

Performance of irradiated CMS forward pixel detector

Silvia Taroni on the behalf of the CMS collaboration

Outline

- CMS forward pixel detector
- Test-beam setup
- Performance of irradiated detector
 - Charge collection
 - Detection efficiency
 - Charge sharing characteristic
 - Charge track impact point correlation
 - Cluster size

CMS Forward Pixel detector

- 4 disks:
 - Z = ±34.5, 46.5 cm
 - Inner radius: 6.1 cm
 - Outer radius: 15.0 cm
- Si sensor produced by SINTEF:
 - Type: n+/n
 - Pixel cell: 100x150 µm²
 - Thickness: 270 µm
 - Open p-stop ring isolation technology
- Maximum dose: 7Mrad/year at the inner disk at LHC design luminosity
 - Dose decreasing ~r ^{-1.8}

Test – beam

- A plaquette of 2x4 ROCs was exposed to a peak dose of 45Mrad at the Indiana University Cyclotron Facility using a 200 MeV proton beam. The beam was centered on one edge and it was roughly Gaussian in shape with σ~2cm
- Results are compared with a non irradiated single chip plaquette
- Test with 120 GeV proton beam at Fermilab:
 - 6 plane pixel telescope
 - 50x400 μm^2 cells
 - Extrapolated track resolutions on the CMS pixel plane: $\sigma_x=4.9 \ \mu m, \ \sigma_v=6.2 \ \mu m$
- Bias voltages:
 - 200 V reference detector (ROC 0)
 - 500 V irradiated plaquette.
 - It is below the depletion voltage for the most irradiated region (ROC 8)
 - 500 V maximum allowed by power supply

• Thresholds: 3800e⁻ for reference detector and 3300e⁻ for irradiated plaquette

Charge Collection

- Collected charge as a function of the track impact point distance from the two adjacent pixel divide.
 - Fiducial cuts are applied to exclude sharing with other pixels but those under study
- RED points: total charge collected by the two adjacent pixels.
- BLACK points: charge collected by the sole pixel pointed by the track.

Asymptotic points, far away from the divide, correspond to single hit.

- Left column plots are for adjacent pixels on the same row, right column for the adjacent pixels on the same column
- Reference/non-irradiated detector shows a very good charge collection efficiency even in presence of sharing.

Charge Collection

- First of all
 - Single hit charge collection efficiency degrades moving toward higher irradiated regions
 - ~100 % in ROC5, ~95 % in ROC6, ~75 % in ROC8.
 - A clear drop in collected charge is present whenever charge is shared between the two adjacent pixels.
 - The drop is relatively larger for sharing between two pixels along a row, e.g. 31% vs 28% for ROC6
 - This is due to the presence of the break on the p-stop ring between pixels on the same column.
- It is interesting to notice that in case of sharing, the percentage of lost charge wrt the single hit value becomes smaller moving toward the most irradiated region, 40% in ROC5 (row) vs 19% in ROC8
 - This apparently anomalous behavior can be explained by the drastic change of the electric field at high radiation doses.
 - The formation of a new junction on the n+ side, as a result of the type-inversion, radically changes the field configuration between adjacent pixel-implants.

Detection efficiency

- Inefficiency is confined near the pixel corners: this is due to two main reasons
 - Signal in each pixel could be small and below the threshold
 - Signal could be outside the synchronization time window because of the time walk
- Anyway, the maximum achievable efficiency is limited to ~99%, because of ~1% systematic inefficiency of the readout system

η distribution – I

• Charge sharing between two pixels is investigated using the variable:

 $\eta = \frac{Q_r}{Q_r + Q_l}$

 Q_{I} : charge collected by the pixel at the left side Q_{I} : charge collected by the pixel at the right side

- Moving toward the most irradiated regions, the continuous effective increase of the threshold shrinks the central part of the η distribution
- ROC6 (left): slope due to the non perfect orthogonality of the detector to the beam tracks
- ROC6 (right): effect of the non orthogonality superimpose to those from the p–stop break which unbalances the charge sharing

CMS

η – distribution – II

- Correlation between the track impact point and measured η value is investigated using two methods:
 - Mean value of signed distance vs η bin (plots on the right)
 - Indirect method: for a certain value of η, the signed distance x(η) is given by

$$\int_{-p}^{x(\eta)} \frac{dN_x}{dx} dx = \int_{0}^{\eta} \frac{dN_{\eta}}{d\eta} d\eta$$

The two results match each other

9

Cluster size

- Lower charge collection efficiency induced by radiation damage corresponds to a higher effective threshold
 - The number of sharing events in ROC 8 is close to that of ROC 0 which has a higher threshold (3800 e⁻ wrt 3300 e⁻)

Cluster size	ROC0 (%)	ROC5 (%)	ROC6 (%)	ROC8 (%)
1	85.42 ± 0.70	81.78 ± 0.43	82.03 ± 0.28	85.57 ± 0.27
2	12.75 ± 0.66	16.00 ± 0.40	15.17 ± 0.26	12.73 ± 0.26
3	0.75 ± 0.17	1.15 ± 0.12	1.29 ± 0.08	0.84 ± 0.07
4	0.83 ± 0.18	0.72 ± 0.09	1.05 ± 0.07	0.55 ± 0.06
5	0.08 ± 0.06	0.12 ± 0.03	0.21 ± 0.03	0.14 ± 0.03

Summary and Conclusions

- CMS FPix performance tested up to a maximum dose of 45Mrad
 - Loss of ~25% of the signal released by a MIP
 - High efficiency: ~99%
 - Only marginal drop near the pixel corners
 - η distribution symmetry altered by the p–stop breaks
- Despite the observed damages, the detector remains fully operational and suitable to accomplish the CMS physics goal for years inside the LHC

Backup slides

Fiducial cuts

 Fiducial cuts are applied to exclude sharing with other pixels but those under study

Single pixel: fiducial cuts at 30 microns in Y and 20 microns in X from the pixel boundaries

Two adjacent pixels on the same column: fiducial cut at 20 microns from the adjacent pixel in the row (X direction)

Two adjacent pixels on the same row: fiducial cut at 30 microns from the adjacent pixel in the column (Y direction)

CMS

07/10/09

Charge collection I

- Single hit and double hit spectra are investigated separately
- Less irradiated region (ROC5): the sensor can still collected all the charge if it is released in one pixel only
- In the most irradiated region (ROC8) the collection efficiency is limited: Landau peak ~75% of the expected value (one pixel)
- Intermediate region (ROC6): Landau peak ~95% of the expected value (one pixel)

ROC	MPV (e ⁻) Single hit	MPV (e ⁻) same row	MPV (e ⁻) same col
0	21956 ± 89	20853 ± 305	23374 ± 287
5	22521 ± 71	13490 ± 179	14388 ± 100
6	20854 ± 33	14317 ± 118	14945 ± 69
8	16663 ± 23	13436 ± 95	13898 ± 52

11th ICATP

Charge Collection II

- The percentage of lost charge wrt single hit value decreases moving forward ROC8.
 - The charge collection efficiency degrades with a lower rate in the inter-pixel region, indication of drastic change in the expected electric field at high radiation dose

ROC	Charge loss (%) Same row cluster	Charge loss (%) Same col cluster
5	40.10 ± 4.42	36.11 ± 4.51
6	31.35 ± 3.34	28.34 ± 3.38
8	19.36 ± 3.38	16.59 ± 3.41

Charge sharing

- The charge sharing correlation between two adjacent pixels deteriorates moving toward the most irradiated region
 - Corner regions are excluded in the study
 - Correlations between two adjacent pixels on the same column are reported as example

