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We present a Monte Carlo study of molecular ordering in
nematics with dispersed regular and random arrays of straight
and distorted polymer fibrils. We focus on the collective
molecular reorientation — the switching — resulting from
the competing aligning effects of fibrils and of a progres-
sively applied transversal electric field, and identify stuctural
Fréedericksz and saturation transitions. The role of fiber to-
pography in the switching behavior is monitored by simulat-
ing electric capacitance: slightly distorted fibrils are shown to
give a sharper switching.

PACS number(s): 61.30.Cz, 61.30.Gd

While simple nematic liquid crystals (LC) are now well
understood, nano and mesoscale composites where LC in-
teract with random or regular perturbers [1–3] offer fas-
cinating examples of complex systems, challenging both
from the technological and fundamental point of view.
Such perturbers consist, e.g., of thin (even nanometric)
polymer fibers obtained by polymerization of monomers
dissolved in LC that can either memorize the order of the
host LC phase [3], or follow a regular pattern as defined
in a lithographic formation process [4]. The fiber topog-
raphy depends sensitively on the polymerization condi-
tions, such as temperature, curing light wavelength and
intensity, or monomer solubility [5]. Because of their high
surface-to-volume ratio the polymer fibrils influence ori-
entational ordering of the surrounding liquid crystal even
at low polymer concentrations [3,6–8]. The actual or-
dering is affected by the competition between effects of
the fiber network (anchoring), temperature, and exter-
nal fields. Apart from exhibiting a variety of interesting
confinement-related phenomena, such composite materi-
als are promising also for the construction of electroopti-
cal devices, based on the “switching” phenomenon. This
consists of a reorganization of the nematic director — ini-
tially aligned by the polymer network — by applying an
external electric field producing changes in electric capac-
itance, optical transmission, light scattering, etc [3,6–8].
Thus studies of formation and properties of liquid crystal-
dispersed network systems (LCDNS) are very timely, also
for the next generation of LC displays [4,6]. In the past
there have been several studies devoted to LCDNS, both
experimental and theoretical [6–8], but so far the effect
of such complex confinement was described only phe-

nomenologically in terms of an effective field [6], while
there have been virtually no investigations at the mi-
croscopic level [9]. In this Letter we investigate the
field-induced changes of molecular ordering in LCDNS by
means of Monte Carlo (MC) simulations, starting from
a simple pairwise potential and giving great emphasis to
the role of polymer network topography.

Our simulations are based on the Lebwohl-Lasher (LL)
model [10] in which uniaxial nematic molecules (or close-
packed clusters containing up to 102 molecules [11]) are
represented by unit vectors (“particles”) ui. The LL
model, despite having particles fixed onto sites of a cu-
bic lattice (with spacing a, 1 nm <∼ a <∼ 5 nm), re-
produces the orientational behavior of nematics suffi-
ciently well [11]. We model the effect of an external field
by adding a quadratic contribution to the LL Hamilto-
nian [11]. The total interaction energy for a system of N
particles is then given by

UN = −
∑
〈i<j〉

εij P2(ui · uj) − εη
N∑

i=1

P2(f · ui), (1)

where P2(x) = 1
2 (3x2 − 1), f stands for a unit vector

oriented along the external field E (E = Ef), and εij

is a positive constant, nonzero only for nearest-neighbor
particles: ε for nematic-nematic interactions and wε for
nematic-polymer interactions (also included in the first
sum). Moreover, dimensionless η ∝ E2 gives the strength
of the coupling with the field. In practice, E could be
an electric or magnetic field [12]. For simplicity, E was
assumed homogeneous throughout the sample despite the
(possibly strong) inhomogeneity of the nematic.

As a first step towards modeling the topography of the
polymer network, we consider a single straight cylindri-
cal fiber oriented along the z-axis by defining a “jagged”
cylinder comprising all the particles lying closer than R
(the fiber radius) from the center of the xy-section [9].
Here the x, y, and z-axes coincide with the edges of the
cubic lattice. Particle orientations in the fiber surface
layer (“ghosts”) were fixed in accordance with the desired
surface anchoring (here chosen parallel to the fiber direc-
tion, z-axis) and the corresponding dimensionless anchor-
ing strength was introduced above as w > 0. The field
was applied along the y-axis, thereby producing a con-
flict with the aligning tendency of the polymer network.
Periodic boundary conditions were assumed at outer sim-
ulation box boundaries, hence such a set-up (“sample A”)
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may be regarded as a regular array of straight and par-
allel fibers.

FIG. 1. Structural transitions in sample A. (a) Director
fields n(r) (yz-cross sections) for the three possible structures
(calculated for η = 0.005, 0.05, and 0.5). n(r) in each point
was calculated by diagonalizing the MC cycle-averaged local
ordering matrix Q = 1

2
(3〈ui ⊗ ui〉 − I) and identifying the

eigenvector corresponding to the eigenvalue with the largest
absolute value. (b) The structural phase diagram; η0 denotes
the Fréedericksz threshold for w = 5 (strong anchoring).

We introduce notation in analogy with the switch-
ing in a nematic slab where surface anchoring is strong
and planar, and a field is applied along the slab nor-
mal. In weak fields the equilibrium director (n) config-
uration is homogeneous with n ⊥ f (“h-structure”). In-
creasing the field strength, once the Fréedericksz thresh-
old EF =

√
k/εaε0(π/δ) is reached, a continuous transi-

tion to a deformed structure is observed (“d-structure”).
Here k denotes the effective Frank elastic constant, δ
the sample thickness, εa = ε|| − ε⊥ the anisotropy of
the dielectric constant (|| and ⊥ referring to n), and ε0
its vacuum value. For finite anchoring strengths w the
threshold EF is somewhat reduced [13]. Increasing E
even further, for finite w the field overwhelms the anchor-
ing and a second, also continuous “saturation” transition
takes place. Above this second threshold Es — show-
ing a more significant w-dependence than EF — nematic
molecules are aligned uniformly along the field, with n||f
(“s-structure”). Both thresholds, EF and Es, have been
derived numerically for an arbitrary w in slab geometry,
allowing for the construction of a stability phase diagram
for the three possible structures [13]. In case of weak an-
choring or in a very thin nematic slab with k/w � δ,
the thresholds EF and Es attain similar values, whereby
the stability region for the d-structure becomes extremely
narrow [13]. There is, however, no triple point in the di-
agram.

We observe a similar switching behavior also in an ar-
ray of polymer fibers, sample A. The yz-cross sections of

director profiles calculated for each of the three structure
types are shown in Fig. 1 (a) and the structural phase
diagram in Fig. 1 (b). Note that for the d-structure the
nematic is bent in the yz-plane, while it is twisted in the
xz-plane, as opposed to the slab case where the twist
deformation is absent. The intermolecular potential (1),
however, is spatially isotropic and corresponds to the one-
constant approximation in the Frank elastic description,
making thus no distinction in energy for the different de-
formation modes and causing the switching behavior to
be qualitatively close to that observed in slab geometry.

Constructing the diagram, the simulation box size was
set to 30×30×30 particles, which for the chosen fiber ra-
dius (R/a = 5) amounts to 24600 nematic and 840 ghost
particles in total. Then, for each anchoring strength
w, the zero-field simulation (η = 0) started from a
completely random orientational configuration, and the
Metropolis scheme [14] was employed to update particle
orientations [11]. Once the system was equilibrated (after
at least 1.2×105 MC cycles), a set of further 1.2×105 suc-
cessive cycles was used to calculate relevant observables.
In cases with an external field applied (η > 0), the simu-
lation started from the configuration equilibrated at the
next lowest field strength E, thus performing a “scan”
increasing E (and η). For checking, a similar scan was
performed also decreasing η. The order parameter sensi-
tive to field-induced orientational changes was defined as
〈P f

2 〉 = 〈 1
2 [3(ui · f)2 − 1]〉, where the brackets 〈...〉 rep-

resent an average over nematic particles and over MC
cycles. Then, the η value yielding the maximum σf —
the variance of 〈P f

2 〉 related to collective molecular fluc-
tuations — can be used as a reliable enough estimate for
the structural transition threshold. Note, however, that
if the average 〈...〉 above is taken over all nematic parti-
cles, monitoring σf one can detect only the Fréedericksz
transition involving a large portion of nematic material.
On the other hand, to detect the saturation transition
affecting only a few particles near the fiber surface, the
average 〈...〉 is to be calculated exclusively over particles
in a thin layer surrounding the fiber (of thickness ∼ a).

The phase diagram [Fig. 1 (b)] was derived for T ∗ =
kBT/ε = 1.0 (recall that the bulk nematic-isotropic tran-
sition is observed at T ∗

NI = 1.1232 [11]) and shows stabil-
ity regions for the h, d, and s director structures. In weak
fields one can always find the undistorted h-structure,
while in strong enough fields the saturated s-structure
is always seen. The deformed d-structure appears at in-
termediate field strengths, but like in slab geometry its
stability region gets narrower upon decreasing w. Due to
the low accuracy of threshold estimates for small w we
cannot clearly confirm the absence of the triple point in
the diagram. Further, both transitions seem to be con-
tinuous: no systematic hysteresis could be detected in
external field scans.

In Fig. 1 (b) the Fréedericksz threshold (h ↔ d line;
ηF = 0.0085 ± 0.0015 for w = 1) indeed decreases with
decreasing w, while the saturation threshold (d ↔ s line;
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ηs = 0.30 ± 0.015 for w = 1) shows an even more signif-
icant w-dependence, approaching

√
ηs ∝ w for large w.

Similarly as in slab geometry, the position of the h ↔ d
line is expected to strongly depend on the effective fiber-
to-fiber distance d∗ — with increasing d∗ it should move
towards lower critical field strengths — while the posi-
tion of the d ↔ s line for large enough w should be
almost insensitive to changing d∗. One can check these
statements by exploring transitions in a network consist-
ing of somewhat thinner fibers: setting R/a = 3 and
considering a 18 × 18 × 18 sample with a single fiber
approximately maintains the polymer concentration, but
decreases the fiber-to-fiber distance from d∗ = 20a to
d′∗ = 12a. Having fixed w = 1 corresponding to rather
strong anchoring with a microscopic extrapolation length
k/w (of the order of ∼ a), the Fréedericksz and satura-
tion thresholds are now found to be η′

F = 0.025 ± 0.005
and η′

s = 0.30 ± 0.03, respectively. While ηs remained
almost unaltered, ηF changed quite significantly, yield-
ing

√
ηF /η′

F ≈ 0.58. This compares well to d′∗/d∗ = 0.6,
which is in agreement with

√
ηF ∝ 1/d∗ predicted for

slab geometry in the strong anchoring limit. Finally, the
temperature dependence (in principle) enters the thresh-
olds via k, w, and εa (all decrease with increasing T ∗),
which will be discussed elsewhere. Preliminary results,
however, indicate no dramatic changes in the phase dia-
gram with changing T ∗.

FIG. 2. Array of several straight fibers (sample B): 〈P f
2 〉(r)

order parameter (xy-cross section) for different field strengths
(proportional to

√
η). The “columns” represent the fibers.

Although regular arrays of fibers are currently used [4],
a polymer network can be much more complex [7,8]. In
particular, the interfiber distance distribution is expected
to play an important role in switching studies. Therefore,
to increase the topographical complexity of the fiber net-
work, we began by modeling a sample with an irregular
array of fibers still straight and parallel (directed along
the z-axis), yet distributed randomly within the xy-plane
(“sample B”). Increasing the sample size to 50× 50× 50
particles and including 8 fibers with R/a = 3 and anchor-
ing along the z-axis (w = 1) again roughly maintains the
polymer concentration (≈ 9%). This choice hence cov-
ers linear length scales of up to ∼ 0.25 µm. Again, the
external field was applied along the y-axis.

FIG. 3. Sample C with several distorted fibers: ghost par-
ticles fixing the network topography.

Fig. 2 shows the evolution of 〈P f
2 〉 averaged over MC

cycles for each particle within a given xy-cross section.
For η <∼ 0.013 one finds 〈P f

2 〉(r) negative and almost con-
stant — apart from slight variations close to the fibers
attributed to enhanced nematic ordering — showing that
particles are still aligned along the z-axis and that the
Fréedericksz threshold has not been exceeded yet. For
η ≈ 0.013 — still below the sample A threshold for
R/a = 3 — in polymer-poor regions where the interfiber
distance is above average the particle reorientation along
f is initiated and 〈P f

2 〉 increases, becoming even posi-
tive. As the field strength is increased even further, the
parallel-to-fiber alignment persists only very near to the
fibers (as in polymer-rich regions; see Fig. 2 for η = 0.1,
in the left corner). Finally, for extremely strong fields
— far above the saturation transition (e.g., at η = 1) —
all molecules are aligned along the field direction and, in
addition, the bulk degree of nematic order is enhanced.
The opposite holds for the fiber vicinity: the degree of
order drops below the bulk value due to the conflicting
effects of the fibers and external field. Note that unlike to
the regular sample A the switching evolved into a rather
gradual process in sample B.
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Finally, dropping the assumption that the fibers be
straight and parallel, we considered a system of distorted
fibers — Fig. 3, “sample C”. Again, the average fiber di-
rection was taken along the z-axis. Then each of the
fibers (with uniform cross section, R/a = 3) was gen-
erated by performing a biased random walk: while pro-
gressing along the z-direction, random deviations within
the xy-plane were performed with a given probability reg-
ulating the fiber curvature. Doing this, care was taken
to meet the periodic boundary conditions along the z-
axis. Moreover, everywhere the anchoring easy axis was
assumed parallel to the local fiber direction, with w = 1.
Simulating switching in sample C, the external field was
again applied along the y-axis. Despite fiber curvature,
in absence of external fields (η = 0) the net molecular
orientation is still well-defined (along the z-axis), except
for the fiber vicinity where it is affected by the local an-
choring.

For the switching in a symmetry-lacking sample it is
instructive to explore simulation-predicted experimental
observables, rather than study specific order parame-
ter maps. One of the suitable tools for the monitoring
of switching are electric capacitance measurements [8].
They rely on the orientational anisotropy of the molec-
ular dielectric constant, leading to observable changes in
sample capacitance for any major molecular reorienta-
tion. These changes will be monitored in the following,
along with a detailed comparison of samples A, B, and C.
Simulating capacitance, it was assumed that it is mea-
sured along the y-axis, i.e., between the plates used to
apply the aligning external field, and that also the prob-
ing local electric field is directed along f everywhere in
the sample. In absence of free ions and provided, more-
over, that elastic deformations within the xz-plane are
weak, the effective static capacitance for a M × M × M
sample can be calculated as [8]

Cy = ε0

M∑
k=1

M∑
l=1

(
M∑

m=1

1
ε(k, l,m)

)−1

, (2)

where the indices k, l, and m run along the x, z, and
y coordinates, respectively. Here we consider that each
group of molecules represented by the vector ui and lo-
cated at (k, l,m) is endowed with a local dielectric con-
stant ε(k, l,m) = ε⊥ + (ε|| − ε⊥)(ui · f)2.

FIG. 4. Switching in LCDNS systems, as monitored via
simulated electric capacitance: sample A (small dots), sample
B (medium-sized dots) and sample C (large dots).

The calculations were performed for ε|| = 29.8 and
ε⊥ = 6.1, assuming as in Ref. [8] the same dielec-
tric anisotropy for the polymer network. The Cy ver-
sus η characteristics for three samples (A, B, and C)
with R/a = 3 and same polymer concentration (≈ 9%),
but different network topography, is shown in Fig. 4.
In Fréedericksz-like geometry where the external field
is strictly perpendicular to fibers (samples A and B),
the orientational transition happens abruptly at a well-
defined threshold (ηA and ηB , respectively, with ηA >
ηB). In sample C network irregularities further decrease
the switching threshold (ηC ; not well-defined anymore),
yet keep the reorientational process relatively sudden.
The thresholds for the three samples can from Fig. 4
be identified as ηA = 0.022 ± 0.001, ηB = 0.013 ± 0.001,
and ηC = 0.010 ± 0.002, with ηC < ηB < ηA, as ex-
pected. Note that the Cy(η) curve is most gradual for
sample B because molecules in polymer-rich sample re-
gions refuse to switch unless the field is extremely strong.
Further, the increase of Cy for large η is to be attributed
to enhanced nematic order rather than to particle reori-
entation.

In summary, we have shown using computer simula-
tions that — contrary to näıve intuition — external field-
driven switching in a system of polymer fibers dispersed
in nematics is rather sudden even in samples with a fairly
disordered fiber arrangement (both positionally and ori-
entationally), and that it appears at a lower threshold, if
compared with more regular samples with same polymer
concentration. These conclusions were drawn by moni-
toring the simulated electric capacitance, starting from
the simulation data. Moreover, for a regular array of
straight and parallel fibers we have simulated a stability
phase diagram for possible director structures, indicating
a behavior equivalent to that observed in a nematic slab.
Fiber arrays with controlled disorder could probably be
prepared by suitably perturbing the excitation light in
the polymerization [4] and our predictions could then be
tested.
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