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Solitary wave propagation and steering through light-induced refractive potentials
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The steering of a self-guided beam in a dye-doped nematic liquid crystal caused by an external illumination
(control beam) that induces changes in the refractive index of the medium is theoretically analyzed. The interaction
between the control beam and the dye molecules modifies the anchoring of the nematic molecules, so changing
the director orientation in the bulk of the medium. Beam evolution is investigated by use of a modulation theory
approach. It is found that the beam trajectory is independent of the beam profile, as long as this profile is
self-similar. Solutions obtained from the modulation theory approach are in excellent agreement with numerical
solutions.
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I. INTRODUCTION

Numerous articles on experimental as well as theoretical
aspects of the propagation of nematicons, that is, optical
spatial solitary waves in nematic liquid crystals (NLCs),
reveal the growing interest in self-localized light beams in
reorientationally nonlinear media [1–10]. Some of the most
striking results reported on nematicons concern their propa-
gation through interfaces between liquid-crystalline regions
that differ in refractive index and birefringence, including
positive and negative refraction, as well as total internal
reflection [11–16]. Among the latest findings, refraction and
total internal reflection of nematicons were demonstrated
in a dye-doped NLC illuminated by external beams at a
wavelength absorbed by the dye, that is, the introduction of all-
optically-induced graded interfaces along the soliton path [17].
Here all-optical steering of self-localized beams in dye-doped
nematic liquid crystals using an averaged Lagrangian method
is theoretically addressed, resulting in modulation equations
for the solitary wave parameters. Polarizations of the external
beam resulting in both increased and decreased refractive index
under the illuminated region are considered. It is found that,
in the nonlocal regime appropriate to the problem [18], the
nematicon trajectory is independent of its functional form.
This independence of the nematicon trajectory of the profile
of the nematicon results in excellent agreement between this
trajectory as given by the modulation equations and numerical
solutions, with errors generally less than 0.1%, but never
exceeding around 1%. In addition, the nematicon amplitudes
as given by modulation theory and by numerical solutions are
in excellent agreement. This excellent prediction of the soliton
paths in light-perturbed NLCs by use of modulation theory
is expected to hold in other situations for which nematicons
undergo interactions with pointwise refractive index changes,
as reported in previous experiments [19–23].

II. MODULATION THEORY

Let us consider the propagation of coherent, polarized light
through a cell containing a nematic liquid crystal, in which
a separate light beam is shone into the cell in the direction
x orthogonal to the cell boundaries, as illustrated in Fig. 1.

An external static or low-frequency electric field is applied to
pretilt the nematic director (or optic axis) in the xz plane at an
angle θ̂ to the direction z in order to overcome the Fréedericksz
transition threshold [1]. The coordinates (x,y) are orthogonal
to z. The NLC is doped with a small amount (∼1%) of a
photosensitive dye absorbing light in a given spectral region. If
an external control beam (illumination beam) of a wavelength
appropriate for dye absorption is shone into the cell, the dye
molecules collect external energy. Molecules near the (upper
and lower) interfaces defining the cell provide the anchoring
of the NLC director at the boundaries, and the light-driven
excitation of the dye molecules can alter the alignment of and,
because of intermolecular forces, modify the layout of the NLC
optic axis in the whole volume under the illuminated region
[24,25]. Stated in another way, the external illumination of the
cell with a dye-doped NLC can reorient the underlying medium
and modify its linear and nonlinear properties through the
distribution of its optic axis [26]. Let us assume that the illumi-
nation beam is one dimensional and is shone into the nematic
cell between z1 and z2, as illustrated in Fig. 1. The resulting
perturbation of the director angle from the pretilt θ̂ is θb.

With this externally induced light perturbation, let us now
consider an x-polarized beam (extraordinary wave) launched
with wave vector in the plane yz of the cell and with a
wavelength outside the absorption band of the dye. The
Poynting vector of this input beam initially propagates with
respect to z at an angle being a combination of the input angle
and the birefringent walk-off. Let θn be the perturbation of the
molecular director distribution owing to the nonlinear response
of the NLC to this light beam (nematicon).

To model the interaction between these two beams, one
freely propagating in the nonlinear medium and the other
absorbed by the dye, let us first consider the external beam.
In the experiments reported by Piccardi and co-workers [17],
the control beam had a highly elliptical cross section. This
illumination can be approximated as an infinitely extended
stripe along y of uniform intensity and finite width along z. The
equation governing the resulting director angle perturbation θb

is then [5]

ν
∂2θb

∂z2
− 2qθb = 2p|Eb|2, (1)
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FIG. 1. (Color online) Sketch of a dye-doped nematic liquid-
crystal cell with an externally illuminated region. The red line
represents a nematicon with a curved trajectory caused by the
nonuniform index and optic axis distribution induced by the external
beam.

where Eb is the electric field envelope of the illumination
beam, q is related to the square of the voltage bias, and
ν measures the nonlocality of the medium, with large ν

corresponding to a highly nonlocal response. As the latter
applies in most experimental cases, ν will be taken large [18].
This director equation, and all subsequent equations, are in
nondimensional form. Depending on the polarization of the
illumination beam, the resulting reorientation of the NLC can
cause a decrease (p = 1) or an increase (p = −1) in the
refractive index for extraordinarily polarized waves. For the
stripe, Eb is given by

Eb =
{

E0 if z1 < z < z2,

0 otherwise.
(2)

With this external beam distribution, the director equation (1)
in xz has the solution

θb = F (z)e−γ x

=

⎧⎪⎪⎨
⎪⎪⎩

pA1e
κz−γ x, z < z1,

p

(
A2e

−κz + A3e
κz − |E0|2

q

)
e−γ x, z1 � z � z2,

pA4e
−κz−γ x, z > z2,

(3)

where κ = √
2q/ν and

A1 = |E0|2
2q

(e−κz2 − e−κz1 ),

A2 = |E0|2
2q

eκz1 , A3 = |E0|2
2q

e−κz2 , (4)

A4 = |E0|2
2q

(eκz1 − eκz2 ).

This is the director environment in which the nematicon beam
propagates. As the illumination beam propagates across the
cell, it undergoes absorption and scattering losses [17]. If we
assume that this loss is linear, the illumination beam then

gains an exponential decay in x, so that the exponential factor
e−γ x has been added to the solution (3) [27]. In addition to
this attenuation, the illumination beam experiences diffractive
spreading in x [17]. This spreading has been neglected so
that relatively simple modulation equations can be derived.
The inclusion of realistic spreading across the NLC thickness
would greatly increase the complexity of the calculations.

With the illumination beam setting up a refractive index
profile in the medium, a self-localized nonlinear wave (a
nematicon) can now be introduced. This is taken to propagate
in the xz plane. Its trajectory will undergo refraction because
of the perturbation induced on the director angle by the control
beam. The electric field envelope of this nematicon is denoted
En, and the change in the director angle produced by the
nematicon is θn. The equations governing the nematicon can
then be cast as [5,16,28]

i
∂En

∂z
+ 1

2
∇2En + 2En(θn + θb) = 0, (5)

ν∇2θn − 2qθn = −2|En|2, (6)

with the Laplacian ∇2 in the xy plane. For a nematicon to
exist, it must compensate diffraction via self-focusing, that
is, produce an increase in refractive index, which is why
|En|2 has a negative sign in Eq. (6). The director perturbation
θb produced by the external beam does not appear in the
director equation (6) because the latter is linear, and the control
beam perturbation satisfies Eq. (1). This is justified by the
fact that, in the paraxial approximation, θn does not depend
directly on z. As the electric field equation is nonlinear, the
director perturbation θb because of the illumination beam
appears in Eq. (5). The term 2Enθb acts as a refractive
index inhomogeneity which curves the nematicon trajectory. A
similar inhomogeneity was also found in the waveguide owing
to an applied electric field [16].

The nematicon equations (5) and (6) have no exact solution,
even in the absence of an illumination beam. A useful
approximate method of solution in this case is based on the
use of trial functions in an averaged Lagrangian formulation
of the nematicon equations [7,16,29]. In previous cases it was
necessary to assume a form for the nematicon profile, but here
the nematicon profile will be left arbitrary. Appropriate trial
functions for the electric field En of the nematicon and the
director perturbation θn caused by self-focusing are then

En = af (χ/w) eiψ + igeiψ , θn = αf 2(χ/β), (7)

where

χ =
√

(x − ξ )2 + y2, ψ = σ + �(x − ξ ). (8)

The electric field amplitude a, width w, director perturbation
amplitude α and width β, nematicon position ξ , propagation
angle �, phase σ , and shelf amplitude g are functions of
z. The first term in the trial function for En is a solitary
wave with variable parameters. The second term represents
the out-of-phase interaction of the nematicon with a flat shelf
of low-amplitude diffractive radiation which develops under
the evolving beam and travels with it [7,28,29]. If the shelf
were assumed to have nonzero amplitude throughout the bulk
medium, then the mass of the shelf would be infinite; hence, the
shelf is assumed to be a disk of radius R, so that g is nonzero
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in 0 � χ � R [7,28,29]. The nematicon profile, given by f ,
is a self-similar, but as yet unspecified, functional form f (ρ),
simply requiring that f (ρ) decays fast enough as ρ → ±∞
so that the resulting integrals in the modulation equations
converge. The nematicon’s transverse profile is left arbitrary
because its position will be found to be independent of the
exact form of f . For the numerical comparisons presented
below, hyperbolic secant sech ρ and Gaussian e−ρ2

profiles
were used as specific examples.

The nematicon equations (5) and (6) have the Lagrangian
formulation

L = i

(
E∗

n

∂En

∂z
− En

∂E∗
n

∂z

)
− |∇En|2

+ 4 (θn + θb) |En|2 − ν|∇θn|2 − 2qθ2
n , (9)

with the asterisk denoting the complex conjugate. The aver-
aged Lagrangian L is calculated by substitution of the trial
functions (7) into this Lagrangian and integration in x and
y from −∞ to ∞ [30]. In a similar manner to that used in
previous work [7], this yields

L = −2(a2w2I2 + �g2)

(
dσ

dz
− �

dξ

dz

)
− 2I1aw2 dg

dz

+ 2I1gw2 da

dz
+ 4I1awg

dw

dz
− a2I22 − (a2w2I2

+�g2)�2 − 4νI42α
2 − 2qI4α

2β2 + 2A2B2αa2β2w2

A2β2 + B2w2

+ 2F (z)a2B2w2e−γ ξ+γ 2B2w2/4. (10)

The modulation equations for the nematicon parameters are
then the variational equations of this averaged Lagrangian.
These modulation equations are

d

dz
(I2a

2w2 + �g2) = 0, (11)

d

dz
(I1aw2) = �g

(
dσ

dz
− 1

2
�2

)
, (12)

I1
dg

dz
= I22a

2w2
− A2B4aw2αβ2

(A2β2 + B2w2)2

+ 1

4
F (z)γ 2B4aw2e−γ ξ+γ 2B2w2/4, (13)

I2

(
dσ

dz
− 1

2
�2

)
= −I22

w2
+ A2B2αβ2(A2β2 + 2B2w2)

(A2β2 + B2w2)2

+F (z)B2

(
1 − γ 2B2w2

4

)
e−γ ξ+γ 2B2w2/4,

(14)

d

dz
[(I2a

2w2 + �g2)�] = −2I2F (z)γ a2w2e−γ ξ+γ 2B2w2/4,

(15)

dξ

dz
= �, (16)

with the algebraic equations

α = A2B4a2w4

qI4(A2β2 + B2w2)2
,

(17)

α = A2B2a2β2w2

(A2β2 + B2w2)(4νI42 + 2qI4β2)
.

The various integrals Ii and Iij and the constants A and B

are given in the Appendix. Owing to the short propagation
lengths considered here, these equations do not include the
dissipative effect of the diffractive radiation shed by the
nematicon as it evolves [7]. Solutions of these modulation
equations will now be compared with full numerical solutions
of the nematicon equations. The field equation (5) was solved
using a pseudospectral method similar to that of Fornberg
and Whitham [31]. The director equation (6) was solved
as a boundary value problem using a Fourier method [32].
The numerical method is the same as that of Skuse and
Smyth [33], so no further description will be given here.
The modulation equations were solved using the standard
fourth-order Runge-Kutta scheme.
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FIG. 2. (Color online) Comparisons for an optically rarer (lower-
index) region (p = 1) for the initial conditions a = 1.0, w = 3.5,
�0 = 0.0, ξ = 0.0, E0 = 1.0, γ = 0.01, ν = 200, and q = 2 with
z1 = 30 and z2 = 60 for f (ρ) = sechρ. Full numerical solution (—)
(red); solution of modulation equations (– – –) (green). (a) Positions;
(b) amplitudes.
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III. COMPARISON WITH NUMERICAL RESULTS

A comparison between a full numerical solution and a mod-
ulation solution for (a) the peak position and (b) the amplitude
of the solitary beam is presented in Fig. 2 for an optically
rarer region, that is, a defect with a lower refractive index
(p = 1). The choice f (ρ) = sech ρ was made for the trial
function, with the initial numerical profile of the same form.
It can be seen that there is perfect agreement for the beam
position, with excellent agreement for the amplitude evolution.
The beam is seen to refract before it enters the illuminated
region in 30 < z < 60. This is because of the nonlocal nature
of the NLC response, so that the external beam causes
reorientation of the nematic liquid-crystal director well outside
the illuminated region, as seen from the solution (3) for the
control-induced reorientation θb of the director.

The nearly perfect agreement between the modulation
and numerical solutions for the position of the nematicon is
verified over the full range of input angles �0, as can be seen
from Fig. 3. This figure shows the angle of refraction of the
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FIG. 3. (Color online) (a) Refraction angle as given by the full
numerical solutions (—+—) (red) and the modulation solutions
(– –×– –) (green) and (b) refraction angle percentage error φRE

through an optically rarer index region (p = 1) for f (ρ) = sech ρ as
given by the modulation solutions relative to the numerical solutions
as a function of �0 with initial values a = 1.0, w = 3.5, ξ = 0.0,
E0 = 1.0, γ = 0.01, ν = 200, q = 2, where z1 = 30, z2 = 60.

nematicon as a function of its input angle for an optically
rarer region, p = 1. The angle of refraction is calculated as
the angle the soliton makes with respect to z in the xz plane
when it has propagated far from the illuminated region. The
percentage error in the predictions of the modulation theory
as compared with the numerical solutions is generally well
below 1% and typically around 0.1% for most of the range of
�0. This agreement is a substantial improvement over the
1%–2% agreement for the nematicon position in previous
studies of the interaction between two-color nematicons; for
example, [33,34]. The reason for such a good agreement can
be found by studying the role of various nematicon profiles.

Figure 4 shows a comparison of the nematicon amplitude
and position as given by the numerical solution for two
initial profiles, namely, a sech [f (ρ) = sech ρ] and a Gaussian
[f (ρ) = exp(−ρ2)]. The initial amplitudes and widths for
the sech and Gaussian profiles were chosen to be different,
with no attempt made to fit the Gaussian to the sech profile.
Clearly, the amplitude evolutions for the two profiles are
widely different. However, the position evolutions are identical
within graphic accuracy. For the nonlocal parameters chosen
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FIG. 4. (Color online) Full numerical solutions with initial values
�0 = 0.02, ξ = 0.0, E0 = 1.5, γ = 0.01, ν = 200, and q = 2 with
z1 = 30 and z2 = 60 for an optically rarer region (p = 1) for
f (ρ) = sech ρ with a = 1.0, w = 3.5 (—) (red) and for a Gaussian
initial profile f (ρ) = exp(−ρ2) with a = 1.5, w = 5 (– – –) (green).
(a) Positions; (b) amplitudes.
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in the current study, the modulation equations (11)–(16)
predict such insensitivity to the beam profile. In the nonlocal
regime, the amount of radiation shed by the nematicon as
it propagates is small, so that g is small [7]. The �g2 term
in the momentum equation (15) is then negligible and the
profile factor I2a

2w2 cancels out. Furthermore, the decay
rate γ was chosen to be small, as in the experimental
report [17], so that the term γ 2B2w2/4 in the exponent
on the right-hand side of the momentum equation (15) is
negligible compared to −γ ξ . Hence, in the nonlocal limit
with a small decay of the illumination beam, any contributions
of the specific nematicon profile cancel out of the momentum
equation (15) and the beam trajectory is independent of the
transverse shape of the beam, as long as it is self-similar.
The latter is confirmed by the numerical trajectory being
independent of the profile. The modulation solution assumes
that the nematicon retains its initial shape. While the numerical
profile evolves from its initial form, the independence of
the trajectory of the soliton profile still allows near-perfect
agreement between the numerical and modulation trajectories.
However, the details of the nematicon profile do not cancel out
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FIG. 5. (Color online) (a) Refraction angle φ as given by the
full numerical solutions (—+—) (red) and the modulation solutions
(– –×– –) (green) and (b) angle of refraction percentage error
φRE through an optically denser region (p = −1) as given by the
modulation solutions relative to the numerical solutions for f (ρ) =
sech ρ as a function of E0 with initial values a = 1.0, w = 3.5, ξ =
0.0, �0 = 0.0, γ = 0.01, ν = 200, q = 2, where z1 = 30, z2 = 60.

of the amplitude equation (12) under the nonlocal and small-γ
assumptions. Therefore the amplitude evolution will depend
on the nematicon profile, consistent with Fig. 4(b).

The excellent agreement between the numerical and mod-
ulation solutions also holds for an optically denser (higher-
index) region, so that p = −1. The independence of the
nematicon trajectory of the details of its profile in the nonlocal
limit with modest decay of the illumination beam γ will still
hold as the canceling out of all details of the profile from the
momentum equation (15) is independent of the polarization
of the illumination beam. Figure 5 shows comparisons of
the refraction angle and the percentage error in it as given by the
numerical and modulation solutions, but as a function of the
intensity of the illumination beam. The agreement is again
excellent, with some deviation for higher powers. Overall the
agreement is similar to that shown in Fig. 3 for a less dense
illuminated region.

The reason for the deviation between the numerical and
modulation solutions for high control beam intensity when
the illuminated region is optically denser can be seen in a
specific example with E0 = 1.5, as shown in Fig. 6. After
the nematicon has left the illuminated region, oscillations
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FIG. 6. (Color online) Comparisons for the initial values a = 1.0,
w = 3.5, �0 = 0.0, ξ = 0.0, E0 = 1.5, γ = 0.01, ν = 200, and
q = 2 where z1 = 30 and z2 = 60 for an optically denser region
(p = −1) with a sech initial profile. Full numerical solution (—)
(red); modulation solution (– – –) (green). (a) Positions; (b)
amplitudes.
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FIG. 7. (Color online) Full numerical solution for a sech initial
profile at z = 57 with initial values a = 1.0, w = 3.5, �0 = −1.0,
ξ = 0.0, E0 = 1.5, γ = 0.01, ν = 200, and q = 2 where z1 = 30
and z2 = 60 for an optically denser region (p = −1). (a) Solution for
|u|; (b) solution for θ .

appear in the numerical position and amplitude as the soliton
breaks up into two beams. As the nematicon refracts into
a region with a higher illumination intensity, as can be
seen from Fig. 6(a), the director perturbation θb owing to
illumination increases, so that the nonlinear coefficient in the
nonlinear-Schrödinger-type equation (5) increases as well. If
this nonlinearity grows enough, an individual nematicon will
break up into multiple nematicons, as expected from standard
solitary wave theory [30]. The numerical solution shows
oscillations in the amplitude and position as the code seeks
the location of the maximum of |En| in order to determine the
position of the nematicon. The oscillations are therefore due to
the code “hopping” between the two generated solitons as each
in turn has a higher amplitude. This generation of multiple
nematicons for high illumination intensity is illustrated in

Fig. 7. For the higher input angle used, the nematicon has
split into two inside the defect region.

IV. CONCLUSIONS

The propagation of a solitary wave, a nematicon, through
a bulk nematic liquid crystal in the presence of an index
of refraction variation caused by a localized illumination
beam has been modeled by use of a variational technique.
Its predictions have been found to be in excellent agreement
with numerical solutions of the governing equations. The
rather surprising result of the analysis is that, in the nonlocal
response regime, the nematicon trajectory is independent of
its transverse profile, as long as it is self-similar.

The independence of the nematicon trajectory of the
specifics of its profile should extend to other situations
in which a nematicon is refracted through changes in the
refractive index owing to variations in the director orientation,
whether these are due to other beams or to the applied
voltage. One of the problems with modeling nonlinear wave
evolution in higher dimensions has been the lack of an exact
steady solitary wave (nematicon) solution on which to base
perturbation theory, or other types of analytical analysis. The
present finding—that this knowledge is not necessary for a
localized index variation—allows the inference that the same
independence from the profile shape should apply to other
problems of accessible solitons [5,35] propagating through
refractive perturbations.
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APPENDIX: INTEGRALS

The integrals Ii and Ii,j in the modulation equations are

I1 =
∫ ∞

0
ρf (ρ) dρ, I2 =

∫ ∞

0
ρf 2(ρ) dρ,

I22 =
∫ ∞

0
ρ

(
df

dρ

)2

dρ, Ix32 =
∫ ∞

0
ρ3f 2(ρ) dρ, (A1)

I42 = 1

4

∫ ∞

0
ρ

(
d

dρ
f 2(ρ)

)2

dρ,

I4 =
∫ ∞

0
ρf 4(ρ) dρ.

The constants A and B arising in the modulation equations
are

A = I2

√
2√

Ix32
and B =

√
2I2. (A2)
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