten as a linear algebraic-integral system. Moreover, in all cases, reflectionless
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data correspond to a pure multisoliton solution and, in this case, the Riemann-
Hilbert problem reduces to a system linear-algebraic equations. The IST method
not only provides a way for obtaining explicit formulas for the solitons, it also
provides insight into the underlying mathematical structure that manifests itself in
elastic soliton interactions, namely the time-invariance of the eigenvalues.

The IST for IDVNLS contains some twists not present in the other systems.
Specifically, there is an extra symmetry in the scattering problem, and the related
phenomenon of composite solitons. However, the basic IST framework remains the
same. In fact, the IST provides an explanation for the existence of the compound
solitons in IDVNLS.

In both the scalar and the vector equations, the integrable discretizations repro-
duce the soliton dynamics of their respective continuous limits. Although this has
been known for some time (at least in the scalar case), the persistence of solitons in
the integrable discrete systems remains remarkable given the fact that alternative
discretizations of NLS and VNLS have very different dynamics. Again, the formu-
lation of the IST for the discrete systems makes clear the reason for the existence
of soliton solutions in the integrable discrete equations.

On the other hand, a careful analysis of the IST for the discrete problem re-
veals that the discrete systems have solutions with no counterpart in their respective
continuum limits. These include the traveling breather states of IDNLS and the
compound solitons of IDVNLS. Even though IDNLS has been the subject of in-
tensive study for almost 30 years, this aspect of the discrete system has not been
appreciated. In fact, it was the discovery of the compound soliton in the discrete
vector system (IDVNLS) that brought these breather states of IDNLS to the at-
tention of the authors.

Like IDNLS, VNLS continues to be a subject of continuing study long after
it was introduced, along with a solution via IST, by Manakov. In particular, the
dynamics of vector soliton interaction have been of interest because of the potential
applications to fiber-optics communications and, more recently, optical computing.
However, only recently has the dynamics of a multisoliton interaction been com-
pletely analyzed. The analysis of the soliton interaction from IST point of view
(initiated by Manakov) shows that the multiple vector-soliton interaction is, in
fact, the order-invariant net result of pairwise interactions. Moreover, the method
of analysis, and the results, extend to the interaction of discrete vector solitons.
The recent (theoretical) implementation of logic operations with vector solitons
suggests that vector solitons, in particular, will be a subject of continuing interest.
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