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ABSTRACT We introduce an analytical approach to design decoupling filters for MRI radiofrequency
array elements, adopting counter-coupled passive resonators as unit-cells. Specifically, our method is based
on a magneto-static hypothesis, thus a deep comprehension of the physical interactions between all the
elements in the system and design guidelines can be achieved. In particular, the couplings between adjacent
and next-nearest neighbors coils pairs are both modeled, hence addressing the requirements for MRI arrays.
The analytically-obtained filter solution is subsequently refined resorting to targeted full-wave simulations,
reducing the computational effort. To prove the validity of the proposed approach, we conceived a test-
case consisting of three planar RF coils, tuned at the 7T proton Larmor frequency. We demonstrated
through full-wave simulations that the analytical design method is accurate and effective. Moreover, we
fabricated a prototype and we performed benchtop measurements, both in unloaded conditions and in
the presence of a biological phantom, resulting in excellent agreement with simulations. The developed
analytical framework can be useful to model and control the mutual interactions between the various
elements of an RF MRI system. In addition, the possibility to print the decoupling elements and the RF
coils on the same dielectric substrate leads to a mechanically robust prototype.

INDEX TERMS Decoupling, distributed magnetic traps (DMTs), radiofrequency array, magnetic resonance
imaging (MRI), mutual decoupling, radio frequency (RF) coil, spiral resonators (SRs).

I. INTRODUCTION

MUTUAL coupling between RF coils is a most impor-
tant concern in Magnetic Resonance Imaging (MRI).

Indeed, the MRI research activities are progressively pushing
the applied static magnetic field amplitude towards higher
and higher values in order to increase, as it is well known,
the Signal-to-Noise Ratio (SNR) and the imaging spatial
resolution [1]–[3]. However, this technical choice leads to
a natural consequence, i.e., higher operative frequencies
for the RF coils, as dictated by the Larmor’s relation-
ship. In this condition, realizing a single large RF coil able
to cover the desired field of view (FoV) becomes hardly
practicable [4], [5]. As a matter of fact, the electromagnetic
wavelength is rapidly approaching the coil dimension and,

thus, the homogeneity of the RF magnetic field is spoiled,
and electric field hot spots can arise. In order to reduce this
problem, parallel imaging has been introduced [6]; instead
of employing a single large RF coil, a transceiver array of
RF coils in which every element is fed with the appro-
priate amplitude and phase (phased array concept) can be
adopted to generate a homogeneous magnetic field. This
solution can also reduce undesired hot spots in the tissues
(lower Specific Absorption Rate, SAR), even at relatively
high operative frequencies. In addition, the FoV can be
increased as well as the sensitivity during the receiving phase
(better SNR). Moreover, the scan time can be significantly
reduced, thus improving the overall performance of the MRI
scanners [7]–[14].
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Nonetheless, such array configurations necessarily con-
sist of densely packed RF elements; hence, a strong mutual
coupling arise between them [11]. This issue is extremely
significant both in the transmitting and receiving phase [15].
Indeed, the coupling worsen the coil reflection coefficient
(due to the frequency splitting phenomenon), thus increas-
ing the reflected energy amount and reducing the power
efficiency. On the other hand, the mutual cross talking dra-
matically spoils the received signal, with consequently image
degradation.
However, the unquestioned arrays’ advantages have moti-

vated a considerable effort in the literature to face and
mitigate the mutual coupling issue. The first appeared solu-
tion consists in the partial overlap of strictly adjacent array
coils [6]. This method can be straightforwardly applied but it
produces inevitably a decrease in the useful FoV and it may
be not always easily scalable when the number of RF coils
increases, requiring additional means for decoupling. More
recently, the Induced Current Elimination (ICE) technique
has been introduced [15]–[17]; it exploits additional reso-
nant elements to be inserted between the RF coils in order
to obtain the decoupling conditions. Such conditions can be
retrieved based on an eigenvectors and eigenvalues approach.
Similar to the ICE method, also the Magnetic Walls have
been presented [18], [19]. Differently from ICE, here a high
number of square miniaturized resonators are employed
instead of a single one. Besides, different works reported
in the literature for decoupling purposes, exploit additional
reactive and resonant elements, variously interleaved between
the MRI RF array coils [20]–[26]. In particular, the capaci-
tive decoupling has been proved efficient when geometrically
complex array configurations are used [27]–[30].
In this paper, we introduce a novel analytical framework

to analyze the complex interactions between all the elements
of an MRI array and to design an opportune filter for their
decoupling using passive counter-coupled resonators as unit-
cells. A related approach was first presented in [31]–[33] for
the simple case of two concentric RF loops in a Dual Tuned
configuration (1H/23Na). Here, we generalize such approach,
modeling and also considering the coupling between next-
nearest neighbors coils pairs, as required for typical phased
arrays. Thanks to the proposed analytical framework, a deep
physical comprehension of the system under consideration
can be achieved, facilitating the design process. Indeed, we
can determine the minimum number of passive resonators
and their required self-impedance to obtain the mutual
coupling reduction between the array elements, simultane-
ously minimizing the undesired resistive losses. Further, the
designed filter can be printed on the same dielectric substrate
of the MRI RF coils, thus the fabrication process is easy
and controllable. Moreover, since no physical connections
are present, the system is mechanically robust.
The paper is organized as follows. In Section II the ana-

lytical framework to analyze an array and to design the
decoupling filter is presented; next, Section III is devoted to
evaluate the developed theory on an exemplificative test-case,

FIGURE 1. Schematic picture depicting the mutual interactions between three
adjacent RF coils; the mutual coupling coefficients between strictly adjacent (M12 and
M13) and next-nearest neighbors (M23) are highlighthed.

reporting the design, the full-wave simulations and the exper-
imental results obtained over a fabricated prototype. Finally,
Conclusions are presented in Section IV.

II. METHODS
As anticipated, the proposed decoupling method is based
on an analytical framework that is useful to achieve a deep
physical comprehension of the different mutual interactions
between the elements of an MRI array. By considering both
the mutual coupling coefficients between strictly adjacent
and next-nearest neighbors coils (i.e., the most important
coupling effects within an MRI array), the method can be
used to describe arbitrary array configurations, provided to
accurately take into account the specific geometrical arrange-
ment. Moreover, the underlying circuital model provides
quantitative and easy-to-handle parameters; through their
manipulation, a full filter design can be achieved. As intro-
duced before, the filter is based on the insertion of a limited
number of passive resonators (such as spiral or split-ring
resonators), carefully designed and placed between the array
elements. The adopted assumptions and the correspond-
ing analytical design framework are reported in the next
paragraphs.

A. MAGNETO-STATIC COUPLING ESTIMATION
In order to realize a decoupling filter, the first step consists
in the evaluation of the mutual interactions between all the
array RF coils pairs; in particular, strictly adjacent coils
and next-nearest neighbors pairs must be both considered
(Fig. 1).
As already described in [33], under magneto-static

hypothesis, we can apply the Biot-Savart formulation to
estimate the mutual coupling between two generic RF
coils [34], [35]. Indeed, the main contribution to mutual
coupling at the MRI frequencies is the inductive one [36].
Hence, the magnetic field produced by a given current path
in a specific point can be expressed as:

−→
B

(−→r ) = μ0

4π

∫
I
−→
dl × −→

r′
∣∣
∣
−→
r′

∣∣
∣
3

(1)
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where μ0 (H/m) is the magnetic permeability of the vacuum,
I (A) is the current amplitude flowing in the path,

−→
dl (m) is

an infinitesimal element of the current path and
−→
r′ (m) is

the vector distance between the infinitesimal element
−→
dl and

a generic point of the space.
The mutual coupling coefficient between coils i and j can

be calculated as the magnetic flux per unit current through
the surface of coil j induced by the current flowing in coil i:

Mij = �ij

Ii
(2)

In this way, given the geometrical designs, we can numer-
ically implement eqs. (1) and (2) to retrieve the mutual
coupling coefficients between the considered RF coils.
Clearly, also the coupling between each RF coil and the

filter unit-cell can be evaluated following the same formula-
tion; hence, a proper filter able to compensate the undesired
mutual coupling between the RF coils can be designed, as
explained in the next section.

B. FILTER ANALYTICAL FORMULATION
Let suppose that N filtering unit-cells are inserted longitu-
dinally in the space between each couple of adjacent MRI
coils, as depicted in Fig. 2.
In particular, due to the small resonators footprint, it is

possible to place the filtering unit-cells between two adja-
cent MRI coils sufficiently apart in order to assume the
mutual coupling between them negligible (i.e., they are all
independent each other). Moreover, due to symmetry rea-
sons (Fig. 2), the same current is flowing in each unit-cell.
Thus, from a circuital point of view, we can consider glob-
ally only a filtering element between two adjacent RF coils
(respectively, numbered 4 and 5 in Fig. 2); obviously, the
relative terms in the circuital equations have to be multiplied
by the number of independent unit-cells N present between
two adjacent RF coils [33].
Therefore, the entire system equations can be written as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z11I1 + Z12I2 + Z13I3 + NZ14I4 + NZ15I5 = V1
Z21I1 + Z22I2 + Z23I3 + NZ24I4 + NZ25I5 = V2
Z31I1 + Z32I2 + Z33I3 + NZ34I4 + NZ35I5 = V3
NZ41I1 + NZ42I2 + NZ43I3 + NZ44I4 + NZ45I5 = 0
NZ51I1 + NZ52I2 + NZ53I3 + NZ54I4 + NZ55I5 = 0

(3)

Specifically, we indicate with I4 the current flowing in
each filtering unit-cell between RF coils 1 and 2; I5 repre-
sents the same quantity but for the unit-cells between RF
coils 1 and 3. I1, I2 and I3 are the current flowing in the
corresponding RF coils, whereas V1, V2 and V3 describes
their feeding RF generators.
At this point, we consider that the system depicted in

Fig. 2 presents several other symmetries to be exploited;
indeed, the filter unit-cells 4 and 5 interact equally with the
RF coils. Hence:⎧

⎪⎪⎨

⎪⎪⎩

I4 = I5
Z14 = Z41 = Z15 = Z51
Z24 = Z42 = Z35 = Z53
Z25 = Z52 = Z34 = Z43

(4)

FIGURE 2. Schematic representation of the system under consideration: the three
RF coils (numbered 1, 2 and 3) are interleaved with N filtering elements (globally
numbered 4 and 5).

Thus, the system (3) can be simplified using (4) in the
following manner.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z11I1 + Z12I2 + Z13I3 + 2NZ14I4 = V1
Z21I1 + Z22I2 + Z23I3 + N(Z24 + Z25)I4 = V2
Z31I1 + Z32I2 + Z33I3 + N(Z34 + Z35)I4 = V3
2Z41I1 + (Z42 + Z52)I2 + (Z43 + Z53)I3+
+2(Z44 + Z45)I4 = 0

(5)

In particular, we have condensed the two equations corre-
sponding to the filter unit-cells 4 and 5 into a single condition
(from now on, numbered 4), thanks to the previously
observed symmetries. Then, we can express the current flow-
ing in the filter unit-cells I4 as a function of the RF coils
currents (I1, I2 and I3) and operate a substitution. Thus, the
corresponding impedance matrix of the three RF coils in the
presence of the decoupling SRs can be now derived.

⎛

⎜
⎝

Z11 − 2NZ14Z41
(Z44+Z45)

Z12 − NZ14(Z24+Z25)
(Z44+Z45)

· · ·
Z21 − NZ41(Z24+Z25)

(Z44+Z45)
Z22 − N(Z24+Z25)

2

2(Z44+Z45)
· · ·

Z31 − NZ41(Z34+Z35)
(Z44+Z45)

Z32 − N(Z24+Z25)(Z43+Z53)
2(Z44+Z45)

· · ·
Z13 − NZ14(Z43+Z53)

(Z44+Z45)

Z23 − N(Z24+Z25)(Z43+Z53)
2(Z44+Z45)

Z33 − N(Z34+Z53)
2

2(Z44+Z45)

⎞

⎟
⎠ (6)

Specifically, in order to decouple the RF coils, it is ideally
required that the following elements are nulled (and, thus,
making the system impedance matrix diagonal).

⎧
⎪⎨

⎪⎩

Z12 − NZ14(Z24+Z25)
(Z44+Z45)

= 0

Z13 − NZ14(Z43+Z53)
(Z44+Z45)

= 0

Z23 − N(Z24+Z25)(Z43+Z53)
2(Z44+Z45)

= 0

(7)

Referring to the symmetries conditions described in (4),
we can notice that the first two equations of the system
(7) are equivalent. Hence, the decoupling conditions can be
derived from the first and third equations of (7).
As already presented in [33] and as speculated in the

previous Section II-A, we suppose that the mutual terms in
(7) are all in the form Zij = jωMij (i.e., inductive coupling).
Instead, the Zii terms can be expressed as a classical RLC
series self-impedance (Rii+jωLii+1/jωCii). In that condition,
each equation of (7) present a real and an imaginary term.
The imaginary terms can be perfectly nulled by apply-

ing the following conditions, analogously to what derived
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in [33]:
{

NM14(M24+M25)
M12

= X4tot
N(M24+M25)

2

2M23
= X4tot

(8)

where N is the number of filtering unit-cells interleaved
between two adjacent RF coils and X4tot is the unit-cell reac-
tive self-impedance required for the coupling compensation
at the desired working frequency:

X4tot = (L4 +M45) − 1

ω2C4
(9)

Hence, from (8), we can immediately evaluate the reac-
tive self-impedance value that the single filter unit-cell must
retain. Moreover, the mutual coupling terms of the system
must satisfy another condition, that can be obtained by
equating the left terms of both the expressions (8):

M14(2M23 −M12) −M12M25 = 0 (10)

Thus, satisfying (8)-(10) will lead to the compensation
of the imaginary terms of the mutual coupling between the
MRI array elements.
At this point, we are interested in the minimization of

the real term of the equations (7). In particular, as described
in [33], the condition to maintain the real term negligible is
the following:

ω2X2
4tot � R2

4 (11)

where R4 is the unit-cell self-resistance. Substituting X4tot
from the relations (8) in (11), these expressions on the min-
imum required number of filter unit-cells to minimize the
real mutual coupling terms can be derived.

⎧
⎪⎨

⎪⎩

N2 �
[

M12R4
ωM14(M24+M25)

]2

N2 �
[

2M23R4
ω(M24+M25)

2

]2 (12)

In summary, the satisfaction of (8), (10) and (12) guar-
antees the decoupling between the array elements, both for
strictly adjacent and next-nearest pairs, with low level of
losses. In the next section, we present an ad-hoc test-case
to verify the model effectiveness in a practical situation.

III. TEST CASE
We herein describe the results obtained applying the
proposed analytical method on a significant test-case. Indeed,
we designed, simulated and fabricated a 3-element 1H RF
planar array for a 7 T MRI scanner with a suitable decoupling
filter realized with spiral resonators.

A. ANALYTICAL DESIGN OF THE FILTER
The adopted array consisted of 3 identical rectangular RF
loops with external size of 13 cm × 6 cm, whereas the gap
between them is 2.8 cm (Fig. 3).
Considering the chosen array geometry, we decided to

realize the unit-cell of the filter by using two closely placed
SRs. In this way, we guaranteed a sufficient value of mutual

FIGURE 3. 3-element array chosen as test-case: the size of the coils and their gaps
are reported for clarity. In addition, the filter’s unit-cells are also included in the picture
(drawings not in scale).

coupling between the single filter’s unit-cell and the RF
coils, necessary for obtaining a satisfactory interaction (and
decoupling) level. In this case, the two SRs constituting
the unit-cell are strongly coupled, thus we have to consider
this aspect. Specifically, for symmetry reasons, they interact
equally with the surrounding RF array coils and, thus, the
currents flowing in each of them are the same; hence, it
is sufficient to consider only one equation to describe both
of them from a circuital point of view. Moreover, since
their circulating current is equal, the total mutual coupling
between this unit-cell and one of the RF coils is given by
the sum of the single mutual coupling coefficients between
each unit-cell’s SR and the considered RF coil. Hence, the
analytical model presented before is perfectly valid also in
this condition by adopting such observations. Obviously, if
the symmetrical disposition is not satisfied, these hypotheses
cannot be applied, and it is required to add an extra element
to the model.
At first glance, the derived decoupling conditions (8), (10)

and (12) may appear not easy to be applied and fulfilled
for the filter design. However, in several practical situations,
important simplifications can be adopted. For instance, refer-
ring to Fig. 3, the mutual coupling M25 between the RF coil
2 and the filtering unit-cells 5 (and, analogously, between
coil 3 and the filtering unit-cells 4, M34) can be very often
neglected. Indeed, spiral resonators are very miniaturized
inclusions whose electromagnetic field is strictly confined
in the very nearby of their structure. For the same reason,
the mutual coupling M45 between the filtering unit-cells 4
and 5 can be generally omitted.
With these observations in mind, as indicated in Section II,

we first estimated the mutual coupling existing between
strictly adjacent and next-neighbors RF coils pairs (i.e., M12
and M23 referring to eq. (8) and Fig. 3) through the magneto-
static approach. The strictly adjacent coils presented a mutual
coupling value of −12.5 nH, whereas M23 was equal to
−6.6 nH.
Considering the geometry and the available space, we

inserted 3 unit-cells between each strictly adjacent RF coils
pair (Fig. 3). For the design of the single SR and their
exact positioning, we exploited the spiral design procedure
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FIGURE 4. Pictorial representation of the adopted miniaturized spiral resonator
(draw not in scale).

explained in details in [33], [37]. We realized a rectangular,
6 turns SR, with external dimensions of 13.7 mm × 6.7 mm,
strip width w 0.127 mm and gap s between two adjacent
branches equal to 0.127 mm (Fig. 4). As said before, the
filter’s unit-cell consisted of two adjacent SRs, aligned along
their major axis and separated by 4.6 mm (see Fig. 3 for
a graphical representation). In this way, the unit-cell extrem-
ities are 5 mm away, along the x-axis, from the nearby RF
coils (we took care to maintain the geometrical symmetry).
Following the SRs characterization method described in [35],
and taking into account that this spiral is placed close to
another one (whose mutual coupling have to be considered),
it presented an overall inductance of 737 nH and a self-
capacitance of 0.375 pF (L4 and C4 in (9)). Each unit-cell is
positioned 4 cm away from the neighbor one, along the y-
axis (Fig. 3), guaranteeing that the mutual coupling between
them is negligible (as required from the theoretical model).
Employing the Biot-Savart formulation, we estimated the
mutual coupling between the individual unit-cell and the RF
coils close to it (i.e., M14 and M24 in eq. (8)). As explained,
for the chosen symmetrical disposition, it consists in the sum
of the mutual coupling coefficients between the considered
RF coil and the two SRs of the unit-cell; it globally resulted
in 9.8 nH. Conversely, the mutual coupling between two
adjacent unit-cells (separated by 4 cm along the y-axis) was
around 0.4 nH (thus negligible, as required).
As observed, some other terms can be simplified study-

ing the geometry of the system. In particular, the M25 term
resulted in a value of 0.25 nH, thus not significant with
respect to M24 in eq.(8). Finally, the term M45 (i.e., the
mutual coupling between the opposed filter’s elements within
the array) is also very small (∼0.1 nH), thus it can be
discarded with respect to L4 in eq. (9).
Substituting the estimated values in one of the eq. (8), we

obtained for the required reactive impedance of the unit-cell
(i.e., X4tot ) the value of −23.05 nH. Using (9), we evaluated
the actual reactive self-impedance of the chosen unit-cell at
the desired working frequency (at 298 MHz): it resulted in
−24.4 nH, hence able to compensate the undesired mutual
coupling.
Under the hypothesis that M25 is negligible (as effectively

proved), the condition (10) simply becomes M12 = 2M23,
in good agreement with the estimation of the mutual cou-
pling between strictly adjacent and next-neighbors RF coils
pairs above mentioned (M12 = −12.5 vs M23 = −6.6 nH).

FIGURE 5. CST CAD models of the adopted RF array without (a) and
with (b) filtering spiral resonators. An inset of the single resctangular, 6-turn spiral
resonator is shown for more clarity.

FIGURE 6. Adopted capacitive matching network. The superscripted index is
referred to the RF coil number, as reported in Fig. 5.

Eventually, it would be possible to better match this con-
dition by opportunely changing the relative position of the
RF coils.
As the last step, we verified the conditions reported in

(12) about the minimization of the real term of the mutual
coupling. For N=3 (i.e., the number of unit-cells inter-
posed between strictly adjacent MRI loops), we obtained
9�0.48 for the first condition and 9�0.75 for the second
one; hence, the filter design simultaneously satisfied the con-
ditions (8), (10) and (12) required for an effective decoupling
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FIGURE 7. Simulated S-parameters of the 3 array elements before the filter
insertion. (a) S11, S22, S33; (b) S12, S13, S23. It can be highlighted the significant
coupling level between the three elements.

FIGURE 8. Simulated S-parameters of the 3 array elements after the filter insertion.
(a) S11, S22, S33; (b) S12, S13, S23. The presence of the designed filter produces
a significant decoupling level, while preserving good matching and tuning levels.

of the RF array elements at the desired working frequency
(298 MHz).
In summary, the circuital model herein presented is gen-

eral and considers all the possible interactions between the
different components of a common planar RF MRI array
in presence of SRs as decoupling unit-cells. However, after

FIGURE 9. Fabricated PCB array prototype without decoupling filter (a). Fabricated
PCB array prototype with the filter: the inset shows the spiral resonator geometry in
details (b).

FIGURE 10. Photo showing the employed VNA and the RF array in the presence of
a saline biological phantom.

a proper verification and validation, significant simplifica-
tion can be adopted, making easier and effective the overall
design process. As demonstrated in [33], it may be also
worth highlighting that similar analytical approaches are suf-
ficiently robust with respect to various error sources (for
instance, the adopted magneto-static approximation and the
spiral resonator e.m. characterization) and can be applied
with confidence.

B. FULL-WAVE SIMULATIONS
After the analytical design part, we performed full-wave sim-
ulations (CST Studio Suite, Darmstadt) in order to verify
the developed solution before fabricating prototypes. Hence,
we realized the CAD model following the geometrical con-
straints described in the previous section. In particular, for
the RF coils, we used a 3.2 mm width copper strip, etched
on a 0.8 mm thick dielectric substrate (Arlon, εr=3.45,
tanδ=0.0035) (Fig. 5(a)). On the same dielectric substrate,
we also printed the decoupling spiral resonators (Fig. 5(b)).
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FIGURE 11. Measured S-parameters without (left column) and with (rigth column) the decoupling SRs filter, in the absence of a biological phantom. It can be noticed the high
mutual coupling levels between the MRI coils when no filter is adopted and the consequential RF coils detuning (a)−(b). Instead, the designed filter is able to restore a good
tuning and matching level at the desired working frequency (298 MHz) together with an excellent decoupling level (better than −20 dB) (c)-(d).

TABLE 1. Matching and tuning capacitors of the 1H RF coils without filter.

Firstly, the single 1H RF coil was tuned and 50 �-matched
at 298 MHz using opportune capacitors. Specifically, we
equally distributed 5 series tuning capacitor (Ct) along
the loop and we designed a balanced capacitive matching
network (see Table 1 for the lumped elements values and
Fig. 6 for the adopted matching network configuration). After
that, we placed together the three RF coils, in a coplanar
fashion and separated by 2.8 cm, as depicted in Fig. 5(a).
The obtained S-parameters are reported in Fig. 7; it can be
noticed a significant detuning of the coils and high coupling
levels (up to −4.7 dB) that make such configuration not able
to perform imaging correctly.
The next step consisted in the insertion of the designed

filter (Fig. 5(b)). Naturally, we had to change the tuning
and matching capacitors values, as reported in Table 2.
Fig. 8 shows the obtained S-parameters; beside a good tun-
ing and matching level for the three RF coils, it is worth
pointing out also the excellent decoupling levels (better than
−17 dB) at the desired working frequency (298 MHz).

TABLE 2. Matching and tuning capacitors of the 1H RF coils with filter.

In summary, the full-wave simulations demonstrated the
validity of the developed analytical framework. However,
since we are working with small and nested resonators,
one possible concern can be the actual power handling
limits of these structures during a high power stimulus.
Nonetheless, this decoupling solution adopting SRs has been
proved in [33] to have good power handling properties (up
to 4 kWpp), thus demonstrating its practical feasibility.

C. EXPERIMENTAL VERIFICATION
Finally, we fabricated a prototype of the array under anal-
ysis, using PCB technology. The RF coils and the filtering
SRs were printed adopting the geometrical specifications and
materials prescribed in the previous section, using a 35 μm
thick etched copper strip. We soldered appropriate SMD
capacitors to the RF coils, following the values reported in
Tables 1 and 2; in particular, we substituted one tuning and
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FIGURE 12. Measured S-parameters with the decoupling filter and in presence of
a close biological phantom. It can be highlighted the good decoupling performance
even with a very close biological load (decooupling always better than −16 dB).

one matching capacitor for each coil with variable ones,
in order to limit the effects of tolerances and fabrication
imperfections. Fig. 9 shows the realized prototypes with and
without the decoupling filter.
Then, we measured at the VNA (N9918A, FieldFox Series,

Keysight) the S-parameters for the two configurations (with
and without filter), and in two different loading condi-
tions. Indeed, the first round of measurements was acquired
without any biological load; after that, we exposed the
array to a saline solution phantom (εr=59, σ=0.58 S/m),
placed 2 cm away from the MRI coils though an oppor-
tune spacer (Fig. 10). Fig. 11 and Fig. 12 summarizes
the obtained results. It is worth highlighting that the mea-
surements confirmed the validity of the analytical approach
herein presented, being in good agreement with simulations.
In particular, the decoupling level at the desired working
frequency (298 MHz) is better than −21 dB without the
phantom and better than −16 dB with the close presence
of the saline solution. In addition, the tuning and matching
levels are satisfying in both the cases.
Finally, as demonstrated in the literature [33], it may

be also important to notice that the typical losses of
the filtering SRs are quite low and aligned with other
decoupling techniques, thus not representing a particular
concern.

IV. CONCLUSION
In this paper, we presented an analytical circuital frame-
work to design decoupling filters for RF MRI array elements
exploiting counter-coupled passive resonators as unit-cells.

By using a test-case – a 3-element 1H RF array for 7T scan-
ners –, we demonstrated the validity of the developed design
method through full-wave simulations, obtaining an excel-
lent agreement between theoretical and numerical results.
After that, we fabricated a PCB prototype of the entire
system, evaluating the actual filter decoupling performance
in air and in the presence of a saline biological phantom.
In every case, we achieved good decoupling levels both
between strictly adjacent and next-nearest neighbors RF coils
pairs, proving the feasibility and the effectiveness of the
technique.
In particular, the proposed circuital model allows a deep

comprehension of the different interactions between the
system’s components, aiding the designer to realize a good
decoupling solution from scratch thanks to quantitative and
simple-to-manipulate parameters. Then, only few and tar-
geted full-wave simulations can be carried out to refine the
filter design before realizing the actual prototype. Moreover,
the possibility to print both the RF coils and the decou-
pling resonators on the same dielectric substrate leads to
a mechanically robust experimental set-up. Hence, this work
can pave the way to an easy and effective use of pas-
sive resonators to obtain satisfying decoupling levels for
RF MRI array elements with a robust and repeatable fab-
rication process. Future developments can be directed to
perfectionate the model, further improving the decoupling
performance.
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