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Decoherence and dephasing in a quantum measurement process
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We numerically simulate the quantum measurement process by modeling the measuring apparatus as a
one-dimensional Dirac comb that interacts with an incoming object particle. The global effect of the apparatus
can be well schematized in terms of the total transmission probability andett@herence parametewhich
guantitatively characterizes the loss of quantum-mechanical coherence and the wave-function collapse by
measurement. These two quantities alone enable one to judge whether the apparatus works well or not as a
detection system. We derive simple theoretical formulas that are in excellent agreement with the numerical
results, and can be very useful in order to make a “design theory” of a measuring sigsttantoy. We also
discuss some important characteristics of the wave-function collgp$650-29476)07507-3

PACS numbds): 03.65.Bz

I. INTRODUCTION giving a quantitative estimate of the dephasing occurring in a

i hanics is th t fund tal bhvsi aﬂuantum measurement process. A similar philosophy has
Quantum mechanics is the most fundamental physic een followed by several authors at different times. Among

theory developed during the last seventy years. Neverthelesgy, o o antitative measures for decoherence were also pro-
phyS|C|st§ still debate the quantum measurement probIerBosed by Caldeira and Leggé® and Paz, Habib, and Zurek
[1,2], which has caused them to ponder over some very funr7] |t should be emphasized that the present paper follows
damental questions. While the original formulation, essenyp approach originally put forward in 1948].
t|a.”y due to von Neumann, introduced the so-called “col- Stnct'y Speaking’ the decoherence parameter should be
lapse” of the wave function as a postulate, currently mostestimated by means of a dynamical-statistical analysis of the
physicists think that it is necessary to analyze and derive thabove-mentioned complicated interactions taking place in-
guantum measurement process by starting from fundamentgide the apparatus. This kind of theoretical work is, of
laws. A quantum measurement must be analyzed as a coneurse, very hard to carry out in a satisfactory way. For this
crete physical process, by means of quantum mechanics iteason, in the present paper, we shall study the interaction
self, and must not be dealt with by postulating a “collapse” between an object particl€® and a linear arrayA of
a la von Neumanri3-5|. &-shaped potential@ Dirac comb, representing the elemen-
The seminal formulation, due to von Neumann, is verytary constituents of the macroscopic apparatus. The collision
unsatisfactory from the point of view of the internal consis-centers ¢ potential$ are regarded as heavy and structureless
tency of quantum theory, because the act of “observation,”in the present model, so that every elementary collision is
namely the very possibility of obtaining information about elastic and we cannot expect genuine dissipation effects,
the quantum properties of the system under investigatiorsuch as absorption, directly stemming from the elementary
requires the existence of “classical” devices that, by defini-interactions. Nevertheless, since reflections in the one-
tion, do not follow the quantum mechanical laws. It would dimensional case correspond to leakage provoked by elastic
be baffling, in our opinion, if such a fundamental theory suchdeflections in a three-dimensional apparatus, we can natu-
as quantum mechanics would need classical, nonquan- rally expect to have some kind of “dissipation” f@, pro-
tum) objects in order to ascertain the very value of quantumvoked by successive reflections from the constituents.of
observables. In fact, we shall observe a certain kind of irreversibility by
A quantum measurement isvery complicatedphysical  taking into account the randomness of the macroscopic sys-
process, because it involves the interaction of an object sysemA, schematized by the fluctuations of the parameters that
tem Q with a macroscopic apparatdg made up of a huge characterize the Dirac comb. This is only a caricature of a
number of elementary constituents. The interactions takingneasurement process, which can only roughly represent the
place betweerQ and the constituents oA will provoke  complicated interactions taking place in a real measurement
“dephasing” or “decoherence” on the former. This loss of process. Nonetheless, we shall see that even such a rough
guantum-mechanical coherence is the physical process thakample can yield, via the evaluation of the decoherence
underlines, in our opinion, the so-called “collapse” of the parameter, useful insights into the phenomenon of decoher-
wave function. ence, mainly through numerical simulations. At the same
In order to analyze the above-mentioned loss of quantumtime, we shall see that our analysis can yield a possible and
mechanical coherence, we introduced a ‘“decoherence pareliminary “design theory” in order to “tailor” an appara-
rameter”[4,5], which estimates the “degree of collapse” of tus to be used as a detector in a quantum measurement pro-
the wave function. This can be regarded as an attempt aess.
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54 DECOHERENCE AND DEPHASING IN A QUANTUM ... 1065
Il. DEPHASING AND INTERACTION IN THE APPARATUS in general. For this reason, we shall simply model the phe-
nomenon of decoherence by concentrating only on the fun-
damental role played by the many fine interactions taking
place betweer® and the elementary constituents Af To
this end, we shall suppress the apparatus states in the follow-
|D ) =)@ |A)— D)= cld®|A), (2.)  ing description. This is obviously a drastic simplification. In

K order to avoid any misunderstandings, we stress that this
simplification aims only at performing keuristic treatment
of decoherence.

In the von Neumann—-Wigner approadh8] the quantum
measurement process is described as

where |®),|¢),|A) are the wave functions of the total
(Q+A) Q andA systems, respectively, the subscriptand
F stand for initial and final, respectivelyi) =3 ,ci| ),

{l#)}k is a complete set of eigenfunctions @f and|Ay) IIl. THE DECOHERENCE PARAMETER

denotes the apparatus state displayingktieresult. This is o

often called a von Neumann measurement process of the first A. Definition

kind. Let us briefly summarize some of our previous resisis

Many physicists start their discussion on the measuremenind reintroduce thelecoherence parametein terms of
problem from the von Neumann proce®sl). However, as a  which aquantitativedefinition of wave-function collapse can
matter of fact, Eq(2.1) doesnot represent anyollapseof  be given. Consider a typical Young-type experiment, in
the wave function. It simply displays spectral decomposi- which an incomingQ “particle” (namely, a Schidinger
tion [3-5,8, namely, a physical process in which the statesyave function relative to a single detection evestsplit in
of the apparatus. become entangled with those of the objecttwo statesy; and ,, corresponding to the two possible
systemQ. No measurement has occurred(hl), because routes in the interferometer. We place the apparAtasong

the phase correlation is still perfectly kept |i#®¢): Indeed, the second path, so that the wave functiorQofeads
the final density matrix
Y=t T, (3.9

pr=| PN Pe|= 2 [l wid © | A (A
K whereT is the transmission coefficient. Following our dis-
cussion in the preceding section, the apparatus state has been
+Z 2 cicl [ )il ®|ANA| (2.2 suppressed, although the action of the apparatus orQthe
A particle has been properly taken into accountNigor sim-

contains all its off-diagonal terms, which can give rise to anypl'c'ty’ we assume thag, and 4, are very close to a plane

sort of coherent quantum-mechanical effects, such as intefYave with wave numbek. If we want to take into account
ference. wave-packet effects, we have to average our results, as, for

It should also be emphasized that in order to view thdnSténce, Egs.(3.2) or (3.3, with the k-weight factor

2 . .
above process as a “measurement,” in some sense, one h K)|* characterizing the wave packet.

; ; i Equation(3.2) holds for every single incoming particle.
to require the orthogonality condition among the apparatu . . R :
stateg' g y g op ?\/Ioreover, every incoming particle is described by Haene

wave function = i, + 4, immediately before interacting
(AIAY=8),  Vi.k. (2.3  Wwith the apparatus. However, after the interaction, the appa-
ratus transmission coefficiemtwill depend on the particular
The above requirement is of paramount importance both impparatus state at thery instantof the passage of the par-
the von Neumann—Wigner approach and in the so-called ericle. Since the apparatus undergoes random fluctuations
vironment theorie§9]. It also plays a fundamental role in the (which reflect the internal motion of its elementary quantum
“many-worlds interpretation’T10,11]. However, it is a pos- constituents we label the incoming particle withj
tulate that cannot be proved and is subject to many criticisméj =1, ... N,, whereN, is the total number of particles in
[4,5,17. an experimental ryn and rewrite the transmission coeffi-
By contrast with the approach outlined above, We anacient asT; (j=1,... Np). Notice that the same macro-
lyzed the measurement process by describing the apparatasopic state of the apparatus will correspond to many differ-
in terms of density matricegvhich is physically more sen- ent microscopic states. Consequently, different incoming
sible), estimated the decoherence paramefeand discussed particles will be affected differently by the interaction with
under which conditions the off-diagonal terms of the totalthe apparatus, and will be described by slightly different val-
density matrix can be shown to vanish: What we need is ales of T. Accordingly, the probability of detecting thigh
(macroscopig detector that is able to act asdephaser particle after recombination reads
namely, to erase the phase correlations between different
states ofA [4,5]. . .
In this paper, we shall concentrate on a very particular P(J)E|‘/’(J)|2=|‘/’1+Tj ¥l =y
aspect of this problem. S_trictly speaking, the wave-function + |TJ-|2|¢2|2+2Re( YET ). (3.2
collapse should be described in terms of the apparatus states,
by showing explicitly the disappearance of the off-diagonal
part of the total density matrix, as in E¢B.9) of the first ~ After many particles have been detected, the average prob-
paper in[5] or Eq.(38) of [4]. This problem is very involved, ability will be given by
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1 N to the statistical ensemble averagever all the possible mi-
EN—E D =]y |24+ | T2 |2 crostates of the apparatus. If we denote the latter with
pi=1 (---), our assumption reads

+ 2R Y Tihy), (3.3 cee=(e), (3.7

where the overbar denotes awent averagever all events 1 he significance of the ergodic assumption in quantum phys-
in one experimental rutwhich is made up oN, event. ~ CS IS not as clear as it is in classical physics, where the
Note that|T|2<|T|2 and that a necessary and suff|C|ent Con_ergodlc theorem states that the long-time average of an ob-

dition for observing no interferencésollapse of the wave servable can be replaced with an ensemble average over the
= 9 P phase space. Ergodicity is not easy to prove mathematically

function) is T=0. We define thalecoherence parametes  3nq is therefore often postulated on physical grounds. In the
present context, E¢3.7) must also be regarded as a physical

|T|2 postulate.
e=l-=, Oses<l, (3.4 In the following, the two above-mentioned averages will
7| be used interchangeably by virtue of Eg.7). In particular,
and rewrite Eq(3.3) as (DI?
a(3.3 €= __2_<|T| % (3.8

P=lyal2+ [yol2+ 2Vt 1« Re(yT€'’y;), (3.5  On the other hand, one should keep in mind that, strictly
o speaking, the above two averages cannot always be com-
whereT=|T|e'# andt=|T|2. Notice thatt is theexperimen- pletely identified. The decoherence parameter, if defined via
tally measuredzalue of the transmission probability. A non- the event average, as {8.4) (e.g., in a numerical simula-
vanishinge is a consequence of the statistical fluctuations infion), in general cannot vanish. Indeed,
the apparatus. Interference is lost, and hence the wave-

. . . . e p p
function collapse takes place, in the limdt=1. All effects |T|2= 2 WZZ |-|-J_|2+ —22 L
provoked by A on Q are properly taken into account = = k
by t=|T|? ande. (3.9
pattern that=; ., T;T§ =0, one obtains
— - T2
_Pmax_Pmin_ _2vt(1—6) _1_E~1_i (3.10
V== = Vo (l-e) =—————, TE Ny '
P maxT P min 1+t p
(3.9

Therefore, one needs many evenkg$1) in order to be
able to ascertain whether the quantum-mechanical coherence
whereVo=2\t/(1+1) is the value in the absence of fluc- is lost. If the latter requirement is not satisfied, in general one
tuations(observe that in such a caset). Once again we s not able to give an operationally meaningful definition of
see that coherence between the two branch waves is totaljjoss off coherence, as shown by E§.10. Observe that this
lost whene=1, in which case the visibility is zero. condition isindependenbf the physical requirement that the
It is worth stressing that this approach incorporates in anacroscopic apparatus be characterized by a huge number of
natural way the possibility of investigating those situations indegrees of freedom and be able to act as a dephaser.
which coherence igartially lost or, stated differently, the This observation has interesting spinoffs: The very con-
wave function ispartially collapsed. These intermediate cept of quantum-mechanical coherence appears to be statis-
cases correspond to the values 8<1. tical. One needs thaccumulationprocess of many indi-
The loss of quantum coherence is the result of a hugeidual events in order to defineand quantitatively estimate
number of rather “dirty” interactions, acting randomly for a the degree of dephasing. This is true not only when the de-
certain amount of time. We are therefore interested in thgree of decoherence is maximum, as in 8110, but even
effect onQ of a huge number of dirty (random) interactians for perfectly coherent systems: Consider, for example, a
Each interaction will take place betwe&h and one(or a  double-slit experiment yielding a perfect interference pattern.
bunch of elementary constituef® of A. The global effect Nothing can be said about the coherence properties of the
on the wave function of) will be, as we shall see, a loss of quantum systenithe beam of particles entering the interfer-
phase coherence. This is the idea we shall pursue in themetey if one does not accumulate many particles in order
present study. The task of the decoherence parareetéit  to build up the interference pattefh3].
be to judge whether the global interaction is “clean” The above considerations might make the reader think
(e=1) or “dirty” ( e<1). that no meaning can be ascribedsiogle detection events.
This would not be correct. One can give a sensible definition
of “collapse” for a single particle via Eq(3.7). In this way,
the coherence properties of a single quantum system can be
We can now formulate arergodic hypothesis The defined via the ensemble average of the macroscopic system
“event” average over many particles in one experimentalit interacted with. Individual detection events were discussed
run (denoted hitherto with an overbawill be assumed equal in Ref.[5].

B. Ergodic assumption
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IV. NUMERICAL SIMULATION detectoy, or an “absorber”(that yields a nonvanishing ab-
sorption coefficient We also showed that, in contrast to
widespread belief, absorption effects stemming from imagi-
We can now investigate the decoherence process from gary potentials are not necessarily significant for the collapse
numerical point of view. The particle interacts with the ap-of the wave function, because the loss of coherefafe
paratus(a macroscopic object made up of a huge number ofyhich € is an estimatestems only from the noise and the
elementary constituentsccording to the laws of quantum numberN of elementary interactions in the apparatus. In the
mechanics(Schralinger equation We will describe every present paper, unlike if4], we shall introduce fluctuations
interacting constituenfor every bunch of constituentsvith of N and shall analyze in detail the dependenceeofn
a 6 potential, and the whole apparatus with a one-several numerical constants involved. In the case of large
dimensional array ob potentials(a Dirac comb. This is the  absorptionlike effects due to reflections, we shall see that

well-known Kronig-Penney modglL4], which has been in-  fluctuations become large enough to yield the wave-function
vestigated from several points of vieltt5]. Previous nu- collapse.

merical simulations of the measurement process by means of
a Dirac comb were performed in Refd,16]. In the present
paper, however, we shall focus our attention on the role
played by some particular combination of the numerical con- Equation(4.2) must be solved for many different incom-
stants characterizing the array of potentials. We shall see thég particles(“events”) and according to the analysis of Sec.
the apparatus acts as a “dephaser” when some factors ap, the average transmission-reflection coefficient and prob-
pearing in the expression of the decoherence parameter ebility read
ceed certain “critical” values.

A. Dirac comb

B. Adjusting the parameters

N
. . . — 1 p
The total barrier will be written as (My=T==3 T, 4.4
N Npi=1
V(x)= >, AS(x—h,), (4.2)
/=1 1M
. . . (R)=R=3-2, R;, (4.5
whereN is the total number o& potentials, which play the Npi=1
role of “elementary interactions,’A the strength of the in-
teractions, and, their locations. 1M
The transmission and reflection coefficiefitsand R of <t>=<|T|2>=|T|2=N—. T2, (4.6
the whole barrier are computed in Appendix A. One obtains pi=1
o i} Nk . (N=(IRE)=[RP=F-Z, IR .7

where 73 is the third Pauli matrixk the wave number of 4,

Q.d,~b b, and quantities will always be computed fdd,= 1000 and the
y Uy—= VW17 U/,

ensemble averagg) will be taken over a Gaussian distribu-
tion of d, andN.
We must carefully avoid the case of resonance reflection
: 4.3 >t LOIE :
by the latticelike Dirac-comb structure, which may lead to a
) ] total reflection probability of order unity. This occurs when
whereQ)=A/fiv, v being theQ particle speed. V_Vi‘EbSha” set K(d) (k being the neutron wave number afu} the average
b;=0.[As explained in Appendix A, the fact@™ "™\, ap-  spacing between scattergis close to an integer multiple of
pearing in(4.2), should also be put in front d68) of Ref. - gych a situation has been observed and investigated dur-
[4] and (8.24) of the first paper in Ref.5].] _ ing the initial part of our numerical situation and is uninter-
So far, the internal motions of the elementary constituentggiing from the point of view of “decoherence” effects. In

of the apparatus have not been taken into account. Thegg simulation, in order to reduce unwanted spurious effects,
internal motions will give rise to an intrinsic stochasticity of \ya shall always set

the parameters describing the constituents themselves. In
terms of our Dirac-comb model, this stochasticity will be _
: ! . k(d)=4.5x. (4.9
modeled as follows: since the interactions between the appa-
ratus’s constituents and the incoming particles will take : . .
. : We shall focus our attention on thermal neutrons interacting
place in different parts of the apparatus, the positiopnsind .
. . i . ' . with atoms, so that
the relative spacings, =b, . ;—b, will be subject to statis-
tical fluctuations. Moreover, the total numbir of interac- 5
tions will also vary for different incoming particles. =T o A (dy=45 A. (4.9
In a previous numerical simulatiopt] we showed that K
this simple Dirac-comb model is able to reproduce correctly
many different physical devices, such as a “phase shifter'The statistical distributions of the spacings and of the num-
(that can preserve the quantum cohergmrea “dephaser”  ber of 6 potentials will be taken to be Gaussian, with aver-
(that is able to provoke complete dephasing and work as ages(d) and(N), respectively, and standard deviations

1-iQ —-iQ
Z=

iQ 1+iQ
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In our simulation, the value of these two parameters will be

varied between
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sd=((d—(d))?,

oN=\{(N—(N))?).

0<sY=<.5, O0OsA=<1.

(4.10

(4.11

(4.12

that it does not provoke decoherence on the incoming par-
ticle. This point will be considered and discussed in Sec.
IVF, in particular in connection with neutron interferometry.
Notice also that many detectors make use of thermodynami-
cally unstable states, such as gases or liquids in critical con-
ditions, whose physical states are characterized by very large
statistical fluctuations.

It is not very easy to understand what are the physically
most interesting values of the paramefes A/hv appear-

ing in Eq. (4.3). Such values must be determined according
to the physical problem investigated. One can guess that

The maximum value o¥ does not seem appropriate to de- there are situations in which there is a profound link between
scribe a rigid lattice. Indeed, as we shall see, there are sitf and (N), which may lead, under some conditions, to a

ations in which coherence is lost fof>10"1.

In such a

precise relation betweef) and(N): This is closely related

case, the apparatus cannot be viewed as a solid: A rigitb van Hove’s “A2T” limit and to the occurrence of a dis-

lattice cannot work properly as a “detector,

in the sensesipativelike behavior in quantum mechanics, and has been

FIG. 1. Dependence of on (N) and A, for some values of. Observe the sharp transition region fram 0 (coherencgto e=1
(decoherengewhenY=0. See text.
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FIG. 2. Transmission probabilit§{ T|?) vs (N) andA.

discussed elsewherfd7]. We shall briefly reconsider this <|T|2>=<|T|2>(A,Y,<N>), (4.14
point in Sec. V.
The quantityQ) plays the role of a coupling constant, e=e(A,Y,(NY) 4.15

which can be neither too small nor too big in order to ensure
the occurrence of some dephasing. In our simulatjii
will reach the value 19 and it has been found that if
Q<10 ! no decoherence takes place. We therefore set in th
following numerical study

Our task is to clarify how the wave-function collapse
kes place §—1) when the numerical values &f, Y, and
N) change. For the sake of clarity, we shall perform differ-
ent simulations: In the first one, we shall (&) andA vary,
Q=101 (4.13  while keepingY fixed to a few different values. In the sec-
ond one{N) andY will be varied while keeping\ fixed to
The values of the transmission probability and decohera few different values. In the third and last one, all param-
ence parametefor, equivalently, the transmission coeffi- eters shall be varied.
cienh depend on all the physical quantities we have consid-
ered so far. Since the numerical values(d} and Q) are C. Varving N and A
fixedaccording to Eqs(4.9) and(4.13), respectively, we can - varying I\ an
state that, in general, onl§, Y, and(N) determine(|T|?) Figure 1 displays the dependenceeobn (N) andA for
ande, i.e., several values ofY, Fig. 2 displays the behavior of
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FIG. 3. Dependence af on (N)A? for several values ofN) and forY=0. The dotted line is Eq4.19. The diamond points are the
numerical results. See text.

(t)={(|T|?) as a function of the same parameters, and Fig. 3rom which we easily derivésee Appendix B
the behavior ofe versus(N)A? for Y=0. CNOr 12 ioen
Observe that ifY =0 the transition region from coherent T=e " [1-7041-(-e “5)"}]. (417
behavior €=0) to totally decoherent behaviore€1) is
very shars ang oceurs a%ong the lin@g)A2= co;(s:t. zl'his By taking the average oved with a Gaussian distribution

behavior can be explained by noting that, for snfajl the ~ and neglecting small quantities, we obtain
transmission coefficierif for a singled [see Eq(A2)] reads
ISSI ICI Ing [ Q( )] <|T|2>21, |<T>|2:e7(N)A202' (418)

1 1

=imo~ ozt

—itan 10 o= (1207510 so that

(4.16 e=1—e (NA%0? (4.19
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FIG. 4. Dependence af on (N) andY. Observe the “saturation” effect whevi>10"1. See text.

In Fig. 3, the “diamond” points are the numerical results D. Varying N and Y
and the dotted lines are our approximate formdld9. The Figure 4 shows the dependence «bn (N) and Y for

agreement is excellent. _ . several values oA. The behavior oft)=(|T|?) as a func-
The above reasoning explains the sharp transition alongon of the same parameters is shown in Fig. 5. For large

. 2_ _ . . . . .
the lines(N)A“= const whenY=0. This situation is physi- 51 es ofY, this situation corresponds to a neutron beam
cally interesting because it corresponds to the case of a neHiteracting with an absorber made up of a liquid or a dilute

tron beam interacting with a macroscopic solid object, like agq|tion or a gaf18]. (A solid lattice would “melt” for such
crystal: The spacing between different atoms of the macrorarge values ofY.)

scopic object igalmos} constant, but different neutrons im- 1 s interesting to notice that there is a “saturation” effect
pinge on different parts of the crystal, at slightly different i, this case: Ifty>0.1, the values oé and(t) do not depend
angles, interacting therefore with a different number of el-gignjficantly on(N). The easiest way to understand this ef-
ementary scatterers. fect is probably to take the ensemble average of both sides of

When the conditiony =0 (fixed spacings between adja- Eq. (4.2): Since the fluctuations ofi, are independent for
cent potentialsdoes not hold anymore, additional random- different/, (T) contains factors of the type

ization effects appear and the above approximations break A . sz
down. This is shown in the other graphs of Figs. 1 and 2. (elkdry= gD~ kY72 (4.20
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<ITP> 0.5

FIG. 5. (JT|?) vs(N) andY.

which vanish(washing away the dependence ®h when
Y>2/k(d)=10"1 [see Eq(4.8)]. A similar situation occurs
for (| T|?). Observe that this phenomenon takes place inde-

pendently of the value oh.

A more detailed explanation of this effect is given in Ap-

pendix B: One can see that, whan=0, by expandindr in
powers of the reflection coefficie® (see Appendix Aof a
single 6 potential and writing

T=TY1+a(R)}, (4.21)
one gets at second order i

Y—large

[(TI? — exd=N|R[?), (4.22

Y—large

(T —  exp—N|RIZ)exp(|R|*S\), (4.23

Y—large
e — 1—exp—[RI*SY). (4.24)
where
Y—largg T{AN_N| T[4+ N—1
S . 4.2
A RSV 429

This result is essentially due to a complete randomization of
the phases acquired by multiple reflections, which leads to

Y—large

(a) — 0. (4.26
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FIG. 7. General case: Comparison of the perturbative formulas

with the numerical results is excellent, as can be seen i4.28-(4.30 with the numerical results. The solid curves are given

Fig. 6.

by the perturbative formulagt.28—(4.30 and the diamond points

On the other hand, when there is no “saturation” effectare the numerical resultsAE0.)

andA =0, one finds it convenient to define the numbkg
of potentials theQ particle effectivelyinteracts with

Ne=N-+2ReS,?

EN+2Re[

where s=T%(e?kd) = — 722> By making use of
this newly defined parameter, one obtains

s(sN—Ns+N—-1)
T2(s—1)? ’

(4.27

[(T)[?=exp(— Ne| R|?), (4.28
(ITI%)=exp(—Negl RIDexp|RI*S\D),  (4.29
e=1—exp —[R|*S{) ). (4.30

These formulas are identical with those obtained forstug-
rated region [Eqgs. (4.22—(4.24)], when N is replaced by

Nesi- Also in this case, the agreement of the perturbative
formulas (4.28—(4.30 with the numerical results is excel-
lent, as can be seen in Fig. 7.
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FIG. 8. Dependence of on (N)Y? for several values ofN).
(A=0.)
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FIG. 9. Decoherence parameteand transmission probabilig) T|?) vs (N)A2 and({N)Y?, for several values ofN). The solid curves
are given by(4.36) and(4.32 and the diamond points are the numerical results.

The decoherence parameter verdli¥?> when A=0 is  case discussed in Sec. IV C, whAr:0 additional random-
shown in Fig. 8. It is interesting to notice that, for lafye  ization effects appear and the above approximations break
€ becomes a function of the single variatér?. As in the  down. The resultant effect is shown in Figs. 4 and 5.
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T. The transmission coefficients
I 0 - 1 T; of N,=150 particles are dis-
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tom: A= 0, 0.02, 0.05, 0.1, 0.2,
0.4, 0.5, and 1.0.

e=€e((N)AZ,(N)Y?). (4.3

We have seen that the decoherence parameter essentially
depends on some particular combination of the parametdn the present section we shall study the behavioe ek a

considered. Namely,

function of these quantities. This is the most interesting situ-
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ation, from the physical point of view. It corresponds to the In order to explain these results, it is convenient to ob-
case of a neutron interacting with a gas or liquid absorber, iserve that, in our numerical simulation, the transmission
which both the positions and the total number of scattererprobability turns out to be largely independentiaf We can
change from event to event. therefore assume that
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FIG. 14. “Summary” of different numerical simulations. The points refer to different values\ ofY, and (N). In (a), A=0,
1Os(N)<104, and 0<Y<0.5: All points lie on the same curve. [b), 0<A<1, 10&(N>slo“, and 0<Y=<0.5. In all casese— 1 when
(|T|®—0. Dephasing and decoherence cannot be avoided at very low transmission probability

(ITPna=(IT?)a (Mna=(e™H(T)dl- (4.34
=exp(—NeRIDexp|RI*S\) ). (432 | this way we obtain

where we explicitly wrote which variables the averages are (TYnal?= (e NN 2Tl
taken over. Moreover, the analysis of Appendix B shows that 9 r2 )
=exp —(N)Q?A%)exp( —Nggt [R]?),

(Ta = TH{1-|RIZS{ = N(T)gl. (433 (4.39

We therefore assume that so that the decoherence parameter turns out to be
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Y, eventually leading to a complete loss of quantum-
mechanical coherence, can be suitably tailored and exploited
in order to yield the desired type of dephasieg., by trans-
mitting theQ particle with high or low probability Second,

this analysis can be important for the study of neutron inter-
ferometry experiments at very low transmission probability
[18,19, because it suggests that different physical devices,
such as a silicon crystal, a gaseous or a liquid absdd@y

can modify the coherence properties of an incoming neutron
beam in many different ways. For example, one cannot ex-
pect a strong dependence ¥r(d fluctuations for a crystal.

On the other hand, an interesting dependence @f Y can
certainly be expected when a gase¢say Ne neutron ab-
sorber or a water solution of some highly absorbing material
(say Gd is inserted in an interferomet¢i8]. Incidentally,
Neff vs Y vs <N> notice that a dependence dnis to be expected both for a
crystal or a gaseous device, because geometrical factors play
here an important role here.

An exhaustive discussion of these effects, beyond the
gualitative estimates given here and in Rdf9], requires a
different study and is not easy to perform, because it in-

ez1—exp(—(N)QzAz)exp(—lR|4SN4> ). (4.39 volves a careful estimate of the most important characteris-
e tics of the experimental setup. Such a program is at present
In spite of the crudeness of the above approximations, thender consideration.
agreement of these formulas with the numerical results is However, it is possible to draw some general conclusions
excellent, as can be seen from Fig. 9. Equatioh82, even from the results of our simulation: A collection of many
(4.35, and(4.36 are our main results and cover all the par- different numerical simulations is shown in Fig. 14 dihthe

FIG. 15. N ¢ vs Y and(N).

ticular cases hiterto considered. cases investigatedne observes that whéfiT|?) is close to
0, in generak=1. In other words, it appears that in general,
F. Comments decoherence effects cannot be avoided at low transmission
. . . robability.
In order to clarify the mechanism underlying the loss ofp v

Notice that this phenomenon exists for all values of the
arameterd\, Y, and({N). Even though the present numeri-
al simulation neglects many important characteristics of a
real experiment, it is difficult to believe that the behavior
displayed in Fig. 14 be just a coincidence. It is worth stress-
ing that the statistical fluctuations of a real macroscopic ap-
ﬁqratus cameverbe neglected, even in principle, because of
inite-temperature effects and of the impossibility of isolating
completely the apparatus from its environment.

guantum-mechanical coherence, we have drawn, i
Figs. 10-13, the phase diagrams of the transmission pro
ability T. Every figure displays the transmission coefficients
T; of N,= 150 particles.

In Fig. 10,Y=0, (N)=2000, andA is varied between 0.0
and 1.0. Observe that although the phases spread, the val
of the transmission probability is constant and independe
of A. In the particular case displayedT|?) is close to 1 and
the phases are completely randomizedAer 1 (“collapse”
of the wave function

In Fig. 11,A=0, (N)= 2000, andy is varied between 0.0
and 0.5. In this case the effect is different: The transmission We have discussed some important characteristics of the
probability (| T|?) is strongly dependent of. The quantum quantum measurement process by making use of a schematic
coherence is completely lost fof=0.5 (“collapse” of the  representation of a macroscopic device: In our analysis, the
wave function. complicated dynamical behavior of the elementary constitu-

In Figs. 12 and 13, both sources of fluctuation areents of the apparatu®ur “detector”) was represented by
switched on: In the first cas¢N)=2000, Y=0.02 (fixed), = means of an array of potentials undergoii@aussian ran-
and A is varied as in Fig. 10. The phase coherence is lostiom fluctuations. The “collapse” of the wave function is a
already forA= 0.5 (“collapse” of the wave function Inthe  consequence of the dephasing effects that provoke a loss of
second casg,N)=2000,A=0.5 (fixed), andY is varied as gquantum-mechanical coherence.
in Fig. 11. There is complete dephasing already for Our main conclusions are Eqgl.32), (4.35, and(4.36),
Y=0.05(“collapse” of the wave function which give a realistic estimate of the transmission probabil-

It is interesting to observe that the parametarand Y ity, transmission coefficient, and decoherence parameter, re-
provoke decoherence in different ways: The value of thespectively. The values of these parameters alone suffice to
transmission probability is practically independent; on the outline the essential features of the interaction between the
other hand, it is strongly dependent ¥n This is important Q particle and the apparatus.
for two independent reasons. First, this analysis sets the pre- The dephasing effects can always be quantitatively ana-
liminary basis for a “design theory” of a quantum- lyzed by means of the decoherence parameterhich plays
mechanical detector. The combined action{ify, A, and the effective role of an “order parameter” for the wave-

V. CONCLUDING REMARKS
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function collapse. This is only an analogy, and must be con- We would like to conclude this discussion with a perspec-
sidered with great care. Indeed, we are not supplying anfive on the measurement problem and the general issue of
evidence that the quantum measurement process can Hecoherence. We believe that decoherence should be under-
viewed as a phase transition, and are unable, at the prese#ipod as a dissipative phenomenon of some[4dfit A simi-
stage, to corroborate this idea with clear-cut arguments. NeJar idea was independently put forward by Leggeg] a few
ertheless, Figs. 1, 4, and 9 are rather suggestive, in that thé4gars ago. However, we are not thinking of “dissipation” in
lead one to(naively) view the loss of quantum-mechanical the sense of energy loss: Obviously, in the present me@del
coherence as a phase transition of some sort. The idea whi&jrac comb made up of real potentipisne can expect no

the “collapse” of the wave function can be viewed as a sort€"€rgy loss. Rather, we are thinking of an irreversible phe-

of phase transition was first proposed, as far as we know, b omenon stemming from the compllc;ated and disordered

Ne'eman[20], although in a different context. otion of the many elementary constituents of the macro-
The Wholze measurement process has been analyzé&OpiC detector, eventually leading to an irretrievable loss of

within the quantum-mechanical framework. In this sense, W&oherence. This problem is at present under investigation.

need neither modify quantum mechani&l], nor “com-
plete” it by introducing additional parametéhidden vari-
ables [22]. At the same time, we need not invoke meta- ACKNOWLEDGMENTS
physical concept§23] in order to explain the measurement . _ .
process. We believe that quantum mechanics alone suffice? We thank H!r0m|ch| _Nakazato for a very Cafef‘%‘ reading
to describeall the important features of the loss of coher- of the manuscript. S'.P' IS very grat(.afullto the Phys_|cs Depart-
ence, which eventually lead to the “collapse” of the wave ment of Waseda University for their kind hospitality.
function. To this end, one needs an effectual operational
principle that “works,” yielding the desired decoherence.
Such an operational principle is introduced in E8.7). It APPENDIX A: THE DIRAC COMB
enables us both to discuss single events and to givepan
erational definitionof quantum coherence, valid both for
single events and collections of experimental data. As em
phasized in Sec. IlIB, we simply regaf@.7) as a postulate,
at the present stage, and hope to substantiate it by more e+ Re ¢ x<0
fundamental arguments in the future. It goes without saying p=1 Taikx %0 (A1)
that the prescription3.7) does not imply any fundamental ' '
modification of quantum mechanics.

Itis worth stressing the analogies and differencies that Weyhere the reflection and transmission coefficiesand 7
think exist between the philosophy underlying the presentespectively, read
work and those approaches that make use of the technique of
partial tracing. A Qetector must be an open sys{éin This R=—iQ(1+iQ)" 1,
is theonly wayto circumvent all the well-known no-go theo-
rems|[8,24]. The above-mentioned openness of the macro- (A2)
scopic detector makes it similar to a sort of “environment”: L
In this sense, our numerical simulation leads to results that T=(1+i)
are consistent with the so-called “environment approach.” ) ) ]
However, we believe that there is a noteworty differenceWith @=A/Av (v is the particle spegdThe reflection and
because we make no use of projection operatota von  ransmission probabilities read
Neumann and of partial tracing over the environment states.

Let the potentiaV(x) = A §(x) and the incident wave am-
plitude be normalized at 1 for=—. Then

Decoherence is obtained by applying the ensemble average IRI?=0%(1+0%) "2

and the ergodic hypothesi8.7). Of course, the computation (A3)
of such an ensemble avera@eproperly performed over the

“many Hilbert spaces,” se¢3,5]) leaves us only with the |712=(1+Q?) 2.

dynamical variables of th€ particle. Needless to say, ap-
plication of partial tracing has the same effect. Nevertheless, Analogously, if the wave impinges on the potential from
we feel that the underlying philosophy and the physical in-the right and is normalized at 1 for=+, one gets, by

terpretation are different. Partial tracing is only a convenienexplicit calculation or by applying space reflection invari-
“working rule” (see the criticisms put forward against the gnce R=R’ and7=7".

environment approach in Ref25]). By contrast, the en- The total potential barrier is

semble averagé.7) has its own independent logical status.

Admittedly, it is a postulate that should be carefully consid- N

ered and, possibly, justified. Work is now in progress in or- V(X)= E Ad(x—b,), (A4)
/=1

der to clarify its role in a more delicate context, such as

(quantum and classigathaos.(Notice that the ensemble av-

erage endeavors to describe the effects that stem from thwhere N is the total number ofé potentials, A their
macroscopicity of the apparatusThese issues will be dis- strengths, and, their positions. We write the wave function
cussed elsewhere. as
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( ALeikOb1) 4 B e ik(xby), x<b,
- A/+leik(x—b/+1)+ B/+1e—ik(x—b/+1):C/eik(x—b/)+ D/e—ik(x—b/)' b,<x<b,,, (A5)
CNeik(X*bN)_'_ DNe*ik(X*bN)' bN<X
\

where we used the coefficiends ,B,(C,,D,) on the very

left (right) of the /th potential. We get T=7" 1+R2; T - 'TeiDj+R42 7T---Te'®i + O(R®)
B,=A,R+D,T ETN(1+a2+a4+...)
(A6) =7N(1+a), (B2
C/:A/T"r‘ D/R,.

where each term corresponds to a fixed number of reflections

By solving forC,,D ,, we obtain inside the Dirac comb and the numberB$ and the phase

factorsD;,D/, ... in each summation depend on where the
c, 1(TT' -RR' R'\[A, A, reflections take placésee the following formula
(D, ) = ?( » 1 )(B ) = (B/ ) At the second order iR, the solution forT reads
/ - / /
(A7)
T:TN{1+R2{(eZikdl+ L. +e2ide,1)
In our caseR=R', 7=7" and ST G 4 4 g2k gy
S 1{T?-R* R (11 —iQ A8) b T2N-3)(2IK(dyt - +dyg) 4 @2ik(dyt -y )
STl -R 1) i 1+iQ)

+T2N=2)g2Ik(dy+ a1 4 O(RY), (B3)

where we made use of EGA2). Finally, we define thevhole
barrier's transmissionT) and reflection R) coefficients, by which yields, sinceR?=—|R|?
setting ' '

Aj=1, By=R, Dy=0, Cy=Te&kbn"PD) (A9) 4, = —|R|Y(eZkd1y ... 4 2kdn-1)
2/ w2ik(dg+d 2ik(dy_ p+dy—
In Eq. (A9) we eliminated an incorrect kinematical factor e A G L !
appearing in the definition of, as given in Ref[4]. Equa- 4.+ TAN=I(QRik(dyt e tdy o) 4 g2ik(dpt o +dy-y))
tion (4.2) is easily obtained from Eq$A7)—(A9).
+T2(N—2)e2ik(d1+~--+dN,1)}. (B4)

APPENDIX B: PERTURBATIVE EXPANSION FOR T

In this appendix we shall concentrate on thBuctuations ~ The average transmission coefficient and probability, as
of our one-dimensional Dirac comb. The symkgl must ~ given by Egs(4.4) and(4.6), read
therefore be understood as an average ovedtlariables
only. The reader should also keep in mind that the barrier's
transmission coefficient depends, among others, bin It is
worth stressing that all the theoretical formulas to be derived

(M=T"A+(a)=T"1+(az)+---),  (BY

in this Appendix hold even in the case of a linear array of O=(T|»=|T|N1+2Rda)+{|a|?)
arbitrary shaped potentials, provided they are separated by oN 5
force-free regions. =|T|"™M(1+2Rgaz)+(|az|)+--).  (B6)

By Eq. (4.2, the exact solution foll reads

T N-1 1 Notice thate is proportional to the square of the standard
—e ikt D7 ] eikd/7-3z( (B1) deviation (Ba)?:
0 71 R/’

, _ , , _, M (8a)?
whered, is the distance between adjacent potentials and we e=1- T3~ (1+a?
set the first potential at=0.
If R is small, the transmission coefficient is expanded as (8a)’={la|>)—|{a)|?=(|a—(a)|?).  (B7)
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1. Calculation of [(T)|?: Definition of N 4 <T>ZTN{1+<0[2>}ETN{1_ |R|25<N2)}_ (B8)
We explicitly calculate the average value of the transmis-

sion coefficient when the spacinds undergo random fluc-
tuations. We write where

S(NZ)E _<a2>|R|72:<(eZikdl+ - e?ikdno1)  T2(g2k(drtdy) 4 4 g2k(dyptdy-1)y .4 7 2ANSD)
X(ezik(dl+~~~+dN,2)+e2ik(d2+~~~+dN,l))+7-2(N—2)e2ik(dl+~~~+dN,1)>
=(N— l)<eZikd>+(N—Z)TZ<eZikd>2+ ..
+27—2(N73)<ezikd>N72+72(N72)<e2ikd>Nfl
=(N—1)s+(N-2)s?+ .- +2sN "2+ 1sN"?

_s(s"—Ns+N-1)

T%(s—1)> (B9)
|
where all fluctuations are assumed independent, all spacings Ne = —Cp. (B14)
identically distributed, ang=7?(e?*9).
Moreover, sincd7 |?=1—|R|?, we obtain As a first application of the above formulas, ¥£0. Then,
by Eq.(4.8), s=—772 and
(T)2=|T|V{1+2Re a)} .
—{1-N|R|2+O(RHH1—-2|R|?ReSP + O(R*)} S¢'=Z{-(-e ?MN-2N+1) (B15)

=1—NJ|R|?-2|R|?ReS?+ O(R*) so that
=1—|R|N+2ReS2’} + O(R*)
=1—|R|?Ngit + O(R?)

~exp(—Neg | R|?), (B10)

T=TMN1-|R|*5\}
=(e” (1/2) Qze—iQ)N(l_ %|R|2{_(_e—2iQ)N_2N+ 1})
=e NO[1-3041-(—e )N, (B16)
where we roughly took into account the effects of higher-

order reflections, in the last approximate equalifMotice which yields Eq.(4.17).

that this approximation corresponds to the assumption that As a S(_econd application, consider the Ia_cgéuctuatlon
(*%=(*2)(*2)_ This formula holds as a Gaussian rule WhenCase: Notice that, by Eq4.8) and the Gaussian property of

all higher-order moments are discardethis is Eq.(4.28). the fluctuation,
The parameter 5= T2<e2ikd> = T2e2ik(d)g—2(k(A)2Y2 _ _ 72— 2(k(d))?Y?.

Ngi = N+ 2ReS( (B11) (B17)

_ _ By Eq. (4.8), if Y>0.1, we gefs|N~0 (N>1). From Egs.
plays the role of the number af potentials theQ particle (B9) and (B17), we obtain therefore
effectively interacts with. Indeed, suppose that the Dirac

comb is made up ol . potentials acting incoherently: We SP<N (Y- large , (B19)
obtain
Y—large
(T)[2=|T|?Nett=(|T|?) . (B12) KTY?2 — exp—N|R[?), (B19)

The last approximate equality is fully justified N=<100, which yields Eq.(4.22 and explains the “saturation” effect
but, surprisingly, yields very accurate results even ifmentioned in Sec. IVD.

N~ 10 000. It is interesting to observe that in this case
A more rigorous definition oN o+ can be given by start-
ing from the perturbative expansion of the square of the av- N=Ngj. (B20)

erage transmission coefficient S ) S )
This is in agreement with our physical intuition: whnis

|<T>|2:1+02|R|2+ c4|R|4+ @(|R|6)+ ... (B13 large, the phases are completely randomized, the number of
“effective” interactions is N, and [(T)|?=|7|?N
In this expansion, =exp—N|R|?).
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We give here a short list of properties Mf;;. The proofs
are left to the readeri) If N=1, then alsdNg; =1; (i) if
Y=0 andk(d)=(n+1/2)m, thenN¢ =sir? (NQ ) for even
N and Ngs =cog (NQ ) for odd N; (i) if Y=0 and
k(dy=nr, then Ngz = N? (“resonance” effecty (iv) if
Y>0.1 thenNg»z=N.

The behavior oN as a function ofY andN is shown in
Fig. 15.

Y—large

[¢]
T1? — 17PN+ |RI*SY)
= |7 |Mexp(| R|*S\)=exp
(—N|R[?)exp|R|*S{)

=[(T)|2exp(| RI*S). (B24)

where we partially took into account the effects of higher-
o N order reflections, such as in E@®10). This is Eq.(4.23.

Let us compute the average transmission probability. We | et us now turn to the general case in which there is no
consider first the “saturated” region. In this case, from Egs.gatyration ¥=<0.1). Such a situation is difficult to tackle in
(B6) and (B18), the average transmission probability be-fy|| generality. We shall therefore follow a heuristic ap-

2. Calculation of (| T|?)

comes proach, and observe that comparison of E(®10) and
Y—large (B19) enables us to evince that one can formally obtain the
— . 2 . .
(T1D = |71 1+(|agl)?). (B21) expression fot(T)|* in the general case by substituting
We write
N— N+ 2ReS{?=Nq (B25)
(lazl)?=IRI*S\", (B22)

where the terms{’ stems from multiple reflections and is
explicitly given by

Y—large )
S(N4) N < |(e2'kd1 + ...

+ T2(e2kdrrdy) 4 4 g2ik(dy o tdy-)) 4.

+ e?ikdn1 )

+72(N—3)(ezik(dl+ c+dyo)
+e2ik(d2+-.»+dN,1))+7—2(N—2)e2ik(d1+-.»+dN,1)|2>
=1(N-1)+|T|*N=2)+---+|T|*""21

|T|*™N=N|T]*+N-1
I (FA R V.

(B23)

In conclusion, by Eq(B19)

into the expression for the “saturated” case. Roughly speak-
ing, this assumption can be justified as follows: In our nu-
merical simulation, both the transmission probability and de-
coherence parameter depend with very good approximation
on NY2. Moreover, in the “saturated” region, the average
transmission coefficient and its square depend onlyNon
Therefore a change of the valueMfin the nonsaturated case
can be thought of as equivalent to a change of the value of
Y2. In this way one obtains, from E4B10),

(IT?=KT)%exp| RI*SY), )
= exp(—|R|*Nerr )exp(IR|*S\, ) » (B26)

which is Eq. (4.29.
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