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Decoherence and dephasing in a quantum measurement process
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We numerically simulate the quantum measurement process by modeling the measuring apparatus as a
one-dimensional Dirac comb that interacts with an incoming object particle. The global effect of the apparatus
can be well schematized in terms of the total transmission probability and thedecoherence parameter, which
quantitatively characterizes the loss of quantum-mechanical coherence and the wave-function collapse by
measurement. These two quantities alone enable one to judge whether the apparatus works well or not as a
detection system. We derive simple theoretical formulas that are in excellent agreement with the numerical
results, and can be very useful in order to make a ‘‘design theory’’ of a measuring system~detector!. We also
discuss some important characteristics of the wave-function collapse.@S1050-2947~96!07507-5#

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

Quantum mechanics is the most fundamental phys
theory developed during the last seventy years. Neverthe
physicists still debate the quantum measurement prob
@1,2#, which has caused them to ponder over some very f
damental questions. While the original formulation, ess
tially due to von Neumann, introduced the so-called ‘‘co
lapse’’ of the wave function as a postulate, currently m
physicists think that it is necessary to analyze and derive
quantum measurement process by starting from fundame
laws. A quantum measurement must be analyzed as a
crete physical process, by means of quantum mechanic
self, and must not be dealt with by postulating a ‘‘collaps
à la von Neumann@3–5#.

The seminal formulation, due to von Neumann, is ve
unsatisfactory from the point of view of the internal cons
tency of quantum theory, because the act of ‘‘observatio
namely the very possibility of obtaining information abo
the quantum properties of the system under investigat
requires the existence of ‘‘classical’’ devices that, by defi
tion, do not follow the quantum mechanical laws. It wou
be baffling, in our opinion, if such a fundamental theory su
as quantum mechanics would need classical~i.e., nonquan-
tum! objects in order to ascertain the very value of quant
observables.

A quantum measurement is avery complicatedphysical
process, because it involves the interaction of an object
tem Q with a macroscopic apparatusA, made up of a huge
number of elementary constituents. The interactions tak
place betweenQ and the constituents ofA will provoke
‘‘dephasing’’ or ‘‘decoherence’’ on the former. This loss o
quantum-mechanical coherence is the physical process
underlines, in our opinion, the so-called ‘‘collapse’’ of th
wave function.

In order to analyze the above-mentioned loss of quant
mechanical coherence, we introduced a ‘‘decoherence
rameter’’ @4,5#, which estimates the ‘‘degree of collapse’’ o
the wave function. This can be regarded as an attemp
541050-2947/96/54~2!/1064~23!/$10.00
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giving a quantitative estimate of the dephasing occurring i
quantum measurement process. A similar philosophy
been followed by several authors at different times. Amo
others, quantitative measures for decoherence were also
posed by Caldeira and Leggett@6# and Paz, Habib, and Zure
@7#. It should be emphasized that the present paper follo
an approach originally put forward in 1980@3#.

Strictly speaking, the decoherence parameter should
estimated by means of a dynamical-statistical analysis of
above-mentioned complicated interactions taking place
side the apparatus. This kind of theoretical work is,
course, very hard to carry out in a satisfactory way. For t
reason, in the present paper, we shall study the interac
between an object particleQ and a linear arrayA of
d-shaped potentials~a Dirac comb!, representing the elemen
tary constituents of the macroscopic apparatus. The collis
centers (d potentials! are regarded as heavy and structurel
in the present model, so that every elementary collision
elastic and we cannot expect genuine dissipation effe
such as absorption, directly stemming from the element
interactions. Nevertheless, since reflections in the o
dimensional case correspond to leakage provoked by ela
deflections in a three-dimensional apparatus, we can n
rally expect to have some kind of ‘‘dissipation’’ forQ, pro-
voked by successive reflections from the constituents ofA.
In fact, we shall observe a certain kind of irreversibility b
taking into account the randomness of the macroscopic
temA, schematized by the fluctuations of the parameters
characterize the Dirac comb. This is only a caricature o
measurement process, which can only roughly represen
complicated interactions taking place in a real measurem
process. Nonetheless, we shall see that even such a r
example can yield, via the evaluation of the decohere
parameter, useful insights into the phenomenon of deco
ence, mainly through numerical simulations. At the sa
time, we shall see that our analysis can yield a possible
preliminary ‘‘design theory’’ in order to ‘‘tailor’’ an appara-
tus to be used as a detector in a quantum measurement
cess.
1064 © 1996 The American Physical Society
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54 1065DECOHERENCE AND DEPHASING IN A QUANTUM . . .
II. DEPHASING AND INTERACTION IN THE APPARATUS

In the von Neumann–Wigner approach@1,8# the quantum
measurement process is described as

uF I&5uc& ^ uAI&→uFF&5(
k

ckuck& ^ uAk&, ~2.1!

where uF&,uc&,uA& are the wave functions of the tota
(Q1A) Q andA systems, respectively, the subscriptsI and
F stand for initial and final, respectively,uc&5(kckuck&,
$uck&%k is a complete set of eigenfunctions ofQ, and uAk&
denotes the apparatus state displaying thekth result. This is
often called a von Neumann measurement process of the
kind.

Many physicists start their discussion on the measurem
problem from the von Neumann process~2.1!. However, as a
matter of fact, Eq.~2.1! doesnot represent anycollapseof
the wave function. It simply displays aspectral decomposi
tion @3–5,8#, namely, a physical process in which the sta
of the apparatusA become entangled with those of the obje
systemQ. No measurement has occurred in~2.1!, because
the phase correlation is still perfectly kept inuFF&: Indeed,
the final density matrix

rF[uFF&^FFu5(
k

ucku2uck&^cku ^ uAk&^Aku

1(
i

(
j Þ i

cicj* uc i&^c j u ^ uAi&^Aj u ~2.2!

contains all its off-diagonal terms, which can give rise to a
sort of coherent quantum-mechanical effects, such as in
ference.

It should also be emphasized that in order to view
above process as a ‘‘measurement,’’ in some sense, one
to require the orthogonality condition among the appara
states:

^Aj uAk&5d jk , ; j ,k. ~2.3!

The above requirement is of paramount importance both
the von Neumann–Wigner approach and in the so-called
vironment theories@9#. It also plays a fundamental role in th
‘‘many-worlds interpretation’’@10,11#. However, it is a pos-
tulate that cannot be proved and is subject to many criticis
@4,5,12#.

By contrast with the approach outlined above, We a
lyzed the measurement process by describing the appa
in terms of density matrices~which is physically more sen
sible!, estimated the decoherence parametere, and discussed
under which conditions the off-diagonal terms of the to
density matrix can be shown to vanish: What we need
~macroscopic! detector that is able to act as adephaser,
namely, to erase the phase correlations between diffe
states ofA @4,5#.

In this paper, we shall concentrate on a very particu
aspect of this problem. Strictly speaking, the wave-funct
collapse should be described in terms of the apparatus st
by showing explicitly the disappearance of the off-diago
part of the total density matrix, as in Eq.~3.9! of the first
paper in@5# or Eq.~38! of @4#. This problem is very involved
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in general. For this reason, we shall simply model the p
nomenon of decoherence by concentrating only on the f
damental role played by the many fine interactions tak
place betweenQ and the elementary constituents ofA. To
this end, we shall suppress the apparatus states in the fol
ing description. This is obviously a drastic simplification.
order to avoid any misunderstandings, we stress that
simplification aims only at performing aheuristic treatment
of decoherence.

III. THE DECOHERENCE PARAMETER

A. Definition

Let us briefly summarize some of our previous results@4#
and reintroduce thedecoherence parameter, in terms of
which aquantitativedefinition of wave-function collapse ca
be given. Consider a typical Young-type experiment,
which an incomingQ ‘‘particle’’ ~namely, a Schro¨dinger
wave function relative to a single detection event! is split in
two statesc1 and c2 , corresponding to the two possibl
routes in the interferometer. We place the apparatusA along
the second path, so that the wave function ofQ reads

c5c11Tc2 , ~3.1!

whereT is the transmission coefficient. Following our di
cussion in the preceding section, the apparatus state has
suppressed, although the action of the apparatus on thQ
particle has been properly taken into account viaT. For sim-
plicity, we assume thatc1 andc2 are very close to a plane
wave with wave numberk. If we want to take into accoun
wave-packet effects, we have to average our results, as
instance, Eqs.~3.2! or ~3.3!, with the k-weight factor
ua(k)u2 characterizing the wave packet.

Equation~3.1! holds for every single incoming particle
Moreover, every incoming particle is described by thesame
wave functionc5c11c2 immediately before interacting
with the apparatus. However, after the interaction, the ap
ratus transmission coefficientT will depend on the particular
apparatus state at thevery instantof the passage of the par
ticle. Since the apparatus undergoes random fluctuat
~which reflect the internal motion of its elementary quantu
constituents! we label the incoming particle withj
( j 51, . . . ,Np , whereNp is the total number of particles in
an experimental run!, and rewrite the transmission coeffi
cient asTj ( j 51, . . . ,Np). Notice that the same macro
scopic state of the apparatus will correspond to many dif
ent microscopic states. Consequently, different incom
particles will be affected differently by the interaction wit
the apparatus, and will be described by slightly different v
ues ofT. Accordingly, the probability of detecting thej th
particle after recombination reads

P~ j ![uc~ j !u25uc11Tjc2u25uc1u2

1uTj u2uc2u212Re~c1* Tjc2!. ~3.2!

After many particles have been detected, the average p
ability will be given by
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P̄[
1

Np
(
j 51

Np

P~ j !5uc1u21uTu2uc2u2

12Re~c1* T̄c2!, ~3.3!

where the overbar denotes anevent averageover all events
in one experimental run~which is made up ofNp events!.
Note thatuT̄u2<uTu2, and that a necessary and sufficient co
dition for observing no interference~collapse of the wave
function! is T̄50. We define thedecoherence parameteras

e512
uT̄u2

uTu2
, 0<e<1, ~3.4!

and rewrite Eq.~3.3! as

P̄5uc1u21 t̄ uc2u212A t̄ A12e Re~c1* eibc2!, ~3.5!

whereT̄[uT̄ueib and t̄[uTu2. Notice thatt̄ is theexperimen-
tally measuredvalue of the transmission probability. A non
vanishinge is a consequence of the statistical fluctuations
the apparatus. Interference is lost, and hence the w
function collapse takes place, in the limite51. All effects
provoked by A on Q are properly taken into accoun
by t̄5uTu2 ande.

One can also consider the visibility of the interferen
pattern

V5
P̄ max 2 P̄ min

P̄ max1 P̄ min

5 V0 A~12e ! 5
2A t̄~12e !

11 t̄
,

~3.6!

whereV052At/(11t) is the value in the absence of fluc
tuations~observe that in such a caset5 t̄). Once again we
see that coherence between the two branch waves is to
lost whene51, in which case the visibility is zero.

It is worth stressing that this approach incorporates i
natural way the possibility of investigating those situations
which coherence ispartially lost or, stated differently, the
wave function is partially collapsed. These intermedia
cases correspond to the values 0,e,1.

The loss of quantum coherence is the result of a h
number of rather ‘‘dirty’’ interactions, acting randomly for
certain amount of time. We are therefore interested in
effect onQ of a huge number of dirty (random) interaction.
Each interaction will take place betweenQ and one~or a
bunch of! elementary constituent~s! of A. The global effect
on the wave function ofQ will be, as we shall see, a loss o
phase coherence. This is the idea we shall pursue in
present study. The task of the decoherence parametere will
be to judge whether the global interaction is ‘‘clean
(e.1) or ‘‘dirty’’ ( e!1).

B. Ergodic assumption

We can now formulate anergodic hypothesis: The
‘‘event’’ average over many particles in one experimen
run ~denoted hitherto with an overbar! will be assumed equa
-

n
e-
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a

e

e
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to thestatistical ensemble averageover all the possible mi-
crostates of the apparatus. If we denote the latter w
^•••&, our assumption reads

•••5^•••&. ~3.7!

The significance of the ergodic assumption in quantum ph
ics is not as clear as it is in classical physics, where
ergodic theorem states that the long-time average of an
servable can be replaced with an ensemble average ove
phase space. Ergodicity is not easy to prove mathematic
and is therefore often postulated on physical grounds. In
present context, Eq.~3.7! must also be regarded as a physic
postulate.

In the following, the two above-mentioned averages w
be used interchangeably by virtue of Eq.~3.7!. In particular,

e512
u^T&u2

^uTu2&
. ~3.8!

On the other hand, one should keep in mind that, stric
speaking, the above two averages cannot always be c
pletely identified. The decoherence parameter, if defined
the event average, as in~3.4! ~e.g., in a numerical simula
tion!, in general cannot vanish. Indeed,

uT̄u25
1

Np
2 (

j ,k51

Np

TjTk* 5
1

Np
2(

j 51

Np

uTj u21
1

Np
2(

j Þk
TjTk* ,

~3.9!

so that even for a completely random sequence ofTj , such
that ( j ÞkTjTk* .0, one obtains

e512
uT̄u2

uTu2
.12

1

Np
. ~3.10!

Therefore, one needs many events (Np@1) in order to be
able to ascertain whether the quantum-mechanical coher
is lost. If the latter requirement is not satisfied, in general o
is not able to give an operationally meaningful definition
~loss of! coherence, as shown by Eq.~3.10!. Observe that this
condition isindependentof the physical requirement that th
macroscopic apparatus be characterized by a huge numb
degrees of freedom and be able to act as a dephaser.

This observation has interesting spinoffs: The very co
cept of quantum-mechanical coherence appears to be s
tical. One needs theaccumulationprocess of many indi-
vidual events in order to definee and quantitatively estimate
the degree of dephasing. This is true not only when the
gree of decoherence is maximum, as in Eq.~3.10!, but even
for perfectly coherent systems: Consider, for example
double-slit experiment yielding a perfect interference patte
Nothing can be said about the coherence properties of
quantum system~the beam of particles entering the interfe
ometer! if one does not accumulate many particles in ord
to build up the interference pattern@13#.

The above considerations might make the reader th
that no meaning can be ascribed tosingle detection events.
This would not be correct. One can give a sensible definit
of ‘‘collapse’’ for a single particle via Eq.~3.7!. In this way,
the coherence properties of a single quantum system ca
defined via the ensemble average of the macroscopic sy
it interacted with. Individual detection events were discuss
in Ref. @5#.
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54 1067DECOHERENCE AND DEPHASING IN A QUANTUM . . .
IV. NUMERICAL SIMULATION

A. Dirac comb

We can now investigate the decoherence process fro
numerical point of view. The particle interacts with the a
paratus~a macroscopic object made up of a huge numbe
elementary constituents! according to the laws of quantum
mechanics~Schrödinger equation!. We will describe every
interacting constituent~or every bunch of constituents! with
a d potential, and the whole apparatus with a on
dimensional array ofd potentials~a Dirac comb!. This is the
well-known Kronig-Penney model@14#, which has been in-
vestigated from several points of view@15#. Previous nu-
merical simulations of the measurement process by mean
a Dirac comb were performed in Refs.@4,16#. In the present
paper, however, we shall focus our attention on the r
played by some particular combination of the numerical c
stants characterizing the array of potentials. We shall see
the apparatus acts as a ‘‘dephaser’’ when some factors
pearing in the expression of the decoherence paramete
ceed certain ‘‘critical’’ values.

The total barrier will be written as

V~x!5 (
l 51

N

Ld~x2bl !, ~4.1!

whereN is the total number ofd potentials, which play the
role of ‘‘elementary interactions,’’L the strength of the in-
teractions, andbl their locations.

The transmission and reflection coefficientsT and R of
the whole barrier are computed in Appendix A. One obta

S T

0D 5e2 ikbNZ )
l 51

N21

eikdl t3ZS 1

RD , ~4.2!

where t3 is the third Pauli matrix,k the wave number of
Q, dl 5bl 112bl , and

Z5S 12 iV 2 iV

iV 11 iV D , ~4.3!

whereV5L/\v, v being theQ particle speed. We shall se
b150. @As explained in Appendix A, the factore2 ikbN, ap-
pearing in~4.2!, should also be put in front of~58! of Ref.
@4# and ~8.24! of the first paper in Ref.@5#.#

So far, the internal motions of the elementary constitue
of the apparatus have not been taken into account. Th
internal motions will give rise to an intrinsic stochasticity
the parameters describing the constituents themselves
terms of our Dirac-comb model, this stochasticity will b
modeled as follows: since the interactions between the a
ratus’s constituents and the incoming particles will ta
place in different parts of the apparatus, the positionsbl and
the relative spacingsdl 5bl 112bl will be subject to statis-
tical fluctuations. Moreover, the total numberN of interac-
tions will also vary for different incoming particles.

In a previous numerical simulation@4# we showed that
this simple Dirac-comb model is able to reproduce correc
many different physical devices, such as a ‘‘phase shift
~that can preserve the quantum coherence! or a ‘‘dephaser’’
~that is able to provoke complete dephasing and work a
a
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f
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detector!, or an ‘‘absorber’’~that yields a nonvanishing ab
sorption coefficient!. We also showed that, in contrast
widespread belief, absorption effects stemming from ima
nary potentials are not necessarily significant for the colla
of the wave function, because the loss of coherence~of
which e is an estimate! stems only from the noise and th
numberN of elementary interactions in the apparatus. In t
present paper, unlike in@4#, we shall introduce fluctuations
of N and shall analyze in detail the dependence ofe on
several numerical constants involved. In the case of la
absorptionlike effects due to reflections, we shall see t
fluctuations become large enough to yield the wave-funct
collapse.

B. Adjusting the parameters

Equation~4.2! must be solved for many different incom
ing particles~‘‘events’’! and according to the analysis of Se
III, the average transmission-reflection coefficient and pr
ability read

^T&5T̄5
1

Np
(
j 51

Np

Tj , ~4.4!

^R&5R̄5
1

Np
(
j 51

Np

Rj , ~4.5!

^t&5^uTu2&5uTu25
1

Np
(
j 51

Np

uTj u2, ~4.6!

^r &5^uRu2&5uRu25
1

Np
(
j 51

Np

uRj u2. ~4.7!

All quantities will always be computed forNp51000 and the
ensemble averagê& will be taken over a Gaussian distribu
tion of dl andN.

We must carefully avoid the case of resonance reflec
by the latticelike Dirac-comb structure, which may lead to
total reflection probability of order unity. This occurs whe
k^d& (k being the neutron wave number and^d& the average
spacing between scatterers! is close to an integer multiple o
p. Such a situation has been observed and investigated
ing the initial part of our numerical situation and is uninte
esting from the point of view of ‘‘decoherence’’ effects. I
our simulation, in order to reduce unwanted spurious effe
we shall always set

k^d&54.5p. ~4.8!

We shall focus our attention on thermal neutrons interact
with atoms, so that

l5
2p

k
52 Å , ^d&54.5 Å . ~4.9!

The statistical distributions of the spacings and of the nu
ber of d potentials will be taken to be Gaussian, with ave
ages^d& and ^N&, respectively, and standard deviations
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Y[
dd

^d&
, dd[AŠ~d2^d&!2

‹, ~4.10!

D[
dN

A^N&
, dN[AŠ~N2^N&!2

‹. ~4.11!

In our simulation, the value of these two parameters will
varied between

0<Y<.5, 0<D<1. ~4.12!

The maximum value ofY does not seem appropriate to d
scribe a rigid lattice. Indeed, as we shall see, there are
ations in which coherence is lost forY.1021. In such a
case, the apparatus cannot be viewed as a solid: A r

lattice cannot work properly as a ‘‘detector,’’ in the sense een
e

u-

id

that it does not provoke decoherence on the incoming p
ticle. This point will be considered and discussed in S
IV F, in particular in connection with neutron interferometr
Notice also that many detectors make use of thermodyna
cally unstable states, such as gases or liquids in critical c
ditions, whose physical states are characterized by very la
statistical fluctuations.

It is not very easy to understand what are the physica
most interesting values of the parameterV5L/\v appear-
ing in Eq. ~4.3!. Such values must be determined accord
to the physical problem investigated. One can guess
there are situations in which there is a profound link betwe
V and ^N&, which may lead, under some conditions, to
precise relation betweenV and ^N&: This is closely related
to van Hove’s ‘‘l2T’’ limit and to the occurrence of a dis
sipativelike behavior in quantum mechanics, and has b
FIG. 1. Dependence ofe on ^N& and D, for some values ofY. Observe the sharp transition region frome50 ~coherence! to e51
~decoherence! whenY50. See text.
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FIG. 2. Transmission probabilitŷuTu2& vs ^N& andD.
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discussed elsewhere@17#. We shall briefly reconsider this
point in Sec. V.

The quantityV plays the role of a coupling constan
which can be neither too small nor too big in order to ens
the occurrence of some dephasing. In our simulation^N&
will reach the value 104, and it has been found that
V!1021 no decoherence takes place. We therefore set in
following numerical study

V51021. ~4.13!

The values of the transmission probability and decoh
ence parameter~or, equivalently, the transmission coeffi
cient! depend on all the physical quantities we have cons
ered so far. Since the numerical values of^d& and V are
fixedaccording to Eqs.~4.9! and~4.13!, respectively, we can
state that, in general, onlyD, Y, and ^N& determine^uTu2&
ande, i.e.,
e

he

r-

-

^uTu2&5^uTu2&~D,Y,^N&!, ~4.14!

e5e~D,Y,^N&!. ~4.15!

Our task is to clarify how the wave-function collaps
takes place (e→1) when the numerical values ofD, Y, and
^N& change. For the sake of clarity, we shall perform diffe
ent simulations: In the first one, we shall let^N& andD vary,
while keepingY fixed to a few different values. In the sec
ond one,̂ N& andY will be varied while keepingD fixed to
a few different values. In the third and last one, all para
eters shall be varied.

C. Varying N and D

Figure 1 displays the dependence ofe on ^N& andD for
several values ofY, Fig. 2 displays the behavior o
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FIG. 3. Dependence ofe on ^N&D2 for several values of̂N& and forY50. The dotted line is Eq.~4.19!. The diamond points are the
numerical results. See text.
.

t

^t&5^uTu2& as a function of the same parameters, and Fig
the behavior ofe versus^N&D2 for Y50.

Observe that ifY50 the transition region from coheren
behavior (e50) to totally decoherent behavior (e51) is
very sharp and occurs along the lines^N&D25 const. This
behavior can be explained by noting that, for smallV, the
transmission coefficientT for a singled @see Eq.~A2!# reads

T5
1

11 iV
5

1

A11V2
e2 i tan21V.e2~1/2!V2

e2 iV,

~4.16!
3from which we easily derive~see Appendix B!

T.e2 iNV@12 1
4 V2$12~2e22iV!N%#. ~4.17!

By taking the average overN with a Gaussian distribution
and neglecting small quantities, we obtain

^uTu2&.1, u^T&u2.e2^N&D2V2
, ~4.18!

so that

e.12e2^N&D2V2
. ~4.19!
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FIG. 4. Dependence ofe on ^N& andY. Observe the ‘‘saturation’’ effect whenY.1021. See text.
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In Fig. 3, the ‘‘diamond’’ points are the numerical resu
and the dotted lines are our approximate formula~4.19!. The
agreement is excellent.

The above reasoning explains the sharp transition al
the lines^N&D25 const whenY50. This situation is physi-
cally interesting because it corresponds to the case of a
tron beam interacting with a macroscopic solid object, lik
crystal: The spacing between different atoms of the mac
scopic object is~almost! constant, but different neutrons im
pinge on different parts of the crystal, at slightly differe
angles, interacting therefore with a different number of
ementary scatterers.

When the conditionY50 ~fixed spacings between adja
cent potentials! does not hold anymore, additional random
ization effects appear and the above approximations b
down. This is shown in the other graphs of Figs. 1 and 2
g

u-
a
-

-

ak

D. Varying N and Y

Figure 4 shows the dependence ofe on ^N& and Y for
several values ofD. The behavior of̂ t&5^uTu2& as a func-
tion of the same parameters is shown in Fig. 5. For la
values ofY, this situation corresponds to a neutron bea
interacting with an absorber made up of a liquid or a dilu
solution or a gas@18#. ~A solid lattice would ‘‘melt’’ for such
large values ofY.)

It is interesting to notice that there is a ‘‘saturation’’ effe
in this case: IfY.0.1, the values ofe and^t& do not depend
significantly on^N&. The easiest way to understand this e
fect is probably to take the ensemble average of both side
Eq. ~4.2!: Since the fluctuations ofdl are independent for
different l , ^T& contains factors of the type

^eikdl &.eik^d&e2k2Y2^d&2/2, ~4.20!
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FIG. 5. ^uTu2& vs ^N& andY.
d

p-

of
to
which vanish~washing away the dependence onY) when
Y@2/k^d&.1021 @see Eq.~4.8!#. A similar situation occurs
for ^uTu2&. Observe that this phenomenon takes place in
pendently of the value ofD.

A more detailed explanation of this effect is given in A
pendix B: One can see that, whenD50, by expandingT in
powers of the reflection coefficientR ~see Appendix A! of a
singled potential and writing

T5TN$11a~R!%, ~4.21!

one gets at second order inR

u^T&u2 →
Y→ large

exp~2NuRu2!, ~4.22!
e-
^uTu2& →

Y→ large

exp~2NuRu2!exp~ uRu4SN
~4!!, ~4.23!

e →
Y→ large

12exp~2uRu4SN
~4!!. ~4.24!

where

SN
~4! →

Y→ largeuT u4N2NuT u41N21

~ uT u421!2 . ~4.25!

This result is essentially due to a complete randomization
the phases acquired by multiple reflections, which leads

^a& →
Y→ large

0. ~4.26!
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The agreement of the perturbative formulas~4.22!–~4.24!
with the numerical results is excellent, as can be seen
Fig. 6.

On the other hand, when there is no ‘‘saturation’’ effe
andD50, one finds it convenient to define the numberNeff
of potentials theQ particleeffectivelyinteracts with

Neff[N12ReSN
~2!

[N12ReH s~sN2Ns1N21!

T 2~s21!2 J , ~4.27!

where s[T 2^e2ikd&52T 2e22(k^d&)2Y2
. By making use of

this newly defined parameter, one obtains

u^T&u2.exp~2Neffu Ru2!, ~4.28!

^uTu2&.exp~2Neffu Ru2!exp~ uRu4SNeff

~4! !, ~4.29!

e.12exp~2uRu4SNeff

~4! !. ~4.30!

These formulas are identical with those obtained for thesatu-
rated region @Eqs. ~4.22!–~4.24!#, when N is replaced by

FIG. 6. ‘‘Saturation effect’’: Comparison of the perturbative fo
mulas ~4.22!–~4.24! with the numerical results. The dotted an
solid curves are given by the perturbative formulas~4.22!, ~4.23!,
and ~4.24!, and the diamond points are the numerical resu
(D50.)
in

t

Neff . Also in this case, the agreement of the perturbati
formulas ~4.28!–~4.30! with the numerical results is excel-
lent, as can be seen in Fig. 7.

.

FIG. 7. General case: Comparison of the perturbative formu
~4.28!–~4.30! with the numerical results. The solid curves are give
by the perturbative formulas~4.28!–~4.30! and the diamond points
are the numerical results. (D50.)

FIG. 8. Dependence ofe on ^N&Y2 for several values of̂N&.
(D50.)
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FIG. 9. Decoherence parametere and transmission probabilitŷuTu2& vs ^N&D2 and^N&Y2, for several values of̂N&. The solid curves
are given by~4.36! and ~4.32! and the diamond points are the numerical results.
eak

The decoherence parameter versusNY2 when D50 is

shown in Fig. 8. It is interesting to notice that, for largeN,
e becomes a function of the single variableNY2. As in the
case discussed in Sec. IV C, whenDÞ0 additional random-
ization effects appear and the above approximations br
down. The resultant effect is shown in Figs. 4 and 5.
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FIG. 9. ~Continued).
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FIG. 10. Phase diagrams fo
T. The transmission coefficient
Tj of Np5150 particles are dis-
played for Y50 and ^N&52000.
From left to right and top to bot-
tom: D5 0, 0.02, 0.05, 0.1, 0.2,
0.4, 0.5, and 1.0.
ti
et

itu-
E. Varying N, D, and Y

We have seen that the decoherence parameter essen
depends on some particular combination of the param
considered. Namely,
ally
er

e5e~^N&D2,^N&Y2!. ~4.31!

In the present section we shall study the behavior ofe as a
function of these quantities. This is the most interesting s
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FIG. 11. Phase diagrams fo
T. The transmission coefficient
Tj of Np5150 particles are dis-
played forD50 and ^N&52000.
From left to right and top to bot-
tom: Y5 0, 0.001, 0.005, 0.01,
0.02, 0.05, 0.1, and 0.5.
he
,

re

b-
ion
ation, from the physical point of view. It corresponds to t
case of a neutron interacting with a gas or liquid absorber
which both the positions and the total number of scatte
change from event to event.
in
rs

In order to explain these results, it is convenient to o
serve that, in our numerical simulation, the transmiss
probability turns out to be largely independent ofD. We can
therefore assume that
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FIG. 12. Phase diagrams fo
T. As in Fig. 10, butY50.02.



r
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FIG. 13. Phase diagrams fo
T. As in Fig. 11, butD50.5.
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FIG. 14. ‘‘Summary’’ of different numerical simulations. The points refer to different values ofD, Y, and ^N&. In ~a!, D50,
10<^N&<104, and 0<Y<0.5: All points lie on the same curve. In~b!, 0,D<1, 10<^N&<104, and 0<Y<0.5. In all cases,e→1 when
^uTu2&→0. Dephasing and decoherence cannot be avoided at very low transmission probability.
ar
ha
^uTu2&N,d.^uTu2&d

.exp~2NeffuRu2!exp~ uRu4SNeff

~4! !. ~4.32!

where we explicitly wrote which variables the averages
taken over. Moreover, the analysis of Appendix B shows t

^T&d . TN$12uRu2SN
~2!%.e2 iNVu^T&du. ~4.33!

We therefore assume that
e
t

^T&N,d5^e2 iNV&Nu^T&du. ~4.34!

In this way we obtain

u^T&N,du2.u^e2 iNV&Nu2u^T&du2

.exp~2^N&V2D2!exp~2Neff uRu2!,

~4.35!

so that the decoherence parameter turns out to be
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e.12exp~2^N&V2D2!exp~2uRu4SNeff

~4! !. ~4.36!

In spite of the crudeness of the above approximations,
agreement of these formulas with the numerical results
excellent, as can be seen from Fig. 9. Equations~4.32!,
~4.35!, and~4.36! are our main results and cover all the pa
ticular cases hiterto considered.

F. Comments

In order to clarify the mechanism underlying the loss o
quantum-mechanical coherence, we have drawn,
Figs. 10–13, the phase diagrams of the transmission pr
ability T. Every figure displays the transmission coefficien
Tj of Np5150 particles.

In Fig. 10,Y50, ^N&52000, andD is varied between 0.0
and 1.0. Observe that although the phases spread, the v
of the transmission probability is constant and independe
of D. In the particular case displayed,^uTu2& is close to 1 and
the phases are completely randomized forD51 ~‘‘collapse’’
of the wave function!.

In Fig. 11,D50, ^N&52000, andY is varied between 0.0
and 0.5. In this case the effect is different: The transmissi
probability ^uTu2& is strongly dependent ofY. The quantum
coherence is completely lost forY50.5 ~‘‘collapse’’ of the
wave function!.

In Figs. 12 and 13, both sources of fluctuation a
switched on: In the first case,^N&52000, Y50.02 ~fixed!,
and D is varied as in Fig. 10. The phase coherence is lo
already forD50.5 ~‘‘collapse’’ of the wave function!. In the
second case,̂N&52000,D50.5 ~fixed!, andY is varied as
in Fig. 11. There is complete dephasing already f
Y50.05 ~‘‘collapse’’ of the wave function!.

It is interesting to observe that the parametersD and Y
provoke decoherence in different ways: The value of t
transmission probability is practicallyD independent; on the
other hand, it is strongly dependent onY. This is important
for two independent reasons. First, this analysis sets the p
liminary basis for a ‘‘design theory’’ of a quantum-
mechanical detector. The combined action of^N&, D, and

FIG. 15. N eff vs Y and ^N&.
e
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Y, eventually leading to a complete loss of quantu
mechanical coherence, can be suitably tailored and explo
in order to yield the desired type of dephasing~e.g., by trans-
mitting theQ particle with high or low probability!. Second,
this analysis can be important for the study of neutron int
ferometry experiments at very low transmission probabi
@18,19#, because it suggests that different physical devic
such as a silicon crystal, a gaseous or a liquid absorber@18#,
can modify the coherence properties of an incoming neut
beam in many different ways. For example, one cannot
pect a strong dependence onY (d fluctuations! for a crystal.
On the other hand, an interesting dependence ofe on Y can
certainly be expected when a gaseous~say Ne! neutron ab-
sorber or a water solution of some highly absorbing mate
~say Gd! is inserted in an interferometer@18#. Incidentally,
notice that a dependence onD is to be expected both for a
crystal or a gaseous device, because geometrical factors
here an important role here.

An exhaustive discussion of these effects, beyond
qualitative estimates given here and in Ref.@19#, requires a
different study and is not easy to perform, because it
volves a careful estimate of the most important characte
tics of the experimental setup. Such a program is at pre
under consideration.

However, it is possible to draw some general conclusio
even from the results of our simulation: A collection of ma
different numerical simulations is shown in Fig. 14. Inall the
cases investigated, one observes that when^uTu2& is close to
0, in generale.1. In other words, it appears that in gener
decoherence effects cannot be avoided at low transmis
probability.

Notice that this phenomenon exists for all values of t
parametersD, Y, and^N&. Even though the present numer
cal simulation neglects many important characteristics o
real experiment, it is difficult to believe that the behavi
displayed in Fig. 14 be just a coincidence. It is worth stre
ing that the statistical fluctuations of a real macroscopic
paratus canneverbe neglected, even in principle, because
finite-temperature effects and of the impossibility of isolati
completely the apparatus from its environment.

V. CONCLUDING REMARKS

We have discussed some important characteristics of
quantum measurement process by making use of a schem
representation of a macroscopic device: In our analysis,
complicated dynamical behavior of the elementary const
ents of the apparatus~our ‘‘detector’’! was represented by
means of an array of potentials undergoing~Gaussian! ran-
dom fluctuations. The ‘‘collapse’’ of the wave function is
consequence of the dephasing effects that provoke a los
quantum-mechanical coherence.

Our main conclusions are Eqs.~4.32!, ~4.35!, and~4.36!,
which give a realistic estimate of the transmission proba
ity, transmission coefficient, and decoherence parameter
spectively. The values of these parameters alone suffic
outline the essential features of the interaction between
Q particle and the apparatus.

The dephasing effects can always be quantitatively a
lyzed by means of the decoherence parametere, which plays
the effective role of an ‘‘order parameter’’ for the wave
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function collapse. This is only an analogy, and must be c
sidered with great care. Indeed, we are not supplying
evidence that the quantum measurement process ca
viewed as a phase transition, and are unable, at the pre
stage, to corroborate this idea with clear-cut arguments. N
ertheless, Figs. 1, 4, and 9 are rather suggestive, in that
lead one to~naively! view the loss of quantum-mechanic
coherence as a phase transition of some sort. The idea w
the ‘‘collapse’’ of the wave function can be viewed as a s
of phase transition was first proposed, as far as we know
Ne’eman@20#, although in a different context.

The whole measurement process has been anal
within the quantum-mechanical framework. In this sense,
need neither modify quantum mechanics@21#, nor ‘‘com-
plete’’ it by introducing additional parameter~hidden vari-
ables! @22#. At the same time, we need not invoke me
physical concepts@23# in order to explain the measureme
process. We believe that quantum mechanics alone suf
to describeall the important features of the loss of cohe
ence, which eventually lead to the ‘‘collapse’’ of the wa
function. To this end, one needs an effectual operatio
principle that ‘‘works,’’ yielding the desired decoherenc
Such an operational principle is introduced in Eq.~3.7!. It
enables us both to discuss single events and to give anop-
erational definitionof quantum coherence, valid both fo
single events and collections of experimental data. As e
phasized in Sec. IIIB, we simply regard~3.7! as a postulate
at the present stage, and hope to substantiate it by m
fundamental arguments in the future. It goes without say
that the prescription~3.7! does not imply any fundamenta
modification of quantum mechanics.

It is worth stressing the analogies and differencies that
think exist between the philosophy underlying the pres
work and those approaches that make use of the techniqu
partial tracing. A detector must be an open system@5#: This
is theonly wayto circumvent all the well-known no-go theo
rems @8,24#. The above-mentioned openness of the mac
scopic detector makes it similar to a sort of ‘‘environment
In this sense, our numerical simulation leads to results
are consistent with the so-called ‘‘environment approac
However, we believe that there is a noteworty differen
because we make no use of projection operatorsà la von
Neumann and of partial tracing over the environment sta
Decoherence is obtained by applying the ensemble ave
and the ergodic hypothesis~3.7!. Of course, the computatio
of such an ensemble average~if properly performed over the
‘‘many Hilbert spaces,’’ see@3,5#! leaves us only with the
dynamical variables of theQ particle. Needless to say, ap
plication of partial tracing has the same effect. Neverthele
we feel that the underlying philosophy and the physical
terpretation are different. Partial tracing is only a conveni
‘‘working rule’’ ~see the criticisms put forward against th
environment approach in Ref.@25#!. By contrast, the en-
semble average~3.7! has its own independent logical statu
Admittedly, it is a postulate that should be carefully cons
ered and, possibly, justified. Work is now in progress in
der to clarify its role in a more delicate context, such
~quantum and classical! chaos.~Notice that the ensemble av
erage endeavors to describe the effects that stem from
macroscopicity of the apparatus.! These issues will be dis
cussed elsewhere.
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We would like to conclude this discussion with a perspe
tive on the measurement problem and the general issu
decoherence. We believe that decoherence should be un
stood as a dissipative phenomenon of some sort@17#. A simi-
lar idea was independently put forward by Leggett@26# a few
years ago. However, we are not thinking of ‘‘dissipation’’
the sense of energy loss: Obviously, in the present mode~a
Dirac comb made up of real potentials! one can expect no
energy loss. Rather, we are thinking of an irreversible p
nomenon stemming from the complicated and disorde
motion of the many elementary constituents of the mac
scopic detector, eventually leading to an irretrievable loss
coherence. This problem is at present under investigatio
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APPENDIX A: THE DIRAC COMB

Let the potentialV(x)5Ld(x) and the incident wave am
plitude be normalized at 1 forx52`. Then

c5H eikx1Re2 ikx, x,0

Teikx, x.0, ~A1!

where the reflection and transmission coefficients,R andT
respectively, read

R52 iV~11 iV!21,

~A2!

T5~11 iV!21,

with V[L/\v (v is the particle speed!. The reflection and
transmission probabilities read

uRu25V2~11V2!22,

~A3!

uT u25~11V2!22.

Analogously, if the wave impinges on the potential fro
the right and is normalized at 1 forx51`, one gets, by
explicit calculation or by applying space reflection inva
ance,R5R8 andT5T 8.

The total potential barrier is

V~x!5 (
l 51

N

Ld~x2bl !, ~A4!

where N is the total number ofd potentials, L their
strengths, andbl their positions. We write the wave functio
as



A1eik~x2b1!1B1e2 ik~x2b1!, x,b1

A
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c55 Al 11eik~x2bl 11!1Bl 11e2 ik~x2bl 11!5Cl eik~x2bl !1D l e2 ik~x2bl !, bl ,x,bl 11

A

CNeik~x2bN!1DNe2 ik~x2bN!, bN,x

~A5!
or

r

ve
o

d

w

a

ions

he

as

rd
where we used the coefficientsAl ,Bl (Cl ,D l ) on the very
left ~right! of the l th potential. We get

Bl 5Al R1D l T8
~A6!

Cl 5Al T1D l R8.

By solving for Cl ,D l , we obtain

S Cl

D l
D 5

1

T8 S T T 82RR8 R8

2R 1 D S Al

Bl
D 5ZS Al

Bl
D .

~A7!

In our caseR5R8, T5T 8 and

Z5
1

T S T
22R2 R
2R 1 D 5S 12 iV 2 iV

iV 11 iV D , ~A8!

where we made use of Eq.~A2!. Finally, we define thewhole
barrier’s transmission (T) and reflection (R) coefficients, by
setting

A151, B15R, DN50, CN5Teik~bN2b1! ~A9!

In Eq. ~A9! we eliminated an incorrect kinematical fact
appearing in the definition ofT, as given in Ref.@4#. Equa-
tion ~4.2! is easily obtained from Eqs.~A7!–~A9!.

APPENDIX B: PERTURBATIVE EXPANSION FOR T

In this appendix we shall concentrate on thed fluctuations
of our one-dimensional Dirac comb. The symbol^ & must
therefore be understood as an average over thed variables
only. The reader should also keep in mind that the barrie
transmission coefficientT depends, among others, onN. It is
worth stressing that all the theoretical formulas to be deri
in this Appendix hold even in the case of a linear array
arbitrary shaped potentials, provided they are separate
force-free regions.

By Eq. ~4.2!, the exact solution forT reads

S T

0D 5e2 ik~d11•••1dN21!Z )
l 51

N21

eikdl t3ZS 1

RD , ~B1!

wheredl is the distance between adjacent potentials and
set the first potential atx50.

If R is small, the transmission coefficient is expanded
’s

d
f
by

e

s

T5T NH 11R2(
j
T•••TeiD j1R4(

j
T•••TeiD j81O~R6!J

[T N~11a21a41••• !

[T N~11a!, ~B2!

where each term corresponds to a fixed number of reflect
inside the Dirac comb and the number ofT’s and the phase
factorsD j ,D j8 , . . . in each summation depend on where t
reflections take place~see the following formula!.

At the second order inR, the solution forT reads

T5T N$11R2$~e2ikd11•••1e2ikdN21!

1T 2~e2ik~d11d2!1•••1e2ik~dN221dN21!!

1•••1T 2~N23!~e2ik~d11•••1dN22!1e2ik~d21•••1dN21!!

1T 2~N22!e2ik~d11•••1dN21!%%1O~R4!, ~B3!

which yields, sinceR2.2uRu2,

a252uRu2$~e2ikd11•••1e2ikdN21!

1T 2~e2ik~d11d2!1•••1e2ik~dN221dN21!!

1•••1T 2~N23!~e2ik~d11•••1dN22!1e2ik~d21•••1dN21!!

1T 2~N22!e2ik~d11•••1dN21!%. ~B4!

The average transmission coefficient and probability,
given by Eqs.~4.4! and ~4.6!, read

^T&5T N~11^a&!5T N~11^a2&1••• !, ~B5!

^t&5^uTu2&5uT u2N~112Rê a&1^uau2&!

5uT u2N~112Rê a2&1^ua2u2&1••• !. ~B6!

Notice thate is proportional to the square of the standa
deviation (da)2:

e512
u^T&u2

^uTu2&
5

~da!2

^u11au2&
,

~da!25^uau2&2u^a&u25^ua2^a&u2&. ~B7!
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1. Calculation of zŠT‹z2: Definition of N eff

We explicitly calculate the average value of the transm
sion coefficient when the spacingsdl undergo random fluc-
tuations. We write
in

er

th
en

ac
e

i

-
av
-
^T&.T N$11^a2&%[T N$12uRu2SN

~2!%. ~B8!

where
SN
~2![2^a2&uRu225^~e2ikd11•••1e2ikdN21!1T 2~e2ik~d11d2!1•••1e2ik~dN221dN21!!1•••1T 2~N23!

3~e2ik~d11•••1dN22!1e2ik~d21•••1dN21!!1T 2~N22!e2ik~d11•••1dN21!&

5~N21!^e2ikd&1~N22!T 2^e2ikd&21•••

12T 2~N23!^e2ikd&N221T 2~N22!^e2ikd&N21

5~N21!s1~N22!s21•••12sN2211sN21

5
s~sN2Ns1N21!

T 2~s21!2 , ~B9!
f

t

r of
where all fluctuations are assumed independent, all spac
identically distributed, ands[T 2^e2ikd&.

Moreover, sinceuT u2512uRu2, we obtain

u^T&u2.uT u2N$112Rê a2&%

5$12NuRu21O~R4!%$122uRu2ReSN
~2!1O~R4!%

512NuRu222uRu2ReSN
~2!1O~R4!

512uRu2$N12ReSN
~2!%1O~R4!

[12uRu2Neff 1O~R4!

.exp~2Neff uRu2!, ~B10!

where we roughly took into account the effects of high
order reflections, in the last approximate equality.~Notice
that this approximation corresponds to the assumption
^* 4&.^* 2&^* 2&. This formula holds as a Gaussian rule wh
all higher-order moments are discarded.! This is Eq.~4.28!.

The parameter

Neff [ N12ReSN
~2! ~B11!

plays the role of the number ofd potentials theQ particle
effectively interacts with. Indeed, suppose that the Dir
comb is made up ofN eff potentials acting incoherently: W
obtain

u^T&u25uT u2Neff . ^uTu2 & . ~B12!

The last approximate equality is fully justified ifN&100,
but, surprisingly, yields very accurate results even
N;10 000.

A more rigorous definition ofN eff can be given by start
ing from the perturbative expansion of the square of the
erage transmission coefficient

u^T&u2511c2uRu21c4uRu41O~ uRu6!1•••. ~B13!

In this expansion,
gs

-

at

f

-

N eff [ 2c2 . ~B14!

As a first application of the above formulas, letY50. Then,
by Eq. ~4.8!, s52T 2 and

SN
~2!.

1

4
$2~2e22iV!N22N11% ~B15!

so that

T.T N$12uRu2SN
~2!%

5~e2 ~1/2! V2
e2 iV!N~12 1

4 uRu2$2~2e22iV!N22N11%!

5e2 iNV@12 1
4 V2$12~2e22iV!N%#, ~B16!

which yields Eq.~4.17!.
As a second application, consider the larged-fluctuation

case. Notice that, by Eq.~4.8! and the Gaussian property o
the fluctuation,

s5T 2^e2ikd&5T 2e2ik^d&e22~k^d&!2Y2
52T 2e22~k^d&!2Y2

.
~B17!

By Eq. ~4.8!, if Y.0.1, we getusuN;0 (N.1). From Eqs.
~B9! and ~B17!, we obtain therefore

SN
~2!!N ~Y→ large! , ~B18!

u^ T &u2 →
Y→ large

exp~2NuRu2!, ~B19!

which yields Eq.~4.22! and explains the ‘‘saturation’’ effec
mentioned in Sec. IV D.

It is interesting to observe that in this case

N5Neff . ~B20!

This is in agreement with our physical intuition: whenY is
large, the phases are completely randomized, the numbe
‘‘effective’’ interactions is N, and u^T&u2.uT u2N

.exp(2NuRu2).
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We give here a short list of properties ofNeff . The proofs
are left to the reader.~i! If N51, then alsoNeff 51; ~ii ! if
Y50 andk^d&5(n11/2)p, thenNeff 5sin2 (NV ) for even
N and Neff 5cos2 (NV ) for odd N; ~iii ! if Y50 and
k^d&5np, then Neff 5 N2 ~‘‘resonance’’ effects!; ~iv! if
Y.0.1 thenNeff5N.

The behavior ofNeff as a function ofY andN is shown in
Fig. 15.

2. Calculation of ŠzTz2
‹

Let us compute the average transmission probability.
consider first the ‘‘saturated’’ region. In this case, from Eq
~B6! and ~B18!, the average transmission probability b
comes

^uTu2& →
Y→ large

uT u2N$11^ua2u&2%. ~B21!

We write

^ua2u&2[uRu4SN
~4! , ~B22!

where the termSN
(4) stems from multiple reflections and

explicitly given by

SN
~4! →

Y→ large

^ u ~e2ikd1 1 ••• 1 e2ikdN-1 !

1 T 2~e2ik~d11d2!1•••1e2ik~dN221dN21!!1•••

1T 2~N23!~e2ik~d11•••1dN22!

1e2ik~d21•••1dN21!!1T 2~N22!e2ik~d11•••1dN21!u2&

.1~N21!1uT u4~N22!1•••1uT u4~n22!1

.
uT u4N2NuT u41N21

~ uT_u421!2 , ~B23!

In conclusion, by Eq.~B19!
n-

n-
.

p.
e
.

^uTu2& →
Y→ large

uT u2N~11uRu4SN
~4!!

.uT u2Nexp~ uRu4SN
~4!!.exp

~2NuRu2!exp~ uRu4SN
~4!!

5u^T&u2exp~ uRu4SN
~4!!. ~B24!

where we partially took into account the effects of highe
order reflections, such as in Eq.~B10!. This is Eq.~4.23!.

Let us now turn to the general case in which there is
saturation (Y&0.1). Such a situation is difficult to tackle in
full generality. We shall therefore follow a heuristic ap
proach, and observe that comparison of Eqs.~B10! and
~B19! enables us to evince that one can formally obtain
expression foru^T&u2 in the general case by substituting

N→N12ReSN
~2![Neff ~B25!

into the expression for the ‘‘saturated’’ case. Roughly spe
ing, this assumption can be justified as follows: In our n
merical simulation, both the transmission probability and d
coherence parameter depend with very good approxima
on NY2. Moreover, in the ‘‘saturated’’ region, the averag
transmission coefficient and its square depend only onN.
Therefore a change of the value ofN in the nonsaturated cas
can be thought of as equivalent to a change of the value
Y2. In this way one obtains, from Eq.~B10!,

^uTu2&.u^T&u2exp~ uRu4SNeff

~4! !

5 exp~2uRu2Neff !exp~ uRu4SNeff

~4! ! , ~B26!

which is Eq. ~4.29!.
.
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